Internet of Things
Programming
with JavaScript

Learn the art of bringing the Internet of Things into your

projects with the power of JavaScript

L1

Internet of Things
Programming with JavaScript

Learn the art of bringing the Internet of Things into your
projects with the power of JavaScript

Rubén Oliva Ramos

Packt>

BIRMINGHAM - MUMBAI

Internet of Things Programming with
JavaScript

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2017
Production reference: 1150217

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78588-856-4

www.packtpub.com

Author

Rubén Oliva Ramos

Reviewer

Jacqueline Wilson

Commissioning Editor

Wilson D'souza

Acquisition Editor

Tushar Gupta

Content Development Editor

Aishwarya Pandere

Technical Editor

Karan Thakkar

Credits

Copy Editor

Safis Editing

Project Coordinator

Nidhi Joshi

Proofreader

Safis Editing

Indexer

Pratik Shirodkar

Production Coordinator

Nilesh Mohite

About the Author

Rubén Oliva Ramos is a computer systems engineer, with a master's degree in computer
and electronic systems engineering, teleinformatics and networking specialization from
University of Salle Bajio in Leon, Guanajuato Mexico. He has more than five years of
experience in: developing web applications to control and monitor devices connected with
Arduino and Raspberry Pi using web frameworks and cloud services to build Internet of
Things applications.

He is a mechatronics teacher at University of Salle Bajio and teaches students on the
master's degree in Design and Engineering of Mechatronics Systems. He also works at
Centro de Bachillerato Tecnologico Industrial 225 in Leon, Guanajuato Mexico, teaching the
following: electronics, robotics and control, automation, and microcontrollers at
Mechatronics Technician Career. He has worked on consultant and developer projects in
areas such as monitoring systems and datalogger data using technologies such as Android,
iOS, Windows Phone, Visual Studio .NET, HTML5, PHP, CSS, Ajax, JavaScript, Angular,
ASP .NET databases (SQlite, mongoDB, and MySQL), and web servers (Node.js and IIS).
Ruben has done hardware programming on Arduino, Raspberry Pi, Ethernet Shield, GPS
and GSM/GPRS, ESP8266, and control and monitor systems for data acquisition and
programming.

"I want to thank God for helping me writing this book and his inspiration, to my wife,
Mayte, and my sons, Ruben and Dario, for their support while writing this book and in
general for their support in all my projects. To my parents, my brother and sister whom I
love.

I hope this book covers the main topics for students that want to learn more about Internet
of Things projects, and all the prerequisites for building this kind of application.”

www.packtpub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://goo.gl/pZz7EFn.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents

Preface 1
Chapter 1: Getting Started with Raspberry Pi Zero 7
Setting up Raspberry Pi Zero 7
Preparing the SD card 8
Installing the Raspbian operating system 8
Debugging your Raspberry Pi Zero with a serial console cable 10
Testing and accessing the serial COM interface 12
Connecting to the home network and accessing remotely 15
Connecting with an Ethernet adapter 15
Accessing the Raspberry Pi Zero via SSH 17
Connecting to the Wi-Fi network 19
How to install the wireless tools 20
Configuring IP address and wireless network 21
Testing the communication 23
Ping from a computer 24
Updating the package repository 25
Remote Desktop 27
Remote Desktop with Windows 28
Configuring a web server 31
Testing the PHP installation 33
Summary 34
Chapter 2: Connecting Things to the Raspberry Pi Zero 35
Connectting digital input — sensor DS18B20 35
Hardware requirements 36
Hardware connections 36
Configuring the one-wire protocol 37
Software configuration 38
Displaying the readings on the screen 39
Connecting analog inputs using an MCP3008 ADC Converter 41
Raspberry Pi GPIO header 44
Reading the data with a Python script 46
Connecting an RTC 48
12C setup 49

DS3231 module setup 52

Hardware setup 52
Testing the RTC 54
I12C device setup 55
Putting the real-time clock to final test 55
Summary 56

Chapter 3: Connecting Sensors - Measure the Real Things 57
Measuring flow sensor to calculate the volume of water 58

Hardware connections 58

Reading the sensor signal 59
Reading and counting pulses with Arduino 59
Calculating water flow rate based on the pulses counted 60
Calculating flow and volume of water: 62

Displaying the parameters measured on an LCD 64
Measuring the concentration of gas 67

Connections with the sensor and Arduino board 68
Measuring the level of alcohol with a sensor 69
Detecting fire with a sensor 72
Measuring the humidity for plants 74
Measuring the level of water in a recipient 77
Measuring temperature, humidity, and light and displaying data on an
LCD 79

Hardware and software requirements 79

Testing sensors 82

Displaying data on the LCD 84
Detecting motion with a PIR sensor 86

PIR sensor interfaced with Arduino 87
Detecting if the door is open with a reed switch 88
Detecting who can get in the house with a fingerprint sensor 89

Hardware configuration: 89

Save the fingerprint: 90

Testing the sensor 96
Summary 99

Chapter 4: Control-Connected Devices 100
Making a simple web server with Node.js 100
Controlling arelay from a Raspberry Pi Zero using Restful APl and
Node.js 102

JSON structure 102

Commands with the aREST API 103

[ii]

Installing Node.js on your Raspberry Pi Zero 103

Controlling the relay using aREST commands from a web browser 104
Configuring the web server 104
Configuring Node.js on a computer as a web server 106
Downloading Node.js 107
Installing Node.js 108
Configuring web server port 8080 with Node.js 111
Monitoring temperature, humidity, and light using Node.js with
Arduino Wi-Fi 112
Connecting to the Wi-Fi network 117
Monitoring temperature, humidity, and light using Node.js with
Arduino Ethernet 119
Code for the application of the Arduino Ethernet shield 120
Configuring the device in Node.js 122
Summary 125
Chapter 5: Adding a Webcam to Monitor Your Security System 126
Interaction between Arduino and Raspberry Pi 127
Installing Arduino IDE in Raspbian 127
Remote access to Raspberry Pi 128
Executing Arduino in a graphical interface 129
Arduino interface in Raspian 130
Preparing the interface 131
Selecting the serial port 132
Downloading a sketch from the graphical interface 133
Controlling an output connected to Arduino from Raspberry Pi Zero 134
Controlling the Arduino board from Python 136
Hardware connections 137
Connecting a TTL serial camera to Arduino and saving pictures to a
micro SD 137
Detecting motion with the serial TTL camera 141
Controlling a snapshot from Raspberry Pi 141
Code for the function to take a picture 142
Controlling your camera from a web page 144
Calling the Python scripts from PHP 145
Code for Python scripts 145
Monitoring your USB camera for security in a network 146
Configuring Arduino YUN 147
Monitoring from the MJPG-STREAMER server 149
Monitoring the USB camera from the Raspberry Pi 149

[iii]

Summary 151
Chapter 6: Building a Web Monitor and Controlling Devices from a
Dashboard 152

Configuring MySQL database server 152

Installing MySQL 153
Installing MySQL driver for PHP 157
Testing PHP and MySQL 157
Installing PhpMyAdmin for administrating databases 160
Configuring the Apache server 165
Entering to the phpMyAdmin remote panel 167
Showing the Arduinobd database 168
Sending data from Arduino and the Ethernet shield to the web server 169
Datalogger with MySQL 172
Programming the script software 172
Testing the connection 173
Data queries from the database 175
Software for the scripts 175
Scripts for specific data to be displayed 177
Query for recording temperature 178
Controlling and dimming a LED 179
Software requirements 180
Testing the LED 180
Controlling the LED from an interface 181
Controlling the speed of a DC motor 183
Controlling Lights with electrical circuits 187
Electrical appliances 187
Other appliances 190
Control a door lock 191
Control watering plants 191
Remote access from anywhere to your Raspberry Pi Zero 192
How to access our modem to configure it 192
Configuring Dynamic DNS 195
Creating an account at No-ip.org 196
Controlling lights and measuring current consumption 197
Building the interface to control and monitor 202
Installing Jade for Node.js 202
Interface for controlling and monitoring 202
Controlling and monitoring Arduino, Wi-Fi, and Ethernet shields on
connected devices and sensors 205

[iv]

Building the code to control and monitor devices from a single interface 205
Adding the devices to monitor and control 207
Summary 209
Chapter 7: Building a Spy Police with the Internet of Things Dashboard 210
Spy microphone that detects noise 211
Software code 211
Regulating the current of an AC lamp dimmer 213
Hardware requirements 213
Software code 214
Controlling access with an RFID card 216
Hardware requirements 216
Software requirements 217
Software code 218
Detecting smoke 222
Software code 222
Building an alarm system using the Raspberry Pi Zero 225
Motion sensor with Raspberry Pi Zero 225
Software code 225
The alarm module 226
Software code 226
Central interface 227
Graphical interface 229
Monitoring the climate from a remote dashboard 230
Exploring the sensor test 231
Configuring the remote dashboard (Dweet.io) 231
Summary 235
Chapter 8: Monitoring and Controlling Your Devices from a Smart
Phone 236
Controlling arelay from a smart phone using APP Inventor 236
Hardware requirements 237
Software requirements 237
Creating our first application 237
Designing the interface 243
Communicating APP Inventor with Arduino ethernet shield 245
Code for APP Inventor 245
Reading JSON response in Android Studio using ethernet shield 248
Android application 252
Java class 253

[v]

Permission of the application 253
Controlling a DC motor using an Android Application 254
Hardware requirements 255
Controlling outputs from android using your Raspberry Pi Zero 256
Controlling outputs with Raspberry Pi via Bluetooth 258
Controlling lights from an Android Application 259
Summary 261
Chapter 9: Putting It All Together 262
Integrating the system — development projects 262
Getting into the details of light sensor 262
Motion sensor 264
Automatic light controller 265
Solar power monitor circuit 265
Automatic irrigation system with a soil sensor 267
Arduino water-level controller 268
Bluetooth based home automation 268
Controlling access with a matrix keyboard 269
The keypad 270
Connecting an LCD screen to display the code 270
Controlling the door lock with a keypad 271
Code to access using the keypad 271
Integrating the system control with relays and devices 273
Controlling multiple appliances 273
The complete system 274
How to set up the power supplies 275
Power supply for AC loads 275
Connecting a relay of 24 DC volts to the Arduino board 276
Summary 277
Index 278

[vil

Preface

The Raspberry Pi Zero is a powerful, low-cost, credit-card sized computer, which lends
itself perfectly to begin the controller of sophisticated home automation devices. Using the
available on-board interfaces, the Raspberry Pi Zero can be expanded to allow the
connection of a virtually infinite number of security sensors and devices.

Since the Arduino platform is more versatile and useful for making projects, including the
networking applications of the Internet of Things, this is what we will see in this book: the
integration of devices connected to the nodes using the amazing and important Arduino
board, and how to integrate the Raspberry Pi Zero to control and monitor the devices from
a central interface working as a hub. With software programming you will create an
Internet of Things system based in developing technologies such as JavaScript, HTML5, and
Node,js.

This is exactly what I will teach you to do in this book. You will learn how to use the
Raspberry Pi Zero board in several home domotics projects in order for you to build your
own.

The books guides you, making the projects in each chapter from preparing the field, the
hardware, the sensors, the communication, and the software programming-control in order
to have a complete control and monitoring system.

What this book covers

Chapter 1, Getting Started with Raspberry Pi Zero, describes the procedure to set up the
Raspberry Pi and the Arduino board, and how to communicate among the devices. We will
install and set up the operating system, connect our Pi to the network, and access it
remotely. We'll also secure our Pi and make sure it can keep the right time.

Chapter 2, Connecting Things to the Raspberry Pi Zero, shows how to connect signals to the
Raspberry Pi Zero and Arduino. It explores the GPIO port and the various interfaces it
features. We'll look at the various things we can connect to the Raspberry Pi using the
GPIO.

Preface

Chapter 3, Connecting sensors - Measure the Real Things, shows how to implement the
sensors for detecting different kinds of signal, for security systems, flow current for energy
consumption, detecting some risk in the home, implementing a gas sensor, flow water
sensor to measure water volume, and will also show how to make a security system that
will control entrance to the home with a fingerprint sensor.

Chapter 4, Control-connected devices, shows how to control your Arduino board, using
modules of communication in a networking area from the Raspberry Pi Zero in a central
interface dashboard.

Chapter 5, Adding a Webcam to Monitor Your Security System, shows how to configure a
webcam connected to your board to monitor your security system for the Internet of Things.

Chapter 6, Building a Web Monitor and Controlling Devices from a Dashboard, shows how to set
up a system to monitor your security system using web services. Integrating the Raspberry
Pi Zero with Arduino to build a complete system connected-devices and monitor.

Chapter 7, Building a Spy Police with the Internet of Things dashboard, shows how to make
different mini home domotics projects and how to connect web services and monitor your
security system using the Internet of Things.

Chapter 8, Monitor and Control your devices from a Smart Phone, explains how to develop an
app for Smart Phone using Android Studio and APP inventor, and control your Arduino
board and the Raspberry Pi Zero.

Chapter 9, Putting It All Together, shows how to put everything together, all the parts of the
project, the electronics field, software configurations, and power supplies.

What you need for this book

You'll need the following software:

e Win32 Disk Imager 0.9.5 PuTTY
i2C-tools

WiringPi2 for Python

Node.js 4.5 or later

Node.js for Windows V7.3.0 or later
Python 2.7.x or Python 3.x

PHP MyAdmin Database

[2]

Preface

MySQL module

Create and account in Gmail so that you can get in APP Inventor
Android Studio and SDK modules

¢ Arduino software

In the first chapters, we explain all the basics so you will have everything configured and
will be able to use the Raspberry Pi Zero without any problems, so you can use it for the
projects in this book. We will use some basic components, such as sensors, and move to
more complex components in the rest of the book.

On the software side, it is good if you actually have some existing programming skills,
especially in JavaScript and in the Node.js framework. However, I will explain all the parts
of each software piece of this book, so even if you don't have good programming skills in
JavaScript you will be able to follow along.

Who this book is for

This book is for all the people who want to automate their homes and make them smarter,
while at the same time having complete control of what they are doing. If that's your case,
you will learn everything there is to learn in this book about how to use the amazing
Raspberry Pi Zero board to control your projects.

This book is also for makers who have played in the past with other development boards,
such as Arduino. If that's the case, you will learn how to use the power of the Raspberry Pi
platform to build smart homes. You will also learn how to create projects that can easily be
done with other platforms, such as creating a wireless security camera with the Pi Zero.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Extract
2015-09-24-raspbian-jessie.img to your Home folder."

[3]

Preface

A block of code is set as follows:

passwd

root@raspberrypi:/home/pi# passwd

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully
root@raspberrypi:/home/pi#

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]

exten => s,1,Dial (Zap/1]30)

exten => s,2,Voicemail (ul00)

exten => s,102,Voicemail (b100)
exten => 1,1,Voicemail (s0)

Any command-line input or output is written as follows:
sudo npm install express request

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this:

"You can now just click on Stream to access the live stream from the camera."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

[4]

Preface

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.c
om/supportand register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSk »DN =

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip [/ PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Internet-of-Things-Programming-with-Javascript. We also have other code
bundles from our rich catalog of books and videos available at https://github.com/Packt
Publishing/. Check them out!

[5]

Preface

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/down

loads/InternetofThingsProgrammingwithJavascript_ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t/supportand enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

[6]

Getting Started with Raspberry
Pi Zero

Before building several projects for a home security system and the control of domestic
appliances by electronically controlled systems, in this chapter, we're going to go into an
initial configuration and prepare our Raspberry Pi Zero to work in a network, so you can
use it for all the projects we will see in this book.

Before we go through the projects, build our network with the devices, and connect our
sensor to the boards, it's important to understand the configuration of the Raspberry Pi. The
main idea of this chapter is to explain how to set up your Raspberry Pi Zero; we will cover
the following topics:

Setting up Raspberry Pi Zero
e Preparing the SD card

Installing the Raspbian operating system

Configuring your Raspberry Pi Zero with a serial console cable

Accessing the network remotely
e Accessing via remote desktop

Configuring a web server

Setting up Raspberry Pi Zero

The Raspberry Pi is a low-cost board dedicated to purpose projects. Here, we will use a
Raspberry Pi Zero board. Take a look at the following link:
https://www.adafruit.com/products/2816. 1 used this board.

Getting Started with Raspberry Pi Zero

In order to make the Raspberry Pi work, we need an operating system that acts as a bridge
between the hardware and the user. This book uses the Raspbian Jessy, which can be
downloaded from https://www.raspberrypi.org/downloads/. At this link, you will find
all of the information you need to download all the pieces of software necessary to use with
your Raspberry Pi to deploy Raspbian. You need a micro SD card of at least 4 GB.

The kit that I used to test the Raspberry Pi Zero includes all the necessary things for
installing everything and getting the board ready:

Preparing the SD card

The Raspberry Pi Zero only boots from an SD card and cannot boot from an external drive
or USB stick. For this book, it's recommended to use a 4 GB micro SD card.

Installing the Raspbian operating system

There are many operating systems that are available for the Raspberry Pi board, most of
which are based on Linux. However, the one that is usually recommended is Raspbian, is
an operating system based on Debian, which was specifically made for Raspberry Pi.

[8]

Getting Started with Raspberry Pi Zero

In order to install the Raspbian operating system on your Pi, follow the next steps:
1. Download the latest Raspbian image from the official Raspberry Pi website: http
s://www.raspberrypi.org/downloads/raspbian/

2. Next, insert the micro SD card into your computer using an adapter. (An adapter
is usually given with the SD card.)

3. Then download Win32DiskImager from https://sourceforge.net/projects/w
in32diskimager/.

You will see the following files, as shown in the screenshot, after

downloading the folder:
=R |
@C-[_ + 2015-02-16-rasphian-wheezy » wi i Binary » wi immager-binary w | #g || Buscar winZ2diskimager-binan 2|
Organizar = Inchairenbiblictecs = Compartircon = Grabar Nueva corpeta =~ [0 @
X Favoritos Hombre =
1§ Descargas Lierz
I Escriterio L LGPL-21
2 Sitos recientes % libgee_s_dwd-1.40
> Autodesk 360 4 libsade- +-6.dl
& mingwl.dil
4 Bibliotecas & CrCored.dll
& tuid.di
% Grupo en el hogar || README
o Wind2Diskimager exr
% Equipo
&L Discolocal (€
s RECOVERY (D)
- Do eteaible (G)
o Autodesk 360
S fed
' 9 elementos
ElRc0 0 @ wicelo/m[a[@[S[S] 1Sdems wea -

4. Open the file image, select the path where you have the micro SD card, and click
on the Write button.

5. After a few seconds,you have Raspbian installed on your SD card; insert it into

Raspberry Pi and connect the Raspberry Pi board to the power source via the
micro-USB port.

[9]

Getting Started with Raspberry Pi Zero

In the following screenshot, you can see the progress of the installation:

o & B
\:}\,." |8 s Equpe v | +pl] 5]
Organizar = Expubsar Propiedades Propiedades el sisterna Desinstalae o cambisrun programa Conectas a umidad dered Abeir el Panel de control 1 @
T Favonter 4 Unidades de disco dura (7)
& Descargas Digco local (C:) RECOVERY (Dt}
B Escritons L . —
T Shios reckentes b 182 GB disponibles de 444 GB ~” 22 GB dsponibles de 209 GB
D Autodesk 360 # Dispositives con almacenamiento extraible (4)
" = Dsco extradbile {G:)
£a Ggn\ S0 &
Bibotecas Uridad de DVD RW (£ Ll TP mm— — . Unidad de BO-ROM (H)
e =3 \G FATR2 P 74015 duponivies e 745G — P
Y Grupo en el hogar a Otros (1)
% Wind2 Digk &
s ety | DOk oS
8 Equipe y Carpeta de sistema || P00 _ Oevien |
&L Dacalocal (C) eks 172036 Lok =2
s RECOVERY (D)
- Dote extenible (G2)
o Autodesk 360 Progress
_— . 0%
B e [cancel wete |t

11.185M8/5

rchivos: FATI2

0@ W emclelomaBS

Debugging your Raspberry Pi Zero with a serial
console cable

In this section, we will look at how to communicate, the Raspberry Pi Zero from a computer
using a TTL serial converter. We can do this debugging with a serial console cable
connected to the computer using the USB port. We communicate with the board with a
serial cable, because if we want to send commands from our computer to the board, it's
necessary to communicate using this cable. You can find the cable at https://www.adafrui
t.com/products/954:

Getting Started with Raspberry Pi Zero

It’s important to consider that the cable uses 3.3 volts, but we don’t care because we’re using
the cable from Adafruit. It is tested to work at this level of voltage.

You need to follow the next steps in order to install and communicate with your Raspberry
Pi Zero:

1. It's necessary that you have a free USB port on your computer.

2. We need to install the driver for the serial console cable so that the system can
recognize the hardware. We recommend that you download the driver
from https://www.adafruit.com/images/product-files/954/PL2303_Prolific
_DriverInstaller_vl1l_12_0.zip.

3. We use an interface (console software), called PuTTY, running on a Windows
computer; so we can communicate with our board, the Raspberry Pi. This
software can be downloaded and installed from nttp://www.putty.org/.

4. For the connections, we need to connect the red cable to 5 volts, the black cable to
ground, the white cable to the TXD pin, and the green cable to the RXD pin on
the Raspberry Pi Zero.

5. The other side of the cable connects the plug to the USB port.

This is an image of the connections; it's for the hardware configuration:

[11]

Getting Started with Raspberry Pi Zero

Testing and accessing the serial COM interface
Once the driver is installed, we have here the Port COM, which is already installed:

This configuration is for Windows installation; if you have different
operating system, you need to do different steps.

How get the Device Manager screen: On your windows PC, click on the
Start icon, go to Control Panel, select System, and then click on Device

Manager.

In the following screenshot, you can see the device manager of the USB serial port:

= Administrador de dispositivos
Archivo Accion Ver Ayuda
e« FEHE RIBPXD

4 = PC-HP
K Adaptadores de pantalla
& Adaptadores de red
P Baterias
£ Controlador de tecnologia de memoria
g Controladoras ATA/ATAPIIDE
& Controladoras de almacenamiento
. Controladoras de bus senie universal
% Controladoras de sonido y video y dispositivos de juego
=5 Dispositivos de imagen
{5 Dispositivos de interfaz de usuario (HID)
1M Dispositivos del sistema

1% Equipo
K Monitores
]3 Mouse y otros dispositives sefaladores
[Procesadores
+ "5 Puertos (COM y LPT)
' Prolific USB-ta-Serial Comm Port (COM3)
0 Radios Bluetooth
2 Teclados
s Unidades de disco
&L Unidades de DVD o CD-ROM

1. Open the terminal in PuTTY, and select Serial Communication as coM3, Speed as
115200, Parity as None, and Flow Control as None; click on Open:

[12]

Getting Started with Raspberry Pi Zero

PuTTY Cenfiguration
Category:
Session

Logging

=1 Terminal
Keyboard
Bell
Features

= Window
Appearance
Behaviour
Translation
Selection
Colours

-]- Connection
Data
Proxy
Telnet
Rlogin

+]- SSH

Serial

I About |

Options controlling local seral lines

Select a serial line

Serial line to connect to coOmM3
Configure the serial line
Speed (baud) 115200
Data bits 8
Stop bits 1
Parity [None
Flow control | None

[Open]

Cancel

2. When the blank screen appears, press Enter on your keyboard:

@cm\n-pum

[13]

Getting Started with Raspberry Pi Zero

3. This initiates a connection to your Pi board and asks for your username and
password; you will see a screen like the following screenshot, with the
authentication login:

COM3 - PuTTY [roe]-@
& =

4. The default username for the Raspberry Pi Zero is pi, and the password
is raspberry:

&P COM3 - PuTTY

[14]

Getting Started with Raspberry Pi Zero

Connecting to the home network and
accessing remotely

Our Raspberry Pi will be working in a real network, so it needs to be set up to work with all
the devices that will be together. For this reason, we need to configure our home network.
We will show you how to use the Ethernet adapter and the Wi-Fi plug that can be used in
the Raspberry Pi Zero.

Connecting with an Ethernet adapter

If you want to connect our Raspberry Pi Zero to the local network, you need to use a USB
OTG Host Cable — MicroB OTG male to female from Adafruit. You can find it here:
https://www.adafruit.com/products/1099. The board that we're using doesn't have an
Ethernet connector, so it's necessary to use it to communicate with the devices from outside.

In the following image, we can see the Ethernet adapter connected to the Raspberry Pi Zero:

[15]

Getting Started with Raspberry Pi Zero

This is the connector that you can use to connect your Ethernet adapter and make a link to
the network:

Now we need to follow the next steps to configure the Ethernet connection adapter:

1. Connect your adapter to the converter; I used a TRENDnet NETAdapter, but
you can use an Ethernet Hub and USB Hub with Micro USB OTG Connector from
Adafruit. You can find it here: https://www.adafruit.com/products/2992m.
This is a hub and can be connected to the Ethernet cable or USB devices.

2. Verify the router configuration, and after both LEDs start blinking, you can see
the IP address in your configuration. The DHCP server assigns the IP address to

the Raspberry Pi.

This is what you will see as your router configuration on your hostname raspberrypi:

[192.168.1.1/setup

LINKSYS by Cisco

DHCP Client Tabile
DHCP Client Table

DHCP Server 1P Asoress: 15218811

Chient Host Mame . IP Address MAC Address Expires

'm:u%msﬂtm':'19:.155.1,m'|. #0:60:F5:3:36:80 || 723 |
Unknown |[52:168.1.909][ec:Fo:0e-an:az:c3| reser |
PCHP [192:168.1.404] B:Tm:aT:TE: 80001 | 6677 |
| android-ase2a7156a9dc0e5 | [192.168.1.105] | 34:35:04:4C:08:18 | 47670 |
ESP_N2A56 192:168.1.106][SC:CFi7Fi0ti2:56] | 85720
raspbernypi 192.168.1.107] | 00:50:85:03:41:9 || 86289 | |

[16]

Getting Started with Raspberry Pi Zero

Accessing the Raspberry Pi Zero via SSH

As we know the IP address that our Raspberry Pi has, we will access to it using the PuTTY
terminal as we can see in the following screenshot. You need to enter the IP address, and
the port is 22 by default; click on the Open button:

& PuTTY Configuration g
Category: _
(=)~ Session | Basic options for your PuTTY session
I;l T:.... L.oglging Specify the destination you want to connect to
?-T(I:yboa = Host Name (or IP address) Port
- Bell 192.168.1.107 22
- Features Connection type:
= Window “)Raw () Telnet () Rlogin @ SSH () Serial
- Appearance -
_____ Behaviour Load. save l‘.:.‘lr delete a stored session
Translation Saved Sessions
- Selection
i Default ings
=)~ Connection oy Load
-~ Data
s [_save]
ket
- Rlogin
- SSH
""" S Close window on exit: i
) Always () Never @) Only on clean exit

[17]

Getting Started with Raspberry Pi Zero

After that, we have the login screen as follows:

{_B? pi@raspberrypi: ~ |E||E|

Use the following command:

sudo ifconfig -a

[18]

Getting Started with Raspberry Pi Zero

We can now see the information about the configuration of the Ethernet controller adapter.
Eth0 is the Ethernet adapter:

& pi@raspbenypi - =

m

Connecting to the Wi-Fi network

In this section, we will show you how to configure your Wi-Fi network connection so that
your Raspberry Pi Zero can interact with your Wi-Fi network. First, we need to connect the
Miniature Wi-Fi (802.11b/g/n) Wi-Fi dongle to the Raspberry Pi using the USB OTG Cable:

[19]

Getting Started with Raspberry Pi Zero

How to install the wireless tools
Use the following command to configure the wireless network:

sudo apt-get install wireless-tools

In the following screenshot, we can see the result of the i fconfig command:

(ol @]z

[20]

Getting Started with Raspberry Pi Zero

After executing the command, we will see the result of installing wireless-tools:

@ pi@raspberrypi: ~ |?||E|

Configuring IP address and wireless network

To have a networking configuration, we need to assign an IP address to our device in order
to be involved in the network.

[21]

Getting Started with Raspberry Pi Zero

Enter the following command:

sudo nano etc/network/interfaces

£ pi@raspberypi: ~ o6/

In the following configuration file, called interface, we explain what we need to add to
the file so that we can connect our Raspberry Pi Zero to the Wi-Fi network for the Wlan0
connection.

