
http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735624023
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735624023
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735624023
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735624023
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735624023/Free-Sample-Chapter

● ● ● ● ● ● ● ● ● ● ●

How to access
your CD files

The print edition of this book includes a CD. To access the
CD files, go to http://aka.ms/624023/files, and look for the
Downloads tab.

Note: Use a desktop web browser, as files may not be
accessible from all ereader devices.

Questions? Please contact: mspinput@microsoft.com

Microsoft® Office
Excel® 2007
Visual Basic®
for Applications
Step by Step

Reed Jacobson

a02t624023.indd 1 4/9/2007 9:18:24 PM

Published by
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2007 by Reed Jacobson

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2007924651

ISBN: 978-0-7356-2402-3

Printed and bound in the United States of America.

6 7 8 9 10 11 12 13 14 QGT 7 6 5 4 3 2

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Calibri, Excel, Groove, InfoPath, Internet Explorer, MS-DOS,
OneNote, Outlook, PivotTable, PowerPoint, SharePoint, SQL Server, Visio, Visual Basic, Visual Studio,
Win32, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries. Other product and company names
mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Juliana Aldous Atkinson
Developmental Editor: Sandra Haynes
Project Editor: Rosemary Caperton
Editorial and Production Services: Online Training Solutions, Inc.
Technical Reviewer: Jason Lee; Technical Review services provided by Content Master, a member of
CM Group, Ltd

Body Part No. X13-68402							 [2012-05-04]

Co

 1

M
re

Wh

a04t624023.indd 3
ntents
About the Author. xi

Features and Conventions of This Book . xiii

Using the Book’s CD. xv

What’s on the CD?. xv

Minimum System Requirements . xvi

Step-by-Step Exercises . xvi

2007 Microsoft Offi ce System . xvi

Installing the Practice Files. xviii

Using the Practice Files .xix

Removing and Uninstalling the Practice Files . xx

Getting Help . xxi

Errata & Book Support .xxi

Make a Macro Do Simple Tasks 1
What’s the Difference Between VBA and a Macro?. 2

Sidebar: VBA and the .NET Framework . 4

Creating a Simple Macro . 5

Format Currency by Using a Built-In Tool . 5

Record a Macro to Format Currency . 6

Run the Macro . 8
 iii

Assign a Shortcut Key to the Macro . 8

Look at the Macro . 9

Save the Macro Workbook. .12

icrosoft is interested in hearing your feedback so we can continually improve our books and learning
sources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

at do you think of this book? We want to hear from you!

4/11/2007 9:09:52 AM

iv Contents

Changing Multiple Properties at Once. 13

Create Sidebar Headings with a Command . 14

Record a Macro to Merge Cells Vertically . 15

Eliminate Unnecessary Lines from the Macro . 17

Manipulating Recorded Properties . 18

Record a Macro to Remove Window Elements . 18

Run the Macro from the Visual Basic Editor . 19

Use a Macro to Toggle the Value of a Property . 20

Eliminate Repeated Objects in a Recorded Macro . 21

Run a Macro from the Quick Access Toolbar. 22

Recording Methods in a Macro . 24

Convert a Formula to a Value by Using Menu Commands 24

Convert a Formula to a Value by Using a Macro . 26

Make a Long Statement More Readable . 28

Trusting Macro-Enabled Workbooks . 28

Designate a Trusted Location for Macros. 29

Designate a Trusted Publisher for Macros . 30

Key Points . 35

2 Make a Macro Do Complex Tasks 37
Task One: Opening the Report File . 39

Open a Text File . 39

Watch a Macro Run by Stepping Through It . 42

Select a File While Running a Macro. 45

Task Two: Filling In Missing Labels . 47

Select Only the Blank Cells . 48

Fill the Selection with Values . 49

Record Filling In the Missing Values . 50

Watch the FillLabels Macro Run. 50

Task Three: Adding a Column of Dates . 52

Add a Constant Date . 52

Step Through the Macro. 52

Prompt for the Date . 53

Task Four: Appending to the Database . 55

Append Data to a Master List . 55

Step Through the AppendData Macro . 56

 Contents v

Record a Relative Movement . 58

Choose Whether to Save Changes While Closing a File. 60

Task Five: Deleting the Worksheet . 61

Create a Macro to Delete the Active Worksheet. 61

Make the Macro Operate Quietly . 62

Assembling the Pieces. 63

Record a Macro That Runs Other Macros . 63

Simplify the Subroutine Statements . 64

Key Points . 65

3 Explore Workbooks and Worksheets 67
What Is an Object?. 68

Objects Come in Collections . 68

Objects Have Properties . 69

Objects Have Methods . 70

Methods Can Change Properties. 72

Properties Can Involve Actions . 72

Understanding Workbooks . 73

Add a New Workbook. 73

Sidebar: Dockable Views. 76

Count the Workbooks . 77

Close the Workbooks . 78

Refer to a Single Workbook . 79

Refer to a Workbook by Name . 81

Refer to a Workbook by Pointing . 82

Change a Workbook Property Value . 83

Understanding Worksheets . 84

Add a New Worksheet . 84

Rename and Delete a Worksheet . 84

Look at the Return Value of the Delete Method. 85

Look at the Result of the Add Method . 86

Copy a Worksheet . 87

Manipulate Multiple Worksheets. 87

Declare Variables to Enable Auto Lists . 89

Key Points . 91

vi Contents

4 Explore Range Objects 93
Referring to a Range . 94

Refer to a Range by Using an Address . 94

Refer to a Range as a Collection of Cells . 97

Refer to a Range as a Collection of Rows or Columns 101

Refer to a Range Based on the Active Cell. 104

Refer to Subsets of a Range . 107

Refer to a Relative Range . 109

Enhancing Recorded Selections. 113

Simplify Select…Selection Pairs . 113

Simplify Select Groups . 115

Entering Values and Formulas into a Range . 116

Relative References . 116

Absolute References . 117

R1C1 Reference Style. 119

Put Values and Formulas into a Range . 120

Construct Formulas to Fill a Grid . 123

Formatting a Range. 127

Add Borders to a Range . 127

Format the Interior of a Range . 131

Key Points . 135

5 Explore Data Objects 137
Working with Excel Tables . 138

Create a New File from an Existing Worksheet . 138

Create a Table from an Internal Source . 140

Create a Table from an External Source . 142

Record a Macro to Manipulate a Table. 146

Manipulate Table Columns . 148

Manipulate Table Totals and Filters . 151

Working with PivotTable Reports . 153

Create a PivotTable Report from an Internal Source . 153

Create a PivotTable Report from an External Source . 156

Record a Macro to Set the PivotTable Structure . 158

Set the PivotTable Structure . 160

Record a Macro to Customize a PivotTable Layout . 162

Customize a PivotTable Layout . 164

 Contents vii

Record a Macro to Customize a PivotTable Style . 167

Customize a PivotTable Style . 170

Key Points . 173

6 Explore Graphical Objects 175
Exploring Graphical Objects. 176

Use Worksheet Cells as a Drawing Grid . 176

Add a Gradient Fill to a Cell . 178

Add a Gradient-Filled Shape . 182

Reference a Selected Shape . 185

Sidebar: Shape-Related Object Classes . 188

Use an AutoShape to Create a Logo . 189

Use Grouped Shapes to Create Macro Buttons. 196

Sidebar: Selecting Multiple Items . 200

Exploring Chart Objects . 201

Create a Chart. 201

Sidebar: The Current Selection and Charts . 203

Synchronize Two Charts . 203

Format the Plot Area of a Chart. 206

Key Points . 207

7 Control Visual Basic 209
Using Conditionals. 210

Make a Decision . 210

Make a Double Decision . 212

Ask Yourself a Question . 214

Test for a Valid Entry . 215

Ask with a Message . 217

Creating Loops . 220

Loop Through a Collection by Using a For Each Loop. 220

Loop with a Counter by Using a For Loop . 222

Loop Indefi nitely by Using a Do Loop . 225

Managing Large Loops . 228

Set a Breakpoint . 229

Set a Temporary Breakpoint. 232

Show Progress in a Loop. 233

Key Points . 235

viii Contents

8 Extend Excel and Visual Basic 237
Creating Custom Functions . 238

Use a Custom Function from a Worksheet . 239

Add Arguments to a Custom Function. 240

Make a Function Volatile. 242

Make Arguments Optional . 243

Use a Custom Function from a Macro . 244

Handling Errors . 245

Syntax Errors . 245

Compiler Errors. 246

Logic Errors . 246

Run-Time Errors . 246

Ignore an Error . 247

Ignore an Error Safely by Using a Subroutine . 249

Add Arguments to Generalize a Subroutine . 251

Check for an Error . 252

Loop Until an Error Goes Away . 254

Trap an Error . 255

Key Points . 259

9 Launch Macros with Events 261
Creating Custom Command Buttons . 262

Try the ZoomIn and ZoomOut Macros. 262

Enable the Developer Tab in the Ribbon . 264

Create a Custom Command Button . 264

Link a Command Button to a Macro. 267

Sidebar: ActiveX Controls and Forms Controls . 268

Create an Event Handler on Your Own. 269

Make a Button Respond to Mouse Movements . 270

Explore the Visual Basic Project . 272

Handling Worksheet and Workbook Events . 274

Run a Procedure When the Selection Changes. 274

Handle an Event on Any Worksheet . 276

 Contents ix

Suppress a Workbook Event. 277

Cancel an Event . 279

Sidebar: The Ribbon and Visual Basic for Applications 281

Key Points . 281

10 Use Dialog Box Controls on a Worksheet 283
Using a Loan Payment Calculator . 284

Create a Loan Payment Model. 284

Use the Loan Payment Model . 286

Creating an Error-Resistant Loan Payment Calculator . 287

Restrict the Years to a Valid Range . 288

Restrict the Down Payment to Valid Values. 289

Restrict the Interest Rate to Valid Values . 291

Retrieving a Value from a List . 292

Prepare a List of Cars. 293

Retrieve the Price from the List . 295

Set the Column Widths . 296

Protecting the Worksheet . 297

Create an Event Handler for the Combo Box . 297

Protect the Worksheet . 299

Key Points . 301

11 Create a Custom Form 303
Creating a Form’s User Interface . 304

Create the Form . 305

Add Option Buttons. 306

Add a Check Box with a Related Text Box . 309

Initialize the Text Box. 311

Add Command Buttons . 314

Set the Tab Order for Controls. 316

Preparing a Form’s Functionality. 317

Create Custom Views on a Worksheet . 317

Create a Macro to Switch Views. 320

Dynamically Hide Columns. 321

x Contents
Implementing a Form . 325

Implement Option Buttons. 325

Implement a Check Box . 327

Check for Errors in an Edit Box. 328

Print the Report . 329

Launch the Form . 331

Key Points . 333

Index. 339

Appendix A Complete Enterprise Information System . 335
Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

About the Author

Reed Jacobson is a Senior Architect with Hitachi Consulting, an international manage-

ment and technology consulting fi rm. He worked as a Software Application Specialist

for Hewlett-Packard for 10 years and ran his own consulting fi rm for 5 years.

Reed received a BA degree in Japanese and Linguistics. He also received an MBA

degree from Brigham Young University and a graduate fellowship to study Linguistics

at Cornell University.

In addition to authoring this book, Reed is the author of Excel Trade Secrets for Windows,
Microsoft Excel Advanced Topics Step by Step, Microsoft Offi ce 2000 Expert Companion,

and Microsoft SQL Server Analysis Services Step by Step. He has given presentations at

Microsoft and other conferences, and has taught courses around the world.
 xi

Features and Conventions of
This Book

This book has been designed to lead you step by step through all the tasks you are

most likely to want to perform when creating macros in Microsoft Offi ce Excel 2007. If

you start at the beginning and work your way through all the exercises, you will gain

enough profi ciency to be able to perform many types of tasks by using macros. Each

topic is self contained, but later chapters do assume that you know the information

presented in earlier chapters. If you have worked with a previous version of Excel, or

if you completed all the exercises and later need help remembering how to perform

a procedure, the following features of this book will help you look up specifi c tasks

related to Excel 2007 macros:

O Detailed table of contents. Look up the topic you want in the list of the topics and

sidebars within each chapter.

O Chapter thumb tabs. Easily locate the beginning of the chapter you want.

O Topic-specifi c running heads. Within a chapter, quickly locate the topic you want

by looking at the running head of odd-numbered pages.

O Detailed index. Look up specifi c tasks and features and general concepts in the

index, which has been carefully crafted with the reader in mind.

O Companion CD. Find the practice fi les needed for the step-by-step

exercises, as well as a fully searchable electronic version of this book and other

useful resources.

If you are new to Excel 2007, you might not have had much time to explore the

Microsoft Offi ce Fluent user interface, which was introduced with the 2007 Microsoft

Offi ce System. The step-by-step instructions in this book often tell you to click buttons

on the Offi ce Fluent Ribbon, identifying the tab to click and the group in which the but-

ton is located. You should have no diffi culty following these instructions.

You can save time when you use this book by understanding how the Step by Step series

shows special instructions, keys to press, buttons to click, and so on. The table on the

next page tells you what you need to know.
 xiii

xiv Features and Conventions of This Book
Convention Meaning
This icon indicates a reference to the book’s companion CD.

USE This paragraph before the fi rst exercise in a chapter indicates the

practice fi les that you will use when working through the exercises.

BE SURE TO This paragraph before the fi rst exercise in a chapter indicates any pre-

requisite requirements that you should attend to before beginning

the exercise, or actions you should take to restore your system after

completing the exercise.

OPEN This paragraph before the fi rst exercise in a chapter indicates fi les that

you should open before beginning the exercise.

CLOSE This paragraph at the end of a chapter provides instructions for closing

open fi les or programs before moving on to another topic.

1
2

Blue numbered steps guide you through step-by-step exercises.

1
2

Black numbered steps guide you through procedures in expository

text.

An arrow indicates an exercise that has only one step.

See Also These paragraphs direct you to more information about a given topic

in this book or elsewhere.

Troubleshooting These paragraphs provide a helpful hint or information about other

available options.

Tip These paragraphs provide a helpful hint or shortcut that makes work-

ing through a task easier, or information about other available options.

Important These paragraphs point out information that you need to know to

complete a procedure.

Ctrl+Home A plus sign (+) between two key names means that you must hold

down the fi rst key while you press the second key. For example,

“press Ctrl+Home” means “hold down the Ctrl key while you press

the Home key.”

Program interface
elements

In steps, the names of program elements, such as buttons, commands,

and dialog boxes, are shown in black bold characters.

User input Anything you should type appears in blue bold characters.

Italic Italic font is used for emphasis and to introduce new terms.

 «

 Using the Book’s CD

 The companion CD included with this book contains the practice fi les you’ll use as you

work through the book’s exercises, as well as other electronic resources that will help

you learn how to use VBA macros with Microsoft Offi ce Excel 2007.

What’s on the CD?
 The following table lists the practice fi les supplied on the book’s CD. Note that some

practice fi les are used in more than one chapter.

 Tip The ExcelVBA07SBS folder contains a subfolder named Finished. This folder contains

the fi nished version of each chapter’s workbook. The Finished folder is never explicitly

referred to in the text, but it is there for your reference. If you have trouble getting a

macro to work properly, you can look at the macros in the Finished folder to help

troubleshoot the problem.

 Chapter In the ExcelVBA07SBS
folder

In the Finished folder

Chapter 1:

Make a Macro Do Simple Tasks

Budget.xlsx Chapter01.xlsm

Chapter 2:

Make a Macro Do Complex Tasks

Nov2007.txt
Orders.xlsx

Chapter02.xlsm

 Chapter 3:

Explore Workbooks

and Worksheets

None None

Chapter 4:

Explore Range Objects

Ranges.xlsx Chapter04.xlsm

Chapter 5:

Explore Data Objects

Orders.xlsx
Orders.accdb

Chapter05.xlsm

Chapter 6:

Explore Graphical Objects

Graphics.xlsx
MakeLogo.txt
MakeMap.txt

Chapter06.xlsm

Chapter 7:

Control Visual Basic

Flow.xlsx
Flow.txt

Chapter07.xlsm
xv
The CD that accompanies the print edition of this book is not available with this eBook edition, although select CD
content is available for download at http://www.microsoftpressstore.com/title/9780735624023.

http://www.microsoftpressstore.com/title/9780735624023

xvi Using the Book’s CD
 Chapter In the ExcelVBA07SBS
folder

In the Finished folder

Chapter 8:

Extend Excel and Visual Basic

Structure.txt Chapter08.xlsm

Chapter 9:

Launch Macros with Events

Events.txt Chapter09.xlsm

Chapter 10:

Use Dialog Box Controls

on a Worksheet

Loan.xlsx Chapter10.xlsm

Chapter 11:

Create a Custom Form

Budget.xlsx Chapter11.xlsm

Appendix:

A Complete Enterprise

Information System

EIS.xlsm
Orders.accdb

None

 Important The companion CD for this book does not contain the Microsoft Offi ce Excel

2007 software. You should purchase and install that program before using this book.

Minimum System Requirements

Step-by-Step Exercises
 In addition to the hardware, software, and connections required to run the 2007

Microsoft Offi ce system, you will need the following to successfully complete the

exercises in this book:

 O Excel 2007

 O 10 MB of available hard disk space for the practice fi les

2007 Microsoft Offi ce System
 For this book, you will not need the complete 2007 Microsoft Offi ce system. You will

need only Excel. The following is a reference for your convenience.

 Using the Book’s CD xvii
 Tip If you are a Microsoft .NET Developer and want to build an application based on Excel,

the contents of Chapters 3, 4, 5, and 6 will be particularly useful to help you understand the

Excel object model. To use Microsoft .NET to develop applications for Excel, you will need

Microsoft Visual Studio 2005 with a .NET language, as well as Microsoft Visual Studio 2005

Tools for the 2007 Microsoft Offi ce System (VSTO 2005 SE), which is downloadable from the

Microsoft.com Web site.

 The 2007 Microsoft Offi ce system includes the following programs:

 O Microsoft Offi ce Access 2007

 O Microsoft Offi ce Communicator 2007

 O Microsoft Offi ce Excel 2007

 O Microsoft Offi ce Groove 2007

 O Microsoft Offi ce InfoPath 2007

 O Microsoft Offi ce OneNote 2007

 O Microsoft Offi ce Outlook 2007

 O Microsoft Offi ce Outlook 2007 with Business Contact Manager

 O Microsoft Offi ce PowerPoint 2007

 O Microsoft Offi ce Publisher 2007

 O Microsoft Offi ce Word 2007

 No single edition of the 2007 Microsoft Offi ce system installs all of the above programs.

