

Internet of Things
Programming with JavaScript

Rubén Oliva Ramos

BIRMINGHAM - MUMBAI

Internet of Things Programming with
JavaScript

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2017

Production reference: 1150217

ISBN 978-1-78588-856-4

Credits

Author

Rubén Oliva Ramos

Copy Editor

Safis Editing

Reviewer

Jacqueline Wilson

Project Coordinator

Nidhi Joshi

Commissioning Editor

Wilson D'souza

Proofreader

Safis Editing

Acquisition Editor

Tushar Gupta

Indexer

Pratik Shirodkar

Content Development Editor

Aishwarya Pandere

Production Coordinator

Nilesh Mohite

Technical Editor

Karan Thakkar

About the Author
Rubén Oliva Ramos is a computer systems engineer, with a master's degree in computer
and electronic systems engineering, teleinformatics and networking specialization from
University of Salle Bajio in Leon, Guanajuato Mexico. He has more than five years of
experience in: developing web applications to control and monitor devices connected with
Arduino and Raspberry Pi using web frameworks and cloud services to build Internet of
Things applications.

He is a mechatronics teacher at University of Salle Bajio and teaches students on the
master's degree in Design and Engineering of Mechatronics Systems. He also works at
Centro de Bachillerato Tecnologico Industrial 225 in Leon, Guanajuato Mexico, teaching the
following: electronics, robotics and control, automation, and microcontrollers at
Mechatronics Technician Career. He has worked on consultant and developer projects in
areas such as monitoring systems and datalogger data using technologies such as Android,
iOS, Windows Phone, Visual Studio .NET, HTML5, PHP, CSS, Ajax, JavaScript, Angular,
ASP .NET databases (SQlite, mongoDB, and MySQL), and web servers (Node.js and IIS).
Ruben has done hardware programming on Arduino, Raspberry Pi, Ethernet Shield, GPS
and GSM/GPRS, ESP8266, and control and monitor systems for data acquisition and
programming.

"I want to thank God for helping me writing this book and his inspiration, to my wife,
Mayte, and my sons, Ruben and Dario, for their support while writing this book and in
general for their support in all my projects. To my parents, my brother and sister whom I
love.

I hope this book covers the main topics for students that want to learn more about Internet
of Things projects, and all the prerequisites for building this kind of application."

www.packtpub.com
For support files and downloads related to your book, please visit .

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at .

If you'd like to join our team of regular reviewers, you can e-mail us at
. We award our regular reviewers with free eBooks and

videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents
Preface 1

Chapter 1: Getting Started with Raspberry Pi Zero 7

Setting up Raspberry Pi Zero 7
Preparing the SD card 8
Installing the Raspbian operating system 8
Debugging your Raspberry Pi Zero with a serial console cable 10
Testing and accessing the serial COM interface 12

Connecting to the home network and accessing remotely 15
Connecting with an Ethernet adapter 15
Accessing the Raspberry Pi Zero via SSH 17
Connecting to the Wi-Fi network 19

How to install the wireless tools 20
Configuring IP address and wireless network 21

Testing the communication 23
Ping from a computer 24

Updating the package repository 25
Remote Desktop 27

Remote Desktop with Windows 28
Configuring a web server 31
Testing the PHP installation 33
Summary 34

Chapter 2: Connecting Things to the Raspberry Pi Zero 35

Connectting digital input – sensor DS18B20 35
Hardware requirements 36
Hardware connections 36

Configuring the one-wire protocol 37
Software configuration 38
Displaying the readings on the screen 39

Connecting analog inputs using an MCP3008 ADC Converter 41
Raspberry Pi GPIO header 44

Reading the data with a Python script 46
Connecting an RTC 48

I2C setup 49
DS3231 module setup 52

[ii]

Hardware setup 52
Testing the RTC 54
I2C device setup 55
Putting the real-time clock to final test 55
Summary 56

Chapter 3: Connecting Sensors - Measure the Real Things 57

Measuring flow sensor to calculate the volume of water 58
Hardware connections 58
Reading the sensor signal 59

Reading and counting pulses with Arduino 59
Calculating water flow rate based on the pulses counted 60
Calculating flow and volume of water: 62

Displaying the parameters measured on an LCD 64
Measuring the concentration of gas 67

Connections with the sensor and Arduino board 68
Measuring the level of alcohol with a sensor 69
Detecting fire with a sensor 72
Measuring the humidity for plants 74
Measuring the level of water in a recipient 77
Measuring temperature, humidity, and light and displaying data on an
LCD 79

Hardware and software requirements 79
Testing sensors 82
Displaying data on the LCD 84

Detecting motion with a PIR sensor 86
PIR sensor interfaced with Arduino 87

Detecting if the door is open with a reed switch 88
Detecting who can get in the house with a fingerprint sensor 89

Hardware configuration: 89
Save the fingerprint: 90
Testing the sensor 96

Summary 99

Chapter 4: Control-Connected Devices 100

Making a simple web server with Node.js 100
Controlling a relay from a Raspberry Pi Zero using Restful API and
Node.js 102

JSON structure 102
Commands with the aREST API 103

[iii]

Installing Node.js on your Raspberry Pi Zero 103
Controlling the relay using aREST commands from a web browser 104

Configuring the web server 104
Configuring Node.js on a computer as a web server 106

Downloading Node.js 107
Installing Node.js 108
Configuring web server port 8080 with Node.js 111

Monitoring temperature, humidity, and light using Node.js with
Arduino Wi-Fi 112

Connecting to the Wi-Fi network 117
Monitoring temperature, humidity, and light using Node.js with
Arduino Ethernet 119

Code for the application of the Arduino Ethernet shield 120
Configuring the device in Node.js 122

Summary 125

Chapter 5: Adding a Webcam to Monitor Your Security System 126

Interaction between Arduino and Raspberry Pi 127
Installing Arduino IDE in Raspbian 127
Remote access to Raspberry Pi 128
Executing Arduino in a graphical interface 129

Arduino interface in Raspian 130
Preparing the interface 131
Selecting the serial port 132
Downloading a sketch from the graphical interface 133

Controlling an output connected to Arduino from Raspberry Pi Zero 134
Controlling the Arduino board from Python 136

Hardware connections 137
Connecting a TTL serial camera to Arduino and saving pictures to a
micro SD 137
Detecting motion with the serial TTL camera 141
Controlling a snapshot from Raspberry Pi 141

Code for the function to take a picture 142
Controlling your camera from a web page 144

Calling the Python scripts from PHP 145
Code for Python scripts 145

Monitoring your USB camera for security in a network 146
Configuring Arduino YUN 147
Monitoring from the MJPG-STREAMER server 149
Monitoring the USB camera from the Raspberry Pi 149

[iv]

Summary 151

Chapter 6: Building a Web Monitor and Controlling Devices from a
Dashboard 152

Configuring MySQL database server 152
Installing MySQL 153
Installing MySQL driver for PHP 157
Testing PHP and MySQL 157

Installing PhpMyAdmin for administrating databases 160
Configuring the Apache server 165
Entering to the phpMyAdmin remote panel 167
Showing the Arduinobd database 168
Sending data from Arduino and the Ethernet shield to the web server 169

Datalogger with MySQL 172
Programming the script software 172
Testing the connection 173

Data queries from the database 175
Software for the scripts 175
Scripts for specific data to be displayed 177
Query for recording temperature 178

Controlling and dimming a LED 179
Software requirements 180
Testing the LED 180
Controlling the LED from an interface 181

Controlling the speed of a DC motor 183
Controlling Lights with electrical circuits 187

Electrical appliances 187
Other appliances 190

Control a door lock 191
Control watering plants 191

Remote access from anywhere to your Raspberry Pi Zero 192
How to access our modem to configure it 192
Configuring Dynamic DNS 195
Creating an account at No-ip.org 196

Controlling lights and measuring current consumption 197
Building the interface to control and monitor 202

Installing Jade for Node.js 202
Interface for controlling and monitoring 202

Controlling and monitoring Arduino, Wi-Fi, and Ethernet shields on
connected devices and sensors 205

[v]

Building the code to control and monitor devices from a single interface 205
Adding the devices to monitor and control 207

Summary 209

Chapter 7: Building a Spy Police with the Internet of Things Dashboard 210

Spy microphone that detects noise 211
Software code 211

Regulating the current of an AC lamp dimmer 213
Hardware requirements 213
Software code 214

Controlling access with an RFID card 216
Hardware requirements 216
Software requirements 217
Software code 218

Detecting smoke 222
Software code 222

Building an alarm system using the Raspberry Pi Zero 225
Motion sensor with Raspberry Pi Zero 225
Software code 225
The alarm module 226
Software code 226
Central interface 227
Graphical interface 229

Monitoring the climate from a remote dashboard 230
Exploring the sensor test 231
Configuring the remote dashboard (Dweet.io) 231

Summary 235

Chapter 8: Monitoring and Controlling Your Devices from a Smart
Phone 236

Controlling a relay from a smart phone using APP Inventor 236
Hardware requirements 237
Software requirements 237

Creating our first application 237
Designing the interface 243
Communicating APP Inventor with Arduino ethernet shield 245
Code for APP Inventor 245

Reading JSON response in Android Studio using ethernet shield 248
Android application 252

Java class 253

[vi]

Permission of the application 253
Controlling a DC motor using an Android Application 254

Hardware requirements 255
Controlling outputs from android using your Raspberry Pi Zero 256
Controlling outputs with Raspberry Pi via Bluetooth 258

Controlling lights from an Android Application 259
Summary 261

Chapter 9: Putting It All Together 262

Integrating the system – development projects 262
Getting into the details of light sensor 262
Motion sensor 264
Automatic light controller 265

Solar power monitor circuit 265
Automatic irrigation system with a soil sensor 267
Arduino water-level controller 268
Bluetooth based home automation 268
Controlling access with a matrix keyboard 269

The keypad 270
Connecting an LCD screen to display the code 270

Controlling the door lock with a keypad 271
 Code to access using the keypad 271

Integrating the system control with relays and devices 273
Controlling multiple appliances 273
The complete system 274

How to set up the power supplies 275
Power supply for AC loads 275
Connecting a relay of 24 DC volts to the Arduino board 276

Summary 277

Index 278

Preface
The Raspberry Pi Zero is a powerful, low-cost, credit-card sized computer, which lends
itself perfectly to begin the controller of sophisticated home automation devices. Using the
available on-board interfaces, the Raspberry Pi Zero can be expanded to allow the
connection of a virtually infinite number of security sensors and devices.

Since the Arduino platform is more versatile and useful for making projects, including the
networking applications of the Internet of Things, this is what we will see in this book: the
integration of devices connected to the nodes using the amazing and important Arduino
board, and how to integrate the Raspberry Pi Zero to control and monitor the devices from
a central interface working as a hub. With software programming you will create an
Internet of Things system based in developing technologies such as JavaScript, HTML5, and
Node.js.

This is exactly what I will teach you to do in this book. You will learn how to use the
Raspberry Pi Zero board in several home domotics projects in order for you to build your
own.

The books guides you, making the projects in each chapter from preparing the field, the
hardware, the sensors, the communication, and the software programming-control in order
to have a complete control and monitoring system.

What this book covers
, Getting Started with Raspberry Pi Zero, describes the procedure to set up the

Raspberry Pi and the Arduino board, and how to communicate among the devices. We will
install and set up the operating system, connect our Pi to the network, and access it
remotely. We'll also secure our Pi and make sure it can keep the right time.

, Connecting Things to the Raspberry Pi Zero, shows how to connect signals to the
Raspberry Pi Zero and Arduino. It explores the GPIO port and the various interfaces it
features. We'll look at the various things we can connect to the Raspberry Pi using the
GPIO.

Preface

[2]

, Connecting sensors - Measure the Real Things, shows how to implement the
sensors for detecting different kinds of signal, for security systems, flow current for energy
consumption, detecting some risk in the home, implementing a gas sensor, flow water
sensor to measure water volume, and will also show how to make a security system that
will control entrance to the home with a fingerprint sensor.

, Control-connected devices, shows how to control your Arduino board, using
modules of communication in a networking area from the Raspberry Pi Zero in a central
interface dashboard.

, Adding a Webcam to Monitor Your Security System, shows how to configure a
webcam connected to your board to monitor your security system for the Internet of Things.

, Building a Web Monitor and Controlling Devices from a Dashboard, shows how to set
up a system to monitor your security system using web services. Integrating the Raspberry
Pi Zero with Arduino to build a complete system connected-devices and monitor.

, Building a Spy Police with the Internet of Things dashboard, shows how to make
different mini home domotics projects and how to connect web services and monitor your
security system using the Internet of Things.

, Monitor and Control your devices from a Smart Phone, explains how to develop an
app for Smart Phone using Android Studio and APP inventor, and control your Arduino
board and the Raspberry Pi Zero.

, Putting It All Together, shows how to put everything together, all the parts of the
project, the electronics field, software configurations, and power supplies.

What you need for this book
You’ll need the following software:

Win32 Disk Imager 0.9.5 PuTTY
i2C-tools
WiringPi2 for Python
Node.js 4.5 or later
Node.js for Windows V7.3.0 or later
Python 2.7.x or Python 3.x
PHP MyAdmin Database

Preface

[3]

MySQL module
Create and account in Gmail so that you can get in APP Inventor
Android Studio and SDK modules
Arduino software

In the first chapters, we explain all the basics so you will have everything configured and
will be able to use the Raspberry Pi Zero without any problems, so you can use it for the
projects in this book. We will use some basic components, such as sensors, and move to
more complex components in the rest of the book.

On the software side, it is good if you actually have some existing programming skills,
especially in JavaScript and in the Node.js framework. However, I will explain all the parts
of each software piece of this book, so even if you don't have good programming skills in
JavaScript you will be able to follow along.

Who this book is for
This book is for all the people who want to automate their homes and make them smarter,
while at the same time having complete control of what they are doing. If that's your case,
you will learn everything there is to learn in this book about how to use the amazing
Raspberry Pi Zero board to control your projects.

This book is also for makers who have played in the past with other development boards,
such as Arduino. If that's the case, you will learn how to use the power of the Raspberry Pi
platform to build smart homes. You will also learn how to create projects that can easily be
done with other platforms, such as creating a wireless security camera with the Pi Zero.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Extract

 to your Home folder."

Preface

[4]

A block of code is set as follows:

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

exten => s,102,Voicemail(b100)

Any command-line input or output is written as follows:

 sudo npm install express request

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this:

"You can now just click on Stream to access the live stream from the camera."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

Preface

[5]

To send us general feedback, simply e-mail , and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. We also have other code

bundles from our rich catalog of books and videos available at
. Check them out!

Preface

[6]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from

.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to
and enter the name of the book in the search field. The required information will

appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at , and we will do our best to address the problem.

11
Getting Started with Raspberry

Pi Zero
Before building several projects for a home security system and the control of domestic
appliances by electronically controlled systems, in this chapter, we're going to go into an
initial configuration and prepare our Raspberry Pi Zero to work in a network, so you can
use it for all the projects we will see in this book.

Before we go through the projects, build our network with the devices, and connect our
sensor to the boards, it's important to understand the configuration of the Raspberry Pi. The
main idea of this chapter is to explain how to set up your Raspberry Pi Zero; we will cover
the following topics:

Setting up Raspberry Pi Zero
Preparing the SD card
Installing the Raspbian operating system
Configuring your Raspberry Pi Zero with a serial console cable
Accessing the network remotely
Accessing via remote desktop
Configuring a web server

Setting up Raspberry Pi Zero
The Raspberry Pi is a low-cost board dedicated to purpose projects. Here, we will use a
Raspberry Pi Zero board. Take a look at the following link:

. I used this board.

Getting Started with Raspberry Pi Zero

[8]

In order to make the Raspberry Pi work, we need an operating system that acts as a bridge
between the hardware and the user. This book uses the Raspbian Jessy, which can be
downloaded from . At this link, you will find
all of the information you need to download all the pieces of software necessary to use with
your Raspberry Pi to deploy Raspbian. You need a micro SD card of at least 4 GB.

The kit that I used to test the Raspberry Pi Zero includes all the necessary things for
installing everything and getting the board ready:

Preparing the SD card
The Raspberry Pi Zero only boots from an SD card and cannot boot from an external drive
or USB stick. For this book, it's recommended to use a 4 GB micro SD card.

Installing the Raspbian operating system
There are many operating systems that are available for the Raspberry Pi board, most of
which are based on Linux. However, the one that is usually recommended is Raspbian, is
an operating system based on Debian, which was specifically made for Raspberry Pi.