We start the file configuration; it means the beginning of the file:

auto lo

We configure the Ethernet device 1oopback for the local host and start up the DHCP
server:

iface lo inet loopback
iface eth0 inet dhcp

[22]

Getting Started with Raspberry Pi Zero

Allow the configuration of the wlan0 for Wi-Fi connection:

allow—hotplug wlanO
auto wlanO

We start up the DHCP server for the Wi-Fi connection and input the name of your ssid
and the password. We need to type ssid and password parameters of your Wi-Fi network:

iface wlanO inet dhcp

wpa-ssid "ssid"
wpa-psk "password"

Testing the communication

We need to test whether the device is responding to the other host. Now, if everything is
configured well, we can see the following IP address in the Wi-Fi connection:

@ pi@raspberrypi: ~ IE IE @

[23]

Getting Started with Raspberry Pi Zero

We can see in the router configuration the current IP address that is assigned to the wireless
network:

[3 192.168.1.1/setup.cgi’?next_file=DHCPClientTable.htm 75

LINKSYS by Cisco

DHCP Client Table
DHCP Client Table

DHCP Server IP Address: 152.168.1.1

| nuroid-mnznmstsmb]|192.|ss.1.mz]| 98:6C:F5:3E:36:50 || 71934 |

[Unknown |[192:468.1.103] [Ec:Fo:0E:40:32:C3] [74298

[PC-HP ||192.168.1.104]| BC:77:37:7€:58:01 || 82988 ||
[android-ase2a7156a9dcoes |[192.168.1.105| 94:35:0a:4C:08:18 | 44981 ||
| ESP_012A56 ||192.168.1.108 | 5C:CF:7F:01:24:56 | 83041 |

[raspberrypi ||192.168.1.107]| m:w:as:os:m:ns” 85331 ||
| raspberrypi ||192.168.1.108| | 40:A5:EF:0C:B2:75 | 86205 ||

Ping from a computer

Connect the computer to the same network as the Raspberry Pi:

Conectado actualmente a: tp =
: linksys
=5 Acceso a Internet
Red no identificada =
Sin acceso a la red
Conexién de red inalambrica -~
linksys 2 Conectado ,!ﬂ
Desconectar
INFINTIT Nombre: linksys 2
Intensidad de la sefial: Excelente
MEGA(Tipo de seguridad: WPA-PSK 'ﬂ
Tipo de radic: 802.11n .
INFINT SSID: linksys -"“
143312 =

[24]

Getting Started with Raspberry Pi Zero

You need to ping the IP address of the Raspberry Pi. After we make the ping to the IP
Address of the Raspberry Pi Wireless connection, we see the results:

G Administrador: C:\Windows\System32\cmd exe ol ez
Respuesta desde 192.168.1.168: hytes=32 tiempo=127ns TTL=b4 A

Respuesta desde 192.168.1.108: hytes=32 tiempo=58ms TTL=64
Respuesta desde 192.168.1.108: hytes=32 tiempo=7ims TTL=64

Estadisticas de ping para 192.168.1.168:
Paquetes: enviados = 4, recihidos = 4, perdidos = @
(87 perdidos),

Tiempos aproximados de ida y vuelta en milisegundos:
Minimo = S@ns, Maximo = 127ms, Media = 88ms

C:\Windows\systen32ping 192.168.1.108

Haciendo ping a 192.168.1.188 con 32 hytes de datos:
Respuesta desde 192.168.1.168: hytes=32 tiempo=166ims TTL=64
Respuesta desde 192.168.1.188: hytes=32 tiempo=Bms TTL=04
Respuesta desde 192.168.1.108: hytes=32 tiempo=5ms TTL=64
Respuesta desde 192.168.1.188: hytes=32 tiempo=Sms TTL=64

Fstadisticas de ping para 192.168.1.108:
Paquetes: enviados = 4, recibidos = 4, perdidos = @
(B2 perdidos),

Tienpos aproxinados de ida y vuelta en milisequndos:
Minimo = Sms, Maximo = 166ims, Media = 419ns

m

C:\indows\systend2)

Updating the package repository

This will upgrade your Pi board by downloading all the latest packages from the official
Raspberry Pi repository, so it's a great way to make sure that your board is connected to the
Internet. Then, from your computer, type the following:

sudo apt—-get update

[25]

Getting Started with Raspberry Pi Zero

The following screenshot show the Raspberry Pi collecting the packages data:

@ pi@raspberrypi: ~

[o] O

[26]

Getting Started with Raspberry Pi Zero

Here we have results after the installation is finished:

P pi@raspberrypi: ~ (o @ [=

Remote Desktop

In this section, we need the RDP package with the Raspbian Operating System. To do
that, first we need to execute the following command:

sudo apt—-get install xrdp

[27]

Getting Started with Raspberry Pi Zero

This command executes and installs the RDP process and updates the package:

=

@ pi@raspberrypi: ~

Remote Desktop with Windows

At the end of this chapter, you want to be able to access the board from your own computer
using Remote Desktop; you need to type the IP address of your Raspberry Pi and click on

the Connect button:

[28]

Getting Started with Raspberry Pi Zero

/| Remote Desktop
»¢ Connection

Computer | 192168017 v

Username: None specified

You will be asked for credentials when you connect

- Show Options Connect ‘ Help
5.2 |

After we type the IP address of the Raspberry Pi Zero, we will see the following screen; it's
necessary to write your username and password:

Puede ocunir este problema si el equipo remoto ejecuta una version de
Windows anterior a Windows Vista, o si el equipo remoto no esta configurado
para admitir la autenticacion de servidor.

Para obtener ayuda, pdngase en contacto con el administrador de red o el
propietario del equipo remoto.

] No volver a preguntame sobre conexiones a este equipo

L osi || Mo

[29]

Getting Started with Raspberry Pi Zero

You need the login information of your Raspberry Pi, username, and password:

& 192.168.1.105 - Conexién a Escritorio remoto e =

Login to =rdp

Module sE5mMan-Xune vI
usemname |
password

(514 I Cancell I-Ie!p]

This is the main window of the Operating System; you have correctly accessed your
Raspberry Pi Remote Access with Remote Desktop:

[30]

Getting Started with Raspberry Pi Zero

. 192.168.1.105 - Conexidn a Escritorio remoto

‘Menu!{g = e | i’@

5

Wastebasket

Configuring a web server

There are several web servers available that we can install on your Raspberry Pi. We're
going to install the 1ighttpd web server. Also, we need to install PHP support, which will

help us run a website into our Raspberry Pi and have dynamic web pages.
To install and configure, log in to the Raspberry Pi via the terminal console of PuTTY:
1. Update the package installer:
sudo apt-get update
2. Install the 1ighttpd web server:

sudo apt—-get install lighttpd

[31]

Getting Started with Raspberry Pi Zero

Once installed, it will automatically start up as a background service; it will do so each time
the Raspberry Pi starts up:

1. To set up our PHP 5 interface for programming with PHP 5, we need to install
the PHP 5 module support with the following command; this is necessary to have
our server, and it can execute PHP files so that we can make our website:

sudo apt—get install php5-cgi

2. Now we need to enable the PHP FastCGI module on our web server:
sudo lighty-enable-mod fastcgi-php

3. For the last step, we have to restart the server with the following command:
sudo /etc/init.d/lighttpd

In the following screenshot, we show the content of the page that will to appear when we
configure the web server and the PHP 5 interface. The web server installs a test placeholder
page in the location /var/www. Type the IP address of your Raspberry Pi in the browser, for
example, http://192.168.1.105/, and the following screen appears, opening the active
page of the configured server:

€ 5 0 [11ess A% =

i Micaccres M Mone About the £55 (3 tros marcadons

Placeholder page

The owner of this web site has not put up 2ny web pages yet. Please come back later.

You should replace this page with your own web pages as soon as possible.

pou changed is conbiguration, your new server 5 confiqured 25 follons:

s,
s, You can enable o modde by using command “lighty-exable-nod
repd, 20 will be rotated weekly, The frequency of rotabon can be easly changed by editeg /ete/lagrotate.d/Lighetpd.

1, meaning that requests for 3 directory /foa/bar/ will give the contents of the flie fvar/wwwfoo/berjindex html i it exists (assuming
s 15 OUT DECUMEATRDOT.

* You can enable wser drectonies by waing command “lighty-ensble-sod wsendir”

About this page
This 15 2 placehobder page mstalied by the Debian relezse of the Lighttpd server package.
This computer has installed the Debian GNU/Linex apersting system, but it has nothing to do with the Debuan Project. Plaase do not centact the Debian Project sbout it

¥ you find 2 bug in this Lighttpd package, or in Lighttpd itsef, please fle 2 bug report on it Instructions en doing this, and the list of known bugs of this package, can be found in
th Debian Bug Tracking System.

[32]

Getting Started with Raspberry Pi Zero

Testing the PHP installation

At this point, we need to test our website with PHP. This can be done by writing a simple
PHP script page. If PHP is installed correctly, it will return information about its
environment and configuration.

1. Go to the next folder, where it's the root document:
cd /var/www/html

2. Create a file called phpinfo.php.

We use the word nano so that we can get into the file of the system with the
privileges and execute the following command:

sudo nano phpinfo.php
3. After creating the file, as given in the following screenshot, press CTRL-X, and

then save the file:

@pi@rﬁphmypi: Svarfwww/html O (S
GNU nano 2.2.6

File: phpinfo.php

[33]

Getting Started with Raspberry Pi Zero

4. In your browser, enter the IP address of your Raspberry Pi, for example,
http://192.168.1.105/phpinfo.php, and you should see the following

screen:
& 9 @ [1192168.1105/phpinfophp 8% =
5 Aplcaciones M More About the £S5 (33 Otros marcadores

Sypwem L tasghesmypt &1, 85= 4538 Tt Mar 15 155203 6T 2016 armell

Buid Qe Ao 10 0821

Servs AFY COFmE

Vit Diectory Suppert st

Contquan e 3o uh msiey

Loaded Configueston Fie]

st T ities 2

Additenal i fles pansed S S05-optacht i S0, o0

gkt gt

T e

BHP Entensicn e

Zesd Exensan e

Zend Extension Buid APINZENTS

PP Exteiicn Bkt ATOINTENTS

Debog Buid 0

Thread Sy e

Zead el Hancling e

Zeeg Moy Masager wace

Zend Myt Suppont possty mbang

P Sepport trave:

Drice Seppen st

 Regatered PP ey i, R, comprnn B, conprem Lo, php, e, gh, ciia B, B phac

Fegiatered Svan Socket Tewnspons K, o, e, o, L, e, o, B2

|uusu-m :;m-.mm-.mmummm.mrm”zm
- : : =

e e zendengine
wift Zened (Peache v Copyrgpt i) 13662015, by Zend Sechnologges.

Summary

In the first chapter of this book, we looked at how to configure our Raspberry Pi Zero board
so we can use it in later chapters. We looked at what components were needed for the Pi,
and how to install Raspbian so we can run the software on our board.

We also installed a web server, which we will be using in some projects of the book. In the
following chapter, we are going to dive into how to connect devices to your Raspberry Pi
and Arduino boards. We'll also look at the various things we can connect to the Raspberry
Pi using GPIO.

[34]

Connecting Things to the
Raspberry Pi Zero

You need to learn how to connect things to your Raspberry Pi Zero, and also looked at the
architecture and differentiate between the pins we can use for the purpose we defined. This
is the reason we have this section-to help you with the sensors we can connect and give the
basics of how to connect other things to your device. In this section, we will explain how to
configure the Raspberry Pi; now you cannot avoid learning how to connect to your
Raspberry Pi sensors to read analog inputs connected to it.

We will cover the following topics to make our hardware communicate with the board:

¢ Connecting digital inputs: Sensor DS18B20
¢ Connecting analog inputs using an MCP3008 ADC converter
e Connecting a real-time clock (RTC)

Connectting digital input — sensor DS18B20

The Raspberry Pi has digital pins, so in this section, we will look at how to connect a digital
sensor to the board. We will use the digital sensor DS18B20, which has a digital output and
can be perfectly connected to a digital input in our Raspberry Pi sensor. The main idea is to
take temperature readings from the sensor and display them on the screen.

Connecting Things to the Raspberry Pi Zero

Hardware requirements

We will require the following hardware to take the temperature reading:

e Temperature sensor DS18B20 (waterproof)
¢ One resistor of 4.7 kilo-ohms

e Some jumper wires

e A breadboard

We will use a waterproof sensor DS18B20 and a 4.7 kilo-ohm resistor:

This is the waterproof sensor that we are using in this project.

Hardware connections

The following diagram shows the circuit on the breadboard, with the sensor and the
resistor:

[36]

Connecting Things to the Raspberry Pi Zero

In the following image, we can see the circuit with the sensor:

Configuring the one-wire protocol
Open a terminal in the Raspberry Pi, and type the following:

sudo nano /boot/config.txt

You should type the following line at the bottom of the page to configure the protocol and
define the pin where the one-wire protocol will communicate:

dtoverlay=wl-gpio

The next step is to reboot the Raspberry Pi. After a few minutes, open the terminal and type
the following lines:

sudo modprobewl-gpio
sudo modprobe wl-therm

Enter the folder and select the device that will be configured:

cd /sys/bus/wl/devices
1s

[371]

Connecting Things to the Raspberry Pi Zero

Select the device that will be set up. Change xxxx to the serial number of the device that
will set up in the protocol:

cd 28-xxxx
cat wl_slave

You will see the following:

£ COMB- PuTTY =E~

After that, you will see one line which says Yes if it appears that the temperature reading is done
like this: t=29.562.

Software configuration

Let's now look at the code to display the temperature in degrees Celsius and Fahrenheit
every second on the screen.

Here we import the libraries used in the program:

import osl
import globl
import timel

[381]

Connecting Things to the Raspberry Pi Zero

Here we define the devices configured in the protocol:

osl.system('modprobewl-gpio')
osl.system('modprobewl-therml"')

Here we define the folders where the devices are configured:

directory = '/sys/bus/wl/devices/'
device_folderl = globl.glob(directory + '28*') [0]
device_filel = device_folderl + '/wl_slave'

Then we define the functions to read temperature and configure the sensor:

defread_temp () :

f = open(device_filel, 'r')
readings = f.readlines()
f.close()

return readings

Read the temperature with the function:

defread_temp () :
readings = read_temp ()

In this function, we compare when it received the message YES and get the t= character. We
also get the value of the temperature:

while readings[0].strip() [-3:] != 'YES':
timel.sleep(0.2)

readings = read_temp ()

equals = lines[1].find('t=")

Then we calculate the temperature, temp in C and F, and return the values:

if equals != -1:

temp = readings|[l] [equals pos+2:]
tempc = float (temp) / 1000.0
tempf = temp * 9.0 / 5.0 + 32.0
returntempc, tempf

It repeats the cycle every second:

while True:
print (temp())
timel.sleep (1)

[39]

Connecting Things to the Raspberry Pi Zero

Displaying the readings on the screen

Now we need to execute thermometer.py. To show the results of the scripts made in
Python, open your PuTTY terminal, and type the following command:

sudo python thermometer.py

The command means that, when we run the thermometer file, if everything is running
perfectly, we will see the following results:

#P COM3 - PuTTY

S

[40]

Connecting Things to the Raspberry Pi Zero

Connecting analog inputs using an MCP3008

ADC Converter

If we want to connect analog sensors to the Raspberry Pi, we need to use an Analog-to-
Digital Converter (ADC). The board doesn't have analog inputs; we use the MCP3008 to
connect analog sensors. This is a 10-bit ADC and has eight channels. This means that you
can connect up to eight sensors that can be read from the Raspberry Pi Zero. We don't need
special components to connect them. They can be connected with SPI to the Raspberry Pi's

GPIOs.

The first step is to enable SPI communication:

1. Access the Raspberry Pi terminal and type the following command:

sudo raspi-config

2. Select Advanced Options, as shown in the following screenshot:

Q pi@raspberrypi: ~

=)&)

L]
5

{ Raspberry Pi Software Configuration Tool (raspi-config) |

1 Expand Filesystem Ensures that all of the SD card s
2 Change User Password Change pasaword for the default u
3 Boot Options Choose whether to boot into a des
4 Wait for Network at Boot Choose whether to wait for networ
5 Internationalisation Options Set up language and regional szett
6 Enable Camera Enable this Pi to work with the R
7 Add to Rastrack Add this Pi to the online Raspber

8 Overclock

1 O c
JpTlon

0 About raspi-config

<Select> <Finish>

m

[41]

Connecting Things to the Raspberry Pi Zero

3. Enable SPI communication by selecting the SPI option:

&P pi@raspberrypi: ~

Raspberry Pi Software Configuration Tool (raspi-config)

Al Overscan You may need to configure oversca 1
A2 Hostname Set the visible name for this Pi &
A3 Memory Split Change the amount of memory made &
A4 S5H Enable/Disable remote command lin
A5 Device Tree Enable/Disable the use of Device !
\6 SPI Er au e L g H
A7 I2C Enable/Disable automatic loading &
A8 Serial Enable/Disable shell and kernel m §
A9 Rudio Force audio out through HDMI or 3 &
AR GL Driver Enable/Disable experimental deskt |

<Select> <Back>

m

4. Select <Yes> to enable the SPI interface:

[42]

Connecting Things to the Raspberry Pi Zero

£ pi@rspbenypi - |-© =]

Would you like the SPI interface to be enabled?

m

5. The final screen looks like the following screenshot when we enable the SPI
interface. Select <Ok>:

==

2P pilraspberypi: -

The SPI interface will be enabled after a reboot

m

[43]

Connecting Things to the Raspberry Pi Zero

Raspberry Pi GPIO header

The following screenshot is a chart of the GPIO pins of the Raspberry Pi Zero. In this case,
we will use the SPI configuration interface (SPI_MOSI, SPI_MISO, SPI_CLK,
SPI_CEO_N):

Raspberry Pi GPIO Header

o A+, B+, Zero, Pi2

3.3v bl Sv
GPIOOD2 S8 - wer Sv
GPIOO3 - Ground
GPIOC4 F K L (O] GPIO14
Ground e GPIO1S
GPIO17 i G MN1l) GPIOL1S
GPIOZ27 L GJ ‘Ground
GPIO22) 1) GPIO23
3.3v Ly &S GPIO24
GPIO10 LD Ground
GPIOOS LD &) i GPIO25
GPIO11) O 1) GPIOOSB
Ground - Biw 1) GPIOOT7
1D_SD ® ® 1) 1D_SC
GPIOUS) e Ground
GPIOUG e GPIO12
GPIO13 -0 - Ground
GPIO19 L GPIO16
GPIO26 L GPIO20
Ground w? L GPIOZ1

'u‘" Ly www .elementl4.com/RaspberryPi

The following diagram shows the name of the pins of the MCP3008 chip that you connect to
the Raspberry Pi:

el
L a
=

s g% 83 =235
[R = J —
>><—(DDDIQD
| o O O o O |
W W =t o Cd — O o)
— T T T T T
D MCP3008
™ € © =<fr wuw <O I~ O
L L Ly Ly LY L]
QO ™ o O = wy O I~
= i sl il ol i e i o
€3 €3 €3 €3 € € ¢ ¢

[44]

Connecting Things to the Raspberry Pi Zero

The following image shows the temperature sensor:

You need to connect the following pins according to the next description:

e VDD to 3.3 volts

¢ VREF to 3.3 volts from the Raspberry Pi Zero

e Pin AGND to GND

¢ Pin CLK (clock) to GPIO11 of the Raspberry Pi
e DOUT to GPIO9

e Pin DIN to GPIO10

e Pin CS to GPIO8 and the pin

e Pin the MCP3008D GND to Ground

This connection is represented in the following figure:

[45]

Connecting Things to the Raspberry Pi Zero

The following image shows the connections of the sensor to the ADC MCP3008 and the
Raspberry Pi:

Reading the data with a Python script

In the next section, you will create the MCP3008 . py file; you need to follow the next steps:

1. Open the terminal on your Raspberry Pi Zero.
2. Enter the interface in your Pi terminal.

3. It's important to use nano before.

4. Type sudo nano MCP3008.py.

It will appear on the screen and we will describe the following lines:
1. Import libraries:

import spidevl
import osl

2. Open the SPI bus:

spil = spidevl.SpiDevl ()
spil.open(0,0)

[46]

Connecting Things to the Raspberry Pi Zero

3. Define the channels from the ADC MCP2008:

10.

def ReadChannell (channell) :

adcl = spil.xfer2([1,

datal = ((adcl[1]1&3)
return datal

(8+channell)<<4,0])
<< 8) 4+ adcl[2]

The function to convert volts is as follows:

def volts(datal,placesl):
voltsl = (datal * 3.3) / float(1023)
voltsl = round(voltsl,placesl)

return voltsl

The function to convert temperature is as follows:

def Temp (datal,placesl)

templ = (datal * 0.0032)*100
templ = round(templ,placesl)

return templ

Define channels from the ADC:

channels = 0
Define the reading time:

delay = 10

The function to read the temperature is as follows:

while True:

temp = Channels (temp)

volts
temp = Temp (templ, 2)

Print the results:

Volts (templ, 2)

print"**"

print ("Temp : {} ({}V)
Wait every 5 seconds:

Timel.sleep (delay)

{} degC".format (templ,volts, temp))

[47]

Connecting Things to the Raspberry Pi Zero

11. Run the Python file using the following command:

sudo python MCP3008.py

12. On the following screen, we can see the temperature, the ADC measurements,
and the volts according to the temperature:

Connecting an RTC

To control a system, it is very important to have a circuit that can read the time; it can help
control the outputs from the Raspberry Pi or detect an action at a specific time. We will
interface an RTC module DS3231 with the Raspberry Pi.

[48]

Connecting Things to the Raspberry Pi Zero

12C setup

The first step is to enable the I2C interface by performing the following steps:

1. Select Advanced Options:

Py B
£ COM2 - PuTTY = o |

2. Enable the I2C option, as shown in the following screenshot:

2P COMB - PuTTY BE~

able/Disable a

[49]

Connecting Things to the Raspberry Pi Zero

3. Select <Yes> on the next screen:

& coMz - PuTTY =8 e

4. Select <Ok>:

&P COM3 - PuTTY =

[50]

Connecting Things to the Raspberry Pi Zero

5. Then select <Yes>:

£ COM3 - PuTTY [o @/

6. Next, select <OK>:

&P COM3 - PuTTY (o ® s

[51]

Connecting Things to the Raspberry Pi Zero

DS3231 module setup

The module DS3231 is a real-time clock. It can be used to get the time and date from an
integrated circuit, so it can work with your system to control specific events that you want
to program from an embedded chip. It can work perfectly with the Raspberry Pi Zero in
order to get the time and date in real time.

You need to be sure that you have the latest updates. To do that, type the following
commands in your terminal:

sudo apt-get update
sudo apt-get -y upgrade

Modify the system file with the following command:
sudo nano /etc/modules

Add the following lines to the modules. txt file:
snd-bcm2835
i2¢c-bcm2835

i2c—-dev
rtc-ds1307

Hardware setup

In this section, we will look at the pins of the RTC module:

DS3231 Pi GPIO

GNDP 1-06

VvCC (3.3V)
SDA (I2CSDA)
SCL (I2CsCL)

[52]

Connecting Things to the Raspberry Pi Zero

This is the RTC module, and we can see the pins of the chip:

fritzing

[531]

Connecting Things to the Raspberry Pi Zero

The following image shows the final connection:

Testing the RTC

Open the terminal, and type this:

sudo i2cdetect -y 1

You should see something similar to the following screenshot:

[54]

Connecting Things to the Raspberry Pi Zero

12C device setup

The next step is to check whether the time clock is synchronized with RTC time. Here we
define the RTC local:

sudo nano /etc/rc.local
Add the following lines to the file as we declare the new device and the path we configure:
echo ds1307 0x68 > /sys/class/i2c-adapter/i2c-1/new_device
The following command will start up the RTC:
hwclock -s

After this command, reboot the Pi. You will see the following screen, which means that the
RTC is configured and ready to work:

Putting the real-time clock to final test

You can read the Pi time system with the following command:

date

[551]

Connecting Things to the Raspberry Pi Zero

Once the RTC is ready, you can test it with the following command; write the time to the
RTC:

sudo hwclock -w
You can read the time from the RTC with the command given here:
sudo hwclock -r

Now for the final command. With this command, we can see both the time values, as shown
in the following screenshot:

Summary

In this chapter, you learned how to use the MCP3008 ADC converter and also how to use a
temperature sensor using Raspberry Pi Zero. We explored the GPIO port and the various
interfaces it features. We looked at the various things we can connect to the Raspberry Pi
using GPIO.

In the next chapter, we will dive into more hardware acquisition, connecting different kinds
of sensors to our Raspberry Pi Zero and Arduino boards. This will help you make real
measurements in your projects. That’s very interesting—keep at it!

[56]

Connecting Sensors - Measure
the Real Things

The objectives of this book are to build a Home Security System, control domestic
appliances by electronically controlled systems with sensors, and monitor them from a
dashboard. First, we need to consider that our sensors are connected to an end device that
can read the signals and transmit them to the network.

For the end devices, we will use Arduino boards to acquire the readings from the sensors.
We can see that the Raspberry Pi doesn't have analog inputs. For this reason, we use an
Arduino board to read that signals.

In the previous chapter, we talked about how to connect devices to the Raspberry Pj; in this
section, we will see how to interface sensors with Arduino boards to see how to read real
signals from different applications for real measurements. We will cover the following
topics in this chapter:

e Using a flow sensor to calculate the volume of water

e Measuring the concentration of gas with a sensor

¢ Measuring the level of alcohol with a sensor

¢ Detecting fire with a sensor

¢ Measuring the humidity for plants

e Measuring the level of water in a recipient

¢ Measuring temperature, humidity and light and display data in an LCD
¢ Detecting motion with a PIR sensor

¢ Detecting if the door is open with a reed switch

¢ Detecting who can get in the house with a fingerprint sensor

Connecting Sensors - Measure the Real Things

It's important to consider the fact that we need to communicate our system to the real
world. Since we are working on building a home security system, we need to learn how to
connect and interact with some necessary sensors to use them in our system.

In the next section, we will cover the sensors that you will need to read the data you use in
the domotics and security system.

Measuring flow sensor to calculate the
volume of water

We need to take automatic measurements from the water that we're using in the home. For
this project, we will use a sensor to perform this reading and make the reading of
measurement automatic.

To make this project, we need the following materials:

Flow Water Sensor and Arduino UNO board:

Hardware connections

Now we have the connections for out flow sensor. We can see that it has three pins — the
red pin is connected to +VCC 5 volts, the black one is connected to GND, and the yellow
pin is connected to pin number 2 of the Arduino board as seen in the following image:

[581]

Connecting Sensors - Measure the Real Things

Reading the sensor signal

An interrupt is used for the pulses generated by the passage of water to be accounted as
follows:

attachInterrupt (0, count_pulse, RISING);

The interruption is of type RISING counts the pulses that pass from a low state to a high:

Function for counting pulses:

voidcount_pulse ()

{

pulse+t+t;

}

Reading and counting pulses with Arduino

In this part of the code, we explain that it counts the signals from the sensor using an
interrupt, executes, and we have configured it as RISING, so it counts the pulses from
digital signal zero to digital signal one:

int pin = 2;
volatile unsigned int pulse;
constintpulses_per_litre = 450;

void setup()

{
Serial.begin(9600);

pinMode (pin, INPUT);
attachInterrupt (0, count_pulse, RISING);

[591]

Connecting Sensors - Measure the Real Things

}

void loop ()
{

pulse=0;

interrupts();
delay (1000);
noInterrupts();

Serial.print ("Pulses per second: ");
Serial.println(pulse);

}

voidcount_pulse ()

{

pulse+t+t;

}

Open the Arduino Serial Monitor, and blow air through the water flow sensor using your
mouth. The number of pulses per second will be printed on the Arduino Serial Monitor for
each loop, as shown in the following screenshot:

A2 COMBL [Arduine fueruing Ling) o} =
| Emia

Pulses per second: 20
Pulses per second: 22
Pulses per second: 14
Pulses per second: 16
Pulses per second: 19
Pulses per second: 20
Pulses per second: 20
Pulses per second: 20
Pulses per second: 19
Pulses per second: 21
Pulses per second: 21
Pulses per second: 22
Pulses per second: 21
Pulses per second: 23
Pulses per second: 19

¥ Mutesarel AmbosMLACR ~ S00bmde -

[60]

Connecting Sensors - Measure the Real Things

Calculating water flow rate based on the
pulses counted

In this part, we measure the pulses and convert them to the flow of water using the
following steps:

1. Open a new Arduino IDE, and copy the following sketch.
2. Verify and upload the sketch on the Arduino board.

int pin = 2;
volatile unsigned int pulse;
constintpulses_per_litre = 450;

void setup ()
{
Serial.begin (9600);

pinMode (pin, INPUT);
attachInterrupt (0, count_pulse, RISING);
}

3. The following code will calculate the pulses that are reading from the sensor; we
divide the number of pulses counted in one second, and we have pulses per liter:

void loop ()

{
pulse = 0;
interrupts () ;
delay (1000);
noInterrupts();

Serial.print ("Pulses per second: ");
Serial.println(pulse);

Serial.print ("Water flow rate: ");
Serial.print (pulse * 1000/pulses_per_litre);
Serial.println(" milliliters per second");
delay (1000);

}

void count_pulse ()

{
pulse+t+;

}

[61]

Connecting Sensors - Measure the Real Things

4. Open the Arduino Serial Monitor, and blow air through the water flow sensor
using your mouth. The number of pulses per second and the water flow rate in
milliliters per second will be printed on the Arduino Serial Monitor for each loop,
as shown in the following screenshot:

2 COMEI (Arduino/Genuing Una) [o] =

| [Ewar |

Water flow rate: 51 milliliters per second
Pulses per second: 22

Water flow rate: 48 milliliters per second
Pulses per second: 22

Water flow rate: 48 milliliters per second
Pulses per second: 21

Water flow rate: 46 milliliters per second
Pulses per second: 22

Water flow rate: 48 milliliters per second
Pulses per second: 22

Water flow rate: 48 milliliters per second
Pulses per second: 22

Water flow rate: 48 milliliters per second
Pulses per second: 22

Water flow rate: 48 milliliters per second a

7] dutoserol AmbosM AR v | [%600baudo v

Calculating flow and volume of water:

You can now either copy the code inside a file called
Flow_sensor_measure_volume.ino, or just get the complete code from the folder for this
project.

In this part, we calculate the flow and volume from the sensor:

int pin = 2;

volatile unsigned int pulse;
float volume = 0;
floatflow_rate =0;
constintpulses_per_litre = 450;

[62]

Connecting Sensors - Measure the Real Things

We set up the interrupt:

void setup()

{

Serial.begin(9600);

pinMode (pin, INPUT);

attachInterrupt (0, count_pulse, RISING);
t

Start the interrupt:

void loop ()

{

pulse=0;
interrupts();
delay (1000);
noInterrupts () ;

Then we display the flow rate of the sensor:

Serial.print ("Pulses per second: ");
Serial.println(pulse);

flow_rate = pulse * 1000/pulses_per_litre;

We calculate the volume of the sensor:

Serial.print ("Water flow rate: ");
Serial.print (flow_rate);
Serial.println(" milliliters per second");

volume = volume + flow_rate * 0.1;

We display the volume in milliliters:

Serial.print ("Volume: ");
Serial.print (volume) ;
Serial.println(" milliliters");

}

The function to count the pulses is as follows:

Void count_pulse ()
{

pulse++;

[63]

Connecting Sensors - Measure the Real Things

The result can be seen in the following screenshot:

2 oM [Ardume/Genuine Une]
|

Pulses per second: 20

Water flow rate: 44.00 milliliters per second
Volume: 235.20 milliliters

Pulses per second: 21

Water flow rate: 46.00 milliliters per second
Volume: 239.80 milliliters

Pulses per second: 21

Water flow rate: 46.00 milliliters per second
Volume: 244.40 milliliters

Pulses per second: 21

Water flow rate: 46.00 milliliters per second
Volume: 249.00 milliliters

Pulses per second: 22

Water flow rate: 48.00 milliliters per second
Volume: 253.80 milliliters

4 Mutesorol AmbosNLACR » S0baude

Displaying the parameters measured on an LCD

You can add an LCD screen to your newly built water meter to display readings rather than
displaying them on the Arduino serial monitor. You can then disconnect your water meter
from the computer after uploading the sketch onto your Arduino.