Specialty programs available separately include Microsoft Offi ce Project 2007, Microsoft

Offi ce SharePoint Designer 2007, and Microsoft Offi ce Visio 2007.

 To run these programs, your computer needs to meet the following minimum

requirements:

 O 500 megahertz (MHz) processor

 O 256 megabytes (MB) RAM

 O CD or DVD drive

 O 2 gigabyte (GB) hard disk space for installation (a portion of this disk space will be

freed if you select the option to delete the installation fi les)

 Tip Hard disk requirements will vary depending on confi guration; custom installation

choices may require more or less hard disk space.

xviii    U

Insta

	

	

sing the Book’s CD

●	 Monitor with minimum 1024 × 768 screen resolution

●	 Keyboard and mouse or compatible pointing device

●	 Internet connection, 128 kilobits per second (Kbps) or greater, for download and
activation of products, accessing Microsoft Office Online and online Help topics,
and any other Internet-dependent processes

●	 Windows Vista or later, Microsoft Windows XP with Service Pack 2 (SP2) or later, or
Microsoft Windows Server 2003 or later

●	 Windows Internet Explorer 7 or Microsoft Internet Explorer 6 with service packs

The 2007 Microsoft Office suites, including Office Basic 2007, Office Home & Student 2007,
Office Standard 2007, Office Small Business 2007, Office Professional 2007, Office Ultimate
2007, Office Professional Plus 2007, and Office Enterprise 2007, all have similar requirements.

lling the Practice Files
You need to install the practice files to a suitable location on your hard disk before you
can use them in the exercises. Follow the steps below.

Note  If for any reason you are unable to install the practice files from the CD, the files can
also be downloaded from the Web at .

1.	 Remove the companion CD from the envelope at the back of the book, and insert
it into the CD drive of your computer.

The Step By Step Companion CD License Terms appear. Follow the on-screen direc-
tions. To use the practice files, you must accept the terms of the license agreement.
After you accept the license agreement, a menu screen appears.

Important  If the menu screen does not appear, click the Start button and then click
Computer. Display the Folders list in the Navigation Pane, click the icon for your CD
drive, and then in the right pane, double-click the StartCD executable file.

2.	 Click Practice Files.
Important  On a computer running Windows Vista, the default installation location of
the practice files is Documents\MSP\ExcelVBA07SBS. On a computer running Windows
XP, the default installation location is My Documents\MSP\ExcelVBA07SBS. If your
computer is running Windows XP, whenever an exercise tells you to navigate to your
Documents folder, you should instead go to your My Documents folder.

http://wwww.microsoftpressstore.com/title/9780735624023

	

	

	

	

	
	

Usin

	
	

	
	

Start
Using the Book’s CD    xix

3.	 Click Next on the first screen, and then click Next to accept the terms of the license
agreement on the next screen.

4.	 If you want to install the practice files to a location other than the default folder
(Documents\MSP\ExcelVBA07SBS), click the Change button, select the new drive
and path, and then click OK.

Important  If you install the practice files to a location other than the default, you
will need to substitute that path within the exercises.

5.	 Click Next on the Custom Setup page, and then click Install on the Ready to
Install the Program screen to install the selected practice files.

6.	 After the practice files have been installed, click Finish.
7.	 Close the Step by Step Companion CD window, remove the companion CD from

the CD drive, and return it to the envelope at the back of the book.

g the Practice Files
When you install the practice files from the companion CD that accompanies this book,
the files are stored on your hard disk in Documents\MSP\ExcelVBA07SBS. Each exercise
is preceded by a paragraph that lists the files needed for that exercise and explains any
preparations needed before you start working through the exercise. Here are examples:

USE  the Budget.xlsx workbook and the Nov2007.txt text file. These practice files are located
in the Documents\MSP\ExcelVBA07SBS folder.

BE SURE TO  save Budget.xlsx as a macro-enabled workbook called Chapter04 in the
trusted folder that you created in Chapter 1.

OPEN  the Chapter04.xlsm workbook.

You can browse to the practice files in Windows Explorer by following these steps:

1.	 On the Windows taskbar, click the Start button, and then click Documents.
2.	 In your Documents folder, double-click MSP, and then double-click
ExcelVBA07SBS.

You can browse to the practice files from an Excel 2007 dialog box by following these
steps:

1.	 In the Favorite Links pane in the dialog box, click Documents.
2.	 In your Documents folder, double-click MSP, and then double-click

ExcelVBA07SBS.

xx Using the Book’s CD
Removing and Uninstalling the Practice Files
 You can free up hard disk space by uninstalling the practice fi les that were installed

from the companion CD. The uninstall process deletes any fi les that you created in the

Documents\MSP\ExcelVBA07SBS folder while working through the exercises. Follow

these steps:

 1. On the Windows taskbar, click the Start button, and then click Control Panel.

 2. In Control Panel, under Programs, click the Uninstall a program task.

 3. In the Programs and Features window, click Microsoft Offi ce Excel VBA 2007
Step by Step, and then on the toolbar at the top of the window, click the Uninstall
button.

 4. If the Programs and Features message box asking you to confi rm the deletion ap-

pears, click Yes.

 Important Microsoft Product Support Services does not provide support for this book or

its companion CD.

StartStart

	

Ge

Erra

Mo
tting Help
Every effort has been made to ensure the accuracy of this book and the contents of its
companion CD. If you do run into problems, please contact the sources listed below
for assistance.

ta & Book Support
If you find an error, please report it on our Microsoft Press site.

2.	 In the Search box, enter the book’s ISBN or title.

3.	 Select your book from the search results.

5.	 Click View/Submit Errata.

You’ll find additional information and services for your book on its catalog page. If
you need additional support, please e-mail Microsoft Press Book Support at mspin-
put@microsoft.com. If for any reason you are unable to install the practice files from
the CD, the files can also be downloaded from the web here: http://www.microsoft
-pressstore.com/title/9780735623057.

Please note that product support for Microsoft software is not offered through the ad-
dresses above.

re Information
If your question is about Microsoft Office Excel 2007 or another Microsoft software
product, and you cannot find the answer in the product’s Help, please search the
appropriate product solution center or the Microsoft Knowledge Base at:

1. Go to www.microsoftpressstore.com.

4. On your book’s catalog page, find the Errata & Updates tab.
   xxi

support.microsoft.com

In the United States, Microsoft software product support issues not covered by the
Microsoft Knowledge Base are addressed by Microsoft Product Support Services.
Location-specific software support options are available from:

support.microsoft.com/gp/selfoverview/

http://www.microsoftpressstore.com/title/9780735623057
http://www.microsoftpressstore.com/title/9780735623057

Chapter at a GlanceChapter at a GlanceChapter at a Glance
Use the Object

 Browser to learn
 about objects,

 page 94

Create formulas
with relative and
absolute references,
pages 116 and 117

Use a macro to
navigate anywhere
in a worksheet,
page 123

Apply borders to
ranges, page 127

Apply colors and
styles to ranges,
page 131

Chapter at a GlanceChapter at a Glance
 4 4 Explore Range Explore Range
 Objects Objects
In this chapter, you will learn to:

� Use several properties to refer to Range objects from macro statements.

� Put values and formulas into cells.

� Simplify macros that record selections.

� Apply formatting to ranges.

� Use the Object Browser to learn about objects, properties, and methods.

The world would be much simpler if people were all the same size. You wouldn’t need

adjustable seats in your car; your head would never get bumped on a door frame; your

feet would never dangle from a chair. Of course, you’d have new problems as well: When

you went to exchange that hideous outfi t you got for your birthday, you wouldn’t be

able to claim it was the wrong size.

When using Microsoft Visual Basic for Applications (VBA) to write macros for Microsoft

Offi ce Excel, you don’t need to worry about Range objects as long as all your worksheets

and data fi les are the same size. For example, if you never insert new rows into a budget,

if you always put yearly totals in column M, and if every month’s transaction fi le has

exactly 12 columns and 120 rows, you can skip this chapter because the macro recorder

can take care of dealing with ranges for you.

But in the real-live human world, people are different sizes, and consequently clothes

come in different sizes and cars have adjustable seats. And in the real-live worksheet

world, models and data fi les have different—and changing—sizes, and your macros

need to fi t them. Excel provides many methods and properties for working with Range

objects. In this chapter, you’ll explore Range objects and in the process learn how you

can use the Object Browser to learn about any new, unfamiliar object.
 93

94 Chapter 4 Explore Range Objects
Important Before you complete this chapter, you need to install the practice fi les from

the book’s companion CD to their default locations. See “Using the Book’s CD” on page xv

for more information.

USE the Ranges.xlsx workbook. This practice fi le is located in the Documents\MSP\
ExcelVBA07SBS folder.

BE SURE TO save a macro-enabled copy of the Ranges.xlsx workbook as Chapter4.xlsm in

the trusted folder location you created in Chapter 1.

OPEN the Chapter4.xlsm workbook.

Referring to a Range
A macro that needs to work with ranges of differing sizes must be fl exible. In this section,

you’ll learn various ways to refer to a range. The examples in this section don’t do any-

thing except reference ranges within a list, but these are all techniques you’ll use many

times as you work with ranges. Later in the chapter, you’ll use these techniques in more

practical contexts.

Refer to a Range by Using an Address
The Range property is a useful and fl exible way of retrieving a reference to a range. The

Range property allows you to specify the address of the range you want. You can use the

Object Browser to see how to use the Range property.

 1. In the Chapter04 workbook, right-click a worksheet tab, and then click View Code

on the shortcut menu to display the Visual Basic editor.

Rearrange the Excel and Visual Basic editor windows so that you can see them side

by side.

 2. In the Visual Basic editor, click the Object Browser toolbar button.

See Also If you want to change the Object Browser into a dockable window, see the
sidebar titled “Dockable Views” in Chapter 3, “Explore Workbooks and Worksheets.”

USE the the Ranges.xlsxRanges.xlsx workbook. This practice fi le is located in the workbook. This practice fi le is located in thexx Documents\MSP\Documents\MSP\
ExcelVBA07SBSExcelVBA07SBS folder.folder.SS

BE SURE TO save a macro-enabled copy of the save a macro-enabled copy of the Ranges.xlsxRanges.xlsx workbook as workbook as xx Chapter4.xlsmChapter4.xlsm inin

the trusted folder location you created in Chapter 1.the trusted folder location you created in Chapter 1.

OPEN the the Chapter4.xlsmChapter4.xlsm workbook. workbook.

Object BrowserObject Browser

 Referring to a Range 95
The Object Browser appears in the space normally held by the code window.

In essence, the Object Browser consists of two lists. The list on the left is a list

of object class names. The list on the right is a list of members—methods and

properties—available for the currently selected object class. At the top of the list

of classes is a special object class named <globals>. The <globals> object is not a

real object class, but it includes in its list of members all the methods and prop-

erties you can use without specifying an object. These are the methods and

properties you use to start a statement.

3. In the Classes list, select the <globals> object, click in the Members of '<globals>'
list, and press the R key to scroll to the fi rst member that begins with the letter R.

Then select the Range property.

The box at the bottom of the Object Browser displays information about the Range

property. This property takes two arguments. The brackets around the second

argument indicate that it is optional. The Range property returns a reference to a

Range object.

96 Chapter 4 Explore Range Objects

4. Right-click the Range property name in the Members list, and click Copy on the

shortcut menu.

5. Click the View menu, and click Immediate Window.

6. Right-click the Immediate window, and click Paste.

This is equivalent to using the Complete Word command to enter the function name.

7. After the Range property, type an opening parenthesis (Visual Basic will display the

argument list), and then type "B2" followed by a closing parenthesis and a period.

Then type Select.

The complete statement is Range("B2").Select. You need the quotation marks

around the range defi nition because this is the name of the range, not the item

number of a member of a collection.

8. Press Enter to select cell B2 on the active worksheet.

9. Type Range("B2:H2").Select and press Enter.

The fi rst argument of the range property can be a multicell range. In fact, it can be

anything that Excel recognizes.

 Referring to a Range 97
10. Type Range("H14").Select and press Enter to select the lower-right corner of the

list of values. Then type Range(Selection, "B2").Select and press Enter.

This selects the range from cell H14 (the current selection) to cell B2 (the upper left

cell of the list). The arguments to the Range property do not have to be strings;

they can also be references to range objects. A common use of the two-argument

form of the Range property is to select the range that extends from the currently

selected range to some fi xed point at the top of the worksheet.

11. Type ?Selection.Count and press Enter.

The number 91 appears in the Immediate window. There are 91 cells in the currently

selected range. If you don’t specify otherwise, Excel treats a range object as a col-

lection of cells. If you want to know the number of rows or columns in the range,

you can do that by using specialized properties, as you will learn in the section titled

“Refer to a Range as a Collection of Rows or Columns,” later in this chapter.

 Tip As you learned in Chapter 3, typing a question mark before an expression in the

Immediate window allows you to display the value of that expression.

The Range property is a fl exible way of establishing a link to an arbitrary Range object.

You can use either a single text string that contains any valid reference as an argument

to the Range property or two arguments that defi ne the end points of a rectangular

range. Once you have the resulting reference to a range object, you can use any of the

members that appear in Object Browser for the Range class.

Refer to a Range as a Collection of Cells
Multiple worksheets can exist in a workbook, and the Worksheets collection is defi ned as

an object class. A Worksheets object has a list of methods and properties that is separate

from a Worksheet object.

98 Chapter 4 Explore Range Objects

Similarly, multiple cells exist on a worksheet. You might expect that Excel would have a

Cells collection object. But a collection of cells is more complicated than a collection of

worksheets because cells come in two dimensions—rows and columns. For example, you

can think of the range A1:B3 as a collection of six cells, as a collection of three rows, or as

a collection of two columns.

Excel therefore has three properties that look at a range as a collection. The fi rst of

these—the Cells property—returns a collection of cells. However, this is not a separate

class. The result of the Cells property is still a Range object, and it can use any of the

methods or properties of any other Range object. Because Excel thinks of any range, by

default, as a collection of cells, you typically use the Cells property as an alternative to

the Range property—using numbers, rather than text strings.

1. In the Object Browser, with the <globals> object selected in the list of classes,

select the Cells property from the list of members.

The description at the bottom of the Object Browser indicates that the Cells

property returns a Range object.

2. In the Immediate window, type Cells.Select and press Enter.

This selects all the cells on the worksheet. This is equivalent to clicking the box at

the upper left corner of the worksheet, between the column A heading and the

row 1 heading.

 Referring to a Range 99
3. Type Cells.Item(5).Select and press Enter.

This selects cell E1, the fi fth cell in the fi rst row. The Cells property returns the

range of all the cells on the worksheet as a collection. An individual item in the

collection is a cell.

4. Type Cells.Item(16383).Select and press Enter.

This selects cell XFC1, the next to the last cell in the fi rst row. Excel 2007 now allows

16384 cells in a single row.

5. Type Cells.Item(16385).Select and press Enter.

This selects cell A2, the fi rst cell in the second row. When you use a single number

to select an item in the Cells collection, the number wraps at the end of each row.

Since each row of the worksheet contains 16384 cells, cell 16385 is the fi rst cell on

the second row.

6. Type Cells.Item(3,2).Select and press Enter.

100 Chapter 4 Explore Range Objects

This selects cell B3, the third row and second column in the worksheet. Unlike most

other collections, the Cells collection allows you to specify an item by using both

the row and column values.

Important In previous versions of Excel, the expression Cells.Item(257) referred to

cell A2. In Excel 2007, it now refers to cell IW1, the 257th cell in the fi rst row. In order

to write macros that work in multiple versions, you should always use the row and

column specifi cation in the Cells function. Another consequence of the larger size of

the worksheet is that you cannot use the expression Cells.Count to retrieve the num-

ber of cells on the worksheet, because the number is too big. This is unlikely to ever

be a problem, but it illustrates the expanded size of the worksheet grid.

7. Type Cells.Item(1048576,16384).Select and press Enter.

This selects cell XFD1048576, the bottom right cell in the worksheet. In case

you wonder, these bizarre-looking numbers are really simple powers of 2. You

could select the same cell by using the expression Cells.Item(2 2̂0,2 1̂4).
You could also use the Range property—Range("XFD1048576").

8. Type Cells(1).Select and press Enter to select cell A1.

As with other collections, when you use the Cells property to get a collection of cells,

you can leave out the Item method, and simply put the argument after the Cells

property. The expression Cells(1) is equivalent to Cells.Item(1), which is equivalent to

Range("A1"). All these expressions can be used interchangeably.

 Referring to a Range 101
Refer to a Range as a Collection of Rows or Columns
In addition to referring to the worksheet range as a collection of cells, you can also think

of it as a collection of rows or as a collection of columns. Analogous to the Cells property,

the Rows property returns a collection of rows and the Columns property returns a collec-

tion of columns. These properties return collections, do not have their own object classes,

and return Range objects.

1. In the Object Browser, with the <globals> object selected in the list of classes,

select the Columns property in the list of Members.

The description shows that this property, similar to the Range property and the

Cells property, returns a Range object.

2. In the Immediate window, type Columns.Select and press Enter.

This selects all the cells on the worksheet, exactly the same as Cells.Select. The

difference between the two properties appears when you use the Item property

to index into a single item in the collection.

3. Type Columns(3).Select and press Enter.

This selects column C, the third column on the worksheet.

102 Chapter 4 Explore Range Objects

4. Type Columns("D").Select and press Enter.

This selects column D. When you specify a column by letter, you are giving the

name of the item and must enclose it in quotation marks.

5. Type Columns("B:H").Select and press Enter.

This selects the range of columns from B through H. The only way to specify a

range of columns within the collection is by using the column letter names.

6. Type Rows(2).Select and press Enter.

This selects row 2. With rows, the name of an item is also a number. The expressions

Rows(2) and Rows("2") are functionally equivalent.

 Referring to a Range 103
7. Type Rows("3:14").Select and press Enter.

 This selects a range of rows. The only way to specify a range of rows within the

collection is by using the row numbers as a name—that is, by enclosing them in

quotation marks.

 The <globals> object in the Object Browser includes three properties that return all the

cells of a worksheet—Cells, Columns, and Rows. In each case, you get a reference to a

Range object, but the properties return that object as a collection of cells, columns, or

rows, respectively. There are no object classes for Cells, Columns, and Rows. These are

simply different ways of representing the same Range object.