Getting Started with Raspberry Pi Zero

[9]

In order to install the Raspbian operating system on your Pi, follow the next steps:

Download the latest Raspbian image from the official Raspberry Pi website: 1.

Next, insert the micro SD card into your computer using an adapter. (An adapter2.
is usually given with the SD card.)
Then download Win32DiskImager from 3.

.

You will see the following files, as shown in the screenshot, after
downloading the folder:

Open the file image, select the path where you have the micro SD card, and click4.
on the Write button.
After a few seconds,you have Raspbian installed on your SD card; insert it into5.
Raspberry Pi and connect the Raspberry Pi board to the power source via the
micro-USB port.

Getting Started with Raspberry Pi Zero

[10]

In the following screenshot, you can see the progress of the installation:

Debugging your Raspberry Pi Zero with a serial
console cable
In this section, we will look at how to communicate, the Raspberry Pi Zero from a computer
using a TTL serial converter. We can do this debugging with a serial console cable
connected to the computer using the USB port. We communicate with the board with a
serial cable, because if we want to send commands from our computer to the board, it's
necessary to communicate using this cable. You can find the cable at

:

Getting Started with Raspberry Pi Zero

[11]

It s important to consider that the cable uses 3.3 volts, but we don t care because we re using
the cable from Adafruit. It is tested to work at this level of voltage.

You need to follow the next steps in order to install and communicate with your Raspberry
Pi Zero:

It's necessary that you have a free USB port on your computer.1.
We need to install the driver for the serial console cable so that the system can2.
recognize the hardware. We recommend that you download the driver
from

.
We use an interface (console software), called PuTTY, running on a Windows3.
computer; so we can communicate with our board, the Raspberry Pi. This
software can be downloaded and installed from .
For the connections, we need to connect the red cable to 5 volts, the black cable to4.
ground, the white cable to the TXD pin, and the green cable to the RXD pin on
the Raspberry Pi Zero.
The other side of the cable connects the plug to the USB port.5.

This is an image of the connections; it's for the hardware configuration:

Getting Started with Raspberry Pi Zero

[12]

Testing and accessing the serial COM interface
Once the driver is installed, we have here the Port COM, which is already installed:

This configuration is for Windows installation; if you have different
operating system, you need to do different steps.

How get the Device Manager screen: On your windows PC, click on the
Start icon, go to Control Panel, select System, and then click on Device
Manager.

In the following screenshot, you can see the device manager of the USB serial port:

Open the terminal in PuTTY, and select Serial Communication as , Speed as1.
, Parity as None, and Flow Control as None; click on Open:

Getting Started with Raspberry Pi Zero

[13]

When the blank screen appears, press Enter on your keyboard:2.

Getting Started with Raspberry Pi Zero

[14]

This initiates a connection to your Pi board and asks for your username and3.
password; you will see a screen like the following screenshot, with the
authentication login:

The default username for the Raspberry Pi Zero is , and the password4.
is :

Getting Started with Raspberry Pi Zero

[15]

Connecting to the home network and
accessing remotely
Our Raspberry Pi will be working in a real network, so it needs to be set up to work with all
the devices that will be together. For this reason, we need to configure our home network.
We will show you how to use the Ethernet adapter and the Wi-Fi plug that can be used in
the Raspberry Pi Zero.

Connecting with an Ethernet adapter
If you want to connect our Raspberry Pi Zero to the local network, you need to use a USB
OTG Host Cable MicroB OTG male to female from Adafruit. You can find it here:

. The board that we're using doesn't have an
Ethernet connector, so it's necessary to use it to communicate with the devices from outside.

In the following image, we can see the Ethernet adapter connected to the Raspberry Pi Zero:

Getting Started with Raspberry Pi Zero

[16]

This is the connector that you can use to connect your Ethernet adapter and make a link to
the network:

Now we need to follow the next steps to configure the Ethernet connection adapter:

Connect your adapter to the converter; I used a TRENDnet NETAdapter, but 1.
you can use an Ethernet Hub and USB Hub with Micro USB OTG Connector from
Adafruit. You can find it here: .
This is a hub and can be connected to the Ethernet cable or USB devices.
Verify the router configuration, and after both LEDs start blinking, you can see2.
the IP address in your configuration. The DHCP server assigns the IP address to
the Raspberry Pi.

This is what you will see as your router configuration on your hostname raspberrypi:

Getting Started with Raspberry Pi Zero

[17]

Accessing the Raspberry Pi Zero via SSH
As we know the IP address that our Raspberry Pi has, we will access to it using the PuTTY
terminal as we can see in the following screenshot. You need to enter the IP address, and
the port is by default; click on the Open button:

Getting Started with Raspberry Pi Zero

[18]

After that, we have the login screen as follows:

Use the following command:

sudo ifconfig -a

Getting Started with Raspberry Pi Zero

[19]

We can now see the information about the configuration of the Ethernet controller adapter.
Eth0 is the Ethernet adapter:

Connecting to the Wi-Fi network
In this section, we will show you how to configure your Wi-Fi network connection so that
your Raspberry Pi Zero can interact with your Wi-Fi network. First, we need to connect the
Miniature Wi-Fi (802.11b/g/n) Wi-Fi dongle to the Raspberry Pi using the USB OTG Cable:

Getting Started with Raspberry Pi Zero

[20]

How to install the wireless tools
Use the following command to configure the wireless network:

sudo apt-get install wireless-tools

In the following screenshot, we can see the result of the command:

Getting Started with Raspberry Pi Zero

[21]

After executing the command, we will see the result of installing :

Configuring IP address and wireless network
To have a networking configuration, we need to assign an IP address to our device in order
to be involved in the network.

Getting Started with Raspberry Pi Zero

[22]

Enter the following command:

sudo nano etc/network/interfaces

In the following configuration file, called , we explain what we need to add to
the file so that we can connect our Raspberry Pi Zero to the Wi-Fi network for the Wlan0
connection.

We start the file configuration; it means the beginning of the file:

We configure the Ethernet device for the local host and start up the DHCP
server:

Getting Started with Raspberry Pi Zero

[23]

Allow the configuration of the for Wi-Fi connection:

We start up the DHCP server for the Wi-Fi connection and input the name of your
and the password. We need to type and parameters of your Wi-Fi network:

Testing the communication
We need to test whether the device is responding to the other host. Now, if everything is
configured well, we can see the following IP address in the Wi-Fi connection:

Getting Started with Raspberry Pi Zero

[24]

We can see in the router configuration the current IP address that is assigned to the wireless
network:

Ping from a computer
Connect the computer to the same network as the Raspberry Pi:

Getting Started with Raspberry Pi Zero

[25]

You need to ping the IP address of the Raspberry Pi. After we make the ping to the IP
Address of the Raspberry Pi Wireless connection, we see the results:

Updating the package repository
This will upgrade your Pi board by downloading all the latest packages from the official
Raspberry Pi repository, so it's a great way to make sure that your board is connected to the
Internet. Then, from your computer, type the following:

sudo apt-get update

Getting Started with Raspberry Pi Zero

[26]

The following screenshot show the Raspberry Pi collecting the packages data:

Getting Started with Raspberry Pi Zero

[27]

Here we have results after the installation is finished:

Remote Desktop
In this section, we need the RDP package with the Raspbian Operating System. To do
that, first we need to execute the following command:

sudo apt-get install xrdp

Getting Started with Raspberry Pi Zero

[28]

This command executes and installs the RDP process and updates the package:

Remote Desktop with Windows
At the end of this chapter, you want to be able to access the board from your own computer
using Remote Desktop; you need to type the IP address of your Raspberry Pi and click on
the Connect button:

Getting Started with Raspberry Pi Zero

[29]

After we type the IP address of the Raspberry Pi Zero, we will see the following screen; it's
necessary to write your username and password:

Getting Started with Raspberry Pi Zero

[30]

You need the login information of your Raspberry Pi, username, and password:

This is the main window of the Operating System; you have correctly accessed your
Raspberry Pi Remote Access with Remote Desktop:

Getting Started with Raspberry Pi Zero

[31]

Configuring a web server
There are several web servers available that we can install on your Raspberry Pi. We're
going to install the web server. Also, we need to install PHP support, which will
help us run a website into our Raspberry Pi and have dynamic web pages.

To install and configure, log in to the Raspberry Pi via the terminal console of PuTTY:

Update the package installer:1.

 sudo apt-get update

Install the web server:2.

 sudo apt-get install lighttpd

Getting Started with Raspberry Pi Zero

[32]

Once installed, it will automatically start up as a background service; it will do so each time
the Raspberry Pi starts up:

To set up our PHP 5 interface for programming with PHP 5, we need to install1.
the module support with the following command; this is necessary to have
our server, and it can execute PHP files so that we can make our website:

 sudo apt-get install php5-cgi

Now we need to enable the module on our web server:2.

 sudo lighty-enable-mod fastcgi-php

For the last step, we have to restart the server with the following command:3.

 sudo /etc/init.d/lighttpd

In the following screenshot, we show the content of the page that will to appear when we
configure the web server and the PHP 5 interface. The web server installs a test placeholder
page in the location . Type the IP address of your Raspberry Pi in the browser, for
example, , and the following screen appears, opening the active
page of the configured server:

Getting Started with Raspberry Pi Zero

[33]

Testing the PHP installation
At this point, we need to test our website with PHP. This can be done by writing a simple
PHP script page. If PHP is installed correctly, it will return information about its
environment and configuration.

Go to the next folder, where it's the root document:1.

 cd /var/www/html

Create a file called .2.

We use the word so that we can get into the file of the system with the
privileges and execute the following command:

 sudo nano phpinfo.php

After creating the file, as given in the following screenshot, press CTRL-X, and3.
then save the file:

Getting Started with Raspberry Pi Zero

[34]

In your browser, enter the IP address of your Raspberry Pi, for example,4.
, and you should see the following

screen:

Summary
In the first chapter of this book, we looked at how to configure our Raspberry Pi Zero board
so we can use it in later chapters. We looked at what components were needed for the Pi,
and how to install Raspbian so we can run the software on our board.

We also installed a web server, which we will be using in some projects of the book. In the
following chapter, we are going to dive into how to connect devices to your Raspberry Pi
and Arduino boards. We'll also look at the various things we can connect to the Raspberry
Pi using GPIO.

22
Connecting Things to the

Raspberry Pi Zero
You need to learn how to connect things to your Raspberry Pi Zero, and also looked at the
architecture and differentiate between the pins we can use for the purpose we defined. This
is the reason we have this section to help you with the sensors we can connect and give the
basics of how to connect other things to your device. In this section, we will explain how to
configure the Raspberry Pi; now you cannot avoid learning how to connect to your
Raspberry Pi sensors to read analog inputs connected to it.

We will cover the following topics to make our hardware communicate with the board:

Connecting digital inputs: Sensor DS18B20
Connecting analog inputs using an MCP3008 ADC converter
Connecting a real time clock (RTC)

Connectting digital input – sensor DS18B20
The Raspberry Pi has digital pins, so in this section, we will look at how to connect a digital
sensor to the board. We will use the digital sensor DS18B20, which has a digital output and
can be perfectly connected to a digital input in our Raspberry Pi sensor. The main idea is to
take temperature readings from the sensor and display them on the screen.

Connecting Things to the Raspberry Pi Zero

[36]

Hardware requirements
We will require the following hardware to take the temperature reading:

Temperature sensor DS18B20 (waterproof)
One resistor of 4.7 kilo-ohms
Some jumper wires
A breadboard

We will use a waterproof sensor DS18B20 and a 4.7 kilo-ohm resistor:

This is the waterproof sensor that we are using in this project.

Hardware connections
The following diagram shows the circuit on the breadboard, with the sensor and the
resistor:

Connecting Things to the Raspberry Pi Zero

[37]

In the following image, we can see the circuit with the sensor:

Configuring the one-wire protocol
Open a terminal in the Raspberry Pi, and type the following:

sudo nano /boot/config.txt

You should type the following line at the bottom of the page to configure the protocol and
define the pin where the one-wire protocol will communicate:

dtoverlay=w1-gpio

The next step is to reboot the Raspberry Pi. After a few minutes, open the terminal and type
the following lines:

sudo modprobew1-gpio
sudo modprobe w1-therm

Enter the folder and select the device that will be configured:

cd /sys/bus/w1/devices
ls

Connecting Things to the Raspberry Pi Zero

[38]

Select the device that will be set up. Change to the serial number of the device that
will set up in the protocol:

cd 28-xxxx
cat w1_slave

You will see the following:

After that, you will see one line which says Yes if it appears that the temperature reading is done
like this: t=29.562.

Software configuration
Let's now look at the code to display the temperature in degrees Celsius and Fahrenheit
every second on the screen.

Here we import the libraries used in the program:

Connecting Things to the Raspberry Pi Zero

[39]

Here we define the devices configured in the protocol:

Here we define the folders where the devices are configured:

Then we define the functions to read and configure the sensor:

Read the temperature with the function:

In this function, we compare when it received the message and get the character. We
also get the value of the temperature:

Then we calculate the temperature, in and , and return the values:

It repeats the cycle every second:

Connecting Things to the Raspberry Pi Zero

[40]

Displaying the readings on the screen
Now we need to execute . To show the results of the scripts made in
Python, open your PuTTY terminal, and type the following command:

sudo python thermometer.py

The command means that, when we run the thermometer file, if everything is running
perfectly, we will see the following results:

Connecting Things to the Raspberry Pi Zero

[41]

Connecting analog inputs using an MCP3008
ADC Converter
If we want to connect analog sensors to the Raspberry Pi, we need to use an Analog-to-
Digital Converter (ADC). The board doesn't have analog inputs; we use the MCP3008 to
connect analog sensors. This is a 10-bit ADC and has eight channels. This means that you
can connect up to eight sensors that can be read from the Raspberry Pi Zero. We don't need
special components to connect them. They can be connected with SPI to the Raspberry Pi's
GPIOs.

The first step is to enable SPI communication:

Access the Raspberry Pi terminal and type the following command:1.

sudo raspi-config

Select Advanced Options, as shown in the following screenshot:2.

Connecting Things to the Raspberry Pi Zero

[42]

Enable SPI communication by selecting the SPI option:3.

Select <Yes> to enable the SPI interface:4.

Connecting Things to the Raspberry Pi Zero

[43]

The final screen looks like the following screenshot when we enable the SPI5.
interface. Select <Ok>:

Connecting Things to the Raspberry Pi Zero

[44]

Raspberry Pi GPIO header
The following screenshot is a chart of the GPIO pins of the Raspberry Pi Zero. In this case,
we will use the SPI configuration interface (

):

The following diagram shows the name of the pins of the MCP3008 chip that you connect to
the Raspberry Pi:

Connecting Things to the Raspberry Pi Zero

[45]

The following image shows the temperature sensor:

You need to connect the following pins according to the next description:

VDD to 3.3 volts
VREF to 3.3 volts from the Raspberry Pi Zero
Pin AGND to GND
Pin CLK (clock) to GPIO11 of the Raspberry Pi
DOUT to GPIO9
Pin DIN to GPIO10
Pin CS to GPIO8 and the pin
Pin the MCP3008D GND to Ground

This connection is represented in the following figure:

Connecting Things to the Raspberry Pi Zero

[46]

The following image shows the connections of the sensor to the ADC MCP3008 and the
Raspberry Pi:

Reading the data with a Python script
In the next section, you will create the file; you need to follow the next steps:

Open the terminal on your Raspberry Pi Zero.1.
Enter the interface in your Pi terminal.2.
It's important to use before.3.
Type .4.

It will appear on the screen and we will describe the following lines:

Import libraries:1.

Open the SPI bus:2.

Connecting Things to the Raspberry Pi Zero

[47]

Define the channels from the ADC MCP2008:3.

The function to convert volts is as follows:4.

The function to convert temperature is as follows:5.

Define channels from the ADC:6.

Define the reading time:7.

The function to read the temperature is as follows:8.

Print the results:9.

Wait every 5 seconds:10.

Connecting Things to the Raspberry Pi Zero

[48]

Run the Python file using the following command:11.

sudo python MCP3008.py

On the following screen, we can see the temperature, the ADC measurements,12.
and the volts according to the temperature:

Connecting an RTC
To control a system, it is very important to have a circuit that can read the time; it can help
control the outputs from the Raspberry Pi or detect an action at a specific time. We will
interface an RTC module DS3231 with the Raspberry Pi.

Connecting Things to the Raspberry Pi Zero

[49]

I2C setup
The first step is to enable the I2C interface by performing the following steps:

Select Advanced Options:1.

Enable the I2C option, as shown in the following screenshot:2.

Connecting Things to the Raspberry Pi Zero

[50]

Select <Yes> on the next screen:3.

Select <Ok>:4.

