
James F. Peters

Foundations of Computer
Vision
Computational Geometry, Visual Image
Structures and Object Shape Detection

123

James F. Peters
Electrical and Computer Engineering
University of Manitoba
Winnipeg, MB
Canada

ISSN 1868-4394 ISSN 1868-4408 (electronic)
Intelligent Systems Reference Library
ISBN 978-3-319-52481-8 ISBN 978-3-319-52483-2 (eBook)
DOI 10.1007/978-3-319-52483-2

Library of Congress Control Number: 2016963747

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book introduces the foundations of computer vision. The principal aim of
computer vision (also, called machine vision) is to reconstruct and interpret natural
scenes based on the content of images captured by various cameras (see, e.g.,
R. Szeliski [191]). Computer vision systems include such things as survey satellites,
robotic navigation systems, smart scanners, and remote sensing systems. In this
study of computer vision, the focus is on extracting useful information from images
(see, e.g., S. Prince [162]). Computer vision systems typically emulate human
visual perception. The hardware of choice in computer vision systems is some form
of digital camera, programmed to approximate visual perception. Hence, there are
close ties between computer vision, digital image processing, optics, photometry
and photonics (see, e.g., E. Stijns and H. Thienpont [188]).

From a computer vision perspective, photonics is the science of light in the
capture of visual scenes. Image processing is the study of digital image formation
(e.g., conversion of analogue optical sensor signals to digital signals), manipulation
(e.g., image filtering, denoising, cropping), feature extraction (e.g., pixel intensity,
gradient orientation, gradient magnitude, edge strength), description (e.g., image
edges and texture) and visualization (e.g., pixel intensity histograms). See, e.g., the
mathematical frameworks for image processing by B. Jähne [87] and S.G. Hoggar
[82], extending to a number of practitioner views of image processing provided,
for example, by M. Sonka and V. Hlavac and R. Boyle [186], W. Burger and
M.J. Burge [21], R.C. Gonzalez and R.E. Woods [58], R.C. Gonzalez and R.E.
Woods and S.L. Eddins [59], V. Hlavac [81], and C. Solomon and T. Breckon
[184]. This useful information provides the bedrock for the focal points of computer
visionists, namely, image object shapes and patterns that can be detected, analyzed
and classified (see, e.g., [142]). In effect, computer vision is the study of digital
image structures and patterns, which is a layer of image analysis above that of
image processing and photonics. Computer vision includes image processing and
photonics in its bag of tricks in its pursuit of image geometry and image region
patterns.

In addition, it is helpful to cultivate an intelligent systems view of digital images
with an eye to discovering hidden patterns such as repetitions of convex enclosures

vii

of image regions and embedded image structures such as clusters of points in image
regions of interest. The discovery of such structures is made possible by quantizers.
A quantizer restricts a set of values (usually continuous) to a discrete value. In its
simplest form in computer vision, a quantizer observes a particular target pixel
intensity and selects the nearest approximating values in the neighbourhood of the
target. The output of a quantizer is called a codebook by A. Gersho and R.M. Gray
[55, §5.1, p. 133] (see, also, S. Ramakrishnan, K. Rose and A. Gersho [164]).

In the context of image mesh overlays, the Gersho–Gray quantizer is replaced by
geometry-based quantizers. A geometry-based quantizer restricts an image region
to its shape contour and observes in an image a particular target object shape
contour, which is compared with other shape contours that have approximately the
same shape as the target. In the foundations of computer vision, geometry-based
quantizers observe and compare image regions with approximately the same
regions such as mesh maximal nucleus clusters (MNCs) compared with other
nucleus clusters. Amaximal nucleus cluster (MNCs) is a collection of image mesh
polygons surrounding a mesh polygon called the nucleus (see, e.g., J.F. Peters and
E. İnan on Edelsbrunner nerves in Voronoï tessellations of images [150]). An
image mesh nucleus is a mesh polygon that is the centre of a collection of adjacent
polygons. In effect, every mesh polygon is a nucleus of a cluster of polygons.
However, only one or more mesh nuclei are maximal.

A maximal image mesh nucleus is a mesh nucleus with the highest number of
adjacent polygons. MNCs are important in computer vision, since what we will call
a MNC contour approximates the shape of an underlying image object. A Voronoï
tessellation of an image is a tiling of the image with polygons. A Voronoï tessel-
lation of an image is also called a Voronoï mesh. A sample tiling of a musician
image in Fig. 0.1.1 is shown in Fig. 0.1.2. A sample nucleus of the musician image
tiling is shown in Fig. 0.2.1. The red dots inside each of the tiling polygons are
examples of Voronoï region (polygon) generating points. For more about this, see
Sect. 1.22.1. This musician mesh nucleus is the centre of a maximal nucleus cluster
shown in Fig. 0.2.2. This is the only MNC in the musician image mesh in Fig. 0.1.2.
This MNC is also an example of a Voronoï mesh nerve. The study of image MNCs
takes us to the threshold of image geometry and image object shape detection. For
more about this, see Sect. 1.22.2.

Each image tiling polygon is a convex hull of the interior and vertex pixels.
A convex hull of a set of image points is the smallest convex set of the set of points.
A set of image points A is a convex set, provided all of the points on every straight
line segment between any two points in the set A is contained in the set. In other
words, knowledge discovery is at the heart of computer vision. Both knowledge and
understanding of digital images can be used in the design of computer vision
systems. In vision system designs, there is a need to understand the composition
and structure of digital images as well as the methods used to analyze captured
images.

The focus of this volume is on the study of raster images. The sequel to this
volume will focus on vector images, which are composed of points (vectors), lines
and curves. The basic content of every raster image consists of pixels

viii Preface

(e.g., distinguished pixels called sites or mesh generating points), edges (e.g.,
common, parallel, intersecting, convex, concave, straight, curved, connected,
unconnected), angles (e.g., vector angle, angle between vectors, pixel angle), image
geometry (e.g., Voronoï regions [141], Delaunay triangulations [140]), colour,
shape, and texture. Many problems in computer vision and scene analysis are
solved by finding the most probable values of certain hidden or unobserved image
variables and structures (see, e.g., P. Kohli and P.H.S. Torr [96]). Such structures
and variables include the topological neighbourhood of a pixel, convex hulls of sets
of pixels, nearness (and apartness) of image structures and pixel gradient distri-
butions as well as feature vectors that describe elements of captured scenes.

Other computer vision problems include image matching, feature selection,
optimal classifier design, image region measurement, interest point identification,
contour grouping, segmentation, registration, matching, recognition, image clus-
tering, pattern clustering in F. Escolono, P. Suau, B. Bonev [45] and in N. Paragios,
Y. Chen, O. Faugeras [138], landmark and point shape matching, image warping,

0.2.1: Musician mesh nucleus 0.2.2: Musician maximal nucleus cluster

Fig. 0.2 Maximal nucleus cluster on musician image

0.1.1: Muscian 0.1.2: Muscian tiling

Fig. 0.1 Voronoï tessellation of musician image

Preface ix

shape gradients [138], false colouring, pixel labelling, edge detection, geometric
structure detection, topological neighbourhood detection, object recognition, and
image pattern recognition.

In computer vision, the focus is on the detection of the basic geometric structures
and object shapes commonly found in digital images. This leads into a study of the
basics of image processing and image analysis as well as vector space and com-
putational geometry views of images. The basics of image processing include
colour spaces, filtering, edge detection, spatial description and image texture.
Digital images are examples of Euclidean spaces (both 2D and 3D). Hence, vector
space views of digital images are a natural outcome of their basic character.
A digital image structure is basically a geometric or a visual topological structure.
Examples of image structures are image regions, line segments, generating points
(e.g. Lowe keypoints), set of pixels, neighbourhood of a pixel, half spaces, convex
sets of pixels and convex hulls of sets of image pixels. For example, such structures
can be viewed in terms of image regions nearest selected points or collections of
image regions with a specified range of diameters. An image region is a set of
image points (pixels) in the interior of a digital image. The diameter of any image
region is the maximum distance between a pair of points in the region). Such
structures can also be found in line segments connected between selected points to
form triangular regions in 2D and 3D images.

Such structures are also commonly found in 2D and 3D images in the inter-
section of closed half spaces to form either convex hulls of a set of points or what
G.M. Ziegler calls polytopes [221]. An image half space is the set of all points
either above or below a line. In all three cases, we obtain a regional view of digital
images. For more about polytopes, see Appendix B.15.

Every image region has a shape. Some region shapes are more interesting than
others. The interesting image region shapes are those containing objects of interest.
These regional views of images leads to various forms of image segmentations that
have practical value when it comes to recognizing objects in images. In addition,
detection of image region shapes of interest views lead to the discovery of image
patterns that transcend the study of texels in image processing. A texel is an image
region represented by an array of pixels. For more about shapes, see Appendix B.18
on shape and shape boundaries.

Image analysis focuses on various digital image measurements (e.g., pixel size,
pixel adjacency, pixel feature values, pixel neighbourhoods, pixel gradient, close-
ness of image neighbourhoods). Three standard region-based approaches in image
analysis are isodata thresholding (binarizing images), watershed segmentation
(computed using a distance map from foreground pixels to background regions),
and non-maximum suppression (finding local maxima by suppressing all pixels that
are less likely than their surrounding pixels) [212].

In image analysis, object and background pixels are associated with different
adjacencies (neighbourhoods) by T. Aberra [3]. There are three basic types of
neighbourhoods, namely, Rosenfeld adjacency neighbourhoods [171, 102],
Hausdorff neighbourhoods [74, 75] and descriptive neighbourhoods in J.F. Peters
[142] and in C.J. Henry [77, 76]. Using different geometries, an adjacency

x Preface

neighbourhood of a pixel is defined by the pixels adjacent to a given pixel. An
image Rosenfeld adjacency neighbourhood of a pixel p is a set of pixels that are
adjacent to p. Adjacency neighbourhoods are commonly used in edge detection in
digital images.

A Hausdorff neighbourhood of a point p is defined by finding all pixels whose
distance from p is less that a positive number r (called the neighbourhood radius).
A descriptive neighbourhood of a pixel p (denoted by N(img (x, y), r) is the set of
pixels with feature vectors that match or are similar to the feature vector that
describes img(x, y) (the neighbourhood ‘centre’ of a digital image img) and which
are within a prescribed radius r.

Unlike an adjacency neighbourhood, a descriptive neighbourhood can have
holes in it, i.e., pixels with feature vectors that do not match the neighbourhood
centre and are not part of the neighbourhood. Other types of descriptive neigh-
bourhoods are introduced in [142, Sect. 1.16, pp. 29–34].

The chapters in this book grew out of my notes for an undergraduate class in
Computer Vision taught over the past several years. Many topics in this book grew
out my discussions and exchanges with a number of researchers and others,
especially, S. Ramanna (those many shapes, especially in crystals), Anna Di
Concilio (those proximities, region-free geometry, and seascape shapes like those in
Fig. 0.3), Clara Guadagni (those flower nerve structures), Arturo Tozzi (those
Borsuk-Ulam Theorem insights and Gibson shapes, Avenarius shapes), Romy
Tozzi (remember 8, ∞), Zdzisław Pawlak (those shapes in paintings of the Polish
countryside), Lech Polkowski (those mereological, topological and rough set
structures), Piotr Artiemjew (those dragonfly wings), Giangiacomo Gerla (those tips
(points)–vertices–of UNISA courtyard triangles and spatial regions), Gerald Beer
(those moments in Som Naimpally’s life), Guiseppe Di Maio (those insights about
proximities), Somashekhar (Som) A. Naimpally (those topological structures),
Chris Henry (those colour spaces, colour shape sets), Macek Borkowski (those 3D
views of space), Homa Fashandi, Dan Lockery, Irakli Dochviri, Ebubekir İnan
(those nearness relations and near groups), Mehmet Ali Öztürk (those beautiful
algebraic structures), Mustafa Uçkun, Nick Friesen (those shapes of dwellings),
Özlem Umdu, Doungrat Chitcharoen, Çenker Sandoz (those Delaunay triangula-
tions), Surabi Tiwari (those many categories), Kyle Fedoruk (application of com-
puter vision: Subaru EyeSight®), Amir H. Meghdadi, Shabnam Shahfar, Andrew
Skowron (those proximities at Banacha), Alexander Yurkin, Marcin Wolksi (those
sheaves), Piotr Wasilewski, Leon Schilmoeler, Jerzy W. Grzymala-Busse (those
insights about rough sets and LATEX hints), Zbigniew Suraj (those many Petri nets),
Jarosław Stepaniuk, Witold Pedrycz, Robert Thomas (those shapes of tilings),
Marković G. oko (polyforms), Miroslaw Pawlak, Pradeepa Yahampath, Gabriel
Thomas, Anthony (Tony) Szturm, Sankar K. Pal, Dean McNeill, Guiseppe (Joe) Lo
Vetri, Witold Kinsner, Ken Ferens, David Schmidt (set theory), William Hankley
(time-based specification), Jack Lange (those chalkboard topological doodlings),
Irving Sussman (gold nuggets in theorems and proofs) and Brian Peters (those
fleeting glimpses of geometric shapes on the walls).

Preface xi

A number of our department technologists have been very helpful, especially,
Mount-First Ng, Ken Biegun, Guy Jonatschick and Sinisa Janjic.

And many of my students have given important suggestions concerning topics
covered in this book, especially, Drew Barclay, Braden Cross, Binglin Li, Randima
Hettiarachchi, Enoch A-iyeh, Chidoteremndu (Chido) Chinonyelum Uchime,
D. Villar, K. Marcynuk, Muhammad Zubair Ahmad, and Armina Ebrahimi.

Chapter problems have been classified. Those problems that begin with are
the kind you can run with, and probably will not take much time to solve. Problems

that begin with are the kind you can probably solve in about the time it takes to
drink a cup of tea or coffee. The remaining problems will need varying lengths of
time to solve.

Winnipeg, Canada James F. Peters

Fig. 0.3 Seascape shapes along the coastline of Vietri, Italy

xii Preface

Contents

1 Basics Leading to Machine Vision . 1
1.1 What Is Computer Vision? . 2
1.2 Divide and Conquer Approach . 3
1.3 Voronoï Diagrams Superimposed on Images 6
1.4 A Brief Look at Computational Geometry 8
1.5 Framework for Digital Images . 12
1.6 Digital Visual Space . 17
1.7 Creating Your Own Images . 18
1.8 Randomly Generated Images . 20
1.9 Ways to Display Images . 24
1.10 Digital Image Formats . 25
1.11 Image Data Types. 26
1.12 Colour Images . 30

1.12.1 Colour Spaces . 30
1.12.2 Colour Channels . 30

1.13 Colour Lookup Table . 34
1.14 Image Geometry, a First Look . 38
1.15 Accessing and Modifying Image Pixel Values 42
1.16 RGB, Greyscale, and Binary (BW) Images. 44
1.17 Rosenfeld 8-Neighbourhood of a Pixel . 45
1.18 Distances: Euclidean and Taxicab Metrics 50
1.19 False Colours: Pointillist Picture Painting 51

1.19.1 False-Colour an RGB Image Pattern 52
1.19.2 False-Colour a Greyscale Image Pattern 55

1.20 Vector Spaces Over Digital Images . 56
1.20.1 Dot Products . 57
1.20.2 Image Gradient . 58

xiii

1.21 What a Camera Sees: Intelligent Systems View 60
1.21.1 Intelligent System Approach in Camera Vision

Systems . 60
1.21.2 Scene Colour Sensing by Cameras 61

1.22 Image Geometry: Voronoï and Delaunay Meshes
on an Image . 66
1.22.1 Voronoï Mesh on Car Image. 66
1.22.2 What a Voronoï Image Sub-Mesh by Itself Reveals 69

1.23 Nerve Structures . 69
1.23.1 Delaunay Mesh on Car Image . 75
1.23.2 Combined Voronoï and Delaunay Meshes

on Car Image . 76
1.24 Video Frame Mesh Overlays . 78

1.24.1 Offline Video Frame Processing 79
1.24.2 Real-Time Video Processing . 82

2 Working with Pixels . 87
2.1 Picture Elements . 87
2.2 Separating Colour Image Channels . 90
2.3 Colour to Greyscale Conversion . 92
2.4 Algebraic Operations on Pixel Intensities 93
2.5 Pixel Selection Illustrated with Edge Pixel Selection 100
2.6 Function-Based Image Pixel Value Changes. 109
2.7 Logical Operations on Images . 112

2.7.1 Complementing and Logical not of Pixel Intensities 112
2.7.2 Xor Operation on Pairs of Binary Images 113

2.8 Separating Image Foreground From Background 116
2.9 Conjunction of Thresholded Colour Channels 118
2.10 Improving Contrast in an Image . 120
2.11 Gamma Transform . 122
2.12 Gamma Correction . 123

3 Visualising Pixel Intensity Distributions . 125
3.1 Histograms and Plots . 128

3.1.1 Histogram . 129
3.1.2 Stem Plot. 131
3.1.3 Plot . 131
3.1.4 Surface Plot . 131
3.1.5 Wireframe Surface Plot . 133
3.1.6 Contour Plot . 133

3.2 Isolines . 134
3.3 Colour Histograms . 137

xiv Contents

3.4 Adaptive Thresholding . 138
3.5 Contrast Stretching . 140
3.6 Histogram Matching . 143

4 Linear Filtering . 145
4.1 Importance of Image Filtering . 145
4.2 Filter Kernels . 147
4.3 Linear Filter Experiments . 148
4.4 Linear Convolution Filtering. 149
4.5 Selecting a Region-of-Interest . 151
4.6 Adding Noise to Image. 153
4.7 Mean Filtering . 155
4.8 Median Filtering . 156
4.9 Rank Order Filtering. 158
4.10 Normal Distribution Filtering . 159

5 Edges, Lines, Corners, Gaussian Kernel and Voronoï Meshes. 161
5.1 Linear Function . 162
5.2 Edge Detection . 164
5.3 Double Precision Laplacian Filter . 167
5.4 Enhancing Digital Image Edges . 168
5.5 Gaussian Kernel . 170
5.6 Gaussian Filter . 172
5.7 Gaussian Filter and Image Restoration . 174
5.8 Laplace of Gaussian Filter Image Enhancement 175
5.9 Zero-Cross Edge Filter Image Enhancement 176
5.10 Anisotropy Versus Isotropy in Edge Detection 178
5.11 Detecting Edges and Lines in Digital Images 181
5.12 Detecting Image Corners . 184
5.13 Image Corner-Based Voronoï Meshes Revisited 187

5.13.1 Voronoï Tessellation Details . 187
5.13.2 Sites for Voronoï Polygons . 188

5.14 Steps to Construct a Corner-Based Voronoï Mesh 189
5.15 Extreme Image Corners in Set of Mesh Generators 190
5.16 Voronoï Mesh on an Image with Extreme Corners. 191
5.17 Image Gradient Approach to Isolating Image Edges 194
5.18 Corners, Edges and VoronoÏ Mesh . 196

6 Delaunay Mesh Segmentation. 199
6.1 Delaunay Triangulation Generates a Triangular Mesh 200
6.2 Triangle Circumcircles . 201
6.3 Constructing a Corner-Based Delaunay Mesh

on Image Edges . 203

Contents xv

6.4 Centroid-Based Delaunay Image Mesh . 204
6.4.1 Finding Image Centroids . 205
6.4.2 Finding Image Centroidal Delaunay Mesh. 205
6.4.3 Finding Image Centroidal Voronoï Mesh 206
6.4.4 Finding Image Centroidal Voronoï Superimposed

on a Delaunay Mesh . 207

7 Video Processing. An Introduction to Real-Time
and Offline Video Analysis . 211
7.1 Basics of Video Processing . 212

7.1.1 Frame Point Processing . 213
7.1.2 Image Acquisition . 213
7.1.3 Blobs. 214
7.1.4 Frame Tiling and Frame Geometry 215

7.2 Voronoï Tiling of Video Frames . 216
7.3 Detection of Shapes in Video Frames. 216
7.4 Measuring Shape Similarity and the Voronoï Visual Hull

of an Object . 218
7.5 Maximal Nucleus Clusters . 220
7.6 Problems. 224
7.7 Shape Distance . 232
7.8 Weight Function for Edgelets . 234
7.9 Maximum Edgelets . 234

7.9.1 Coarse Contour Edgelets . 236
7.9.2 Connected Mesh Regions that are MNCs 237

8 Lowe Keypoints, Maximal Nucleus Clusters, Contours
and Shapes. 241
8.1 Image Analysis . 242
8.2 Scene Analysis . 244
8.3 Pixel Edge Strength . 247
8.4 Cropping and Sparse Representations of Digital Images. 249
8.5 Shape Theory and the Shapes of 2D Image Objects:

Towards Image Object Shape Detection . 252
8.6 Image Pixel Gradient Orientation and Magnitude 254
8.7 Difference-of-Gaussians . 257
8.8 Image Keypoints: D.G. Lowe’s SIFT Approach 260
8.9 Application: Keypoint Boundaries of Image Mesh Nuclei 262
8.10 Supra (Outer) Nucleus Contours . 266
8.11 Quality of a MNC Contour Shape . 268
8.12 Coarse S2P and S3P (Levels 2 and 3) MNC Contours 269
8.13 Experimenting with the Number of Keypoints 271

xvi Contents

8.14 Coarse Perimeters on Dual MNCs . 277
8.15 Rényi Entropy of Image MNC Regions . 277
8.16 Problems. 281

9 Postscript. Where Do Shapes Fit into the Computer Vision
Landscape? . 283
9.1 Shapes in Natural Scenes . 284
9.2 Shape Estimates . 287

Appendix A: Matlab and Mathematica Scripts. 291

Appendix B: Glossary . 361

References . 403

Author Index . 413

Subject Index. 417

Contents xvii

Chapter 1
Basics Leading to Machine Vision

Fig. 1.1 Voronoï geometric views of image structures

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2_1

1

2 1 Basics Leading to Machine Vision

Fig. 1.2 Delaunay geometric views of image structures

p

q

r

x

y

(pqr)

Vp

Fig. 1.3 p, q ∈ S, �(pqr) = Delaunay triangle

1.1 What Is Computer Vision?

The principal aim of computer vision is to reconstruct and interpret natural scenes
based on the content of images captured by digital cameras [190]. A natural scene
is that part of visual field that is captured either by human visual perception or by
optical sensor arrays.