104 Chapter 4 Explore Range Objects

Refer to a Range Based on the Active Cell
Many times when writing a macro you want to refer to a range that is somehow related

to the active cell or to the current selection. The macro recorder uses the Selection prop-

erty to refer to the selected range and the ActiveCell property to refer to the one active

cell. A Range object has useful properties that can extend the active cell or the selection

to include particularly useful ranges.

1. In the Immediate window, type Range("B2").Select and press Enter.

This selects the upper left cell of the sample list.

2. In the Object Browser, with the <globals> object selected in the Classes list, select

the ActiveCell property.

The description at the bottom of the Object Browser shows that this property

returns a Range object.

3. In the Immediate window, click the Edit menu, and then click Complete Word. In

the list of members, click ActiveCell.

 Tip When you use the Complete Word command at the beginning of a statement—

whether in a macro or in the Immediate window—the Auto List displays all the mem-

bers of the <globals> object. If you like using the keyboard, you can press Ctrl+Space

to display the list of members, type partial words and use arrow keys to select the

desired member, and then press the Tab key to insert the member into the statement.

4. Type a period (.). Then type CurrentRegion.Select to create the statement

ActiveCell.CurrentRegion.Select, and then press Enter.

This selects the entire sample list. The CurrentRegion property selects a rectangular

range that includes the original cell and is surrounded by either blank cells or the

edge of the worksheet. It is hard to overstate the usefulness of the CurrentRegion

property.

 Referring to a Range 105
5. Type ActiveCell.EntireColumn.Select and press Enter.

This selects all of column B because the active cell was cell B2. Because the

starting range was the active cell—not the entire selection—the EntireColumn

property returned a reference to only one column. Because the initial active

cell—B2—is still within the selection, it is still the active cell.

6. In the Object Browser, with the <globals> object selected, select the Selection

property in the list of members.

The description at the bottom indicates that the Selection property returns an

object, not a Range. The Selection property returns a Range object only when cells

are selected. If shapes or parts of a chart are selected, this global property returns

a different object type. Because the Selection object can return a different ob-

ject type at different times, it does not display an Auto List the way the ActiveCell

property does.

106 Chapter 4 Explore Range Objects

7. In the Immediate window, type Selection.CurrentRegion.Select and press Enter.

This selects the range B1:H14—the entire sample list plus the one row above it.

It’s acting the same as if the current selection were only cell B1. When you use the

CurrentRegion property with a multicell range as the starting point, it ignores every-

thing except the top-left cell of the range as it calculates the current region.

8. Type Range("A2").Activate and press Enter.

Because the specifi ed cell is outside of the current selection, the Activate method

behaves the same as Select.

 Referring to a Range 107
9. Type Selection.EntireRow.Select and press Enter.

This selects all of row 2. Because the selection is a single cell, you would get exactly

the same result by using ActiveCell.EntireRow.Select.

10. Type Range("B2").Activate and press Enter.

Because the specifi ed cell is within the selected range, this statement does not

change the selection, but it does move the active cell to a new location within the

range. If you activate a cell that is not within the current selection, the Activate

method behaves the same as Select.

The Selection and ActiveCell properties are useful as starting points for deriving other

ranges. The ActiveCell property always returns a reference to a Range object, and there-

fore displays a convenient Auto List when you are entering a statement. The Selection

property returns a reference to a Range object only when a range is actually selected,

and thus it does not display an Auto List.

Refer to Subsets of a Range
When you reference a range by using a property from the <globals> object—for example,

Range, Cells, Columns, or Rows—you get a range based on the entire active worksheet.

These same properties also exist as properties of a Range object. The easiest way to work

with properties of a Range object is to declare a variable as a Range. Then the Auto List

displays the methods and properties as you type a statement, even if you use the Selection

property—which does not display Auto Lists—to assign the range to the variable.

1. In the Visual Basic editor, click Insert, and then click Module.

2. Type Sub TestRange and press Enter.

Visual Basic adds parentheses and an End Sub statement.

3. Type Dim myRange As Range and press F8 twice to initialize the variable.

4. In the Immediate window, type Set myRange = Range("B2") and press Enter. Then

type myRange.Select and press Enter again.

108 Chapter 4 Explore Range Objects

This selects cell B2, confi rming that the variable contains a reference to that cell.

5. Click the Object Browser button. In the list of classes, select the Range class. Then

in the list of members, select the Range property.

 This Range property appears very similar to the Range property of the <globals>

object. It behaves, however, relative to a starting range.

6. In the Immediate window, type myRange.Range("A1:G1").Select and press Enter.

 This does not select the range A1:G1. Rather, it selects the range B2:H2. If you think

of cell B2 as the upper left cell of an imaginary worksheet, the range A1:G1 of that

imaginary worksheet would correspond to the range B2:H2 of the real worksheet.

7. Type Set myRange = myRange.CurrentRegion and press Enter. Then type

myRange.Select and press Enter again.

 Given that myRange already referred to cell B2, which is inside the sample list, the

fi rst statement references the entire sample list, and the second confi rms that the

variable contains a reference to the appropriate range.

8. Type myRange.Cells.Item(2,6).Select and press Enter.

 This selects the fi rst data value in the Units column—row 2 and column 6 within

the data region.

9. Type myRange.Rows(2).Select and press Enter.

 Referring to a Range 109
This selects the second row of values in the list, even though they exist in row 3

of the worksheet. A single row from the collection referenced by the global Rows

property includes the entire row of the worksheet; the Rows property of a Range

object includes only the cells within the range.

10. Type myRange.Rows(myRange.Rows.Count).Select and press Enter.

This selects the last row of the list. Because the Rows property returns a collection,

you can use the Count property to fi nd the number of items in the collection. That

count can then serve as an index into the same collection.

When you use the Range, Cells, Columns, or Rows properties as members of a Range

object, the resulting ranges are relative to the upper-left cell of that range. Contrast

this to when you use the same functions from the global group—or as members of the

Application object or of a Worksheet object. With anything other than a Range object,

these functions return ranges that are relative to the upper-left cell of the worksheet.

Refer to a Relative Range
Excel has other properties that can calculate a new range based on one or more existing

ranges. Two of these properties do not exist in the list of global members; they exist only

as members of a Range object: the Offset property references a range shifted down, up,

left, or right from a starting range, and the Resize property references a range with a

different number of rows or columns from a starting range. An additional property, the

Intersect property, does appear in the list of global members. It is particularly valuable

when you need to “trim away” part of a range, such as when you want to remove the

header row from the current region.

1. In the Object Browser, select Range in the Classes list. Then, in the Members list,
select the Offset property.

The description indicates that this property has two arguments—RowOffset and

ColumnOffset, both of which are optional—and that it returns a Range object.

110 Chapter 4 Explore Range Objects

2. In the Immediate window, type myRange.Offset(1).Select and press Enter.

This selects a range identical in size and shape to the range stored in the variable,

but shifted down by one cell. The fi rst argument to the Offset property indicates

the number of rows down to shift the range; the second argument indicates how

many columns to the right to shift the range. Omitting an argument is the same as

using zero and does not shift the range in that direction.

 Referring to a Range 111
 Tip To understand the Offset property, think of yourself as standing on the upper-

left cell of the initial range. Face the bottom of the worksheet, and step forward the

number of steps specifi ed in the fi rst argument. Zero steps means no movement.

Negative steps are backwards. Then face the right side of the worksheet and do the

same with the number of steps specifi ed in the second argument. The resulting range

is the same size and shape as the original one, but it begins on the cell you end up

standing on.

3. In the Object Browser, select Range in the Classes list. Then, in the list of members,

select the Resize property.

The description indicates that this property has two arguments—RowSize and

ColumnSize, both of which are optional—and that it returns a Range object.

4. In the Immediate window, type myRange.Offset(1).Resize(5).Select and press Enter.

This selects the fi rst fi ve rows of data. The Offset property shifts the range down to

omit the heading row. The Resize function changes the size of the resulting range.

The fi rst argument to the Resize property is the number of rows for the result

range; the second is the number of columns for the result range. Omitting an

argument is the same as keeping the size of the original range for that direction.

5. Type myRange.Offset(1,5).Resize(1,2).Select and press Enter.

This selects the range G3:H3, which happens to be the numeric values in the fi rst

row of the body of the list.

112 Chapter 4 Explore Range Objects

 Tip The combined functionality of the Offset and Resize properties is equivalent to

that of the OFFSET function available on worksheets.

6. In the Object Browser, with the <globals> object selected in the list of classes,

select the Intersect method in the Members list.

The description shows that this method returns a Range object, but it also shows

that it can take up to 30 arguments! In practice, you usually use two arguments,

and you can see that the fi rst two arguments are required. The Object Browser

shows that the fi rst two arguments must be range objects, but if you use more than

two arguments, they do all need to be ranges. You can use the Intersect method in

conjunction with the Offset method to remove headings from the current region.

7. In the Immediate window, type Intersect(myRange, myRange.Offset(1)).Select
and press Enter.

This selects the range B3:H14, which is the entire list except the heading row. You

often need to manipulate the body of a list separately from the heading. By using

a range as the fi rst argument of the Intersect method, and then an offset version

of the range as the second argument, you can trim off portions of the range.

 Enhancing Recorded Selections 113
 8. Press F5 to end the macro.

The Offset and Resize properties, along with the EntireRow, EntireColumn, and

CurrentRegion properties and the Intersect method, provide you with fl exible tools for

calculating new Range objects based on an original starting range. Often, the easiest

way to work within a range is to fi rst use the CurrentRegion property to establish the

base range, and then use the Offset property and the Intersect method to manipulate

the range.

Enhancing Recorded Selections
When you record a macro, the macro recorder dutifully follows all your actions, including

selecting ranges before acting on them. You can make a macro do less work—and make

it easier to read—by eliminating unnecessary selection changes. A powerful technique

for eliminating unnecessary changes to the selection begins with watching for a state-

ment ending in Select followed by one or more statements beginning with Selection or

ActiveCell. What you do next depends on whether a single Selection (or ActiveCell) state-

ment follows the Select statement or whether a group of statements follows.

Simplify Select…Selection Pairs
When a single Selection statement follows a Select statement, you can collapse the two

statements into one. Record and simplify a macro that puts the names of the months

across the top of a worksheet.

114 Chapter 4 Explore Range Objects

1. In Excel, insert a blank worksheet and start recording a macro named

LabelMonths. Type the labels January, February, and March in the cells B1, C1,

and D1.

2. Turn off the recorder, and then edit the macro.

The macro should look similar to the following code. (Your macro might be slightly

different, depending on the key you press to enter the values into the cells.)

Sub LabelMonths()
 Range("B1").Select
 ActiveCell.FormulaR1C1 = "January"
 Range("C1").Select
 ActiveCell.FormulaR1C1 = "February"
 Range("D1").Select
 ActiveCell.FormulaR1C1 = "March"
 Range("D2").Select
End Sub

For each cell, the word Select appears at the end of one statement followed by

either the word Selection or ActiveCell at the beginning of the next statement. You

can delete both words, leaving only a single period. If a Select statement is the last

one in a macro, you can delete it entirely.

3. Remove the unnecessary selections from the LabelMonths macro by deleting

Select and ActiveCell each time they appear.

The fi nal macro should look like this:

Sub LabelMonths()
 Range("B1").FormulaR1C1 = "January"
 Range("C1").FormulaR1C1 = "February"
 Range("D1").FormulaR1C1 = "March"
End Sub

4. Insert a new blank worksheet, and test the macro.

The labels appear in the cells, and the original selection doesn’t change.

Why should you get rid of Select…Selection pairs? One reason is that doing so does make

the macro run faster. Another reason is that running a macro can seem less disruptive if

it doesn’t end with different cells selected than when it started. But the most important

reason is unquestionably that Select…Selection pairs in a macro are a dead giveaway that

you’re a beginner who uses the macro recorder to create macros. It’s OK to use the macro

recorder; you just want to cover your tracks.

 Enhancing Recorded Selections 115
Simplify Select Groups
When you eliminate a Select…Selection pair, be sure that only a single statement uses

the selection. If you have a single Select statement followed by two or more statements

that use the selection, you can still avoid changing the selection, but you must do it in a

different way.

 1. In Excel, select a sheet with labels in the fi rst row, and start recording a macro

named MakeBoldItalic.

 2. Click cell B1, click the Bold button, click the Italic button, and then click the Stop
Recording button.

 3. Edit the macro to look like this:

Sub MakeBoldItalic()
 Range("B1").Select
 Selection.Font.Bold = True
 Selection.Font.Italic = True
End Sub

Obviously, if you delete the fi rst Select…Selection pair, the macro won’t control

which cells will become italicized.

 4. Edit the macro to assign the range to a variable named myRange. Then replace the

Selection object with the myRange object.

The fi nished macro should look like this:

Sub MakeBoldItalic()
 Dim myRange As Range
 Set myRange = Range("B1")
 myRange.Font.Bold = True
 myRange.Font.Italic = True
End Sub

 5. Change "B1" to "C1" in the macro, and then press F8 repeatedly to step through

the macro. Watch how the format of the cell changes without changing which cell

is originally selected.

 6. Save the Chapter04 workbook.

Eliminating the selection when there’s a group might not seem like much of a simpli-

fi cation. And with only two statements, it probably isn’t. But when you have several

statements that use the same selection, storing the range in a variable can make the

macro much easier to read.

Bold Italic

Stop Recording

Bold Italic

Stop Recording

116 Chapter 4 Explore Range Objects
 Tip You could also replace the Select group with a With structure, like this:

With Range("B1")
 .Font.Bold = True
 .Font.Italic = True
End With

Secretly in the background, the With structure really just creates a hidden variable,

takes the object from the With statement, and assigns that object to the hidden vari-

able. It then puts the hidden variable in front of each “dangling” period. The End With

statement discards the hidden variable. An advantage of using an explicit object vari-

able is that you can delare the variable with a specific object type—for example, Dim

myRange as Range—and then VBA checks to make sure any methods or properties you

use are appropriate. With an explicitly declared variable, VBA also offers Auto Lists to

help you modify a macro.

Entering Values and Formulas into a Range
You may have situations where you want to create a macro that dynamically enters

formulas into cells. First you should understand how references work in formulas in

Excel, and then you can see how to create formulas in a macro.

See Also This section refers to standard Excel formula references. For information about using
structured formulas in a table, see the section titled “Record a Macro to Manipulate a Table” in
Chapter 5, “Explore Data Objects.”

Relative References
Most formulas perform arithmetic operations on values retrieved from other cells. Excel

formulas use cell references to retrieve values from cells. Imagine, for example, a list of

Retail prices and Wholesale costs.

Suppose you want to add a column to the list that calculates the gross margin—the

difference between the Retail price and the Wholesale cost—for each item. You would

put the label Margin in cell D1 and then enter the fi rst formula into cell D2. The formula

subtracts the fi rst Wholesale cost (cell C2) from the fi rst Retail price (cell B2). So you

would enter =B2-C2 into cell D2.

 Entering Values and Formulas into a Range 117
For each item in the High group, the gross margin is $2.75. Now you need to copy the

formula to the other rows. The formula you typed into cell D2 refers explicitly to cells C2

and B2. When you copy the formula to cell D3, you want the formula to automatically

adjust to refer to C3 and B3. Fortunately, when you copy the formulas, Excel adjusts the

references because, by default, references are relative to the cell that contains the for-

mula. (The Prices worksheet in the Chapter04 workbook contains these formulas.)

If the reference =C2 is found in cell D2, it really means “one cell to my left.” When you

copy the formula to cell D3, it still means “one cell to my left,” but now that meaning is

represented by the reference =C3.

Absolute References
Sometimes you don’t want relative references. Imagine, for example, a worksheet that

contains various quantities in column B and prices in row 3. (The Revenue worksheet in

the Chapter04 workbook contains the prices and quantities.)

Suppose you want to add formulas to calculate the revenue for each combination. To

calculate the fi rst revenue value (cell C4), you need to multiply the fi rst quantity (cell

B4) by the fi rst price (cell C3) . When you type = B4*C3 into cell C4, you get the correct

answer: $50.

118 Chapter 4 Explore Range Objects
But if you copy that formula to cell C5, you get the ridiculous answer of $1000. That’s

because the cell references are relative. In this version of the formula, you’re not really

referring to cells B4 and C3; you’re referring to “one cell to my left” and “one cell above

me.” When you put the formula into cell C5, “one cell above me” now refers to cell C4,

not cell C3.

In the Revenue table, you want the Quantity cell references to adjust from row to row ,

and you want the Price cell references to adjust from column to column, but you always

want to reference the Quantity from column B and the Price from row 3. The solution in

the user interface is to put a dollar sign ($) in front of the B in the fi rst Quantity reference

($B4), andin front of the 3 in the fi rst Price reference (C$3). The formula that should go into

cell C4 is =$B4*C$3. The dollar sign “anchors” that part of the formula, making it absolute.

When you copy the formula to the rest of the range C4:E8, you get correct answers. (The

RevenueFormulas worksheet in the Chapter04 workbook contains the correct formulas.)

The relative portion of the formula changes with the row or column of the cell that

contains the formula. The absolute portion remains fi xed.

If you want to modify the formula so that it also takes into account the discount value

from cell G3, you must make both the row and the column of the discount reference

absolute. The correct formula would be =$B4*C$3*(1-G3). If you assign a name to a

cell—for example, if you assign the name Discount to cell G3—then by default, using

the name in the formula acts as a completely absolute reference. (The RevenueFormulas

worksheet in the Chapter04 workbook contains these formulas.) Later in this chapter, you

will create a macro that will fi ll the grid with the correct formula, regardless of where it is

on the worksheet and how many rows or columns it has.

 Entering Values and Formulas into a Range 119
R1C1 Reference Style
As a default, Excel displays letters for column headings and numbers for row headings.

Consequently, the default name for the upper-left cell in the worksheet is cell A1. Referring

to cells by letter and number is called A1 reference style. In A1 reference style, however, cell

references do not really say what they mean. For example, the reference =C4 says “cell C4,”

but if it’s in a formula in cell E4, it really means “two cells to my left,” and if it’s in a formula

in cell C5, it really means “one cell above me.” You don’t know what the reference really

means until you know which cell contains the reference.

Excel has an alternate reference style that uses numbers for both column and row

headings. In this alternate reference style, to refer to a cell you use the letter R plus the

row number and C plus the column number. Consequently, the upper-left cell in the

worksheet is cell R1C1. Referring to cells by numbers in both rows and columns is called

R1C1 reference style. In R1C1 reference style, cell references really do say what they

mean. Consequently, in macros, when VBA has to understand and use the formulas, it

is usually convenient to use R1C1 reference style. When a human has to understand the

formula, it is usually easier to use A1 reference style, which is why A1 reference style is

the default.