Connecting Things to the Raspberry Pi Zero

[51]

Then select <Yes>:5.

Next, select <OK>:6.

Connecting Things to the Raspberry Pi Zero

[52]

DS3231 module setup
The module DS3231 is a real-time clock. It can be used to get the time and date from an
integrated circuit, so it can work with your system to control specific events that you want
to program from an embedded chip. It can work perfectly with the Raspberry Pi Zero in
order to get the time and date in real time.

You need to be sure that you have the latest updates. To do that, type the following
commands in your terminal:

sudo apt-get update
sudo apt-get -y upgrade

Modify the system file with the following command:

sudo nano /etc/modules

Add the following lines to the file:

snd-bcm2835
i2c-bcm2835
i2c-dev
rtc-ds1307

Hardware setup
In this section, we will look at the pins of the RTC module:

Connecting Things to the Raspberry Pi Zero

[53]

This is the RTC module, and we can see the pins of the chip:

The following diagram shows, the circuit connection:

Connecting Things to the Raspberry Pi Zero

[54]

The following image shows the final connection:

Testing the RTC
Open the terminal, and type this:

sudo i2cdetect -y 1

You should see something similar to the following screenshot:

Connecting Things to the Raspberry Pi Zero

[55]

I2C device setup
The next step is to check whether the time clock is synchronized with RTC time. Here we
define the RTC local:

sudo nano /etc/rc.local

Add the following lines to the file as we declare the new device and the path we configure:

The following command will start up the RTC:

hwclock -s

After this command, reboot the Pi. You will see the following screen, which means that the
RTC is configured and ready to work:

Putting the real-time clock to final test
You can read the Pi time system with the following command:

date

Connecting Things to the Raspberry Pi Zero

[56]

Once the RTC is ready, you can test it with the following command; write the time to the
RTC:

sudo hwclock -w

You can read the time from the RTC with the command given here:

sudo hwclock -r

Now for the final command. With this command, we can see both the time values, as shown
in the following screenshot:

Summary
In this chapter, you learned how to use the MCP3008 ADC converter and also how to use a
temperature sensor using Raspberry Pi Zero. We explored the GPIO port and the various
interfaces it features. We looked at the various things we can connect to the Raspberry Pi
using GPIO.

In the next chapter, we will dive into more hardware acquisition, connecting different kinds
of sensors to our Raspberry Pi Zero and Arduino boards. This will help you make real
measurements in your projects. That s very interesting keep at it!

33
Connecting Sensors - Measure

the Real Things
The objectives of this book are to build a Home Security System, control domestic
appliances by electronically controlled systems with sensors, and monitor them from a
dashboard. First, we need to consider that our sensors are connected to an end device that
can read the signals and transmit them to the network.

For the end devices, we will use Arduino boards to acquire the readings from the sensors.
We can see that the Raspberry Pi doesn't have analog inputs. For this reason, we use an
Arduino board to read that signals.

In the previous chapter, we talked about how to connect devices to the Raspberry Pi; in this
section, we will see how to interface sensors with Arduino boards to see how to read real
signals from different applications for real measurements. We will cover the following
topics in this chapter:

Using a flow sensor to calculate the volume of water
Measuring the concentration of gas with a sensor
Measuring the level of alcohol with a sensor
Detecting fire with a sensor
Measuring the humidity for plants
Measuring the level of water in a recipient
Measuring temperature, humidity and light and display data in an LCD
Detecting motion with a PIR sensor
Detecting if the door is open with a reed switch
Detecting who can get in the house with a fingerprint sensor

Connecting Sensors - Measure the Real Things

[58]

It's important to consider the fact that we need to communicate our system to the real
world. Since we are working on building a home security system, we need to learn how to
connect and interact with some necessary sensors to use them in our system.

In the next section, we will cover the sensors that you will need to read the data you use in
the domotics and security system.

Measuring flow sensor to calculate the
volume of water
We need to take automatic measurements from the water that we're using in the home. For
this project, we will use a sensor to perform this reading and make the reading of
measurement automatic.

To make this project, we need the following materials:

Flow Water Sensor and Arduino UNO board:

Hardware connections
Now we have the connections for out flow sensor. We can see that it has three pins the
red pin is connected to +VCC 5 volts, the black one is connected to GND, and the yellow
pin is connected to pin number 2 of the Arduino board as seen in the following image:

Connecting Sensors - Measure the Real Things

[59]

Reading the sensor signal
An interrupt is used for the pulses generated by the passage of water to be accounted as
follows:

The interruption is of type counts the pulses that pass from a low state to a high:

Function for counting pulses:

Reading and counting pulses with Arduino
In this part of the code, we explain that it counts the signals from the sensor using an
interrupt, executes, and we have configured it as , so it counts the pulses from
digital signal zero to digital signal one:

Connecting Sensors - Measure the Real Things

[60]

Open the Arduino Serial Monitor, and blow air through the water flow sensor using your
mouth. The number of pulses per second will be printed on the Arduino Serial Monitor for
each loop, as shown in the following screenshot:

Connecting Sensors - Measure the Real Things

[61]

Calculating water flow rate based on the
pulses counted
In this part, we measure the pulses and convert them to the flow of water using the
following steps:

Open a new Arduino IDE, and copy the following sketch.1.
Verify and upload the sketch on the Arduino board.2.

The following code will calculate the pulses that are reading from the sensor; we3.
divide the number of pulses counted in one second, and we have pulses per liter:

Connecting Sensors - Measure the Real Things

[62]

Open the Arduino Serial Monitor, and blow air through the water flow sensor4.
using your mouth. The number of pulses per second and the water flow rate in
milliliters per second will be printed on the Arduino Serial Monitor for each loop,
as shown in the following screenshot:

Calculating flow and volume of water:
You can now either copy the code inside a file called

, or just get the complete code from the folder for this
project.

In this part, we calculate the flow and volume from the sensor:

Connecting Sensors - Measure the Real Things

[63]

We set up the interrupt:

Start the interrupt:

Then we display the flow rate of the sensor:

We calculate the volume of the sensor:

We display the volume in milliliters:

The function to count the pulses is as follows:

Connecting Sensors - Measure the Real Things

[64]

The result can be seen in the following screenshot:

Displaying the parameters measured on an LCD
You can add an LCD screen to your newly built water meter to display readings rather than
displaying them on the Arduino serial monitor. You can then disconnect your water meter
from the computer after uploading the sketch onto your Arduino.

First, we define the LCD library:

Then we define the variables that we will use in the program:

We define the LCD pins:

Connecting Sensors - Measure the Real Things

[65]

We define the interrupt for sensing:

Now we display the message on LCD:

We now define the interrupt in the main loop:

We display the value on the LCD:

Then we display the value of the flow rate:

We now display the value of the volume:

Connecting Sensors - Measure the Real Things

[66]

Then we define the function for counting the pulses:

Connections with the water flow are shown in the following image:

The following picture shows the measurements on an LCD:

You can see some information on the LCD screen, such as pulses per second, water flow
rate, and the total volume of water from the beginning of the time.

Connecting Sensors - Measure the Real Things

[67]

Measuring the concentration of gas
It's important to have in our system a sensor that detects gas so we can apply it in our home
in order to detect a gas leak. Now we´re going to describe how to connect to an Arduino
board and read the concentration of gas.

In this section, we will use a gas sensor and Methane CH4. In this case, we will use an MQ-4
sensor that can detect concentrations from 200 to 10000 ppm.

This sensor has an analog resistance in its output and can connect to an ADC; it needs a coil
energize of 5 volts. The image for the sensor can be seen as follows:

We can find information for the MQ-4 sensor
at .

Connecting Sensors - Measure the Real Things

[68]

Connections with the sensor and Arduino board
According to the preceding diagram, we will now see the connections made in the
following image:

Open the Arduino IDE, and copy the following sketch:

Connecting Sensors - Measure the Real Things

[69]

We see the following results on the screen:

Measuring the level of alcohol with a sensor
In this section, we will build a very cool project: Your very own Alcohol Breath Analyser.
To do that, we are going to use a simple Arduino Uno board along with an ethanol gas
sensor:

Connecting Sensors - Measure the Real Things

[70]

The following diagram shows the connection of the sensor with the Arduino:

We are now going to write the code for the project. Here, we are simply going to go over the
most important parts of the code.

You can now either copy the code inside a file called , or just get the
complete code from the folder for this project:

Connecting Sensors - Measure the Real Things

[71]

When it doesn't detect alcohol, we can see the number of values that the Arduino reads:

If it detects alcohol, we see values from the analog read from Arduino as shown in the
following screenshot:

Connecting Sensors - Measure the Real Things

[72]

Detecting fire with a sensor
If there's a fire in our home, it's vital to detect it; so in the next section, we will create a
project that detects fire with a sensor.

In the following image, we see of the fire sensor module:

You can now either copy the code inside a file called , or just get the
complete code from the folder for this project.

We define the variables for our program at the beginning:

We define the output signals and the serial communication:

Now we display the value of the digital signal:

Connecting Sensors - Measure the Real Things

[73]

Then we compare: If the value detects a high logic state, it turns off the output; if it reads
the opposite, it turns on the digital signal; this means that it has detected fire:

When the Arduino board detects fire, it will read 1 in the digital input, which means no fire
detection:

Connecting Sensors - Measure the Real Things

[74]

If it detects fire, the digital input reads 0 logic from the digital input:

Measuring the humidity for plants

Connecting Sensors - Measure the Real Things

[75]

In this section, we will see the testing of humidity inside a plant and the soil using a sensor:

I will now go through the main parts of this first piece of code. Then we set up the serial
communication:

In the main loop, we will read the analog signal from the sensor:

We compare the value of the sensor and display the result on the serial interface:

Connecting Sensors - Measure the Real Things

[76]

Here, the screenshot shows the results of the readings:

The following screenshot shows that the plant doesn't require water; because it has enough
moisture in the soil already:

Connecting Sensors - Measure the Real Things

[77]

Measuring the level of water in a recipient
Somtimes, we need to measure the level of water in a recipient, or if you want to see the
level of water in a tank, it is a requirement to measure the levels of water that it has; so in
this section, we will explain how to do this.

The sensor is Normally Open. When the water is over the limit, the contact opens, and it
sends a signal to the Arduino board. We use pin number , which is a digital input:

We declare the variables and in the program:

We also define the states of the digital signals:

We configure the signals of the program, inputs, and outputs:

Connecting Sensors - Measure the Real Things

[78]

We read the state of the digital input:

We make the comparisons for the sensor:

If the sensor detects a LOW level, the recipient is empty:

The following screenshot shows the result when the recipient is empty:

Connecting Sensors - Measure the Real Things

[79]

The water is over the limit:

Measuring temperature, humidity, and light
and displaying data on an LCD
In this section, I will teach you how to monitor temperature, humidity, and light detection
on an LCD screen.

Hardware and software requirements
In this project, you will use an Arduino UNO board; but you can also use an Arduino
MEGA, which also works perfectly.

For temperature reading, we require a DHT11 sensor, a resistor of 4.7k, a photoresistor
(light sensor), and a 10k resistor.

Connecting Sensors - Measure the Real Things

[80]

It also requires a 16 x 2 LCD screen, where you performed the tests; I used an I2C
communication module for the screen interfaced with Arduino card. I recommend using
this communication since only two pins of Arduino are required for sending data:

Finally, it requires a breadboard and male-male and female-male cables for connections.

Here is the list of components for the project:

Arduino UNO
Temperature and humidity sensor DHT11
LCD Screen 16 x 2
Module I2C for LCD
A breadboard
Cables

We connect the different components:

Connecting Sensors - Measure the Real Things

[81]

Here, we can see the image of the temperature and humidityDHT11 sensor:

Then connect the pin number 1 of the DHT11 sensor (VCC) sensor to the red line on the
breadboard and pin 4 (GND) to the blue line. Also, connect pin number 2 of the sensor to
pin number 7 of the Arduino board. To end the DHT11 sensor, connect the resistance of 4.7k
Ohms between pin number 1 and 2 of the sensor.

Place in series with the 10k Ohm resistance in the breadboard. Then connect the other end
of the photoresistor to red on the breadboard and the other end of the resistance to the blue
line (ground). Finally, connect the common pin between the photoresistor and resistance to
the Arduino analog pin A0.

Now let's connect the LCD screen. Since we are using an LCD screen with an I2C interface,
there are only two cables needed to connect to the signal and two for energy. Connect the
pin of the I2C module called VDC to the red line on the breadboard and GND pin to the
blue line on the breadboard. Then connect the SDA pin module to Arduino pin A4, and A5
SCL pin to pin the Arduino:

Connecting Sensors - Measure the Real Things

[82]

Here is an image of the project, fully assembled, so you can have an idea as to what the
whole project will be:

Testing sensors
Now that the hardware project is fully assembled, we will test the different sensors. To do
this, we will write a simple sketch in Arduino. We're just going to read the sensor data and
print these data on the serial port.

You can now either copy the code inside a file called ,
or just get the complete code from the folder for this project.

First we define the libraries:

Connecting Sensors - Measure the Real Things

[83]

We define the type of sensor:

Then we configure the serial communication:

We read the sensor values:

We display the values on the serial interface:

Connecting Sensors - Measure the Real Things

[84]

Download the code onto the Arduino board, and open the serial monitor to display the data
sent. It is important to check the transmission speed serial port, which must be to 9600. Here
is what you should see:

Displaying data on the LCD
Now the next step is to integrate our information to display on the LCD screen. The portion
of sensor readings will be the same, only detailed with regard to communication and to
display data on the LCD. The following is the complete code for this part, together with an
explained.

You can now either copy the code inside a file called , or just
get the complete code from the folder for this project.

We include the libraries for the program:

Connecting Sensors - Measure the Real Things

[85]

We define the LCD address for the LCD:

We start the LCD screen:

We define the beginning of the sensor:

We read the sensor and save the values in the variables:

We display the values on the LCD screen:

Connecting Sensors - Measure the Real Things

[86]

The next step is to download the example on the Arduino board; wait a little bit, and you
will get display readings on the LCD. Here is an image of the project in action:

Detecting motion with a PIR sensor
We will build a project with a common home automation sensor: a motion sensor (PIR).
Have you ever noticed those little white plastic modules that are in the top corners in some
rooms of the houses, the modules that change color to red when someone walks in front of
them? That's exactly what we will do in this project.

The motion sensor must have three pins: two for the power supply and one for the signal.
You should also use a 5V voltage level to be compatible with the Arduino card, which also
operates at 5V. The following image shows a simple motion sensor:

Connecting Sensors - Measure the Real Things

[87]

For practical purposes, we will use the signal input 8 for connecting the motion sensor, the
signal voltage of 5 volts and ground GND.

PIR sensor interfaced with Arduino
PIR sensors detect body heat (infrared energy). Passive infrared sensors are the most widely
used motion detectors in home security systems. Once the sensor warms up, it can detect
heat and movement in the surrounding areas, creating a protective grid. If a moving object
blocks too many grid zones and the infrared energy levels change rapidly, the sensors are
tripped.

At this point, we will test the communication between the Arduino and the motion sensor.

We define the variable and the serial communication, define digital pin 8, input signal, read
the state of the signal, and display the status signal of the sensor:

int sensor = 8;
void setup() {
Serial.begin(9600);
pinMode(sensor,INPUT);
}
void loop(){
// Readind the sensor
int state = digitalRead(sensor);
Serial.print("Detecting sensor: ");
Serial.println(state);
delay(100);
}

Connecting Sensors - Measure the Real Things

[88]

Detecting if the door is open with a reed
switch
An example has been added as an option to implement a magnetic sensor in order to detect
when a door or window is open or closed.

The sensor outputs a when it detects the magnetic field and when the field is far away the
output would be a ; so you can determine when the door is open or closed.

The program in the Arduino is performed as follows:

We define the input signal of the sensor, and configure the serial communication:

We read the state of the sensor:

Connecting Sensors - Measure the Real Things

[89]

It compares the digital input and displays the status of the door in the serial interface:

Detecting who can get in the house with a
fingerprint sensor
In this section, we will create a project that can help us make a complete security system. In
this project, the fingerprint access will be addressed by reading the fingerprint using a
fingerprint sensor as shown in the following image:

In this part, we will see how to connect and configure our hardware in order to activate our
relay.

Hardware configuration:
As usual, we will use an Arduino Uno board as the brain of the project. The most important
part of this project is the fingerprint sensor.

Connecting Sensors - Measure the Real Things

[90]

We are first going to see how to assemble the different parts of this project. Let's start by
connecting the power supply. Connect the 5V pin from the Arduino board to the red power
rail and the GND from Arduino to the blue power rail on the breadboard.