First, we define the LCD library:

#include <LiquidCrystal.h>

Then we define the variables that we will use in the program:

int pin = 2;

volatile unsigned int pulse;
float volume = 0;
floatflow_rate = 0;
constintpulses_per_litre = 450;

We define the LCD pins:

// initialize the library with the numbers of the interface pins
LiquidCrystalled (12, 11, 6, 5, 4, 3);

[64]

Connecting Sensors - Measure the Real Things

We define the interrupt for sensing:

void setup()
{
Serial.begin(9600);
pinMode (pin, INPUT);
attachInterrupt (0, count_pulse, RISING);

Now we display the message on LCD:

// set up the LCD's number of columns and rows:
lcd.begin (16, 2);
// Print a message to the LCD.
lcd.print ("Welcome...");
delay (1000);
}

We now define the interrupt in the main loop:

void loop ()
{
pulse = 0;

interrupts();
delay (1000);
noInterrupts();

We display the value on the LCD:

lcd.setCursor (0, 0);
lcd.print ("Pulses/s: ");
lcd.print (pulse);

flow_rate = pulse*1000/pulses_per_litre;

Then we display the value of the flow rate:

lcd.setCursor (0, 1);

lcd.print (flow_rate, 2);//display only 2 decimal places
led.print (" ml");

We now display the value of the volume:

volume = volume + flow_rate * 0.1;
lcd.setCursor (8, 1);
lcd.print (volume, 2);//display only 2 decimal places

led.println(" ml ");

[65]

Connecting Sensors - Measure the Real Things

Then we define the function for counting the pulses:

void count_pulse ()

{

pulse++;

}

Connections with the water flow are shown in the following image:

The following picture shows the measurements on an LCD:

You can see some information on the LCD screen, such as pulses per second, water flow
rate, and the total volume of water from the beginning of the time.

[66]

Connecting Sensors - Measure the Real Things

Measuring the concentration of gas

It's important to have in our system a sensor that detects gas so we can apply it in our home
in order to detect a gas leak. Now we're going to describe how to connect to an Arduino
board and read the concentration of gas.

In this section, we will use a gas sensor and Methane CH4. In this case, we will use an MQ-4
sensor that can detect concentrations from 200 to 10000 ppm.

This sensor has an analog resistance in its output and can connect to an ADC; it needs a coil
energize of 5 volts. The image for the sensor can be seen as follows:

We can find information for the MQ-4 sensor
at https://www.sparkfun.com/products/9404.

fritzing

[67]

Connecting Sensors - Measure the Real Things

Connections with the sensor and Arduino board

According to the preceding diagram, we will now see the connections made in the
following image:

Open the Arduino IDE, and copy the following sketch:

void setup () {
Serial.begin(9600);
}

void loop ()

{
float vol;
int sensorValue = analogRead (AO0);
vol=(float)sensorValue/1024*5.0;
Serial.println(vol,1);

Serial.print ("Concentration of gas= ");
Serial.println(sensorValue);
delay (2000);

[68]

Connecting Sensors - Measure the Real Things

We see the following results on the screen:

Concentration of gas= 67 !
Concentration of gas= 67
Concentration of gas= 67

Concentration of gas= 707
Concentration of gas= 789
Concentration of gas= 823
Concentration of gas= 835
Concentration of gas= 843
Concentration of gas= 837
Concentration of gas= 836
Concentration of gas= 839
Concentration of gas= 835
Concentration of gas= 839
Concentration of gas= 839
Concentration of gas= 839

¥ Autoscrel [AsbosLACR » S00bmude v

Measuring the level of alcohol with a sensor

In this section, we will build a very cool project: Your very own Alcohol Breath Analyser.
To do that, we are going to use a simple Arduino Uno board along with an ethanol gas
Sensor:

[69]

Connecting Sensors - Measure the Real Things

The following diagram shows the connection of the sensor with the Arduino:

fritzing

We are now going to write the code for the project. Here, we are simply going to go over the
most important parts of the code.

You can now either copy the code inside a file called Sensor_alcohol. ino, or just get the
complete code from the folder for this project:

int readings=0;
void setup () {
Serial.begin(9600);
}

void loop () {
lectura=analogRead (Al) ;
Serial.print ("Level of alcohol= ");
Serial.println(readings);

delay (1000);

}

[70]

Connecting Sensors - Measure the Real Things

When it doesn't detect alcohol, we can see the number of values that the Arduino reads:

Frrprerenr B e]
[(ewe]

Level of alcohol= 125 i

Level of alcohol= 124

Level of alcohol= 123

Level of alcohol= 123

Level of alcohol= 123

Level of alcohol= 123

Level of alcohol= 122

Level of alcohol= 122

Level of alcohol= 122

Level of alcohol= 122

Level of alcohol= 122

Level of alcohol= 122

Level of alcohol= 123

Level of alcohol= 123

Level of alcohol= 123

Level of alcohol= 122 +

4] autsered AGMAGL v WG w

If it detects alcohol, we see values from the analog read from Arduino as shown in the
following screenshot:

Level of alcohol= 868 I
Level of alcohol= 871
Level of alcohol= 874
Level of alcohol= 876
Level of alcohol= 877
Level of alcohol= 878
Level of alcohol= 879
Level of alcohol= 879
Level of alcohol= 879
Level of alcohol= 880
Level of alcohol= 880
Level of alcohol= 880
Level of alcohol= 880
Level of alcohol= 880
Level of alcohol= 880

) Autoarol MMAR v 0BG v

[71]

Connecting Sensors - Measure the Real Things

Detecting fire with a sensor

If there's a fire in our home, it's vital to detect it; so in the next section, we will create a
project that detects fire with a sensor.

In the following image, we see of the fire sensor module:

You can now either copy the code inside a file called Sensor_fire.ino, orjust get the
complete code from the folder for this project.

We define the variables for our program at the beginning;:

int ledPin = 13;
int inputPin= 2;
int val = 0;

We define the output signals and the serial communication:

void setup () A

pinMode (ledPin, OUTPUT) ;
pinMode (inputPin, INPUT) ;
Serial.begin(9600);

}

Now we display the value of the digital signal:

void loop () {

val = digitalRead (inputPin);

Serial.print ("val : ");
Serial.println(val);

digitalWrite (ledPin, HIGH); // turn LED ON

[72]

Connecting Sensors - Measure the Real Things

Then we compare: If the value detects a high logic state, it turns off the output; if it reads
the opposite, it turns on the digital signal; this means that it has detected fire:

if (val == HIGH) {
Serial.print ("NO Fire detected ");
digitalWrite (ledPin, LOW); // turn LED OFF
}
else{
Serial.print ("Fire DETECTED ");
digitalWrite (ledPin, HIGH);
}
}

When the Arduino board detects fire, it will read 1 in the digital input, which means no fire
detection:

| COM (Arduine/Gencing Unc) B Fo

NO Fire detected val :
NO Fire detected val
NO Fire detected val :
NO Fire detected val :
NO Fire detected val :
NO Fire detected val :
NO Fire detected val :
NO Fire detected val :
NO Fire detected val :
NO Fire detected val :
NO Fire detected val :
NO Fire detected val :
NO Fire detected val :
NO Fire detected val :
NO Fire detected val :
NO Fire detected |

7] hustonered AmbotM AR - GiO0bade -

P e b e ek e e b e b b e b e

[73]

Connecting Sensors - Measure the Real Things

If it detects fire, the digital input reads 0 logic from the digital input:

Fire
Fire
Fire
Fire
Fire
Fire
Fire
Fire
Fire
Fire
Fire
Fire
Fire
Fire
Fire

¥ dtomerol

2 COMIL (Arduina/Genwino Unc)

DETECTED
DETECTED
DETECTED
DETECTED
DETECTED
DETECTED
DETECTED
DETECTED
DETECTED
DETECTED
DETECTED
DETECTED
DETECTED
DETECTED
DETECTED

val :
val :
val :
val :
val :
val :
val :
val :
val :
valan
val :
val :

val

val :

L — T — T — T — T — N — T — T — N — T — N — B — Y — T]

NO Fire detected val :

Ambos M AR« G00bauds =

Measuring the humidity for plants

[74]

Connecting Sensors - Measure the Real Things

In this section, we will see the testing of humidity inside a plant and the soil using a sensor:

I will now go through the main parts of this first piece of code. Then we set up the serial
communication:

int value;

void setup () A
Serial.begin (9600);
}

In the main loop, we will read the analog signal from the sensor:

void loop () {

Serial.print ("Humidity sensor value:");
Value = analogRead (0);

Serial.print (value);

We compare the value of the sensor and display the result on the serial interface:

if (Value<= 300)

Serial.println (" Very wet");

if ((Value > 300) and (Value<= 700))
Serial.println (" Wet, do not water");

if (Value> 700)

Serial.println (" Dry, you need to water");
delay (1000);

}

[75]

Connecting Sensors - Measure the Real Things

Here, the screenshot shows the results of the readings:

Huminity sensor value:195 Very wet

Huminity sensor value:224 Very wet

Huminity sensor value:233 Very wet

Huminity sensor value:248 Very wet

Huminity sensor value:275 Very wet

Huminity sensor value:295 Very wet

Huminity sensor value:304 Wet, do not water
Huminity sensor value:308 Wet, do not water
Huminity sensor value:310 Wet, do not water
Huminity sensor walue:1023 Dry, you need to water
Huminity sensor value:169 Very wet

Huminity sensor value:190 Very wet

Huminity sensor value:242 Very wet

Huminity sensor value:277 Very wet

Huminity sensor value:295 Very wet

) Autosarl [tms AR v bado v

The following screenshot shows that the plant doesn't require water; because it has enough
moisture in the soil already:

Huminity sensor value:348 Wet, do not water
Huminity sensor value:348 Wet, do not water
Huminity sensor value:349 Wet, do not water
Huminity sensor value:349 Wet, do not water
Huminity sensor value:349 Wet, do not water
Huminity sensor value:349 Wet, do not water
Huminity sensor value:349 Wet, do not water
Huminity sensor value:349 Wet, do not water
Huminity sensor value:349 Wet, do not water
Huminity sensor value:349 Wet, do not water
Huminity sensor value:349 Wet, do not water
Huminity sensor value:349 Wet, do not water
Huminity sensor value:349 Wet, do not water
Huminity sensor value:349 Wet, do not water
Huminity sensor value:349 Wet, do not water

{Huminity sensor value:349 Wet, do not wate
¥ o AARAR v WM v

[761

Connecting Sensors - Measure the Real Things

Measuring the level of water in a recipient

Somtimes, we need to measure the level of water in a recipient, or if you want to see the
level of water in a tank, it is a requirement to measure the levels of water that it has; so in
this section, we will explain how to do this.

The sensor is Normally Open. When the water is over the limit, the contact opens, and it
sends a signal to the Arduino board. We use pin number 2, which is a digital input:

We declare the variables and const in the program:

const int buttonPin = 2; // the number of the input sensor pin
const int ledPin = 13; // the number of the LED pin

We also define the states of the digital signals:

// variables will change:
intbuttonState = 0; // variable for reading the pushbutton status

We configure the signals of the program, inputs, and outputs:

void setup () {

// initialize the LED pin as an output:
pinMode (ledPin, OUTPUT) ;

// initialize the pushbutton pin as an input:
pinMode (buttonPin, INPUT);
Serial.begin (9600);
}

[77 1

Connecting Sensors - Measure the Real Things

We read the state of the digital input:

void loop () A
// read the state of the pushbutton value:
buttonState = digitalRead (buttonPin);

We make the comparisons for the sensor:

if (buttonState == HIGH) {
Serial.println (buttonState);
Serial.println("The recipient is fulled");
digitalWrite (ledPin, HIGH);
delay (1000);

}

If the sensor detects a LOW level, the recipient is empty:

else {
digitalWrite (ledPin, LOW);
Serial.println (buttonState);
Serial.println("The recipient is empty");
delay (1000);

}
}

The following screenshot shows the result when the recipient is empty:

D COM1 (i Genvine Une) E= 8o =
| B
The recipient is empty

0

The recipient is empty

0

The recipient is empty

0

The recipient is empty

0

The recipient is empty

0

The recipient is empty

0

The recipient is empty

0

The recipient is empty

) Autosoral ADSNAR v W0bade v

[78]

Connecting Sensors - Measure the Real Things

The water is over the limit:

£2 COMS1 (Arduine/Genuing Uno)

The
1
The
1
The
1
The
1
The
1
The
¥
The
1
The

recipient

recipient

recipient

recipient

recipient 1

recipient
recipient

recipient

7] Autocerol

is

is

is

is

is

is

fulled

fulled

fulled

fulled

fulled

fulled

fulled

fulled

AmbocMLACR ~ P600baude

Measuring temperature, humidity, and light

and displaying data on an LCD

In this section, I will teach you how to monitor temperature, humidity, and light detection

on an LCD screen.

Hardware and software requirements

In this project, you will use an Arduino UNO board; but you can also use an Arduino
MEGA, which also works perfectly.

For temperature reading, we require a DHT11 sensor, a resistor of 4.7k, a photoresistor
(light sensor), and a 10k resistor.

[79]

Connecting Sensors - Measure the Real Things

It also requires a 16 x 2 LCD screen, where you performed the tests; I used an 12C
communication module for the screen interfaced with Arduino card. I recommend using
this communication since only two pins of Arduino are required for sending data:

Finally, it requires a breadboard and male-male and female-male cables for connections.

Here is the list of components for the project:

Arduino UNO

Temperature and humidity sensor DHT11
LCD Screen 16 x 2

Module 12C for LCD

A breadboard

Cables

We connect the different components:

[80]

Connecting Sensors - Measure the Real Things

Here, we can see the image of the temperature and humidityDHT11 sensor:

Then connect the pin number 1 of the DHT11 sensor (VCC) sensor to the red line on the
breadboard and pin 4 (GND) to the blue line. Also, connect pin number 2 of the sensor to
pin number 7 of the Arduino board. To end the DHT11 sensor, connect the resistance of 4.7k
Ohms between pin number 1 and 2 of the sensor.

Place in series with the 10k Ohm resistance in the breadboard. Then connect the other end
of the photoresistor to red on the breadboard and the other end of the resistance to the blue
line (ground). Finally, connect the common pin between the photoresistor and resistance to
the Arduino analog pin A0.

Now let's connect the LCD screen. Since we are using an LCD screen with an 12C interface,
there are only two cables needed to connect to the signal and two for energy. Connect the
pin of the I2C module called VDC to the red line on the breadboard and GND pin to the
blue line on the breadboard. Then connect the SDA pin module to Arduino pin A4, and A5
SCL pin to pin the Arduino:

[81]

Connecting Sensors - Measure the Real Things

Here is an image of the project, fully assembled, so you can have an idea as to what the
whole project will be:

Testing sensors

Now that the hardware project is fully assembled, we will test the different sensors. To do
this, we will write a simple sketch in Arduino. We're just going to read the sensor data and
print these data on the serial port.

You can now either copy the code inside a file called Testing_sensors_Temp_Hum.ino,
or just get the complete code from the folder for this project.

First we define the libraries:

#include "DHT.h"
#define DHTPIN 7
#define DHTTYPE DHT11

[82]

Connecting Sensors - Measure the Real Things

We define the type of sensor:

DHT dht (DHTPIN, DHTTYPE);

Then we configure the serial communication:

void setup ()

{
Serial.begin(9600);
dht .begin () ;

}

We read the sensor values:

void loop ()

{
float temp = dht.readTemperature();
float hum = dht.readHumidity () ;
float sensor = analogRead(0);
float light = sensor / 1024 * 100;

We display the values on the serial interface:

Serial.print ("Temperature: ");
Serial.print (temp);
Serial.println(" C");
Serial.print ("Humidity: ");
Serial.print (hum);
Serial.println("%");
Serial.print ("Light: ");
Serial.print (light);
Serial.println("$");

delay (700) ;

[83]

Connecting Sensors - Measure the Real Things

Download the code onto the Arduino board, and open the serial monitor to display the data
sent. It is important to check the transmission speed serial port, which must be to 9600. Here
is what you should see:

5 COM31 (Arduine/Genvine Uno) =5 1o)

l =
Humidity: 31.00%
Light: 67.48%
Temperature: 29.00 C
Humidity: 31.00%
Light: 69.04%
Temperature: 29.00 C
Humidity: 31.00%
Light: 65.14%
Temperature: 29.00 C
Humidity: 31.00%
Light: 71.00%
Temperature: 29.00 C
Humidity: 31.00%
Light: 71.29%
Temperature: 29.00 C

¥ Autosarol AsbosNLACR » SSD0baudo =

Displaying data on the LCD

Now the next step is to integrate our information to display on the LCD screen. The portion
of sensor readings will be the same, only detailed with regard to communication and to
display data on the LCD. The following is the complete code for this part, together with an
explained.

You can now either copy the code inside a file called LCD_sensors_temp_hum. ino, or just
get the complete code from the folder for this project.

We include the libraries for the program:

#include <Wire.h>

#include <LiquidCrystal_TI2C.h>
#include "DHT.h"

#define DHTPIN 7

#define DHTTYPE DHT11

[84]

Connecting Sensors - Measure the Real Things

We define the LCD address for the LCD:

LiquidCrystal_I2C lcd(0x3F,16,2);
DHT dht (DHTPIN, DHTTYPE);

We start the LCD screen:

void setup ()

{

lcd.init () ;
lcd.backlight () ;
lcd.setCursor(1,0);

lcd.print ("Hello !!11IM™);
lcd.setCursor (1,1);
lcd.print ("Starting ...");

We define the beginning of the dht sensor:

dht .begin () ;
delay (2000) ;
lcd.clear () ;

}

We read the sensor and save the values in the variables:

void loop ()

{
float temp = dht.readTemperature();
float hum = dht.readHumidity () ;
float sensor = analogRead(0);
float light = sensor / 1024 * 100;

We display the values on the LCD screen:

lcd.setCursor (0,0);
lcd.print ("Temp:");
lcd.print (temp, 1) ;
lcd.print ((char)223);
lcd.print ("C");
lcd.setCursor (0,1);
lcd.print ("Hum:") ;
lcd.print (hum) ;
lcd.print ("S");
lcd.setCursor (11,1);
//lcd.print ("L:");
lcd.print (1light);
lcd.print ("S");
delay (700) ;

[85]

Connecting Sensors - Measure the Real Things

The next step is to download the example on the Arduino board; wait a little bit, and you
will get display readings on the LCD. Here is an image of the project in action:

TemF:28,8°C |
Hum:3Z.88% 16.31

Detecting motion with a PIR sensor

We will build a project with a common home automation sensor: a motion sensor (PIR).
Have you ever noticed those little white plastic modules that are in the top corners in some
rooms of the houses, the modules that change color to red when someone walks in front of
them? That's exactly what we will do in this project.

The motion sensor must have three pins: two for the power supply and one for the signal.
You should also use a 5V voltage level to be compatible with the Arduino card, which also
operates at 5V. The following image shows a simple motion sensor:

[86]

Connecting Sensors - Measure the Real Things

For practical purposes, we will use the signal input 8 for connecting the motion sensor, the
signal voltage of 5 volts and ground GND.

PIR sensor interfaced with Arduino

PIR sensors detect body heat (infrared energy). Passive infrared sensors are the most widely
used motion detectors in home security systems. Once the sensor warms up, it can detect
heat and movement in the surrounding areas, creating a protective grid. If a moving object
blocks too many grid zones and the infrared energy levels change rapidly, the sensors are
tripped.

At this point, we will test the communication between the Arduino and the motion sensor.

We define the variable and the serial communication, define digital pin 8, input signal, read
the state of the signal, and display the status signal of the sensor:

int sensor = 8;

void setup() {
Serial.begin(9600) ;

pinMode (sensor, INPUT) ;

}

void loop() {

// Readind the sensor

int state = digitalRead(sensor);
Serial.print ("Detecting sensor: ");
Serial.println(state);

delay (100);

}

[871]

Connecting Sensors - Measure the Real Things

Detecting if the door is open with a reed
switch

An example has been added as an option to implement a magnetic sensor in order to detect
when a door or window is open or closed.

The sensor outputs a 0 when it detects the magnetic field and when the field is far away the
output would be a 1; so you can determine when the door is open or closed.

The program in the Arduino is performed as follows:
We define the input signal of the sensor, and configure the serial communication:
void setup () {
pinMode (sensor, INPUT_PULLUP) ;

Serial.begin (9600) ;
}

We read the state of the sensor:

void loop () {
state = digitalRead(sensor);

[881]

Connecting Sensors - Measure the Real Things

It compares the digital input and displays the status of the door in the serial interface:

if (state == LOW) {
Serial.println("Door Close");

t

if (state == HIGH) {
Serial.println ("Door Open");

}

Detecting who can get in the house with a
fingerprint sensor

In this section, we will create a project that can help us make a complete security system. In
this project, the fingerprint access will be addressed by reading the fingerprint using a
fingerprint sensor as shown in the following image:

In this part, we will see how to connect and configure our hardware in order to activate our
relay.

Hardware configuration:

As usual, we will use an Arduino Uno board as the brain of the project. The most important
part of this project is the fingerprint sensor.

[891]

Connecting Sensors - Measure the Real Things

We are first going to see how to assemble the different parts of this project. Let's start by
connecting the power supply. Connect the 5V pin from the Arduino board to the red power
rail and the GND from Arduino to the blue power rail on the breadboard.

Now, let's connect the fingerprint sensor. First, connect the power by connecting the cables
to their respective color on the breadboard. Then, connect the white wire from the sensor to
Arduino pin 3 and the green wire to pin number 2.

After that, we are going to connect the relay module. Connect the VCC pin to the red power
rail, GND pin to the blue power rail, and the EN pin to Arduino pin 7:

Save the fingerprint:

The following example is presented to register the ID's fingerprints directly from the library
Adafruit_Fingerprint.

Firstly, we define the libraries:

#include <Adafruit_Fingerprint.h>
#include <SoftwareSerial.h>

[90]

Connecting Sensors - Measure the Real Things

We define the ID of the reading and the function of the enroll process:

uint8_t id;
uint8_tgetFingerprintEnroll ();

We define the serial communication with the device:

SoftwareSerialmySerial (2, 3)
Adafruit_Fingerprint finger

’

Adafruit_Fingerprint (&mySerial);
We declare the instance of the sensor:

//Adafruit_Fingerprint finger = Adafruit_Fingerprint (&Seriall);
We set up and display if the sensor is being configured:

void setup ()

{
while (!Serial);
delay (500) ;

We display the sensor confirmation:

Serial.begin(9600);

Serial.println("Adafruit Fingerprint sensor enrollment");
// set the data rate for the sensor serial port
finger.begin (57600) ;

We identify the sensor if it detects:

if (finger.verifyPassword()) {

Serial.println ("Found fingerprint sensor!");

} else {
Serial.println("Did not find fingerprint sensor :(");
while (1);
}

}

uint8_treadnumber (void) {
uint8_tnum = 0;
booleanvalidnum = false;
while (1) |
while (! Serial.available());
char ¢ = Serial.read();
if (isdigit(c)) A
num *= 10;

num += c - '0';

validnum = true;

} else if (validnum) {
returnnum;

[91]

Connecting Sensors - Measure the Real Things

}

We display the enrolling ID:

void loop () // run over and over again

{

Serial.println("Ready to enroll a fingerprint! Please Type in the ID # you
want to save this finger as...");

id = readnumber () ;
Serial.print ("Enrolling ID #");
Serial.println(id);

while (! getFingerprintEnroll ());
}

The function for enrolling is as follows:

uint8_tgetFingerprintEnroll () {
int p = -1;
Serial.print ("Waiting for valid finger to enroll as #");
Serial.println(id);
while (p '= FINGERPRINT_OK) {
p = finger.getImage();
switch (p) A
case FINGERPRINT_OK:
Serial.println("Image taken");

break;

case FINGERPRINT_NOFINGER:
Serial.println(".");
break;

case FINGERPRINT_PACKETRECIEVEERR:
Serial.println("Communication error");
break;

case FINGERPRINT_IMAGEFATIL:
Serial.println("Imaging error");
break;

default:

Serial.println ("Unknown error");
break;

}

[92]

Connecting Sensors - Measure the Real Things

If the sensor successfully reads the image you see the following:

p = finger.image2Tz (1);
switch (p) A
case FINGERPRINT_OK:
Serial.println("Image converted");
break;
case FINGERPRINT_IMAGEMESS:
Serial.println("Image too messy");
return p;
case FINGERPRINT_PACKETRECIEVEERR:
Serial.println("Communication error");
return p;
case FINGERPRINT_FEATUREFATIL:
Serial.println("Could not find fingerprint features");
return p;
case FINGERPRINT_INVALIDIMAGE:

If it cannot find the fingerprint features, you see the following:Serial.println(“Could not find
fingerprint features”);

return p;
default:
Serial.println ("Unknown error");
return p;

}

Remove the fingerprint sensor:

Serial.println ("Remove finger");
delay (2000) ;

p = 0;
while (p != FINGERPRINT_NOFINGER) {
p = finger.getImage();

}

Serial.print ("ID "); Serial.println (id);
p=-1;

Serial.println("Place same finger again");
while (p != FINGERPRINT_OK) {

p = finger.getImage();
switch (p) A
case FINGERPRINT_OK:
Serial.println ("Image taken");

break;

case FINGERPRINT_NOFINGER:
Serial.print(".");

break;

case FINGERPRINT_PACKETRECIEVEERR:

[93]

Connecting Sensors - Measure the Real Things

Serial.println("Communication error");
break;
case FINGERPRINT_IMAGEFATIL:
Serial.println("Imaging error");
break;
default:
Serial.println ("Unknown error");
break;

}

}

Image for the fingerprint sensor:

p = finger.image2Tz (2);
switch (p) A
case FINGERPRINT_OK:
Serial.println("Image converted");
break;
case FINGERPRINT_IMAGEMESS:
Serial.println("Image too messy");
return p;
case FINGERPRINT_PACKETRECIEVEERR:
Serial.println("Communication error");
return p;
case FINGERPRINT_FEATUREFAIL:
Serial.println("Could not find fingerprint features");
return p;
case FINGERPRINT_INVALIDIMAGE:
Serial.println("Could not find fingerprint features");
return p;
default:
Serial.println ("Unknown error");
return p;

}

[94]

Connecting Sensors - Measure the Real Things

If it is correct, you see the following;:

Serial.print ("Creating model for #"); Serial.println (id);

p = finger.createModel ();
if (p == FINGERPRINT_OK) {
Serial.println("Prints matched!");

} else if (p == FINGERPRINT_PACKETRECIEVEERR) {

Serial.println("Communication error");
return p;

} else if (p == FINGERPRINT_ENROLLMISMATCH) {
Serial.println("Fingerprints did not match");
return p;

} else {

Serial.println ("Unknown error");
return p;

}

Display the result of the sensor:

Serial.print ("ID "); Serial.println(id);

p = finger.storeModel (id);
if (p == FINGERPRINT_OK) {
Serial.println ("Stored!");

} else if (p == FINGERPRINT_PACKETRECIEVEERR) {
Serial.println("Communication error");
return p;

} else if (p == FINGERPRINT_BADLOCATION) {
Serial.println("Could not store in that location");
return p;

} else if (p == FINGERPRINT_FLASHERR) {
Serial.println ("Error writing to flash");
return p;

} else {

Serial.println ("Unknown error");
return p;

}

}

[95]

Connecting Sensors - Measure the Real Things

Testing the sensor

Open the serial monitor, then type the ID number saved in the previous step:

B COMLL ArduineiGenuing Lng) [E=I-T_°)
2
Adafruit Fingerprint sensor enrollment

Found fingerprint sensor!

[Ready to enroll a fingerprint! Please Type in the ID # you want to save this finger as...

‘ebmackam v Wibade ¥

[961]

Connecting Sensors - Measure the Real Things

The following screenshot indicates that you should put the same finger on the sensor again:

Bt | =

B

Image taken

Image converted

Remove finger

ID 12

Place same finger again

Feomedecam e Hiibaude

[97]

Connecting Sensors - Measure the Real Things

The following screenshot shows that the sensor responses indicates that the digital

fingerprint has been successfully saved:

5 COMLL (ArduingGeruino i)
|

Image taken

Image converted

Remove finger

10 12

Place same finger again
S S Image taken
Tmage converted

Creating model for #12

Prints matched!

1D 12

Stored!

Ready to enroll a fingerprint! Please Type in the ID # you want to save this finger as...

¥ Moo

Retmodeam + sbade < |

[981]

Connecting Sensors - Measure the Real Things

Summary

In this chapter, we saw how to interact with different sensors connected to the Arduino
board, such as flow current for energy consumption, detecting a risk in the home,
implementing a gas sensor, implementing flow water sensor to measure the water volume,
making a security system, and controlling access with a fingerprint sensor. All of these
sensors can be integrate a complete system for monitoring and controlling everything you
work on any project.

In the next chapter, we will see how to integrate everything for monitoring and controlling
a complete system, and reading the sensors and actuators in a dashboard using your
Arduino board and the Raspberry Pi Zero as a central interface.

[991]

Control-Connected Devices

In this chapter, we will look at how to control devices from remote sites using our
Raspberry Pi Zero and Arduino UNO, using the following modules to communicate in a
network: Wi-Fi shield and Ethernet shield. We will cover the following topics in this
chapter:

Making a simple web server with Node.js

Controlling a relay from a Raspberry Pi Zero using Restful API and Node.js

Configuring Node.js in a computer as a web server

Monitoring temperature, humidity, and light using Node.js with Arduino Wi-Fi

Monitoring temperature, humidity, and light using Node.js with Arduino
Ethernet

Making a simple web server with Node.js

One of the most important aspect of having a Raspberry Pi is that we have a real computer
configured with services and servers. In this section, we will explain how to install Node.js,
which is a powerful framework that we will use to run most of the applications we are

going to see in this book. Luckily for us, installing Node.js on Raspberry Pi is really simple.

In the folder for this chapter, open the file called webserver. js. We will create a server on
port 8056. To test the program and see the results we have to open the Node.js terminal on
your MS-DOS interface and run this file with the following command:

node webserver. js
Add the following lines to webserver. js file to declare the HTTP request commands:

var http = require('http');

Control-Connected Devices

We create the server with the following function:

http.createServer (function (reqg, res) {

We define the content of the file that we will show in the HTML code:

res.writeHead (200, {'Content-Type': 'text/plain'});

We send the response from the server:

res.end('Hello from Node.js');

It's important to define the port that is going to be opened:

}).listen (8056);

Display the message of the server:

console.log('Server running at port 8056"');

To test this program, open the browser on your local computer and navigate to the
following link: http://192.168.1.105:8056. If you see the following screen; your
Node,js server is running perfectly on your computer; you need to change the IP address of
your computer:

« € [1921681105 Ay E

i35 Apkcacones M1 More About the ESF 3 Otros mascadares

belcome WEB clients from WEM Server with Mode.js

[101]

Control-Connected Devices

Controlling a relay from a Raspberry Pi Zero
using Restful APl and Node.js

In this section, we will show you how to control a relay module connected to an Arduino
UNO board, a relay for sending commands from a web browser. Let's do it.