You can, however, change the user interface to use R1C1 reference style if you want to

try it out. To turn on R1C1 reference style, click the Microsoft Offi ce Button and then click

Excel Options. On the Formulas page, select the R1C1 Reference Style check box, and

click OK. (To turn off R1C1 reference style, clear the check box.) The setting in the Excel

Options dialog box does not have any effect on macros: a macro can enter formulas using

either reference style.

120 Chapter 4 Explore Range Objects

In R1C1 reference style, to specify a relative reference on the same row or column as

the cell with the formula, you simply use an R or a C, without a number. For example, the

reference =RC3 means “the cell in column 3 of the same row as me,” and the reference

=R2C means “the cell in row 2 of the same column as me.”

To specify a relative reference in a different row or column, you indicate the amount

of the difference, in square brackets, after the R or the C. For example, the reference

=R5C[2] means “two columns to my right in row 5,” and the reference =R[-1]C means

“one cell above me.”

The correct formula for calculating the gross margin on the Prices worksheet was =B2-C2,

but only if the formula was entered into cell D2. In R1C1 reference style, the equivalent

formula is =RC[-2]-RC[-1] , and it doesn’t matter which row contains the formula. The for-

mula to calculate the discounted price on the Revenue worksheet was =$B4*C$3*(1-G3),

at least for cell C4. In R1C1 reference style, the same formula is =RC2*R3C*(1-R3C7), again,

regardless of which cell contains the formula.

Important When you use A1 reference style, the formula changes depending on which

range you copy the formula into. When you use R1C1 reference style, the formula is the

same, regardless of which cell it goes into. The reference style only makes a difference when

you put the same formula into multiple cells.

Put Values and Formulas into a Range
You can explore the properties for putting values and formulas into a range by creating

a simple list of incrementing numbers.

1. In the Visual Basic editor, activate the Immediate window, type Worksheets.Add,

and press Enter to create a new, blank worksheet in the active workbook.

2. Type Range("B2:B6").Select and press Enter to select a sample starting range of cells.

3. Type Selection.Value = 100 and press Enter to fi ll all the cells of the selection with

the number 100.

 Entering Values and Formulas into a Range 121
Value is a property of the range. When you set the Value property in conjunction

with a multicell range, you change all the cells in the range.

 Tip When assigning a contant value to a range, the Formula property is equivalent to

the Value property, so Selection.Formula = 100 is the same as Selection.Value = 100.

The Formula property is equivalent to whatever you see in the formula bar when the

cell is selected. The formula bar can contain constants as well as formulas, and so can

the Formula property. When you assign a value to a cell, the Formula property and the

Value property have the same effect.

4. Type ActiveCell.Value = 0 and press Enter to change cell B2 to 0.

Only the active cell changes, not the selected cells. Entering a value in the

active cell is equivalent to typing a value and pressing Enter. Entering a value

in the selection is equivalent to typing a value and pressing Ctrl+Enter.

Suppose you want to enter a value in the cell above the active cell, whatever the

active cell might be.

5. Type ActiveCell.Offset(-1).Value = 1 and press Enter to change the value in cell

B1 to 1.

This statement starts with the active cell, uses the Offset property to calculate a

new cell one up from that starting cell, and then sets the Value property for the

resulting cell.

122 Chapter 4 Explore Range Objects

6. Type Selection.FormulaR1C1 = "=R[-1]C*5" and press Enter.

Now each of the selected cells contains a formula, not a constant. The

FormulaR1C1 property expects a formula in R1C1 reference style. The reference

R[-1]C always means “one cell above” regardless of which cell gets the formula.

7. Type ?ActiveCell.Value and press Enter.

This statement displays the value 5 in the Immediate window. The Value property

retrieves the result of any formula in a cell. When you retrieve the contents of the

cell that contains a formula, the Value property gives you the result of the formula.

8. Type ?ActiveCell.Formula and press Enter.

This statement displays the formula =B1*5 in the Immediate window. When you

retrieve the contents of a cell that contains a formula, the Formula property gives

you the formula using A1 reference style. The setting in the Excel Options dialog

box is ignored. If you want to retrieve the formula using R1C1 reference style, use

the FormulaR1C1 property.

All cells have Formula, FormulaR1C1, and Value properties. The Value property and

the Formula property behave the same when you’re writing to the cell. When you read

the value of a cell, the Value property gives you the value, and the Formula property

gives you the formula using A1 reference style. The FormulaR1C1 property is the same

as the Formula property, except that it uses R1C1 reference style for all references,

whether assigning a formula to the cell or reading the formula from a cell.

 Tip The Value property always gives you the unformatted value of the number in a cell. A cell

also has a Text property, which returns the formatted value of the cell. The Text property is

read-only because it’s a combination of the Value property and the NumberFormat property.

A range also has a Value2 property. The difference between Value and Value2 has to do with

dealing with very large, very precise numbers—as in banking. The Value property uses a data

type (double-precision fl oating point) that can handle either very large numbers or very pre-

cise numbers, but not at the same time. The Value2 property uses a data type (currency) that

can handle the large-scale precision needed in fi nancial summaries.

Co
So
ple
Re
ad
in
of

If y
sel
Yo
ass
yo

	

	

	

On
tw
Wi
rig

	 1

	 2

	

nstruct Formulas to Fill a Grid
metimes you need a macro to create formulas that contain references. For exam-
, suppose want to create a macro that will enter the appropriate formulas into the
venue grid. You could just record a macro, but a recorded macro will use specific cell
dresses. Suppose that the grid could be anywhere on the worksheet—not just starting
cell A1—and that it could be of any size. Your recorded macro can’t handle that kind
variation.

ou can make a few simple assumptions, you can create a macro that will find a grid,
ect the current region to find the size of the grid, and then add the correct formula.
u can even have the macro automatically find the location of the Discount cell and
ign a name to it so that the formula can reference the cell by name. The assumptions
u need to make are very useful for most simple macros:

●	 Always use the consistent words as labels so you can have the macro search for them.

●	 Always keep the same number of header columns and rows.

●	 Separate ranges are separated by at least one empty row or one empty column so
that the CurrentRegion method can detect the rectangle.

 the Revenue worksheet, the searchable labels are Price and Discount, the grid has
o header rows and one header column, and the ranges are separated by column F.
th those simple assumptions, you can create a macro that will automatically create the
ht formula and put it into the correct range.

.	Make a copy of the Revenue worksheet in the Chapter04 workbook, with cell A1
selected.

Copying the worksheet will give you a chance to test the macro, moving and resizing
the revenue grid.

.	 In the Visual Basic editor, enter the following macro shell, and press F8 twice to step
to the End Sub statement.

Sub FillFormulas()
 Dim myOuter as Range
 Dim myInner as Range
 Dim myFormula as String

End Sub

Entering Values and Formulas into a Range   123
Declaring variables at the top will make it easier to work with different ranges. The
myOuter range will refer to the entire current region of the Revenue grid, including
the headings. The myInner range will refer to the empy cells in the middle that need
formulas. The myFormula string will contain the formula so that you can construct
the formula piece by piece in the macro.

124 Chapter 4 Explore Range Objects

3. In the Object Browser, select Range in the Classes list. Then, in the list of members,

select the Find method.

The description indicates that this property has one required argument—the string

you’re searching for—and that it returns a reference to a range.

4. In the Immediate Window, type Set myOuter = Cells.Find("Price").CurrentRegion

and then press Enter. When you can confi rm the correct range by entering

myOuter.Select, copy the statement into the macro.

See Also The Intersect and Offset functions are described in the section titled “Refer to
a Relative Range” earlier in this chapter.

For the myInner range, you need to remove two header rows at the top and

the one header column at the left. You can do that by using the combination of

Intersect and Offset.

	 5.	

	 6.	

	

In the Immediate window, type
Set myInner = Intersect(myOuter,myOuter.Offset(2,1)) and press Enter. When you
can confirm the correct range by entering myInner.Select, copy the statement into
the macro.

For the Discount range, you can use the label in the top cell to define the name for
the lower cell. This creates a name in the worksheet, rather than a variable in Visual
Basic. You assign the name by using the CreateNames method. The CreateNames
method has four arguments, Top, Bottom, Left, and Right, respectively. These
identify which side of the range contains the labels you should use as names.
The Discount label is above the discount value, so Top is the only one you need to
designate as True. Since Top is the first argument, you can simply omit the others.

In the Immediate window, type
Cells.Find("Discount").CurrentRegion.CreateNames True and press Enter. When
you can confirm the correct range by entering Range("Discount").Select, copy the
statement into the macro.

Entering Values and Formulas into a Range   125
For the first part of the formula, you need a reference to the first Price cell, which is
currently cell C3. If you think of myOuter as if it were a worksheet, you want cell “B2”
of that imaginary worksheet, and you want the address in R1C1 notation, with an

126 Chapter 4 Explore Range Objects

absolute row number and a relative column number, from the point of view of the

fi rst formula cell. The Address method gives you the address of a cell, with arguments

to control what it looks like. Visual Basic prompts you for each of the arguments.

7. In the Immediate window, type

myFormula = myOuter.Range("B2").Address(True,False,xlR1C1,False,myInner)
and press Enter. Move the mouse pointer over the word myFormula to confi rm that

the address is R3C, and then copy the statement into the macro.

 Tip When you use the Range method, Visual Basic shows you tips for the methods

and properties that follow. When you use the Cells method, Visual Basic does not

show tips. Even though Range("B2") and Cells(2,2) are functionally equivalent, using

the Range method makes the statement easier to type. If you fi nd the Cells method

easier to understand, you can make the change after you have successfully created

the statement.

8. In the Immediate window, type myFormula = "=" & myFormula & "*". Move the

mouse pointer over the word myFormula to confi rm that the value is =R3C*, and

then copy the statement into the macro.

9. Enter the following three statements into the macro, optionally testing each one

fi rst in the Immediate window.

myFormula = myFormula & _
 myOuter.Range("A3").Address(False, True, xlR1C1, False, myInner)
myFormula = myFormula & " * (1 - Discount) "
myInner.FormulaR1C1 = myFormula

There is nothing fundamentally new in these statements. The fi rst one appends

the quantity address, with relative column and absolute row. The second one adds

the Discount portion of the formula. The Discount portion doesn’t need to be

converted to an address because it’s already a name in the worksheet. The third

statement assigns the fi nished formula to the inner range.

10. Create a new copy of the Revenue worksheet, and test the macro. Then make

another copy, change the size and location of the revenue grid, and test the

macro again.

 Formatting a Range 127
Filling ranges of variable sizes with formulas is a powerful technique. You can use

the methods and properties of the Range object to create the formula and to fi nd the

correct range to fi ll.

Formatting a Range
Formatting contributes much to the usability of a worksheet. Borders and background

colors can emphasize parts of a report, and conditional formatting can highlight excep-

tions within a range. Cell formatting can be combined into cell styles to make the same

formatting combinations easy to reuse.

Add Borders to a Range
Borders help to demarcate regions with a block of cells. Sometimes you want to put

borders around every cell within a range. Sometimes you want to put a single border

around an entire range of cells. Sometimes you want a different border along one side of

a range. A Range object has methods and properties to allow you to completely control

whatever type of border you need.

 1. In Excel, make a copy of the RevenueFormulas worksheet. In the Visual Basic

editor, copy the TestRange macro, give the new one the name AddBorders, and

press F8 twice to initialize the myRange variable.

 Troubleshooting If you don’t have a TestRange macro, see the fi rst two steps of

the “Refer to a Relative Range” section earlier in this chapter.

 2. In the Immediate window, type Set myRange = Range("B2").CurrentRegion and

press Enter to assign the range containing the revenue calculations to the variable.

Troubleshooting If you don’t have a TestRange macro, see the fi rst two steps of If you don’t have a TestRange macro, see the fi rst two steps of

the “Refer to a Relative Range” section earlier in this chapter.the “Refer to a Relative Range” section earlier in this chapter.

128 Chapter 4 Explore Range Objects

3. In the Immediate window, type myRange.Borders.LineStyle =.

As you type each period in the statement, an Auto List displays the available

members. After you type the equal sign, no Auto List appears, but you can use

the Object Browser to fi nd the available options.

4. In the Object Browser, in the Search Text box above the Classes list, type
LineStyle, and click the Search button.

5. In the Search Results pane that appears, select XlLineStyle in the Class list.

The Member list shows all the possible constants you can use for the LineStyle

property.

XlLineStyle is not really a class, even though it shows up in the list of classes in

the Object Browser. There is no such thing as an XlLineStyle object. It is, rather,

an enumerated list. An enumerated list is used when a property or argument can

accept only certain values. An enumerated list allows the object model designer to

give each of those values a special name—for example, xlContinuous. Enumerated

lists are included in the list of Classes, but with a special icon.

6. In the Immediate window, type xlContinuous to fi nish the statement, and then

press Enter.

This adds a continuous border around each cell in the range. When you assign a

value to the LineStyle property of the Borders object, the property changes for the

border of each cell in the entire range.

SearchSearch

 Formatting a Range 129
7. In the Immediate window, type myRange.Borders.LineStyle = xlNone and press

Enter to remove the borders.

The value xlNone does not appear in the enumeration list for LineStyle because it

is a global constant that is used by many Excel objects. You can search for it in the

Object Browser if you want to see the complete list of global contants.

The Borders object is actually a collection, and you can select specifi c borders

within that collection. In principle, you could change cell borders one at a time, but

because putting a border around an entire range is a common operation, there is a

special method just for doing that.

8. In the Immediate window, type myRange.BorderAround Weight:=xlThick and

press Enter.

This changes the edges of the range to a thick border. Because Weight is not the

fi rst argument, you have to type its name if you leave out LineStyle. Setting the

border weight to Thick implies that the line will be continuous.

Suppose that you want a border on the right side of the quantities. To specify a

single border, you can use an enumerated name in conjunction with the Borders

collection. Auto Lists can help you with the syntax, but you have to be a little tricky.

130 Chapter 4 Explore Range Objects

9. In the Immediate Window, type

myRange.Borders(xlEdgeRight).LineStyle = xlContinuous, but do not press

Enter. Immediately after myRange, type a period (.), type Columns(1), and

then press Enter.

 Once you use the Columns property in a statement, you don’t see any more Auto

Lists, but if you temporarily leave out the Columns property, you get Auto Lists for

everything else except the line style. Then, after you get the syntax correct for the

statement, you can go back and add the Columns property.

10. In the Immediate window, type

myRange.Rows(2).Borders(xlEdgeBottom).LineStyle = xlContinuous and press

Enter. This adds a border under the row of prices.

11. Press F5 to end the macro. Copy the statements from the Immediate window into

the AddBorders macro, and delete the two statements that fi ll and remove all the

borders.

 The fi nished macro should look like this:

Sub SetBorders()
 Dim myRange As Range
 Set myRange = Range("B2").CurrentRegion
 myRange.BorderAround Weight:=xlThick
 myRange.Columns(1).Borders(xlEdgeRight).LineStyle = xlContinuous
 myRange.Rows(2).Borders(xlEdgeBottom).LineStyle = xlContinuous
End Sub

12. Create a new copy of RevenueFormulas and test the fi nished macro.

 Borders can emphasize parts of a report. The Borders collection allows you to change all

the borders at one time or choose a particular type of border to modify. The BorderAround

method is a convenient shortcut for assigning a border to all the edges of a multicell range.

 Formatting a Range 131
Format the Interior of a Range
To enhance the readability of a worksheet, you might want to apply different background

colors to various parts. For example, you might apply one format to all the cells that con-

tain values that a user can input, and a different format to all cells that contain formulas.

1. In Excel, create another copy of the RevenueFormulas worksheet. In Visual Basic,

copy the TestRange macro, name the new one AddColors, and press F8 twice to

initialize the myRange variable.

 Troubleshooting If you don’t have a TestRange macro, see the fi rst two steps of

the “Refer to a Relative Range” section earlier in this chapter.

2. In the Immediate window, type Set myRange = Range("B2").CurrentRegion and

press Enter to assign the range containing the revenue calculations to the variable.

3. In the Immediate window, type myRange.Interior.Color =.

As you type each period in the statement, an Auto List displays the available

members. After you type the equal sign, however, no Auto List appears. For the

Color property, there is no enumerated list. You can enter any number between 0

(which equals black) and 16777215 (which equals white), so there are literally more

than 16 million possible values. This is a major change from previous versions of

Excel, where colors in a worksheet were limited to a palette of only 56 colors.

Colors on a computer correspond to the red, green, and blue guns of a cathode ray

tube. (Liquid crystal displays use a different technology, but the same component

colors.) Visual Basic has an RGB function you can use to specify precise red, green,

and blue components, but Excel provides an easier way to specify the color you

want: it includes an enumerated list that gives meaningful names to about 140 of

the most common colors.

See Also Excel 2007 also uses theme colors to help you use predefi ned sets of
compatible colors. Theme colors are described in more detail in the section titled “Add a
Gradient Fill to a Cell” in Chapter 6, “Explore Graphical Objects.”

4. In the Immediate window, type rgbMediumVioletRed to complete the statement,

and press Enter. (Once you get past rgbM, press Ctrl+Space to get to the middle of

the rgb color values.)

The background color of the entire range changes to a medium violet red.

Troubleshooting If you don’t have a TestRange macro, see the fi rst two steps of If you don’t have a TestRange macro, see the fi rst two steps of

the “Refer to a Relative Range” section earlier in this chapter.the “Refer to a Relative Range” section earlier in this chapter.

132 Chapter 4 Explore Range Objects

Now that Excel can handle millions of colors, it has a new capability to change

how light (the tint) or dark (the shade) a color is without changing the actual

color (the hue).

5. In the Immediate window, type myRange.Interior.TintAndShade = -0.2 and press

Enter. The color changes to a slightly darker shade of violet red.

A range object has a special method called SpecialCells that isolates cells within the

range based on various attributes. For example, you can reference all the formula

cells within the range.

6. In the Immediate window, type

myRange.SpecialCells(xlCellTypeFormulas).Interior.TintAndShade = 0.3 and

press Enter.

The block of formulas changes to a lighter tint of violet red. In this range, the

formulas form a contiguous block, but SpecialCells can return a range of discon-

tiguous cells as well.