Now, let's connect the fingerprint sensor. First, connect the power by connecting the cables
to their respective color on the breadboard. Then, connect the white wire from the sensor to
Arduino pin 3 and the green wire to pin number 2.

After that, we are going to connect the relay module. Connect the VCC pin to the red power
rail, GND pin to the blue power rail, and the EN pin to Arduino pin 7:

Save the fingerprint:
The following example is presented to register the ID's fingerprints directly from the library

.

Firstly, we define the libraries:

Connecting Sensors - Measure the Real Things

[91]

We define the ID of the reading and the function of the enroll process:

We define the serial communication with the device:

We declare the instance of the sensor:

We set up and display if the sensor is being configured:

We display the sensor confirmation:

We identify the sensor if it detects:

Connecting Sensors - Measure the Real Things

[92]

We display the enrolling ID:

The function for enrolling is as follows:

Connecting Sensors - Measure the Real Things

[93]

If the sensor successfully reads the image you see the following:

If it cannot find the fingerprint features, you see the following:Serial.println(Could not find
fingerprint features);

Remove the fingerprint sensor:

Connecting Sensors - Measure the Real Things

[94]

Image for the fingerprint sensor:

Connecting Sensors - Measure the Real Things

[95]

If it is correct, you see the following:

Display the result of the sensor:

Connecting Sensors - Measure the Real Things

[96]

Testing the sensor
Open the serial monitor, then type the ID number saved in the previous step:

Connecting Sensors - Measure the Real Things

[97]

The following screenshot indicates that you should put the same finger on the sensor again:

Connecting Sensors - Measure the Real Things

[98]

The following screenshot shows that the sensor responses indicates that the digital
fingerprint has been successfully saved:

Connecting Sensors - Measure the Real Things

[99]

Summary
In this chapter, we saw how to interact with different sensors connected to the Arduino
board, such as flow current for energy consumption, detecting a risk in the home,
implementing a gas sensor, implementing flow water sensor to measure the water volume,
making a security system, and controlling access with a fingerprint sensor. All of these
sensors can be integrate a complete system for monitoring and controlling everything you
work on any project.

In the next chapter, we will see how to integrate everything for monitoring and controlling
a complete system, and reading the sensors and actuators in a dashboard using your
Arduino board and the Raspberry Pi Zero as a central interface.

44
Control-Connected Devices

In this chapter, we will look at how to control devices from remote sites using our
Raspberry Pi Zero and Arduino UNO, using the following modules to communicate in a
network: Wi-Fi shield and Ethernet shield. We will cover the following topics in this
chapter:

Making a simple web server with Node.js
Controlling a relay from a Raspberry Pi Zero using Restful API and Node.js
Configuring Node.js in a computer as a web server
Monitoring temperature, humidity, and light using Node.js with Arduino Wi-Fi
Monitoring temperature, humidity, and light using Node.js with Arduino
Ethernet

Making a simple web server with Node.js
One of the most important aspect of having a Raspberry Pi is that we have a real computer
configured with services and servers. In this section, we will explain how to install Node.js,
which is a powerful framework that we will use to run most of the applications we are
going to see in this book. Luckily for us, installing Node.js on Raspberry Pi is really simple.

In the folder for this chapter, open the file called . We will create a server on
port 8056. To test the program and see the results we have to open the Node.js terminal on
your MS-DOS interface and run this file with the following command:

node webserver.js

Add the following lines to file to declare the HTTP request commands:

Control-Connected Devices

[101]

We create the server with the following function:

We define the content of the file that we will show in the HTML code:

We send the response from the server:

It's important to define the port that is going to be opened:

Display the message of the server:

To test this program, open the browser on your local computer and navigate to the
following link: . If you see the following screen; your
Node.js server is running perfectly on your computer; you need to change the IP address of
your computer:

Control-Connected Devices

[102]

Controlling a relay from a Raspberry Pi Zero
using Restful API and Node.js
In this section, we will show you how to control a relay module connected to an Arduino
UNO board, a relay for sending commands from a web browser. Let's do it.

JSON structure
JavaScript Object Notation (JSON) is a lightweight data-interchange format. It is easy for
humans to read and write. It is easy for machines to parse and generate. It is based on a
subset of the JavaScript Programming Language.

JSON is built on two structures:

A collection of name/value pairs. In various languages, this is realized as an
object, record, struct, dictionary, hash table, keyed list, or associative array.

An ordered list of values. In most languages, this is realized as an array, vector,
list, or sequence.

First, we need to know how to apply the JSON format that we use to describe this structure,
as follows:

This is the format that we need to follow and make responsive:

Data: Defines the number of the command and then describes the definition of
the command
Name: Follows the name of the device
Connected: Confirms if the device is connected or not

All the data that is between the defines our JSON format.

Control-Connected Devices

[103]

Commands with the aREST API
Using the command like this, we can define our Arduino and the devices, and then
control them from a web browser. The following are examples of the commands from the

 API:

: This configures the digital pin 6 like
an output pin

: Configures output 6 and makes
the function like a digitalwrite. For example:

; we define the IP address of the device
and the number of the pin that will be activated.

Installing Node.js on your Raspberry Pi Zero
Node.js is a tool that will allow us to create servers running in the device, using code in
JavaScript. The most important thing is that we will apply this framework to build a web
server using this code.

Using Node.js means that we configure a web server that will open a port and the devices
can be connected to the web server.

With the following command, you will install Node.js in your Raspberry Pi Zero:

sudo apt-get install nodejs

NPM is the default package manager for the JavaScript runtime environment with Node.js.
To configure and install the module, type the following line in your terminal:

sudo npm install arest

The Express philosophy is to provide small, robust tooling for HTTP servers, making it a
great solution for single-page applications, websites, hybrids, or public HTTP APIs.

We can also need to configure the express module with the following command:

sudo npm install express

Control-Connected Devices

[104]

Controlling the relay using aREST
commands from a web browser
In the next section, we will see how to control a digital output from a web browser using

 commands. Let's dive into it, to see more details:

Configuring the web server
You can now either copy the code inside a file called outputcontrol.js, or just get the
complete code from the folder for this project and execute it with Node.js. Open the
terminal on your Raspberry Pi and type the following:

sudo node output control.js

We define the GPIO of the device importing the commands, by using the following:

Now we will create our web server using Node.js using the following lines.

We import the require packages that are necessary to run. We declare the libraries using the
following:

Define the body parser and open the port, in this case, 8099:

Use the body-parser:

Configure GPIO 11, which we will control:

We define the functions that we will call from the web browser.

Control-Connected Devices

[105]

The name of the function is ; it activates the GPIO 11 and sends the message
 to the screen:

The name of the function is ; it turns off the GPIO 11 and sends the message
 to the screen:

We define the function , which means that we are making a request to the server when
the browser receives the function called ; it responds with following format:

.

We will now declare the app function for the incoming requests from the clients:

We define the function .which means that we are making a request to the server when
the browser receives the function called , it responds with following format:

We now open the port from the web server:

Control-Connected Devices

[106]

If everything is correct, we open our favorite browser and type
.

.

The following screenshot shows you the response of the JSON request:

After that, we will see the final result, as shown in the following image:

Control-Connected Devices

[107]

Configuring Node.js on a computer as a web
server
Node.js is an open-source, cross-platform runtime environment for developing server-side
and networking applications. Node.js applications are written in JavaScript, and can be run
within the Node.js runtime on OS X, Microsoft Windows, and Linux.

Node.js also provides a rich library of various JavaScript modules that simplify the
development of web applications using Node.js to a great extent.

In the last section, we configured Node.js in Raspberry Pi Zero, now in this section we will
do the same thing using a Windows operating system and configure our web server Node.js
running on it.

The main purpose of this section is to explain how to control our Arduino boards from a
web server running in the Node.js framework. For that, it's important to install it; our
system will run on Windows computer.

In this section, we will explain how to install Node.js in Windows.

Downloading Node.js
First we need to download Node.js for Windows 64 bit it depends of the version of your
operating system to download it, you just need to go to the following link:

:

Control-Connected Devices

[108]

Installing Node.js
After we have downloaded the software, follow these steps:

Click on the Next button:1.

Click on the Next button:2.

Control-Connected Devices

[109]

Select where to install it:3.

Select the default configuration:4.

Control-Connected Devices

[110]

To finish the configuration, we click on Install:5.

After the installation is complete we will see the following:6.

Control-Connected Devices

[111]

Configuring web server port 8080 with Node.js
Now we need to configure the port that will be expected to listen to the opening connection
from the remote browsers. Open the file that is in the folder of this chapter, and then
execute the file with Node.js.

You can now either copy the code inside a file called , or just get the complete
code from the folder for this project.

First we need to create our server with the following code:

Create a function named that has the code to respond to the browser:

If this function responds with the number 200 , it means that the connection is established,
the server works perfectly:

Create and open the server port:

Open the Terminal with the Node.js server installed on your computer, and then in your
MS-DOS interface, type the following command:

C:\users\PC>node server.js

Now, to test weather the server is running, we will go the web browser and type
; and you should see on your screen similar to the following

screenshot:

Control-Connected Devices

[112]

Monitoring temperature, humidity, and light
using Node.js with Arduino Wi-Fi
In this part of the chapter, we will explain the code for the Wi-Fi shield with Arduino:

Control-Connected Devices

[113]

We define the number of variables; in this case we will monitor three variables
(, , and):

Here we have to include the library for the sensor:

We define the pin for the sensor:

We define the instance of the sensor:

We import the libraries for the module:

We define the pins for connecting the module:

We create the instance of the module that will be connected:

We define the aREST instance:

Then we define the SSID and password, which you need to change:

Control-Connected Devices

[114]

We configure the port to listen for incoming TCP connections:

We define the server instance of the module:

We define the variables that will be published:

We have here the setup that defines the configuration of serial communications:

We begin the variables that will be published:

We define the ID and the name of the device:

We connect to the network:

Control-Connected Devices

[115]

Here we define the function to get the device connected:

We display the connections in the serial interface:

In this part, we declare the variables that will be acquired:

We then measure light level:

We declare the function for requesting:

We need to execute the requests from the server:

We display the networking configuration from the device:

Control-Connected Devices

[116]

Download the sketch of code in your Arduino board, and then go to the serial monitor to
see the configuration of the IP address taken from your router. After that, we can display
the configuration IP address of the Wi-Fi shield:

Control-Connected Devices

[117]

Connecting to the Wi-Fi network
Now that we can see the IP address of your Arduino Wi-Fi shield, we can now connect our
computer to the same network as the Arduino board. Look at the following screenshot to
see more details:

To test the application, we need to go to the following path and run the following
commands on the computer that you have installed your Node.js server, on as shown in the
following screenshot:

Control-Connected Devices

[118]

In this folder, we have the file in JavaScript and type the command node app.js

After entering the interface folder type the following command :

Now that you have launched the web server, application, switch over to a browser, on the
same machine to see the results by entering the IP address of the machine:

Control-Connected Devices

[119]

After the server is listening on port 300, it establishes communication with the Wi-Fi
module sending a request to the IP address of the device:

Monitoring temperature, humidity, and light
using Node.js with Arduino Ethernet
In the preceding section, we showed how to monitor our Arduino via Wi-Fi using the
CC3000 module; now we will use another important module: Ethernet Shield. The
hardware connection of the part is similar to the following image:

Control-Connected Devices

[120]

Code for the application of the Arduino Ethernet
shield
You can now either copy the code inside a file called , or just get
the complete code from the folder for this project; you need to use the Arduino IDE.

The following are the libraries included in the program:

Include the library for the DHT11 sensor:

We define the pins for the temperature and humidity sensor:

We have the instance of the sensor:

We register the MAC address for the device:

We now create an instance of the API:

We publish the variables that will be monitored:

Control-Connected Devices

[121]

We now configure serial communication and start the instance of the sensor:

We start the variables to publish:

It is very important to give the ID and the name of the device that we are using:

We begin the Ethernet connection:

We display the IP address on the serial monitor:

We read the temperature and humidity sensor:

We measure the light level of the sensor:

Control-Connected Devices

[122]

We listen for the incoming clients that will be connected:

Now that we have finished the configurations, we open a web browser and type the IP
address of your Arduino Ethernet shield: . If everything goes
perfectly it will display the following screen with the JSON response from the board:

The preceding screenshot shows the results of the JSON request.

Configuring the device in Node.js
In this section, we will explain the code for configuring the devices that we can control from
a web page.

Control-Connected Devices

[123]

We installed the express package in the previous section; if you have any difficulty, just
open a terminal and type the following:

npm install express

We define the node express and create the app:

We then define the port to listen:

We define the instance of Jade application, using the view engine:

We configure the public folder:

We now define the devices to monitor:

We serve the application:

We start the server and send the message when the device is connected:

Open your terminal in MS-DOS and execute in your Node.js server

To test the application, open your web browser and type ; if a
screen like the following, congratulations appears, you just configured your server
properly:

Control-Connected Devices

[124]

Here we have the screen where we see the execution of in the Node.js server:

Control-Connected Devices

[125]

Summary
In this chapter, you learned how to control your Arduino board, using modules of
communication in a networking area from the Raspberry Pi Zero in a central interface
Dashboard. We have looked at how to control and monitor devices from a central interface;
you can use other sensors, for example, a sensor barometric pressure.

In the next chapter, you will do more interesting projects such as configuring and
connecting a web camera to your Arduino board that can be monitored from your
Raspberry Pi Zero.

55
Adding a Webcam to Monitor

Your Security System
In the previous chapters, we talked about topics such as sensors connected to the Arduino
and monitoring from the Raspberry Pi Zero, using a network across devices, the importance
of our home security projects, and domotics to monitor what's happening in the real world.
For that, we have a proposal for this chapter.

In this chapter, we will configure our Raspberry Pi Zero to monitor a web camera and
install a TTL serial camera to interact with Arduino boards; we will achieve that with the
following topics:

Interaction between Arduino and Raspberry Pi
Controlling an output connected to Arduino from Raspberry Pi Zero
Connecting a TTL serial camera to Arduino and saving pictures to a Micro SD
Detecting motion with the serial TTL camera
Controlling a snapshot from Raspberry Pi
Controlling your camera from a web page
Monitoring your USB camera for security in a network

Adding a Webcam to Monitor Your Security System

[127]

Interaction between Arduino and Raspberry
Pi
In this chapter, we will look at how the Raspberry Pi can work as a terminal computer to
program, not only having the device as a server and deploying pages or applications but
also have an IDE for programming the Arduino board. To do this we need to have the
Raspberry Pi connected to the Arduino, so that they can communicate with each other.

Here are some interfaces that the Raspberry Pi has, all of these which included in the device:
I2C protocol, SPI communication, USB ports, and serial UART ports. In this case, we will
use the USB port to communicate between Arduino and the Raspberry Pi.

These are the steps to configure Arduino and Raspberry Pi to interact with each other:

Install Arduino IDE for the Raspberry Pi1.
Open your terminal with PuTTY and check the IP address of your Raspberry Pi2.
Execute remote access, and type the IP address3.
Open Arduino IDE in the graphical interface4.

Installing Arduino IDE in Raspbian
Type the following command to install Arduino IDE on the Raspberry Pi:

sudo apt-get install arduino

Adding a Webcam to Monitor Your Security System

[128]

Remote access to Raspberry Pi
In this section, we will look at the screen to access the Remote desk to execute the Arduino
IDE installed in the Raspian operating system: once the screen pops up, type your username
and password:

Adding a Webcam to Monitor Your Security System

[129]

Executing Arduino in a graphical interface
Now that we have the main screen, we go to the Programming menu, and if we see the icon
to enter the Arduino IDE, everything is installed. Click on the icon of the Arduino IDE:

Adding a Webcam to Monitor Your Security System

[130]

Arduino interface in Raspian
Here we have the interface of the Arduino IDE, similar to the ones we have in a computer.
From the Arduino IDE running in the Raspberry Pi, we can interact between both boards:

Adding a Webcam to Monitor Your Security System

[131]

Preparing the interface
We need to verify that we selected the proper board; in this case, we're using an Arduino
UNO. Select the board in the following window:

Adding a Webcam to Monitor Your Security System

[132]

Selecting the serial port
After we have selected the board that we will use, we need to verify and select the port that
will communicate with our Arduino connected to the USB port of the Raspberry Pi; we
need to select the name port: :

Adding a Webcam to Monitor Your Security System

[133]

Downloading a sketch from the graphical
interface
The main thing that we need is to communicate with Arduino from our Raspberry Pi Zero
and download the sketch to the Arduino board without using a computer, so that we can
use our Raspberry Pi for other purposes.