1.1 What Is Computer Vision? 3

A optical sensor array-based natural scene is either as a single digital image
captured by camera or as video frame image captured by a video camera such as a
webcam.

The basic content of every image scene consists of pixels (e.g., adjacent, non-
adjacent), edges (e.g., common, parallel, intersecting, convex, concave, straight,
curved, connected, unconnected), angles (e.g., vector, betweenvectors, pixels), image
geometry (e.g., Voronoï regions [141], Delaunay triangulations [140]), colour, shape,
and texture.

1.2 Divide and Conquer Approach

The reconstruction and interpretation of natural scenes is made easier by tiling (tes-
sellating) a scene image with known geometric shapes such as triangles (Delaunay
triangulation approach) and polygons (Voronoï diagram approach). This is a divide-
and-conquer approach. Examples of this approach in computer vision are found in

Fig. 1.4 Triangulated video frame from [214]

Shape detection: Video frame shape detection using Delaunay triangulation is
given in C.P. Yung, G.P.-T. Choi, K. Chen and L.M. Lui [214] (see, e.g., Fig. 1.4).

Silhouettes: Use silhouettes to find epipolar lines to calibrate a network of cam-
eras, an approach used by G. Ben-Artzi, T. Halperin, M. Werman and S. Peleg in
[14]. The basic goal here is to achieve binocular vision and determine the scene
position of a 3D object point via triangulation on a pair of 2D images (what each
single camera sees). Points called epipoles are used to extract 3D objects from
a pair of 2D images. An epipole is the point of intersection of the line joining
optical centers with an image plane. The line between optical centers is called a
baseline. An epipolar plane is the plane defined by a 3D point m and the optical

4 1 Basics Leading to Machine Vision

Fig. 1.5 Epipoles and epipolar lines

Fig. 1.6 Stages of the Voronoï segmentation method from [79]

centers C and C ′. See, for example, the pair of epipoles and epipolar lines in
Fig. 1.5.

Video stippling: Stippling renders an image using point sets, elementary shapes
and colours. The core technique in video stippling is Voronoï tessellation of video
frames. This is the approach by T. Houit and F. Nielsen in [85]. This article contain
a good introduction toVoronoï diagrams superimposedonvideo frame images (see
[85, Sect. 2, pp. 2–3]). Voronoï diagrams are useful in segmenting images. This
leads to what are known as Dirichlet tessellated images, leading a new form of k-
means clusters of image regions (see Fig. 1.6 for steps in theVoronoï segmentation
method). This form of image segmentation uses cluster centroid proximity to
find image clusters. This is approach used by R. Hettiarachchi and J.F. Peters in

1.2 Divide and Conquer Approach 5

[79]. Voronoï manifolds are introduced by J.F. Peters and C. Guadagni in [146].
Amanifold is a topological space that is locally Euclidean, i.e., around every point
in themanifold there is an open neighbourhood.A nonempty set X with a topology
τ on it, is a topological space. A collection of open sets τ on a nonempty open
set X is a topology on X , provided it has certain properties (see Appendix B.19
for the definitions of open set and topology). An open set is a nonempty set of
points A in space X contains all points sufficiently close to A but does not include
its boundary points.

Fig. 1.7 Open set A = {�,�,�,�,�,�}

Example 1.1 Sample open sets.

apple pulp Apple without its skin.
egg interior Egg yoke without its shell.
wall-less room Room without its walls.
Open Subimage Asubimage that does include its boundary points. A sample 2×3

subimage A in a tiny 4 × 5 digital image I mg is shown in Fig. 1.7. The set A is
open, since it contains only black squares � and does not contain the gray pixels
along its boundary represented by �.
�

A manifold M is a Voronoï manifold, provided M is a Voronoï diagram. Any
digital image or video frame image with a topology defined on it, is a Voronoï
manifold. This is important in computer vision, since images that are Voronoï
manifolds have geometric structures that are an aid in the study of the character
of image shapes and objects.

Combined Geodesic Delaunay and Vororonï Tessellation: Delaunay triangula-
tion and Voronoï diagrams are combined in the study of geodesic lines and graphs
is introduced by Y.-J. Lin, C.-Xu Xu, D. Fan and Y. He in [112]. A graph G is a

6 1 Basics Leading to Machine Vision

geodetic graph, provided, for any two vertices p, q on G, there is at most one
shortest path between p and q. A geodetic line is a straight line, since the shortest
path between the endpoints of a straight line is the line itself. For more about this,
see J. Topp [195]. For examples, see Appendix B.7.

Convex Hulls: A convex hull of a set of points A (denoted by convhA) is the
smallest convex set containing A. A nonempty set A in an n-dimensional Euclid-
ean space is a convex set (denoted by convA), provided every straight line segment
between any two points in the set is also contained in the set. Voronoï tessellation
of a digital image results in image region clusters that are helpful in shape detec-
tion and the analysis of complex systems such as the cosmic web. This approach
is used by J. Hidding, R. van deWeygaert, G. Vegter, B.J.T. Jones andM. Teillaud
in [80]. For a pair of 3D convex hulls, see Fig. 1.8. For more about convex hulls,
see Appendix B.3. �

Fig. 1.8 Sample 3D convex hulls of a set of 89 points

These methods use image areas instead of pixels to extract image shape and object
information. In other words, we use computational geometry in the interpretation and
analysis of scene images.

1.3 Voronoï Diagrams Superimposed on Images

Let S be any set of selected pixels in a digital image and let p ∈ S. The pixels in S
are called sites (or generating points) to distinguish them from other pixels in an
image. Recall that Euclidean distance between a pair of points x, y in the Euclidean
plane is denoted by ‖x − y‖ and defined by

1.3 Voronoï Diagrams Superimposed on Images 7

‖x − y‖ =
√
√
√
√

n
∑

i=1

x2
i − y2i

A Voronoï region of p ∈ S (denoted Vp) is defined by

Vp = {x ∈ E : ‖x − p‖ ≤ ‖x − q‖ for all q ∈ S} .

Every site in S belongs to only one Voronoï region. A digital image covered with
Voronoï regions is called a tessellated image. Notice that each Voronoï region is
a convex polygon. This means that all of the points on a straight edge connecting
any pair of points in a Voronoï region belongs to the region. And a complete set of
Voronoï regions covering an image is called a Voronoï diagram or Voronoï mesh.

Example 1.2 Sample Voronoï and Delaunay Image Meshes.
Sample Voronoï regions on an fMRI image are shown in Fig. 1.1.1 with the extracted
Voronoï mesh shown in Fig. 1.1.2. In this case, each Voronoï region is a convex
polygon in the mesh that surrounds an image corner. A Delaunay triangle is formed
by connecting the site points of neighbouring Voronoï regions. A sample Delaunay
triangulation mesh is shown in Fig. 1.2.1. This gives us another view of image geom-
etry formed by the interior points surrounding a mesh generator of each Delaunay
triangle. The extracted Delaunay triangulation is shown in Fig. 1.2.2. �

Many problems in computer vision and scene analysis are solved by finding the
most probable values of certain hidden or unobserved image variables and struc-
tures [96]. Such structures and variables include Voronoï regions, Delaunay trian-
gles, neighbourhoods of pixels, nearness (and apartness) of image structures and
pixel gradient distributions as well as values of encoded desired properties of scenes.

Other computer vision problems include imagematching, feature selection, opti-
mal classifier design, image region measurement, interest point, contour grouping,
segmentation, registration, matching, recognition, image clustering, pattern clus-
tering [45, 138], landmark and point shape matching, image warping, shape gra-
dients [138], false colouring, pixel labelling, edge detection, geometric structure
detection, topological neighbourhood detection, object recognition, and image pat-
tern recognition. Typical applications of computer vision are in digital video stabi-
lization [49, Sect. 9, starting on p. 261] and in robot navigation [93, Sect. 5, starting
on p. 109].

The term camera comes from Latin camera obscura (dark chamber). Many dif-
ferent forms of cameras provide a playground for computer vision, e.g., affine cam-
era,pinhole camera, ordinary digital cameras, infrared cameras (also thermographic
camera), gamma (tomography) camera devices (in 3D imaging). An affine camera
is a linear mathematical model that approximates the perspective projection derived
from an ideal pinhole camera [218]. A pinhole camera is a perspective projection
device, which is a box with light-sensitive film on its interior back plane and which
admits light through a pinhole.

8 1 Basics Leading to Machine Vision

Fig. 1.9 Pixel centered at (5.5, 2.5) in a very small image grid

In this work, the focus is on the detection of the basic content and structures
in digital images. An interest in image content leads into a study of the basics of
image processing and image analysis as well as vector space and computational
geometry views of images. The basics of image processing include colour spaces,
filtering, edge detection, spatial description and image texture. The study of image
structures leads to a computational geometry view of digital images. The basic idea
is to detect and analyze image geometry from different perspectives.

Digital images are examples of subsets of Euclidean spaces (both 2D and 3D).
Hence, vector space views of digital images are a natural outcome of their basic
character. Digital image structures are basically geometric structures. Such structures
can be viewed in terms of image regions nearest selected points (see, e.g., the tiny
region nearest the highlighted pixel centered at (5.5, 2.5) in Fig. 1.9). Such structures
can also viewed with respect to line segments connection between selected points
to form triangular regions. Both a regional view and a triangulation view of image
structures leads to various forms of image segmentations that have practical values
when it comes to recognizing objects in images and classifying images. In addition,
both regional and triangle views lead to the discovery of patterns hidden in digital
images.

Basic Approach in Image Computational Geometry

The basic approach is to describe a digital image object with a known
geometric structure.

1.4 A Brief Look at Computational Geometry

To analyze and understand image scenes, it is necessary to identify the objects in
the scenes. Such objects can be viewed geometrically as collections of connected
edges (e.g., skeletonizations or edges belonging to shapes or edges in polygons) or

1.4 A Brief Look at Computational Geometry 9

image regions viewed as sets of pixels that are in some sense near each other or set of
points near a fixed point (e.g., all points near a site (also, seed or generating point) in a
Voronoï region [38]). For this reason, it is highly advantageous to associate geometric
structures in an image with mesh-generating points (sites) derived from the fabric of
an image. Image edges, corners, centroids, critical points, intensities, and keypoints
(image pixels viewed as feature vectors) or their combinations provide ideal sources
of mesh generators as well as sources of information about image geometry.

Computational geometry is the brain child of A. Rosenfeld, who suggested
approaching image analysis in terms of distance functions in measuring the
separation between pixels [168] and image structures such as sets of pixels [169,
170]. Rosenfeld’s work eventually led to the introduction of topological algorithms
useful in image processing [99] and the introduction of a full-scale digital geometry
in picture analysis [94].

Foundations of Scene Analysis

The foundations for digital image scene analysis are built on the pioneer-
ing work by A. Rosenfeld work on digital topology [98, 168–172] (later
called digital geometry [94]) and others [39, 99, 102, 104, 105]. The
work on digital topology runs parallel with the introduction of compu-
tational geometry by M.I. Shamos [175] and F.P. Preparata [158, 159],
building on the work on spatial tessellations by G. Voronoï [201, 203]
and others [27, 53, 64, 103, 124, 196].

Computational geometry (CG) is an algorithmic approach in the study of
geometric structures. In CG, algorithms (step-by-step methods) are introduced to
construct and analyze the lines and surfaces of objects, especially real world objects.
The focus in CG is on how points, lines, polygons, smooth curves (in 2D) and
polyhedra and smooth surfaces (in 3D) are either constructedor detected and analyzed
by a computer. For a more general view of CP from a line geometry perspective, see,
for example, H. Pottmann and J. Wallner [157].

In the context of digital images, computational geometry focuses on the con-
struction and analysis of various types of mesh overlays on images. On the ground
floor, the two main types of meshes result from Delaunay triangulations and Voronoï
tessellations on sets of image pixels. A Delaunay triangulation is a covering of a
digital image with triangles with non-intersecting interiors. With Delaunay triangu-
lation, the focus is on constructing meshes of triangles derived from selected sets of
pixels called sites or generators and which cover either a 2D or 3D digital image.
A principal benefit of image triangulations is the detection of image object shapes
covered bymesh triangles. Thanks to the known properties of triangles (e.g., uniform
shape, sum of the interior angles, perimeter, area, lengths of sides), object shapes
can be described in a very accurate fashion. For more about Delaunay triangulation,
see J.A. Baerentzen, J. Gravesen, F. Anton and H. Aanaes [8, Sect. 14].

10 1 Basics Leading to Machine Vision

Image object shapes can also be closely approximated by collections of Voronoï
polygons (also called Voronoï regions) in a Voronoï tessellation of an image. A 2D
Voronoï diagram represents a tessellation of the plane region by convex polygons.
A 3D Voronoï diagram represents a tessellation of a 3D surface region by convex
polygons.

A convex polygon is an example of a convex set. A convex set of points A (denoted
by convA) has the property that, for each pair of points p, q in convA, all of the points
on the straight line segment connected between p and q also belong to convA. For
more about convex sets, see Appendix B.3.

Since object shapes tend to irregular, the varying shapes of polygons in a typical
Voronoï image covering an image give a more precise view of the shapes of image
objects. It is important to notice that Delaunay triangles have empty interiors (only
the sides of the triangles are known). By contrast, Voronoï polygons have non-empty
interiors. This means that we know both the sides as well as the content of the inte-
rior of each Voronoï polygon. A principal benefit of image Voronoï tessellation is the
detection of image object shapes covered by mesh polygons. Thanks to the known
properties of Voronoï polygons (e.g., shape, interior angles, edge pixel gradient ori-
entation, perimeter, diameter, area, lengths and number of sides), object shapes can
be described in a very accurate fashion. For this reason, Voronoï polygons that cover
an image neighbourhood containing an object provide a very detailed view of image
object shapes and content.

A sample digital image geometry algorithm useful in either triangulating or tes-
sellating a digital image is given in Algorithm1.

Algorithm 1: Digital Image Geometry via Mesh Covering Image
Input : Read digital image img.
Output: Mesh M covering an image.
MeshSite ← MeshGenerating PointT ype;1
img �−→ MeshSitePointCoordinates;2
S ← MeshSitePointCoordinates;3
/* S contains MeshSitePointType coordinates used as mesh generating points (seeds or4
sites). */ ;
MeshT ype ← MeshChoice;5
/* MeshT ype identifies a chosen form of mesh, e.g., Voronoï, Delaunay, polynomial. */ ;6
S �−→ MeshType M ;7
MeshType M �−→ img ;8
/* Use M to gain information about image geometry. */ ;9

Algorithm1 leads to a mesh covering a digital image. Image meshes can vary
considerably, depending on the type of image and the typemesh generating points that
are chosen. Image geometry tends to be revealed, whenever the choice of generating
points accurately reflects the image visual content and the structure of the objects in
an image scene. For example, corners would be the logical choice for image scenes
containing buildings or objects with sharply varying contours such as hands or facial
profiles.

1.4 A Brief Look at Computational Geometry 11

Fig. 1.10 Hunting grounds for scene information: corner-based Delaunay and Voronoï meshes

Example 1.3 Meshes Covering a Salerno Poste Auto Scene.
A corner-basedVoronoïmesh covering an image scene containing aPoste auto parked
outside the train station in Salerno, Italy is shown in Fig. 1.10.1. This Voronoï mesh
is also called a Dirichlet tessellation. Using the same set of corner generating points,
a Delaunay triangulation cover in the Poste auto scene is shown in Fig. 1.10.2. For

12 1 Basics Leading to Machine Vision

a Delaunay triangulation view of fMRIs (functional Magnetic Resonance Images),
see Fig. 1.2. For more about Delaunay triangulation, see Sect. 6.1.

For a Voronoï tessellation of the same fMRIs, see Fig. 1.1. One important thing
to look for in Voronoï tessellation of an image is the presence of clusters of mesh
polygons, each with a central polygon that has a maximum number of adjacent
polygons. The central polygon of a mesh cluster is called the cluster nucleus. In that
case, the cluster is called a maximal nucleus cluster (MNC). Image mesh MNCs
approximate the shape of the underlying image object covered by the MNC. For
more about MNCs, see Sect. 7.5. �

1.5 Framework for Digital Images

A digital image is a discrete representation of visual field objects that have spatial
(layout) and intensity (colour or grey tone) information.

From an appearance point of view, a greyscale digital image1 is represented by
a 2D light intensity function I (x, y), where x and y are spatial coordinates and the
value of I at (x, y) is proportional to the intensity of light that impacted on an optical
sensor and recorded in the corresponding picture element (pixel) at that point.

If we have a multicolour image, then a pixel at (x, y) is 1×3 array and each array
element indicates a red, green or blue brightness of the pixel in a colour band (or
colour channel). A greyscale digital image I is represented by a single 2D array of
numbers and a colour image is represented by a collection of 2D arrays, one for each
colour band or channel. This is how, for example, Matlab represents colour images.
A binary image consists entirely of black pixels (pixel intensity = 0) and white
pixels (pixel intensity = 1). For simplicity, we use the term binary image to refer to
a black and white image. By contrast, a greyscale image is an image that consists
entirely of pixels with varying shades of black, grey tones and white (grey tones).