In Excel, you can give a name to a set of formatting characteristics. This is called

a cell style. There are several built-in styles in a workbook. One of them is named

Input, so that you can use it to format cells that can accept user input—typically

cells that contain constants that are numbers.

 Formatting a Range 133
7. In the Immediate window, type

myRange.SpecialCells(xlCellTypeConstants, xlNumbers).Style = "Input" and

press Enter.

The cells with prices and quantities change to a light tan, with borders around each

cell. The constant xlNumbers doesn’t appear in an Auto List, but you can fi nd the

list in the Object Browser by searching for SpecialCells.

You can modify the style format in the same way that you can modify a range

format directly.

8. Enter the following two statements in the Immediate window:

ActiveWorkbook.Styles("Input").Interior.Color = rgbMediumVioletRed
ActiveWorkbook.Styles("Input").Interior.TintAndShade = 0.5

This changes the Input style so that it has a lighter version of the same violet red

shade as the rest of the cells. When applying a style to cells that can take input

values, you may want to search the entire worksheet for the numeric constants.

To do that, you just start with the global Cells property.

9. In the Immediate window, type

Cells.SpecialCells(xlCellTypeConstants, xlNumbers).Style = "Input" and press Enter.

This adds the Input style to the Discount cell value. If you had hundreds of input cells

scattered all over the worksheet, this statement would still fi nd them all. The text

labels in the Revenue range are hard to read, with the black text on a dark back-

ground. You can use SpecialCells to isolate all the cells that contain text constants.

10. In the Immediate window, type

myRange.SpecialCells(xlCellTypeConstants, xlTextValues).Font.Color = rgbWhite

and press Enter.

This changes the font color for the labels to white, but they would look better bold

as well. In fact, all the constants within the formula range would look better if they

were bold.

134 Chapter 4 Explore Range Objects

11. In the Immediate window, type

myRange.SpecialCells(xlCellTypeConstants).Font.Bold = True and press Enter.

This changes all the constants within the range store in myRange to bold. By leaving

out the second argument to SpecialCells, you get everything that matches the gen-

eral type. You can also use a special style to clear all the formatting.

12. In the Immediate window, type Cells.Style = "Normal" and press Enter.

This clears all the formatting, including the number and formats. When you clear

formats from a worksheet, what it really does is apply the Normal style to all the

cells. By changing the Normal style, you change the default appearance of cells in

the workbook.

13. Press F5 to end the macro. Copy the statements from the Immediate window into

the AddColors macro, and delete the statement that clears all the formatting.

The fi nished macro, ignoring optional line breaks, should look like this:

Sub SetColors()
 Dim myRange As Range
 Set myRange = Range("B2").CurrentRegion

 myRange.Interior.Color = rgbMediumVioletRed
 myRange.Interior.TintAndShade = -0.2
 myRange.SpecialCells(xlCellTypeFormulas). _
 Interior.TintAndShade = 0.3

 Key Points 135
 myRange.SpecialCells(xlCellTypeConstants, xlNumbers). _
 Style = "Input"
 ActiveWorkbook.Styles("Input").Interior _
 .Color = rgbMediumVioletRed
 ActiveWorkbook.Styles("Input").Interior _
 .TintAndShade = 0.5
 Cells.SpecialCells(xlCellTypeConstants, xlNumbers) _
 .Style = "Input"

 myRange.SpecialCells(xlCellTypeConstants, xlTextValues) _
 .Font.Color = rgbWhite
 myRange.SpecialCells(xlCellTypeConstants).Font.Bold = True
End Sub

 14. Create a new copy of RevenueFormulas and test the fi nished macro.

Ranges are powerful objects. They are the essence of Excel. With ranges you can organize

information, create formulas, and apply formatting. And you can do all of that with under

the control of VBA macros.

CLOSE the Chapter04.xlsm workbook.

Key Points
O Use the Object Browser to fi nd out what members—methods and properties—are

available for an object, and what each method or property returns.

O Avoid changing the selection during your macros. A macro runs faster and appears

more professional if it doesn’t have to repaint the screen.

O While debugging, use the Immediate window to test the current reference of a

range object.

O Many range-related functions start with one range and return another range.

These functions are invaluable for navigating from one range to another. The most

important one is CurrentRegion.

O Always use R1C1 references when constructing formulas from macros, and take

advantage of the many options—relative, absolute, internal, external—that the

Address property gives you.

O Use the Borders collection to simultaneously control the borders of each cell within

a range. Use the BorderAround method to treat the range as a single unit.

O Use either the RGB function or the enumerated list of RGB constants to select a

color. To create smooth gradations of the shades and tints of a color, take advan-

tage of the TintAndShade property.

Chapter at a GlanceChapter at a GlanceChapter at a Glance

Prevent errors by
using an If statement,

 page 210

Loop over parallel ranges
by using a For loop, page 222

Debug large loops
 by using a break-

point, page 229

Loop indefinitely by
using a Do loop,
page 225

Ask a question by
using a message box,
page 217

Show progress by
using the status bar,
page 233

Chapter at a GlanceChapter at a Glance
 7 7 Control Visual Control Visual
 Basic Basic
In this chapter, you will learn to:

� Use conditional statements.

� Create loops using three different blocks.

� Retrieve the names of fi les in a folder.

� Create breakpoints to debug long loops.

� Show progress while a macro executes a loop.

The fi rst successful underwater tunnel ever built was begun in 1825. It is the Thames

Tunnel. It was a fi nancial disaster at the time, but amazingly it is still in use as part of

the London Underground system. The genius behind the the tunnel’s engineering was

a man named Marc Brunel. Twenty years before launching the Thames Tunnel, Brunel

made a name for himself by devising a way of inexpensively producing the pulley

blocks needed to build ships for the British shipping industry. Brunel’s technique later

came to be known as an “assembly line,” and Henry Ford turned the invention into an

industry, supplying America with Model T cars that cost only $3,500 in today’s dollars.

Repetition can have a dramatic effect on effi ciency. Computer programs—including

macros that you write—become more powerful when you add a multiplier effect. In this

chapter, you’ll learn how to add loops to your macros. And to make those loops more

effective, you’ll learn how to create conditional expressions that let the macro make

decisions.

Important Before you complete this chapter, you need to install the practice fi les from

the book’s companion CD to their default locations. See “Using the Book’s CD” on page xv

for more information.
 209

210 Chapter 7 Control Visual Basic
USE the Flow.xlsx workbook, the Flow.txt text fi le, and the Orders.xlsx workbook. These

practice fi les are located in the Documents\MSP\ExcelVBA07SBS folder. The Flow text fi le

contains some initial macros that you will copy into your workbook and modify during this

chapter. The initial macros are stored in a simple text fi le so that you can be certain there is

no malicious code before you put the code into a trusted location.

BE SURE TO save the Flow.xlsx workbook as a macro-enabled workbook named

Chapter07.xlsm in the trusted location you created in Chapter 1.

OPEN the Flow text fi le. Then open the Chapter07 workbook, right-click any sheet tab,

and click View Code to open the Microsoft Visual Basic editor. In the Visual Basic editor,

from the Insert menu, click Module to create a new module for your macros, and then

save the fi le. Arrange the Microsoft Offi ce Excel 2007 and Visual Basic editor windows so

that you can see both of them side by side.

Using Conditionals
Recorded macros are not very smart. They can repeat what you did when you recorded

the macro, but they can’t behave differently in different circumstances. They can’t make

decisions. The only way that you can make your macros “smart” is to add the decision-

making ability yourself.

Make a Decision
The Flow text fi le contains a macro named MoveRight, which looks like this:

Sub MoveRight()
 ActiveCell.Offset(0, 1).Select
End Sub

 This macro selects the cell to the right of the active cell and works fi ne—most of the time.

 1. Copy the MoveRight macro from the text fi le, and paste it into a VBA module in

the Chapter07 workbook.

 2. With cell A1 selected in the workbook, activate the Visual Basic editor, click in the

MoveRight macro, and press F5.

The macro selects cell B1 in the workbook.

 3. In Excel, press Ctrl+Right Arrow to select cell XFD1, the rightmost cell on the fi rst row.

 4. In the Visual Basic editor, press F5.

Visual Basic displays an error.

USE the the Flow.xlsxFlow.xlsx workbook, the workbook, the xx Flow.txtFlow.txt text fi le, and the text fi le, and thett Orders.xlsxOrders.xlsx workbook. Theseworkbook. Thesexx
practice fi les are located in thepractice fi les are located in the Documents\MSP\ExcelVBA07SBSDocuments\MSP\ExcelVBA07SBS folder. The folder. The SS FlowFlow text fi le text fi le ww
contains some initial macros that you will copy into your workbook and modify during thiscontains some initial macros that you will copy into your workbook and modify during this

chapter. The initial macros are stored in a simple text fi le so that you can be certain there ischapter. The initial macros are stored in a simple text fi le so that you can be certain there is

no malicious code before you put the code into a trusted location.no malicious code before you put the code into a trusted location.

BE SURE TO save thesave the Flow.xlsxFlow.xlsx workbook as a macro-enabled workbook named workbook as a macro-enabled workbook named xx
Chapter07.xlsmChapter07.xlsm in the trusted location you created in Chapter 1.in the trusted location you created in Chapter 1.

OPEN thethe FlowFlow text fi le. Then open the text fi le. Then open theww Chapter07Chapter07 workbook, right-click any sheet tab, workbook, right-click any sheet tab, 77
and click View Code to open the Microsoft Visual Basic editor. In the Visual Basic editor, and click View Code to open the Microsoft Visual Basic editor. In the Visual Basic editor,

from the Insert menu, click Module to create a new module for your macros, and thenfrom the Insert menu, click Module to create a new module for your macros, and then

save the fi le. Arrange the Microsoft Offi ce Excel 2007 and Visual Basic editor windows so save the fi le. Arrange the Microsoft Offi ce Excel 2007 and Visual Basic editor windows so

that you can see both of them side by side. that you can see both of them side by side.

 Using Conditionals 211
You can’t select the cell to the right of the rightmost cell. If your macro can’t move

to the right, you’d rather have it do nothing than display an error message.

5. In the error message box, click the Debug button to jump to the macro, and then

click the Reset button to stop the macro.

6. Insert the statement If ActiveCell.Column < Columns.Count Then after the

Sub statement. Indent the statement that changes the selection, and then

insert the statement End If before the end of the macro.

Be sure to indent each statement in such a way as to make it clear which statement

is governed by the If statement. Visual Basic doesn’t require proper indentation,

but indentation is critical to help you (or someone following after you) interpret

the macro the same way that Visual Basic does.

The revised macro should look like this:

Sub MoveRight()
 If ActiveCell.Column < Columns.Count Then
 ActiveCell.Offset(0, 1).Select
 End If
End Sub

An If statement (a statement that begins with the word If) pairs with an End If

statement. The group of statements from the If to the End If is called an If block.

Visual Basic looks at the expression immediately after the word If and determines

whether it evaluates to True or False. This true-or-false expression is called a con-

ditional expression. In a simple If block such as this example, if the value of the

expression is True then Visual Basic executes all the statements between the If

statement and the End If statement. If the expression is False, Visual Basic jumps

directly to the End If statement. You must always put the word Then at the end of

the If statement. In this case, the conditional expression tests for whether the cur-

rent column is less than the total number of columns in the worksheet. You could

also compare to a constant—such as 16384 or 2 1̂4—but using object properties

allows the macro to work with older versions of Excel (with 256 columns) and also

with Excel 2007 (with 16384 columns).

212 Chapter 7 Control Visual Basic

7. Switch back to Excel, select cell XFA1, activate Visual Basic, and then press F5 four

or fi ve times.

The macro moves the active cell to the right until it gets to the last cell. After that it

does nothing, precisely according to your instructions.

The macro recorder will never create an If block. This kind of decision is pure Visual Basic,

and you must add it yourself. Fortunately, adding an If block is easy.

 1. Figure out a question that has a “yes” or “no” answer. In this example, the question

is, “Is the column number of the active cell less than 256?” You can turn this ques-

tion into the true-or-false conditional expression in an If statement.

 2. Put the word If in front of the conditional expression, and put the word Then after it.

 3. Figure out how many statements you want to execute if the conditional expression

returns a True value.

 4. Put an End If statement after the last statement that you want controlled by the If

block.

By using If blocks, you can add intelligence to your macros.

Make a Double Decision
Sometimes—such as when you’re preventing an error—you want your macro to execute

only if the conditional expression is True. Other times, you want the macro to behave

one way if the expression is True and a different way if the condition is False.

For example, suppose that you want a macro that moves the active cell to the right, but

only within the fi rst fi ve columns of the worksheet. When the active cell gets to the fi fth

column, you want it to move back to the fi rst cell of the next row. In this case, you want

the macro to carry out one action if the cell column is less than fi ve (move to the right)

and a different action if it isn’t (move down and back). You can make the macro choose

between two options by adding a second part to the If block.

1. Switch to the Visual Basic editor, and copy the MoveRight macro. Change the name

of the new copy to FiveColumnWrap.

2. In the FiveColumnWrap macro, change the expression Columns.Count to 5 in the

If statement.

 Using Conditionals 213
3. Add the statement Else before the End If statement, and press Enter.

4. Press Tab, and add the statement Cells(ActiveCell.Row + 1, 1).Select after the Else

statement.

 The revised macro should look like this:

Sub MoveRight()
 If ActiveCell.Column < 5 Then
 ActiveCell.Offset(0, 1).Select
 Else
 Cells(ActiveCell.Row + 1, 1).Select
 End If
End Sub

The Else statement simply tells Visual Basic which statement or statements to ex-

ecute if the conditional expression is False.

 Tip Several different statements would select the fi rst cell of the next row. For

example, here are a few alternatives:

Rows(ActiveCell.Row + 1).Cells(1).Select

ActiveCell.EntireRow.Cells(2, 1).Select

ActiveCell.Offset(1, 0).EntireRow.Cells(1).Select.

They all get from the same starting point (the ActiveCell) to the same destination.

When you write macros, you often have multiple alternatives. You simply choose the

one that is easiest to understand.

5. Press F5 repeatedly to execute the macro.

You see the selection move to the right and then scroll back to column A, much as

a word processor wraps to the next line.

An If block can contain a single part, executing statements only when the conditional

expression is True, or it can have two or more parts, executing one set of statements

when the conditional expression is True and a different set when it’s False.

 Tip In most cases, If and Else are suffi cient. There is also a way to use an If block to create

multiple conditions by adding an ElseIf statement. To fi nd out more about If blocks, high-

light the word If in the macro and then press F1.

214 Chapter 7 Control Visual Basic

Ask Yourself a Question
In Chapter 2, “Make a Macro Do Complex Tasks,” you created a macro that asked you

to enter a date. You used the Visual Basic InputBox function to do that. The InputBox

function is excellent for asking a question, but you must be careful about what happens

when you click the Cancel button.

The Flow text fi le contains a macro named TestInput that prompts for the date. The code

in this macro should look familiar.

Sub TestInput()
 Dim myDate As String
 myDate = InputBox("Enter Month in MMM-YYYY format")
 MsgBox "Continue the macro"
End Sub

 The macro prompts for a date. It then displays a simple message box indicating that it’s

running the rest of the macro.

1. Copy the TestInput macro from the text fi le, and paste it into a module in the

Chapter07 workbook in the Visual Basic editor.

2. Click in the TestInput macro. Press F5 to run the macro, type Nov-2007 for the

date, and then click OK.

 The message box appears, simulating the rest of the macro.

3. Click OK to close the message box.

4. Press F5 to run the macro again, but this time click Cancel when prompted to enter

the date.

 The message box still appears, even though your normal expectation when you

click Cancel is that you’ll actually cancel what you started.

 Using Conditionals 215
5. Click OK to close the message box.

You need a conditional expression where a True result means that you want the

macro to continue. An appropriate question is, “Did the user enter anything in

the box?” since clicking Cancel is the same as leaving the box empty: Whether you

click Cancel or leave the box empty, the InputBox function returns an empty string

(equivalent to two quotation marks with nothing between them). The operator <>

(a less-than sign followed by a greater-than sign) means “not equal;” it’s the oppo-

site of an equal sign.

6. Before the MsgBox statement, enter the statement If myDate <> "" Then. Before

the End Sub statement, enter End If. Indent the statement inside the If block.

The revised macro should look like this:

Sub TestInput()
 Dim myDate As String
 myDate = InputBox("Enter Month in MMM-YYYY format")
 If myDate <> "" Then
 MsgBox "Continue the macro"
 End If
End Sub

7. Press F5 and test to make sure the macro properly handles an input value. Type a

date, and click OK.

The macro “continues.”

8. Click OK to close the message box.

9. Now run the macro again, but this time click Cancel when prompted for a date.

The macro stops quietly.

Whenever you allow user input in a macro, you must be sure to check whether the user

took the opportunity to cancel the macro entirely.

Test for a Valid Entry
Testing for an empty string checks to see whether the user clicked the Cancel button,

but it does not help you determine whether the value entered into the box is valid. You

can add a second test to check the input value.

1. Run the TestInput macro again, but this time type hippopotamus in the input box,

and click OK.

The macro continues—the same as it would have if you had entered a date.

216 Chapter 7 Control Visual Basic

2. Click OK to close the message box.

This behavior could be a problem. You need to check whether the box is empty,

but you also need to check for a valid date. Visual Basic has an IsDate function that

will tell you whether Visual Basic can interpret a value as a date. However, you want

to check for a date only if the user didn’t click Cancel. This calls for nested If blocks.

3. Change the macro to look like this:

Sub TestInput()
 Dim myDate As String
 myDate = InputBox("Enter Month in MMM-YYYY format")
 If myDate <> "" Then
 If IsDate(myDate) Then
 MsgBox "Continue the macro"
 Else
 MsgBox "You didn't enter a date"
 End If
 End If
End Sub

Be sure to indent each statement in such a way as to make it clear which statement

is governed by which If or Else statement.

4. Run the macro at least three times. Test it with a valid date, with an invalid entry,

and by clicking Cancel.

The valid and invalid entries should display the appropriate messages. Clicking

Cancel or leaving the box empty should display no message.

 Tip Visual Basic can interpret several different formats as dates. Try different date

formats, such as 11/07, to see which ones Visual Basic interprets as dates.

Using the InputBox function can be a valuable way of making a macro useful across a

wide range of circumstances. You must be careful, however, to check the result of the

InputBox before you continue the macro. Typically, you need to check for three pos-

sibilities: valid input, invalid input, and Cancel. An If block—and sometimes a nested If

block—can make your macro smart enough to respond to all the possible options.