JSON structure

JavaScript Object Notation (JSON) is a lightweight data-interchange format. It is easy for
humans to read and write. It is easy for machines to parse and generate. It is based on a
subset of the JavaScript Programming Language.

JSON is built on two structures:

e A collection of name/value pairs. In various languages, this is realized as an
object, record, struct, dictionary, hash table, keyed list, or associative array.

¢ An ordered list of values. In most languages, this is realized as an array, vector,
list, or sequence.

First, we need to know how to apply the JSON format that we use to describe this structure,
as follows:

{"data": "Pin D6 set to 1", "id": "1", "name": "Arduino", "connected":
true}

This is the format that we need to follow and make responsive:

e Data: Defines the number of the command and then describes the definition of
the command

e Name: Follows the name of the device
e Connected: Confirms if the device is connected or not

All the data that is between the { } defines our JSON format.

[102]

Control-Connected Devices

Commands with the aREST API

Using the aREST command like this, we can define our Arduino and the devices, and then
control them from a web browser. The following are examples of the commands from the
aREST APL

e IP_Address_of the device/mode/6/o: This configures the digital pin 6 like
an output pin

e IP_Address_of the device /digital/6/1:Configures output 6 and makes
the function like a digitalwrite. For example:
http://192.168.1.100/digital/6/1; we define the IP address of the device
and the number of the pin that will be activated.

Installing Node.js on your Raspberry Pi Zero

Node.js is a tool that will allow us to create servers running in the device, using code in
JavaScript. The most important thing is that we will apply this framework to build a web
server using this code.

Using Node.js means that we configure a web server that will open a port and the devices
can be connected to the web server.

With the following command, you will install Node.js in your Raspberry Pi Zero:
sudo apt—-get install nodejs

NPM is the default package manager for the JavaScript runtime environment with Node.js.
To configure and install the aREST module, type the following line in your terminal:

sudo npm install arest

The Express philosophy is to provide small, robust tooling for HTTP servers, making it a
great solution for single-page applications, websites, hybrids, or public HTTP APIs.

We can also need to configure the express module with the following command:

sudo npm install express

[103]

Control-Connected Devices

Controlling the relay using aREST
commands from a web browser

In the next section, we will see how to control a digital output from a web browser using
Rest commands. Let's dive into it, to see more details:

Configuring the web server

You can now either copy the code inside a file called outputcontrol.js, or just get the
complete code from the folder for this project and execute it with Node.js. Open the
terminal on your Raspberry Pi and type the following:

sudo node output control.js

We define the GPIO of the device importing the commands, by using the following:
var gpio = require('rpi-gpio');

Now we will create our web server using Node.js using the following lines.

We import the require packages that are necessary to run. We declare the libraries using the
following;:

var express = require ('express');
var app = express();

Define the body parser and open the port, in this case, 8§099:

var Parser = require ('body-parser');
var port = 8099;

Use the body-parser:

app.use (Parser.urlencoded ({ extended: false }));
app.use (Parser.json());

Configure GPIO 11, which we will control:
gpio.setup(1l,gpio.DIR_OUT) ;

We define the functions that we will call from the web browser.

[104]

Control-Connected Devices

The name of the function is 1edon; it activates the GPIO 11 and sends the message 1edl
is on to the screen:

function ledon () {
setTimeout (function () {
console.log('ledl is on'");
gpio.write (11, 1);
}, 2000);
)3

The name of the function is 1edo£f£; it turns off the GPIO 11 and sends the message 1ed1
is off to the screen:

function ledoff () {
setTimeout (function () {
console.log('ledl is off');
gpio.write (11, 0);
}, 2000);
¥

We define the function GET, which means that we are making a request to the server when
the browser receives the function called 1edon; it responds with following format:
{status:"connected", led:"on"}.

We will now declare the app function for the incoming requests from the clients:

app.get ('/ledon', function (req, res) {
ledon () ;
var data ={status:"connected",led:"on"};
res.json (data);

)i

We define the function GET .which means that we are making a request to the server when
the browser receives the function called /ledoff, it responds with following format:
{status:"connected", led:"off"}.

app.get ('/ledoff', function (req, res) {
ledoff();
var data ={status:"connected",led:"off"};
res.json (data);

)i

We now open the port from the web server:

app.listen (port);
console.log('Server was started on ' + port);

[105]

Control-Connected Devices

If everything is correct, we open our favorite browser and type http://IP_address of
your Raspberry_PI_zero:port/command.

In this case, we type 192.168.1.105:8099/1edon.
The following screenshot shows you the response of the JSON request:

€ - € |[)192.168.11058099 fedofi a1

§8 Apicacionss o] Mrw About the ESF:

(03 Covot mascadores

{"5tatus™: "comected”, "Llod": "ot}

After that, we will see the final result, as shown in the following image:

[106]

Control-Connected Devices

Configuring Node.js on a computer as a web
server

Node,js is an open-source, cross-platform runtime environment for developing server-side
and networking applications. Node.js applications are written in JavaScript, and can be run
within the Node.js runtime on OS X, Microsoft Windows, and Linux.

Node.js also provides a rich library of various JavaScript modules that simplify the
development of web applications using Node.js to a great extent.

In the last section, we configured Node.js in Raspberry Pi Zero, now in this section we will
do the same thing using a Windows operating system and configure our web server Node.js
running on it.

The main purpose of this section is to explain how to control our Arduino boards from a
web server running in the Node.js framework. For that, it's important to install it; our
system will run on Windows computer.

In this section, we will explain how to install Node.js in Windows.

Downloading Node.js

First we need to download Node.js for Windows 64 bit — it depends of the version of your
operating system to download it, you just need to go to the following link: https://nodejs
.org/es/download/:

€ @] 09 A0 =
Mode.js* is a JavaScript runtime built on Chrome's VB JavaScript engine. Node.js uses
an event-driven, non-blacking /0 model that makes it lightweight and efficient.
Node.js' package ecosystem, npm, is the largest ecosystem of open source librariesin

the world.

Important security notification regarding npm

Download for Windows (x64)

v4.4.3 LTS

Or have a look at the LTS schedule.

[107]

Control-Connected Devices

Installing Node.js

After we have downloaded the software, follow these steps:

1. Click on the Next button:

[5 Node s Setup

el

®

Welcome to the Node.js Setup Wizard

n.de The Setup Wizard will install Node.js on your computer.

Back | Next

2. Click on the Next button:

End-User License Agreement
Please read the following license agreement carefully

m
o@de

Node.js is licensed for use as follows:

Copyright Node.js contributors. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject -

[#]1 accept the terms in the License Agreement

[108]

Control-Connected Devices

3. Select where to install it:

Destination Folder d
Choose a custom location or dick Next to install. ﬂ.® e
Install Node.js to:

Ic:\Prog'm Files\nodejs\

Custom Setup

Select the way you want features to be installed. n.@de

Click the icons in the tree below to change the way features will be installed.

Online documentation shortcuts to the PATH environment variable.

This feature requires OKB on your
hard drive. It has 2 of 2

| Reset || oDskussge [Bak [Next][cancel |

[109]

Control-Connected Devices

5. To finish the configuration, we click on Install:

(15 Nodejs Setup o ==
Ready to install Node.js ﬂ.@de

Click Install to begin the installation. Click Back to review or change any of your
installation settings. Click Cancel to exit the wizard.

6. After the installation is complete we will see the following;:

%) Node s Setup oo e

Completed the Node.js Setup Wizard

Click the Finish button to exit the Setup Wizard.
nege
O]

Node.js has been successfully installed.

[110]

Control-Connected Devices

Configuring web server port 8080 with Node.js

Now we need to configure the port that will be expected to listen to the opening connection
from the remote browsers. Open the file that is in the folder of this chapter, and then
execute the file with Node.js.

You can now either copy the code inside a file called server. js, or just get the complete
code from the folder for this project.

First we need to create our server with the following code:

var server = require('http');
Create a function named loadServer that has the code to respond to the browser:

function loadServer (requiere, response) {
console.log ("Somebody is connected");

If this function responds with the number 200, it means that the connection is established,
the server works perfectly:

response.writeHead (200, {"Content-Type":"text/html"});
response.write ("<hl>The Server works perfect</hil>");
response.end() ;

}

Create and open the server port:

server.createServer (loadServer) .1listen (8080) ;

Open the Terminal with the Node.js server installed on your computer, and then in your
MS-DOS interface, type the following command:

C:\users\PC>node server.js

Now, to test weather the server is running, we will go the web browser and type
localhost :number_of_port; and you should see on your screen similar to the following
screenshot:

http://localhost:8080

[111]

Control-Connected Devices

The Server works perfect

Monitoring temperature, humidity, and light
using Node.js with Arduino Wi-Fi

In this part of the chapter, we will explain the code for the Wi-Fi shield with Arduino:

[112]

Control-Connected Devices

We define the number of variables; in this case we will monitor three variables
(temperature, humidity, and light):

#define NUMBER_VARIABLES 3

Here we have to include the library for the sensor:

#include "DHT.h"

We define the pin for the sensor:

#define DHTPIN 7
#define DHTTYPE DHT11

We define the instance of the sensor:

DHT dht (DHTPIN, DHTTYPE);

We import the libraries for the module:

#include <Adafruit_CC3000.h>
#include <SPI.h>

#include <CC3000_MDNS.h>
#include <aREST.h>

We define the pins for connecting the module:

using a breakout board

#define ADAFRUIT_CC3000_IRQ 3
#define ADAFRUIT_CC3000_VBAT 5
#define ADAFRUIT_CC3000_CS 10

We create the instance of the module that will be connected:

Adafruit_CC3000 cc3000 = Adafruit_CC3000 (ADAFRUIT_CC3000_Cs,
ADAFRUIT_CC3000_IRQ, ADAFRUIT_CC3000_VBAT);

We define the aREST instance:

aREST rest = aREST();

Then we define the SSID and password, which you need to change:

#define WLAN_SSID "xxxxx"
#define WLAN_PASS "xxxxx"
#define WLAN_SECURITY WLAN_SEC_WPA2

[113]

Control-Connected Devices

We configure the port to listen for incoming TCP connections:

#define LISTEN_PORT 80

We define the server instance of the module:

Adafruit_CC3000_Server restServer (LISTEN_PORT) ;
// DNS responder instance
MDNSResponder mdns;

We define the variables that will be published:

int temp;
int hum;
int light;

We have here the setup that defines the configuration of serial communications:

void setup (void)

{
// Start Serial
Serial.begin(115200);
dht .begin () ;

We begin the variables that will be published:

rest.variable ("light", &light);
rest.variable ("temp", &temp) ;
rest.variable ("hum", &hum) ;

We define the ID and the name of the device:

rest.set_id ("001");
rest.set_name ("monitor");

We connect to the network:

if (!'cc3000.begin())

{
while (1) ;

t

if (!'cc3000.connectToAP (WLAN_SSID, WLAN_PASS, WLAN_SECURITY)) {
while (1) ;

t

while (!cc3000.checkDHCP())

{
delay (100);

[114]

Control-Connected Devices

Here we define the function to get the device connected:

if (!mdns.begin("arduino", cc3000)) {
while (1) ;
t

We display the connections in the serial interface:

displayConnectionDetails () ;
restServer.begin();
Serial.println(F ("Listening for connections..."));

}
In this part, we declare the variables that will be acquired:

void loop () A
temp = (float)dht.readTemperature();
hum = (float)dht.readHumidity();

We then measure light level:

float sensor_reading = analogRead (A0);
light = (int) (sensor_reading/1024*100);

We declare the function for requesting:

mdns.update () ;

We need to execute the requests from the server:

Adafruit_CC3000_ClientRef client = restServer.available();
rest.handle (client);

}
We display the networking configuration from the device:

bool displayConnectionDetails (void)
{
uint32_t ipAddress, netmask, gateway, dhcpserv, dnsserv;
1if(!'cc3000.getIPAddress (&ipAddress, &netmask, &gateway, &dhcpserv,
&dnsserv))
{
Serial.println (F ("Unable to retrieve the IP Address!\r\n"));
return false;

}

else

{
Serial.print (F("\nIP Addr: ")); cc3000.printIPdotsRev (ipAddress);
Serial.print (F ("\nNetmask: ")); cc3000.printIPdotsRev (netmask);

[115]

Control-Connected Devices

Serial.print (F
Serial.print (F
Serial.print (F
Serial.println
return true;

’

("\nGateway: ")); cc3000.printIPdotsRev (gateway);
("\nDHCPsrv: ")); cc3000.printIPdotsRev (dhcpserv);
("\nDNSserv: ")); cc3000.printIPdotsRev (dnsserv);
(

Download the sketch of code in your Arduino board, and then go to the serial monitor to
see the configuration of the IP address taken from your router. After that, we can display
the configuration IP address of the Wi-Fi shield:

1
| % COMB1 (Arduino/Genwino Une)

[¥] Autoscrol

IP Addr:
?Netmask:
|Gateway:
DHCPsrv:
|DNSserv:
Test completed

iInitializing chip zw
|Connecting to WiFi network ...
Initializing chip ...
|Connecting to WiFi network ...
Connected !

192.168.1.102
25 2bb=h 5.0
192368 .15
199768 :1-1
76.83.0.0

[116]

| Ermoar

‘AmbosMLACR | 11520baudo v

Control-Connected Devices

Connecting to the Wi-Fi network

Now that we can see the IP address of your Arduino Wi-Fi shield, we can now connect our
computer to the same network as the Arduino board. Look at the following screenshot to

see more details:

Conectado actualmente a: e

~4gy linksys

15" Acceso alnternet
=z Red no identificada

Ty Sin acceso a la red

Conexién de red inalambrica -~

linksys 2 Conectado ‘.ﬂ_q'
i Desconectar |

:”;_]r.“]_'r:cm}::rc linksys 2 "

| Intensidad de la
mMEGA] Tipo de segurida
Tipo de radio: 802.11n

INFINT SSID: linksys

143312 o

To test the application, we need to go to the following path and run the following
commands on the computer that you have installed your Node.js server, on as shown in the

following screenshot:

& Administrador: Nodejs command prompt

Your environment has heen set up for

d interface

“interface?

[117]

Control-Connected Devices

In this folder, we have the file in JavaScript and type the command node app.js

After entering the interface folder type the following command node app. js:

r

& Administrador: Node.js command prompt - node appjs (016 jmim

lour environnent has bheen set up for using Mode.js 4.4.3 (x64) and npn.

Now that you have launched the web server, application, switch over to a browser, on the
same machine to see the results by entering the IP address of the machine:

Wifi Monitor
Temperature: 29 °C Humidity: 31 % Light level: 39 %

Device Online

[118]

Control-Connected Devices

After the server is listening on port 300, it establishes communication with the Wi-Fi
module sending a request to the IP address of the device:

[Administrador: Nodejs command prompt - node appjs @

e temp

)] e l'll_ll'l

riahle temp
P

e hum
by
riahle light
P
iable temp

e hun

Monitoring temperature, humidity, and light
using Node.js with Arduino Ethernet

In the preceding section, we showed how to monitor our Arduino via Wi-Fi using the
CC3000 module; now we will use another important module: Ethernet Shield. The
hardware connection of the part is similar to the following image:

[119]

Control-Connected Devices

Code for the application of the Arduino Ethernet
shield

You can now either copy the code inside a file called Monitor_Ethernet.ino, or just get
the complete code from the folder for this project; you need to use the Arduino IDE.

The following are the libraries included in the program:

#include <SPI.h>
#include <Ethernet.h>
#include <aREST.h>
#include <avr/wdt.h>

Include the library for the DHT11 sensor:

#include "DHT.h"

We define the pins for the temperature and humidity sensor:

#define DHTPIN 7
#define DHTTYPE DHT11

We have the instance of the sensor:

DHT dht (DHTPIN, DHTTYPE);
We register the MAC address for the device:
byte mac[] = { 0x90, O0xA2, O0xDA, 0x0E, OxFE, 0x40 };

IPAddress 1p(192,168,1,153);
EthernetServer server (80);

We now create an instance of the aREST APL:
aREST rest = aREST();

We publish the variables that will be monitored:
int temp;

int hum;
int light;

[120]

Control-Connected Devices

We now configure serial communication and start the instance of the sensor:
voild setup (void)
{
// Start Serial

Serial.begin(115200);
dht .begin () ;

We start the variables to publish:

rest.variable ("light", &light);
rest.variable ("temp", &temp) ;
rest.variable ("hum", &hum) ;

It is very important to give the ID and the name of the device that we are using:

rest.set_1id("008");
rest.set_name ("Ethernet");

We begin the Ethernet connection:

if (Ethernet.begin(mac) == 0) {

Serial.println("Failed

to configure Ethernet using DHCP");
Ethernet.begin (mac, 1ip);
}

We display the IP address on the serial monitor:

server.begin () ;
Serial.print ("server is at ");

Serial.println (Ethernet.locallIP());
wdt_enable (WDTO_4S) ;
t

We read the temperature and humidity sensor:

void loop () {

temp =

(float)dht.readTemperature () ;

hum = (float)dht.readHumidity();

We measure the light level of the sensor:

float sensor_reading = analogRead (A0);
light = (sensor_reading/1024*100);

[121]

Control-Connected Devices

We listen for the incoming clients that will be connected:

EthernetClient client = server.available();
rest.handle (client);
wdt_reset () ;

}

Now that we have finished the configurations, we open a web browser and type the IP
address of your Arduino Ethernet shield: http://192.168.1.153. If everything goes
perfectly it will display the following screen with the JSON response from the board:

€ & @ 1921681153 B =

5 Aphcasones M Mose About the E59 3 Otros marcadcess

{“varisbles™: {“light": 3@, “temp": 29, “hem": 31}, "id": "B0A", “name": “Ethernet”, “connected™: true}

The preceding screenshot shows the results of the JSON request.

Configuring the device in Node.js

In this section, we will explain the code for configuring the devices that we can control from
a web page.

[122]

Control-Connected Devices

We installed the express package in the previous section; if you have any difficulty, just
open a terminal and type the following;:

npm install express

We define the node express and create the app:

var express = require('express');
var app = express|();

We then define the port to listen:
var port = 3000;

We define the instance of Jade application, using the view engine:
app.set ('view engine', 'jade');

We configure the public folder:
app.use (express.static(__dirname + '/public'));

We now define the devices to monitor:

var rest = require("arest") (app);
rest.addDevice ('http','192.168.1.153");

We serve the application:

app.get ('/', function(req, res){
res.render ('interface');
)i

We start the server and send the message when the device is connected:

app.listen (port);
console.log("Listening on port " + port);

Open your terminal in MS-DOS and execute app . js in your Node.js server

To test the application, open your web browser and type http://localhost:3000;if a
screen like the following, congratulations appears, you just configured your server

properly:

[123]

Control-Connected Devices

Ethernet Shield Monitoring
Temperature: 29 °C Humidity: 31 % Light level: 35 %

Device Online

Here we have the screen where we see the execution of app . js in the Node js server:

[Administrador: Node s command prompt - node app.js =l g ‘ﬁ

ledhlp ‘function req It to device: Ethernet
192. 3 for variable light

e light
hle light
light
> light
: 1ight
> tenp
e hun
e light
g temp

e hun

ne
for variahle light

[124]

Control-Connected Devices

Summary

In this chapter, you learned how to control your Arduino board, using modules of
communication in a networking area from the Raspberry Pi Zero in a central interface
Dashboard. We have looked at how to control and monitor devices from a central interface;
you can use other sensors, for example, a sensor barometric pressure.

In the next chapter, you will do more interesting projects such as configuring and
connecting a web camera to your Arduino board that can be monitored from your
Raspberry Pi Zero.

[125]

Adding a Webcam to Monitor
Your Security System

In the previous chapters, we talked about topics such as sensors connected to the Arduino
and monitoring from the Raspberry Pi Zero, using a network across devices, the importance
of our home security projects, and domotics to monitor what's happening in the real world.
For that, we have a proposal for this chapter.

In this chapter, we will configure our Raspberry Pi Zero to monitor a web camera and
install a TTL serial camera to interact with Arduino boards; we will achieve that with the
following topics:

e Interaction between Arduino and Raspberry Pi

Controlling an output connected to Arduino from Raspberry Pi Zero

Connecting a TTL serial camera to Arduino and saving pictures to a Micro SD
Detecting motion with the serial TTL camera

Controlling a snapshot from Raspberry Pi

Controlling your camera from a web page

Monitoring your USB camera for security in a network

Adding a Webcam to Monitor Your Security System

Interaction between Arduino and Raspberry
P

In this chapter, we will look at how the Raspberry Pi can work as a terminal computer to
program, not only having the device as a server and deploying pages or applications but

also have an IDE for programming the Arduino board. To do this we need to have the
Raspberry Pi connected to the Arduino, so that they can communicate with each other.

Here are some interfaces that the Raspberry Pi has, all of these which included in the device:
I2C protocol, SPI communication, USB ports, and serial UART ports. In this case, we will
use the USB port to communicate between Arduino and the Raspberry Pi.

These are the steps to configure Arduino and Raspberry Pi to interact with each other:

1. Install Arduino IDE for the Raspberry Pi

2. Open your terminal with PuTTY and check the IP address of your Raspberry Pi
3. Execute remote access, and type the IP address

4. Open Arduino IDE in the graphical interface

Installing Arduino IDE in Raspbian

Type the following command to install Arduino IDE on the Raspberry Pi:

sudo apt-get install arduino

[127]

Adding a Webcam to Monitor Your Security System

Remote access to Raspberry Pi

In this section, we will look at the screen to access the Remote desk to execute the Arduino
IDE installed in the Raspian operating system: once the screen pops up, type your username
and password:

&, 192.168.1.105 - Conexidn a Excritori t e p— o |

Module [sesmaniime w]
| uzername [g
password [

0 | cacel| _veb |

[128]

Adding a Webcam to Monitor Your Security System

Executing Arduino in a graphical interface

Now that we have the main screen, we go to the Programming menu, and if we see the icon
to enter the Arduino IDE, everything is installed. Click on the icon of the Arduino IDE:

5 1921681105 Conetn o emots Ee——
Grew O = WMED - SO

7
;‘):-:enﬁ ’ i. oot Java
) Gan »)‘ Mathema

e ¢ P Pyt
+ Flec C >P Py

)| Son

¥ @ frar

;:r‘ e

[129]

Adding a Webcam to Monitor Your Security System

Arduino interface in Raspian

Here we have the interface of the Arduino IDE, similar to the ones we have in a computer.
From the Arduino IDE running in the Raspberry Pi, we can interact between both boards:

151921681105 - ConriénaEscitorio emoto _ ST o
) B sketch_jun08a | Ardui 2 @) W

sketeh juniBa

[130]

Adding a Webcam to Monitor Your Security System

Preparing the interface

We need to verify that we selected the proper board; in this case, we're using an Arduino
UNO. Select the board in the following window:

K5, 1621681.105 - Conesidn 2 Esciitoric remato |21 6 ki

T
mm@ £ W % Q) Esechu Acunono 40 Mms 4
[s

AT Arduing Duemilanove w/ ATmega328
File Edit Sketch oolS Arduino Diecimila or Duemilanove w/ ATmega168

Auto Format Cti+T Arduino Nano w/ ATmega328
skatch junoga Archive Sketch Arduino Nano w/ ATmega168

Fix Encoding & Reload Arduino Mega 2560 or Mega ADK

Serial Monitor Cirl+ShiftsM Arduino Mega (ATmega1280)

EZE

Serial Port q Arduino Esplora

Arduino Micro
Programmer »

Arduino Mini w/ AT

Arduino Mi

Bum Bootioader

Arduing Ethemet

Arduino Fio

Arduino BT w/ ATmega328
Arduino BT w/ ATmega168
LilyPad Arduina USB

LilyPad Arduing w/ ATmega328
LilyPad Arduing w/ ATmega168

Arduing Pro or Pro Mini (5V, 16 MHz) w/ ATmega328

Arduing Pro or Pro Mini {3V, 16 MHz) w/ ATmega 168

Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega328

Arduing NG or older w/ ATmega168 =

[131]

Adding a Webcam to Monitor Your Security System

Selecting the serial port

After we have selected the board that we will use, we need to verify and select the port that
will communicate with our Arduino connected to the USB port of the Raspberry Pi; we
need to select the name port: /dev/ttyACMO:

T
F IO

Auto Format

sketeh juntga Archive Sketch

Fix Encoding & Reload

Senal Monitor Ctrl+Shift+M
Board ’
Programmer ’

Bum Bootloader

[132]

Adding a Webcam to Monitor Your Security System

Downloading a sketch from the graphical
interface

The main thing that we need is to communicate with Arduino from our Raspberry Pi Zero
and download the sketch to the Arduino board without using a computer, so that we can
use our Raspberry Pi for other purposes.

The following screenshot shows you the interface with the sketch:

b 12110 - Conesn s enco : L . EEEEY
) & M () E)sechjunoea) i € Bink| Adino 21,05 2)| =130

[133]

Adding a Webcam to Monitor Your Security System

We should download the sketch in the interface. The following image shows the connected
Arduino-Raspberry Pi: that's cool!

Controlling an output connected to Arduino
from Raspberry Pi Zero

Now we will look at an example of controlling an output from the Raspberry Pi, using
Python.

First we need to download the sketch to the Arduino board. To test our communication, we
will show an example of testing the link between the Arduino and the Raspberry Pi:

We declare the following output:
int led_output = 13;
We start with the setup in the program:

void setup () {

[134]

Adding a Webcam to Monitor Your Security System

Then we mention the output pin:
pinMode (led_output, OUTPUT);
Start the serial communication at 9600:

Serial.begin(9600);
}

Declare the loop of the program:
void loop () {

This is where we check weather serial port is available or not:
if (Serial.available() > 0){

If something found it reads something and saves the content in ¢ variable:
char ¢ = Serial.read();

If it reads a letter H which is marked for high:

if (c == "H'){

The output will turn on the LED connected to pin 13
digitalWrite (led_output, HIGH);

In case it reads a letter L which is marked for low:

}
else 1f (c == 'L'"){

The output will turn off the LED connected to pin 13:

digitalWrite (led_output, LOW);

[135]

Adding a Webcam to Monitor Your Security System

Controlling the Arduino board from Python

First we need to install the serial library, as this helps to communicate with Arduino via the
USB port communication. Type the following command to install the library:

sudo apt—-get install python-serial

The following code controls Arduino from Raspberry Pi; you can now either copy the code
inside a file called ControlArduinoFromRasp.py, or just get the complete code from the
folder for this project.

The following snippet imports the serial library in Python:
import serial
We define the serial communication:
Arduino_UNO = serial.Serial ('/dev/ttyACMO', 9600)
Print a message to see that the communication is done:

print ("Hello From Arduino!")

While this executes, the user can enter a command:

while True:
command = raw_input ('Enter the command ')
Arduino_UNO.write (command)

If it's an H it prints the message; in case it is false it displays LED off:

if command == 'H':
print ('LED ON'")
elif command == 'L':

print ('LED OFF')
Close the connection:

arduino_UNO.close ()

[136]

Adding a Webcam to Monitor Your Security System

Hardware connections

This is the LED connected to Arduino UNO, and it can be controlled from the Raspberry Pi
using Python:

i

=

L .

T . B #
rxmm Arduino

Made with [} Fritzing.org

Connecting a TTL serial camera to Arduino
and saving pictures to a micro SD

Here we have the schema, with the connections of the micro SD card with the TTL serial
camera; [use a camera model from Adafruit. The following link has all the information you
need, https://www.adafruit.com/product/397. In the following image, we have the
connections of the project:

[137]

Adding a Webcam to Monitor Your Security System

fritzing

Now we will explain how to take a picture and save it to a micro SD; the main idea is to
connect a camera to the Arduino, so we can implement this in a system monitoring for
home security.

The following is the code for testing the TTL camera, taking a picture, and saving it on a
micro SD. Note that the code is too long, but I will be explaining the most important and
necessary code to do the previous actions. All the code for these examples is included with
the book for more complete information.

Here we have the import files from the TTL camera, and the files to communicate with the
micro SD:

#include <Adafruit_VC0706.h>
#include <SPI.h>
#include <SD.h>

We define the library software to communicate via serial:

// comment out this line if using Arduino V23 or earlier
#include <SoftwareSerial.h>

[138]

Adding a Webcam to Monitor Your Security System

define the chipselect to pin 10:
#define chipSelect 10

The code will pin for connections:

SoftwareSerial cameraconnection = SoftwareSerial (2, 3);
Adafruit_VC0706 cam = Adafruit_VC0706 (&cameraconnection);

Then we will need to start the camera:

if (cam.begin()) {
Serial.println ("Camera Found:");

} else {
Serial.println("No camera found?");
return;

}

Here we define the image size:
cam.setImageSize (VC0706_640x480);
This will display the image size:

uint8_t imgsize = cam.getImageSize();
Serial.print ("Image size: ");

The code will take a picture:

if (! cam.takePicture())
Serial.println("Failed to snap!");
else
Serial.println("Picture taken!");

Create the file to save the image taken:
char filename[13];
Code to save the file:

strcpy (filename, "IMAGEOQOO.JPG");
for (int 1 = 0; i < 100; i++) |

filename[5] = '0' + 1/10;
filename[6] = '0' + 1%10;

[139]

Adding a Webcam to Monitor Your Security System

Prepare the micro SD to save the files:

if (! SD.exists (filename)) {
break;

}
Open the file taken for prewview:
File imgFile = SD.open(filename, FILE_WRITE);

To show the size of the image taken:

uintl6_t Jpglen = cam.framelLength();

Serial.print ("Storing ");
Serial.print (jpglen, DEC);
Serial.print (" byte image.");

Read the data from the file:

byte wCount = 0; // For counting # of writes
while (jpglen > 0) {

Write the file into the memory:

uint8_t *buffer;

uint8_t bytesToRead = min (32, Jjpglen);
buffer = cam.readPicture (bytesToRead);
imgFile.write (buffer, bytesToRead);

Display the file on the screen:

if (++wCount >= 64) {
Serial.print ('.");
wCount = 0;

}

Display the number of bytes read:

Serial.print (bytesToRead, DEC);
Serial.println (" bytes");
jpglen —-= bytesToRead;

t

Close the file which is open:

imgFile.close();

[140]

Adding a Webcam to Monitor Your Security System

Detecting motion with the serial TTL camera
Turn on the motion detection of TTL camera:

cam.setMotionDetect (true);

Verify if the motion is activated:

Serial.print ("Motion detection is ");
if (cam.getMotionDetect ())
Serial.println ("ON");
else
Serial.println ("OFF");
}

What happens when motion is detected by the camera:
if (cam.motionDetected()) {

Serial.println("Motion!");
cam.setMotionDetect (false);

If motion is detected, take the picture or display the message:

if (! cam.takePicture())
Serial.println("Failed to snap!");
else
Serial.println ("Picture taken!");

Controlling a snapshot from Raspberry Pi

Now that we have seen how to communicate between Arduino and Raspberry Pi, to control
the board, we can apply this to our security system project. We need to do this for
communicating with and controlling our camera from the Raspberry Pi:

e Connect the Arduino and Raspberry Pi to each other
¢ Create a serial connection at 9,600 mbps
e Call the function that will take the picture and save it in the micro SD

On the Raspberry Pi we need to do the following;:

e Create the script for calling the function in the Arduino that will take the picture
e Open and execute the script using your PuTTY terminal

[141]

Adding a Webcam to Monitor Your Security System

The following section is the sketch that should be download in the Arduino board:

First we start the serial communication:

void setup () {
Serial.begin (9600);
t

This is the function that will tell the camera to take the picture:

void loop () {
if (Serial.available() > 0) {
char ¢ = Serial.read();
if (¢ == 'T') {
takingpicture () :

}

Code for the function to take a picture

Here we discuss the code to define the function that will prompt the camera to take the
picture.