The following screenshot shows you the interface with the sketch:

Adding a Webcam to Monitor Your Security System

[134]

We should download the sketch in the interface. The following image shows the connected
Arduino-Raspberry Pi: that's cool!

Controlling an output connected to Arduino
from Raspberry Pi Zero
Now we will look at an example of controlling an output from the Raspberry Pi, using
Python.

First we need to download the sketch to the Arduino board. To test our communication, we
will show an example of testing the link between the Arduino and the Raspberry Pi:

We declare the following output:

We start with the setup in the program:

Adding a Webcam to Monitor Your Security System

[135]

Then we mention the output pin:

Start the serial communication at 9600:

Declare the loop of the program:

This is where we check weather serial port is available or not:

If something found it reads something and saves the content in variable:

If it reads a letter which is marked for high:

The output will turn on the LED connected to pin 13

In case it reads a letter which is marked for low:

The output will turn off the LED connected to pin 13:

Adding a Webcam to Monitor Your Security System

[136]

Controlling the Arduino board from Python
First we need to install the serial library, as this helps to communicate with Arduino via the
USB port communication. Type the following command to install the library:

sudo apt-get install python-serial

The following code controls Arduino from Raspberry Pi; you can now either copy the code
inside a file called , or just get the complete code from the
folder for this project.

The following snippet imports the serial library in Python:

We define the serial communication:

Print a message to see that the communication is done:

While this executes, the user can enter a command:

If it's an it prints the message; in case it is false it displays LED off:

Close the connection:

Adding a Webcam to Monitor Your Security System

[137]

Hardware connections
This is the LED connected to Arduino UNO, and it can be controlled from the Raspberry Pi
using Python:

Connecting a TTL serial camera to Arduino
and saving pictures to a micro SD
Here we have the schema, with the connections of the micro SD card with the TTL serial
camera; I use a camera model from Adafruit. The following link has all the information you
need, . In the following image, we have the
connections of the project:

Adding a Webcam to Monitor Your Security System

[138]

Now we will explain how to take a picture and save it to a micro SD; the main idea is to
connect a camera to the Arduino, so we can implement this in a system monitoring for
home security.

The following is the code for testing the TTL camera, taking a picture, and saving it on a
micro SD. Note that the code is too long, but I will be explaining the most important and
necessary code to do the previous actions. All the code for these examples is included with
the book for more complete information.

Here we have the import files from the TTL camera, and the files to communicate with the
micro SD:

We define the library software to communicate via serial:

Adding a Webcam to Monitor Your Security System

[139]

define the to pin 10:

The code will pin for connections:

Then we will need to start the camera:

Here we define the image size:

This will display the image size:

The code will take a picture:

Create the file to save the image taken:

Code to save the file:

Adding a Webcam to Monitor Your Security System

[140]

Prepare the micro SD to save the files:

Open the file taken for prewview:

To show the size of the image taken:

Read the data from the file:

Write the file into the memory:

Display the file on the screen:

Display the number of bytes read:

Close the file which is open:

Adding a Webcam to Monitor Your Security System

[141]

Detecting motion with the serial TTL camera
Turn on the motion detection of TTL camera:

Verify if the motion is activated:

What happens when motion is detected by the camera:

If motion is detected, take the picture or display the message:

Controlling a snapshot from Raspberry Pi
Now that we have seen how to communicate between Arduino and Raspberry Pi, to control
the board, we can apply this to our security system project. We need to do this for
communicating with and controlling our camera from the Raspberry Pi:

Connect the Arduino and Raspberry Pi to each other
Create a serial connection at 9,600 mbps
Call the function that will take the picture and save it in the micro SD

On the Raspberry Pi we need to do the following:

Create the script for calling the function in the Arduino that will take the picture
Open and execute the script using your PuTTY terminal

Adding a Webcam to Monitor Your Security System

[142]

The following section is the sketch that should be download in the Arduino board:

First we start the serial communication:

This is the function that will tell the camera to take the picture:

Code for the function to take a picture
Here we discuss the code to define the function that will prompt the camera to take the
picture.

The function has the code that will take the picture:

Take a picture:

Here we create the file to save:

Here we save the file:

Adding a Webcam to Monitor Your Security System

[143]

Prepare the micro SD to save the files:

Open the file for preview:

Get the size of the file before saving:

Read the data from the file that was saved:

Write the file into the memory:

Display the file after saving:

Display the number of bytes read:

Close the file which are open:

Adding a Webcam to Monitor Your Security System

[144]

Controlling your camera from a web page
In this section, we will look ar how to control our camera from a web page in PHP and run
a web server in the Raspberry Pi. We will need the following to run PHP files and web
server:

Running the Apache server on Raspberry Pi
Installing PHP software

For the web page, for controlling we will have to create our PHP files in the following path:
, for instance we need to edit the file, and copy the following

lines.

The following HTML file includes PHP:

Here we define the function to perform action for taking the picture:

Here we define the action to taken if motion detected:

Adding a Webcam to Monitor Your Security System

[145]

Calling the Python scripts from PHP
In this section, we need to call the Python script from the web page and execute the file that
has the script:

Code for Python scripts
On the server side, that is the Raspberry Pi, we have the Python scripts that will be called
from the web page:

Adding a Webcam to Monitor Your Security System

[146]

If everything is configured perfectly, the following page will appear: in your favorite
browser, type IP address of your :

Monitoring your USB camera for security in
a network
In this section, we will create a project that allows us to monitor a USB camera that is
connected to an Arduino YUN, which has a USB port and includes communication with
Ethernet and Wi-Fi. So, it has many advantages. We will work on making a network
between the Raspberry Pi and the Arduino YUN, so the main idea is to monitor the camera
from a web page, from the Raspberry Pi. The page will be stored in the Raspberry Pi.

Adding a Webcam to Monitor Your Security System

[147]

Configuring Arduino YUN
We will use a Logitech camera that supports the UVC protocol:

Now we will explain the steps to install our camera in the Arduino YUN:

Connect the board to your Wi-Fi router
Verify the IP address of the Arduino YUN

After we type the IP address, the following screen appears:

Adding a Webcam to Monitor Your Security System

[148]

We will now issue a series of commands at the Command Prompt to complete the setup:

Update the package:

opkg update

Install the UVC protocol:

opkg install kmod-video-uvc

Install the camera driver:

opkg install fswebcam

Download the :

wget http://www.custommobileapps.com.au/downloads/mjpgstreamer.Ipk

Install the :

opkg install mjpg-streamer.ipk

To start the camera manually, use the following code:

mjpg_streamer -i "input_uvc.so -d /dev/video0 -r 640x480 -f 25" -o
"output_http.so -p 8080 -w /www/webcam" &

To start the camera automatically, we will use the following code:

Install the program:

opkg install nano

Enter the following file:

nano /etc/config/mjpg-streamer

Configure the camera with the following parameters:

Adding a Webcam to Monitor Your Security System

[149]

Use the following command to start the service:

/etc/init.d/mjpg-streamer enable
/etc/init.d/mjpg-streamer stop
/etc/init.d/mjpg-streamer start

Monitoring from the MJPG-STREAMER server
Once you have accessed the server of the Arduino YUN, type the IP Address of your
Arduino YUN, , in your web browser. The results of the
configuration are shown in the following screenshot:

Monitoring the USB camera from the Raspberry
Pi
With the camera connected to the Arduino YUN, now we can monitor in real time from a
web page published in the Raspberry Pi.

Adding a Webcam to Monitor Your Security System

[150]

Provide a title for the web page:

We call the camera image by putting the IP address of the Arduino YUN:

Access the web page from a browser by typing the IP address of the Raspberry Pi (
):

In the next section, we will look how to configure the connected devices and the hardware
that will be interacting in a network.

Adding a Webcam to Monitor Your Security System

[151]

The following image represents the network that we created with devices that can be
monitored; for example, we monitor each room of a house, connect all the devices with a
Wi-Fi network, and monitor them from the Raspberry Pi:

Summary
In this chapter, you have learned how to configure a web cam connected to the network and
monitor your security system for the Internet of Things. We used your Arduino Board to
connect the security camera, and Raspberry Pi Zero connected to the network to monitor
the system. In the next chapter, we will integrate our system, the Raspberry Pi Zero, with
Arduino, to build a complete system-connected device and monitor.

66
Building a Web Monitor and

Controlling Devices from a
Dashboard

In this chapter, we will talk about a very important part of this book, creating a web page
that can control different kinds of devices from a dashboard. In an automated home there
are different kinds of devices that could be controlled, for example: lamps, doors or
windows, washing machines, and so on.

In this chapter, we will cover the following topics:

Configuring MySQL database server
Installing phpMyAdmin for administrating databases
Datalogger with MySQL
Dimming a LED
Controlling the speed of a DC motor
Controlling lights with electrical circuits
Controlling door locks
Controlling watering plants
Remote access from anywhere to your Raspberry Pi Zero
Controlling lights and measuring current consumption
Controlling and monitoring Arduino, Wi-Fi and Ethernet shields, connected
devices, and sensors from the Raspberry Pi Zero

Building a Web Monitor and Controlling Devices from a Dashboard

[153]

Configuring MySQL database server
In this section, you will learn how to configure MySQL server in order to create a database
and integrate everything in your dashboard, for recording data in a database.

Installing MySQL
Our Raspberry Pi Zero is being configured like a web server. In this section, we will install
MySQL database server with the following command, so we can receive connections from
clients, display data stored in a database, and use queries in SQL:

sudo apt-get install mysql-server

Building a Web Monitor and Controlling Devices from a Dashboard

[154]

In the middle of the process it will ask you for the password of the user:

Building a Web Monitor and Controlling Devices from a Dashboard

[155]

After the installation is complete, connect to MySQL and type the following command:

mysql -u root -p

Building a Web Monitor and Controlling Devices from a Dashboard

[156]

Type the following command:

show databases;

Building a Web Monitor and Controlling Devices from a Dashboard

[157]

Here we can see databases of the system that are now installed in the server:

Installing MySQL driver for PHP
It's important to install our driver to communicate PHP5 with MySQL database server, to
do that we will need MySQL driver for PHP to access MySQL database, execute this
command to install Driver.

sudo apt-get install php5 php5-mysql

Building a Web Monitor and Controlling Devices from a Dashboard

[158]

Testing PHP and MySQL
In this section, we will make a simple page to test PHP and MySQL with the following
command:

sudo nano /var/www/html/hellodb.php

Building a Web Monitor and Controlling Devices from a Dashboard

[159]

The following screenshot has the script that has the code to access the database, connect to
the server, and get the data from it:

Building a Web Monitor and Controlling Devices from a Dashboard

[160]

To test the page and connection between PHP and MySQL, type the IP address of your
Raspberry Pi: . The page that should similar to the
following screenshot:

Installing PhpMyAdmin for administrating
databases
In this section, we will talk about how to configure your PhpMyAdmin to administrate
your database from a remote panel. It's important that we install the client and the module
PHP5 in the Apache server, so type the following command:

sudo apt-get install mysql-client php5-mysql

Next we will install the package with the following command:

sudo apt install phpmyadmin

Building a Web Monitor and Controlling Devices from a Dashboard

[161]

In the following screenshot, we can see the configuration of the server; in this case, we need
to select apache2:

Building a Web Monitor and Controlling Devices from a Dashboard

[162]

We choose the apache2 server:

Building a Web Monitor and Controlling Devices from a Dashboard

[163]

After that we can select the database:

Building a Web Monitor and Controlling Devices from a Dashboard

[164]

We choose the option <No>:

Building a Web Monitor and Controlling Devices from a Dashboard

[165]

Configuring the Apache server
It's necessary that we make the configuration of the file . First go to the
Terminal on your Pi:

sudo nano /etc/apache2/apache2.conf

In the following screen, we need to add the code:

Include /etc/phpmyadmin/apche.conf

Building a Web Monitor and Controlling Devices from a Dashboard

[166]

We include the following line in the bottom of the file:

Include /etc/phpmyadmin/apche.conf

We have finally finished installing our Apache server, and we are now ready for the next
step.

Building a Web Monitor and Controlling Devices from a Dashboard

[167]

Entering to the phpMyAdmin remote panel
After we have configured the server we will enter the phpMyAdmin remote panel, we need
to open our favorite web browser and type the IP Address of our Raspberry Pi:

, which will show the following screen:

Building a Web Monitor and Controlling Devices from a Dashboard

[168]

Showing the Arduinobd database
The following screenshot shows the database created in the server:

Building a Web Monitor and Controlling Devices from a Dashboard

[169]

The following screenshot shows the table measurements, columns, id, temperature and
humidity:

Sending data from Arduino and the Ethernet
shield to the web server
We use an Arduino and the Ethernet Shield connected to the network, Arduino sends data
to the web server published in the Raspberry Pi Zero.

Building a Web Monitor and Controlling Devices from a Dashboard

[170]

You can now either copy the code inside a file called , or just
get the complete code from the code folder of this book:

We enter the Ip address of the Arduino UNO:

We configure the IPAddress of our Raspberry Pi Zero:

We need to connect to the web server:

These lines define the HTTP request from the remote server:

The rest of the code is shown in the following lines:

Building a Web Monitor and Controlling Devices from a Dashboard

[171]

Make an HTTP request:

 Thes lines define how the instance of the client can read the response:

If the server's disconnected, stop the client:

Repeat every second:

Building a Web Monitor and Controlling Devices from a Dashboard

[172]

Here we can see the hardware that we used:

Datalogger with MySQL
In the following section, we will build a Datalogger that will record the data temperature
and humidity in the server so that we can get data whenever we want and display it in a
web page.

Programming the script software
In the following code, we have a script that will communicate with the Arduino board, and
it is installed in the server.

You can now either copy the code inside a file called , or just get the
complete code from the folder for this project:

Building a Web Monitor and Controlling Devices from a Dashboard

[173]

Testing the connection
After we have installed the file of the script, we need to open a web browser in your
computer and type the IP address of your

 , the link will look like as
(http://192.168.1.108/datalogger1.php?temp=70&hum=100):

Building a Web Monitor and Controlling Devices from a Dashboard

[174]

The following screenshot shows the results of the data saved on the database:

Building a Web Monitor and Controlling Devices from a Dashboard

[175]

The following screenshot shows the table of the data:

Data queries from the database
It's important to have data recorded and to make some queries to have the data show in the
web page.

Software for the scripts
Here we have the scripts that we used to show the data in the page:

Building a Web Monitor and Controlling Devices from a Dashboard

[176]

You can now either copy the code inside a file called , or just get the complete
code from the folder for this project:

Building a Web Monitor and Controlling Devices from a Dashboard

[177]

In the following screenshot we have the data:

Scripts for specific data to be displayed
In the following lines we see that we can make some SQL queries to have information of
specific values and get the values from the temperature and humidity:

Building a Web Monitor and Controlling Devices from a Dashboard

[178]

Query for recording temperature
In this section, we will create a query to get temperature measurements. We call the server
reference to the , in this case it is the Raspberry Pi zero device, the user, and the
name of the database:

Building a Web Monitor and Controlling Devices from a Dashboard

[179]

The result of the queries is shown in the following screenshot:

Controlling and dimming a LED
In this section, we will discuss a project that can be applied to a home automation. We will
dim an LED of DC, this can done to a lamp in a house. The LED will change its brightness,
and we connect the LED to the GPIO18 of the Raspberry Pi in series with a resistor of 330
ohms.

Building a Web Monitor and Controlling Devices from a Dashboard

[180]

Software requirements
First we need to install the package. In the Terminal, type the following:

wget abyz.co.uk/rpi/pigpio/pigpio.zip

Then unzip the package:

unzip pigpio.zip

After that, navigate to the unzipped folder with the following:

cd PIGPIO

Type the following to execute the command:

Make

Finally install the file:

sudo make install

Testing the LED
In this section, we will test the sensor with a script in Node.js:

We can already test this code, navigate into the folder of this project with a Terminal on the
Pi, and type the following:

sudo npm install pigpio

Building a Web Monitor and Controlling Devices from a Dashboard

[181]

This will install the required module to control the LED. Then, type the following:

sudo node led_test.js

This is the final result:

Controlling the LED from an interface
In this section, we will control the LED from a web page. For which we will use HTML to
make the interface with the user, using .

Let's take a look at the Node.js files that are included in the following code:

Building a Web Monitor and Controlling Devices from a Dashboard

[182]

It's now finally time to test our application! First, grab all the code from this book's
repository and navigate to the folder of the project like before. Then, install with
the following command:

sudo npm install express

When this is done, start the server with the following command:

sudo node led_control.js

You can now test the project, open the web browser in your computer, and type the link
, and we can see that the LED changes

with the value.