Binary images and greyscale images are 2-dimensional intensity images. By con-
trast, an RGB (red green blue) colour image (is a 3-dimensional or multidimen-
sional image) image, since each colour pixel is represented by 3 colour channels,
one channel for each colour. RGB images live in a what is known as an RGB colour
space. There are many other forms of colour spaces. The most common alternative
to an RGB space is the HSV (Hue, Saturation, Value) space implemented by Matlab
or the HSB (Hue, Saturation, Brightness) space implemented by Mathematica.

1A greyscale image is an image containing pixels that are visible as black or white or grey tones
(intermediate between black and white).

http://dx.doi.org/10.1007/978-3-319-52483-2_6
http://dx.doi.org/10.1007/978-3-319-52483-2_7

1.5 Framework for Digital Images 13

Fig. 1.11 Sample images to compare using cpselect

Fig. 1.12 Pixels as tiny squares on the edges of the maple leaf

An image point (briefly, point) in a digital image is called a picture point or
pixel or point sample.

A pixel is a physical point in a raster image. In this book, the terms picture point,
point and pixel are used interchangeably. Each pixel has information that represents
the response of an optical sensor to a particle of light (photon) reflected by a part of
an object within a field of view (also field of vision). A visual field or field of view
is the extent of the observable world that is seen (part of scene in front of a camera)
at any given moment. In terms of a digitized optical sensor value, a point sample
is a single number in a greyscale image or a set of 3 numbers in a colour image. It

14 1 Basics Leading to Machine Vision

is common to use the little square model, which represents a pixel as a geometric
square.

Example 1.4 Jaggies

Due to the use of tiny squares to represent a pixel
in a raster image, edges in an image appear to be jagged instead of smooth, when
we zoom in to get a closer (enlarged) view of an image. This jaggedness is called
aliasing or jaggies.2 �

Fig. 1.13 Relation between human eye and TV screen

Example 1.5 Experiment with cpselect from Matlab.
Try the following Matlab® experiment:

	 cpselect (′gems2. j pg′,′ cup. j pg′)

using a pair of colour images like the ones shown in Fig. 1.11. To see this, move
the cpselect window over the maple leaf in the sample image in Fig. 1.11.1 and set
the zoom at 600%. Then notice the tiny squares along the edges of the zoomed-in
maple leaf in Fig. 1.12. Try a similar experiment with a second image such as the
one in Fig. 1.11.2 (or the same image) in the right-hand cpselect window. There are
advantages in choosing the same image for the right-hand cpselect window, since this
makes it possible to compare what happens while zooming in by different amounts
in relation to a zoomed-in image in the left-hand cpselect window.

Note The human eye can identify 120 pixels per degree of visual arc, i.e., if 2 dots
are closer than 1

120 degree, then our eyes cannot tell the difference. At a distance of 2
m (normal distance to a TV), our eyes cannot differentiate 2 dots 0.4mm apart (see,
for example, Fig. 1.13). �

In other words, for example, a pixel p centered at location (i, j) in a digital image
is identified with an area of the plane bounded by a square with sides of length
0.5mm, i.e.,

2Doug Baldwin, http://cs.geneseo.edu/~baldwin/reference/images.html.

http://cs.geneseo.edu/~baldwin/reference/images.html

1.5 Framework for Digital Images 15

p = {(x, y) : i − 0.5 ≤ x ≤ i + 0.5, j − 0.5 ≤ y ≤ j + 0.5} .

See, e.g., the sample pixel p centered at (5.2, 2.5) represented as a square in Fig. 1.9,
where

p = {(x, y) : i − 0.5 ≤ 5.5 ≤ i + 0.5, j − 0.5 ≤ 2.5 ≤ j + 0.5} .

A.R. Smith points out that this is misleading [179]. Instead, in a 2D model of an
image, a pixel is a point sample that exists only at a point in the plane. For a colour
image, pixels contains three point samples, one for each colour channel. Normally,
a pixel is the smallest unit of analysis of images. Sub-pixel analysis is also possible.
For more about pixels, see Appendix B.15.

In photography, a visual field is that part of the physical world that is visible
through a camera at a particular position and orientation in space. A visual field is
identified with a view cone or angle of view. In Matlab, a greyscale image pixel
I (x, y) denotes the light intensity (without colour) at the x row and y column of the
image. Values of x and y start at the origin in the upper lefthand corner of an image
(see, e.g., the greyscale image of a cameraman in Fig. 1.14).

A sample display of a coordinate system with a greyscale colorbar for an image is
shown in Fig. 1.14 using the code in Listing1.1. The imagesc function is used to scale
the intensities in a greyscale image. The colormap(gray) and colorbar functions
are used to produce a colorbar to the west of a displayed image.

Fig. 1.14 Scaled image

16 1 Basics Leading to Machine Vision

A=imread (’cameraman.tif’) ; % Read i n image
figure , imagesc (A) ; %s c a l e i n t e n s i t i e s & d i s p l a y t o u s e co l o rmap
colormap (gray) ; colorbar ; %
imfinfo (’cameraman.tif’)

Listing 1.1 Matlab code in eg_01.m to produce Fig. 1.14.

In Fig. 1.14, the top lefthand corner has coordinates (0, 0), the origin of the array
representation of the image. To see the information for the cameraman image, use
the imfinfo function (see Listing1.2).

	 imfinfo(’cameraman.tif’)

to obtain

imfinfo (’cameraman.tif’)

ans =

Filename : ’cameraman.tif’
FileModDate : ’20-Dec-2010 09:43:30’

FileSize : 65240
Format : ’tif’

FormatVersion : []
Width : 256

Height : 256
BitDepth : 8

ColorType : ’grayscale’
FormatSignature : [77 77 42 0]

ByteOrder : ’big-endian’
NewSubFileType : 0
BitsPerSample : 8

Compression : ’PackBits’
PhotometricInterpretation : ’BlackIsZero’

StripOffsets : [8x1 double]
SamplesPerPixel : 1

RowsPerStrip : 32
StripByteCounts : [8x1 double]

XResolution : 72
YResolution : 72

ResolutionUnit : ’None’
Colormap : []

PlanarConfiguration : ’Chunky’
TileWidth : []

TileLength : []
TileOffsets : []

TileByteCounts : []
Orientation : 1

FillOrder : 1
GrayResponseUnit : 0 . 0 100

MaxSampleValue : 255
MinSampleValue : 0

Thresholding : 1
Offset : 64872

ImageDescription : [1x112 char]

Listing 1.2 Image information using imfinfo in Listing1.1.

1.5 Framework for Digital Images 17

The image in Fig. 1.14 is an example of a greyscale3 image. A greyscale image
A is represented by an array such as the following one with corresponding pixel
intensities.

A =

⎡

⎢
⎢
⎢
⎣

A(1, 1) A(2, 1) . . . A(450, 1)
A(1, 2) A(2, 2) . . . A(450, 2)

...
...

. . .
...

A(1, 350) A(2, 350) . . . A(450, 350)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

50 52 . . . 50
50 152 . . . 250
...

...
. . .

...

100 120 . . . 8

⎤

⎥
⎥
⎥
⎦
.

In image A, notice that pixel A(450, 350) has greyscale intensity 8 (almost black).
And the pixel at A(450, 2) has intensity 250 (almost white).

1.6 Digital Visual Space

A digital visual space is a nonempty set that consists of points in a digital image. A
space is a nonempty set with some sort of structure.

Historical Note 1 Visual Space.
J.H. Poincaré introduced sets of similar sensations to represent the results of G.T.
Fechner’s sensation sensitivity experiments [50] and a framework for the study of
resemblance in representative spaces as models of what he termed physical con-
tinua [154–156].Visual spaces are prominent among the types of spaces that Poincaré
wrote about.

The elements of a physical continuum (pc) are sets of sensations. The notion of a
pc and various representative spaces (tactile, visual, motor spaces) were introduced
by Poincaré in an 1894 article on the mathematical continuum [156], an 1895 article
on space and geometry [155]. �

From the Historical Note, the important thing to observe is that a digital image
can be viewed as a visual space with some form of structure. Notice that the idea
of a digital visual space extends to collections (sets) of digital images, where the
structure of each such collection is defined, for example, by the nearness or apartness
of image structures such as neighbourhoods of points in the images in the collection.
In effect, a collection of digital images with some form of structure constitutes a
visual space.

3Or grayscale image, using the Mathworks (Matlab) spelling. These notes are written using Cana-
dian spelling.

18 1 Basics Leading to Machine Vision

Digital Image Analysis Secret

One of the important secrets in computer vision and digital image analy-
sis is the discovery of image structures that reveal image patterns.

Remark 1.6 Tomasi View of a Raster Image.
View an ordinary camera image im as amapping f from a 2D image location to either
a 1-dimensional Euclidean space (for binary or greyscale images) or a 3-dimensional
Euclidean space (for colour images), i.e.,

f : Rm −→ R
n, m = 2, n = 1 (binary, greyscale), n = 3 (colour).

For example, if p is the location a pixel in a 2D rgb colour image, then f (p) is
a vector with 3 components, namely, the red, green and blue intensity values for the
pixel p. This is the Tomasi model of a raster image [194]. �

1.7 Creating Your Own Images

Any 2D array of natural numbers in the range [0, n], n ∈ N (natural numbers) can be
viewed as a greyscale digital image. Each natural number specifies a pixel intensity.
The upper limit n on the range of intensities is usually 255.

Here is an example. The greyscale image in Fig. 1.15 (an image that approximates
theMona Lisa painting) is constructed from an array of positive integers, where each
integer represents a pixel grayscale intensity. Internally, Matlab represents a single
intensity as tiny subimage (each pixel in the subimage has the same intensity).

% samp le d i g i t a l image

132 128 126 123 137 129 130 145 158 170 172 161 153 158 162 172 159 152 ;
139 136 127 125 129 134 143 147 150 146 157 157 158 166 171 163 154 144 ;
144 135 125 119 124 135 121 62 29 16 20 47 89 151 162 158 152 137 ;
146 132 125 125 132 89 17 19 11 8 6 9 17 38 134 164 155 143 ;
142 130 124 130 119 15 46 82 54 25 6 6 11 17 33 155 173 156 ;
134 132 138 148 47 92 208 227 181 111 33 9 6 14 16 70 180 178 ;
151 139 158 117 22 162 242 248 225 153 62 19 8 8 11 13 159 152 ;
153 135 157 46 39 174 207 210 205 136 89 52 17 7 6 6 70 108 ;
167 168 128 17 63 169 196 211 168 137 121 88 21 9 7 5 34 57 ;
166 170 93 16 34 63 77 140 28 48 31 25 17 10 9 8 22 36 ;
136 111 83 15 48 69 57 124 55 86 52 112 34 11 9 6 15 30 ;
49 39 46 11 83 174 150 128 103 199 194 108 23 12 12 10 14 34 ;
26 24 18 14 53 175 153 134 98 172 146 59 13 14 13 12 12 46 ;
21 16 11 14 21 110 126 47 62 142 85 33 10 13 13 11 11 15 ;
17 14 10 11 11 69 102 42 39 74 71 28 9 13 12 12 11 18 ;
18 19 11 12 8 43 126 69 49 77 46 17 7 14 12 11 12 19 ;
24 30 17 11 12 6 73 165 79 37 15 12 10 12 13 10 10 16 ;
24 40 18 9 9 2 2 23 16 10 9 10 10 11 9 8 6 10 ;
43 40 25 6 10 2 0 6 20 8 10 16 18 10 4 3 5 7 ;
39 34 23 5 7 3 2 6 77 39 25 31 36 11 2 2 5 2 ;

1.7 Creating Your Own Images 19

17 16 9 4 6 5 6 36 85 82 68 75 72 27 5 7 8 0 ;
4 8 5 6 8 15 65 127 135 108 120 131 101 47 6 11 7 4 ;
2 9 6 6 7 74 144 170 175 149 162 153 110 48 11 12 3 5 ;
11 9 3 7 21 127 176 190 169 166 182 158 118 44 10 11 2 5 ;
8 0 5 23 63 162 185 191 186 181 188 156 117 38 11 12 25 33 ;
3 5 6 64 147 182 173 190 221 212 205 181 110 33 19 42 57 50 ;
5 3 7 45 160 190 149 200 253 255 239 210 115 46 30 25 9 5 ;
9 4 10 16 24 63 93 187 223 237 209 124 36 17 4 3 2 1 ;
7 8 13 8 9 12 17 19 26 41 42 24 11 5 0 1 7 4 ;
%

Listing 1.3 Matlab code in lisa.m to produce Fig. 1.15.

can be viewed as a set of grey level intensities (see Fig. 1.15).

Fig. 1.15 Greyscale image

Here is the code used to produce the image in Fig. 1.15.

% C r e a t i n g an image

fid=fopen (’lisa2.txt’) ;
A = textscan (fid , ’%d’ ,’delimiter’ ,’\b\t;’) ;
B=reshape (A { 1 } , [1 8 , 2 9]) ;
B=double (B) ;
B=B ’ ;
figure ; imshow (B , []) ;

Listing 1.4 Matlab code in readTxt.m to produce Fig. 1.15.

Thought Problem 1 K Path Leading to a UXW
We know that unbounded digital images are possible. This takes along the path of
UXWs (UneXplored Worlds). Let N denote the set of natural numbers from 0 to
∞ (infinity). In some UXW, there are digital cameras that produce images that are
N×N arrays, where m × n image has m ∈ (0,∞] and n ∈ (0,∞]. Incidentally, city
buses in a UXW have an unlimited number of seats. Here is the thought problem.
Design a digital camera that produces m × n in a UXW. �

20 1 Basics Leading to Machine Vision

Generating n × n Images Using rand(n)

The Matlab rand(n) function (n a positive integer) produces pseudo-
random numbers in the range [0,1] in a n × n array. In Matlab,

rand(n). ∗ m

produces random numbers in the range from [0,m] in an n × n array.
The values produced by rand(n) are of type double. By varying n in
rand(n), we can vary the size of the arrays that are realized in Matlab
as n × n images.

Fig. 1.16 Greyscale image with sparse background

1.8 Randomly Generated Images

This section illustrates the use of random numbers to generate a digital image. This
is done with the rand function in Matlab. The image in Fig. 1.16 represents an array
of randomly generated intensities in the range from 0 to 100, using the code in
Listing1.5. Here is a sample of 8 numbers of type double produced by the code:

81.4724 70.6046 75.1267 7.5854 10.6653 41.7267 54.7009 90.5792

1.8 Randomly Generated Images 21

Fig. 1.17 rgb image

% Gen e r a t e random a r r a y o f numbers i n r a n g e 0 t o max

I = rand (5 0) . ∗ 1 0 0 ; % max = 100
%I = r a nd (1 0 0) . ∗ 1 0 0 0 ; % max = 1000
%I = r a nd (1 5 0) . ∗ 1 0 0 0 ;
%I = r a nd (2 5 6) . ∗ 1 0 0 0 ;
figure , imshow (I) ; title (’bw’) ;
figure , image (I , ’CDataMapping’ ,’scaled’) ;
axis image ; title (’colours’) ;
colorbar

Listing 1.5 Matlab code in eg_02.m to produce Figs. 1.16 and 1.17.

InMatlab, the image function displays amatrix I as an image. Using this function,
each element of matrix I specifies the colour of a rectangular patch (see Fig. 1.17
to see how the image function displays a matrix of random number values as an
image containing color patches). Listing1.5 contains the following line of code that
produces the greyscale image in Fig. 1.16. Because the second image produced by
the code in Listing1.5 has been scaled, the colourbar to the right of the image in
Fig. 1.17 shows intensities (colour amounts) in the range from 0 to 100, instead of
the range 0 to 1 (as in Fig. 1.16).

figure , imshow (I) ; title (’intensities in [0,1] range’) ;

Listing 1.6 Matlab code in eg_02.m to produce Fig. 1.16.

22 1 Basics Leading to Machine Vision

Fig. 1.18 Small rgb image

The CDataMapping parameter tells Matlab to select a matrix element colour
using a colormap entry. For a scaled CDataMapping, values of a matrix I are treated
as colormap indices.

Problem 1.7

(image.1)®Write Matlab code to produce the image in Fig. 1.18.
(image.2)®Write Matlab code to display the Mona Lisa shown in Fig. 1.15 as
a colour image instead of a greyscale image. Your colour image should be similar
to colour image in Fig. 1.17. �

For Problem 1.7, you may find the following trick useful. To transform the color
array in Fig. 1.19.1 to a narrower display like the one in Fig. 1.19.1, try
� axis image.

1.8 Randomly Generated Images 23

Fig. 1.19 Set aspect ratio to square pixels

Fig. 1.20 Image displays

Generating n × n Images Using randi(n,m)
The Matlab function randi produces pseudo-random numbers
that are positive integers. To obtain an image with, for example,
exactly 80 intensities in a 100 × 100 array, try

I= randi(80,100)−1;

where I = 100 × 100 is an array with values in [0,79].

24 1 Basics Leading to Machine Vision

1.9 Ways to Display Images

By controlling or not controlling the scaling of an image, many different displays
of an image are possible. Here is an example. The images in Fig. 1.20 are displayed
using the Matlab code in Listing1.7. Notice the use of the subplot(r,c,i) to display
a row of images. In general, subplot(r,c,i) displays r rows of images (or plots) in c
columns, where 1 ≤ i ≤ r ∗ c. Listing1.7 uses the rand function. This function is
written rand(n) to produce n random numbers in [0, 1].
% D i s p l a y image c o n t r a s t

% what ’ s h a pp en i n g ?
I = rand (1 0 0) . ∗ 8 0 ; %g e n e r a t e random image a r r a y
% wi t h 80 i n t e n s i t i e s i n r a n g e 0 . . . 1 0 0
subplot (1 , 3 , 1) ; imshow (I) ;
imagesc (I) ; % s c a l e co l o rmap t o d a t a
axis image ; axis off ; %r a n g e
colormap (gray) ; colorbar ; % p r odu c e c o l o r b a r
subplot (1 , 3 , 2) ; imshow (I) ; % do no t s p e c i f y r a n g e
subplot (1 , 3 , 3) ; imshow (I , [0 8 0]) ; % s p e c i f y r a n g e

Listing 1.7 Use the Matlab code in eg_03.m to produce the images in Fig. 1.20.

By way of a second sample of image displays, consider displaying three different
images in three different ways. The method used to produce Fig. 1.21 is given in
Listing1.8.

Fig. 1.21 Three image displays (cell, spine, and onions)

% D i s p l a y m u l t i p l e images

% what ’ s h a pp en i n g ?
I = imread (’cell.tif’) ; % choo s e . t i f f i l e
J = imread (’spine.tif’) ; % choo s e 2nd . t i f f i l e
K = imread (’onion.png’) ; % choo s e . png f i l e
%
subplot (1 , 3 , 1) ; imagesc (I) ; axis image ; % s c a l e image
axis image ; axis off ; % d i s p l a y f i r s t image
colormap (gray) ; colorbar ; % p r odu c e c o l o r b a r
subplot (1 , 3 , 2) ; imagesc (J) ; axis image ; % 2nd image
axis off ; colormap (jet) ; % s e t co l o rmap t o j e t (f a l s e c o l o u r)
subplot (1 , 3 , 3) ; imshow (K) ; % d i s p l a y c o l o u r image

Listing 1.8 Use the Matlab code in eg_04.m to produce the images in Fig. 1.21.

1.10 Digital Image Formats 25

1.10 Digital Image Formats

There are a number of important, commonly available digital image formats, briefly
summarised as follows.

(Format.1) .bmp (bit mapped picture) basic image format, limited generally, loss-
less compression (lossy variants exist). .bmp originated in the devel-
opment of Microsoft Windows.

(Format.2) .gif (graphics interchange format) Limited to 256 colours (8 bit), loss-
less compression. Lossless data compression is the name of a class
of compression algorithms that make it possible to reconstruct the
exact original data from the compressed data. By contrast, lossy data
compression only permits an approximation of the original data from
the compressed data.