The function has the code that will take the picture:

void takingpicture () {

Take a picture:

if (!cam.takePicture())
Serial.println("Failed to snap!");
else
Serial.println("Picture taken!");

Here we create the file to save:

char filename[13];

Here we save the file:

strcpy (filename, "IMAGEOQOO.JPG");

for (int 1 = 0; 1 < 100; i++) A
filename[5] = '0' + 1/10;
filename[6] = '0' + 1%10;

[142]

Adding a Webcam to Monitor Your Security System

Prepare the micro SD to save the files:

if (! SD.exists (filename)) {
break;

}
Open the file for preview:
File imgFile = SD.open(filename, FILE_WRITE);

Get the size of the file before saving:

uintl6_t Jpglen = cam.framelLength();

Serial.print ("Storing ");
Serial.print (jpglen, DEC);
Serial.print (" byte image.");

Read the data from the file that was saved:

byte wCount = 0; // For counting # of writes
while (jpglen > 0) {

Write the file into the memory:

uint8_t *buffer;

uint8_t bytesToRead = min (32, Jjpglen);
buffer = cam.readPicture (bytesToRead);
imgFile.write (buffer, bytesToRead);

Display the file after saving:

if (++wCount >= 64) {
Serial.print ('.");
wCount = 0;

}

Display the number of bytes read:

Serial.print (bytesToRead, DEC);
Serial.println (" bytes");
jpglen —-= bytesToRead;

t

Close the file which are open:

imgFile.close();

}

[143]

Adding a Webcam to Monitor Your Security System

Controlling your camera from a web page

In this section, we will look ar how to control our camera from a web page in PHP and run
a web server in the Raspberry Pi. We will need the following to run PHP files and web
server:

¢ Running the Apache server on Raspberry Pi
e Installing PHP software

For the web page, for controlling we will have to create our PHP files in the following path:
/var/www/html, for instance we need to edit the index.php file, and copy the following
lines.

The following HTML file includes PHP:

<!DOCTYPE html>
<html>
<head>
<title>Control Camera</title>
</head>
<body>

Here we define the function to perform action for taking the picture:

<form action="on.php">
<button type="submit">Taking the picture</button>
</form>

Here we define the action to taken if motion detected:

<form action="off.php">
<button type="submit">Motion</button>
</form>

</body>

</html>

[144]

Adding a Webcam to Monitor Your Security System

Calling the Python scripts from PHP

In this section, we need to call the Python script from the web page and execute the file that
has the script:

<?php

Sprende= exec ('sudo python on.py');
header ('Location:index.php');

?>

<?php

Sapaga = exec('sudo python motion.py');
header ('Location:index.php');

?>

Code for Python scripts

On the server side, that is the Raspberry Pi, we have the Python scripts that will be called
from the web page:

import serial
import time
Arduino_1 = serial.Serial('/dev/ttyACMO', 9600)
Arduino_1.open ()
Command="H"
if command:
Arduino_1.write (command)
Arduino_1.close ()

import serial
import time
Arduino_1 = serial.Serial('/dev/ttyACMO', 9600)
Arduino_1.open ()
Command="L"
if command:
Arduino_1.write (command)
Arduino_1.close ()

[145]

Adding a Webcam to Monitor Your Security System

If everything is configured perfectly, the following page will appear: in your favorite
browser, type IP address of your PI/index.php:

€ 2 € [}192168.1101/ index

¥ Aplicaciones M1 More About the ESP (1 Oeros marcadores

Take picture
Take picture

Monitoring your USB camera for security in
a network

In this section, we will create a project that allows us to monitor a USB camera that is
connected to an Arduino YUN, which has a USB port and includes communication with
Ethernet and Wi-Fi. So, it has many advantages. We will work on making a network
between the Raspberry Pi and the Arduino YUN, so the main idea is to monitor the camera
from a web page, from the Raspberry Pi. The page will be stored in the Raspberry Pi.

[146]

Adding a Webcam to Monitor Your Security System

Configuring Arduino YUN

We will use a Logitech camera that supports the UVC protocol:

Now we will explain the steps to install our camera in the Arduino YUN:

e Connect the board to your Wi-Fi router
e Verify the IP address of the Arduino YUN

After we type the IP address, the following screen appears:

& 1921681107 -purTy Lo | E |t

[147]

Adding a Webcam to Monitor Your Security System

We will now issue a series of commands at the Command Prompt to complete the setup:
Update the package:
opkg update
Install the UVC protocol:
opkg install kmod-video-uvc
Install the camera driver:
opkg install fswebcam
Download the Mjpgstreamer:
wget http://www.custommobileapps.com.au/downloads/mjpgstreamer. Ipk
Install the Mjpgstreamer:
opkg install mjpg-streamer.ipk
To start the camera manually, use the following code:

mjpg_streamer -i "input_uvc.so -d /dev/video0 -r 640x480 -f 25" -o
"output_http.so -p 8080 -w /www/webcam" &

To start the camera automatically, we will use the following code:
Install the nano program:

opkg install nano
Enter the following file:

nano /etc/config/mjpg-streamer

Configure the camera with the following parameters:

config mjpg-streamer core

option enabled "

option device "/dev/videoO"
option resolution "640x480"
option fps "30"

option www "/www/webcam"
option port "gogo"

[148]

Adding a Webcam to Monitor Your Security System

Use the following command to start the service:

/etc/init .d/mjpg-streamer enable
/etc/init .d/mjpg-streamer stop
/etc/init .d/mjpg-streamer start

Monitoring from the MIJIPG-STREAMER server

Once you have accessed the server of the Arduino YUN, type the IP Address of your
Arduino YUN, http://Arduino.local: 8080, in your web browser. The results of the
configuration are shown in the following screenshot:

€ 2 € [arduinodocal: 8080/ stream.hitml B =
130 Aplizaciones M Morw About the ESES (2 Otros mareadorss

3

oneor mwe.tlmt“s- .
MIPG-Streamer

aresmumatiensy | Source shippet
sireaming application

cimg gree”/hactionestremm” /3

Home
Static
Stream
Java
Javascript
Videol AN
Control

A>3

Version info:

w01 [Okt 22, 2007)

& The MIPG-streamer team | Design by Andreas Viklund

Monitoring the USB camera from the Raspberry
Pi

With the camera connected to the Arduino YUN, now we can monitor in real time from a
web page published in the Raspberry Pi.

[149]

Adding a Webcam to Monitor Your Security System

Provide a title for the web page:

<html>
<head>
<title>Monitoring USB Camera</title>

We call the camera image by putting the IP address of the Arduino YUN:

</head>

<body>

<center>

</center>

</body>

</html>

Access the web page from a browser by typing the IP address of the Raspberry Pi (
http://192.168.1.106/index.html):

€ 2 € [192168.1.106/indexhiml i =
i Aplicaciones M Maee About the ESPE [Otros marcadores

In the next section, we will look how to configure the connected devices and the hardware
that will be interacting in a network.

[150]

Adding a Webcam to Monitor Your Security System

The following image represents the network that we created with devices that can be
monitored; for example, we monitor each room of a house, connect all the devices with a
Wi-Fi network, and monitor them from the Raspberry Pi:

Summary

In this chapter, you have learned how to configure a web cam connected to the network and
monitor your security system for the Internet of Things. We used your Arduino Board to
connect the security camera, and Raspberry Pi Zero connected to the network to monitor
the system. In the next chapter, we will integrate our system, the Raspberry Pi Zero, with
Arduino, to build a complete system-connected device and monitor.

[151]

Building a Web Monitor and
Controlling Devices from a
Dashboard

In this chapter, we will talk about a very important part of this book, creating a web page
that can control different kinds of devices from a dashboard. In an automated home there
are different kinds of devices that could be controlled, for example: lamps, doors or
windows, washing machines, and so on.

In this chapter, we will cover the following topics:

¢ Configuring MySQL database server

¢ Installing phpMyAdmin for administrating databases

e Datalogger with MySQL

e Dimming a LED

¢ Controlling the speed of a DC motor

e Controlling lights with electrical circuits

¢ Controlling door locks

¢ Controlling watering plants

¢ Remote access from anywhere to your Raspberry Pi Zero
¢ Controlling lights and measuring current consumption

¢ Controlling and monitoring Arduino, Wi-Fi and Ethernet shields, connected
devices, and sensors from the Raspberry Pi Zero

Building a Web Monitor and Controlling Devices from a Dashboard

Configuring MySQL database server

In this section, you will learn how to configure MySQL server in order to create a database
and integrate everything in your dashboard, for recording data in a database.

Installing MySQL
Our Raspberry Pi Zero is being configured like a web server. In this section, we will install

MySQL database server with the following command, so we can receive connections from
clients, display data stored in a database, and use queries in SQL:

sudo apt—-get install mysgl-server

@ pi@raspberrypi: ~ ’?|’?|

[153]

Building a Web Monitor and Controlling Devices from a Dashboard

In the middle of the process it will ask you for the password of the root user:

£P pi@raspberyp: ~ =2 =

1 Configuring mysql-server-5.5 |
While not mandatory, it is highly recommended that you set a password
for the MySQL administrative "root" user.

If this field is lefr blank, the password will not be changed.

New password for the MySQL "root" user:

m

[154]

Building a Web Monitor and Controlling Devices from a Dashboard

After the installation is complete, connect to MySQL and type the following command:

mysql —-u root -p

[
| &P pi@raspberrypi: ~ o -6

[155]

Building a Web Monitor and Controlling Devices from a Dashboard

Type the following command:

show databases;

@ pi@raspberrypi: ~

i

[156]

Building a Web Monitor and Controlling Devices from a Dashboard

Here we can see databases of the system that are now installed in the server:

@raspberrypi: ~

BE~

Installing MySQL driver for PHP

It's important to install our driver to communicate PHP5 with MySQL database server, to

do that we will need MySQL driver for PHP to access MySQL database, execute this
command to install PHP-MySQL Driver.

sudo apt-get install php5 php5-mysql

[157]

Building a Web Monitor and Controlling Devices from a Dashboard

Testing PHP and MySQL

In this section, we will make a simple page to test PHP and MySQL with the following
command:

sudo nano /var/www/html/hellodb.php

pi@raspberrypi: ~ vae|[-@]
myp

[158]

Building a Web Monitor and Controlling Devices from a Dashboard

The following screenshot has the script that has the code to access the database, connect to

the server, and get the data from it:

@ pi@raspberrypi: ~

GNU nano 2.2.6 File: /var/www/html/hellodb.php

[Read 18 lines]

o[@]

[159]

Building a Web Monitor and Controlling Devices from a Dashboard

To test the page and connection between PHP and MySQL, type the IP address of your
Raspberry Pi: http://192.168.1.105/hellodb.php . The page that should similar to the

following screenshot:

Q=

« C' [} 1921681105
T) Otros maseadores

i Aphcacones M More About the ESP
Lust of Databases

nformanion_schema
mysgl

performance_schema

Installing PhpMyAdmin for administrating
databases

In this section, we will talk about how to configure your PhpMyAdmin to administrate
your database from a remote panel. It's important that we install the client and the module

PHPS5 in the Apache server, so type the following command:
sudo apt-get install mysql-client php5-mysql
Next we will install the phpmyadmin package with the following command:

sudo apt install phpmyadmin

[160]

Building a Web Monitor and Controlling Devices from a Dashboard

In the following screenshot, we can see the configuration of the server; in this case, we need
to select apache2:

gP COM3s - PuTTY [ESIEN =X

[161]

Building a Web Monitor and Controlling Devices from a Dashboard

We choose the apache? server:

r 3
#P COM35 - PuTTY O | E) S

[162]

Building a Web Monitor and Controlling Devices from a Dashboard

After that we can select the database:

(#P COM35 - PuTTY

[163]

Building a Web Monitor and Controlling Devices from a Dashboard

We choose the option <No>:

-
#P COM35 - PuTTY

[164]

Building a Web Monitor and Controlling Devices from a Dashboard

Configuring the Apache server

It's necessary that we make the configuration of the file apache2.conft. First go to the

Terminal on your Pi:

sudo nano /etc/apache2/apache2.conf

In the following screen, we need to add the code:

Include /etc/phpmyadmin/apche.conf

@ pi@raspbemypi: ~

GNU nano 2.2.6 File: /etc/apache2/apache2.conf

[165]

Building a Web Monitor and Controlling Devices from a Dashboard

We include the following line in the bottom of the file:

Include /etc/phpmyadmin/apche.conf

(£P pi@raspberrypi: ~ [=nlilE)]ﬂ:?-lw

GNU nano 2.2.6

File: /etc/apache2/apache2.conf Modified

Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES) ?

We have finally finished installing our Apache server, and we are now ready for the next
step.

[166]

Building a Web Monitor and Controlling Devices from a Dashboard

Entering to the phpMyAdmin remote panel

After we have configured the server we will enter the phpMyAdmin remote panel, we need
to open our favorite web browser and type the IP Address of our Raspberry Pi:
http:// (Raspberry Pi Address)/phpmyadmin, which will show the following screen:

& C | @ 192.168.1.108 X t BhB9AII5864chS B o

59 Apieacianss W] Mors About the BSP Otrs marcadoess

php
Welcome to phpMyAdmin

Language

English

Log in &
Username:

Password:

[167]

Building a Web Monitor and Controlling Devices from a Dashboard

Showing the Arduinobd database

The following screenshot shows the database created in the server:

€ - C | O 192168.1.108/pF

findex.php?token=abaBdb2eSTbfTda3fa3 3443977 6cSEPMAURL-Dindex php?db=Bitable=Eiserver=18target=token=abaBdb2eSTbfTdadfa33443077i6c ¥ B & | ¢

i35 Aplicaciones M More About the ESPE

phpMyAdmin
filselle

Recent Favortes
g New

4 arduino

g

. information_schema

) mysql

1 performance_schema

| Otros marcadores

i Dawbases [J SOL & Status = Users @ Expot) Import /° Setings | Replicaton & Varisbles B Charsets (§ Engines

Genera e

G Change passord

1 Server comnecton collion ;| ufémb_general i

& Lanquage g English
& Theme: | pmahomme
+ Font size: _32% 7,

Vo seigs

[168]

» Server Localhost via UNIX socket

+ Senver type: MySQL

+ Server version: 5.5.5240+debfu1 - (Raspbian)
+ Protocol version 10

+ User. root@localiost

+ Server charset: UTF-3 Unicods (ulff)

Web server

+ Apachel2 4 10 (Raspbian)
+ Database chient version: libmysql - 5.6.62
+ PHP extension: mysgh @

» Version information: 4.2 12deb2+debSu2
+ Documentation

« Wiki

+ Official Homepage

v Contribute

+ Get suppor

» List of changes

Building a Web Monitor and Controlling Devices from a Dashboard

The following screenshot shows the table measurements, columns, id, temperature and
humidity:

L C | O 192.168.1.108/phpmyadmin/index.php?token=abafdb2 ture. itable=mea
1 Aglicaciones M More About the ESP
phngAdmm [Server locahost » [Databace: ardunobd » [Table: measurements
ﬁﬂ 4001€ | Browse ¥ Stucture [SQL 4 Search !-c Insett s Export i Import = Privileges J° Operations 2 Triggers
Recent Favontes # Name Type Collation Attributes Null Default Extra Action
g New 1id nt{1) No Nene AUTO INCREMENT .7 Change @ Drop 9 Prmary [Unsque i Index [Spabial 7 Fultext 1] Distinct values
- arduino 2 temperature int(11) No Nere o Change @ Drop . Primary |g Unique =] Index P Spatial) Fulltext 7] Distinct values
f-] ardunobd 3 humidity int(11) No None & Changs (@ Drop 5 Primary [§§ Unique 7] Index [Spatial 7 Fulltext [T Distinct values
L) New
]
+..} measurements T [iCheckAl Withaselecled [Browse ,FChange @Drp JoFnmary [Unigue 5] Index
4. informalion_schema & Printview o Relation view J Propose table structure @ o Move columns
f— mysql
.| pedomance_schema Fedd |1 column(s) ® ALEnd of Table O At Beginning of Table) After | id T oGo
+ Indexes
Information
Space usage Row statistics
Data 1 KB Format compact
Index ¢B Collation utfy_spanish_ck
Total 16 Kif Next autoindex [
Creation Nov 3, 26 3t 8:13

Sending data from Arduino and the Ethernet
shield to the web server

We use an Arduino and the Ethernet Shield connected to the network, Arduino sends data
to the web server published in the Raspberry Pi Zero.

[169]

Building a Web Monitor and Controlling Devices from a Dashboard

You can now either copy the code inside a file called arduino_xaamp_mysql.ino, or just
get the complete code from the code folder of this book:

We enter the Ip address of the Arduino UNO:

IPAddress 1ip(192,168,1,50);

We configure the IPAddress of our Raspberry Pi Zero:

IPAddress server(192,168,1,108);

We need to connect to the web server:

if (client.connect (server, 80))

These lines define the HTTP request from the remote server:

client.println("GET /dataloggerl.php?temp=" + temp + "&hum=" + hum + "
HTTP/1.1");
client.println("Host: 192.168.1.108");
client.println("Connection: close");
client.println();

The rest of the code is shown in the following lines:

// Include libraries

#include <SPI.h>

#include <Ethernet.h>

#include "DHT.h"

// Enter a MAC address for your controller below.

byte mac[] = { 0x90, O0xA2, O0xDA, 0x0E, OxFE, 0x40 };

// DHT11 sensor pins

#define DHTPIN 7

#define DHTTYPE DHT11

IPAddress 1ip(192,168,1,50);

IPAddress server(192,168,1,108);

EthernetClient client;

DHT dht (DHTPIN, DHTTYPE);

void setup () A
// Open serial communications
Serial.begin(9600);

Ethernet.begin (mac, ip);

Serial.print ("IP address: ");
Serial.println(Ethernet.locallIP());
delay (1000);
Serial.println("Conectando...");

}

void loop ()

[170]

Building a Web Monitor and Controlling Devices from a Dashboard

float h = dht.readHumidity () ;
float t = dht.readTemperature();
String temp = String((int) t);
String hum = String((int) h);
if (client.connect (server, 80)) {
if (client.connected()) {
Serial.println("conectado");

Make an HTTP request:

client.println ("GET /dataloggerl.php?temp=" + temp + "&hum=" + hum +
" HTTP/1.1");
client.println("Host: 192.168.1.108");
client.println("Connection: close");
client.println();
}
else {
// If you didn't get a connection to the server
Serial.println("fallo la conexion");

}

Thes lines define how the instance of the client can read the response:

while (client.connected()) |
while (client.available()) |
char ¢ = client.read();
Serial.print (c);
}

}

If the server's disconnected, stop the client:

if (!client.connected()) {
Serial.println();
Serial.println("desconectado.");
client.stop();

}

}

Repeat every second:

delay (5000);

[171]

Building a Web Monitor and Controlling Devices from a Dashboard

Here we can see the hardware that we used:

Datalogger with MySQL

In the following section, we will build a Datalogger that will record the data temperature
and humidity in the server so that we can get data whenever we want and display it in a
web page.

Programming the script software

In the following code, we have a script that will communicate with the Arduino board, and
it is installed in the server.

You can now either copy the code inside a file called dataloggerl.php, or just get the
complete code from the folder for this project:

<?php
if (isset ($_GET["temp"]) && isset (S_GET["hum"])) {
Stemperature = intval ($_GET["temp"]);
Shumidity = intval ($_GET["hum"]);
Scon=mysqgl_connect ("localhost", "root", "ruben", "arduinobd") ;
mysqgl_select_db ('arduinobd', $con) ;

if (mysgl_query ("INSERT INTO measurements (temperature, humidity)

[172]

Building a Web Monitor and Controlling Devices from a Dashboard

VALUES ('S$Stemperature', 'Shumidity');")){
echo "Data were saved";

t
else {
echo "Fail the recorded data";

}

mysqgl_close (Scon) ;

}

7>

Testing the connection

After we have installed the file of the script, we need to open a web browser in your
computer and type the IP address of your Raspberry
Pi/dataloggerl.php?temp=70&hum=100, the link will look like as
(http://192.168.1.108/dataloggerl.php?temp=70&hum=100):

€ - C | 192168.1108/dataloggerl phpltemp= 1 =T
121 Aplicaciones M More About the ESP el

Datos guardados

[173]

Building a Web Monitor and Controlling Devices from a Dashboard

The following screenshot shows the results of the data saved on the database:

& G | © 192.168..108/php

Y Aglicaciones M) Mare About the ESF

dmin/indexphp?t db2eSTbda3f0a33443977f6cSHPMAURL-4:b_structure.php?db=arduinobditable=measurementsitserver=1&target=&token=ab. ¥ K4

(Otros mancadores

phpMyAdmm 0 < Database: arduinobd » 8 Table: meas : ~
AEGOIS 7 Browse T Swuctwre LJ SGL 4 Search ¥ Insen 3 Ewpont =} Impomt = Privileges 4 Operations 25 Triggers
Recent Favorites T id temperature humidity
l_nm [U e Ly g Uewte 13 3)
.13 ardino [o Edit & Copy @ Delete 144 B
:£__;M 0 Edt 3 Copy @ Delete 145 B
Lighen [o Edt 3 Copy @ Delete 146 0
ér]{w [7 Edt § Copy @ Delete 147 &)
gl [o/ Edit & Copy @ Dokt 148 £
i,-.;"'rw 0 Edt 3 Copy @ Delete 149 n
.13 perlonmance schema [&/ Edt 3 Copy @ Delee 150 £

[& Edt 3 Copy @ Delete 151
[o Edit 3 Copy @ Delote 182
[JEdt 3 Copy @ Delte 153
[Edt 3 Copy @ Delte 154
[7 Edt 3 Copy @ Delee 155
| o/ Edit < Copy @ Delate 156
[JEdt 3 Copy @ Delte 157
() J7Ed 3 Copy @ Dekte 168
[& Edit 3 Copy @ Delete 159

4) Check Al

BHE R YR RE SRR ERRER RSB
=

Wih selected 7 Change @ Delete 3 Expot

Number of rows: | 500 * Filter rows: | 5

L

— Query results operations

[174]

Building a Web Monitor and Controlling Devices from a Dashboard

The following screenshot shows the table of the data:

&« C | (192.168.1.108/phpryadmin/index.phptoken=aba8db2e5 7bi7da3 0 f4F p! obd r=18tarqet=Etoken=abaBdb2e57 ¥ & ¥
148 Dplizaciones M More About the EF (Otros marcadores
PhP MyA dm {n B 17 Server: kocalhost » @ Database: amhuncbd » [Table: measurements
AEl300 8] Browse 4 Swmuctwre [SOL 4 Search 3¢ Insert i Fxport =) Import af Privileges §° Operations 5 Triggers
Recent Favorites Puafiing [Infine | [Ecit] [Explain SOL] [Create PHP Code] [Refiesh]
[
*|. | arduno Number of rows: | 500 * Filter rows:
l_ anduinobd
I__ o New Son by key | None v
ot + Oplions.
#|. information_schema T v id temperatue humidity
1'-- ; mysql o Edit §é Copy @ Delete 1 % 1
al,_ performance_schema o/ Edit § Copy @ Delete 2 . B
o Edt 34 Copy @ Delete 3 % 1
| o Edit 3 Copy @ Delete 4 % n
& Edit 3 Copy @ Delete & % E<]
o Edit 3 Copy (@ Delete 6 5 B
& Edit 3é Copy @ Delete 7 . n
o Edit §i Copy @ Delete 8 % k&
& Edit i Copy @ Delete 9 % B
o Edit 3¢ Copy @ Delete 10 5 n
7 Edit 3 Copy @ Delete 11 % 1
o Edit 3 Copy @ Delete 12 b3 1
& Edit ¥ Copy @ Delete 13 % Ex]
o Edit é{’ Copy @ Delete 14 . 1
& Edit 3¢ Copy @ Delete 15 % n
o Edit % Copy @ Delete 16 5 B
7 Edit 3¢ Coov @ Delete 17 % k3] S

Data queries from the database

It's important to have data recorded and to make some queries to have the data show in the
web page.

Software for the scripts

Here we have the scripts that we used to show the data in the page:

[175]

Building a Web Monitor and Controlling Devices from a Dashboard

You can now either copy the code inside a file called query1.php, or just get the complete
code from the folder for this project:

<!DOCTYPE html>

<html>

<body>

<h1>Clik on the buttons to get Data from MySQL</hl>
<form action="queryl.php" method="get">
<input type="submit" value="Get all Data">
</form>
</br>

<form action="query2.php" method="get">
<input type="submit"value="Humidity <= 15">
</form>

</br>

<form action="query3.php" method="get">

<input type="submit" value="Temperature <=25">
</form>

</br>

<?php

Scon=mysqgl_connect ("localhost", "root", "ruben", "arduinobd") ;
mysqgl_select_db ('arduinobd', $con) ;
Sresult = mysgl_qguery ("SELECT * FROM measurements");
echo "<table border='1"'>
<tr>
<th>Measurements</th>
<th>Temperature (°C)</th>
<th>Humidity (%)</th>
</tr>";
while (Srow = mysqgl_fetch_array (Sresult)) {
echo "<tr>";

echo "<td>" . Srow['id'] . "</td>";

echo "<td>" . Srow|['temperature'] . "</td>";
echo "<td>" . Srow['humidity'] . "</td>";
echo "</tr>";

}

echo "</table>";
mysqgl_close (Scon) ;
7>

</body>

</html>

[176]

Building a Web Monitor and Controlling Devices from a Dashboard

In the following screenshot we have the data:

€ > C | @ 1921681108 /queryly o

H Apkcaciones M More About the 59 Otros mascadores

Clik on the buttons to get Data from MySQL

Temperature <=25

Measurements | Temperature (°C) [Humidity (%)

35 33

1
5
3 25 33
4
5

14 25 :

Scripts for specific data to be displayed

In the following lines we see that we can make some SQL queries to have information of
specific values and get the values from the temperature and humidity:

<?php
Scon=mysqgl_connect ("localhost", "root", "ruben", "arduinobd") ;
mysqgl_select_db ('arduinobd', $con) ;
Sresult = mysqgl_query ("SELECT * FROM measurements where humidity <= 15
order by id");
echo "<table border='1l'>
<tr>
<th>Measurements</th>
<th>Temperature (°C)</th>
<th>Humidity (%)</th>
</tr>";
while ($row = mysqgl_fetch_array ($result))
echo "<tr>";

[177]

Building a Web Monitor and Controlling Devices from a Dashboard

echo "<td>" . Srow['id'] . "</td>";
echo "<td>" . Srow['temperature'] . "</td>";
echo "<td>" . Srow['humidity'] . "</td>";

echo "</tr>";
}
echo "</table>";
mysqgl_close (Scon) ;
7>

Query for recording temperature

In this section, we will create a query to get temperature measurements. We call the server
reference to the localhost, in this case it is the Raspberry Pi zero device, the user, and the
name of the database:

<?php
Scon=mysqgl_connect ("localhost", "root", "ruben", "arduinobd") ;
mysqgl_select_db ('arduinobd', $con) ;
Sresult = mysqgl_query ("SELECT * FROM measurements where temperature <= 25
order by id");
echo "<table border='1'>
<tr>
<th>Measurements</th>
<th>Temperature (°C)</th>
<th>Humidity (%)</th>
</tr>";
while (Srow = mysql_fetch_array (Sresult)) {
echo "<tr>";

echo "<td>" . Srow['id'] . "</td>";

echo "<td>" . Srow|['temperature'] . "</td>";
echo "<td>" . Srow['humidity'] . "</td>";
echo "</tr>";

}

echo "</table>";
mysqgl_close ($Scon);
?>

[178]

Building a Web Monitor and Controlling Devices from a Dashboard

The result of the queries is shown in the following screenshot:

€ & C | © 192.1681.108/query3 php? 18- 4B
e MAplicaciones] More About the ESF Dtros marcadores
Measurements Temperature (°C) Humidity (%)
! 2 &

2 25 33

i 1] 33

4 25 33

5 25 33

6 25 33

b5 B

8 15 33

9 1] 33

10 25 33

11 25 33

12 2* 33

13 3‘ 33

14 23 33

15 23 33

16 _:5 33

1 _15 33

18 25 33

19 25 33

M i 33

] 3] 33

n |5 |5

5 5 E

K] 25 33

5 K 33

Controlling and dimming a LED

In this section, we will discuss a project that can be applied to a home automation. We will
dim an LED of DC, this can done to a lamp in a house. The LED will change its brightness,
and we connect the LED to the GPIO18 of the Raspberry Pi in series with a resistor of 330
ohms.