Then open your web browser with and you should see the
control in a basic web page:

Building a Web Monitor and Controlling Devices from a Dashboard

[183]

Controlling the speed of a DC motor
It's common to have a window or a garage door in a house. We need to automate these
kinds of devices, so that we can move these objects with a DC motor. In this section, we will
see how to connect a DC motor to the Raspberry Pi. To do this, we will use a L293D circuit
to control the motor.

First we will see how to connect the motor to our Raspberry Pi Zero board. In the following
diagram, we can see the pins out of the LD293 chip:

We basically need to connect the components of the circuit, as follows:

GPIO14 of the Raspberry Pi to pin 1A
GPIO15 of the Raspberry Pi to pin 2A
GPIO18 of the Raspberry Pi to pin 1, 2EN
DC motor to pin 1Y and 2Y
5V of the Raspberry Pi to VCC1
GND of the Raspberry Pi to GND
Adapter regulator to VCC2 and GND

Building a Web Monitor and Controlling Devices from a Dashboard

[184]

The following image shows the results:

We will now test the speed of the DC motor from 0 to the highest speed:

Building a Web Monitor and Controlling Devices from a Dashboard

[185]

Here we have the code for this application to control the DC motor using the interface in a
web page:

Building a Web Monitor and Controlling Devices from a Dashboard

[186]

We see the interface of the user in the following code:

Building a Web Monitor and Controlling Devices from a Dashboard

[187]

To test the application, you need to open the web browser in your computer with the link,
, and then you need to replace the IP Address of your Pi.

Here we have the interface for this:

Controlling Lights with electrical circuits
In the following sections, you will find ideas on how to dive into more projects that control
other devices in the house.

Electrical appliances
In houses we have electrical appliances, for example, lamps, washing machines, heaters,
and other appliances that we only need to turn on or off. In this section, we will learn how
to control a lamp connected to the Raspberry Pi Zero, using electrical circuits for interfacing
the signal. We will use an optocoupler such as MOC3011, and a Triac. The following figure
shows the circuit of the application:

Building a Web Monitor and Controlling Devices from a Dashboard

[188]

Here we have the final project connected to the Raspberry pi Zero:

Here we have the JavaScript code for controlling the device:

Building a Web Monitor and Controlling Devices from a Dashboard

[189]

We need an interface that can control the lamp from the web page in the HTML language:

Building a Web Monitor and Controlling Devices from a Dashboard

[190]

After entering the web browser, we will see the following interface:

Other appliances
In this section, we will show other applications that you can consider creating and
controlling, and then use them in the home or different areas.

Building a Web Monitor and Controlling Devices from a Dashboard

[191]

Control a door lock
In this section, we will see other appliances that can be controlled from an interface and
connected to the Raspberry pi. In the house we can control a door lock from a web interface:

Control watering plants
Another appliance that we can control is watering plants with a Plastic Water Solenoid
Valve 12V, connected to the Raspberry Pi:

With this project we can make an automated watering system, add a humidity sensor, and
program the time that the plants of the garden will be watered.

Building a Web Monitor and Controlling Devices from a Dashboard

[192]

Remote access from anywhere to your
Raspberry Pi Zero
If we want access to our Raspberry Pi from outside our network, we need to do the
following:

Check if our modem has a public IP address
Investigate the address that we'll be using in our browser
Type in our browser

IP provided by the ISP are genteraly dynamic IP which changes after some time. In our
cases we need to have static addresses which does not change occasionally.

How to access our modem to configure it
Access our modem via the Ip address (gateway) and go to the port addressing part.
Configure port 80 that points to our web server (put the IP address of our account), this IP
address is the one that automatically assigns the DHCP server of our system.

Building a Web Monitor and Controlling Devices from a Dashboard

[193]

Here we have some ports that can be forwarded from the modem-router:

To get the gateway IP address, type the command, you need to have admin
rights. After this, type in the web browser of your :

Building a Web Monitor and Controlling Devices from a Dashboard

[194]

This is an example of what you'd see if you had a Linksys router, yours may be a different
interface:

To open a port we need to configure our router to give permissions for entering from
outside, so we need to give permission in our router:

Building a Web Monitor and Controlling Devices from a Dashboard

[195]

This screenshot shows the final results, how to open a port number 3000, and the name of
the application node:

Configuring Dynamic DNS
We need to configure a domain name service so we can access our web server by typing the
name of our domain (it is very difficult to learn the IP addresses of the web pages). That's
why Domain Name Servers (DNS) were created. Follow the next section to create a
domain.

You may want to access your IoT control panels away from home. In that case, your web
server will need to become a host on the Internet.

This is not a straightforward thing since it's behind the router in your home. Your ISP
generally does not give you a static public IP address because most users are simply
accessing the web, not serving web pages.

Therefore, the public side of your router is given an IP address that can change from time to
time. If you browse to , you will see what your public IP is currently.

Building a Web Monitor and Controlling Devices from a Dashboard

[196]

Tomorrow it could be different. For setting up external access, you can do one of two
things. If you want to simulate having a static IP, you can use a service such as Dynamic
DNS. If you just want to try out external access, you can open a port on your router

Benefits of having Dynamic DNS:

One solution is to install a client that will allow the public IP to make it fixed. The
client function (software that is installed on a computer), maintains
communication with the site .
When the IP address of our modem changes, the client takes that IP change.
This allows our domain name to always point to our public IP address. The
software that is installed is called: No-IP DUC.

Creating an account at No-ip.org
In the following screenshot we can see the Enhance dynamic DNS setting up:

Building a Web Monitor and Controlling Devices from a Dashboard

[197]

Controlling lights and measuring current
consumption
Now in this section we will explain how to control and monitor your current consumption
when the light is on or off. Using your Arduino Wi-Fi shield from a web page, we will
monitor this variable. When the light is off it looks as follows:

Building a Web Monitor and Controlling Devices from a Dashboard

[198]

When the light is on it looks as follows:

You can now either copy the code inside a file called
, or just get the complete code from

the folder of this book.

Define variables and functions to monitor and control:

Import libraries to use:

Building a Web Monitor and Controlling Devices from a Dashboard

[199]

Configure the relay to activate:

Variables to calculate the current:

We define the pins for configuring the module:

We create the instance:

We define the SSID and the password of your network:

We configure the port of the server:

Instance of the server:

Variables that are used:

Building a Web Monitor and Controlling Devices from a Dashboard

[200]

Publish the variables that are used:

Set the relay pin that is the output:

Calibrate the current sensor:

We declare the id and the name of the device:

In this part, we check if the device is connected:

In this part, we define the request for communication:

Lets's start the server:

Building a Web Monitor and Controlling Devices from a Dashboard

[201]

We read the sensors:

We make the calculus of the current and acquire the signals:

We define incoming requests:

We display the IP Address configuration:

Function of the current sensor that calculates the average of certain measurements and
returns the current calculus:

Building a Web Monitor and Controlling Devices from a Dashboard

[202]

Building the interface to control and monitor
Here we have the code for displaying the interface that controls the lights and monitoring
the current with the sensor:

Installing Jade for Node.js
It's important to configure the Jade interface applied in this project. To do that we just type
the following command:

npm install arest express jade

If it's necessary, we type the following command in case your system requires that update:

npm install pug

Interface for controlling and monitoring
First, we define the header of the page and add the HTML tag:

We define the links for the functions for jQuery and Bootstrap:

Building a Web Monitor and Controlling Devices from a Dashboard

[203]

We display the buttons to control in the web page:

Display the power and light level:

Now we will run the application, as we can see in the following screenshot. The server is
open on port 3000, when it starts to send the request to the board, type the address on your
web browser: . It shows the web page with both buttons and the
device is connected and is online:

Building a Web Monitor and Controlling Devices from a Dashboard

[204]

Click on the blue On button to activate the light on the board, after some seconds we can
see that the power increases:

Click on the red Off button, after some seconds the power goes down until 0 W, this means
that everything is working perfectly well:

Building a Web Monitor and Controlling Devices from a Dashboard

[205]

Controlling and monitoring Arduino, Wi-Fi,
and Ethernet shields on connected devices
and sensors
In previous sections, we saw how to control and monitor our Arduino boards from a web
page using running on a computer in Windows. In this section, we will use our
fantastic Raspberry Pi Zero with Node.js installed on it and run the JavaScript application
inside the board.

I have seen the potential of the board instead of using a personal computer installed as a
web server, with this experience making this projects I want tell that the application is more
efficient using our Raspberry Pi Zero running on it.

We will see how to control more than one device in a single dashboard using different
devices, such as the following:

Wi-Fi shield
ESP8266 module
Ethernet shield

Building the code to control and monitor devices
from a single interface
You can now either copy the code inside a file called , or just get the complete code
from the folder for this project.

Configure the outputs of the devices connected in the system:

Start the function to control:

Building a Web Monitor and Controlling Devices from a Dashboard

[206]

We make the request with the API for

We make the request with the API for

We make the same thing for the ESP8266 connected device

We make the same thing for the ESP8266 connected device

Get the data from the sensors temperature and humidity:

Building a Web Monitor and Controlling Devices from a Dashboard

[207]

This code refresh the page every 10000 sec:

Adding the devices to monitor and control
I can see that the system is very stable; we need to add the devices that will be monitored
from the Raspberry Pi Zero with the following application in JavaScript snippet.

We create the express module and the necessary libraries:

We define the port that will be opened:

We configure the Jade engine for the HTML web page:

We make the public directory to access on it:

Interface for the server instructions to be executed:

We declare the arrest file with the rest request:

This code defines the devices that will be controlled and monitored, we can add the ones
that we want:

Building a Web Monitor and Controlling Devices from a Dashboard

[208]

We set up the server on port 3000 and listen to the web browser clients:

If everything is perfectly configured, we test the application by typing the following
command:

sudo npm install arest express jade

This installs the Jade platform and recognizes the API from Raspberry Pi Zero.

If something is necessary to update, type the following command:

sudo npm install pug

To update the , type the following command:

sudo npm install pi-arest express

It's very important to install this package to include the arrest API:

sudo npm install arest --unsafe-perm

To run the application, go to the folder where the application is and type the following
command:

node app.js

In the following screenshot, we see that the server is opening port 3000:

Building a Web Monitor and Controlling Devices from a Dashboard

[209]

For the final test, we need to type the IP address of the Raspberry Pi that it has in that
moment into your favorite web browser:

.

In the following screenshot, we can see the control and monitor data dashboard from the
Raspberry Pi Zero, published on different devices on a single web page, that's something
interesting to do, such that a remote system and control panel:

Finally, we finish by showing the control and monitor system, using different devices in a
single data dashboard; we conclude that we can have more than one device in a web page
for the Internet of Things.

Summary
In this chapter, you learned how to integrate and build a dashboard for monitoring and
controlling using Raspberry Pi Zero with Arduino and the technologies seen in previous
chapters. This chapter gave to you the basics and the necessary tools that can help you to
create your own system of Internet of Things for different applications and areas that can be
developed for these kinds of systems by applying all the tools, web server, database server,
devices connected, and setting up your router to control your Raspberry Pi from anywhere
in the world.

In the next chapter, you will build very nice devices for the Internet of Things; you will
learn how to make different mini home domotics projects.

77
Building a Spy Police with the
Internet of Things Dashboard

In this chapter, we will look at several home domestic projects. You can combine these
projects with the other tools that we have seen in previous chapters. Doing so will help you
improve your knowledge and also let you develop your own. In this chapter, the following
topics will be covered:

Spy microphone that detects noise
Regulating the current of an AC lamp dimmer
Controlling access with an RFID card
Detecting smoke
Building an alarm system using Raspberry Pi Zero
Monitoring the climate from a remote dashboard

Building a Spy Police with the Internet of Things Dashboard

[211]

Spy microphone that detects noise
In this section, we will look at a project that we can use in a house to detect noise or the
level of sound so that we can detect when a person talks in front of the house. This project
consists of a module that has a microphone, similar to the following image:

Software code
We need to make a program that can read the analog signal that the module sends to the
Arduino board:

Building a Spy Police with the Internet of Things Dashboard

[212]

We then download the sketch, and in the following screenshot we have the results of the
level of sound:

In the following image we can see the final circuit connection to the Arduino Board:

Building a Spy Police with the Internet of Things Dashboard

[213]

Regulating the current of an AC lamp
dimmer
In this section, we will see how to regulate an AC lamp. For so many years I've wanted to
explain and share a project like this, and I'm finally. This can be applied to regulate your
lamps at home in order to decrease domestic power the consumption: the following sections
will explain the project in more detail.

Hardware requirements
We need the following electronic components:

H-bridge
24 AC transformer
Two resistors 22k (1 watt)
One integrated circuit (4N25)
One resistor 10k
One potentiometer of 5k
One resistor 330 ohms
One resistor 180 ohms
One integrated circuit MOC3011
One TRIAC 2N6073

In the following circuit diagram, we can see the connections for the dimmer from the
Arduino board:

Building a Spy Police with the Internet of Things Dashboard

[214]

Software code
You can now either copy the code inside a file called , or just get the complete
code from the folder for this project:

After we have downloaded the sketch we can see the final results. With the potentiometer,
we can regulate the intensity of the lamp. In our house we can have our lamps on whenever
we want: maybe we can control them according the ambient light of the environment.

Building a Spy Police with the Internet of Things Dashboard

[215]

In the following images, we will see the different moments of lamp, if we regulate the input
signal of the potentiometer:

In the following image, we can see the result of regulating the brightness of the lamp:

Building a Spy Police with the Internet of Things Dashboard

[216]

Here we can see the dimmer of the lamp at its maximum brightness:

Controlling access with an RFID card
In this section, we will see how to control access via a door. In the last chapter, we saw how
to control the lock and the lamps of a house. This project can complement the last one as it
will enable you to control the opening of a door, a specific bedroom door, or lights in other
rooms.

Hardware requirements
For this project, we need the following equipment:

Reading TAGS cards
RFID RC522 Module
Arduino Board

Building a Spy Police with the Internet of Things Dashboard

[217]

The following image shows the RFID tags for reading and controlling the access:

The following figure, shows the RFID card interface for Arduino:

Software requirements
We need to install the library, this file can communicate with and configure
the module for reading the tag cards. This library can be downloaded from

.

Building a Spy Police with the Internet of Things Dashboard

[218]

Software code
You can now either copy the code inside a file called , or just get the complete
code from the folder for this project:

Building a Spy Police with the Internet of Things Dashboard

[219]

Building a Spy Police with the Internet of Things Dashboard

[220]

This is the final result when we pass the Tag card in front of the RFID module connected to
the Arduino, if the code below, it will display the message (Access Granted).

In this part of the code, we configure the number of cards authorized:

#define AUTHORIZED_COUNT 2
byte Authorized[AUTHORIZED_COUNT][6] = {{0xC6, 0x95, 0x39, 0x31, 0x5B},

 {0x2E, 0x7, 0x9A, 0xE5, 0x56}};

Building a Spy Police with the Internet of Things Dashboard

[221]

If we keep the card on the tag and card that is not registered, it can provide the correct
access:

The final result with the complete connections is shown in the following image:

Building a Spy Police with the Internet of Things Dashboard

[222]

Detecting smoke
In this section, we will test an MQ135 sensor which can detect smoke. This could also be
used in a home to detect a gas leak. In this case, we will use it to detect smoke.

In home automation systems, putting all the sensors to detect something at home, we
measure the real world: in this case we used the MQ135 sensor which can detect gas and
smoke, as shown in the following image:

Software code
In the following code, we explain how program and detect smoke using the gas sensor:

Building a Spy Police with the Internet of Things Dashboard

[223]

If it doesn't detect smoke, it produces the following values, as shown in the following
screenshot:

Building a Spy Police with the Internet of Things Dashboard

[224]

If it detects smoke the measurements are in range 305 and 320 which can be seen in the file
as the following screenshot:

The final result (with the complete circuit connections) is shown in the following image:

Building a Spy Police with the Internet of Things Dashboard

[225]

Building an alarm system using the
Raspberry Pi Zero
In this section, we will build a simple alarm system with a PIR sensor connected to the
Raspberry Pi Zero. This is an important project as it can be added to the home, including
other sensors, in order to monitor it.

Motion sensor with Raspberry Pi Zero
For this project we need the Raspberry Pi Zero, a motion sensor PIR, and some cables. The
hardware configuration for this project will actually be very simple. First, connect the VCC
pin of the motion sensor to a 3.3V pin on the Raspberry Pi. Then, connect the GND pin of
the sensor to one GND pin on the Pi. Finally, connect the OUT pin of the motion sensor to
the GPIO17 pin on the Raspberry Pi. You can refer to the previous chapters to find out
about pin mapping on the Raspberry Pi Zero board.