(Format.3) .jpg, .jpeg (joint photographic experts group) Most commonly used
file format, today (e.g., in most cameras), lossless compression (lossy
variants exist).

(Format.4) .png (portable network graphics) .png is a bit mapped image format
that employs lossless data compression.

(Format.5) .svg (scalable vector graphics) Instead of a raster image format
(describes the characteristics of each pixel), a vector image format
gives a geometric description that can be rendered smoothly at any
display size. An .svg image provides a versatile, scriptable and all-
purpose vector format for the web and other publishing applications.
To gain some experience working with vector images, download and
experiment with the public domain tool named Inkscape.

(Format.6) .tif, .tiff (tagged image file format) Highly flexible, detailed, adaptable
format, compressed and uncompressed variants exist.

.png was designed to replace .gif, new lossless compression format. The
acronym png can be read png not gif. This format was approved by the
internet engineering steering group in 1996 and was published as an
ISO/IEC standard in 2004. This format supports both greyscale and full
colour (rgb) images. This format was designed for internet transfer and
not for professional quality print graphics. See http://linuxgazette.net/
issue13/png.html for a history of the .png format.

The need to transmit images over networks and the need to recognize bodies of
numerical data as corresponding to digital images has led to the introduction of a
number of different image formats. Among these formats, .jpg and .tif are the most
popular. In general, .jpg and .tif are better suited for photographic images. The .gif
and .png formats are better suited for images with limited colour, detail, e.g., logos,
handwriting, line drawings, text.

http://linuxgazette.net/issue13/png.html
http://linuxgazette.net/issue13/png.html

26 1 Basics Leading to Machine Vision

Fig. 1.22 Greyscale image with 16 bit intensity values

1.11 Image Data Types

The choice of an image format can be determined, for themost part, not just by image
contents but also by the image data type required for storage. Here are a number of
distinct image types.

(Type.1) Binary (logical) images. A binary image is represented by a 2D array,
where each array element assigns to each pixel a number from {0, 1}.
Black corresponds to a 0 (off or background pixel). White corresponds
to 1 (on or foreground pixel). A fax image is an example of a binary
image. For an rgb image I, im2bw(’I.rgb’) is used by Matlab to convert
I to a binary image. For the details, type the following line the Matlab
workspace:

	 help im2bw

(Type.2) Intensity (greyscale) images are 2D arrays, where each array element
assigns one numerical value from N

0+ (natural numbers plus zero, usu-
ally natural numbers in the 8 bit range from 0 to 255 (or scaling in
the range from 0.0 to 1.0). For a greyscale image with 16 bit integer
intensities from 0 to 65535, try the Matlab code in Listing1.9 using the
im2uint16 function and the rgb2gray function to convert a colour image
to a greyscale image. Using imtool, you can inspect the resulting image

1.11 Image Data Types 27

intensities (see, e.g., Fig. 1.22, with an intensity equal to 6842 for the
pixel at (2959, 1111)).

% 16 b i t g r e y s c a l e image

g = imread (’workshop.jpg’) ; % a 4 . 7 MB c o l o u r image
g = im2uint16 (g) ;
g = rgb2gray (g) ;
imtool (g)

Listing 1.9 Use the Matlab code in eg_im2uint16.m to produce the images in Fig. 1.22.

Each intensity assigned to a pixel represents the light intensity at a partic-
ular point, i.e., an intensity represents the amount of light reflected from a
point in a visual field and captured by a camera sensor. Notice that many
Matlab functions representing image features such as edge detection and
pixel gradient methods require greylevel intensities as input (this means,
for example, that an rgb image must be converted to a greyscale.
For an rgb image I, rgb2gray(’I.rgb’) is used by Matlab to convert
I to a greyscale image before pixel gradients can be computed. From
a computer vision point of view for robot navigation systems, see
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/DIAS2/
for details. This is important in detecting image shapes and in imple-
menting corner detection methods studied by R.M. Haralick and L.G.
Shapiro in 1993 [70].

(Type.3) True colour4 images (e.g., .rgb images) assign 3 numerical values to each
pixel, where each assigned value corresponds to a colour amount for a
particular colour channel (either red or green or blue image channel).

(Type.4) False colour image depicts an object in colours that differ from those
a photograph (a true colour image) would show. The term false colour
refers to a group of colour rendering methods used to display images
in colours recorded in the visual of non-visual parts of the electromag-
netic spectrum. Pseudo colour, density slicing and choropleths are
variants of false colour used for information visualization for objects
in a single greyscale channel such as relief maps and tissue types in
magnetic resonance imaging. In a topology of digital images, it is help-
ful to render the picture points in the neighbourhood of a point with
a single colour, making it possible to distinguish one neighbourhood
of a point from other neighbourhoods of points in a picture (see, e.g.,
false colour-rendering of the picture points in an unbounded descriptive
neighbourhood in Fig. 1.23).

4This is the same type true color (U.S. spelling) images commonly found in the literature and also
supported by Matlab and devices such as printers.

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/DIAS2/

28 1 Basics Leading to Machine Vision

(Type.5) Floating point images are very different from the other image types.
Instead of integer pixel values, the pixels in these image store floating
point numbers representing intensity.

Fig. 1.23 Unbounded
descriptive Nbd of I (x, y)
with ε = 10

y

x

I

I(x,y)

Thought Problem 2 K
The code in Listing1.9 leads us to a path of a UXW, namely, the world of greyscale
images with intensities in the range [0,∞]. To inspect images in this unexplored
world, we just need to invent a im2uint∞ matlab function that gives us an unbounded
range of intensities for greyscale images. �

Problem 1.8 Pick several different points in a colour image and display the colour
channel values for each of the selected points. How would you go about printing
(displaying) all of the values for the red colour channel for this image using only one
command in Matlab? If you get it right, you will be displaying only the red colors
in the peppers.png image. �

Problem 1.9 To see an example of a floating point image, try out the code in
Listing1.10.

1.11 Image Data Types 29

% Ge n e r a t i n g a f l o a t i n g p o i n t image

C = rand (1 0 0 , 2) ;
figure , image (C , ’CDataMapping’ ,’scaled’)
axis image
imtool (C)

Listing 1.10 Use the Matlab code to produce a floating point image.

Modify the code to produce an image with width = 3, then 4, then 10. To find out
how rand works in Matlab, enter

	 help rand

Also enter 	 help image

to find out what the ’CDataMapping and ’scaled’ parameters are doing to produce
the image when you run the code in Listing1.10. For more information about Matlab
image formats, type5

� hel p imwr i te or � hel p im f ormats . �

Fig. 1.24 Sample pixels in 2D planes for color image I

5For example, imwrite is useful, if there is a needed to create a new image file containing a processed
image such as the image g in Listing1.9. To see this, try 	 imwrite(g,’greyimage.jpg’);.

30 1 Basics Leading to Machine Vision

1.12 Colour Images

This section focuses on the use of a colour lookup table by Mathworks (in Matlab)
in correlating pixel intensities with the amounts of pixel colour in the rgb colour
space. An overview of the different colour spaces is given by R.C. Gonzalez and
R.E. Woods [58, Chap.6, p. 394ff]. For a Matlab-oriented view of the colour spaces,
see R.C. Gonzalez, R.E. Woods and S.L. Eddins [59, Chap.5, p. 272ff].

1.12.1 Colour Spaces

This section briefly introduces an approach to producing sample colours in the RGB,
HSB and CIE LUV colour spaces.

Remark 1.10 Colour Spaces and Photonics.
A thorough study of various colour spaces, starting with the RBG colour space, is
presented by M. Sonka, V. Hlavac, and R. Boyle [185, Sect. 2.4.3]. The physics of
colour is briefly considered in [185, Sect. 2.4.1] and thoroughly presented from a
photonics perspective in E. Stijns and H. Thienpont [188, Sect. 2]. �

Fig. 1.25 Samples from
three colour spaces via
mathematica

Example 1.11 Three Colour Spaces.
The HSB (hue, saturation, brightness) is a variation of HSV (hue, saturation, value)
colour space. In 1931, the CIE (Commission Internationale de l’Eclairage) defined
three standard primaries X, Y, Z to replace R, G, B and introduced the LUV (L stands
for luminance) colour space (Fig. 1.25). �

1.12.2 Colour Channels

Mathematically, the colour channels for a colour image are represented by three
distinct 2D arrays with dimension m × n for an image with m rows and n columns

1.12 Colour Images 31

with one array for each colour, red (colour channel 1), green (colour channel 2),
blue (colour channel 3). A pixel colour is modelled as 1 × 3 array. In Fig. 1.24, for
example,

I (2, 4, :) = (I (2, 4, 1), I (2, 4, 2), I (2, 4, 3)) =
(

�,� ,�
)

,

where, for instance, the numerical value of I (4, 2, 1) is represented by . For a colour
image I in Matlab, the colour channel values for a pixel with coordinates (x, y) are
displayed using

	 I (x, y, 1)% = red colour channel value for image I,

	 I (x, y, 2)% = green colour channel value for image I,

	 I (x, y, 3)% = blue colour channel value for image I.

Three 2D colour planes for an image I are shown in Fig. 1.24. A sample pixel at
location (x, y) = (2, 4) (column 2, row 4) is also shown in each colour plane, i.e.,

	 I (2, 4, 1)% = red colour channel pixel value,

	 I (2, 4, 2)% = green colour channel pixel value,

	 I (2, 4, 3)% = blue colour channel pixel value.

The rgb colour cube in Fig. 1.26 is generated with theMatlab code in Listing1.11.

Fig. 1.26 rgb colour cube

32 1 Basics Leading to Machine Vision

function rgbcube (x , y , z)
vertices = [0 0 0 ; 0 0 1 ; 0 1 0 ; 0 1 1 ; 1 0 0 ; 1 0 1 ; 1 1 0 ; 1 1 1] ;
faces = [1 5 6 2 ; 1 3 7 5 ; 1 2 4 3 ; 2 4 8 6 ; 3 7 8 4 ; 5 6 8 7] ;
colors = vertices ;
patch (’vertices’ ,vertices , ’faces’ ,faces , . . .

’FaceVertexCData’ ,colors , ’FaceColor’ ,’interp’ , . . .
’EdgeAlpha’ , 0)

if nargin == 0
x = 10 ;y = 10 ;z = 4 ;

elseif nargin ~= 3
error (’wrong no. of inputs’)

end
axis off
view ([x , y , z])
axis square
%
% >> rgbcub e %samp le u s e o f t h i s f u n c t i o n
%

Listing 1.11 Use the Matlab code in rgbcube.m to produce the image in Fig. 1.26.

The Matlab code Listing1.11 uses the patch function. Briefly,
patch(X,Y,C) adds a ’patch’ or filled 2D polygon defined by the vectors
X and Y to the current axes. If X and Y are matrices of the same size,
one polygon per column is added. The parameter C specifies the colour
of the added face. To obtain a detailed explanation of the patch function,
type

� doc patch

Fig. 1.27 Green-cyan-white-yellow colour plane

Problem 1.12 Use the rgbcube function to the following colour planes, using the
specific values for (x, y, z) as an argument for the function:

1.12 Colour Images 33

Colour plane = (x, y, z)

blue-magenta-white-cyan = (?, ?, ?),−10 ≤ x, y, z ≤ 10,

red-yellow-white-magenta = (?, ?, ?),

green-cyan-white-yellow = (0, 10, 0),

black-red-magenta-blue = (?, ?, ?),

black-blue-cyan-green = (?, ?, ?),

black-red-yellow-green = (0, 0,−10).

For example, the green-cyan-white-yellow colour plane in Fig. 1.27 is produced using

� f i gure, r gbcube(0, 10, 0)

To solve this problem, give the missing values for each (?, ?, ?) and display and name
the corresponding colour plane. �

Table1.1 shows the six main colours in the visible spectrum, along with their typical
wavelength and frequency6 ranges. The wavelengths are given in nanometres (10−9

m) and the frequencies are given in terahertz (1012 Hz).

Table 1.1 Wavelength interval & frequency interval

Colour Wavelength (10−9 m (nm)) Frequency (1012 Hz (THz))

Red ∼ 700 nm− ∼ 635 nm ∼ 430 T H z− ∼ 480 T H z

Orange ∼ 635 nm− ∼ 590 nm ∼ 480 T H z− ∼ 510 T H z

Yellow ∼ 590 nm− ∼ 560 nm ∼ 510 T H z− ∼ 540 T H z

Green ∼ 560 nm− ∼ 490 nm ∼ 540 T H z− ∼ 610 T H z

Blue ∼ 490 nm− ∼ 450 nm ∼ 610 T H z− ∼ 670 T H z

Violet ∼ 450 nm− ∼ 400 nm ∼ 670 T H z− ∼ 750 T H z

6Frequencies:
High frequency RF signals (3–30 GHz) and Extreme High Frequency RF signals (30–300 GHz)
interacting with an electron-hole plasma in a semiconductor [178, Sect. 1.2.1, p. 10] (see,
also, [213]), Picosecond photoconducting dipole antenna illuminated with femtosecond optical
pulses, radiate electrical pulses with frequency spectra from dc-to-THz [178, Sect. 1.4.1, p. 16].

34 1 Basics Leading to Machine Vision

1.13 Colour Lookup Table

The Matlab function colormap is used to specify one of the built-in
colour tables used to define colour. Mathematically, a colormap is an
m × 3 matrix of real numbers between 0.0 and 1.0 (or between 0 and
255 on an integer scale). The kth row defines the kth colour in an image.
To obtain a detailed explanation of the colormap function, type

� doc colormap

To see sample colormaps, type

	I = imread(′ peppers. j pg′);
	I = rgb2gray(I);
	 f igure, image(I)

	colormap(bone)% greyscale colour map

	colormap(pink)% pastel shades of pink colormap

	colormap(copper)% colours from black to bright copper

A colour translation table or a colour lookup table (LUT) associates a pixel inten-
sity value (0 to 255) to a colour value. This colour value is represented as a triple (i,
j, k); this is much like the representation of a colour using one of the colour models.
Once a desired colour table or LUT has been set up, any image displayed on a colour
monitor automatically translates each pixel value by the LUT into a colour that is
then displayed at that pixel point. In Matlab, a LUT is called a colourmap.

A sample colour lookup table is given in Table1.2. This table is based on the RGB
colour cube and goes gradually from black (0, 0, 0) to yellow (255, 255, 0) to red
(255, 0, 0) to white (255, 255, 255). Thus, the pixel value (the subscript to the colour
table) for black is 0, for yellow is 84 and 85, for red is 169 and 170, and for white is
255. In Matlab, the subscripts to the colour table would run from 1 to 256.

Notice that not all the possible 2563 RGB hues are represented, since there are
only 256 entries in the table. For example, both blue (0, 0, 255) and green (0, 255, 0)
are missing. This is due to the fact that a pixel may have only one of 256 8-bit values.
This means that the user may choose which hues to put into his colour table.

A colour translation table based on the hue saturation value (hsv) or hue saturation
lightness (hsl) colour models would have entries with real numbers instead of inte-
gers. The basic representation for hsv uses cylindrical coordinate representations of
points in an rgb colour model. The first column would contain the number of degrees
(0–360◦) needed to specify the hue. The second and third columns would contain
values between 0.0 and 1.0.

1.13 Colour Lookup Table 35

Table 1.2 Colour table

Intensity Red � Green � Blue �
0 (0.0) 0 0 0

1 3 3 0

2 6 9 0

3 9 9 0

4 12 12 0
.
.
.

.

.

.
.
.
.

.

.

.

81 245 245 0

82 248 248 0

83 251 251 0

84 255 255 0

85 255 251 0

86 255 248 0

87 255 245 0
.
.
.

.

.

.
.
.
.

.

.

.

167 255 6 0

168 255 3 0

168 255 0 0

170 255 0 0

171 255 3 3

172 255 6 6
.
.
.

.

.

.
.
.
.

.

.

.

251 255 248 245

252 255 248 248

253 255 251 251

254 255 255 255

255 (1.0) 255 255 255

Of course, a standard or default colour table is usually provided automatically.
Do a

	 help color

within Matlab to see what colour tables or colourmaps it has predefined. For more
details, see https://csel.cs.colourado.edu/~csci4576/SciVis/SciVisColor.html.

https://csel.cs.colourado.edu/~csci4576/SciVis/SciVisColor.html

36 1 Basics Leading to Machine Vision

Remark 1.13 To see the colour channel values for a pixel, try the following experi-
ment.

% Expe r imen t w i t h a p i x e l i n a c o l o u r image
%

% What ’ s h a pp en i n g ?
g = imread (’rainbow-shoe2.jpg’) ; % r e a d c o l o u r image
figure , imagesc (g) , colorbar ; % d i s p l a y r a i nbow image
g (1 9 6 , 3 2 0) % d i s p l a y r e d c h a n n e l v a l u e
g (1 9 6 , 3 2 0 , :) % d i s p l a y 3 c o l o u r c h a n n e l v a l u e s

Listing 1.12 Use the Matlab code in band.m to produce the image in Fig. 1.28.

Fig. 1.28 Rainbow on a shoe (produced by Listing1.12)

Problem 1.14 Do the following:

(HSV.1) K Compare and contrast the rgb and hsv colour models. Hint: Check
Wikipedia introductions and Matlab documentation for these two colour
models.

(HSV.2) ® Using the Matlab rgb2hsv function, write a program to display the
individual hue, saturation and value colour channels of two colour images
(peppers.png and your own choice of a colour image). Hint: To get
started, try out the following in Matlab:

1.13 Colour Lookup Table 37

Fig. 1.29 Sample imtool hsv image display

	 g = imread(′ peppers.png′);
	 hsv = rgb2hsv(g);
	 imtool(hsv)

When the imtool window is displayed with the hsv version of the pep-
pers.png image, move the cursor over the image to see the real values that
correspond to each hsv colour. Notice, for example, the hsv color channel
values for the pixel at hsv(355, 10) in Fig. 1.29. Also, custom interpre-
tations of the hsv color space are possible, e.g., hsv colours represented
by integers corresponding to degrees in a circle.

(HSV.3) Using the Matlab imtool function to display the colour channel values
for the hsv image. Give some sample colour channel values for three of
the same pixels in the original rgb image and the new hsv image. �

38 1 Basics Leading to Machine Vision

Fig. 1.30 Sample imtool pixel value display

1.14 Image Geometry, a First Look

The idea now is to experiment with accessing pixels and display pixel intensities
in an image. The following tricks are used to view individual pixels, modify pixel
values and display images.

trick.1 Use % for comments.
trick.2 Matlab = % assignment operator.

Example 1.15 Draw a line segment between the specified coordinates.

	 r1 = 450, c1 = 20, r2 = 30, c2 = 350; % pixel coordinates

trick.3 Matlab imread(image) % moves image into workspace.
trick.4 Matlab imtool(image) % interactive image viewer.

Example 1.16

	 imtool(imread(′li f tingbody.png′))% See Fig. 1.30

trick.5 I(x,y) % displays pixel value at position (x,y).
trick.6 I(x,y,:) % displays colour channel values in rgb image.
trick.7 I(x,y) = 255% assigns maximum intensity to pixel at (x,y).
trick.8 Matlab imshow() % displays image.
trick.9 I(25,50,:) % displays pixel colour channel values.

1.14 Image Geometry, a First Look 39

trick.10 I(25,50,:) = 255% assigns white to each colour channel.
trick.11 Matlab line % draws a line segment in the current image.

Fig. 1.31 Sample line segment display

Example 1.17 Draw a line segment between the specified coordinates.

	 line([450, 20], [30, 350]); % See Fig. 1.31

trick.12 Matlab improfile% computes the intensity values along a line ormultiline
path in an image.