[179]

Building a Web Monitor and Controlling Devices from a Dashboard

Software requirements

First we need to install the pigpio package. In the Terminal, type the following:
wget abyz.co.uk/rpi/pigpio/pigpio.zip

Then unzip the package:
unzip pigpio.zip

After that, navigate to the unzipped folder with the following:

cd PIGPIO

Type the following to execute the command:

Make

Finally install the file:

sudo make install

Testing the LED

In this section, we will test the sensor with a script in Node.js:
var Gpio = require('pigpio') .Gpio;

// Create led instance
var led = new Gpio (18, {mode: Gpio.OUTPUT}) ;
var dutyCycle = 0;
// Go from 0 to maximum brightness
setInterval (function () {
led.pwmWrite (dutyCycle) ;
dutyCycle += 5;
if (dutyCycle > 255) {
dutyCycle = 0;
}
o 20);

We can already test this code, navigate into the folder of this project with a Terminal on the
Pi, and type the following:

sudo npm install pigpio

[180]

Building a Web Monitor and Controlling Devices from a Dashboard

This will install the required node . js module to control the LED. Then, type the following;:

sudo node led_test.js

This is the final result:

Controlling the LED from an interface

In this section, we will control the LED from a web page. For which we will use HTML to
make the interface with the user, using node. js.

Let's take a look at the Node js files that are included in the following code:

// Modules

var Gpio = require('pigpio') .Gpio;
var express = require ('express');
// Express app

var app = express|();

// Use public directory

app.use (express.static ('public'));

// Create led instance

var led = new Gpio (18, {mode: Gpio.OUTPUT}) ;

// Routes
app.get ('/', function (req, res) A
res.sendfile(__dirname + '/public/interface.html');

[181]

Building a Web Monitor and Controlling Devices from a Dashboard

)i
app.get ('/set', function (req, res) {

// Set LED
dutyCycle = reqg.query.dutyCycle;
led.pwmWrite (dutyCycle) ;

// Answer
answer = {

dutyCycle: dutyCycle
i

res.json (answer) ;

1)

// Start server
app.listen (3000, function () {
console.log('Raspberry Pi Zero LED control');

1)

It's now finally time to test our application! First, grab all the code from this book's
repository and navigate to the folder of the project like before. Then, install express with
the following command:

sudo npm install express
When this is done, start the server with the following command:

sudo node led_control.js

You can now test the project, open the web browser in your computer, and type the link —
http:// (Raspberry PI)/set?dutyCycle=20, and we can see that the LED changes
with the value.

Then open your web browser with http://192.168.1.108:3000 and you should see the
control in a basic web page:

LED Control

[182]

Building a Web Monitor and Controlling Devices from a Dashboard

Controlling the speed of a DC motor

It's common to have a window or a garage door in a house. We need to automate these
kinds of devices, so that we can move these objects with a DC motor. In this section, we will
see how to connect a DC motor to the Raspberry Pi. To do this, we will use a L293D circuit
to control the motor.

First we will see how to connect the motor to our Raspberry Pi Zero board. In the following
diagram, we can see the pins out of the LD293 chip:

‘I.2EN[1 U1G]VCC1
1Afl2 15[J4A
Y[l3 ey

HEAT SINKAND J (|4 13[] L HEAT SINK AND
GROUND| [|5 12[] J GROUND

v fls nfay
A[l7 10[3A

Veco[18 9] 34EN

We basically need to connect the components of the circuit, as follows:

e GPIO14 of the Raspberry Pi to pin 1A
GPIO15 of the Raspberry Pi to pin 2A
GPIO18 of the Raspberry Pi to pin 1, 2EN
DC motor to pin 1Y and 2Y

5V of the Raspberry Pi to VCC1

GND of the Raspberry Pi to GND
Adapter regulator to VCC2 and GND

[183]

Building a Web Monitor and Controlling Devices from a Dashboard

The following image shows the results:

We will now test the speed of the DC motor from 0 to the highest speed:

// Modules

var Gpio = require('pigpio') .Gpio;

// Create motor instance

var motorSpeed = new Gpio (18, {mode: Gpio.OUTPUT});

var motorDirectionOne = new Gpio (14, {mode: Gpio.OUTPUT});
var motorDirectionTwo = new Gpio (15, {mode: Gpio.OUTPUT})

// Init motor direction
motorDirectionOne.digitalWrite (0);
motorDirectionTwo.digitalWrite (1) ;
var dutyCycle = 0;

// Go from 0 to maximum brightness
setInterval (function () A
motorSpeed.pwniWrite (dutyCycle) ;
dutyCycle += 5;
if (dutyCycle > 255) {
dutyCycle = 0;
}
b 20);

[184]

Building a Web Monitor and Controlling Devices from a Dashboard

Here we have the code for this application to control the DC motor using the interface in a
web page:

// Modules
var Gpio = require('pigpio') .Gpio;
var express = require('express');

// Express app

var app = express|();

// Use public directory

app.use (express.static ('public'));

// Create led instance

var motorSpeed = new Gpio (18, {mode: Gpio.OUTPUT});

var motorDirectionOne = new Gpio (14, {mode: Gpio.OUTPUT}) ;
var motorDirectionTwo = new Gpio (15, {mode: Gpio.OUTPUT}) ;

// Routes
app.get ('/', function (req, res) {

res.sendfile(__dirname + '/public/interface.html');

)i

app.get ('/set', function (req, res) {
// Set motor speed
speed = reqg.query.speed;
motorSpeed.pwmiWrite (speed) ;

// Set motor direction
motorDirectionOne.digitalWrite (0);
motorDirectionTwo.digitalWrite (1) ;

// Answer
answer = {
speed: speed
}i
res.json (answer) ;

)i

// Start server
app.listen (3000, function () {

console.log('Raspberry Pi Zero Motor control started!');
P

[185]

Building a Web Monitor and Controlling Devices from a Dashboard

We see the interface of the user in the following code:

$(document) .ready (function () {
S ("#motor-speed") .mouseup (function () A

// Get wvalue
var speed = $('#motor-speed') .val();

// Set new value
$S.get ('/set?speed="' + speed);

P

P

<!DOCTYPE html>
<html>

<head>

<script src="https://code.jquery.com/jquery-2.2.4.min.js"></script>

<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css
">

<script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"><
/script>

<script src="js/interface.js"></script>

<link rel="stylesheet" href="css/style.css">

<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body>

<div id="container">
<h3>Motor Control</h3>
<div class='row'>
<div class='col-md-4'></div>
<div class='col-md-4 text-center'>
<input id="motor-speed" type="range" value="0" min="0" max="255"
Step="l ">
</div>

<div class='col-md-4'></div>

</div>

[186]

Building a Web Monitor and Controlling Devices from a Dashboard

</div>

</body>
</html>

To test the application, you need to open the web browser in your computer with the link,
http://192.168.1.108:3000, and then you need to replace the IP Address of your Pi.
Here we have the interface for this:

Motor Control

Controlling Lights with electrical circuits

In the following sections, you will find ideas on how to dive into more projects that control
other devices in the house.

Electrical appliances

In houses we have electrical appliances, for example, lamps, washing machines, heaters,
and other appliances that we only need to turn on or off. In this section, we will learn how
to control a lamp connected to the Raspberry Pi Zero, using electrical circuits for interfacing
the signal. We will use an optocoupler such as MOC3011, and a Triac. The following figure
shows the circuit of the application:

CARGA
RESISTIVA
CA,

A

[187]

Building a Web Monitor and Controlling Devices from a Dashboard

Here we have the final project connected to the Raspberry pi Zero:

Here we have the JavaScript code for controlling the device:

// Modules
var express = require('express');

// Express app
var app = express|();

// Pin
var lampPin = 12;

// Use public directory
app.use (express.static ('public'));

// Routes
app.get ('/', function (req, res) {

res.sendfile(__dirname + '/public/interface.html');

)i

app.get ('/on', function (req, res) {

[188]

Building a Web Monitor and Controlling Devices from a Dashboard

We

PiREST.digitalWrite (lampPin, 1);

// Answer
answer = {

status: 1
Fi

res.json (answer) ;

1)

app.get ('/off', function (req, res) {
PiREST.digitalWrite (lampPin, 0);

// Answer
answer = {

status: O
Fi

res.json (answer) ;

)i

// aREST

var piREST = require('pi-arest') (app);
PiREST.set_1id('34f5eQ"');
PiREST.set_name ('my_rpi_zero');

// Start server

app.listen (3000, function () {
console.log('Raspberry Pi Zero lamp control started!');
F) i
need an interface that can control the lamp from the web page in the HTML language:
<!DOCTYPE html>
<html>
<head>

<script src="https://code.jquery.com/jquery-2.2.4.min.js"></script>

<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css
">

<script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"><
/script>

<script src="js/script.js"></script>

<link rel="stylesheet" href="css/style.css">

<meta name="viewport" content="width=device-width, initial-scale=1">

[189]

Building a Web Monitor and Controlling Devices from a Dashboard

</head>
<body>
<div id="container">
<h3>Lamp Control</h3>
<div class='row'>
<div class='col-md-4'></div>
<div class='col-md-2"'>
<button id='on' class='btn btn-block btn-primary'>On</button>
</div>
<div class='col-md-2"'>
<button id='off' class='btn btn-block btn-warning'>0ff</button>
</div>
<div class='col-md-4'></div>
</div>

</div>

</body>
</html>

After entering the web browser, we will see the following interface:

Lamp Control

Other appliances

In this section, we will show other applications that you can consider creating and
controlling, and then use them in the home or different areas.

[190]

Building a Web Monitor and Controlling Devices from a Dashboard

Control adoor lock

In this section, we will see other appliances that can be controlled from an interface and
connected to the Raspberry pi. In the house we can control a door lock from a web interface:

Control watering plants

Another appliance that we can control is watering plants with a Plastic Water Solenoid
Valve - 12V, connected to the Raspberry Pi:

With this project we can make an automated watering system, add a humidity sensor, and
program the time that the plants of the garden will be watered.

[191]

Building a Web Monitor and Controlling Devices from a Dashboard

Remote access from anywhere to your
Raspberry Pi Zero

If we want access to our Raspberry Pi from outside our network, we need to do the
following;:

e Check if our modem has a public IP address
e Investigate the address that we'll be using in our browser
e Type http://whatismyipaddress.com/ in our browser

EDE ¢ o whatimpprssencom’ 0+ & | M Recitidos obeneivan | $F Pigina pincipal - Drop.. | &8 Tecnobogiosent Educ.. | W& Whatlshty b tave | % Sigmin:- No-B Frgsio

Anhivo Edodn Yo Frosbes Hemsmestis Ayds * @ Comenic ~ [Seleccionsr

IP Lookup

‘ T Em' Your IP Address Is:
. 3 207.249.157.116

Your IP Details: Never miss an update

ISP: Axtel, SAB. de CV. Enter Your Email
| Services: None Detected
City:Ledn
Region: Guanajuato
Country: Mexico Like our site? L et us know,
Don't want this known? Hide vour P detass

Blacklist Check —=————F.." pr—- . Lo s ste?
1= .,_@ -] T M aed kT | | Poiturien

Hawe you been blackisled

it/ /whatismyipaddress.com/ip/ 207 49157 136 LAE

IP provided by the ISP are genteraly dynamic IP which changes after some time. In our
cases we need to have static addresses which does not change occasionally.

How to access our modem to configure it

Access our modem via the Ip address (gateway) and go to the port addressing part.
Configure port 80 that points to our web server (put the IP address of our account), this IP
address is the one that automatically assigns the DHCP server of our system.

[192]

Building a Web Monitor and Controlling Devices from a Dashboard

Here we have some ports that can be forwarded from the modem-router:

Gl lI[sei[ee]| [FeP]
C—)]
[Freos |z |22 | e~
[Teinet zz" Jl[z2— || =@~
[suP Nzs Jl[zs]| [Fer~)
e e || Do)
e |75 1|75 || Fee~)
[(e] =)
[Por3 IEze J|[zz0 || [Fer v
[nnTe [zxs]|[zzs]| [Ter~]
B llzex_ |{[ze2]| [uoP]
[evs l|[z302]|[z302 || [Fer~
[sms ||[z701]|[z701 || [FeP =
[sMs-men([2702 ||[2702 || [TcP]

To get the gateway IP address, type the ipconfig command, you need to have admin
rights. After this, type http://gatewayip_addres in the web browser of your router. 1:

€ - @ ©wesll ®|i

i Acheacionas M Mare Abeut the £S5) : X e P Mo
1 Se requiere autenticacion F

it /132.168.11 necesita un mamboe 2 usuand y una
contaea.

Tia conendn con eshe site no e prvada.

Nombee de usuario:

Contrasefla:

Iniciar sesion | | Cancelar

[193]

Building a Web Monitor and Controlling Devices from a Dashboard

This is an example of what you'd see if you had a Linksys router, yours may be a different
interface:

€ & C | @ 1921681 setup coimext fle=Setupht W !
1! Aghcaciones M More About the E5F Otres mareaderes

LINKSYS by Cisco

Wirgless-N ADSL2+ Modem Router RGN

Appicaronsk pdmisstntion Status

e Accns
—— Bratrictmna Gaming

C Addews Cone | Avanc)

ienereat Connection Type | Enzicauisien REC 25W PRRCE ¥
VORI | Wty *uc Uwe
0o Type R v
re .
R]
st Scie © thatss
il Citet : VP (Range 0-255
VE! iRange 0-82835)

[ERTA ADsM T

PPROE Settings. L Mo A TTIT RS
Eanaces =

Sarvice Namel cptenalr procyretm

Goemact on Demard - Mg e Ty |5 | Miwtes

L
el Heat Name:
ame.
Doman tare:
MTY P

To open a port we need to configure our router to give permissions for entering from
outside, so we need to give permission in our router:

e Recivat: %' @ Woddo s x (B Tumriasl % ¥ W Tuonai- % ¥ @ Hedrol ! %) Geun-1 x ¥ [) TRL0pE 3V Fostuna s 5 Y By T RV [Sogie b :u\a.llsu.aw
& = | @ 1901881 Vserp cgiinent_fle=SingleForwasding b W

1 Aphcaciones) More About the 157 Caros marcadares
LINKSYS by Cisco

Applications &
‘Gaming

Singia Port Ferwmrding

Building a Web Monitor and Controlling Devices from a Dashboard

This screenshot shows the final results, how to open a port number 3000, and the name of
the application node:

€ C Om

152 Aghcaciones M Mk

B o

bout the ESP Orros mareadoees

frger
NTP
Saee
NS
SIS
spacte
apachewet
dosx
i = Change this IP
Change this number = ad;relise o I:Our
of the port (3000) = Raspberry Pi Zero
[— e
.-I e

Configuring Dynamic DNS

We need to configure a domain name service so we can access our web server by typing the
name of our domain (it is very difficult to learn the IP addresses of the web pages). That's
why Domain Name Servers (DNS) were created. Follow the next section to create a
domain.

You may want to access your IoT control panels away from home. In that case, your web
server will need to become a host on the Internet.

This is not a straightforward thing since it's behind the router in your home. Your ISP
generally does not give you a static public IP address because most users are simply
accessing the web, not serving web pages.

Therefore, the public side of your router is given an IP address that can change from time to
time. If you browse to <whatsmyip. . .>, you will see what your public IP is currently.

[195]

Building a Web Monitor and Controlling Devices from a Dashboard

Tomorrow it could be different. For setting up external access, you can do one of two
things. If you want to simulate having a static IP, you can use a service such as Dynamic
DNS. If you just want to “try out” external access, you can open a port on your router

Benefits of having Dynamic DNS:

¢ One solution is to install a client that will allow the public IP to make it fixed. The
client function (software that is installed on a computer), maintains
communication with the site www.no-ip.org.

e When the IP address of our modem changes, the client takes that IP change.

e This allows our domain name to always point to our public IP address. The
software that is installed is called: No-IP DUC.

Creating an account at No-ip.org

In the following screenshot we can see the Enhance dynamic DNS setting up:

‘S"-_ noipxo;» . % Q) - WebSearch Al A& D
F L Buscar | Segun & DoMNotTrack [T | = Tiempo Ki Facebook | & |2 Q
. h Bluetooth | |5 Arduino ejemplos con LCD, Display, — | 1) Free Dymamic DNS - Managed DNS -
[e

Services Why No-IP? Download Support

Personal Use Business Use

Dynamic DNS allows you 1o monilor your home remolely via Trus! pur DNS expents wilth your web domaing DNS

wehCam, acCess your compuler remolily, O even run your oan management. Our Managed DN SUre your website is

server all on a dynamic IP address. fast, reliable and always availabile

[196]

Building a Web Monitor and Controlling Devices from a Dashboard

Controlling lights and measuring current
consumption

Now in this section we will explain how to control and monitor your current consumption
when the light is on or off. Using your Arduino Wi-Fi shield from a web page, we will
monitor this variable. When the light is off it looks as follows:

[197]

Building a Web Monitor and Controlling Devices from a Dashboard

When the light is on it looks as follows:

You can now either copy the code inside a file called
Controlling_lights_Current_Consumption.ino, or just get the complete code from
the folder of this book.

Define variables and functions to monitor and control:

#define NUMBER_VARIABLES 2
#define NUMBER_FUNCTIONS 1

Import libraries to use:

#include <Adafruit_CC3000.h>
#include <SPI.h>

#include <CC3000_MDNS.h>
#include <aREST.h>

[198]

Building a Web Monitor and Controlling Devices from a Dashboard

Configure the relay to activate:

const int relay_pin = 8;

Variables to calculate the current:

float amplitude_current;

float effective_value;

float effective_voltage = 110;
float effective_power;

float zero_sensor;

We define the pins for configuring the module:

#define ADAFRUIT_CC3000_IRQ 3

#define ADAFRUIT_CC3000_VBAT 5

#define ADAFRUIT_CC3000_CS 10

Adafruit_CC3000 cc3000 = Adafruit_CC3000 (ADAFRUIT_CC3000_CSsS,
ADAFRUIT_CC3000_IRQ, ADAFRUIT_CC3000_VBAT) ;

We create the instance:

aREST rest = aREST();

We define the SSID and the password of your network:

#define WLAN_SSID "XXRXXKKK"
#define WLAN_PASS "XXRXXRKRX"
#define WLAN_SECURITY WLAN_SEC_WPAZ2

We configure the port of the server:

#define LISTEN_PORT 80

Instance of the server:

Adafruit_CC3000_Server restServer (LISTEN_PORT) ;
MDNSResponder mdns;

Variables that are used:

int power;
int light;

[199]

Building a Web Monitor and Controlling Devices from a Dashboard

Publish the variables that are used:

voild setup (void)

{
Serial.begin(115200);
rest.variable ("light", &light);
rest.variable ("power", &power) ;

Set the relay pin that is the output:

pinMode (relay_pin, OUTPUT) ;

Calibrate the current sensor:

zero_sensor = getSensorValue (Al);

We declare the id and the name of the device:

rest.set_id ("001");
rest.set_name ("control");

In this part, we check if the device is connected:

if (!'cc3000.begin())
{
while (1) ;

if (!'cc3000.connectToAP (WLAN_SSID, WLAN_PASS, WLAN_SECURITY)) {
while (1) ;

t
while (!cc3000.checkDHCP())

{
delay (100) ;

}
In this part, we define the request for communication:

if (!mdns.begin("arduino", cc3000)) A
while (1) ;
}

displayConnectionDetails () ;

Lets's start the server:

restServer.begin () ;
Serial.println(F ("Listening for connections..."));

[200]

Building a Web Monitor and Controlling Devices from a Dashboard

We read the sensors:

void loop () A
float sensor_reading = analogRead (A0);
light = (int) (sensor_reading/1024*100);
float sensor_value = getSensorValue (Al);

We make the calculus of the current and acquire the signals:

amplitude_current = (float) (sensor_value-zero_sensor)/1024*5/185*1000000;
effective_value = amplitude_current/1.414;

effective_power = abs (effective_value*effective_voltage/1000);

power = (int)effective_power;

mdns.update () ;

We define incoming requests:

Adafruit_CC3000_ClientRef client = restServer.available();
rest.handle (client);

}

We display the IP Address configuration:

bool displayConnectionDetails (void)
{

uint32_t ipAddress, netmask, gateway, dhcpserv, dnsserv;

if (!cc3000.getIPAddress (&ipAddress, &netmask, &gateway, &dhcpserv,
&dnsserv))

{
Serial.println(F ("Unable to retrieve the IP Address!\r\n"));

return false;

}

else

{
Serial.print (F("\nIP Addr: ")); cc3000.printIPdotsRev (ipAddress);
Serial.print (F ("\nNetmask: ")); cc3000.printIPdotsRev (netmask);
Serial.print (F("\nGateway: ")); cc3000.printIPdotsRev (gateway);
Serial.print (F ("\nDHCPsrv: ")); cc3000.printIPdotsRev (dhcpserv);
Serial.print (F("\nDNSserv: ")); cc3000.printIPdotsRev (dnsserv);
Serial.println();
return true;

}

}

Function of the current sensor that calculates the average of certain measurements and
returns the current calculus:

float getSensorValue (int pin)

{

[201]

Building a Web Monitor and Controlling Devices from a Dashboard

int sensorValue;

float avgSensor = 0;
int nb_measurements = 100;
for (int i = 0; 1 < nb_measurements; i++) {
sensorValue = analogRead (pin);
avgSensor = avgSensor + float (sensorValue);
t
avgSensor = avgSensor/float (nb_measurements) ;

return avgSensor;

Building the interface to control and monitor

Here we have the code for displaying the interface that controls the lights and monitoring
the current with the sensor:

Installing Jade for Node.js

It's important to configure the Jade interface applied in this project. To do that we just type
the following command:

npm install arest express jade
If it's necessary, we type the following command in case your system requires that update:

npm install pug

Interface for controlling and monitoring
First, we define the header of the page and add the HTML tag;:

doctype
html
head
title Control and monitoring

We define the links for the functions for jQuery and Bootstrap:

link (rel='stylesheet', href='/css/interface.css')
link (rel='stylesheet',
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.0/css/bootstrap.min.css
n
)
script (src="https://code.jquery.com/jquery-2.1.1.min.js")
script (src="/js/interface.js")

[202]

Building a Web Monitor and Controlling Devices from a Dashboard

We display the buttons to control in the web page:

body
.container
hl Controlling lights
.row.voffset

.col-md-6
button.btn.btn-block.btn-lg.btn-primary#1 On
.col-md-6
button.btn.btn-block.btn-1lg.btn-danger#2 Off
.row

Display the power and light level:

.col-md-4

h3#powerDisplay Power:
.col-md-4

h3#lightDisplay Light level:
.col-md-4

h3#status Offline

Now we will run the application, as we can see in the following screenshot. The server is
open on port 3000, when it starts to send the request to the board, type the address on your
web browser: http://localhost:3000. It shows the web page with both buttons and the
device is connected and is online:

€ C [} localhost L=

i Aghcaciones M Maee About the ESF (3 ures marcadores

Control and monitor current consumption of light

Power. 1 W Light level: 30 % Lamp Online

[Administrader: Node js command prompt - nede appjs = | © i

[203]

Building a Web Monitor and Controlling Devices from a Dashboard

Click on the blue On button to activate the light on the board, after some seconds we can
see that the power increases:

€ 2 € [localbost b =
Y ghcaisons M More Aot the E5F 7 vros marcadoons

Control and monitor current consumption of light

-

Power: 3 W Light level: 31 % Lamp Online

Click on the red Off button, after some seconds the power goes down until 0 W, this means
that everything is working perfectly well:

€ 2 € [localbost
F: Aphaiseat M More About the £S5 3 Otret maseaseres

Control and monitor current consumption of light

Power: 0 W Light level: 4 % Lamp Online

[204]

Building a Web Monitor and Controlling Devices from a Dashboard

Controlling and monitoring Arduino, Wi-Fi,
and Ethernet shields on connected devices
and sensors

In previous sections, we saw how to control and monitor our Arduino boards from a web
page using node . js running on a computer in Windows. In this section, we will use our
fantastic Raspberry Pi Zero with Node.js installed on it and run the JavaScript application
inside the board.

I'have seen the potential of the board instead of using a personal computer installed as a
web server, with this experience making this projects I want tell that the application is more
efficient using our Raspberry Pi Zero running on it.

We will see how to control more than one device in a single dashboard using different
devices, such as the following;:

e Wi-Fi shield
e ESP8266 module
e Ethernet shield

Building the code to control and monitor devices
from a single interface

You can now either copy the code inside a file called app. js, or just get the complete code
from the folder for this project.

Configure the outputs of the devices connected in the system:

S.getqg('queue', '/lamp_control/mode/8/0");
S.getqg('queue', '/lamp_control2/mode/5/0");

Start the function to control:

$ (document) . ready (function () {

[205]

Building a Web Monitor and Controlling Devices from a Dashboard

We make the GET request with the arREST API for ON:

// Function to control lamp Ethernet Shield
S("#1") .click (function() {
$.getqg('queue', '/lamp_control/digital/8/1"');

P
We make the GET request with the ARESt API for OFF :

S("#2") .click (function () {
S.getqg('queue', '/lamp_control/digital/8/0");
1)

We make the same thing for the ESP8266 connected device ON:
//Function to control lamp ESP8266
S("#3") .click (function () {

S.getg('queue', '/lamp_control2/digital/5/0");
P

We make the same thing for the ESP8266 connected device OFF :

S("#4") .click (function() {
$.getqg('queue', '/lamp_control2/digital/5/1");
)i

Get the data from the sensors temperature and humidity:

function refresh_dht () {
S.getqg('queue', '/sensor/temperature', function(data) {
S ('#temperature') .html ("Temperature: " + data.temperature + " C");

)i

S.getqg('queue', '/sensor2/temperature2', function (data) {
S ('#temperature2') .html ("Temperature: " + data.temperature2 + " C");

)i

S.getqg('queue', '/sensor/humidity', function (data) {
S ("#humidity') .html ("Humidity: " + data.humidity + " &");

)i
$S.getg('queue', '/sensor2/humidity2', function (data) {

o)

$('#humidity2') .html ("Humidity: " + data.humidity2 + " 3");

[206]

Building a Web Monitor and Controlling Devices from a Dashboard

This code refresh the page every 10000 sec:

refresh_dht ();
setInterval (refresh_dht, 10000);
)i

Adding the devices to monitor and control

I can see that the system is very stable; we need to add the devices that will be monitored
from the Raspberry Pi Zero with the following application in JavaScript snippet.

We create the express module and the necessary libraries:

var express = require('express');
var app = express|();

We define the port that will be opened:
var port = 3000;
We configure the Jade engine for the HTML web page:
app.set ('view engine', 'jade');
We make the public directory to access on it:
app.use (express.static(__dirname + '/public'));
Interface for the server instructions to be executed:
app.get ('/', function(req, res)({
res.render ('interface');
P
We declare the arrest file with the rest request:

var rest = require ("arest") (app);

This code defines the devices that will be controlled and monitored, we can add the ones
that we want:

rest.addDevice ('http','192.168.1.108");
rest.addDevice ('http','192.168.1.105");
rest.addDevice ('http','192.168.1.107");
rest.addDevice ('http','192.168.1.110");

[207]

Building a Web Monitor and Controlling Devices from a Dashboard

We set up the server on port 3000 and listen to the web browser clients:

app.listen (port);
console.log("Listening on port " + port);

If everything is perfectly configured, we test the application by typing the following
command:

sudo npm install arest express jade
This installs the Jade platform and recognizes the aREST API from Raspberry Pi Zero.
If something is necessary to update, type the following command:
sudo npm install pug
To update the arrest express, type the following command:
sudo npm install pi-arest express
It's very important to install this package to include the arrest API:
sudo npm install arest —--unsafe-perm

To run the application, go to the folder where the application is and type the following
command:

node app.]js

In the following screenshot, we see that the server is opening port 3000:

[208]

Building a Web Monitor and Controlling Devices from a Dashboard

For the final test, we need to type the IP address of the Raspberry Pi that it has in that
moment into your favorite web browser:
http://IP_Address_of_Raspberry_Pi_Zero/port.

In the following screenshot, we can see the control and monitor data dashboard from the
Raspberry Pi Zero, published on different devices on a single web page, that's something
interesting to do, such that a remote system and control panel:

L [+ 1921681100 L] =
M Rphcacdags P blass Aban i 155) Cwes masgadoss

Remote panel from Raspberry Pi Zero

Lamp control room one:

Monitoring room three; Temperature; 32 C Humidity: 30 %

Maonitaring room four: Temperature: 31 C Humidity: 30 %

Finally, we finish by showing the control and monitor system, using different devices in a
single data dashboard; we conclude that we can have more than one device in a web page
for the Internet of Things.

Summary

In this chapter, you learned how to integrate and build a dashboard for monitoring and
controlling using Raspberry Pi Zero with Arduino and the technologies seen in previous
chapters. This chapter gave to you the basics and the necessary tools that can help you to
create your own system of Internet of Things for different applications and areas that can be
developed for these kinds of systems by applying all the tools, web server, database server,
devices connected, and setting up your router to control your Raspberry Pi from anywhere
in the world.

In the next chapter, you will build very nice devices for the Internet of Things; you will
learn how to make different mini home domotics projects.

[209]

Building a Spy Police with the
Internet of Things Dashboard

In this chapter, we will look at several home domestic projects. You can combine these
projects with the other tools that we have seen in previous chapters. Doing so will help you
improve your knowledge and also let you develop your own. In this chapter, the following
topics will be covered:

e Spy microphone that detects noise

Regulating the current of an AC lamp dimmer

Controlling access with an RFID card

Detecting smoke

Building an alarm system using Raspberry Pi Zero

Monitoring the climate from a remote dashboard

Building a Spy Police with the Internet of Things Dashboard

Spy microphone that detects noise

In this section, we will look at a project that we can use in a house to detect noise or the
level of sound so that we can detect when a person talks in front of the house. This project
consists of a module that has a microphone, similar to the following image:

Software code

We need to make a program that can read the analog signal that the module sends to the
Arduino board:

const int ledPin = 12; // the number of the LED pin
const int thresholdvalue = 400; //The threshold to turn the led on

void setup () {
pinMode (ledPin, OUTPUT) ;
Serial.begin(9600);
}
void loop () {
int sensorValue = analogRead (A0) ; //use A0 to read the electrical
signal
Serial.print ("Noise detected=");
Serial.println(sensorValue);
delay (100);
if (sensorValue > thresholdvalue)
digitalWrite (ledPin,HIGH);//if the value read from A0 is larger than
400, then light the LED
delay (200);
digitalWrite (ledPin, LOW) ;
}

[211]

Building a Spy Police with the Internet of Things Dashboard

We then download the sketch, and in the following screenshot we have the results of the
level of sound:

NoOlse detected=34g =
Moise detected=34
Noise detected=34
MNoise detected=34
MNoise detected=34
Noise detected=34
Moise detected=34
Moise detected=34
Noise detected=34
Moise detected=34
MNoise detected=34
Noise detected=34
MNoise detected=34

[Autoscrol [AmbosMLACR w | | 9600baudc

In the following image we can see the final circuit connection to the Arduino Board:

[212]

Building a Spy Police with the Internet of Things Dashboard

Regulating the current of an AC lamp
dimmer

In this section, we will see how to regulate an AC lamp. For so many years I've wanted to
explain and share a project like this, and I'm finally. This can be applied to regulate your
lamps at home in order to decrease domestic power the consumption: the following sections
will explain the project in more detail.