The following image shows the final circuit with the connections:

Software code
You can now either copy the code inside the folder called , or just get the
complete code from the folder for this project:

Building a Spy Police with the Internet of Things Dashboard

[226]

The alarm module
You will usually have a modules in your home that will flash a light and emit sound when
motion is detected. Of course you could perfectly well connect it to a real siren instead of a
buzzer to have a loud sound in case any motion is detected.

To assemble this module, first place the LED in series with the 330 Ohm resistor on the
breadboard, with the longest pin of the LED in contact with the resistor. Also place the
Buzzer on the breadboard. Then, connect the other side of the resistor to GPIO14 on the Pi
and the other part of the LED to one GND pin on the Pi. For the Buzzer, connect the pin
marked + on the buzzer to GPIO15 and the other pin on the Buzzer to one GND pin on the
Pi.

Software code
Here we go with the coding details:

Building a Spy Police with the Internet of Things Dashboard

[227]

This is the final circuit showing the connections:

Central interface
First we create a central interface for the app using the following code:

Building a Spy Police with the Internet of Things Dashboard

[228]

Building a Spy Police with the Internet of Things Dashboard

[229]

Graphical interface
Let's now see the interface file, starting with the HTML. We start by importing all the
required libraries and files for the project:

Building a Spy Police with the Internet of Things Dashboard

[230]

Monitoring the climate from a remote
dashboard
Today, most smart homes are connected to the Internet, and this allows the user to monitor
their home. In this section, we are going to learn how to monitor your climate remotely.
First, we are simply going to add a sensor to our Raspberry Pi Zero and monitor the
measurements from a cloud dashboard. Let's see how it works.

The following image shows the final connections:

Building a Spy Police with the Internet of Things Dashboard

[231]

Exploring the sensor test

Configuring the remote dashboard (Dweet.io)
We need to go to and create an account:

Building a Spy Police with the Internet of Things Dashboard

[232]

Now, we create a new dashboard to control the sensor:

Add a new data source with the following parameters:

Building a Spy Police with the Internet of Things Dashboard

[233]

Create a new pane inside the dashboard and also create a Gauge widget for the
temperature:

We will then immediately see the temperature in the interface:

Building a Spy Police with the Internet of Things Dashboard

[234]

We do the same with the Humidity:

We should see the final result:

Building a Spy Police with the Internet of Things Dashboard

[235]

Summary
In this chapter, we learned how to build and integrate a modular security system based on
Raspberry Pi Zero and Arduino boards. There are of course many ways to improve this
project. For example, you can simply add more modules to the project, such as more motion
sensors that trigger the same alarm. You can monitor the system, even if you are outside of
the Wi-Fi network of your home.

In the next chapter, we are going to learn how to control your system from an Android
application, and how to integrate a real system from your smartphone that's fantastic!

88
Monitoring and Controlling Your

Devices from a Smart Phone
In previous chapters, we have seen projects that are being controlled from web interfaces.
Now in this chapter, we will see how to control your Arduino and Raspberry Pi from a
native application in Android, using platforms in order to create apps to control and
monitor.

In this chapter, we will see different projects and applications using Android tools, the
topics that will be covered are as follows:

Controlling a relay from a smart phone using APP Inventor
Reading JSON response in Android Studio using Ethernet shield
Controlling a DC motor from an Android application
Controlling outputs from Android using your Raspberry Pi Zero
Controlling outputs with Raspberry Pi via Bluetooth

Controlling a relay from a smart phone using
APP Inventor
In this section, we will see how to create an Android application using APP Inventor to
control a relay connected to the Arduino board.

Monitoring and Controlling Your Devices from a Smart Phone

[237]

Hardware requirements
Hardware required for the project are as follows:

Relay module
Arduino UNO board
Ethernet shield
Some cables

Software requirements
Software required for the project are as follows:

Software Arduino IDE
You need a Gmail account activated

Creating our first application
App Inventor for Android is an open source web application originally provided by
Google, and now maintained by the Massachusetts Institute of Technology (MIT). It allows
newcomers to computer programming to create software applications for the Android
operating system (OS). It uses a graphical interface, very similar to Scratch and the StarLogo
TNG user interface, which allows users to drag-and-drop visual objects to create an
application that can run on Android devices. In creating App Inventor, Google drew upon
significant prior research in educational computing, as well as work done within Google on
online development environments.

You don t need to install any software for APP inventor to execute in your computer; you
just need your Gmail account to access the APP inventor interface.

To enter APP Inventor you just need to go to: .

Go to create apps to start designing the app.

Monitoring and Controlling Your Devices from a Smart Phone

[238]

First we need to have an account with Gmail; we need to create the file like we see in the
following screenshot:

Monitoring and Controlling Your Devices from a Smart Phone

[239]

Go to menu Projects and Start New Project:

Monitoring and Controlling Your Devices from a Smart Phone

[240]

Write the name of the project:

Monitoring and Controlling Your Devices from a Smart Phone

[241]

In the following screenshot, we write the name of our project as aREST:

Monitoring and Controlling Your Devices from a Smart Phone

[242]

On pressing OK, we will see the project created:

Monitoring and Controlling Your Devices from a Smart Phone

[243]

Designing the interface
Now it's time to see how to create the interface of the application, after we create the project
we click on the name of the project, and we will then see the following screen:

Monitoring and Controlling Your Devices from a Smart Phone

[244]

In the user interface that we have on the left-hand side (you can see all the objects), to move
an object to the main screen you just drag Web Viewer and Button, as shown in the
following screenshot:

In the previous screenshot, we can see the interface of the app that we will use to control
our Arduino board.

Monitoring and Controlling Your Devices from a Smart Phone

[245]

Communicating APP Inventor with Arduino
ethernet shield
Now we will see how to communicate the application with Arduino via Ethernet
networking.

In the properties of the Web Viewer control, we will see the home URL:

In both controls we have the URL of our Arduino Ethernet shield, we will make a request
using the services, and we will send the following requests from the application:

Monitoring and Controlling Your Devices from a Smart Phone

[246]

Code for APP Inventor
The blocks editor in the original version ran in a separate Java process, using the

 library for creating visual blocks programming languages and programming.

We have the code for APP inventor, when we click the buttons we call the web service, to
do that you just need to do the following:

Go to the screen interface that says Blocks
Drag the block one per button
Inside the block that you just dragged before, put the

 block
In the URL of the block, put the block

To close the application:

Drag the block
And inside the block put the close application block

Monitoring and Controlling Your Devices from a Smart Phone

[247]

We will have the following results when we open a web browser:

The following screenshot shows the application running on a mobile phone:

Monitoring and Controlling Your Devices from a Smart Phone

[248]

The following image shows the final results with the connections:

Reading JSON response in Android Studio
using ethernet shield
In this section, we will see how to read responses reading from the Arduino board and
reading in Android Studio.

Before we continue with the next part, we need to do the following:

Instal the IDE of Android Studio,which can be obtained from:

Get the latest SDK for Android Studio

Monitoring and Controlling Your Devices from a Smart Phone

[249]

Then we will create a project in Android Studio, as shown in the following screenshot:

Monitoring and Controlling Your Devices from a Smart Phone

[250]

We then select the version of the API that we want to use and click the Next button:

Monitoring and Controlling Your Devices from a Smart Phone

[251]

Then select a Blank Activity and click on the Next button:

Monitoring and Controlling Your Devices from a Smart Phone

[252]

Type the name of your Activity and the Layout, and then click the Finish button:

Android application
In this section, we will see the android application. In your folder, open the file of the
project about Android Studio.

We have here the XML code generated in the code of the interface:

Monitoring and Controlling Your Devices from a Smart Phone

[253]

Java class
When we create the project, some class are generated automatically, as we will see in the
following lines:

Name of the class:1.

Main class:2.

In this part of the code from the android application, we request for the value:

We define the objects that will be included in the main activity, in this case it is the
 control, it is defined in the main activity of the application:

Permission of the application
In order to give permission to the application to execute networking permissions, it's
necessary that we add the following line in the Android Manifest file:

Monitoring and Controlling Your Devices from a Smart Phone

[254]

When the application is debugged and installed on the device, we will see the following
results on our screen, displaying the value of the :

The value of the :

Controlling a DC motor using an Android
Application
In this section, we will have an application to link our smart phone with the Bluetooth of
the phone, it's called Amarino and you can get it from:

. We will also see how to control a DC motor from an Android
application, let's dive into it!

Monitoring and Controlling Your Devices from a Smart Phone

[255]

Hardware requirements
In the following diagram, we see the following circuit (L293D) is used to control the speed
and the turning of the motor:

In the following figure, we have the final connections of the circuit to the Arduino board:

Monitoring and Controlling Your Devices from a Smart Phone

[256]

The final interface is shown in the following screenshot:

The final results are shown in the following image with the connections:

Controlling outputs from android using your
Raspberry Pi Zero
In this section, we will see how to control our outputs connected to the Raspberry Pi, using
the script running in the server.

Monitoring and Controlling Your Devices from a Smart Phone

[257]

The request that we need to control over the LED output using the android application are
as follows:

1.
2.

The interface created in APP Inventor will be similar to the following screenshot:

Monitoring and Controlling Your Devices from a Smart Phone

[258]

The final circuit connections would look like the following screenshot:

Controlling outputs with Raspberry Pi via
Bluetooth
Things go a different route as soon as you re trying to communicate with other electronic
gadgets that uses Bluetooth modules connected to the serial port of the Raspberry Pi.

These modules are very cheap to buy, the actual module is the green board that sits on the
breakout board in my model. The pure HC-05 will only work on 3.3V levels, not with 5V-
TTL-levels. So one would need level shifters (again).

In this section, we will communicate the Raspberry Pi Zero to the Bluetooth module, and
connect the pins TX and RX of the Raspberry Pi.

Monitoring and Controlling Your Devices from a Smart Phone

[259]

First, we need to configure the file of the system to make some changes in order to activate
the communication of the Raspberry Pi Zero TX and RX:

Controlling lights from an Android Application
We need to download the Bluetooth Terminal, as shown in the following screenshot:

Monitoring and Controlling Your Devices from a Smart Phone

[260]

The following screenshot shows the results of sending the numbers 1, 2, 3, 4, 5, and 6:

Monitoring and Controlling Your Devices from a Smart Phone

[261]

The following image shows the final part of the project and the connections with the HC05
module and the Raspberry Pi Zero:

Summary
In this chapter, you learned how to control your Arduino and Raspberry Pi Zero from a
smartphone using Android Studio and APP inventor, via Bluetooth and Ethernet
communication. We also looked at several projects such as controlling a motor, controlling a
relay module, and reading humidity and temperature. For future projects you can now
control and monitor anything you want in any area of the application you want.

In the next chapter, we will integrate everything from the previous chapters and put it all
together to integrate all the knowledge applying all the things.

99
Putting It All Together

The previous chapters have provided us with the foundation and elements to design and
put together our entire domestic system, which we will study in this chapter. I hope that
I've guided you through this journey in a fairly structured and logical way, so that you are
ready to do that.

As a guide to building the whole system, in this chapter, we will guide you through how to
integrate and give you some ideas to put everything together, and also give you the final
details. You can then make your own projects with the ideas that we will mention in this
final chapter.

In this chapter, we will cover the following topics:

Integrating the system development projects
Controlling access with a matrix keyboard
Integrating the system control with relays and devices
How to set up the power supplies

Integrating the system – development
projects
In the previous chapters, we have seen different projects on home automation and domestic
that is control and monitor home appliances. In this chapter, we will give some ideas to
develop some projects that they can be done in different areas using electronics, controlling
and monitoring.

Putting It All Together

[263]

Getting into the details of light sensor
As its name implies, the Light Dependent Resistor (LDR) is made from a piece of exposed
semiconductor material, such as cadmium sulfide, that changes its electrical resistance from
several thousand Ohms in the dark to only a few hundred Ohms when light falls upon it, by
creating hole-electron pairs in the material. The net effect is an improvement in its
conductivity, with a decrease in resistance for an increase in illumination. Also,
photosensitive cells have a long response, time requiring many seconds to respond to a
change in the light intensity.

In this section, we will look at how to use a light sensor to control different devices:

On/off lights when needed
Dimming the lamp when the sensor detects if there is light in the room or not

You can dim the lamp with the signal sensor; according to the measurement taken by the
light sensor you can regulate the intensity of it.

Putting It All Together

[264]

Motion sensor
A motion sensor detects body heat (infrared energy). Passive infrared sensors are the most
widely used motion in home security systems. When your system is armed, your motion
sensors are activated. Once the sensor warms up, it can detect heat and movement in the
surrounding areas, creating a protective grid.

If a moving object blocks too many grid zones and the infrared energy levels change
rapidly, the sensors are tripped. Using this sensor we can control lights when we want them
turn on or turn off:

According to the distance the sensor measures, it can detect the object so you can control the
lamp:

Putting It All Together

[265]

Automatic light controller
Sensors work when you are not home, or when you tell the system you are not there. Some
security systems can be programmed to record events via a security camera when motion is
detected. The main purpose of motion detection is to sense an intruder and send an alert to
your control panel, which alerts your monitoring center:

The following circuit diagram show the connection for an automatic light control where we
use all the elements used earlier like the LDR sensor, PIR sensor, and the relay module:

Putting It All Together

[266]

Solar power monitor circuit
Here we have another real project that shows a control panel that will monitor the energy of
the solar panel using the Arduino board. The following diagram shows the connection of
the sensors and solar panel to Arduino board:

Putting It All Together

[267]

Automatic irrigation system with a soil
sensor
In the following figure, we have another project; we are integrating the tools that were used
before. In this case, we will control the watering when it is present or not, using a soil
sensor:

Until now you have seen very interesting and valuable projects that can be applied to real
situations, in different areas, such as domestic, home automation, and even in a garden. In
the following sections we will look at more projects. Let's do it!

Putting It All Together

[268]

Arduino water-level controller
In this project, we will make an automatic level sensor to control the level of water using
your Arduino board, as shown in the following diagram:

Bluetooth based home automation
In this section, we will look at a project that can be used in home automation, to control the
devices in a house, using a Bluetooth module to communicate, and a relay module and the
integration of the hardware as software tools.

Putting It All Together

[269]

The following diagram shows how to connect the relay module and the HC05 Bluetooth
module to the Arduino board:

Controlling access with a matrix keyboard
In this section, we will look at how to control the access with a code using a matrix
keyboard. In the following image, we can see the keyboard that we will use:

Putting It All Together

[270]

The keypad
In the following diagram, we see the hardware connections to the Arduino board. They are
connected to the digital pins:

Connecting an LCD screen to display the code
In the following diagram, we show the hardware connections of the LCD screen to the
Arduino board:

Putting It All Together

[271]

We have looked at some interesting projects that you can develop by adding new sensor to
control other devices. In the next section, we will look at a very interesting project. Get
ready for the next step, this is a great goal.

Controlling the door lock with a keypad
In the following image, we see a keypad with a lock. This section can be merged along with
the last project. This device can be controlled from your Raspberry Pi Zero or your Arduino
board:

 Code to access using the keypad
You can now either copy the code inside a file called Project_keyboard_Access_Control.ino,
or just get the complete code from the folder for this project using the Arduino IDE:

Putting It All Together

[272]

This function checks if the code that was typed is correct:

Putting It All Together

[273]

Integrating the system control with relays
and devices
In the following figure, we're integrating important parts of the book. We will show the
connections in a house using a relay, and how you will apply and control the real load
using a lamp:

Controlling multiple appliances
In real life, we will see the devices connected and controlling the real world. In the
following image, we can see the relay module that can control the loads with the electronics
part:

Putting It All Together

[274]

The following image shows the final circuit. We see the real connections to the Arduino
board, and how they control the real world.

The complete system
In the following figure, we see the final circuit for controlling real devices in a home
automation system. This can be used in all areas of the home, in each room we can have a
relay module, connected to each module communicating with control system:

Putting It All Together

[275]

How to set up the power supplies
For our system, it is very important to set up the power supply that will be used in the
system. First we need to ensure that the voltage for the Arduino is about 5V. In the
following diagram, we have shown how to configure the voltage to about 5 volts:

Power supply for AC loads
If we need to connect AC loads to the Arduino or Raspberry Pi Zero and make an industrial
control system, we need to use a voltage of 24 V of DC, as you can see in the following
circuit diagram:

Putting It All Together

[276]

Connecting a relay of 24 DC volts to the Arduino
board
In the following diagram, we have the circuit to control an AC load using a relay of 24 volts
of DC:

We have the final circuit, which represents the interface to control an AC load, connected to
the output digital pin to the Raspberry Pi Zero or the Arduino board: this is not very
common to see, but it's necessary to learn how to connect a relay that can be energized with
24 volts of DC to the Arduino board:

Finally we have the final circuit in a board. We used a relay that has a coil, which has to
energize with 24 volts. The digital output of the Arduino or Raspberry Pi can be connected
to the relay module.