Example 1.18 Draw a line segment between the specified coordinates.

	 improf ile(im, [r1, c1], [r2, c2]); % See Fig. 1.32

Listing1.13 puts together the basic approach to accessing and plotting the pixel
values along a line segment. Notice that properties parameters can be added to the line
function to change the colour and width of a displayed line segment. For example,
try

	 improf ile(im, [r1, c1], [r2, c2],′ Color ′,′ r ′,′ LineWidth′, 3); % red line

Notice that the set of pixels in a line segment is an example of a simple convex set.
In general, a set of points is a convex set, provided the straight line segment connecting

40 1 Basics Leading to Machine Vision

Fig. 1.32 Sample line segment intensities

each pair of points in the set is contained in the set. A line segment is an example of
one-sided convex polygon. The combination of the line and improfile functions gives
a glimpse of what is known as the texture of an image. Small elementary patterns
repeated periodically in an image constitute what is known as image texture. The
study of image line segments leads to the skeletonization of digital images, which is
a stepping to object recognition and the delineation of image regions (e.g., areas of
interest in topographicmaps),which is an important part of computer vision (see, e.g.,
[176, Sect. 5.2]). The study of image line segments also ushers in the combination
of digital images and computational geometry [41].

% p i x e l i n t e n s i t y p r o f i l e a l o n g a l i n e segmen t
clc , clear all , close all
im = imread (’liftingbody.png’) ; % b u i l t − i n g r e y s c a l e image
image (im) , axis on , colormap (gray (2 5 6)) ; % d i s p l a y image
r1 = 450 ; c1 = 20 ; r2 = 30 ; c2 = 350 ; % s e l e c t p i x e l c o o r d s .
line ([r1 , c1] , [r2 , c2]) ; % draw l i n e segmen t
figure ,
improfile (im , [r1 , c1] , [r2 , c2]) , % p l o t p i x e l i n t e n s i t i e s
ylabel (’Pixel value’) ,
title (’improfile(im,[r1,c1],[r2,c2])’)

Listing 1.13 Use the Matlab code in findIt.m to produce the images in Fig. 1.32.

1.14 Image Geometry, a First Look 41

A geometric view of digital images approximates what the eye sees and
what a camera captures from a visual scene.

Fig. 1.33 Multiple line segments on an image

Problem 1.19 Working with Line Segments in Images.
Give Matlab code to do the following:

(a) Construct a pair of line segments in a greyscale image.
Hint. See Fig. 1.33 and Listing1.14.

(b) Give a plot of the pixel intensities for each line segment in part (a). Hint. Insert
hold off (instead of hold on) in Listing1.14. In a 3D view of pixel intensities,
be sure to insert an appropriate xlabel on the vertical axis and a title for the 3D
view.

(c) Based on the definition of a convex set, give two examples of convex sets that
are not straight line segments. �

% p i x e l i n t e n s i t y p r o f i l e a l o n g a l i n e segmen t
clc , clear all , close all
im = imread (’liftingbody.png’) ; % b u i l t − i n g r e y s c a l e image
figure
image (im) , axis on , colormap (gray (2 5 6)) ; % d i s p l a y image
hold on
seg1 = [19 427 416 7 7] ; % d e f i n e l i n e segmen t 1
seg2 = [96 462 37 3 3] ; % d e f i n e l i n e segmen t 2
r1 = 8 ; c1 = 350 ; r2 = 450 ; c2 = 45 ; % s e l e c t p i x e l c o o r d s .
line ([r1 , c1] , [r2 , c2] , ’Color’ ,’r’) ; % draw l i n e segmen t

42 1 Basics Leading to Machine Vision

improfile (im , seg1 , seg2) , grid on % mu l t i p l e l i n e s e gmen t s

Listing 1.14 Use the Matlab code in findLines.m to produce the image in Fig. 1.33.

Problem 1.20 More about Line Segments in Images.
® Solve Problem 1.19 with one line of Matlab code. �

1.15 Accessing and Modifying Image Pixel Values

It is possible to access, modify and display modified pixel values in an image. The
images in Fig. 1.34 (original image) and Fig. 1.35 (modified image) are produced
using the code in Listing1.15.

Fig. 1.34 Image display before changing pixel values

Fig. 1.35 Image display after changing pixel values

1.15 Accessing and Modifying Image Pixel Values 43

% D i s p l a y and modi fy image rgb p i x e l v a l u e s

% what ’ s h a pp en i n g ?
I = imread (’cell.tif’) ; % choo s e . t i f f i l e
imtool (I) ; % use i n t e r a c t i v e v i ewe r
%
K = imread (’onion.png’) ; % choo s e . png f i l e
imtool (K) ; % use i n t e r a c t i v e v i ewe r
subplot (2 , 2 , 1) ; imshow (I) ; % d i s p l a y u nmod i f i e d g r e y s c a l e image
subplot (2 , 2 , 2) ; imshow (K) ; % d i s p l a y u nmod i f i e d r gb image
%
I (2 5 , 5 0) % p r i n t v a l u e a t (2 5 , 5 0)
I (2 5 , 5 0) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (2 6 , 5 0) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (2 7 , 5 0) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (2 8 , 5 0) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (2 9 , 5 0) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (3 0 , 5 0) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (3 1 , 5 0) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (3 2 , 5 0) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (3 3 , 5 0) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (3 4 , 5 0) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (3 5 , 5 0) = 255 ; % s e t p i x e l v a l u e t o wh i t e
%
I (2 6 , 5 1) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (2 7 , 5 2) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (2 8 , 5 2) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (2 9 , 5 4) = 255 ; % s e t p i x e l v a l u e t o wh i t e
I (3 0 , 5 5) = 255 ; % s e t p i x e l v a l u e t o wh i t e
subplot (2 , 2 , 3) ; imshow (I) ; % d i s p l a y mod i f i e d image
imtool (I) ; % use i n t e r a c t i v e v i ewe r
%
K (2 5 , 5 0 , :) % p r i n t r gb p i x e l v a l u e a t (2 5 , 5 0)
K (2 5 , 5 0 , 1) % p r i n t r e d v a l u e a t (2 5 , 5 0)
K (2 5 , 5 0 , 2) % p r i n t g r e e n v a l u e a t (2 5 , 5 0)
K (2 5 , 5 0 , 3) % p r i n t b l u e v a l u e a t (2 5 , 5 0)
K (2 5 , 5 0 , :) = 255 ; % s e t p i x e l v a l u e t o r gb wh i t e
K (2 6 , 5 0 , :) = 255 ; % s e t p i x e l v a l u e t o r gb wh i t e
K (2 7 , 5 0 , :) = 255 ; % s e t p i x e l v a l u e t o r gb wh i t e
K (2 8 , 5 0 , :) = 255 ; % s e t p i x e l v a l u e t o r gb wh i t e
K (2 9 , 5 0 , :) = 255 ; % s e t p i x e l v a l u e t o r gb wh i t e
K (3 0 , 5 0 , :) = 255 ; % s e t p i x e l v a l u e t o r gb wh i t e
%
K (2 6 , 5 1 , :) = 255 ; % s e t p i x e l v a l u e t o r gb wh i t e
K (2 7 , 5 2 , :) = 255 ; % s e t p i x e l v a l u e t o r gb wh i t e
K (2 8 , 5 2 , :) = 255 ; % s e t p i x e l v a l u e t o r gb wh i t e
K (2 9 , 5 4 , :) = 255 ; % s e t p i x e l v a l u e t o r gb wh i t e
K (3 0 , 5 5 , :) = 255 ; % s e t p i x e l v a l u e t o r gb wh i t e
%K(3 1 , 5 6 , :) = 255 ; % s e t p i x e l v a l u e t o r gb wh i t e
K (2 5 , 5 0 , :)
subplot (2 , 2 , 4) ; imshow (K) ; % d i s p l a y mod i f i e d 2nd image
imtool (K) ; % use i n t e r a c t i v e v i ewe r

Listing 1.15 Use the Matlab code in eg_05.m to produce the images in Figs. 1.34 and 1.35.

You will find that running the code in Listing1.15 will display the following pixel
values.

ans(:,:,.1) = 46% unmodified red channel value for pixel I(25, 50)
ans(:,:,.2) = 29% unmodified green channel value for pixel I(25, 50)
ans(:,:,.3) = 50% unmodified blue channel value for pixel I(25, 50)
ans(:,:,.1) = 255% modified red channel value for pixel I(25, 50)
ans(:,:,.2) = 255% modified green channel value for pixel I(25, 50)

44 1 Basics Leading to Machine Vision

ans(:,:,.3) = 255% modified blue channel value for pixel I(25, 50)

In addition, the code in Listing1.15 displays an image viewer for each (both
unmodified and modified). Here is what the image viewer looks like, using
imtool(image) (Fig. 1.36).

Fig. 1.36 Image viewer for modified rgb onions image (notice hook)

1.16 RGB, Greyscale, and Binary (BW) Images

Fig. 1.37 png (rgb) → greyscale and binary images

1.16 RGB, Greyscale, and Binary (BW) Images 45

% c o n v e r t i n g an image t o g r e y s c a l e
% What ’ s h a pp en i n g

I = imread (’onion.png’) ; % i n p u t png (r gb) image
%
Ig = rgb2gray (I) ; % c o n v e r t t o g r a y s c a l e
Ibw = im2bw (I) ; % c o n v e r t t o r gb t o b i n a r y image
%
subplot (1 , 3 , 1) ; imshow (I) ; axis image ; title (’png (rgb) image’)
subplot (1 , 3 , 2) ; imshow (Ig) ; title (’greyscale image’) ;
subplot (1 , 3 , 3) ; imshow (Ibw) ; title (’binary image’) ;

Listing 1.16 Use the Matlab code in binary.m to produce the images in Figs. 1.34 and 1.37.

x

y p

Fig. 1.38 Tiny 3 × 3 subimage containing a 4-neighbourhood N4(p)

1.17 Rosenfeld 8-Neighbourhood of a Pixel

In the 1970s, A. Rosenfeld [169] introduced what he called an 4-neighbourhood
(4-Nbd) of a pixel p, which is a set of 4 pixels adjacent pixels N4(p). Let p have
coordinates (x, y) in an image I . Then N4(p) is a cross-shaped neighbourhood pixel
p defined by

N4(p) = {p(x, y), p(x − 1, y), p(x + 1, y), p(x, y − 1), p(x, y + 1)} (4-Nbd).

Let B a set of pixels in image I . A sample 4-neighbourhood of a pixel p is shown
in 4×4 image in Fig. 1.38. The 4 neighbouring pixels of the pixel p located at (x, y)
are outlined in blue. Then N4(p)∪ B is the union of the pixels in N4(p) and a second
set of pixels B. For example, let B be defined by the corner pixels in Fig. 1.38, i.e.,

B = {p(x − 1, y − 1), p(x + 1, y + 1), p(x + 1, y − 1), p(x − 1, y + 1)} .

That is, B is the set of pixels in the corners of the subimage in I containing the
4-neighbourhood N4(p) in Fig. 1.38.

46 1 Basics Leading to Machine Vision

x

y p

Fig. 1.39 Tiny 3 × 3 subimage containing an 8-neighbourhood N8(p)

Then a Rosenfeld 8-neighbourhood of the pixel p (denoted N8(p)) is defined as
the union of the union of N4(p) and B (set of corners), i.e.,

N8(p) = N4(p) ∪ B,

= N4(p) ∪ {p(x − 1, y − 1), p(x + 1, y + 1), p(x + 1, y − 1), p(x − 1, y + 1)} ,
= {p(x, y), p(x − 1, y), p(x + 1, y), p(x, y − 1), p(x, y + 1)} ∪
{p(x − 1, y − 1), p(x + 1, y + 1), p(x + 1, y − 1), p(x − 1, y + 1)} . (8-Nbd)

See Fig. 1.39 for a sample 8-neighbourhood. For more about Rosenfeld 4- and 8-
neighbourhoods, see R. Klette and A. Rosenfeld [94, Sect. 1.1.4, p. 9].

In an ordinary digital image without zooming, the tiny squares representing indi-
vidual pixels are usually not visible. To get around this problem and avoid the need
to use zooming, the Matlab function imcrop is used to select a tiny subimage in an
image.

% S e l e c t i n g a t i n y sub image u s i n g imc rop
clc , clear all , close all
a = imread (’peppers.png’) ; % b u i l t − i n g r e y s c a l e image
im = imcrop (a) ; % s e l e c t t i n y sub image
figure % d i s p l a y sub image
image (im) , axis on , colormap (gray (2 5 6)) ;

Listing 1.17 Use the Matlab code in RosenfeldTinyImage.m to produce the subimage in
Fig. 1.41.

Example 1.21 Extracting a Subimage from an Image. With, for example, the
peppers.png image available in Matlab (see Fig. 1.40), use imcrop to select a tiny

subimage such as (part of the center, lower green pepper in Fig. 1.40). This is
done using the Matlab script 1.17. For example, we can obtain the 9 × 11 subimage
in Fig. 1.41. �

1.17 Rosenfeld 8-Neighbourhood of a Pixel 47

Fig. 1.40 peppers.png

Fig. 1.41 Tiny subimage extracted from peppers.png

% Ro s e n f e l d 8 n e i g h b o u r s o f a p i x e l
clc , clear all , close all
a = imread (’peppers.png’) ; % b u i l t − i n g r e y s c a l e image
im = imcrop (a) ; % s e l e c t t i n y sub image
figure % d i s p l a y sub image
image (im) , axis on , colormap (gray (2 5 6)) ;
row = 4 , col = 5 ; % s e l e c t 8−Nbd c e n t e r
im (row , col , :) = 255 ; % p a i n t c e n t e r wh i t e
im (row−1 ,col−1:col + 1 , :) = 155 ; % p o i n t b o r d e r g r e y

48 1 Basics Leading to Machine Vision

Fig. 1.42 Sample 8-neighbourhood in 10 × 10 subimage in peppers.png

im (row , col−1 , :) = 155 ;
im (row , col + 1 , :) = 155 ;
im (row+1 ,col−1:col + 1 , :) = 155 ;
figure % d i s p l a y 8−Nbd
image (im) , axis on , grid on , colormap (gray (2 5 6)) ; % d i s p l a y image

Listing 1.18 Use the Matlab code in Rosenfeld8Neighbours.m to display an 8-
neighbourhood the subimage in Fig. 1.42.

Putting these ideas together, we can begin finding 8-neighbourhoods of a pixel in
any digital image.

Example 1.22 Displaying an 8-Neighbourhood in a Subimage.
Several steps are needed to find a visible 8-neighbourhood in an image.

1o Use imcrop to extract a tiny subimage in an image.
2o Select the coordinates of the center pixel in an 8-neighbourhood.
3o Assign a false colour to each of 8 neighbouring pixels of the center pixel.

These steps are carried out using the Matlab script Listing1.18. For example, we can
obtain the 8-Neighbourhood displayed with false colours in Fig. 1.42. �

Larger Rosenfeld neighbourhoods of pixels are possible. For example, A 24-
neighbourhood of a pixel p (denoted by N24(p)) in an image contains a center pixel
surrounded by 24 neighbouring pixels. In Fig. 1.43, the inner blue box with corners
at (2, 2)(2.5,2.5) represents a pixel p. The outer blue box in Fig. 1.43 represents a
neighbourhood N24(p) of the pixel p.

1.17 Rosenfeld 8-Neighbourhood of a Pixel 49

x

y p

Fig. 1.43 5 × 5 subimage containing a 24-neighbourhood N24(p)

Problem 1.23 24-Neighbourhood of a Pixel in an Image.
Give Matlab code to do the following:

(a) Select a tiny subimage in an image (you choose the image).
(b) Select the coordinates of the center pixel p in a 24-neighbourhood N24(p) in

the subimage from part (a).
(c) Assign a false colour to each of 24 neighbouring pixels surrounding the center

pixel.
(d) Display the original image.
(e) Display the tiny subimage from part (a).
(f) Display the 24-neighbourhood in the tiny subimage from part (e). �

y1

y2

x1 x2

p(x1, y1)

q(x2, y2)

x1 −x2

y
1
−
y
2

p
− q

Fig. 1.44 Distances in the Euclidean plane

50 1 Basics Leading to Machine Vision

1.18 Distances: Euclidean and Taxicab Metrics

This section briefly introduces two of the most commonly used means of measuring
distance, namely, Euclidean distance metric and Manhattan distance metric. Let Rn

denote the real Euclidean space. In Euclidean space in R
n , a vector is also called

a point (also called a vector with n coordinates. The Euclidean line (or real line)
equals R1 for n = 1, usually written R. A line segment x1x2 between points x1, x2
on the real line has length that is the absolute value x1 − x2 (see, for example, the
distance between points on the horizontal axis in Fig. 1.44).

The Euclidean plane (or 2-space) R2 is the space of all points with 2 coordinates.
The Euclidean 3-space R

3 is the space of all points each with 3 coordinates. In
general, the Euclidean n-space is the n-dimensional space Rn . The elements of Rn

are points (also called vectors), each with n coordinates.
For example, let points x, y ∈ R

n with n coordinates, then x = (x1, . . . , xn), y =
(y1, . . . , yn). The norm of x ∈ R

n (denoted ‖x‖) is

‖x‖ =
√

x2
1 + x2

2 + ... + x2
n (vector length from the origin).

The distance between vectors x, y is the norm of x − y (denoted by ‖x − y‖). The
Euclidean norm ‖x − y‖ in the plane is computed with the Euclidean metric defined
by

‖x − y‖ =
√
√
√
√

n
∑

i=1

(

x2
i − y2i

)

(Euclidean distance).

Sometimes the Euclidean distance is written ‖x − y‖2 (see, e.g., [34, Sect. 5, p. 94]).
Example 1.24 Euclidean norm in the Plane.
For the points p, q in Fig. 1.44, the Euclidean norm ‖p − q‖ is the length of the
hypotenuse in a right triangle. �

The taxicabmetric is computed using the absolute value of the differences between
points along the vertical and horizontal axes of a plane grid. Let |x1 − x2| equal the
absolute value of the distance between x1 and x2 (along the horizontal axis of a digital
image). The taxicab metric dtaxi , also called the Manhattan distance between points
p at (x1, y1) and q at (x2, y2), is distance in the plane defined by

dtaxi = |x1 − x2| + |y1 − y2| (Taxicab distance between two vectors inR2).

1.18 Distances: Euclidean and Taxicab Metrics 51

In general, the taxicab distance between two points inRn mimics the distance logged
by a taxi moving down one street and up another street until the taxi reaches its desti-
nation. The taxicab distance between two points x = (x1, . . . , xn), y = (y1, . . . , yn)

in n-dimensional Euclidean space Rn is defined by

dtaxi =
n

∑

i=1

|xi − yi | (Taxicab distance in R
n).

Example 1.25 Taxicab Distance in the Plane.
For the points p, q in Fig. 1.44, the taxicab distance is the sum of the lengths of the
two sides in a right triangle. �

Euclidean distance and the taxicab distance are two of commonest metrics used
in measuring distances in digital images. For example, see the sample distances
computed in Matlab Listing1.19.

% d i s t a n c e be tween p i x e l s
clc , clear all , close all
im0 = imread (’liftingbody.png’) ; % b u i l t − i n g r e y s c a l e image
image (im0) , axis on , colormap (gray (2 5 6)) ; % d i s p l a y image
% s e l e c t v e c t o r componen t s
x1 = 100 ; y1 = 275 ; x2 = 325 ; y2 = 400 ;
im0 (x1 , y1) ,im0 (x2 , y2) , % d i s p l a y p i x e l i n t e n s i t i e s
p = [100 2 7 5] ; q = [325 4 0 0] ; % v e c t o r s
norm (p) , norm (q) , % 2−norm v a l u e s
norm (p−q) , % norm (p−q) = E u c l i d e a n d i s t .
EuclideanDistance = sqrt ((x1−x2) ^2 +(y1−y2) ^ 2) ,
ManhattanDistance = abs (x1−x2) + abs (y1−y2)

Listing 1.19 Use the Matlab code in distance.m to experiment with distances between pixels.