Hardware requirements

We need the following electronic components:

e H-bridge

24 AC transformer

e Two resistors 22k (1 watt)
One integrated circuit (4N25)
One resistor 10k

One potentiometer of 5k

One resistor 330 ohms

¢ One resistor 180 ohms
One integrated circuit MOC3011
One TRIAC 2N6073

In the following circuit diagram, we can see the connections for the dimmer from the
Arduino board:

ARDUIND UNO

[213]

Building a Spy Police with the Internet of Things Dashboard

Software code

You can now either copy the code inside a file called Dimner. ino, or just get the complete
code from the folder for this project:

int load = 10;

int intensity = 128;

void setup ()

{

pinMode (loaf, OUTPUT) ;

attachInterrupt (0, cross_zero_int, RISING);
}

void loop ()

{

intensity = map (analogRead(0),0,1023,10,128);
}

void cross_zero_int ()

{

int dimtime = (65 * intensity);
delayMicroseconds (dimtime) ;
digitalWrite (load, HIGH);
delayMicroseconds (8) ;
digitalWrite (load, LOW);

}

After we have downloaded the sketch we can see the final results. With the potentiometer,
we can regulate the intensity of the lamp. In our house we can have our lamps on whenever
we want: maybe we can control them according the ambient light of the environment.

[214]

Building a Spy Police with the Internet of Things Dashboard

In the following images, we will see the different moments of lamp, if we regulate the input
signal of the potentiometer:

[215]

Building a Spy Police with the Internet of Things Dashboard

Here we can see the dimmer of the lamp at its maximum brightness:

Controlling access with an RFID card

In this section, we will see how to control access via a door. In the last chapter, we saw how
to control the lock and the lamps of a house. This project can complement the last one as it
will enable you to control the opening of a door, a specific bedroom door, or lights in other
rooms.

Hardware requirements

For this project, we need the following equipment:
e Reading TAGS cards

e RFID RC522 Module
e Arduino Board

[216]

Building a Spy Police with the Internet of Things Dashboard

The following image shows the RFID tags for reading and controlling the access:

The following figure, shows the RFID card interface for Arduino:

RFID-RC522 pinout oo R stedt

.

UART 12C

FLE

C7 C5 Cil

E
2
[,
[

RFID-RC522

a
L)
CiD CB C&

[=i=1
L=}

Software requirements

We need to install the <MFRC522 . h> library, this file can communicate with and configure
the module for reading the tag cards. This library can be downloaded from https://github
.com/miguelbalboa/rfid.

[217]

Building a Spy Police with the Internet of Things Dashboard

Software code

You can now either copy the code inside a file called RFID. ino, or just get the complete
code from the folder for this project:

#include <MFRC522.h>
#include <SPI.h>
#define SAD 10
#define RST 5

MFRC522 nfc (SAD, RST);

#define ledPinOpen 2
#define ledPinClose 3

void setup () {
pinMode (ledPinOpen, OUTPUT) ;
pinMode (ledPinClose, OUTPUT) ;

SPI.begin();

Serial.begin(115200);
Serial.println("Looking for RC522");
nfc.begin();

byte version = nfc.getFirmwareVersion();
if (! version) {
Serial.print ("We don't find RC522");
while (1) ;
}

Serial.print ("Found RC522");
Serial.print ("Firmware version 0x");
Serial.print (version, HEX);
Serial.println(".");

#define AUTHORIZED_COUNT 2 //number of cards Authorized

byte Authorized[AUTHORIZED_COUNT] [6] = {{0xC6, 0x95, 0x39, 0x31,
0x5B}, {0x2E, 0x7, 0x9A, O0xE5, 0x56}};

void printSerial (byte *serial);

boolean isSame (byte *key, byte *serial);

boolean isAuthorized(byte *serial);

void loop () {
byte status;
byte data[MAX_LEN];
byte seriall5
boolean Open

’

false;

[218]

Building a Spy Police with the Internet of Things Dashboard

digitalWrite (ledPinOpen, Open);
digitalWrite (ledPinClose, !Open);
status = nfc.requestTag (MF1_REQIDL, data);

if (status == MI_OK) {
status = nfc.antiCollision (data);
memcpy (serial, data, 5);
if (isAuthorized (serial))
{
Serial.println("Access Granted");
Open = true;
}
else
{
printSerial (serial);
Serial.println ("NO Access");
Open = false;
}
nfc.haltTag () ;
digitalWrite (ledPinOpen, Open);
digitalWrite (ledPinClose, !Open);
delay (2000) ;
}
delay (500) ;

boolean isSame (byte *key, byte *serial)
{
for (int i = 0; i < 4; i++) |
if (key[i] != seriallil])
{

return false;

}

return true;

boolean isAuthorized(byte *serial)
{
for(int i = 0; 1i<AUTHORIZED_COUNT; i++)
{
if (isSame (serial, Authorized[i]))
return true;
}
return false;

}

voild printSerial (byte *serial)

[219]

Building a Spy Police with the Internet of Things Dashboard

Serial.print ("Serial:");

for (int i = 0; i < 5; i++) {
Serial.print (serial[i], HEX);
Serial.print (" ");

}

This is the final result when we pass the Tag card in front of the RFID module connected to
the Arduino, if the code below, it will display the message (Access Granted).

In this part of the code, we configure the number of cards authorized:

#define AUTHORIZED_COUNT 2

byte Authorized[AUTHORIZED_COUNT] [6] = {{0xC6, 0x95, 0x39, O0x31, O0x5B},
{0x2E, 0x7, O0x9A, OxE5, 0x56}};

1T EMLE edena Gt v

- T ‘ . L . umeaw s g WS

[
Looking for RCS522

Found RC522Firmware wersion 0x92.
Access Granted

Access Granted

¥ tiarcll debaPl BCR W 1IN bk

[220]

Building a Spy Police with the Internet of Things Dashboard

If we keep the card on the tag and card that is not registered, it can provide the correct

access:

Dottt | e o . ==
[1

|
Looking for RC522

Found RC522Firmware version 0x92.
Bccess Granted

Access Granted

Looking for RC522

Found RC522Firmware version 0x92.

Bccess Granted
Serial:D6 12 DB B8 A7 NO Access

AmbosNLACR w | |115200baudo w

The final result with the complete connections is shown in the following image:

[221]

Building a Spy Police with the Internet of Things Dashboard

Detecting smoke

In this section, we will test an MQ135 sensor which can detect smoke. This could also be
used in a home to detect a gas leak. In this case, we will use it to detect smoke.

In home automation systems, putting all the sensors to detect something at home, we
measure the real world: in this case we used the MQ135 sensor which can detect gas and
smoke, as shown in the following image:

Software code

In the following code, we explain how program and detect smoke using the gas sensor:

const int sensorPin= 0;
const int buzzerPin= 12;
int smoke_level;

void setup () {
Serial.begin(115200) ;
pinMode (sensorPin, INPUT);
pinMode (buzzerPin, OUTPUT) ;
}

void loop () {
smoke_level= analogRead (sensorPin) ;

[222]

Building a Spy Police with the Internet of Things Dashboard

Serial.println (smoke_level);

if (smoke_level > 200) {
digitalWrite (buzzerPin, HIGH);
}

else{

digitalWrite (buzzerPin, LOW) ;
}

}

If it doesn't detect smoke, it produces the following values, as shown in the following
screenshot:

O e e - MR T e

180
1719
179
179
179
179
179
178
179
179
179
179
180
180
179
179
179
179
il

o hamod deboabl BOR 13300 B v

(]

[223]

Building a Spy Police with the Internet of Things Dashboard

If it detects smoke the measurements are in range 305 and 320 which can be seen in the file
as the following screenshot:

D) COME (eduinaGenuing Uns] =8 A L) ey
| Bl

319
319
319
319
319
319
319
319
319
319
319
319
319
319
|319
319
319
319
319

4] husosorod MebosHLACR v | 1ISHObado

The final result (with the complete circuit connections) is shown in the following image:

[224]

Building a Spy Police with the Internet of Things Dashboard

Building an alarm system using the
Raspberry Pi Zero

In this section, we will build a simple alarm system with a PIR sensor connected to the
Raspberry Pi Zero. This is an important project as it can be added to the home, including
other sensors, in order to monitor it.

Motion sensor with Raspberry Pi Zero

For this project we need the Raspberry Pi Zero, a motion sensor PIR, and some cables. The
hardware configuration for this project will actually be very simple. First, connect the VCC
pin of the motion sensor to a 3.3V pin on the Raspberry Pi. Then, connect the GND pin of
the sensor to one GND pin on the Pi. Finally, connect the OUT pin of the motion sensor to
the GPIO17 pin on the Raspberry Pi. You can refer to the previous chapters to find out
about pin mapping on the Raspberry Pi Zero board.

The following image shows the final circuit with the connections:

Software code

You can now either copy the code inside the folder called Projecti, or just get the
complete code from the folder for this project:

// Modules
var express = require('express');

[225]

Building a Spy Police with the Internet of Things Dashboard

// Express app
var app = express|();

// aREST

var piREST = require('pi-arest') (app);
PiREST.set_1id('34f5eQ"');
PiREST.set_name ('motion_sensor');
PiREST.set_mode ('bcm') ;

// Start server
app.listen (3000, function () {
console.log('Raspberry Pi Zero motion sensor started!');

1)

The alarm module

You will usually have a modules in your home that will flash a light and emit sound when
motion is detected. Of course you could perfectly well connect it to a real siren instead of a
buzzer to have a loud sound in case any motion is detected.

To assemble this module, first place the LED in series with the 330 Ohm resistor on the
breadboard, with the longest pin of the LED in contact with the resistor. Also place the
Buzzer on the breadboard. Then, connect the other side of the resistor to GPIO14 on the Pi
and the other part of the LED to one GND pin on the Pi. For the Buzzer, connect the pin
marked + on the buzzer to GPIO15 and the other pin on the Buzzer to one GND pin on the
Pi.

Software code

Here we go with the coding details:

// Modules

var express = require('express');
// Express app

var app = express|();

// aREST

var piREST = require('pi-arest') (app);
PiREST.set_id('35f5fc"');
PiREST.set_name ('alarm');
PiREST.set_mode ('bcm') ;

// Start server

[226]

Building a Spy Police with the Internet of Things Dashboard

app.listen (3000, function () {
console.log('Raspberry Pi Zero alarm started!');

P

This is the final circuit showing the connections:

Central interface

First we create a central interface for the app using the following code:

// Modules

var express = require('express');
var app = express();

var request = require('request');

// Use public directory
app.use (express.static ('public'));

// Pi addresses

var motionSensorPi = "192.168.1.104:3000";

var alarmPi = "192.168.1.103:3000"

// Pins

var buzzerPin = 15;

var ledPin = 14;

var motionSensorPin = 17;

// Routes

app.get ('/', function (req, res) {
res.sendfile(__dirname + '/public/interface.html');

)i

[227]

Building a Spy Police with the Internet of Things Dashboard

app.get ('/alarm', function (req, res) {
res.json({alarm: alarm});

)i
app.get ('/off', function (req, res) {

// Set alarm off
alarm = false;

// Set LED & buzzer off
request ("http://" + alarmPi + "/digital/" + ledPin + '/0'");
request ("http://" + alarmPi + "/digital/" + buzzerPin + '/0');

// Answer
res.json ({message: "Alarm off"});

P

// Start server

var server = app.listen (3000, function() |
console.log('Listening on port %d', server.address () .port);

P

// Motion sensor measurement loop
setInterval (function () {

// Get data from motion sensor
request ("http://" + motionSensorPi + "/digital/" + motionSensorPin,
function (error, response, body) {

if ('error && body.return_value == 1) {

// Activate alarm
alarm = true;

// Set LED on

request ("http://" + alarmPi + "/digital/" + ledPin + '/1');

// Set buzzer on
request ("http://" + alarmPi + "/digital/" + buzzerPin + '/1');

[228]

Building a Spy Police with the Internet of Things Dashboard

Graphical interface

Let's now see the interface file, starting with the HTML. We start by importing all the
required libraries and files for the project:

<!DOCTYPE html>
<html>

<head>

<script src="https://code.jquery.com/jquery-2.2.4.min.js"></script>

<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css
">

<script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"><
/script>

<script src="js/script.js"></script>

<link rel="stylesheet" href="css/style.css">

<meta name="viewport" content="width=device-width, initial-scale=1">
</head>

<script type="text/javascript">

/* Copyright (C) 2007 Richard Atterer, richardA®@atterer.net
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License, version 2. See the
file
COPYING for details. */

var imageNr = 0; // Serial number of current image

var finished = new Array(); // References to img objects which have
finished downloading

var paused = false;

</script>
<div id="container">

<h3>Security System</h3>
<div class="'row voffset50'>
<div class='col-md-4'></div>
<div class='col-md-4 text-center'>
Alarm is OFF
</div>
<div class='col-md-4'></div>

</div>

<div class='row'>

[229]

Building a Spy Police with the Internet of Things Dashboard

<div class='col-md-4'></div>
<div class='col-md-4'>
<button id='off' class='btn btn-block btn-danger'>Deactivate

Alarm</button>
</div>
<div class='col-md-4'></div>
</div>

</div>

</body>
</html>

Monitoring the climate from a remote
dashboard

Today, most smart homes are connected to the Internet, and this allows the user to monitor
their home. In this section, we are going to learn how to monitor your climate remotely.
First, we are simply going to add a sensor to our Raspberry Pi Zero and monitor the
measurements from a cloud dashboard. Let's see how it works.

The following image shows the final connections:

[230]

Building a Spy Police with the Internet of Things Dashboard

Exploring the sensor test

var sensorLib = require ('node-dht-sensor');
var sensor = {
initialize: function () {
return sensorLib.initialize (11, 4);

}l

read: function () {
var readout = sensorLib.read();
console.log('Temperature: ' + readout.temperature.toFixed(2) + 'C,
'+
'humidity: ' + readout.humidity.toFixed(2) + '%');
setTimeout (function () {
sensor.read () ;
}, 2000);
t
bi
if (sensor.initialize()) {
sensor.read () ;
} else {

console.warn('Failed to initialize sensor');

}

Configuring the remote dashboard (Dweet.io)

We need to go to http://freeboard.ioand create an account:

Pricing Login

Visualize the Internet of Things.

[231]

Building a Spy Police with the Internet of Things Dashboard

Now, we create a new dashboard to control the sensor:

Raspberry Pi Zero Create New

Add a new data source with the following parameters:

DATASOURCE

[232]

Building a Spy Police with the Internet of Things Dashboard

Create a new pane inside the dashboard and also create a Gauge widget for the
temperature:

Gauge

Temperature

datasources["Pi Zero"]["temperature’]

[233]

Building a Spy Police with the Internet of Things Dashboard

We do the same with the Humidity:
WIDGET

Gauge

Humidity

datasources{"Pi Zero"|[" humidity’]

]

We should see the final result:

[234]

Building a Spy Police with the Internet of Things Dashboard

Summary

In this chapter, we learned how to build and integrate a modular security system based on
Raspberry Pi Zero and Arduino boards. There are of course many ways to improve this
project. For example, you can simply add more modules to the project, such as more motion
sensors that trigger the same alarm. You can monitor the system, even if you are outside of
the Wi-Fi network of your home.

In the next chapter, we are going to learn how to control your system from an Android
application, and how to integrate a real system from your smartphone that's fantastic!

[235]

Monitoring and Controlling Your
Devices from a Smart Phone

In previous chapters, we have seen projects that are being controlled from web interfaces.
Now in this chapter, we will see how to control your Arduino and Raspberry Pi from a
native application in Android, using platforms in order to create apps to control and
monitor.

In this chapter, we will see different projects and applications using Android tools, the
topics that will be covered are as follows:

¢ Controlling a relay from a smart phone using APP Inventor
Reading JSON response in Android Studio using Ethernet shield
Controlling a DC motor from an Android application

Controlling outputs from Android using your Raspberry Pi Zero

Controlling outputs with Raspberry Pi via Bluetooth

Controlling a relay from a smart phone using
APP Inventor

In this section, we will see how to create an Android application using APP Inventor to
control a relay connected to the Arduino board.

Monitoring and Controlling Your Devices from a Smart Phone

Hardware requirements

Hardware required for the project are as follows:

e Relay module

e Arduino UNO board
o Ethernet shield

e Some cables

Software requirements

Software required for the project are as follows:

e Software Arduino IDE
¢ You need a Gmail account activated

Creating our first application

App Inventor for Android is an open source web application originally provided by
Google, and now maintained by the Massachusetts Institute of Technology (MIT). It allows
newcomers to computer programming to create software applications for the Android
operating system (OS). It uses a graphical interface, very similar to Scratch and the StarLogo
TNG user interface, which allows users to drag-and-drop visual objects to create an
application that can run on Android devices. In creating App Inventor, Google drew upon
significant prior research in educational computing, as well as work done within Google on
online development environments.

You don’t need to install any software for APP inventor to execute in your computer; you
just need your Gmail account to access the APP inventor interface.

To enter APP Inventor you just need to go to: http://appinventor.mit.edu/explore/.

Go to create apps to start designing the app.

[237]

Monitoring and Controlling Your Devices from a Smart Phone

First we need to have an account with Gmail; we need to create the file like we see in the
following screenshot:

€ - C | O ai2appinventormitedu/Nocale=en#6232073157214208 1
! Ackeaciones M More About the ESP Otras marcadares
H MIT App !nvenl%tﬂ?a Pojects+ Comnect- Buid: Help- MyProjects Gallry Guide Reportanissue English- rubenolivaramosi@gmail com -
My Projects
Name [Date Created Diate Moddied ¥ Putiished
LED_RGE Aug 6, 2014, 11:08:26 AM Maw 26, 2016, 4:36:06 PM Mo
Bluetooth Jun 17,2018, 9:58:40 PM Now 28, 2016, 121747 PM No

Privacy Policy and Terms of Use

[238]

Monitoring and Controlling Your Devices from a Smart Phone

Go to menu Projects and Start New Project:

€

C | O ai2appinventor.mitedu Yocale=en#6232073157214208
1 Aokcaciones M| More About the ESP

MIT App Inventor 2
-

My Projects
Hame

[LED.RGB

[Bluetsoth

Projecis » Conmects Buld» Help-

1 My projects

Start new project

_| Import project (.aia) from my computer ..
Import project (.aia) from a repository ...
Delete Froject

Save project

| Save project as

|
|
| Checkpoint
|

| Export all projects
i Import keystore
| Export heystore
i Delete keystore

Priv;

My Projects

Dase Moddhed ¥
Now 28, 2016, 4:36:06 PM
Now 28, 2016, 121747 PM

Poli Torms of Us

Gallery

Guide Reportanissue Englsh -

nubenalivaramos@gmail com »

No
No

[239]

Monitoring and Controlling Your Devices from a Smart Phone

Write the name of the project:

€ - C | @ ai2appinventormiledu/Tlocale=en®5614722863595520

%)
1% Aphicaciones M Mare About the ESF¢ o—
n MIT App '""e"“'D!‘!E Projects~ Connect~ Buld- Hep~ MyPrects Galley Gude Reportaniosue English~ rubenolvaramosiégmail com -

[anwL

My Projects

Hame Date Created Date Modified ¥ Published
0 LEDRGB Aug 6, 2014, 11:08:26 AM Now 28, 2016, 4:36:06 PM No
[Bluetoath Jun 17, 2014, 58840 PM Now 28, 2016, 121747 PM No

Create new App Irventor project

Project name: |
Cancel O
Privacy Poli Term:

[240]

Monitoring and Controlling Your Devices from a Smart Phone

In the following screenshot, we write the name of our project as aREST:

& C | O ai2appinventor.mitedu/Tocale=en#5514722852555520 o
i Aplicaciones v Mone About the ESPE pr——
H MIT App '"m“g& Projects = Connect+ Bulds Help- MyPigects Galery Guide Reparlanissue fngish- rubenalivaramos@gmad com «
o e I ——

My Projects

Name Date Created Duate Modded ¥ Publiched
0 LEDRGB Aug 6, 2014, 110826 AM Nov 28, 2016, 4:36:06 PM No
0 Bluetooth Jun 17, 2004, 3:58:40 PM Now 28, 2016, 121747 PM No

Projectname. [rzer

Privacy Policy and Terms of Lise

[241]

Monitoring and Controlling Your Devices from a Smart Phone

On pressing OK, we will see the project created:

€ C 0o
Mplicaciones M More About the ESF

HM“*WIH"‘!""’;’?‘ Projects + Comnect+ Bulld- Help -

mitedu/7locl 379100340745288

| i
Otros marcadores

MyProcts Gallery Guide Reportanissue English+ rubenclivaramos@gmal com =

EmSememm

My Projects

HName

aREST

0 LED_RGE
Bluetooth

Date Created

Decd, 2016, T46.25PM
Aug 6, 2014, 11:06:26 AM
Jun 17,2014, 9:50:40 PM

(u

Date Modied ¥ Publehed
Dec &, 2016, 7:46:25 PM No
Nov 28, 2016, 4:36:06 PM No
Nov 28, 2016, 121747 PM No

Policy and Terms of

[242]

Monitoring and Controlling Your Devices from a Smart Phone

Designing the interface

Now it's time to see how to create the interface of the application, after we create the project
we click on the name of the project, and we will then see the following screen:

&« C | ® ai2appinventormitedy,Mocalesen#5374
1 Apkcacines M More About the ESP!

H MIT App ||'|\"E|'I|U;et2a Projects = Conmect- Buld- Help-

L4
Qtros marcadores

My Projects Gallery Guide Report an Issue Enghsh - rubsnolvaramos@gmail com =

o Emmmmem Cm

Palette Viewer Components Properties
Uoes interface Display hidden components in Viewer Screen] Sereen
;1 Button Lhec W On 1301 AL Aoutsereen
b
o
B asePicker AlignHorizontal
Left:1=
- Iimage
- g¢ AhignVertical
A] Label Top:1+
ListPrcker AppName
sREST
= Listview
BackgroundColor
A Notifier [white
s PasswordTextBox Backgroundimage
hane
W Sider
ClaseScreenAnimation
B spineur Default -
TextBox leon
hane
Fd TimePicker
DpenScreenAnimation
el Default +

[243]

Monitoring and Controlling Your Devices from a Smart Phone

In the user interface that we have on the left-hand side (you can see all the objects), to move

an object to the main screen you just drag Web Viewer and Button, as shown in the
following screenshot:

& C | ® ailappinventor.mitedy 100340748288 1

£ Aghicaciones M Mare About the ESF

Otros marcadares
User interface 0 COMPONents in Viewer 8 [sereen WebViewerl

¢

8 sise Close Application |

Riname Delle

- o o
R Media

Drawing and Animation Upload File

In the previous screenshot, we can see the interface of the app that we will use to control
our Arduino board.

[244]

Monitoring and Controlling Your Devices from a Smart Phone

Communicating APP Inventor with Arduino
ethernet shield

Now we will see how to communicate the application with Arduino via Ethernet
networking.

In the properties of the Web Viewer control, we will see the home URL:

Components Properties
=] Screen WebViewerl
e HornzontalArrangement]1 FollowLinks
l@webviewer! i
a HorizontalArrangement2 Height
2 ButtonT Automatic...
e HorizontalArrangement3 Width
@ webviewer2 Automatic...
=] R
HoerizontalArrangement4 P
— Button2 hitp:/1102.168.1.110/digita
B HorizontalArrangements

5 - gnoreSslErrors
— Button3

PromptforPermission
L

UsesLocation

Visible
L

Rename Delete

In both controls we have the URL of our Arduino Ethernet shield, we will make a request
using the RESTful services, and we will send the following requests from the application:

e http://192.168.1.110/digital/7/1
e http://192.168.1.110/digital/7/0

[245]

Monitoring and Controlling Your Devices from a Smart Phone

Code for APP Inventor

The blocks editor in the original version ran in a separate Java process, using the Open
Blocks Java library for creating visual blocks programming languages and programming.

We have the code for APP inventor, when we click the buttons we call the web service, to
do that you just need to do the following:

¢ Go to the screen interface that says Blocks
e Drag the when. . .Do block one per button

e Inside the block that you just dragged before, put the
Call...WebViewer.GoToUrl block

e In the URL of the block, put the WebViewer.HomeUr1 block

To close the application:

e Drag the Wwhen. . .Button.Click Do block
¢ And inside the block put the close application block

€ | O aizappinventormitedu/Tiocale=en#6379100340748288 | ¢
i1 Aphcaciones 1 More About the ESE: Caros mascadores

- i MIT App Inventor 2 Projects+ Conmects Budde Help+ MyProjects Gallery Gude Reportanissue English- rubenolvaramosi@gmail com «
= B ' =

-

Blocks Viewer

B Built-in
Beontol
.Lug €
Wi
.n'eﬂ
W
Weskrs
W varinbles
Werocedies -

do | call (TR GoTold

[T I \WebMiewer! - 8 HomeUr - |

8 [screen

8 '.l'-emmcm.)lknmqemu when LIRS Clck
W viebviewer| o cal [TITTFER GoTolid

& Bhorizomalasmangemer ul

Heunn s,

-] ’"ch:cmalrrm;emer

@ wetiviener2
o m ho Ao
I Show Wamasgs |

Egution?

[246]

Monitoring and Controlling Your Devices from a Smart Phone

We will have the following results when we open a web browser:

€ - C | O 192.0681.100/digital/7/0
i3t Aplicaciones V| More Abcut the ESP:

{"message”: "Pin D7 set to 8", "id": "1%, “name": “APPInventor”, “connected™: true}

The following screenshot shows the application running on a mobile phone:

ON
OFF

Close Application

[247]

Monitoring and Controlling Your Devices from a Smart Phone

The following image shows the final results with the connections:

Reading JSON response in Android Studio
using ethernet shield

In this section, we will see how to read responses reading from the Arduino board and
reading in Android Studio.

Before we continue with the next part, we need to do the following:

e Instal the IDE of Android Studio,which can be obtained from: https://develope
r.android.com/studio/index.html?hl=es-419

e Get the latest SDK for Android Studio

[248]

Monitoring and Controlling Your Devices from a Smart Phone

Then we will create a project in Android Studio, as shown in the following screenshot:

New Project

Android Studio

Configure your new project

Application name: | WebViewaREST

J
Company Demain: [pe.example.com

Package name: com.example.pc.webviewarest

Project locati C:\Users\PC\AndroidStudioProjects\WebViewaREST

[249]

Monitoring and Controlling Your Devices from a Smart Phone

We then select the version of the API that we want to use and click the Next button:

A Target Android Devices

Select the form factors your app will run on

Different platforms require separate SDKs

E Phone and Tablet
Minimum SDK | API1T: Android 4.2 (Jelly Bean) ﬂ

Lower AP] levels target more devices, but have fewer features available. By targeting API17 and later, your app will
run on approximately 61.3% of the devices that are active on the Google Play Store. Help me choose.

Ow

Minimom SOK []
O Wear

Minimem DK~ []

Glass (Not Installed

Minimum S0K []

[250]

Monitoring and Controlling Your Devices from a Smart Phone

Then select a Blank Activity and click on the Next button:

ECMN Mew Pfojm_

H Add an activity to Mobile

I
I
Add No Activity I
I
I
I

m Blank Activity with Fragment Fullscreen Activity

[251]

Monitoring and Controlling Your Devices from a Smart Phone

Type the name of your Activity and the Layout, and then click the Finish button:

b Create New Project g‘ — -— - .

A Customize the Activity

Creates a new blank activity with an action bar.

Activity Name: | MonitoringTemperatureHumidity |
Layout Name: [activity_monitoring_temperature_humidity l
Title: | MoniteringTemperatureHumidity |

|

Menu Resource Name: [mment._|

Blank Activity

The name of the activity class to create

!Emmusl[Next]ICIn:eIJ

Android application

In this section, we will see the android application. In your folder, open the file of the
project about Android Studio.

We have here the XML code generated in the code of the interface:

FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/container"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">
tools:ignore="MergeRootFrame">

<WebView
android:id="@+id/activity_main_webview"

[252]

Monitoring and Controlling Your Devices from a Smart Phone

android:layout_width="match_parent"
android:layout_height="match_parent" />
</FrameLayout>

Java class

When we create the project, some class are generated automatically, as we will see in the
following lines:

1. Name of the class:
import android.webkit.WebView;
2. Main class:

public class MonitoringTemperatureHumidity extends
ActionBarActivity {

private WebView mWebView;

In this part of the code from the android application, we request for the value:

mWebView.loadUrl ("http://192.168.1.110/temperature");
mWebView.loadUrl ("http://192.168.1.110/humidity");

super.onCreate (savedInstanceState);

setContentView (R.layout.activity_monitoring_temperature_humidity);

We define the objects that will be included in the main activity, in this case it is the
mWebView control, it is defined in the main activity of the application:

nmWebView = (WebView) findViewById(R.id.activity_main_webview) ;
mWebView.loadUrl ("http://192.168.1.110/humidity");

Permission of the application

In order to give permission to the application to execute networking permissions, it's
necessary that we add the following line in the Android Manifest file:

<uses-permission android:name="android.permission.INTERNET"/>

[253]

Monitoring and Controlling Your Devices from a Smart Phone

When the application is debugged and installed on the device, we will see the following
results on our screen, displaying the value of the temperature:

WebViewaREST

{"temperature”: 24, "id": "1", "name":
"AndroidStudio", "connected": true}

The value of the humidity:

WebViewaREST

{"humidity": 40, "id": "1", "name":
"AndroidStudio”, "connected": true}

Controlling a DC motor using an Android
Application

In this section, we will have an application to link our smart phone with the Bluetooth of

the phone, it's called Amarino and you can get it from: http://www.amarino-toolkit.net
/index.php/home.html. We will also see how to control a DC motor from an Android

application, let's dive into it!

[254]

Monitoring and Controlling Your Devices from a Smart Phone

Hardware requirements

In the following diagram, we see the following circuit (L293D) is used to control the speed

and the turning of the motor:

CHIP INHIBIT [1]

INPUT 1[2]

/ uTPUT 1[3]
7 o &
SN\ ”H::::,E
TPUT 2 [6]

INPUT 2 [7]

Vce

.