 Using Conditionals 217
Ask with a Message
The Visual Basic MsgBox function is handy for displaying simple messages. As its name

implies, this function displays a message box. The MsgBox function can do much more

than that, however. It can ask questions, too. Many times, when a macro asks a question,

all it needs is a simple “yes” or “no” answer. The MsgBox function is perfect for yes-or-no

questions.

Suppose that you have two macros. One is a long, slow macro named PrintMonth, and

the other is a short, quick macro named ProcessMonth. You fi nd that you often acciden-

tally run the slow one when you intend to run the quick one. One solution might be to

add a message box to the beginning of the slow macro that asks you to confi rm that you

intended to run the slow one.

 The Flow text fi le includes a macro named CheckRun. You’ll enhance this macro to see how

to use a MsgBox function to ask a question. The macro looks like this before you start:

Sub CheckRun()
 MsgBox "This takes a long time. Continue?"
 MsgBox "Continue with slow macro..."
End Sub

1. Copy the CheckRun macro from the text fi le into a module in the Chapter07

workbook.

2. Click in the CheckRun macro, and press F5 to run it. Click OK twice to close each

message box.

 The fi rst message box appears to ask a question, but it has only a single button. To

ask a question, you must add more buttons.

3. Move the cursor to the end of the fi rst MsgBox statement. Immediately after the

closing quotation mark, type a comma.

218 Chapter 7 Control Visual Basic

As soon as you type the comma, Visual Basic displays the Quick Info for the

MsgBox function. The fi rst argument is named Prompt. That’s the one in which you

enter the message you want to display. The second argument is named Buttons.
This is an enumerated list of values. The default value for Buttons is vbOKOnly,

which is why you saw only a single OK button when you ran the macro before.

Along with the Quick Info box, Visual Basic also displays the Auto List of possible

values for the Buttons argument. You want the buttons to ask the question in terms

of yes or no.

4. Scroll nearly to the bottom of the list, select vbYesNo, press Tab, and then press F5

to run the macro.

The fi rst message box now has two buttons.

5. Click Yes to close the fi rst message box, and then click OK to close the second one.

The message box asks a question, but it totally ignores your answer. You need to

get the answer from the MsgBox function and use that answer to control the way

the macro runs.

6. Type the statement Dim myCheck As VbMsgBoxResult at the beginning of the

macro.

When you know a variable will contain only the value from an enumerated list, you

can use the name of the list when you declare the variable. When you later write a

statement to test the value of the variable, Visual Basic will display the list of pos-

sible values for you.

7. At the beginning of the fi rst MsgBox statement, type myCheck = and then put

parentheses around the argument list of the MsgBox function.

 Using Conditionals 219
 The revised statement should look like this:

myCheck = MsgBox("This takes a long time. Continue?", vbYesNo)

 Important When you use the return value of a function such as MsgBox, you must

put parentheses around the argument list. When you don’t use the return value, you

must not use parentheses.

8. Insert these three statements before the second MsgBox statement:

If myCheck = vbNo Then
 Exit Sub
End If

 Important When you create a conditional expression using the result of the

MsgBox function, you must not check for True or False. MsgBox has many types of

buttons it can display, so it has many types of answers. If you use vbYesNo for the

Buttons argument, MsgBox will always return either vbYes or vbNo. Neither of these

enumerated values equals False, so comparing the result to False would be the same

as always clicking Yes. When you test for a value that comes from an enumerated list,

always be sure to use the appropriate enumeration constant.

 The Exit Sub statement causes Visual Basic to stop the current macro immediately.

To avoid making your macros hard to understand, you should use Exit Sub sparingly.

One good use for Exit Sub is when you cancel the macro at the beginning, as in this

case. The fi nished macro should look like this:

Sub CheckRun()
 Dim myCheck As VbMsgBoxResult

 myCheck = MsgBox("This takes a long time. Continue?", vbYesNo)
 If myCheck = vbNo Then
 Exit Sub
 End If

 MsgBox "Continue with slow macro..."
End Sub

9. Test the macro. Run it and click Yes, and then run it and click No. Make sure the

rest of the macro runs only when you click Yes.

 A message box is a powerful tool for asking simple questions. The MsgBox function is

also a good example of how to use parentheses around argument lists: use parentheses

if you use the return value of the function; otherwise, don’t use them.

220 Chapter 7 Control Visual Basic
Creating Loops
Long before Henry Ford, and even before Marc Brunel, the economist Adam Smith

reasoned that in a single day, a single worker could make only one straight pin, but ten

people could subdivide the work and create 48,000 pins in the same day—an almost

5,000-fold increase in productivity. Similarly, you can get amazing increases in productivity

by converting a macro that runs once into one that runs thousands of times in a loop.

Loop Through a Collection by Using a For Each Loop
Excel allows you to protect a worksheet so that users can change only cells that are

explicitly unlocked. You must, however, protect each sheet individually. Suppose that

you have a workbook containing budgets for ten different departments and that you

want to protect all the worksheets.

The Flow text fi le includes a macro named ProtectSheets. Here’s what it looks like:

Sub ProtectSheets()
 Dim mySheet As Worksheet
 Set mySheet = Worksheets(1)
 mySheet.Select
 mySheet.Protect "Password", True, True, True
End Sub

This macro assigns a reference to the fi rst worksheet to the mySheet variable, selects

that sheet, and then protects it. (Selecting the sheet really isn’t necessary, but it makes

it easier to see what the macro is doing.) Now see how you can convert this macro to

protect all the worksheets in the workbook.

 1. Copy the ProtectSheets macro from the text fi le, and paste it into a VBA module in

the Chapter07 workbook.

 2. Click in the ProtectSheets macro, and press F8 repeatedly to step through the

macro. Make sure you understand everything that the original macro does.

 3. In the third line, replace Set with For Each, replace the equal sign with In, and re-

move the parentheses and the number between them.

 4. Indent the two statements that begin with mySheet, add a new line, and then type

the statement Next mySheet.

The fi nished macro should look like this:

Sub ProtectSheets()
 Dim mySheet As Worksheet
 For Each mySheet In Worksheets
 mySheet.Select

 Creating Loops 221
 mySheet.Protect "Password", True, True, True
 Next mySheet
End Sub

The For Each statement acts just like Set: It assigns an object reference to a variable.

But instead of assigning a single object to the variable, it assigns each item from a

collection to the variable. Then, for each (get it?) object in the collection, Visual Basic

executes all the statements down to the Next statement. (Technically, you don’t

need to put the variable name after Next. If you do use it, Visual Basic requires that

it match the variable name after For Each. Always use the loop variable after Next

so that Visual Basic can help you avoid creating bugs in your macros.) Statements

beginning with For Each and ending with Next are called For Each blocks or For

Each loops.

5. Press F8 repeatedly to step through the macro, watching as it works on each

worksheet in turn.

6. Switch to Excel, and try typing a value into a cell on any worksheet. Afterwards,

close the error message box that opens.

7. Create a new macro named UnprotectSheets that unprotects all the worksheets.

Try to write the macro without looking at the fi nished code that follows. Hint: You’ll

need to use the Unprotect method of the worksheet object, with a single argument

that gives the password.

 Tip A For Each loop is a handy way of browsing collections in the Immediate window.

However, in the Immediate window, everything you type must be on a single line. You

can put multiple statements on a single line by separating the statements with colons.

For example, here’s what you’d type in the Immediate window to see the names of all

the worksheets in the active workbook: For Each x In Worksheets: ?x.Name: Next x. (In

the Immediate window, it’s all right to use short, meaningless names for variables.)

Here’s what the UnprotectSheets macro should look like:

Sub UnprotectSheets()
 Dim mySheet As Worksheet
 For Each mySheet In Worksheets
 mySheet.Select ' This statement is optional.
 mySheet.Unprotect "Password"
 Next mySheet
End Sub

222 Chapter 7 Control Visual Basic

8. Save the workbook, press F5 to run the UnprotectSheets macro, and then test it by

changing a value on a worksheet.

Looping through a collection is almost as easy as assigning a single object to a variable.

The only differences are that you use For Each instead of Set, you specify a collection to

loop through, and you add a Next statement to end the loop.

Loop with a Counter by Using a For Loop
Sometimes you want to perform actions repeatedly but can’t use a For Each loop. For

example, a For Each loop can work through only a single collection. If you want to com-

pare two parallel collections—such as two ranges—you can’t use a For Each loop. In that

situation, Visual Basic has another, more generalized way to loop: a For loop.

The Compare worksheet in the Chapter07 workbook contains two named ranges. The

one on the left is named Old, and the one on the right is named New. You can think

of these as being an original forecast and a revised forecast. The cells in the Old range

contain values. The cells in the New range contain a formula that will calculate a random

number each time you press F9 to recalculate the workbook. (The formula in those cells

is =ROUND(RAND()*50+100,0), which tells Excel to calculate a random number between

0 and 1, multiply it by 50, add 100, and round to the nearest whole number. Because the

numbers in the New range are randomly generated, the ones you see will differ from the

ones in this graphic.)

The Flow text fi le contains a macro named CompareCells, which looks like this:

Sub CompareCells()
 Dim i As Integer
 Calculate
 If Range("New").Cells(i) > Range("Old").Cells(i) Then
 Range("New").Cells(i).Interior.Color = rgbLightGreen
 Else
 Range("New").Cells(i).Interior.Color = rgbLightSteelBlue
 End If
End Sub

 Creating Loops 223
The macro fi rst executes the Calculate method, which calculates new values for all the

cells in the New range. Then the macro compares only the last cell in the New range with

the last cell in the Old range. If the New value for that one cell is greater than the Old

value, the cell turns light green; otherwise, it turns light steel blue. The macro assigns the

Count of cells in the range to the variable i, which is a simple integer.

See Also If you’re not comfortable with If blocks, review the fi rst half of this chapter. For
more information about cell color, see the section titled “Format the Interior of a Range” in
Chapter 4, “Explore Range Objects.”

Now see how you can convert this macro to use a loop to compare and color all the cells

in the New range.

1. Copy the CompareCells macro from the text fi le, and paste it into a VBA module in

the Chapter07 workbook.

2. Click in the CompareCells macro, and press F8 repeatedly to step through the

macro. Make sure you understand everything the original macro does.

3. In the statement that assigns the Count to the variable, insert the word For in front

of the variable, and then insert 1 To after the equal sign.

4. Type Next i before the End Sub statement, and indent all the statements between

For and Next.

The fi nished macro should look like this:

Sub CompareCells()
 Dim i As Integer
 Calculate
 For i = 1 To Range("New").Cells.Count
 If Range("New").Cells(i) > Range("Old").Cells(i) Then
 Range("New").Cells(i).Interior.Color = rgbLightGreen
 Else
 Range("New").Cells(i).Interior.Color = rgbLightSteelBlue
 End If
 Next i
End Sub

224 Chapter 7 Control Visual Basic

The keyword For works just like a simple assignment statement. It assigns a number

to the variable. (The For statement assigns a number to an integer variable, while

the For Each statement assigns a reference to an object variable.) The variable that

holds the number is called a loop counter. You specify the start value for the loop

counter (in this case, 1) and the stop value (in this case, the total number of cells in

the range).

The For loop assigns the start value to the loop counter, executes all the statements

down to the Next statement, adds 1 to the loop counter, and checks the loop

counter against the stop value. If the loop counter is greater than the stop value,

the For loop jumps to just past the Next statement. If the loop counter is less than

or equal to the stop value, the For loop does it all again.

5. Press F8 repeatedly to watch the macro work. Step through at least two or three

loops, and then press F5 to fi nish the macro.

In many cases, using a For Each loop is more convenient than using a For loop. However, a

For loop is a more general tool: you can always use a For loop to reproduce the behavior

of a For Each loop. For example, here’s how you could write the ProtectSheets macro with-

out using For Each:

Sub ForProtectSheets()
 Dim mySheet As Worksheet
 Dim i As Integer
 For i = 1 to Worksheets.Count
 Set mySheet = Worksheets(i)
 mySheet.Select
 mySheet.Protect "Password", True, True, True
 Next i
End Sub

 Troubleshooting If you run a macro that contains an infi nite loop, stop the macro by

pressing Ctrl+Break.

The For loop is a little more dangerous than a For Each loop because you have to be

sure to get the start and stop values correct. If you have a stop value that is smaller than

the start value, the loop will run forever—a condition known as an infi nite loop. With a

For Each loop, it is impossible to create an infi nite loop.

Troubleshooting If you run a macro that contains an infi nite loop, stop the macro by If you run a macro that contains an infi nite loop, stop the macro by

pressing Ctrl+Break.pressing Ctrl+Break.

 Creating Loops 225
Loop Indefi nitely by Using a Do Loop
A For Each loop works through a collection. A For loop cycles through numbers from a

starting point to an ending point. In some situations, however, neither of these options

works.

For example, suppose that you want to retrieve the names of all the Excel workbooks in

the current folder. Visual Basic has a function that tells you the names of fi les in a folder

(or directory). The function is named Dir, after the old MS-DOS operating system com-

mand of the same name. The fi rst time you use Dir, you give it an argument that tells

which kind of fi les you want to look at. To retrieve the name of the fi rst Excel workbook

in the current directory, you use the statement myFile = Dir("*.xlsx"). To get the next fi le

that matches the same pattern, you use Dir again, but without an argument. You must

run Dir repeatedly because it returns only one fi le name at a time. When Visual Basic

can’t fi nd another matching fi le, the Dir function returns an empty string.

So how do you create a macro that retrieves the names of all the Excel fi les in the current

folder? The list of fi les in the directory isn’t a collection, so you can’t use a For Each loop.

You can’t use a For loop either because you don’t know how many fi les you’ll get until

you’re fi nished. Fortunately, Visual Basic has one more way of controlling a loop: a Do loop.

The ListFiles macro in the Flow text fi le retrieves the fi rst two Excel fi les from the current

directory and puts their names into the fi rst two cells of the fi rst column of the active

worksheet. Here’s the original macro:

Sub ListFiles()
 Dim myRow As Integer
 Dim myFile As String

 myRow = 1
 myFile = Dir("*.xls")
 Cells(myRow, 1) = myFile

 myRow = myRow + 1
 myFile = Dir
 Cells(myRow, 1) = myFile
End Sub

Aside from the variable declaration statements, this macro consists of two groups of three

statements each. In each group, the macro assigns a row number to myRow, retrieves a

fi le name using the Dir function, and then puts the fi le name into the appropriate cell. The

fi rst time the macro uses Dir, it specifi es the pattern to match. The next time, the macro

uses Dir without an argument so that it will retrieve the next matching fi le.

Now see how you can convert this macro to loop until it has found all the fi les in the folder.

226 Chapter 7 Control Visual Basic

1. Copy the ListFiles macro from the text fi le, and paste it into a VBA module in the

Chapter07 workbook.

2. In the Chapter07 workbook, activate the Files worksheet.

3. Make sure the current folder is the one containing the practice fi les for this book.

(Click the Microsoft Offi ce Button, click Open, change to the correct folder, and

then click Cancel.)

4. In the Visual Basic editor, click in the ListFiles macro, and press F8 repeatedly to

step through the macro. (The names of the fi les your macro retrieves might differ

from those in the graphics.) Make sure you understand the original macro.

 Tip As you step through the macro, move the mouse pointer over a variable name to

see the current value stored in that variable.

5. At the end of the fi rst statement that contains a Dir function, insert a new line, and

type Do Until myFile = "" (There is no space between the quotation marks.)

This statement begins the loop. You begin the loop after the fi rst Dir function be-

cause you use Dir with an argument only once.

6. At the end of the second statement that contains a Dir function, insert a new line,

and type Loop.

This statement ends the loop and sends Visual Basic back to the start of the loop to

check if it’s time to quit.

7. Delete the second Cells(myRow, 1) = myFile statement.

You don’t need this statement because the loop repeats the assignment statement

as many times as needed.

8. Just before the myRow = 1 statement, insert a line, and then enter the statement

Cells.Clear.

This ensures that the worksheet is empty in case you run the macro multiple times

and some lists are shorter than others.

 Tip When you use a macro to write a list onto a worksheet, make sure there are no

old lists left in the worksheet. You can use Cells.Clear to erase the worksheet, or use

Worksheets.Add to create a new one.

 Creating Loops 227
9. Indent the three statements between the Do and Loop statements.

The revised macro should look like this:

Sub ListFiles()
 Dim myRow As Integer
 Dim myFile As String

 Cells.Clear
 myRow = 1
 myFile = Dir("*.xlsx")
 Do Until myFile = ""
 Cells(myRow, 1) = myFile

 myRow = myRow + 1
 myFile = Dir
 Loop
End Sub

The myFile = "" expression at the end of the Do Until statement is a conditional ex-

pression, precisely like one you’d use with an If statement. The conditional expres-

sion must be something that Visual Basic can interpret as either True or False. Visual

Basic simply repeats the loop over and over until the conditional expression is True.

Note that the condition may never be true, in which case the loop will never exe-

cute. For example, if there were no .xlsx fi les in the folder, the stop condition would

be true the very fi rst time it executes.

If you want to increment a number during the loop, you must enter a statement to

do so. You must always be careful to cause something to happen during the loop

that will allow the loop to end. In this case, you retrieve a new fi le name from the

Dir function.

10. Press F8 repeatedly to watch the macro work. Step through at least two or three

loops, and then press F5 to fi nish the macro.

 Troubleshooting If you run a macro that contains an infi nite loop, stop the macro

by pressing Ctrl+Break.

Troubleshooting If you run a macro that contains an infi nite loop, stop the macro If you run a macro that contains an infi nite loop, stop the macro

by pressing Ctrl+Break.by pressing Ctrl+Break.

228 Chapter 7 Control Visual Basic
A Do loop is the most fl exible of all the looping structures. Anything that you can do with

a For loop or a For Each loop, you can do with a Do loop. If you had to be stranded on a

desert island with only one loop structure, the Do loop would be the best one to have.

For example, here is how you could write the ProtectSheets macro by using a Do loop.

Sub ProtectSheets()
 Dim mySheet As Worksheet
 Dim i As Integer
 i = 1
 Do Until i > Worksheets.Count
 Set mySheet = Worksheets(i)
 mySheet.Select
 mySheet.Protect "Password", True, True, True
 i = i + 1
 Loop
End Sub

The fl exibility makes the Do loop a little more complicated than the others because you

have to create and increment your own loop variable and provide your own condition

for ending the loop. This makes a Do loop particularly vulnerable to becoming an infi nite

loop. For example, if you forgot to add the statement to retrieve a new fi le name, or if

you had included the argument to the Dir function inside the loop (so that Dir would

keep returning the fi rst fi le name over and over), you’d have an infi nite loop.