Example 1.26 Distance Between Image Pixels.
Try using Matlab Listing1.19 to experiment with distances between pixels. �

Problem 1.27 ® In computing the Euclidean or Manhattan distance between
image pixels, what is the unit of measurement? For example, given pixels p at
(x1, y1) and q at (x2, y2), the distance ‖x − y‖ is either dimensionless or has a unit
measurement. �

1.19 False Colours: Pointillist Picture Painting

This section briefly introduces pointillist picture painting approach to modifying the
appearance of patterns in a digital image with false colours. Pointillism (from French
pointillisme) is a form of neo-impressionist art introduced by G. Seurat and P. Signac
during the 1880s [174]. Pointillism is a form of painting in which small dobs (dots)
of pure colour are applied to a canvas and which become blended in a viewer’s eye.

52 1 Basics Leading to Machine Vision

Fig. 1.45 Pixel intensity pattern inside a colour image box

The dobs of pure colour in a pointillist painting are arranged in visual patterns to
form a picture. The pointillist approach to painting with dobs of pure colour carries
over in the the false-colouring of selected pixels that are part of hidden patterns in
digital images.

1.19.1 False-Colour an RGB Image Pattern

With a digital image, the basic approach is to replace selected pixels with a false
colour to highlight hidden image patterns. Such an image pattern would normally
not be visible without false-colouring. The steps in applying false colours to pixels
in a digital image pattern is as follows.

Picture Pattern False Colouring Method for RGB Images.

1o Select a digital image.
2o Choose image pattern to paint with a false colour. To do this, formulate a rule

that defines some form repetition in a selected image.

1.19 False Colours: Pointillist Picture Painting 53

Example 1.28 Choose a particular pixel p. Pattern Rule. If any other pixel q in the
selected image has the same intensity as p, then q belongs to the pattern. �
3o Choose a pixel false colour method.
4o Assign values to method parameters such as initial pixel coordinates.
5o Apply the method in Step 2.
6o False-Colour Step. If a colour pixel q intensity satisfies the Pattern Rule, then

maximize the intensity of q.
7o Display image with false colours.
8o Repeat Step 2 to display a different image pattern. �
Example 1.29 RGB Image Pattern Highlighted with False Colouring. A pattern
(highlightedwith a false colour) is shown in the colour image in Fig. 1.45. In this case,
the pattern contains all subimage pixels that have the same intensity as a selected
pixel. For example, choose the pixel p at (25,50) in Fig. 1.45. In example, p −→

. What looks like a red polka dot • in is actually an 8-neighbourhood
and each of the neighbourhood pixels is assigned a false colour. The center of this 8-
neighbourhood is the only pixel that belongs to the pixel intensity repetition pattern.
In this image pattern, each pixel inside a rectangular region of the image is assigned
a false colour. Matlab script Listing1.20 illustrates how this is done. �

% Some c o l o u r image p i x e l s a s s i g n e d f a l s e c o l o u r s
clc , clear all , close all
I=imread (’peppers.png’) ;
x = 25 ; y = 50 ; rad = 250 ; p = [x y] ; % s e t t i n g s
for i = x+1 :x+1+rad % wid t h o f box

for j = y+1 :y+1+rad % l e n g t h o f box
q = [i j] ; % use i n norm (p−q)
if ((I (i , j) == I (x , y)) && (norm (p−q) <rad))

I (i , j , 2) = 255 ; % f a l s e c o l o u r
end

end
end
I (x , y , 1) =255 ;I (x−1 ,y , 1) =255 ;I (x−1 ,y , 1) =255 ; % 8 Nbd
I (x−1 ,y+1 , 1) =255 ;I (x−1 ,y−1 ,1) =255 ;I (x+1 ,y+1 , 1) =255 ;
I (x+1 ,y+1 , 1) =255 ;I (x , y−1 ,1) =255 ;I (x , y+1 , 1) =255 ;
figure , imshow (I) , axis on , % show f a l s e c o l o r s
title (’(I(i,j) == I(x,y)) && (norm(p-q)<rad))’)

Listing 1.20 Use the Matlab code in falseColourRGB.m to experiment with false-colouring
pixels.

In Listing1.20, notice that a pixel false colour is obtained by assigning the maxi-
mum intensity to one of the colour image channels. In this example, if a pixel intensity
I (i, j) matches the intensity of the pixel I (x, y) at the upper lefthand corner of the
box and norm of the distance from (x,y) to (i,j) is less than to an upper bound rad
(e.g., rad = 250 pixels), then I (i, j) is painted a false colour. In Listing1.20, the
following assignment is made.

I(i,j,2) = 255;

Problem 1.30 False-Colouring RGB Image Pixels.
Do the following:

54 1 Basics Leading to Machine Vision

1o ®Modify Listing1.20 so that pixel false colour is changed to red. Display the
result.

2o Give a comlete Matlab script that implements the following pattern rule:
Choose a particular pixel p. If any other pixel q in the selected image is less
than the intensity of p, then q belongs to the pattern. Display pixel q with
a false colour.

3o Give a comlete Matlab script that implements the following pattern rule:
Choose a particular pixel p. If any other pixel q in the selected image is
greater than the intensity of p, then q belongs to the pattern. Display pixel
q with a false colour.

4o Invent your ownpixel pattern rule.Give a comleteMatlab script that implements
your pattern rule. Display the result. �

Fig. 1.46 Pixel intensity pattern inside a greyscale image box

1.19 False Colours: Pointillist Picture Painting 55

1.19.2 False-Colour a Greyscale Image Pattern

False-colouring pixels in a greyscale image works differently, since a greyscale has
no colour pixels. In that case, it is necessary to use a greyscale image to build a new
image that has colour channels. The new image will be a pseudo-colour image with
a structure that makes it possible to assign false colours to pixels in an image pattern.

Picture Pattern False Colouring Method for Greyscale Images.

1o Select a digital image.
2o Choose image pattern to paint with a false colour. To do this, formulate a rule

that defines some form repetition in a selected image.

Example 1.31 Choose a particular pixel p.
Pattern Rule. If any other pixel q in the selected image has the same intensity as p,
then q belongs to the pattern. �

3o Choose a pixel false colour method, using the Pattern Rule.
4o Pseudo-Colour Image Creation Step. Convert a selected greyscale image to

a pseudo-colour image.
5o Assign values to method parameters such as initial pixel coordinates.
6o Apply the Pattern Rule in Step 2.
7o False-Colour Step. If a greyscale pixel q intensity satisfies the Pattern Rule,

then maximize the intensity of the pseudo-colour channel for q. To see how this
is done, see Listing1.21.

8o Display image with false colours.
9o Repeat Step 2 to display a different image pattern. �

Example 1.32 Greyscale Image Pattern Highlighted with False Colouring.
Apattern (highlightedwith a false colour) is shown in thegreyscale image inFig. 1.46.
In this case, the pattern contains all subimage pixels that have the same intensity as
a selected pixel. For example, choose the pixel p at (100, 150) in Fig. 1.46. In this

example, p −→ . What looks like a red pokerdot • in is actually an
8-neighbourhood and each of the neighbourhood pixels is assigned a false colour.
This 8-neigbourhood is displayed to make the location of the selected pixel more
visible. Also notice that the center of this 8-neighbourhood is the only pixel that
belongs to the pixel intensity repetition pattern. In this image pattern, each pixel
inside a rectangular region of the image is assigned a false colour. Matlab script 1.21
illustrates how this is done. �

Problem 1.33 False-Colouring Greyscale Image Pixels.
Do the following:

1o ® Modify Listing1.21 so that pixel false colour is changed to blue. Display
the result.

56 1 Basics Leading to Machine Vision

2o Give a comlete Matlab script that implements the following pattern rule:
Choose a particular pixel p. If the intensity of any other pixel q in the selected
greyscale image is less than the intensity of p, then q belongs to the pattern.
Display pixel q with a false colour.

3o Give a comlete Matlab script that implements the following pattern rule:
Choose a particular pixel p. If the intensity of any other pixel q in the selected
image is greater than the intensity of p, then q belongs to the pattern.
Display pixel q with a false colour..

4o Invent your ownpixel pattern rule.Give a comleteMatlab script that implements
your pattern rule. Display the result. �

% Some p i x e l s i n s i d e a box r e g i o n a s s i g n e d a f a l s e c o l o u r
clc , clear all , close all
I = imread (’liftingbody.png’) ; % g r e y s c a l e image
I=double (I) ; % f o r s c a l i n g
I3=zeros (size (I , 1) ,size (I , 2) , 3) ; % s e t up 3 c h a n n e l s
I3 (: , : , 1) =I ; I3 (: , : , 2) =I ; I3 (: , : , 3) =I ; % c h a n n e l s <− I
I=I3 ; % I <− c h a n n e l s
x = 100 ; y = 150 ; rad = 350 ; p = [x y] ; % s e t t i n g s
for i = x+1 :x+1+rad % wid t h o f box

for j = y+1 :y+1+rad % l e n g t h o f box
q = [i j] ; % q v e c t o r
if ((I (i , j) == I (x , y)) && (norm (p−q) <rad))

I (i , j , 2) = 255 ;
end

end
end
I (x , y , 1) =255 ;I (x−1 ,y , 1) =255 ;I (x−1 ,y , 1) =255 ; % 8−n e i g h bou r h ood
I (x−1 ,y+1 , 1) =255 ;I (x−1 ,y−1 ,1) =255 ;I (x+1 ,y+1 , 1) =255 ;
I (x+1 ,y+1 , 1) =255 ;I (x , y−1 ,1) =255 ;I (x , y+1 , 1) =255 ;
figure , imshow (I . / 2 5 5) , axis on , % d i s p l a y f a l s e c o l o u r s
title (’(I(i,j) == I(x,y)) && (norm(p-q)<rad)’)

Listing 1.21 Use the Matlab code in falseColourGrey.m to experiment with false-colouring
pixels.

1.20 Vector Spaces Over Digital Images

A vector space is a set of objects or elements that can be added together andmultiplied
by numbers (the result of either operation is an element of the space) in such a way
that the usual calculations hold. For example, the set of all pixels in a 2D digital
image form a local vector space that is a subset in R

2 with holes in it. Every pixel
has coordinates in the plane that can be treated as vectors in the usual way. Unlike
the usual vector space called the Euclidean plane, there are holes in a digital image
(between every pair of adjacent pixels, there is no pixel). Similarly, the set of all
pixels in a 3D digital image form a local vector space in R

3. Compared with the
usual Euclidean dense 3D space, a 3D image looks like a piece of swiss cheese.

1.20 Vector Spaces Over Digital Images 57

1.20.1 Dot Products

Given a pair of vectors x, y, the dot product (denoted x · y) equals the length of the
projection of x onto y. Let θ be the angle between vectors x and y with norms ‖x‖
and ‖y‖. Then the dot product is defined by

x · y = ‖x‖ ‖y‖ cos θ (dot product).

This gives us a way to find the angle between a pair of vectors in a digital image, i.e.,

θ = arccos

[
x · y

‖x‖ ‖y‖
]

(angle between vectors).

Example 1.34 Dot products, Angle between vectors.
Sample dot products and angles between vectors can be found in a digital image
using the approach shown in Listing1.22. �

% Sample d o t p r o d u c t and a n g l e be tween v e c t o r s
clc , clear all , close all
p = [120 1 5 0] ; q = [100 4 0] ; % p a i r o f 2D v e c t o r s
dot (p , q) % do t p r o d u c t
X = dot (p , q) . / (norm (p) ∗norm (q)) ; % r a t i o t o compute a n g l e
acosd (X) % a n g l e be tween p and q

% i n d e g r e e s

Listing 1.22 Use the Matlab code in dotProduct.m to experiment with dot products.

Fig. 1.47 Application of vector pair angle rule

58 1 Basics Leading to Machine Vision

Problem 1.35 Let (x, y), (a, b) be a pair of vectors in a digital image of your own
choosing and let ∠((x, y), (a, b)) be the angle between (x, y) and (a, b). Use false-
coloring to display all of the pairs of vectors that satisfy the Vector Pair Angle Rule
(VPA Rule). For an example, see Fig. 1.47 for sample false colouring based on the
VPA Rule). Hint: Solve this problem with a very small subimage.

Vector Pair Angle (VPA) Rule. For each ∠((r, t), (u, v)) between pairs of vec-
tors (r, t), (u, v), if ∠((r, t), (u, v)) = ∠((x, y), (a, b)), then display the pixels
at (r, t), (u, v) with a false colour. �

1.20.2 Image Gradient

In a 2D image, the gradient of vector (location of a pixel intensity) is the slope of the
vector. Let f be a 2D image. Also, let ∂ f

∂x be the partial derivative of in the x-direction

and let ∂ f
∂y be the partial derivative of in the y-direction. The gradient of f at location

(x, y) (denoted by ∇ f) is defined as a 2D column vector

∇ f =
⎡

⎣

∂ f
∂x

∂ f
∂y

⎤

⎦ (gradient of f at (x,y)).

The gradient ∇ f points in the direction of the greatest change in f at location
(x, y) [58, Sect. 3.6.4, p. 165].

Fig. 1.48 Resized image

1.20 Vector Spaces Over Digital Images 59

Fig. 1.49 PA rule application: ∀r, c ∈ Image, highlight angle(r,c) < 2.5.*angle(10,20)

Example 1.36 Sample Image Gradients.
In Matlab, imresize is used to shrink an image (see, e.g., Fig. 1.48) and imgradient
(computes the gradient angle and gradient magnitudes in the horizontal and vertical
directions) make it possible to inspect the angles of image pixels of interest. See
Listing1.23 for an example. �

% image v e c t o r x− , y−d i r e c t i o n magn i t u d e s and v e c t o r a n g l e s
clc , clear all , close all
im = imread (’liftingbody.png’) ; % b u i l t − i n g r e y s c a l e image
im=imresize (im , 0 . 5) ; % s h r i n k image by 50%
imshow (im) , axis on , grid on ; % d i s p l a y image
[Gdir , Angle]=imgradient (im) ; % v e c t o r d i r e c t i o n s , a n g l e s
Angle (1 5 0 , 1 5 0) % samp le a n g l e s :
Angle (1 6 5 , 1 3 0)
Angle (8 0 , 8 0)
Angle (1 0 0 , 4 0)

Listing 1.23 Use the Matlab code in vectorDirection.m to experiment with false-colouring
pixels.

Problem 1.37 ® Let ∠p(x, y) be the angle of a pixel p(x, y) with coordinates
(x, y) in a colour image of your choosing. Apply the Pixel Angle (PA) rule: For
k = 2.5, false colour all image pixels with coordinates (r, c) so that

angle(r, c) < 2.5. ∗ angle(x, y), whereangle(r, c) = angle of pixel at (r, c).

For an example, see Fig. 1.49 for sample false colouring based on the PARule).Hint:
Solve this problem by letting i, j range over

i = 1 : r and j = 1 : c, where

60 1 Basics Leading to Machine Vision

r, c are number of rows and columns in the selected image, respectively. Caution: In
Matlab, imgradient works with greyscale images, not colour images. Even though
the display of false colours is on the selected colour image img, the pixels angles
are extracted from imgGrey, the greyscale equivalent of the original colour image
img.

Pixel Angle (PA) Rule. Let k > 0. For each∠q(a, b), if∠q(a, b) < k∗∠p(x, y),
then display pixel q(x, y) with a false colour. �

1.21 What a Camera Sees: Intelligent Systems View

This section briefly introduces some of the features of camera vision, starting with
cameras with some form of low-level intelligence.

1.21.1 Intelligent System Approach in Camera
Vision Systems

The intelligent system approach in camera design is part of what is known as intel-
ligent multimedia. Intelligence in this context means the ability of a picture-taking
device to combine available sensor information to facilitate the capture of an optimal
picture. A good discussion on intelligence considered in the context of multimedia
is given by M. Ma [37, Sect. 1.1.3, p. 4]. Capturing the underlying geometry of a 3D
scene is of the principal problems requiring solution for intelligent camera control
(see, e.g., M. Christie, P. Olivier and J.-M. Normand [30]).

Intelligent camera control is central to motion planning in robotic devices (see,
e.g., [15]), work by Daimler-Benze on vision-based pixel-classification autonomous
driving cite[Fig. 3.2, p. 3]Franke1999 and intelligent vehicle vision systems [109].
A recent survey of hardware accelerated methods for intelligent object recognition
in cameras is given by A. Karimaa [90]. Histogram equalization, motion detection,
image interpretation and objection recognition are key features that are implemented
in intelligent visual surveillance [92].

A good overview of early intelligent camera control is given by S.M.Drucker [36].
Stability (steady hold) is a basic feature of cameras that can be considered intelligent.
A camera that supports stability while capturing an image, compensates for move-
ment (camera shake) while a picture is being taken. This feature is important for both
ordinary lens- and macro lens-based picture-taking, since it eliminates (diminishes)
image blurring. For example, the Canon®Hybrid IS implements optimal image sta-
bilization.

1.21 What a Camera Sees: Intelligent Systems View 61

Another important feature is intelligent cameras is face detection.A camera imple-
ments face detection, provided the camera selects one or more objects in a scene that
resemble faces. For example, Canon cameras implement Intelligent Scene Analysis
based on Photographic Space (ISAPS) technology, which predicts the scene in the
field of view and selects optimal settings for key functions. Nikon provides a fish-eye
lens for its Coolpix®cameras. A fish-eye lens is an imaging system with a very short
focal length and which gives a hemispherical field of view. Such lenses have good
resolution in the central lens region but have poor resolution on the marginal region.

In a human eye, the fovea centralis (central zone of the retina) provides high qual-
ity vision, whereas the peripheral region of the eye provides less detailed imaging.
For this reason, fish-eye lens systems approximate human vision relative to resolu-
tion distribution citeOrghidan2005. Subpixel resolution accuracy experiments have
been carried out with CCD (charge coupled device) cameras with a Nikon Rayfact
lens [191, Sect. 4]. Sub-pixel resolution results from estimating values of geomet-
ric quantities (points, lines, edges) that are better than pixel-level accuracy (see,
e.g., estimating the position of an image corner with sub-level accuracy using pixel
gradient directions in the neighbourhood of a corner [110, Sect. 3.4, p. 33]).

1.21.2 Scene Colour Sensing by Cameras

In a colour image, each pixel consists of a combination of primary colours. This
section briefly introduces the techniques used to display varying amounts of a single
primary colour in a colour image. The idea is to display the amount of a primary
colour that corresponds to a single colour channel value for each of the pixels across
an entire image.

Fig. 1.50 Colour channel patterns

62 1 Basics Leading to Machine Vision

Bayer filter. Each light-sensitive element of a digital image sensor is
fitted with several filters (red, green, or blue filter). For each colour filter
in an image sensor, there is a corresponding colour channel in each of the
pixels in an image that is captured. In a camera image sensor, there are
roughly twice as many green filters as blue and red filters to approximate
how an eye perceives colour. The colour arrangement in an image sensor
is called a Bayer pattern colour filter array, cf. Figure1.50 (see, e.g.,
[217]). For example a green channel of a 24-bit pixel (with 8 bits per
colour channel) is able to display up to 256 shades of green. Notice that
there are other approaches (besides the Bayer filter) to achieve colour
separation, e.g., 3CCD (3 sensor array) and Foveon X3 (a special silicon
that absorbs different colours).