Putting It All Together

[277]

Summary
This is the last chapter of the book, Internet of Things Programming with JavaScript. In this
chapter, you learned how to integrate all the elements that you need to take into
consideration when you want to apply the tools of hardware and software in the projects
that we showed you. This is going to help you to continue developing your own projects,
following the basics and the knowledge shared in this book.

Index

A
AC lamp dimmer
 current, regulating
 hardware requirements
 software code , ,
alarm system
 building, Raspberry Pi Zero used
Alcohol Breath Analyser
Amarino
 about
 reference link
analog inputs
 connecting, MCP3008 ADC Converter used ,

Analog-to-Digital Converter (ADC)
Android application
 about
 Java class
 lights, controlling from ,
 permission
 used, for controlling DC motor
Android Studio
 reference link
apache server
 configuring
APP Inventor
 about
 application, creating , ,
 code , ,
 communicating, with Arduino Ethernet shield
 hardware requisites
 interface, designing ,
 reference link
 software requisites
 used, for controlling relay from smart phone
appliances

 about
 door lock, controlling
 watering plants, controlling
Arduino Ethernet shield
 APP Inventor, communicating with
 used, for reading JSON response in Android

Studio ,
Arduino Ethernet
 application code
 Node.js, used for monitoring humidity
 Node.js, used for monitoring light
 Node.js, used for monitoring temperature
Arduino IDE
 installing, in Raspbian
Arduino RFID library
 URL, for downloading
Arduino Wi-Fi
 controlling, from Raspberry Pi Zero
 monitoring, from Raspberry Pi Zero
 network, connecting to ,
 Node.js, used for monitoring humidity ,
 Node.js, used for monitoring light ,
 Node.js, used for monitoring temperature ,

Arduino YUN
 configuring
Arduino
 board, controlling from Python
 data, sending to web server
 executing, in graphical interface
 hardware connections
 interface, in Raspbian
 interface, preparing
 output connected, controlling from Raspberry Pi

Zero
 PIR sensor, interfaced with
 pulses, counting with

[279]

 pulses, reading with
 serial port, selecting
 water level controller
Arduinobd database
 displaying
aREST API
 commands, used for controlling relay from web

browser
 example
automatic irrigation system
 with soil sensor

B
Bluetooth
 home automation
 lights, controlling from Android application ,

 outputs, controlling with Raspberry Pi Zero

C
camera
 controlling, from web page
communication
 IP address, ping
 testing
Compressed Natural Gas (CNG)
concentration of gas
 measuring, with sensor ,

D
data queries
 data, displaying
 from database
 scripting
 temperature, recording
data
 sending, from Arduino to web server
Datalogger
 connection, testing ,
 script software, programming
 with MySQL database server
DC motor
 controlling, Android application used
 hardware requirements ,
 speed, controlling ,

digital input-sensor DS18B20
 connecting
 hardware connections
 hardware requisites
Domain Name Servers (DNS)
door lock
 code, accessing keypad used
 controlling, with keypad
DS3231 module
 hardware, setting up
 setting up

E
electrical appliances ,
Ethernet Adapter
 connected with ,
Ethernet shield
 controlling, from Raspberry Pi Zero
 monitoring, from Raspberry Pi Zero

F
fingerprint sensor
 detecting
 hardware configuration
 saved fingerprint ,
 testing
fire
 detecting, with sensor ,
flow of water
 calculating
flow sensor
 hardware connections
 measuring, to calculate volume of water
 sensor signal, reading

H
humidity
 measuring
 measuring, with plants ,

I
I2C device
 setting up
I2C interface

[280]

 setting up ,
interface
 building, to control
 building, to monitor
 Jade interface, installing for node.js
IP address
 configuring

J
JavaScript Object Notation (JSON) structure
JSON response
 reading, in Android Studio using Arduino Ethernet

shield ,

K
keypad
 door lock, controlling with

L
LCD screen
 components, connecting
 connecting, for code display
 data, displaying in ,
 hardware requisites
 sensors, testing
 software requisites
LED
 controlling, from interface
 dimming
 software requisites
 testing
level of alcohol
 measuring, with sensor ,
level of water
 measuring, in recipient ,
Light Dependent Resistor (LDR)
light detection
 measuring
light sensor
 obtaining
lights
 consumption, measuring , ,
 controlling ,
 controlling, with electrical circuits
 electrical appliances ,

 interface, building to control
 interface, building to monitor
 interface, controlling ,
 interface, monitoring ,

M
matrix keyboard
 access, controlling with
 keypad
 LCD screen, connecting for code display
MCP3008 circuit
 about
 ADC Converter, used for connecting analog

inputs
Micro USB OTG Connector
 reference link
MJPG-STREAMER server
 monitoring
motion sensor
motion
 detecting, with PIR sensor
 detecting, with TTL serial camera
MQ135 sensor
 about
 smoke, detecting ,
MySQL database server
 configuring
 Datalogger with
 installing , ,
 installing, for PHP
 testing ,

N
Node.js
 configuring, as web server
 device, configuring in ,
 downloading
 installing , ,
 used, for controlling relay from Raspberry Pi Zero

 used, for monitoring humidity with Arduino Wi-Fi
,

 used, for monitoring light with Arduino Wi-Fi ,

 used, for monitoring temperature with Arduino Wi-

[281]

Fi ,
 web server port 8080, configuring with
 web server, configuring ,
 web server, creating with

O
one-wire protocol
 readings, displayed in screen
 software configuration
optocoupler
output connected
 controlling, Arduino from Raspberry Pi Zero
outputs
 controlling, from Android application Raspberry Pi

Zero used ,

P
PHP installation
 testing
PHP
 testing ,
PhpMyAdmin
 apache server, configuring
 Arduino, data sending to web server
 Arduinobd database, displaying
 Ethernet shield, data sending to web server
 installing, for administrating databases ,
 remote panel, entering
pictures
 saving, in micro SD ,
PIR sensor
 interfaced, with Arduino
 motion, detecting with
power supplies
 for AC loads
 relay, connecting of 24 DC volts to Arduino board

 setting up
pulses
 counting, with Arduino
 reading, with Arduino
Putty
 about
 URL
python scripts

 calling, from PHP
 coding

R
Raspberry Pi GPIO header
 about
 circuit ,
 data, reading with Python script
Raspberry Pi Zero
 accessing, via SSH
 account, creating, at No-ip.org
 alarm module
 Arduino Wi-Fi, controlling
 Arduino Wi-Fi, monitoring
 aREST API, commands
 central interface
 code, building to control devices from single

interface
 code, building to monitor devices from single

interface
 debugging, with serial console cable
 devices, adding to control ,
 devices, adding to monitor ,
 Dynamic DNS, configuring
 Ethernet Adapter, connected with ,
 Ethernet shield, controlling
 Ethernet shield, monitoring
 graphical interface
 home network, connecting to
 JavaScript Object Notation (JSON) structure
 modem, configuring ,
 motion sensor with
 Node.js, installing in
 output connected, controlling to Arduino
 outputs, controlling via Bluetooth
 relay, controlling Node.js used
 relay, controlling Restful API used
 remote access
 remotely accessing
 SD card, preparing
 sensors, controlling
 sensors, monitoring
 serial COM interface, accessing
 serial COM interface, testing ,
 setting up

[282]

 snapshot, controlling from ,
 software code ,
 used, for building alarm system
 used, for controlling outputs from Android

application ,
 Wi-Fi Network, connected to
Raspberry Pi
 remote access to
Raspbian Jessy
 URL, for downloading
Raspbian
 Arduino IDE, installing in
 Arduino, interface in
RDP package
real time
 setting, to final test
reed switch
 door, detecting with
remote dashboard
 climate, monitoring from
 configuring , ,
 reference link
 sensor test, exploring
remote desktop
 about
 with Windows
Restful API
 used, for controlling relay from Raspberry Pi Zero

RFID card
 access, controlling
 hardware requirements
 software code ,
 software requirements
RTC module
 connecting
 I2C interface, setting up
 testing

S
SD card
 preparing
sensors
 controlling, from Raspberry Pi Zero
 monitoring, from Raspberry Pi Zero

serial COM interface
 accessing ,
 testing ,
serial console cable
 references
snapshot
 controlling, from Raspberry Pi
 controlling, from Raspberry Pi Zero
Solar power monitor circuit
Spy microphone
 noise, detection
 software code ,
system control
 automatic light controller
 final circuit
 integrating
 integrating, with devices
 integrating, with relays
 light sensor, obtaining
 motion sensor
 multiple appliances, controlling

T
temperature
 measuring
TRENDnet NETAdapter
Triac
TTL serial camera
 connecting, to Arduino ,
 motion, detecting with
 reference link

U
USB camera
 Arduino YUN, configuring
 devices connected, in network
 MJPG-STREAMER server, monitoring
 monitoring, for security in network
 monitoring, from Raspberry Pi Zero

V
volume of water
 calculating
 parameters measure, displaying on LCD ,

W
water flow rate
 calculating, on pulses counted
web browser
 relay, controlling aREST API commands used

web page
 camera, controlling from
 python scripts, calling from PHP
 python scripts, coding

web server
 configuring
 creating, with Node.js
Wi-Fi Network
 connected to
wireless network
 configuring
wireless tools
 installing
 IP address, configuring
 wireless network, configuring

	Cover
	Copyright
	Credits
	About the Author
	www.packtpub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with Raspberry Pi Zero
	Setting up Raspberry Pi Zero
	Preparing the SD card
	Installing the Raspbian operating system
	Debugging your Raspberry Pi Zero with a serial console cable
	Testing and accessing the serial COM interface

	Connecting to the home network and accessing remotely
	Connecting with an Ethernet adapter
	Accessing the Raspberry Pi Zero via SSH
	Connecting to the Wi-Fi network

	How to install the wireless tools
	Configuring IP address and wireless network

	Testing the communication
	Ping from a computer

	Updating the package repository
	Remote Desktop
	Remote Desktop with Windows

	Configuring a web server
	Testing the PHP installation
	Summary

	Chapter 2: Connecting Things to the Raspberry Pi Zero
	Connectting digital input – sensor DS18B20
	Hardware requirements
	Hardware connections

	Configuring the one-wire protocol
	Software configuration
	Displaying the readings on the screen

	Connecting analog inputs using an MCP3008 ADC Converter
	Raspberry Pi GPIO header
	Reading the data with a Python script

	Connecting an RTC
	I2C setup

	DS3231 module setup
	Hardware setup

	Testing the RTC
	I2C device setup
	Putting the real-time clock to final test
	Summary

	Chapter 3: Connecting Sensors - Measure the Real Things
	Measuring flow sensor to calculate the volume of water
	Hardware connections
	Reading the sensor signal

	Reading and counting pulses with Arduino
	Calculating water flow rate based on the pulses counted
	Calculating flow and volume of water:
	Displaying the parameters measured on an LCD

	Measuring the concentration of gas
	Connections with the sensor and Arduino board

	Measuring the level of alcohol with a sensor
	Detecting fire with a sensor
	Measuring the humidity for plants
	Measuring the level of water in a recipient
	Measuring temperature, humidity, and light and displaying data on an LCD
	Hardware and software requirements
	Testing sensors
	Displaying data on the LCD

	Detecting motion with a PIR sensor
	PIR sensor interfaced with Arduino

	Detecting if the door is open with a reed switch
	Detecting who can get in the house with a fingerprint sensor
	Hardware configuration:
	Save the fingerprint:
	Testing the sensor

	Summary

	Chapter 4: Control-Connected Devices
	Making a simple web server with Node.js
	Controlling a relay from a Raspberry Pi Zero using Restful API and Node.js
	JSON structure
	Commands with the aREST API
	Installing Node.js on your Raspberry Pi Zero

	Controlling the relay using aREST commands from a web browser
	Configuring the web server

	Configuring Node.js on a computer as a web server
	Downloading Node.js
	Installing Node.js
	Configuring web server port 8080 with Node.js

	Monitoring temperature, humidity, and light using Node.js with Arduino Wi-Fi
	Connecting to the Wi-Fi network

	Monitoring temperature, humidity, and light using Node.js with Arduino Ethernet
	Code for the application of the Arduino Ethernet shield
	Configuring the device in Node.js

	Summary

	Chapter 5: Adding a Webcam to Monitor Your Security System
	Interaction between Arduino and Raspberry Pi
	Installing Arduino IDE in Raspbian
	Remote access to Raspberry Pi
	Executing Arduino in a graphical interface

	Arduino interface in Raspian
	Preparing the interface
	Selecting the serial port
	Downloading a sketch from the graphical interface

	Controlling an output connected to Arduino from Raspberry Pi Zero
	Controlling the Arduino board from Python
	Hardware connections

	Connecting a TTL serial camera to Arduino and saving pictures to a micro SD
	Detecting motion with the serial TTL camera
	Controlling a snapshot from Raspberry Pi
	Code for the function to take a picture

	Controlling your camera from a web page
	Calling the Python scripts from PHP
	Code for Python scripts

	Monitoring your USB camera for security in a network
	Configuring Arduino YUN
	Monitoring from the MJPG-STREAMER server
	Monitoring the USB camera from the Raspberry Pi

	Summary

	Chapter 6: Building a Web Monitor and Controlling Devices from a Dashboard
	Configuring MySQL database server
	Installing MySQL
	Installing MySQL driver for PHP
	Testing PHP and MySQL

	Installing PhpMyAdmin for administrating databases
	Configuring the Apache server
	Entering to the phpMyAdmin remote panel
	Showing the Arduinobd database
	Sending data from Arduino and the Ethernet shield to the web server

	Datalogger with MySQL
	Programming the script software
	Testing the connection

	Data queries from the database
	Software for the scripts
	Scripts for specific data to be displayed
	Query for recording temperature

	Controlling and dimming a LED
	Software requirements
	Testing the LED
	Controlling the LED from an interface

	Controlling the speed of a DC motor
	Controlling Lights with electrical circuits
	Electrical appliances

	Other appliances
	Control a door lock
	Control watering plants

	Remote access from anywhere to your Raspberry Pi Zero
	How to access our modem to configure it
	Configuring Dynamic DNS
	Creating an account at No-ip.org

	Controlling lights and measuring current consumption
	Building the interface to control and monitor
	Installing Jade for Node.js

	Interface for controlling and monitoring

	Controlling and monitoring Arduino, Wi-Fi, and Ethernet shields on connected devices and sensors
	Building the code to control and monitor devices from a single interface
	Adding the devices to monitor and control

	Summary

	Chapter 7: Building a Spy Police with the Internet of Things Dashboard
	Spy microphone that detects noise
	Software code

	Regulating the current of an AC lamp dimmer
	Hardware requirements
	Software code

	Controlling access with an RFID card
	Hardware requirements
	Software requirements
	Software code

	Detecting smoke
	Software code

	Building an alarm system using the Raspberry Pi Zero
	Motion sensor with Raspberry Pi Zero
	Software code
	The alarm module
	Software code
	Central interface
	Graphical interface

	Monitoring the climate from a remote dashboard
	Exploring the sensor test
	Configuring the remote dashboard (Dweet.io)

	Summary

	Chapter 8: Monitoring and Controlling Your Devices from a Smart Phone
	Controlling a relay from a smart phone using APP Inventor
	Hardware requirements
	Software requirements

	Creating our first application
	Designing the interface
	Communicating APP Inventor with Arduino ethernet shield
	Code for APP Inventor

	Reading JSON response in Android Studio using ethernet shield
	Android application
	Java class
	Permission of the application

	Controlling a DC motor using an Android Application
	Hardware requirements

	Controlling outputs from android using your Raspberry Pi Zero
	Controlling outputs with Raspberry Pi via Bluetooth
	Controlling lights from an Android Application

	Summary

	Chapter 9: Putting It All Together
	Integrating the system – development projects
	Getting into the details of light sensor
	Motion sensor
	Automatic light controller

	Solar power monitor circuit
	Automatic irrigation system with a soil sensor
	Arduino water-level controller
	Bluetooth based home automation
	Controlling access with a matrix keyboard
	The keypad
	Connecting an LCD screen to display the code

	Controlling the door lock with a keypad
	 Code to access using the keypad

	Integrating the system control with relays and devices
	Controlling multiple appliances
	The complete system

	How to set up the power supplies
	Power supply for AC loads
	Connecting a relay of 24 DC volts to the Arduino board

	Summary

	Index