 Tip Do loops have several useful variations. You can loop until the conditional expression is

True or while the expression is True. You can put the conditional expression at the top of the

loop (in the Do statement) or at the bottom of the loop (in the Loop statement). To fi nd out

more about Do loop structures, select the word Do in the macro, and then press F1.

Managing Large Loops
A loop that executes only two or three times isn’t much different from a program with-

out a loop. It runs fast, and it’s easy to step through to watch how each statement works.

Once you start repeating a loop hundreds or thousands of times, however, you need

some additional techniques to make sure the macro works the way you want it to.

 Managing Large Loops 229
Set a Breakpoint
The Flow text fi le includes a macro named PrintOrders. You can think of this macro as

one that your predecessor wrote just before leaving the company. Or you can think of it

as one that you almost fi nished three months ago. In either event, you have a macro that

you don’t completely understand and that doesn’t work quite right.

The PrintOrders macro is supposed to print a copy of the entire Orders workbook, specifi -

cally one that is sorted by product Category. You give each Category manager the section

of the report that shows orders only for that one category, so you need a new page every

time the Category changes. Unfortunately, the macro doesn’t do what it’s supposed to.

You need to fi nd and fi x the problem. Here’s the macro as you fi rst receive it:

Sub PrintOrders()
 Dim myRow As Long
 Dim myStop As Long
 Workbooks.Open FileName:="orders.xls"
 Columns("E:E").Cut
 Columns("A:A").Insert Shift:=xlToRight
 Range("A1").CurrentRegion.Sort Key1:="Category", _
 Order1:=xlAscending, Header:=xlYes
 myStop = Range("A1").CurrentRegion.Rows.Count
 For myRow = 3 To myStop
 If Cells(myRow, 1) <> Cells(myRow + 1, 1) Then
 Cells(myRow, 1).Select
 ActiveCell.PageBreak = xlPageBreakManual
 End If
 Next myRow
 Cells(myRow, 1).Select
 ActiveSheet.PageSetup.PrintTitleRows = "$1:$1"
 ActiveSheet.PrintPreview
 ActiveWorkbook.Close SaveChanges:=False
End Sub

The best approach is probably to start stepping through the macro.

1. Copy the PrintOrders macro from the text fi le, and paste it into a VBA module in

the Chapter07 workbook.

2. Make sure the current folder is the one containing the practice fi les for this book.

(Click the Offi ce Button, click Open, change to the correct folder, and then click

Cancel.)

230 Chapter 7 Control Visual Basic

3. In the Visual Basic editor, click in the PrintOrders macro, and then press F8 three

times to jump over the variable declarations and open the Orders workbook.

4. Press F8 three more times.

These statements move the Category fi eld over to column A and then sort the list

by Category.

5. Press F8 twice to assign a number to myStop and to start the loop. Hold the mouse

pointer over myStop and then over myRow to see the values that were assigned.

The value of myStop is 3266, and the value of myRow is 3. Those values appear to

be correct. The loop will execute from row 3 to row 3266.

6. Press F8 several times.

Visual Basic keeps checking whether the cell in the current row matches the cell

below it. How many rows are in the Art category? Pressing F8 repeatedly until the

macro fi nds the last row in the category could take a long time. But if you just press

F5 to run the rest of the macro, you can’t watch what happens when the condition

in the If statement is True. If only there were a way to skip over all the statements

until the macro moves into the If block.

7. Click in the gray area to the left of the statement starting with ActiveCell.

A dark red circle appears in the margin, and the background of the statement

changes to dark red. This is a breakpoint. When you set a breakpoint, the macro

stops when it reaches the breakpoint statement.

 Managing Large Loops 231
8. Press F5 to continue the macro.

The macro stops at the breakpoint. When the macro reaches the breakpoint, the

active cell is the fi rst one that the If statement determined is different from the cell

below it.

9. Press F8 to execute the statement that assigns a manual page break.

The page break appears above the row, not below the row. This is a problem. The

macro shouldn’t set the page break on the last cell of a Category; rather, it should

set the break on the fi rst cell of a Category. The If statement should check to see

whether the cell is different than the one above it.

10. Change the plus sign (+) in the If statement to a minus sign (–).

The revised statement should look like this:

If Cells(myRow, 1) <> Cells(myRow - 1, 1) Then

11. Click the Reset button, press F5, and click Yes to reopen the Orders fi le. Then press

F8 to watch the critical statement work—properly this time—as it assigns the page

break after the Art category.

12. Click the red circle in the margin to turn off the breakpoint.

Setting a breakpoint is an invaluable tool for fi nding a problem in the middle of a long

loop. In the following section, you’ll learn an easy way to set a temporary breakpoint if

you need to use it only once.

232 Chapter 7 Control Visual Basic

Set a Temporary Breakpoint
A breakpoint stops the macro each time the macro reaches the statement, and

the breakpoint stays around until you remove it. What if you want to create a tempo-

rary breakpoint—one that you use only once? For example, suppose you’re stepping

through the middle of the PrintOrders macro. The code to assign a page break seems

to be working properly. However, there are still some statements at the end of the

macro that you’d like to step through.

1. If you’re not already stepping through the macro, press F8 to start the macro.

2. Click anywhere in the Cells(myRow, 1).Select statement after the end of the loop

to place the insertion point in that statement.

You want a breakpoint on this statement, but one that you need to use only once.

3. On the Debug menu, click the Run To Cursor command.

The macro runs through all the pages of the report and stops on the statement

with the cursor.

4. Press F8 three times to scroll to the bottom of the list, set the print titles, and preview

the report. Once the macro has stopped on a statement, you can continue stepping

from there.

5. Review the report. Click Next Page repeatedly to get to page 10 to see the end of

the Art category.

 Troubleshooting If you don’t see the end of the Art category on page 10, simply

click Next Page or Previous Page to locate the correct page. Your current printer driver

might have placed the end of the category on a different page.

Troubleshooting If you don’t see the end of the Art category on page 10, simply If you don’t see the end of the Art category on page 10, simply

click Next Page or Previous Page to locate the correct page. Your current printer driverclick Next Page or Previous Page to locate the correct page. Your current printer driver

might have placed the end of the category on a different page.might have placed the end of the category on a different page.

 Managing Large Loops 233
6. Close Print Preview, and press F8 twice more to fi nish the macro.

7. Save the Chapter07 workbook.

Turning off a breakpoint is just as easy as turning one on: just click in the left margin of

the Visual Basic editor window. But if turning a breakpoint on and off is still too much

work, you can create a temporary one by running to the cursor.

Show Progress in a Loop
Even if the loop in a macro is working perfectly, you might get nervous about whether

something has gone wrong if the macro takes a long time to execute. The best way to

feel comfortable when a long loop is running (particularly if you’re wondering whether

you have time to get a cup of coffee) is to show the progress of the loop.

You can show progress with any kind of loop. But a For loop lends itself particularly well

to showing progress because at any point in the loop, your macro can determine both

the current value of the loop counter and also what its fi nal value will be.

1. In the PrintOrders macro, immediately following the For statement, insert this

statement:

Application.StatusBar = "Processing row " & myRow & " of " & myStop

The status bar at the bottom of the Excel window usually says “Ready.” The

StatusBar property of the Application object allows you to make the status bar say

whatever you want. The best message is one that shows progress and also gives

you an idea of how long the task will take.

234 Chapter 7 Control Visual Basic

The statement you added creates this message when it enters the loop the fi rst time:

“Processing row 3 of 3300.” By using an ampersand (&) to join together message text

with the numbers in the myRow and myStop variables, you can create a useful mes-

sage. Just be careful to include an extra space before and after the numbers.

2. Press F5 to run the macro. Watch the status bar to see how the macro is

progressing.

3. Close the Print Preview screen to let the macro fi nish.

The status bar indicates that the macro is still running. The status bar doesn’t auto-

matically reset when your macro ends. To return control of the status bar to Excel,

you must assign it a value of False.

4. After the Next statement, insert the statement:

Application.StatusBar = False

5. Run the macro again, close the Print Preview screen at the appropriate time, and

then look at the status bar.

It’s back to normal.

6. Save the Chapter07 workbook.

Visual Basic provides extremely powerful tools for repeating statements in a loop.

Coupled with the decisions that you can make using If blocks, these tools let you create

macros that are smart and very powerful.

CLOSE the Chapter07.xlsm workbook.

 Key Points 235
Key Points
O Use an If structure to make a decision. Add an Else clause if you need different

actions for True and False conditions.

O When you use a MsgBox, use the Buttons argument to create explicit choices.

When checking the result of a MsgBox, be sure to test against the proper

constant.

O When you use an InputBox, be sure to think through all the possible types of

input—valid, invalid, non-existent. Create an If structure to handle all the possible

conditions.

O When you simply need to loop through a collection, a For Each is the easiest

option.

O When you need a counter to help you as you work through a loop—for example,

to keep two objects synchronized—use a For loop.

O When you need to loop for a while or until a condition is True, use a Do loop A

Do loop is extremely fl exible, but be careful that you don’t create an infi nite loop.

O Use permanent and temporary breakpoints when troubleshooting large macros

or loops.

Index

A
A1 reference style, 119
Accounting format, 5
Accounting Number Format button, 5
Activate method, 82, 88
active workbook, referencing, 82
ActiveCell object, 53
ActiveCell property, 104–105

column selection with, 105

ActiveSheet, 46
ActiveX controls. see also command

buttons
defi ned, 264

vs. Forms controls, 268

Add method, 71, 75
Name argument, empty string for, 157

Source value, 144

value returned by, 86

AddDataField method, 160
adjustment handles on shapes, 190, 191
animations, 336
arguments

defi ned, 27

displaying all for method. see Auto

Quick Info

for functions, adding, 240–242

for functions, making optional, 243–244

naming, 27

parentheses around, 218, 219

for PasteSpecial method, 27

syntax in macros, 27

Array function, 88

attributes. see properties
Auto List Members, 45, 74

for worksheets, activating, 89–90

Auto Quick Info, 45

B
blank cells in worksheets, selecting,

48–49
BorderAround method, 129
borders

on ranges, adding, 127–130

on shapes, modifying, 192

Borders object, 129
breakpoints

setting, 230

temporary, 232–233

browsing object classes. see Object
Browser

buttons
From Access, 143

Accounting Number Format, 5

Design Mode, 268

Macros, 8

Object Browser, 94

Properties, 265

Record Macro, 6

Save, 21

Search, 128

Stop Recording, 6, 7, 115

Undo, 18

Use Relative References, 59

View Code, 267
 339

340 Calculate method
C
Calculate method, 71
cancel buttons on user forms, 314–315
canceling events, 279–280
cell styles

built-in, 132

modifying, 133

cells
Currency format, applying, 5–7

formatting, with built-in tool, 5

formatting, with macro, 6–7

Cells method, 126
Cells property, 98–100

selecting all cells with, 98

selecting specifi c cells with, 99

cells, table
merging and centering. see Merge And

Center button

referencing, 152

cells, worksheet
formulas, inserting in all selected, 49

gradient fi lls. see gradient fi lls

properties for, 122

referencing by number, 99

referencing by row and column,

99–100

referencing, difference in Excel

2007, 100

relative references vs. absolute

references, 58–60

selecting all, 101

selecting blank, 48–49

style, assigning to. see cell styles

Chart object, 203
chart objects

accessing without selecting, 203

axes, fi xed, 204

creating, 201–202
defi ned, 201

formatting, 207

gradient fi lls, applying to elements

of, 206

naming, 203

synchronizing, 203–205

type, selecting, 202

ChDir statement, 43
check boxes

adding to forms, 309

captioning, 309

defi ned, 309

event handlers for, 310

implementing, 327–328

sizing, 309

clearing formatting from worksheets, 134
Click event, 310
CLng function, 241
Close method, 78
closing

databases, 60

workbooks, without saving changes, 83

code name for worksheets, 183
collections

adding items to. see Add method

Array function unavailable for, 89

ColorStops, 180

CustomViews, 320

defi ned, 68

GradientStops, 184

items in, vs. instances, 81

looping through, 220–222

naming items in, 81–82

properties of, 70

referencing specifi c items in, 79–81,

81–82, 197

subcollections for. see subcollections

colon-equal signs in macros, 27

 Currency format 341
colors
setting, 131–135

specifying, 131

ColorStops collection, 180
columns, PivotTable

autofi tting, 166

fi ll color, 168

width, standardizing, 163–164

Columns property, 101–103
selecting all cells with, 101

columns, table
captioning, 150

inserting, 146

columns, worksheet
hiding dynamically, 321–325

inserting, 52

referencing by letter, 102

referencing by number, 101

referencing by range, 102

width, specifying, 177

combo boxes
column widths, setting, 296–297

event handlers, creating, 297–299

inserting, 293–294

populating lists with, 295–296

styles, 294

command buttons
aligning, 265

appearance of, 264

as cancel buttons, 314–315

captioning, 266

copying, 314

default on form, 314

design mode vs. run mode, 267–268

event handlers, adding, 315

events recognized by, 270

inserting, 265

macros, linking to, 267–268
mouse movements, responding to,

270–271

naming, 265–266

properties, displaying, 265–266

snapping to grid, 265

TakeFocusOnClick property, 266

in user forms, adding, 314–316

CommandButton button, 314
comments, 11
compiler errors, 246
Complete Word command, 104
conditional expressions

defi ned, 211

in Do statements, 227

for input boxes, 214–215

with MsgBox function, 219

multiple conditions in, 212–213

conditional formats, 182
confi rmation dialog box, creating. see

MsgBox function
controls. see also check boxes; option

buttons; scroll bars; spin buttons;
text boxes

copying, 289

initializing, 314

option buttons, checking for, 326

tab order, setting, 316–317

Copy method, 87
copying

controls, 289

worksheets, macro for, 87

Count property for Workbooks object,
77–78

CreateNames method, 125
CreatePivotTable method, 155
Currency format

vs. Accounting format, 5

applying to cells, 5–7

customizing, 6–7

342 current region
current region
defi ned, 48

selecting, 48, 49

CurrentRegion property, 104
with multicell range as starting

point, 106

custom dialog boxes. see user forms
CustomView object, 320
CustomViews collection, 320

D
data sources, 138
data types, converting between. see

Type Conversion Functions
databases

closing, 60

saving changes when closing, 60–61

DataBodyRange property, 149
Date function, 312
dates

fi lling range with, 52

fi nding, 321–322

formatting as start of month, 312–313

hiding columns preceding, 321–325

prompting for, 53–54

declaring variables, 123, 180
Delete method

confi rmation prompt, turning off, 62

value returned by, 85

deleting
digital IDs, 34

macros, 60

worksheet rows, 41

worksheets, 61–62

worksheets, macro for, 85

design mode, 267–268
switching to, 289

Design Mode button, 268
Developer tab (Ribbon)
components of, 264

displaying, 8, 264

dialog boxes
custom. see user forms

Digital Signature, 32

Get A Digital ID, 31

Go To Special, 48

Macro Options, 8

Microsoft Offi ce Trusted Location, 29

Modify Button, 23

Open, 46

Paste Special, 24

Tab Order, 316

Trust Center, 29

digital IDs
creating, 31–32

deleting, 34

Digital Signature dialog box, 32
Dim statement, 89, 90
Dir function, 225
DisplayAlerts property, 62
Do loops, 225–228

for error resolution, 254–255

fl exibility of, 228

docking
Immediate window, 76

task panes, 76

down payments, calculating. see loan
payment calculator

drawing objects. see shapes
drop shadows. see font shadows on

shapes

E
editing macros, 9–10
Else statement, 212–213. see also If

blocks

 formulas 343
ElseIf statement, 213. see also If blocks
embedded charts. see chart objects
End Sub statements, 11
enterprise information system (EIS),

335–338
enumerated lists, 128
Err object

defi ned, 252

Description property, 258

error checking with, 253

error checking, 252, 253
error handlers, 257

when to use, 258–259

error messages
clearing, 248

creating, 258

error trapping, 256–259
ErrorHandler statement, 256–257
errors

compiler, 246

logic, 246

run-time, 246

run-time, ignoring, 249–251

run-time, trapping, 256–259

syntax, 245

event handler procedures
arguments, 270

defi ned, 262

storage of, 272

event handlers
for check boxes, 310

for command buttons, 315

for controls, creating, 297–299

creating, 269–270

defi ned, 267

for workbooks, 276–277

for workbooks and worksheets, setting

precedence for, 277–279
events
canceling, 279–280

for user forms, default, 311

Excel methods, 244
Excel tables. see tables
Exit Sub statement, 219

F
fi le extensions for workbooks, 12
FillFormat object, 183

referencing, 206

FillLabels macro, stepping through,
50–51

fi ltering tables, 148
fi nding dates, 321–322
Finished folder, xv
fl oating

Immediate window, 76

task panes, 76

font shadows on shapes, 194
fonts in shapes, 192–193
For Each blocks, 220–222

vs. For loops, 224–225

For loops, 222–224
vs. For Each blocks, 224–225

formatting text in shapes, 192–193
Forms controls

vs. ActiveX controls, 268

selecting, 268

forms, user. see user forms
formula bar, worksheet. see window

elements in worksheets
Formula property, 122
FormulaR1C1 property, 122
formulas

A1 reference style, 119

absolute references in, 117–118

dollar signs in, 117–118

344 formulas
formulas (continued)
for fi lling grids, 123–127

inserting in all selected cells, 49

R1C1 reference style, 51, 119–120

R1C1 reference style syntax, 120

relative references in, 116–117

simplifying, 150

values, converting to with macro,

26–27

From Access button, 143
function declaration statement, 240
functions

arguments, adding, 240–242

arguments, making optional, 243–244

Array, 88

CLng, 241

creating, 239–240

custom, from macros, 244–245

data type conversion with. see Type

Conversion Functions

Date, 312

defi ned, 238

Dir, 225

InputBox, 53

MsgBox, 217–219

recalculating when any cell changes.