For example, Fig. 1.51 is produced using the code in Listing1.24. Each of the
colour channels for the rgb image of a workshop is shown in Fig. 1.51. For example,
the red colour channel for the workshop is displayed in the second image in the top
row of Fig. 1.51. In the second row

Fig. 1.51 png (rgb) → colour channel images

1.21 What a Camera Sees: Intelligent Systems View 63

% c o l o u r e x p e r im e n t s

g = imread (’workshop.jpg’) ;
%
gr = g (: , : , 1) ; gg = g (: , : , 2) ; gb = g (: , : , 3) ;
%
subplot (2 , 2 , 1) ; image (g) ; axis image ;
title (’original image’) ;
subplot (2 , 2 , 2) ; image (gr , ’CDataMapping’ ,’scaled’) ; axis image ;
title (’r image’) ;
subplot (2 , 2 , 3) ; image (gg , ’CDataMapping’ ,’scaled’) ;
title (’g image’) ;
subplot (2 , 2 , 4) ; image (gb , ’CDataMapping’ ,’scaled’) ;
title (’b image’) ;
%
% >> f i g u r e , c o l o u r %samp le u s e o f c o l o u r .m
%

Listing 1.24 Use the Matlab code in colour.m to produce the images in Fig. 1.34 and Fig. 1.51.

Problem 1.38 GiveMatlab code to display an hsv image (converted from rgb to hsv)
and the red, green, and blue colour changes for the hsv image (see Fig. 1.53). Do this
for a pair of colour (rgb) images by converting the rgb images to hsv images. �

Problem 1.39 ® Give Matlab code to display the cameraman image as shown in
Fig. 1.52 so that concentric circles are drawn on the image. The center of both circles
should be positioned at (120,75) with inner circle radius equal to about 30 pixels and
outer circle radius equal to about 50 pixels.
Hint: Since you are only dealing with a greyscale image for the cameraman, you do
have to worry about color channel values. Use the false-colour approach and change
the pixel intensity to maximum intensity for each pixel along the circumference of

Fig. 1.52 Greyscale image with superimposed circle

64 1 Basics Leading to Machine Vision

Fig. 1.53 hsv → colour channel images

the circle to be drawn in the cameraman image. Let (xc, yc) be the center of a circle
with radius r . And let x = 0 : 0.01 : 1, y = 0 : 0.01 : 1. Then false colour each of
the points at

(xc + rcos(2πx), yc + rsin(2πy) �

Algorithm 2: Construct Corner-Based Voronoï Mesh on a Digital Image
Input : Read digital image img.
Output: Image with Superimposed Corner-Based Voronoï Mesh.
img �−→ greyscaleI mg;1
greyscaleI mg �−→ cornerCoordinates(greyscaleI mg);2
/* greyscaleI mg maps to coordinates of image corners */ ;3
S �−→cornerCoordinates(greyscaleI mg);4
/* S contains corner coordinates used as mesh generating points (sites). */ ;5
Display img;6
/* Hold on displayed img */ ;7
S �−→ VoronoiMesh M ;8
VoronoiMesh M �−→ img ;9
/* Voronoï regions surrounding each generating point now displayed on image */ ;10

1.21 What a Camera Sees: Intelligent Systems View 65

Fig. 1.54 Corner-based Voronoï mesh image overlay

Algorithm Symbols.

�−→ Maps to.

Example 1.42
img �−→ greyscaleI mg

reads Image img maps to greyscaleI mg(greyscaleimage) (i.e.,
img is converted to a greyscale image). �

�−→

Maps from.

Example 1.43

S �−→cornerCoordinates(greyscaleI mg)

reads Set S maps from cornerCoordinates(greyscaleI mg) (i.e.,
S gets a copy of the coordinates of corners in the greyscale image).
�

66 1 Basics Leading to Machine Vision

1.22 Image Geometry: Voronoï and Delaunay Meshes
on an Image

This section briefly introduces an approach to detecting image geometry using either
a Voronoï polygonal mesh or a Delaunay triangulation mesh overlay on a digital
image. These meshes can either be view separately or in combination.

1.22.1 Voronoï Mesh on Car Image

This section briefly introduces an approach to creating a Voronoï mesh overlay on a
digital image. A Voronoï mesh is also called a Voronoï diagram. The steps to do this
are given in Algorithm2. In every Voronoï mesh, each polygon in the mesh contains
all points that are closer to a generating point than to any other generating point.

In general, a generating point p (also called a site) on a plane or 3D surface
is a point that is used used to find all surface points closer to p than to any other
generating point on the surface. In Computer Vision, generating points are used or
object recognition and pattern recognition purposes to construct either a Voronoï
polygonal-shaped region or a Delaunay triangles with vertices that are generating
points.

Fig. 1.55 Sample mesh
generating points on a cycle
image

1.22 Image Geometry: Voronoï and Delaunay Meshes on an Image 67

Example 1.44 Sample mesh generating points are displayed as green stars in

Fig. 1.55. In this case, there are 55 sites scattered across the cycle image. Each
indicates a pixel that has gradient orientation angle and gradient magnitude that is
different each of the other sites. Such sites are called keypoints. For the details about
keypoints, see Sect. 8.8 and Appendix B.10. �

In an intelligent systems approach to machine vision, the focus is on the selection
of useful generating points found in digital images or in video frames useful in
detecting image objects and patterns. An image generating point p in a digital
image is a pixel used to find all pixels closer to p than to any other generating point
in the image. In effect, we always start by identifying the generating points in a digital
image. For now, we consider only image corners.

Let V (p) be an image Voronoï region of a corner generating point p. When
we refer to a Voronoï region, we usually also mention the generating point used
to construct the region. The collection of Voronoï regions that cover an image is
called a Dirichlet tessellation,7 which is also called a Voronoï mesh. By joining
pairs of nearest image generating points with straight edges, we obtain a Delaunay
triangulation of an image, which is also called a Delaunay tessellation or a Delaunay
mesh. A Delaunay mesh on an image is collection of triangles that cover the image.

Example 1.45 Voronoï region and Delaunay Triangle.
There are two types of mesh polygons important in solving object recognition and
pattern recognition problems in either single images or in video frames.

Voronoï region: A sampleVoronoï regionV (p) of a generating
point p is shown in Fig. 1.3. The points in the interior and along the edges of
V (p) are all those points that are closer to the generating point p than to any
other generating point.

Delaunay triangle: Notice that the generating points p, q, r in
Fig. 1.3 are the vertices of a triangle. This is an example of a Delaunay triangle.

7This form of tessellation is named after Dirichlet who used Voronoï diagrams in 1850, even though
it was René Descartes who first had the idea as early as 1644 in an investigation of quadratic forms.
In 1907, it was Voronoï who extended Dirichlet tessellations to higher dimensions. Hence the name
Voronoï diagram. For more about this, see http://mathworld.wolfram.com/VoronoiDiagram.html.
A complete set of notes on Voronoï diagrams is available at http://www.ics.uci.edu/~eppstein/
junkyard/nn.html.

http://dx.doi.org/10.1007/978-3-319-52483-2_8
http://mathworld.wolfram.com/VoronoiDiagram.html
http://www.ics.uci.edu/~eppstein/junkyard/nn.html
http://www.ics.uci.edu/~eppstein/junkyard/nn.html

68 1 Basics Leading to Machine Vision

Voronoï regions and Delaunay triangle go hand-in-hand and yield quite different
information about a tessellated surface. �

Notice again that each Voronoï region (p) is a convex polygon. This means that
each straight edge connecting any pair of points in the interior or along the border
of a Voronoï region V (p) is contained in that region.

Example 1.46 Voronoï mesh overlay.
A sampleVoronoïmesh superimposed on an image is shown in Fig. 1.54. Algorithm2
gives the steps to find a corner-based Voronoï mesh on an image. The Matlab script
A.2 that implementsAlgorithm2 is given inAppendixA.1. In addition to constructing
a Voronoï mesh on an image, this script does a number of other useful things.

1o Displays detailed information about the particular tessellated image.
2o Produces a 3D plot showing the varying intensities is a selected subimage.

Notice that this becomesmore interesting, when the selected subimage contains
the pixels in a particular Voronoï region or in a set of Voronoï regions.

3o Saves a copy of the displayed Voronoï mesh in a .jpg file. �

Fig. 1.56 Voronoï geometric views of red car image structures

Fig. 1.57 Corner-based car wheels Voronoï mesh

1.22 Image Geometry: Voronoï and Delaunay Meshes on an Image 69

1.22.2 What a Voronoï Image Sub-Mesh by Itself Reveals

A Voronoï mesh extracted from a tessellated digital image tends to reveal image
geometry and the presence of image objects.

Image Geometry: The term image geometry means geometric shapes such as
tiny-, medium- and large-sized polygons that surround image objects.

Example 1.47 Car Wheels Mesh An isolated Voronoï image sub-mesh is shown
in Fig. 1.57. Notice that the wheels of the tessellated car image in Fig. 1.54 are
surrounded by twisting polygons along the borders of the wheels in the mesh in
Fig. 1.56.1. This is an example of what is known as a mesh nerve. �

Fig. 1.58 Car image
geometric nerve

1.23 Nerve Structures

There are four types of nerve structures to consider.

1o A pure, non-image geometric nerve is a collection of polygons surrounding a
central polygon (nerve nucleus), so that each non-nucleus polygon has an edge
in common with the nucleus. See, for example, the nerve in Fig. 1.60.3.

2o An image geometric nerve is a collection of polygons derived from a digital
image and surrounding a central polygon (nerve nucleus), so that each non-
nucleus polygon has an edge in common with the image nerve nucleus. An

70 1 Basics Leading to Machine Vision

image geometric nerves approximates the shape of an image object covered by
the nerve. A sample image geometric nerve is shown in Fig. 1.58. This sample
nerve covers the upper part of the front of a cycle.

3o A Voronoï mesh nerve is a collection of polygonal-shaped Voronoï regions
derived from generating points on a digital image and surrounding a central
polygon (nerve nucleus), so that each non-nucleus Voronoï region polygon
has an edge in common with the Voronoï nerve nucleus. Voronoï mesh nerves
identify image objects. A sample Voronoï mesh nerve on an image is shown
Fig. 1.60.2. The yellow polygon in Fig. 1.60.2 is an example of a Voronoï nerve
nucleus. Briefly, a Voronoï nerve nucleus is the central polygon in the nerve.
Every polygon that has an edge or vertex in common with the nucleus is part
of the cluster of polygons in the Voronoï mesh nerve. For example, each of the
red polygons has an edge in common with the yellow nucleus in Fig. 1.60.2.

4o A Delaunay mesh nerve is a collection of Delaunay triangles with vertices
that are generating points on a digital image and surrounding a central triangle
(nerve nucleus), so that each non-nucleus Delaunay triangle has either an edge
or a vertex in common with the nerve nucleus triangle. A sample Delaunay
mesh nerve is shown on a Poste delivery vehicle in Fig. 1.59. The triangle
labelled N is an example of a Delaunay nerve center called the nucleus. A
Delaunay nucleus is a central triangle in a Delaunay mesh nerve in which all
adjacent triangles along the central triangle border have either a vertex or a side
in common with the nucleus. Delaunay mesh nerves are useful in identifying
identifying the shapes of image object covered by the nerves. �

Fig. 1.59 Poste image
Delaunay mesh nerve

Example 1.48 Voronoï Mesh Nerve that is a Maximal Nucleus Cluster (MNC).
A sample Voronoï mesh nerve is shown in a mesh with 55 sites (generating points)
in Fig. 1.60.2. The nucleus of this nerve is a yellow hexagon covering the upper front

1.23 Nerve Structures 71

Fig. 1.60 Sample Voronoï mesh nerve

part a motorcycle. This nerve is an example of a maximal nucleus cluster (MNC).
A maximal nucleus cluster (MNC) is a mesh nerve that is a cluster of polygons
in which the number of polygons surrounding the nucleus of the nerve is maximal
in this particular Voronoï mesh. For more about MNCs, see Appendix B.12. This

72 1 Basics Leading to Machine Vision

cycle nucleus is surrounded by red polygons. The combination of the yellow polygon
nucleus and red adjacent polygons constitutes amesh nerve.Notice that the sites in the
adjacent red polygons can be connected pairwise to form a convex hull of two types
of sites, namely, the nucleus site and adjacent polygon sites. Let S be a nonempty set
of sites. The smallest convex set containing the set of points in S is the convex hull
of S. A nonempty set is a convex set, provided every straight line segment between
any two points in the set is also contained in the set. A sample convex hull is shown
in Fig. 1.60.3. In this example, the convex set contains the border points as well as
all points inside the borders of blue polygon in Fig. 1.60.3. �

Notice that every polygon in a Voronoï Mesh is the nucleus of a mesh nerve, which
is a cluster of polygons. Each mesh nerve is a cluster of polygons, containing a
nucleus polygon in its center and a collection of polygons that share an edge with the
nucleus. Also notice that each polygon in aVoronoï mesh nerve is a Voronoï region of
a site used to construct the region polygon. By connecting each neighbouring pair of
Voronoï polygons adjacent to the MNC nucleus, we can sometimes obtain a convex
hull, which is one of the strongest indications of the shape of an image object covered
by the MNC. This is, identifying MNC convex hulls in image nerves is important,
since such convex hulls approximate the shape of an object covered by an MNC. For
more about MNCs, see Sect. 7.5. For more about convex hulls, see Appendix B.3.

Fig. 1.61 Corner-based generating points on car image

Generating Points: The image geometry revealed by a Voronoï mesh depends on
the type of generating point used. So far, we have used only digital image corners
as generating points. From the fact that corners are found along the edges in a
digital image, we have a convenient means of identifying the geometry of image

http://dx.doi.org/10.1007/978-3-319-52483-2_7

1.23 Nerve Structures 73

objects by the shapes of polygon clusters that surround image objects. The corner
generating points by themselves (without the Voronoï polygons) tell us a lot about
image geometry, since the generating points tend to follow the contours of image
objects.

When we use a generating point to construct a particular Voronoï region,
the resulting polygon tells about all image pixels that are closer to the particular
generating point than to any other pixel that is a generating point in the image.
See, for example, the corner-based generating points in Fig. 1.61. �

Example 1.49 Image Corners.
Up to 1000 corners are displayed on the car image in Fig. 1.62.1. A display of
up to 1000 image corners by themselves (extracted from the car image) is shown in
Fig. 1.62.2.Matlab script A.1 in Appendix A.1.1 illustrates how to obtain and display
image corners in two different ways. �

Fig. 1.62 Sample image with up to 1000 corners

Problem 1.50 Image Generating Points.
Write a Matlab script to display only the corners extracted from a digital image. Do
this for your choice of three colour images of automobiles. In your script, do the
following.

1o ® Display original colour image.
2o ® Find the corners in each selected image.
3o ® Display each corner with a red ×.
4o ® Display–by themselves–up to 1000 image corners extracted from the

selected image. In your display, give the image coordinate axes so that the
coordinates of the corners can be identified. Hint: Use the Matlab option on
for the axis command.

5o ® Display a count of the total number of image corners found.
6o KDisplay Voronoï mesh for the corners on just one of car wheels. Hint: Find

the corners in the subimage containing one of the wheels.

74 1 Basics Leading to Machine Vision

7o K Display Voronoï mesh for the corners on both car wheels. Hint: Find the
corners in the subimage containing both the wheels.

8o K Display Voronoï mesh for the corners on the complete car with the back-
ground. Hint: Find the corners in the subimage containing only the car. This
will be a rectangular-shaped subimage containing the car. �

Problem 1.51 Mesh Nerves.
Write a Matlab script to display only the corners extracted from a digital image. Do
this for your choice of any three colour images. In your script, do the following.

1o ® Repeat the first 4 steps in Problem 1.50.
2o K Use false color to display a mesh nerve in the corner-based Voronoï mesh

on the selected image. Hint: Find one Voronoï region of a corner in a selected
subimage. This selected Voronoï region is the nucleus of a mesh nerve. The use
false colouring (try green) to highlight each of the polygons surrounding the
selected polygon.

3o K Display the area of the polygon that is nucleus of the nerve.
4o K Display a count of the polygons in the mesh nerve, including the nerve

nucleus.
5o K Display the mesh nerve only on the selected image.
6o K Display the mesh nerve by itself (without the selected image). �

Somemeshnerves aremore interesting thanothers.An interesting nerve
typically has a small polygon as its nucleus andmany polygons surround-
ing the nucleus. �

Fig. 1.63 Delaunay geometric views of red car image structures

1.23 Nerve Structures 75

1.23.1 Delaunay Mesh on Car Image

This section briefly introduces an approach to creating Delaunay mesh overlays on
digital images. An advantage in doing this stems from the image geometry revealed
by a image mesh overlay. Now, instead of the convex polygons in Voronoï mesh
overlay, we obtain the simpler, uniform shapes supplied by the triangles in Delaunay
mesh.

Algorithm3 gives the basic steps in constructing a Delaunay mesh on a digital
image. This algorithm is implemented in the Matlab script A.4 given in Appen-
dix A.1.3.

Example 1.52 Delaunay mesh overlay.
A sample Delaunay mesh superimposed on an image is shown in Fig. 1.63.1. Algo-
rithm2 gives the steps to find a corner-based Voronoï mesh on an image. The Matlab
script A.4 that implements Algorithm3 is given in Appendix A.1.3.

Algorithm 3: Construct Corner-Based Delaunay Mesh on a Digital Image
Input : Read digital image img.
Output: Image with Superimposed Corner-Based Delaunay Mesh.
img �−→ greyscaleI mg;1
S �−→cornerCoordinates(greyscaleI mg);2
/* S contains corner coordinates used as mesh generating points (sites). */ ;3
Display img;4
/* Hold on displayed img */ ;5
S �−→ DelaunayMesh M ;6
DelaunayMesh M �−→ img ;7
/* Delaunay triangulation now displayed on image */ ;8

Problem 1.53 Delaunay Mesh on an Image.
For your choice of three colour images, write a Matlab script to do the following.

1o Display original colour image.
2o Find up to 1000 corners in each selected image.
3o ® Display corner-based Delaunay mesh on each selected image.
4o K Display the Delaunay mesh–by itself–extracted from the selected image.

In your display, give the image coordinate axes so that the coordinates of the
triangle vertices can be identified. Hint: Use the Matlab option tight for the
axis command.

5o Display a count of the total number of image triangles in the Delaunay mesh
found.

6o Display the area of the largest triangle in Delaunay mesh. �

76 1 Basics Leading to Machine Vision

1.23.2 Combined Voronoï and Delaunay Meshes
on Car Image

This section briefly introduces an approach to combining Voronoï and Delaunay
mesh overlays on the same image. Recall that the vertices of each Delaunay triangle
are generating points in neighbouring Voronoï regions. As a result, the area of each
Delaunay triangle is an indicator of mesh quality and, indirectly, the underlying
quality of the underlying image. The more uniform the Delaunay triangle areas,
the greater the quality of the subimage covered by the triangles. The area of each
Delaunay triangle tells us about the extent of the coverage of a subimage occupied
by each trio of Voronoï regions.

Algorithm4 gives the basic steps in constructing a combinedDelaunay onVoronoï
mesh on a digital image. This algorithm is implemented in theMatlab scriptA.6 given
in Appendix A.1.4.

Example 1.54 Delaunay on Voronoï mesh overlay.
A sample Delaunay-on-Voronoï mesh superimposed on an image is shown in
Fig. 1.64.1. In addition, the Matlab script A.7 given in Appendix A.1.4 extracts and
displays the Delaunay-on-Voronoï mesh by itself. �

Fig. 1.64 Delaunay on Voronoï geometric views of red car image structures

1.23 Nerve Structures 77

Algorithm 4: Construct Corner-Based Delaunay on Voronoï Mesh on a Digital
Image

Input : Read digital image img.
Output: Image with Corner-Based Delaunay on Voronoï Mesh Overlay.
img �−→ greyscaleI mg;1
S �−→cornerCoordinates(greyscaleI mg);2
/* S contains corner coordinates used as mesh generating points (sites). */ ;3
Display img;4
/* Hold on displayed img */ ;5
S �−→ VoronoiMesh M ;6
VoronoiMesh M �−→ img ;7
S �−→ DelaunayMesh M ;8
DelaunayMesh M �−→ img ;9
/* Delaunay triangulation on Voronoï mesh now displayed on image */ ;10

Problem 1.55 Delaunay-on-Voronoï Mesh on an Image.
Write a Matlab script for your choice of three colour images to do the following.