15 INPUT 4
14] ouTPUT 4
13| GND

12| GND

11] ouTPUT 3
10| INPUT 3

—ve[3]

Ecmﬂ INHIBIT 2

Veez

In the following figure, we have the final connections of the circuit to the Arduino board:

[255]

Monitoring and Controlling Your Devices from a Smart Phone

The final interface is shown in the following screenshot:

#

Control Android-
Arduino

Left
Right
- Stop)
Value PWM:

The final results are shown in the following image with the connections:

Controlling outputs from android using your
Raspberry Pi Zero

In this section, we will see how to control our outputs connected to the Raspberry Pi, using
the control. js script running in the Node. js server.

[256]

Monitoring and Controlling Your Devices from a Smart Phone

The request that we need to control over the LED output using the android application are
as follows:

1. http://192.168.1.111:8099/1edon
2. http://192.168.1.111:8099/1edoff

HomeUrl

http://192.188.1.111:8000

IgnoreSslErrors
1)

PromptforPermission
il

UseslLocation
1 J

Visible

Sl

The interface created in APP Inventor will be similar to the following screenshot:

€ €| O a2appinventormitadu Tiocale= e
158 Apheacionts M Mork About the E5F

MIT App Inventor 2
‘ Bela

Piojects - Conmect - Bui Help
RaspberryPiZero s - | asssoner | memomren|
Palette Vikwer

User imerface

Layout

P Horizontalarangement

M HonzontalScrollmangement (%

B Tableanangemen
J VerncalAmangement

LED ON

J veticatSeralAnangement

Media

Drawing and Animation
— LED OFF

Close

8 Pyiorizenealarrangement]
[~ -

8 Myonzensaiamangement:
Hrution

8 Mlycirconalamangementd
@wevienec:

& Phorzontalirrangements
Heutionz

8 Piodinasalacrangements
Eution

Doy mastadoees

rubenclvacsmon@gmad com -

o] v |
Properties
Sereen)

Aboutscreen

Aigrstorizontal
Left:1-
Aligeivertical
Top:1e

Apphame
Bangmerylens

BackgroundCokr

0 wee
Backgroundimage
ane
ClasScreendnimation
Default -

keen

OpenScieenAnimation
Default +

[257]

Monitoring and Controlling Your Devices from a Smart Phone

The final circuit connections would look like the following screenshot:

Controlling outputs with Raspberry Pi via
Bluetooth

Things go a different route as soon as you're trying to communicate with other electronic
gadgets that uses Bluetooth modules connected to the serial port of the Raspberry Pi.

These modules are very cheap to buy, the actual module is the green board that sits on the
breakout board in my model. The pure HC-05 will only work on 3.3V levels, not with 5V-
TTL-levels. So one would need level shifters (again).

In this section, we will communicate the Raspberry Pi Zero to the Bluetooth module, and
connect the pins TX and RX of the Raspberry Pi.

[258]

Monitoring and Controlling Your Devices from a Smart Phone

First, we need to configure the file of the system to make some changes in order to activate
the communication of the Raspberry Pi Zero TX and RX:

' | N
| &P pi@raspberypi: ~ L | i

GNU nano 2.2.6 File: /boot/cmdline.tTxt Modified

Controlling lights from an Android Application

We need to download the Bluetooth Terminal, as shown in the following screenshot:

[259]

Monitoring and Controlling Your Devices from a Smart Phone

P

Display

Send hexadecimal
Keep screen on

Append newline(\r\r

The following screenshot shows the results of sending the numbers 1, 2, 3, 4, 5, and 6:

1

-
EP pi@raspberrypi: ~

[260]

Monitoring and Controlling Your Devices from a Smart Phone

The following image shows the final part of the project and the connections with the HC05
module and the Raspberry Pi Zero:

Summary

In this chapter, you learned how to control your Arduino and Raspberry Pi Zero from a
smartphone using Android Studio and APP inventor, via Bluetooth and Ethernet
communication. We also looked at several projects such as controlling a motor, controlling a
relay module, and reading humidity and temperature. For future projects you can now
control and monitor anything you want in any area of the application you want.

In the next chapter, we will integrate everything from the previous chapters and put it all
together to integrate all the knowledge applying all the things.

[261]

Putting It All Together

The previous chapters have provided us with the foundation and elements to design and
put together our entire domestic system, which we will study in this chapter. I hope that
I've guided you through this journey in a fairly structured and logical way, so that you are
ready to do that.

As a guide to building the whole system, in this chapter, we will guide you through how to
integrate and give you some ideas to put everything together, and also give you the final
details. You can then make your own projects with the ideas that we will mention in this
final chapter.

In this chapter, we will cover the following topics:

¢ Integrating the system — development projects

¢ Controlling access with a matrix keyboard

e Integrating the system control with relays and devices
e How to set up the power supplies

Integrating the system — development
projects

In the previous chapters, we have seen different projects on home automation and domestic
that is control and monitor home appliances. In this chapter, we will give some ideas to
develop some projects that they can be done in different areas using electronics, controlling
and monitoring.

Putting It All Together

Getting into the details of light sensor

As its name implies, the Light Dependent Resistor (LDR) is made from a piece of exposed
semiconductor material, such as cadmium sulfide, that changes its electrical resistance from
several thousand Ohms in the dark to only a few hundred Ohms when light falls upon it, by
creating hole-electron pairs in the material. The net effect is an improvement in its
conductivity, with a decrease in resistance for an increase in illumination. Also,
photosensitive cells have a long response, time requiring many seconds to respond to a
change in the light intensity.

In this section, we will look at how to use a light sensor to control different devices:

¢ On/off lights when needed
e Dimming the lamp when the sensor detects if there is light in the room or not

You can dim the lamp with the signal sensor; according to the measurement taken by the
light sensor you can regulate the intensity of it.

PHILIPS

L
p== =21
= =

[263]

Putting It All Together

Motion sensor

A motion sensor detects body heat (infrared energy). Passive infrared sensors are the most
widely used motion in home security systems. When your system is armed, your motion
sensors are activated. Once the sensor warms up, it can detect heat and movement in the
surrounding areas, creating a protective grid.

If a moving object blocks too many grid zones and the infrared energy levels change
rapidly, the sensors are tripped. Using this sensor we can control lights when we want them
turn on or turn off:

According to the distance the sensor measures, it can detect the object so you can control the
lamp:

[264]

Putting It All Together

Automatic light controller

Sensors work when you are not home, or when you tell the system you are not there. Some
security systems can be programmed to record events via a security camera when motion is
detected. The main purpose of motion detection is to sense an intruder and send an alert to
your control panel, which alerts your monitoring center:

The following circuit diagram show the connection for an automatic light control where we
use all the elements used earlier like the LDR sensor, PIR sensor, and the relay module:

PIR Motion Sensor

Manual Contrel

v (B —
Lt Sy Jg:l

i

Ol 5H- 1 34D

LU
DIGITAL {~PWM)
(LT] 108

sircuitsdyou.com
SEsEsEsEREERES

hNN:GG] 3 LOR1

[265]

Putting It All Together

Solar power monitor circuit

Here we have another real project that shows a control panel that will monitor the energy of
the solar panel using the Arduino board. The following diagram shows the connection of
the sensors and solar panel to Arduino board:

+ EEEEEEEE

. AEEEEEEE
S AEEEEEEE
- EEEEEEEE

[266]

Putting It All Together

Automatic irrigation system with a soil
sensor

In the following figure, we have another project; we are integrating the tools that were used
before. In this case, we will control the watering when it is present or not, using a soil
sensor:

LEDH
ety St o

£8% zl. zammazss
'—I-'. 8 ;:l; BEERBEEEE

Lig amiin

Fh Al

o

C R LR

Pasmp Contrel . DRITAL (-
RFelay e ———

ang prudieg

Boyewy /| wiha

0S4 THNLS0M 105

T ¥

Frull s prabie
i wail

Until now you have seen very interesting and valuable projects that can be applied to real
situations, in different areas, such as domestic, home automation, and even in a garden. In
the following sections we will look at more projects. Let's do it!

[267]

Putting It All Together

Arduino water-level controller

In this project, we will make an automatic level sensor to control the level of water using
your Arduino board, as shown in the following diagram:

& ey
(mu}|
e P Conizol 1
& |
. .
OFF
ﬂ-m-u-‘--d-
s BE0 zB. szzmapss
] T e
; e w]'r-l -'-:’-|515-ET1!H —
3 - iy
f'llg .
i . I iy
RS &
"
i
lllll - -] M 11
L
.............. — 1
........

Bluetooth based home automation

In this section, we will look at a project that can be used in home automation, to control the
devices in a house, using a Bluetooth module to communicate, and a relay module and the
integration of the hardware as software tools.

[268]

Putting It All Together

The following diagram shows how to connect the relay module and the HCO5 Bluetooth
module to the Arduino board:

Camnect Ralay Cusput ta
AC Load ™

circuitslysu com

Controlling access with a matrix keyboard

In this section, we will look at how to control the access with a code using a matrix
keyboard. In the following image, we can see the keyboard that we will use:

[269]

Putting It All Together

The keypad

In the following diagram, we see the hardware connections to the Arduino board. They are
connected to the digital pins:

Connecting an LCD screen to display the code

In the following diagram, we show the hardware connections of the LCD screen to the
Arduino board:

LCD16x 2

[270]

Putting It All Together

We have looked at some interesting projects that you can develop by adding new sensor to
control other devices. In the next section, we will look at a very interesting project. Get
ready for the next step, this is a great goal.

Controlling the door lock with a keypad

In the following image, we see a keypad with a lock. This section can be merged along with
the last project. This device can be controlled from your Raspberry Pi Zero or your Arduino
board:

Code to access using the keypad

You can now either copy the code inside a file called Project_keyboard_Access_Control.ino,
or just get the complete code from the folder for this project using the Arduino IDE:

void captura ()

{
tecla = customKeypad.getKey () ;

if (tecla)
{
digito = digito + 1;
if (tecla==35) {tecla=0;digito=0;valorf=0;1lcd.setCursor (0,0);lcd.print (valorf
)

[271]

Putting It All Together

led.print (" ")}
if (tecla==48) {tecla=0;}
if(tecla==42) {tecla=0;digito=0;valor = valorf;}

if (digito==1){valorfl = tecla; valorf=valorfl;lcd.setCursor(0,0);
lcd.print (valorf);lcd.print (" ")}
if (digito==2) {valorf2 =
tecla+ (valorfl*10);valorf=valorf2;lcd.setCursor (0,0);
lcd.print (valorf);lcd.print (" ")}
if(digito==3) {valorf3 =
tecla+ (valorf2+*10);valorf=valorf3;lcd.setCursor (0,0);
lcd.print (valorf);lcd.print (" ")}
if(digito==4) {valorfd =
tecla+ (valorf3*10);valorf=valorfd;lcd.setCursor (0,0);
lcd.print (valorf);lcd.print (" ")}
if(digito==5) {valorf5 =
tecla+ (valorf4*10);valorf=valorf5;lcd.setCursor (0,0);
lcd.print (valorf);lcd.print (" ");digito=0;}
}

This function checks if the code that was typed is correct:

void loop ()
{
captura();
if (valor == 92828)
{
digitalWrite (lock, HIGH) ;

if (valor == 98372)
{
digitalWrite (lock, LOW) ;

[272]

Putting It All Together

Integrating the system control with relays
and devices

In the following figure, we're integrating important parts of the book. We will show the
connections in a house using a relay, and how you will apply and control the real load
using a lamp:

Controlling multiple appliances

In real life, we will see the devices connected and controlling the real world. In the
following image, we can see the relay module that can control the loads with the electronics
part:

[273]

Putting It All Together

The following image shows the final circuit. We see the real connections to the Arduino
board, and how they control the real world.

EE

The complete system

In the following figure, we see the final circuit for controlling real devices in a home
automation system. This can be used in all areas of the home, in each room we can have a
relay module, connected to each module communicating with control system:

— LIVING ROOM

[4—' !
a—..\
L 1

s~
e

YOUR ROOM

GND

[274]

Putting It All Together

How to set up the power supplies

For our system, it is very important to set up the power supply that will be used in the
system. First we need to ensure that the voltage for the Arduino is about 5V. In the
following diagram, we have shown how to configure the voltage to about 5 volts:

Transformador 7803 1- W entradalTV-35V |

12IVC ATV CA 1A
26HD

123 3V salide Regulade (+5V)
o
@ a } e ‘l 7805 |= o Vsalds
C.A I I
> + °'FF__ = o
T~ | T

2200 pF
S0V oV

Power supply for AC loads

If we need to connect AC loads to the Arduino or Raspberry Pi Zero and make an industrial
control system, we need to use a voltage of 24 V of DC, as you can see in the following
circuit diagram:

e

E)
?ré 3 / 3 paaaam ’lu.u II' : 12vanv

]

i
T ¥
g
T

[275]

Putting It All Together

Connecting arelay of 24 DC volts to the Arduino
board

In the following diagram, we have the circuit to control an AC load using a relay of 24 volts
of DC:

BL1 5%
V2

110V / 1Hz

We have the final circuit, which represents the interface to control an AC load, connected to
the output digital pin to the Raspberry Pi Zero or the Arduino board: this is not very
common to see, but it's necessary to learn how to connect a relay that can be energized with
24 volts of DC to the Arduino board:

Finally we have the final circuit in a board. We used a relay that has a coil, which has to
energize with 24 volts. The digital output of the Arduino or Raspberry Pi can be connected
to the relay module.

[276]

Putting It All Together

Summary

This is the last chapter of the book, Internet of Things Programming with JavaScript. In this
chapter, you learned how to integrate all the elements that you need to take into
consideration when you want to apply the tools of hardware and software in the projects
that we showed you. This is going to help you to continue developing your own projects,
following the basics and the knowledge shared in this book.

[277]

A

AC lamp dimmer
current, regulating 213
hardware requirements 213
software code 214, 215, 216
alarm system
building, Raspberry Pi Zero used 225
Alcohol Breath Analyser 69
Amarino
about 254
reference link 254
analog inputs
connecting, MCP3008 ADC Converter used 41,
43
Analog-to-Digital Converter (ADC) 41
Android application
about 252
Java class 253
lights, controlling from 259, 261
permission 253
used, for controlling DC motor 254
Android Studio
reference link 248
apache server
configuring 165
APP Inventor
about 236
application, creating 237, 240, 242
code 246,247,248
communicating, with Arduino Ethernet shield 245
hardware requisites 237
interface, designing 243, 244
reference link 237
software requisites 237
used, for controlling relay from smart phone 236
appliances

Index

about 190
door lock, controlling 191
watering plants, controlling 191
Arduino Ethernet shield
APP Inventor, communicating with 245
used, for reading JSON response in Android
Studio 248, 251
Arduino Ethernet
application code 122
Node.js, used for monitoring humidity 119
Node.js, used for monitoring light 119
Node.js, used for monitoring temperature 119
Arduino IDE
installing, in Raspbian 127
Arduino RFID library
URL, for downloading 217
Arduino Wi-Fi
controlling, from Raspberry Pi Zero 205
monitoring, from Raspberry Pi Zero 205
network, connectingto 117, 118
Node.js, used for monitoring humidity 113, 116
Node.js, used for monitoring light 113, 116
Node.js, used for monitoring temperature 112,
116
Arduino YUN
configuring 147
Arduino
board, controlling from Python 136
data, sending to web server 169
executing, in graphical interface 129
hardware connections 137
interface, in Raspbian 130
interface, preparing 131
output connected, controlling from Raspberry Pi
Zero 134
PIR sensor, interfaced with 87
pulses, counting with 59

pulses, reading with 59
serial port, selecting 132
water level controller 268
Arduinobd database
displaying 168
aREST API
commands, used for controlling relay from web
browser 104
example 103
automatic irrigation system
with soil sensor 267

B

Bluetooth
home automation 268
lights, controlling from Android application 259,
261
outputs, controlling with Raspberry Pi Zero 258

C

camera

controlling, from web page 144
communication

IP address, ping 24

testing 23
Compressed Natural Gas (CNG) 67
concentration of gas

measuring, with sensor 67, 68

D

data queries
data, displaying 177
from database 175
scripting 175
temperature, recording 178
data
sending, from Arduino to web server 169
Datalogger
connection, testing 173, 175
script software, programming 172
with MySQL database server 172
DC motor
controlling, Android application used 254
hardware requirements 255, 256
speed, controlling 183, 187

digital input-sensor DS18B20
connecting 35
hardware connections 36
hardware requisites 36
Domain Name Servers (DNS) 195
door lock
code, accessing keypad used 271
controlling, with keypad 271
DS3231 module
hardware, setting up 52
settingup 52

E

electrical appliances 187, 189

Ethernet Adapter
connected with 15, 16

Ethernet shield
controlling, from Raspberry Pi Zero 205
monitoring, from Raspberry Pi Zero 205

F

fingerprint sensor
detecting 89
hardware configuration 90
saved fingerprint 90, 93
testing 97
fire
detecting, with sensor 72, 74
flow of water
calculating 62
flow sensor
hardware connections 58
measuring, to calculate volume of water 58
sensor signal, reading 59

H

humidity
measuring 79
measuring, with plants 75, 76

12C device
settingup 55
12C interface

[279]

setting up 49, 50
interface

building, to control 202

building, to monitor 202

Jade interface, installing for node.js 202
IP address

configuring 21

J

JavaScript Object Notation (JSON) structure 102
JSON response
reading, in Android Studio using Arduino Ethernet
shield 248, 251

K

keypad 270
door lock, controlling with 271

L

LCD screen
components, connecting 81
connecting, for code display 270
data, displaying in 79, 84
hardware requisites 79
sensors, testing 82
software requisites 79
LED
controlling, from interface 181
dimming 179
software requisites 180
testing 180
level of alcohol
measuring, with sensor 69, 71
level of water
measuring, in recipient 77, 78
Light Dependent Resistor (LDR) 263
light detection
measuring 79
light sensor
obtaining 263
lights
consumption, measuring 197, 198, 201
controlling 197, 201
controlling, with electrical circuits 187
electrical appliances 187, 189

[280]

interface, building to control 202
interface, building to monitor 202
interface, controlling 202, 204
interface, monitoring 202, 204

M

matrix keyboard
access, controlling with 269
keypad 270
LCD screen, connecting for code display 270
MCP3008 circuit
about 41
ADC Converter, used for connecting analog
inputs 41
Micro USB OTG Connector
reference link 16
MJIPG-STREAMER server
monitoring 149
motion sensor 264
motion
detecting, with PIR sensor 86
detecting, with TTL serial camera 141
MQ135 sensor
about 222
smoke, detecting 222, 224
MySQL database server
configuring 153
Datalogger with 172
installing 153, 155, 157
installing, for PHP 157
testing 158, 160

N

Node.js

configuring, as web server 107

device, configuring in 122, 124

downloading 107

installing 108, 109, 110

used, for controlling relay from Raspberry Pi Zero
102

used, for monitoring humidity with Arduino Wi-Fi
112,116

used, for monitoring light with Arduino Wi-Fi 112,
116

used, for monitoring temperature with Arduino Wi-

Fi 112,116
web server port 8080, configuring with 111
web server, configuring 104, 106
web server, creating with 100

O

one-wire protocol
readings, displayed in screen 40
software configuration 38
optocoupler 187
output connected
controlling, Arduino from Raspberry Pi Zero 134
outputs
controlling, from Android application Raspberry Pi
Zero used 257, 258

P

PHP installation
testing 33
PHP
testing 158, 160
PhpMyAdmin
apache server, configuring 165
Arduino, data sending to web server 169
Arduinobd database, displaying 168
Ethernet shield, data sending to web server 169
installing, for administrating databases 160, 163
remote panel, entering 167
pictures
saving, in micro SD 137, 140
PIR sensor
interfaced, with Arduino 87
motion, detecting with 86
power supplies
for AC loads 275
relay, connecting of 24 DC volts to Arduino board
276
setting up 275
pulses
counting, with Arduino 59
reading, with Arduino 59

Putty
about 11
URL 11

python scripts

[281]

calling, from PHP 145
coding 145

R

Raspberry Pi GPIO header
about 44
circuit 44, 46
data, reading with Python script 46

Raspberry Pi Zero
accessing, via SSH 17
account, creating, at No-ip.org 196
alarm module 226
Arduino Wi-Fi, controlling 205
Arduino Wi-Fi, monitoring 205
aREST API, commands 103
central interface 229
code, building to control devices from single

interface 205
code, building to monitor devices from single
interface 205

debugging, with serial console cable 10
devices, adding to control 207, 209
devices, adding to monitor 207, 209
Dynamic DNS, configuring 195
Ethernet Adapter, connected with 15, 16
Ethernet shield, controlling 205
Ethernet shield, monitoring 205
graphical interface 229
home network, connecting to 15
JavaScript Object Notation (JSON) structure 102
modem, configuring 192, 194
motion sensor with 225
Node.js, installing in 103
output connected, controlling to Arduino 134
outputs, controlling via Bluetooth 258
relay, controlling Node.js used 102
relay, controlling Restful APl used 102
remote access 192
remotely accessing 15
SD card, preparing 8
sensors, controlling 205
sensors, monitoring 205
serial COM interface, accessing 14
serial COM interface, testing 12, 14
settingup 7

snapshot, controlling from 141, 142 serial COM interface

software code 225, 226 accessing 12, 14
used, for building alarm system 225 testing 12, 14
used, for controlling outputs from Android serial console cable
application 256, 258 references 10
Wi-Fi Network, connected to 19 snapshot
Raspberry Pi controlling, from Raspberry Pi 142
remote accessto 128 controlling, from Raspberry Pi Zero 141
Raspbian Jessy Solar power monitor circuit 266
URL, for downloading 8 Spy microphone
Raspbian noise, detection 211
Arduino IDE, installing in 127 software code 211,212
Arduino, interface in 130 system control
RDP package 27 automatic light controller 265
real time final circuit 274
setting, to final test 55 integrating 262
reed switch integrating, with devices 273
door, detecting with 88 integrating, with relays 273
remote dashboard light sensor, obtaining 263
climate, monitoring from 230 motion sensor 264
configuring 231, 233, 234 multiple appliances, controlling 273
reference link 231
sensor test, exploring 231 T
remote desktop temperature
about 27 measuring 79
with Windows 30 TRENDnet NETAdapter 16
Restful API Triac 187
used, for controlling relay from Raspberry Pi Zero TTL serial camera
102

connecting, to Arduino 137, 140
motion, detecting with 141
reference link 137

RFID card
access, controlling 216
hardware requirements 216

software code 218, 220 U
software requirements 217
RTC module USB camera

Arduino YUN, configuring 147
devices connected, in network 151
MJPG-STREAMER server, monitoring 149

connecting 48
12C interface, setting up 50

testing 54 o L
monitoring, for security in network 146
S monitoring, from Raspberry Pi Zero 149
SD card V
reparing 8
seﬁlsc?rs 9 volume of water

calculating 62

controlling, from Raspberry Pi Zero 205 . .
9 poerry parameters measure, displaying on LCD 64, 66

monitoring, from Raspberry Pi Zero 205

[282]

W

water flow rate
calculating, on pulses counted 61
web browser
relay, controlling aREST API commands used
104
web page
camera, controlling from 144
python scripts, calling from PHP 145
python scripts, coding 145

web server
configuring 31
creating, with Node.js 100
Wi-Fi Network
connectedto 19
wireless network
configuring 21
wireless tools
installing 20
IP address, configuring 21
wireless network, configuring 21

	Cover
	Copyright
	Credits
	About the Author
	www.packtpub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with Raspberry Pi Zero
	Setting up Raspberry Pi Zero
	Preparing the SD card
	Installing the Raspbian operating system
	Debugging your Raspberry Pi Zero with a serial console cable
	Testing and accessing the serial COM interface

	Connecting to the home network and accessing remotely
	Connecting with an Ethernet adapter
	Accessing the Raspberry Pi Zero via SSH
	Connecting to the Wi-Fi network

	How to install the wireless tools
	Configuring IP address and wireless network

	Testing the communication
	Ping from a computer

	Updating the package repository
	Remote Desktop
	Remote Desktop with Windows

	Configuring a web server
	Testing the PHP installation
	Summary

	Chapter 2: Connecting Things to the Raspberry Pi Zero
	Connectting digital input – sensor DS18B20
	Hardware requirements
	Hardware connections

	Configuring the one-wire protocol
	Software configuration
	Displaying the readings on the screen

	Connecting analog inputs using an MCP3008 ADC Converter
	Raspberry Pi GPIO header
	Reading the data with a Python script

	Connecting an RTC
	I2C setup

	DS3231 module setup
	Hardware setup

	Testing the RTC
	I2C device setup
	Putting the real-time clock to final test
	Summary

	Chapter 3: Connecting Sensors - Measure the Real Things
	Measuring flow sensor to calculate the volume of water
	Hardware connections
	Reading the sensor signal

	Reading and counting pulses with Arduino
	Calculating water flow rate based on the pulses counted
	Calculating flow and volume of water:
	Displaying the parameters measured on an LCD

	Measuring the concentration of gas
	Connections with the sensor and Arduino board

	Measuring the level of alcohol with a sensor
	Detecting fire with a sensor
	Measuring the humidity for plants
	Measuring the level of water in a recipient
	Measuring temperature, humidity, and light and displaying data on an LCD
	Hardware and software requirements
	Testing sensors
	Displaying data on the LCD

	Detecting motion with a PIR sensor
	PIR sensor interfaced with Arduino

	Detecting if the door is open with a reed switch
	Detecting who can get in the house with a fingerprint sensor
	Hardware configuration:
	Save the fingerprint:
	Testing the sensor

	Summary

	Chapter 4: Control-Connected Devices
	Making a simple web server with Node.js
	Controlling a relay from a Raspberry Pi Zero using Restful API and Node.js
	JSON structure
	Commands with the aREST API
	Installing Node.js on your Raspberry Pi Zero

	Controlling the relay using aREST commands from a web browser
	Configuring the web server

	Configuring Node.js on a computer as a web server
	Downloading Node.js
	Installing Node.js
	Configuring web server port 8080 with Node.js

	Monitoring temperature, humidity, and light using Node.js with Arduino Wi-Fi
	Connecting to the Wi-Fi network

	Monitoring temperature, humidity, and light using Node.js with Arduino Ethernet
	Code for the application of the Arduino Ethernet shield
	Configuring the device in Node.js

	Summary

	Chapter 5: Adding a Webcam to Monitor Your Security System
	Interaction between Arduino and Raspberry Pi
	Installing Arduino IDE in Raspbian
	Remote access to Raspberry Pi
	Executing Arduino in a graphical interface

	Arduino interface in Raspian
	Preparing the interface
	Selecting the serial port
	Downloading a sketch from the graphical interface

	Controlling an output connected to Arduino from Raspberry Pi Zero
	Controlling the Arduino board from Python
	Hardware connections

	Connecting a TTL serial camera to Arduino and saving pictures to a micro SD
	Detecting motion with the serial TTL camera
	Controlling a snapshot from Raspberry Pi
	Code for the function to take a picture

	Controlling your camera from a web page
	Calling the Python scripts from PHP
	Code for Python scripts

	Monitoring your USB camera for security in a network
	Configuring Arduino YUN
	Monitoring from the MJPG-STREAMER server
	Monitoring the USB camera from the Raspberry Pi

	Summary

	Chapter 6: Building a Web Monitor and Controlling Devices from a Dashboard
	Configuring MySQL database server
	Installing MySQL
	Installing MySQL driver for PHP
	Testing PHP and MySQL

	Installing PhpMyAdmin for administrating databases
	Configuring the Apache server
	Entering to the phpMyAdmin remote panel
	Showing the Arduinobd database
	Sending data from Arduino and the Ethernet shield to the web server

	Datalogger with MySQL
	Programming the script software
	Testing the connection

	Data queries from the database
	Software for the scripts
	Scripts for specific data to be displayed
	Query for recording temperature

	Controlling and dimming a LED
	Software requirements
	Testing the LED
	Controlling the LED from an interface

	Controlling the speed of a DC motor
	Controlling Lights with electrical circuits
	Electrical appliances

	Other appliances
	Control a door lock
	Control watering plants

	Remote access from anywhere to your Raspberry Pi Zero
	How to access our modem to configure it
	Configuring Dynamic DNS
	Creating an account at No-ip.org

	Controlling lights and measuring current consumption
	Building the interface to control and monitor
	Installing Jade for Node.js

	Interface for controlling and monitoring

	Controlling and monitoring Arduino, Wi-Fi, and Ethernet shields on connected devices and sensors
	Building the code to control and monitor devices from a single interface
	Adding the devices to monitor and control

	Summary

	Chapter 7: Building a Spy Police with the Internet of Things Dashboard
	Spy microphone that detects noise
	Software code

	Regulating the current of an AC lamp dimmer
	Hardware requirements
	Software code

	Controlling access with an RFID card
	Hardware requirements
	Software requirements
	Software code

	Detecting smoke
	Software code

	Building an alarm system using the Raspberry Pi Zero
	Motion sensor with Raspberry Pi Zero
	Software code
	The alarm module
	Software code
	Central interface
	Graphical interface

	Monitoring the climate from a remote dashboard
	Exploring the sensor test
	Configuring the remote dashboard (Dweet.io)

	Summary

	Chapter 8: Monitoring and Controlling Your Devices from a Smart Phone
	Controlling a relay from a smart phone using APP Inventor
	Hardware requirements
	Software requirements

	Creating our first application
	Designing the interface
	Communicating APP Inventor with Arduino ethernet shield
	Code for APP Inventor

	Reading JSON response in Android Studio using ethernet shield
	Android application
	Java class
	Permission of the application

	Controlling a DC motor using an Android Application
	Hardware requirements

	Controlling outputs from android using your Raspberry Pi Zero
	Controlling outputs with Raspberry Pi via Bluetooth
	Controlling lights from an Android Application

	Summary

	Chapter 9: Putting It All Together
	Integrating the system – development projects
	Getting into the details of light sensor
	Motion sensor
	Automatic light controller

	Solar power monitor circuit
	Automatic irrigation system with a soil sensor
	Arduino water-level controller
	Bluetooth based home automation
	Controlling access with a matrix keyboard
	The keypad
	Connecting an LCD screen to display the code

	Controlling the door lock with a keypad
	 Code to access using the keypad

	Integrating the system control with relays and devices
	Controlling multiple appliances
	The complete system

	How to set up the power supplies
	Power supply for AC loads
	Connecting a relay of 24 DC volts to the Arduino board

	Summary

	Index