see volatile functions

Rnd, 239, 241

testing, from user forms, 313

volatile. see volatile functions

G
Get A Digital ID dialog box, 31
<globals> object class, 95
Go To Special dialog box, 48
gradient fi lls

adding to cells, 178–182

color stop positioning in, 181
multiple colors in, 180

GradientStops collection, 184
GradientStops property, 180, 183
graphical objects. see also shapes

defi ned, 176

graphical user interface
defi ned, 284

gridlines, worksheet. see window
elements in worksheets

grids
defi ning space in, 124–125

formulas for fi lling, 123–127

grouping shapes, 196–200

H
hardware requirements for 2007

Microsoft Offi ce, xvii
headings, sidebar. see sidebar

headings
headings, worksheet. see window

elements in worksheets
Help

with book and CD, xxi

member list for objects, 178

hidden objects, 187
hiding

columns, dynamically, 321–325

rows, 318

I
If blocks, 211. see also conditional

expressions
creating, 212

Else statements in, 212–213

nested, 216

 macros 345
Immediate window, 73
docking and fl oating, 76

moving to bottom of, 79

moving to top of, 81

multiple statements on single line

in, 221

opening, 73

question mark in, 77

statement execution in, 75

indenting macro statements, 28, 211
infi nite loops, 224
InputBox function, 53

Cancel button behavior, 214–215

validity of user input, checking,

215–216

instances, 71
vs. items in collections, 81

interest rate, calculating. see loan
payment calculator

Intersect property, 109
Item property, 71
items, 81

K
keyboard shortcuts

built-in, 9

macros, assigning to, 8–9, 16

L
labels, 256–257
line breaks in macro statements, 28, 43
list boxes

inserting, 293–294

properties, changing, 294

ListObjects. see also tables
object model for, 151
lists, enumerated, 128
loan payment calculator

creating, 285–286

down payment, restricting to valid

values, 289–291

implementing, 286–287

interest rate, restricting to valid values,

291–292

protecting, 297

years, restricting to valid range,

288–289

Locals window, 76
logic errors, 246
Long integers, 241
loop counters, 224
loops

analyzing, 229–230

breakpoints. see breakpoints

Do. see Do loops

ending, 227

For. see For loops

For Each. see For Each blocks

infi nite, stopping, 224

progress display for, 233–234

M
macro-enabled workbooks. see also

macros; workbooks
vs. macro-free workbooks, 12

saving workbooks as, 12

trusting, 28–35

Macro Options dialog box, 8
macros

for appending data to master lists,

55–56

body, defi ned, 11

breakpoints. see breakpoints

colon-equal signs in, 27

346 macros
macros (continued)
command buttons for. see command

buttons

comments in. see comments

cursor, stopping on, 232

for date insertion, 52

for date prompting, 53–54

defi ned, 2

deleting, 60

description, changing, 8

editing, 9–10

enabling in workbooks, 13

errors. see errors

fi nding, in Procedure list, 59–60

formatting cells with, 6–7

full path, when to use, 139

indenting lines in, 28

looping. see loops

methods. see methods

modules saved in, 16

naming, 6

objects in. see objects

vs. procedures, 250, 267

properties. see properties

Quick Access Toolbar, adding to, 22–23

recording, 6

recording, deleting extra lines after,

17–18, 43

relative references vs. absolute

references, 58–60

for removing window elements from

worksheets, 18–19

running, 8, 19

running multiple times. see loops

for running other macros, 63–64

shortcut keys, assigning to, 8–9, 16

for side-bar heading creation, 14–15

statements, line breaking, 28
status bar, updating with loop

progress, 233–234

stepping through, 20, 42–45

stepping through, editing statements

during, 44

stopping, 224

for text fi le opening, 39–41

user forms for. see user forms

user input cancellation, allowing,

214–215

vs. VBA, 2–4

workbook contained in, returning, 140

for workbook creation, 73–75

for worksheet copying, 87

for worksheet deletion, 61–62, 85

for worksheet selection, 88

Macros button, 8
master lists, appending data to, 55–56
members, 71
memory caches for PivotTable

reports, 155
Merge And Center button, 14
methods. see also specifi c methods

Activate, 82, 88

Add, 71, 75

AddDataField, 160

arguments. see arguments

BorderAround, 129

Calculate, 71

Cells, 126

Close, 78

Copy, 87

CreateNames, 125

CreatePivotTable, 155

defi ned, 24

Delete, 62, 85

displaying all for object. see Auto List

Members

Excel, 244

 objects 347
object classes and, 70

PasteSpecial, arguments for, 27

vs. properties, 25, 27, 28, 72

vs. properties, in recorded macros, 72

property changes by, 72

Protect, 299

Range, 126

Select, 88

Show, 332

ShowAllData, 152–153

SpecialCells, 132

syntax in macros, 27

values returned by, 85–86

xlDataField, 160

Microsoft Offi ce Fluent user
interface, xiii

Microsoft Offi ce Trusted Location
dialog box, 29

Microsoft Visual Basic for Applications
(VBA). see VBA

modal forms, 332
Modify Button dialog box, 23
module-level variables, 278
modules, saved macros in, 16
months, setting dates as fi rst day of,

312–313
MouseMove event, 270–271
MsgBox function

arguments for, 218

conditional expressions and, 219

defi ned, 217

return values, 219

N
naming

chart objects, 203

command buttons, 265–266
items in collections, 81–82

macros, 6

ranges, 285, 293

Shape objects, 185

user forms, 305–306

worksheets, macro for, 85

.NET Framework and VBA, 4
Not keyword, 20–21
numbers, Long. see Long integers

O
Object Browser, 76

components of, 95

hidden members, displaying, 187

Object Browser button, 94
object classes

browsing, with Object Browser. see

Object Browser

defi ned, 69

instances, 71

members, 71

methods of, 70. see also methods

properties of, 70. see also properties

object model
defi ned, 3

languages communicated with, 4

VBA interface with, 3

objects
ActiveCell, 53

Borders, 129

Chart, 203

CustomView, 320

in collections. see collections

defi ned, 3, 67, 68–69

Err, 252–253, 258

FillFormat, 183, 206

graphical. see graphical objects

348 objects
objects (continued)
hidden, 187

members, viewing list of, 178

PivotCache, 156

properties. see properties

Range, 107–111, 132

repeated, consolidating, 21–22

returned by properties, fi nding, 183

selecting multiple, 200

Selection, 53

Shape, 188

ShapeRange, 188

Shapes, 188

specifying, 11

syntax in macros, 26–27

for user forms, 311

UserForm, 311

Workbook, 320

WorkbookConnection, 157

Workbooks, 73, 77–78, 83

Worksheet, 97

Worksheets, 84–85, 97

Offi ce Fluent user interface, xiii
Offset property, 109–111
On Error Resume Next statement,

249–251
Open dialog box, displaying with

macro, 46
OpenText statement, 43
option buttons

adding to forms, 307, 325–327

aligning, 308

captioning, 307

defi ned, 306

Option Explicit statement, 246
optional arguments, 243–244. see also

arguments
P
Paste Special dialog box, 24
PasteSpecial method, 27
Pattern property, 179
payments, calculating for loan. see

loan payment calculator
PivotCache object, 156
PivotTable reports

columns, autofi tting, 166

columns, coloring, 168

columns, standardizing width,

163–164

creating, from external sources,

156–158

creating, from internal sources,

153–156

data fi elds, referencing, 161

data fi elds, renaming, 158–159

dates, formatting, 159

defi ned, 153

headers, turning off, 164

items with no data, displaying,

162–163

layout, customizing, 162–167

memory caches, connecting to

same, 155

memory caches, loading for, 155

structuring, 158–162

styles, copying, 168

styles, customizing, 167–169

text fi elds, moving outside Row Labels

area, 159

practice fi les on CD, xv–xvi
browsing to, xix

installing, xviii–xix

uninstalling, xx

 ranges 349
printing reports, 329–331
private procedures, 250
procedures

vs. macros, 250, 267

private, 250

Project Explorer window, 76
properties

actions and, 72

changing, 83

changing multiple at once, 13–18

defi ned, 11, 69

deleting unnecessary inserted by

macro recorder, 17–18

displaying all for object. see Auto List

Members

Help topics for, displaying, 177

vs. methods, 25, 27, 28, 72

vs. methods, in recorded macros, 72

object for, recognizing, 17

objects returned by, fi nding, 183

read-only, 78, 83

read-write, 83

referencing multiple, 17

state, viewing current, 20

syntax in macros, 17, 18

toggling values of, 20–21

unsupported, 11

Properties button, 265
Properties window, 76
Protect method, 299
protecting worksheets, 297, 299–300
public variables, 278
publishers, setting yourself as, 31–34

Q
Quick Access Toolbar, adding macros

to, 22–23
R
R1C1 reference style, 51, 119–120

syntax, 120

random number function. see Rnd
function

Range method, 126
Range object

Intersect property, 109

Offset property, 109–111

properties of, 107

properties, referencing, 109

Resize property, 109, 111

Rows property, 108–109

SpecialCells method, 132

Range property, 94–97
arguments for, 95

ranges
borders, adding, 127–130

cells in, referencing by attribute, 132

as collections of cells. see Cells

property

as collections of rows and columns. see
Columns property; Rows property

constant values for, 121

counting cells in, 97

fi lling with formulas, 123–127

names of, 96

naming, 285, 293

offset, selecting. see Offset property

referencing, 108–109

referring to, with addresses, 94–97

relative, referencing, 109–113

resizing when selecting. see Resize

property

selecting, 96–97

350 ranges
ranges (continued)
Value property. see Value property

variables as, 115

read-only properties, 78, 83
read-write properties, 83
Record Macro button, 6
recording macros, 6

deleting extra lines after, 17–18, 43

relative references vs. absolute

references, 58–60

Rectangle class, 185, 187
regions, referencing. see

CurrentRegion property
Relative References option, 58–60
reports, printing, 329–331
Resize property, 109, 111
Ribbon

customizing with VBA, 281

Developer tab. see Developer tab

(Ribbon)

Microsoft Offi ce Fluent user

interface, xiii

Rnd function, 238, 241
Rows property, 101–103
rows, worksheet

height, specifying, 176–177

hiding, 318

referencing by number, 102

referencing by range, 103

run mode, 267–268
Run Sub/UserForm button, 305
run-time errors, 246

ignoring, 249–251

trapping, 256–259

running macros, 8, 19
multiple times. see loops

from Quick Access Toolbar, 22–23

with shortcut keys, 8–9
step by step, 20, 42–45

step by step, editing statements

during, 44

by using macros, 63–64

running to the cursor, 232

S
Save button, 21
SaveChanges argument, 60
Saved property, 83
saving

database changes when closing, 60–61

workbooks, 21

scroll bars
inserting, 291

moving, 291

properties, changing, 292

Search button, 128
Select groups

replacing with With structures, 116

simplifying, 115–116

Select method, 88
row selection with, 107

Select Objects mode, 200
Select statements, deleting

unnecessary, 113–114
selecting

current region, 48, 49

Forms controls, 268

lines in VBA code, 17

objects, multiple, 200

ranges, 96–97

worksheets, all cells on, 98

worksheets, macro for, 88

worksheets, multiple, 62

Selection object, 53
Selection property, 105

 tables 351
Shape objects
Auto List Help for, 182–183

defi ned, 188

FillFormats, 183

GradientStops collection, adding to,

184

GroupItems property, 197

OnAction property, 199, 200

shape ranges
defi ned, 188

for multiple shapes, 188

ShapeRange objects, 188
ShapeRange property, 187
shapes. see also graphical objects

adjustment handles, 190, 191

borders, modifying, 192

changing, 184

charts as. see chart objects

in collections, referencing single, 197

creating, 182–183, 189–190

fi ll color, changing, 192

font shadows, adding, 194

formatting, in groups, 198

gradients, adding, 183

grouping, 196–200

linking to macros, 199

multiple, modifying, 188

naming, 185

snapping to grid, 190

text, adding, 192

text, formatting, 192–193

3-D formatting, 194–195

transparency, changing, 192

ungrouping, 199, 200

Shapes object, 188
defi ned, 188

shortcut keys
built-in, 9

macros, assigning to, 8–9, 16

Show method, 332
ShowAllData method, 152–153
sidebar headings

defi ned, 14

macro for creating, 14–15

snapping shapes to grid, 190
SpecialCells method, 132
spelling, checking in variables, 246
spin buttons

copying, 289

with fractional values, 289–290

inserting, 288

snapping to grid, 288

valid entries, entering, 288

statements. see also specifi c
statements

defi ned, 11

line breaking, 28, 43

status bar, displaying loop progress
on, 233–234

Stop Recording button, 6, 7, 115
Sub statements, 11
subcollections, 88
subroutines

editing, 64–65

generalizing, 251–252

syntax errors, 245

T
Tab Order dialog box, 316
tables. see also ListObjects

cell references, 152

columns, captioning, 150

tables (continued)

352 tables
columns, inserting, 146

creating, from external sources,

142–145

creating, from internal sources,

140–142

data sources. see data sources

fi lter states, different for multiple,

152–153

fi ltering, by top 10, 148

header row, moving to, 152

Total row, adding, 151

task panes, 76
text boxes

adding to user forms, 310

errors, checking for, 328–329

initializing, 311–314

text fi les, opening with macro, 39–41
Text Import Wizard, 40
Text property, 122
ThisWorkbook property, 140
3-D formatting of shapes, 194–195
tiling windows, 15
Toolbox

displaying, 307

for user forms, 306

transparency in shapes, 192
trapping errors, 256–259
Trust Center dialog box, 29
trusting macro-enabled worksheets,

28–35
2007 Microsoft Offi ce components,

xvi–xvii
Type Conversion Functions, 241

U
Undo button, 18
ungrouping shapes, 199, 200
Up Arrow Callout shapes, 191
Use Relative References button, 59
user forms

cancel buttons, 314–315

captioning, 305–306, 307

check boxes on. see check boxes

columns, hiding dynamically, 321–325

command buttons, adding, 314–316

controls. see controls

creating, 305–306

displaying, 305

events, default, 311

frames, adding, 307

functionality, 304

functions, testing, 313

implementation, 304

interface, designing, 304

launching, 331–332

modal, 332

object name, 311

option buttons on. see option buttons

tab order, setting, 316–317

text boxes, adding, 310

Toolbox for, 306

user input
cancelling, allowing for, 214–215

requiring. see MsgBox function

validity, checking, 215–216

user interface, Microsoft Offi ce
Fluent, xiii

UserForm object, 311

V
Value property, 120–121, 122

vs. Value2 property, 122

variables, 180
with assigned values, 238

declaring, 123, 180

Empty value, 323

 worksheets 353
module-level, 278

naming, 143

Nothing value, 323

public, 278

as ranges, 107, 115

spelling errors, checking for, 246

VBA
apostrophes beginning lines in. see

comments

green lines in. see comments

vs. macros, 2–4

.NET Framework and, 4

object model. see object model

selecting lines in, 17

statements. see statements

vbCrLf constant, 258
View Code button, 267
views

custom, creating, 317–320

switching between, 320–321

viruses, prevention of, 12, 28
Visual Basic editor

Immediate window, 73

opening, 73

windows in, 76–77

volatile functions
defi ned, 242

recalculating, 242

when to use, 243

W
Watch window, 76
window elements in worksheets,

removing, 18–19
windows, rearranging, 15
With structures, 17
objects, consolidating with. see objects

replacing Select groups with, 116

Workbook object, 320
WorkbookConnection object, 157
workbooks

active, referencing, 82

architecture of, 67

closing, macro for, 78

closing without saving changes, 83

counting, macro for, 77–78

creating, 143, 144

creating, macro for, 73–75

digital signatures, adding, 32

event handlers for, 276–277

events available for, 276

fi le extensions, 12

macro-free vs. macro-enabled, 12

macros, enabling, 13

master list. see master lists

moving worksheets between, 140

referring to, 69, 81–82

saving, 21

specifying, in macros, 79–81

trusting macro-enabled, 28–35

viruses in. see viruses

windows for, 76

Workbooks object
Add method, 73

Close method, 78

Count property, 77–78

Saved property, 83

Worksheet object, 97
worksheets

activating from selection, 88

adding, macro for, 84

Auto List Members, activating, 89–90

blank cells, selecting, 48–49

worksheets (continued)

354 worksheets
code name, identifying, 183

colors in. see colors

columns. see columns, worksheet

constants, displaying only, 318

copying, macro for, 87

creating new fi les from, 138–140

current region. see current region

deleting, 61–62

deleting, macro for, 85

events available for, 275

formatting, clearing, 134

formulas, inserting in all selected

cells, 49

moving to different workbooks, 140

name, displaying, 84

naming, macro for, 85

naming of identical copies, 41

protecting, 297, 299–300

referencing cells in, different in Excel

2007, 100

relative references vs. absolute

references, 58–60

rows, deleting, 41
selecting all cells on, 98, 101

selecting, macro for, 88

selecting multiple, 62

views. see views

window elements, removing with

macro, 18–19

Zoom level, changing, 262–263

Worksheets object
Add method, 84

Name property, 85

vs. Worksheet object, 97

X
xlDataField method, 160

Z
Zoom level in worksheets, 262–263

	Cover
	Copyright Page

	Contents
	About the Author
	Features and Conventions of This Book
	Using the Book’s CD
	What’s on the CD?
	Minimum System Requirements
	Step-by-Step Exercises
	2007 Microsoft Offi ce System

	Installing the Practice Files
	Using the Practice Files
	Removing and Uninstalling the Practice Files

	Getting Help
	Getting Help with This Book and Its Companion CD
	More Information

	Chapter 4: Explore Range Objects
	Referring to a Range
	Refer to a Range by Using an Address
	Refer to a Range as a Collection of Cells
	Refer to a Range as a Collection of Rows or Columns
	Refer to a Range Based on the Active Cell
	Refer to Subsets of a Range
	Refer to a Relative Range

	Enhancing Recorded Selections
	Simplify Select…Selection Pairs
	Simplify Select Groups

	Entering Values and Formulas into a Range
	Relative References
	Absolute References
	R1C1 Reference Style
	Put Values and Formulas into a Range
	Construct Formulas to Fill a Grid

	Formatting a Range
	Add Borders to a Range
	Format the Interior of a Range

	Key Points

	Chapter 7: Control Visual Basic
	Using Conditionals
	Make a Decision
	Make a Double Decision
	Ask Yourself a Question
	Test for a Valid Entry
	Ask with a Message

	Creating Loops
	Loop Through a Collection by Using a For Each Loop
	Loop with a Counter by Using a For Loop
	Loop Indefinitely by Using a Do Loop

	Managing Large Loops
	Set a Breakpoint
	Set a Temporary Breakpoint
	Show Progress in a Loop

	Key Points

	Index