1o Display original colour image.
2o Find up to 1000 corners in each selected image.
3o ® Display corner-based Delaunay-on-Voronoï mesh on each selected image.
4o ®Display the Delaunay-on-Voronoï mesh–by itself–extracted from the selec-

ted image. In your display, give the image coordinate axes so that the coordinates
of the triangle vertices can be identified. Hint: Use the Matlab option tight for
the axis command.

5o Display a count of the total number of image triangles in the Delaunay mesh
found.

6o Display a count of the total number of image polygons in the Voronoï mesh
found.

7o Display the area of the largest triangle in Delaunay mesh.
8o Display the number of sides of the largest polygon in Voronoï mesh. �

Problem 1.56 Delaunay-on-Voronoï Mesh Nerve on an Image.
Write a Matlab script for your choice of three colour images to do the following.

1o Display original colour image.
2o Find up to 1000 corners in each selected image.
3o ®Display corner-based Delaunay-on-Voronoï mesh on each selected image.
4o ® Display the Delaunay-on-Voronoï mesh–by itself–extracted from the

selec-
ted image. In your display, give the image coordinate axes so that the coordi-
nates of the triangle vertices can be identified. Hint: Use the Matlab tight for
the axis command.

78 1 Basics Leading to Machine Vision

5o K Display–by itself–a Delaunay mesh nerve. A Delaunay mesh nerve is a
collection of triangles that surround a single triangle called the nerve nucleus.
The triangles in a Delaunay mesh nerve either have a common edge or a
common vertex with the nerve nucleus. Hint: Extract and display from a
Delaunay mesh those triangles that are contained in a Delaunay mesh nerve.

6o Display–by itself–a Voronoï mesh nerve. Recall that a Voronoï mesh nerve is
a collection of triangles that surround a single triangle called the nerve nucleus.
The polygons in a Voronoï mesh nerve have a common edge with the nerve
nucleus. Hint: Extract and display from a Voronoï mesh those polygons that
are contained in a Voronoï mesh nerve.

7o Display a count of the total number of image triangles in the Delaunay mesh
found.

8o Display a count of the total number of image triangles in the Delaunay mesh
nerve found.

9o Display a count of the total number of image polygons in the Voronoï mesh
found.

10o Display a count of the total number of image triangles in the Voronoï mesh
nerve found.

11o Display the area of the largest triangle in Delaunay mesh.
12o Display the area of the triangle that is the Delaunay mesh nerve nucleus.
13o Display the number of sides of the largest polygon in Voronoï mesh.
14o Display the area of the polygon that is the Voronoï mesh nerve nucleus. �

1.24 Video Frame Mesh Overlays

This section briefly introduces video frame mesh overlays. The basic approach is to
detect the geometry of objects in digital images by covering each video frame image
with mesh polygons surrounding (in the vicinity of) image objects. Image mesh
polygons tend to reveal the shapes and identity of objects. For a sample Dirichlet
tessellation of a video frame image, see Fig. 1.65.1. A Dirichlet tessellation of a
plane surface is a tiling of the surface.

Seed points (also called sites or generator) provide a basis for generating Dirichlet
tessellations (also called Voronoï diagrams) and Delaunay triangulations of sets of
points, providing a basis for the construction of meshes that cover a set with clusters
of polygonal shapes. In general, a tessellation of a plane surface is a tiling of the
surface. A plane tiling is a plane-filling arrangement of plane figures that cover the
plane without gaps or overlaps [63]. The plane figures are closed sets. Taken by
themselves or in combination, pixel intensity, corner, edge, centroid, salient, critical
and key points are examples of seed points with many variations.

1.24 Video Frame Mesh Overlays 79

Fig. 1.65 Sample offline video frames 1 & 2

Problem 1.57 A sample 8×8 grid is shown in Fig. 1.67. The red • dots indicate
interior corners and outer box corners. Using pencil and paper, do the following:

1o Draw a corner-based Voronoi mesh on the grid.
2o Draw a corner-based Delaunay mesh on the grid. �

1.24.1 Offline Video Frame Processing

This section briefly introduces an approach to offline video processing. This form of
video processing has three basic steps.

Fig. 1.66 Sample offline video frames 3 & 4

80 1 Basics Leading to Machine Vision

Algorithm 5: Construct Corner-Based Voronoï Mesh on offline video frame
Images

Input : Changing visual scene V iew and offline V ideo.
Output: Video frames, each with corner-based Voronoï mesh overlay.
V iew �−→ V ideo;1
Frame �−→V ideo;2
Continue �−→ False;3
while (Continue �= ∅ and Frame ∈ V ideo) do4

Use Algorithm2 to overlay Voronoï mesh on Frame;5
V ideo �−→V ideo \ Frame;6
/* V ideo \ Frame reads V ideo without the current Frame. */ ;7
/* i.e., Remove tessellated Frame from the set of frames in the V ideo */ ;8
if V ideo �= ∅ then9

Continue �−→ T rue;10
else11

Continue �−→ False;12

Basic Steps in Offline Video Processing

1o Capture complete video of a changing scene.
2o Extract a frame from the video.
3o Extract information from the video frame, e.g., discover image geometry by

covering the frame with a Voronoï mesh. Each polygon in the mesh tells us
something about the geometric structure of an image such as all image pixels
that are close to a particular image corner. A corner in an image is a pixel that

Fig. 1.67 8× 8 grid with
red • corners

1.24 Video Frame Mesh Overlays 81

has a gradient orientation that is sharply different from the gradient orientation
of its neighbouring pixels. The gradient orientation of a pixel is the angle of the
tangent to the edge containing the pixel.

4o Repeat Step 2 until all of the frames in the video have been processed. �

Algorithm5 illustrates a particular form of video processing. This algorithm pro-
duces an offline video in which a corner-based Voronoï mesh is superimposed on
each video frame image.

A Matlab script that implements Algorithm5 is given in Appendix A.1.5. This
algorithm uses Algorithm2 to overlay a Voronoï mesh on each frame in the video.
This is done offline, i.e., after a complete video has been captured. In the offline
mode, each video frame is treated as an ordinary image.

Example 1.58 The Matlab script A.8 in Appendix A.1.5 creates an .mp4 video file.
This script overlays a corner-based Voronoï mesh on each of the frames in each
video that is captured by the particular webcam that is used. For example, image
corners are used as seed points to construct the image Voronoï mesh in Fig. 1.54 and
video frame Voronoï meshes in Figs. 1.65 and 1.66. Notice that as the hand moves,
the Voronoï mesh polygons change. The changes in the polygons are a result of the
changing positions of the corners found in the image. �

Problem 1.59 Offline Video Production of Corner Delaunay Image Frame
Meshes.

®Write a Matlab script to do the following.

1o Create a video of a moving hand.
2o Offline, find and display a corner-based Delaunay mesh on each video frame.

Mark the corners with a red × symbol.
3o Create an .avi file showing the production of video frames containing a corner-

based Delaunay on each video frame image. �

Problem 1.60 Offline Video Production of Corner Delaunay Head Image Frame
Meshes.

®Write a Matlab script to do the following.

1o Create a video of a moving head.
2o Offline, find and display a corner-based Delaunay mesh on each video frame.

Mark the corners with a red × symbol.
3o Create an .avi file showing the production of video frames containing a corner-

based Delaunay on each video frame image. �

Problem 1.61 Offline Video Production of Corner Voronoï Hand Image Frame
Meshes.
®Write a Matlab script to do the following.

1o Create a video of a moving hand.

82 1 Basics Leading to Machine Vision

2o Offline, find and display a corner-based Voronoï mesh on each video frame.
Mark the corners with a red × symbol.

3o Create an .avi file showing the production of video frames containing a corner-
based Voronoï on each video frame image. �

Problem 1.62 Offline Video Production of Corner Voronoï Head Image Frame
Meshes.
®Write a Matlab script to do the following.

1o Create a video of a moving head.
2o Offline, find and display a corner-based Voronoï mesh on each video frame.

Mark the corners with a red × symbol.
3o Create an .avi file showing the production of video frames containing a corner-

based Voronoï on each video frame image. �

Problem 1.63 Offline Video Frame Corner Generating Points.
Write a Matlab script to do the following.

1o Create a video of a moving hand.
2o Offline, find and display the corners in each video frame. Mark the corners with

a red × symbol.
3o Offline, display only the corners found in each video frame.
4o Create an .avi file showing the production of video frames containing video

corners on the video frame images. �

1.24.2 Real-Time Video Processing

This section briefly introduces an approach to real-time video processing. This form
of video processing has three basic steps.

Basic Steps in Real-Time Video Processing

Fig. 1.68 Sample real-time video frames 1 & 2

1.24 Video Frame Mesh Overlays 83

Fig. 1.69 Sample real-time video frames 3 & 4

Algorithm 6: Construct Corner-Based Voronoï Mesh on real-time video frame
Images

Input : Changing visual scene V iew and real-time V ideo.
Output: Video frames, each with corner-based Voronoï mesh overlay.
V iew �−→ V ideo;1
Frame �−→V ideo;2
Last Frame �−→ False;3
while (Last Frame �= T rue) do4

Use Algorithm2 to overay Voronoï mesh on Frame;5
V ideo �−→V ideo \ Frame;6
/* V ideo \ Frame reads V ideo without the current Frame. */ ;7
/* i.e., Remove tessellated Frame from the set of frames in the V ideo */ ;8
if V ideo �= ∅ then9

Frame �−→V ideo;10
else11

Last Frame �−→ T rue;12

1o Start video capture of a changing scene.
2o Select current frame from the video.
3o Extract information from the current frame, e.g., discover video frame geometry

by covering the frame with a Voronoï mesh.
4o Repeat Step 2 until the video is completed. �

Example 1.64 The Matlab script A.9 in Appendix A.1.6 creates an .mp4 video file
for a sample form of real-time video processing. This script overlays a corner-based
Voronoï mesh on each of the frames during video capture by the particular webcam
that is used. For example, image corners are used as seed points to construct the
image Voronoï mesh in Fig. 1.68 and video frame Voronoï meshes in Fig. 1.65 and in
Fig. 1.69. Notice again that as the hand moves, the Voronoï mesh polygons change
in real-time. The changes in the polygons are a result of the changing positions of
the corners found in the image. �

84 1 Basics Leading to Machine Vision

Problem 1.65 Real-Time Video Production of Corner-Based Delaunay Hand
Image Frame Meshes.
®Write a Matlab script to do the following.

1o Create a video of a moving hand.
2o In real-time, find and display a corner-based Delaunay mesh on each video

frame. Mark the corners with a red × symbol.
3o Create an .avi file showing the production of video frames containing a corner-

based Delaunay on each video frame image. �

Problem 1.66 Real-Time Video Production of Corner-Based Delaunay Head
Image Frame Meshes.
®Write a Matlab script to do the following.

1o Create a video of a moving head.
2o In real-time, find and display a corner-based Delaunay mesh on each video

frame. Mark the corners with a red × symbol.
3o Create an .avi file showing the production of video frames containing a corner-

based Delaunay on each video frame image. �

Problem 1.67 Real-Time Video Production of Corner-Based Voronoï Hand
Image Frame Meshes.
®Write a Matlab script to do the following.

1o Create a video of a moving hand.
2o In real-time, find and display a corner-basedVoronoïmesh on each video frame.

Mark the corners with a red × symbol.
3o Create an .avi file showing the production of video frames containing a corner-

based Voronoï on each video frame image. �

Problem 1.68 Real-Time Video Production of Corner-Based Voronoï Head
Image Frame Meshes.
®Write a Matlab script to do the following.

1o Create a video of a moving head.
2o In real-time, find and display a corner-basedVoronoïmesh on each video frame.

Mark the corners with a red × symbol.
3o Create an .avi file showing the production of video frames containing a corner-

based Voronoï on each video frame image. �

Problem 1.69 Real-Time Video Frame Corner Generating Points.
Write a Matlab script to do the following.

1o Create a video of a moving hand.
2o In real-time, find and display the corners in each video frame. Mark the corners

with a red × symbol.
3o In real-time, display only the corners found in each video frame.
4o Create an .avi file showing the production of video frames containing video

corners on the video frame images. �

1.24 Video Frame Mesh Overlays 85

Problem 1.70 Real-Time Video Frame Subimage Corner Generating Points.
Write a Matlab script to do the following.

1o Create a video of a moving hand.
2o In real-time, find and display the corners in a subimage of each video frame.

Mark the corners of the subimage with a red × symbol.
3o In real-time, display the corners found in each video frame subimage.
4o Create an .avi file showing the production of video frames containing video

corners on the video frame subimages. �

Chapter 2
Working with Pixels

Fig. 2.1 Lower versus Higher resolution image pixels

2.1 Picture Elements

A pixel (aka picture element) is an element at position (r, c) (row, column) in a dig-
ital image I . A pixel represents the smallest constituent element in a digital image.
Typically, each pixel in a raster image is represented by a tiny square called a raster
image tile. Raster image technology has its origins in the raster scan of cathode ray
tube (CRT) displays in which images are rendered line-by-line bymagnetically steer-
ing a focused electron beam. Usually, computer monitors have bitmapped displays

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2_2

87

88 2 Working with Pixels

in which each screen pixel corresponds to its bit depth, i.e., number of pixels used
to render pixel colour channels.

By zooming in on (also, resample) an image at different magnification levels,
these tiny pixel squares become visible.

Example 2.1 Inspecting Raster Image Pixels.
Four views of a raster image are shown in Fig. 2.1:

1o Lower-left panel: hand-held camera with pixel inspection window:

. This is a movable window that makes it possible to inspect dif-
ferent parts of the image.

2o Upper-left panel: pixels (zoomed in at 800%) inside the inspection
window.

3o Lower-right panel: hand-held camera with pixel inspection window:

. This is a secondmovable window that makes it possible to inspect
different parts of the image.

4o Upper-left panel: pixels (zoomed in at 400%) inside the inspection
window.

See MScript A.10 in Appendix A.2.1 to experiment with other zoomed-in levels and
inspect pixels in other images. �

Example 2.2 Inspecting Raster Image Pixels.
Four views of a raster image are shown in Fig. 2.2:

1o Lower-right panel: hand-held camera with pixel inspection window:

. This is a secondmovable window that makes it possible to inspect
different parts of the image.

2o Upper-left panel: pixels (zoomed in at 100%) inside the inspection
window.

2.1 Picture Elements 89

Fig. 2.2 Zoom in at 100 and 800%, exhibiting colour image pixels

3o Lower-left panel: hand-held camera with pixel inspection window:

. This is a movable window that makes it possible to inspect dif-
ferent parts of the image.

4o Upper-left panel: pixels (zoomed in at 800%) inside the inspection
window.

See MScript A.10 in Appendix A.2.1 to experiment with other zoomed-in levels and
inspect pixels in other images. � �

Each colour or greyscale or binary image pixel carries with it several numerical
values. There are a number of cases to consider.

Binary image pixel values: 1 for a white pixel and 0 for a black pixel.
Greyscale image pixel values: Commonly 0–255, for the pixel greyscale inten-

sity. Each greyscale pixel value quantizes the magnitude of white light for a pixel.
RGB image pixel values: Each colour pixel value quantizes the magnitude of a

particular colour channel brightness for a pixel. A colour channel is particu-
lar colour component of an image and corresponds to a range of visible light
wavelengths. Each color pixel contains intensities for three colour channels. For

90 2 Working with Pixels

colour pixel with a bit depth equal to 8, we have the following range of intensity
(brightness) values for each colour channel.

Red: 0–255, for red pixel intensity (brightness).
Green: 0–255, for green pixel intensity (brightness).
Blue: 0–255, for blue pixel intensity (brightness).

Let I k(u, v) be the intensity of the k colour channel at camera image cell (u, v),Λ,
the set of wavelengths in the visible spectrum, pk0, a scaling factor, λ, a particular
wavelength, Eu,v(λ), the amount of incoming light at image cell (u, v), τ k(λ), the
filter transmittance for the k colour channel, and s(λ), the spectral responsivity
of a camera optical sensor. The final colour pixel value I k(u, v) is defined by

I k(u, v) = pk0

∫

Λ

Eu,v(λ)τ k(λ)s(λ)dλ.

In a typical RGB camera, k ∈ {r, g, b}. Recently, color pixel values have been
used extensively in image segmentation [135, Sect. 2.1, p. 666] and for visual
object tracking [32, Sect. 2.1, p. 666]. �

Separating and Modifying Colour Image Channels

Colour channel values can be separated and pixel values can bemodified.

2.2 Separating Colour Image Channels

It is a straightforward task to separate the colour channels in a raster colour image.
We illustrate this using notation from Matlab.

Image and Colour Channel Notation

Let img be a m × n colour image. In that case, the pixels in img can be accessed
in the following ways.

img(:,:) = pixel values in all rows and all columns in img.

img(r,:) = all pixel values in row r in img, 1 ≤ r ≤ m.

img(:,c) = all pixel values in column c in img, 1 ≤ c ≤ n.

img(:,:,1) = all red channel values in all rows and all columns in img.

img(:,:,2) = all green channel values in all rows and all columns in img.

img(:,:,3) = all blue channel values in all rows and all columns in img.

2.2 Separating Colour Image Channels 91

The notation img(:, :), img(r, :), img(:, c) can be used to inspect and change pixel
intensities in binary, greyscale or colour images.

Fig. 2.3 Sample colour image

Fig. 2.4 Separated and combined colour image channels

Example 2.3 Separating Colour Image Channel values.
A sample colour image is given in Fig. 2.3. Using the MScript A.11 in Appen-
dix A.2.1, the colour channels exhibited by Fig. 2.3 are separated and then recom-
bined in Fig. 2.4. �

92 2 Working with Pixels

2.3 Colour to Greyscale Conversion

Ideally, a colour channel value indicates the magnitude of the colour channel light
recorded by an optical sensor used in pixel formation of a colour image produced by
a digital camera. Let I be a colour image. It is possible to convert the colour image
I to a greyscale image Igr using the Matlab function rgb2gray(I).

Fig. 2.5 Colour to greyscale conversion

Fig. 2.6 Row of colour and greyscale leaf image intensities

Example 2.4 Figure 2.5 shows the result of converting a leaf colour image to a
greyscale image using MScript A.12 in Appendix A.2.3. Contrast between the two
forms of images becomes clearer when we zoom in on subimages of the original
image and its greyscale counterpart.

Colour Subimage
In this leaf image segment, there is a visible mixture various shades of greens.

2.3 Colour to Greyscale Conversion 93

Recall that shades of green are obtained bymixing yellow and blue. It is a straight-
forward task to verify that visible green in an image is rendered digitally with a
mixture of red and blue channel intensities.

Colour Subimage
In this leaf image segment, the original mixture various shades of greens is
replaced by a mixture of greys. The change from pixel color intensity to greyscale
intensity can be seen in the sample pixel values in Fig. 2.6. �

At pixel level, pixel modification can be carried out by replacing each pixel in a
colour or greyscale image I with either the average of the colour channel values or
maps of pixels values to real numbers using functions such as ln(x), exp(x) or with
a weighted sum of the colour channel values. For example, for a greyscale image
pixel Igr (x, y) at (x, y), the pixel intensity of Igr at (x, y) is

Igr (x, y) = αI (x, y, r) + β I (x, y, g) + γ I (x, y, b),

where the weighting coefficients α,β, γ approximate the perceptual response of the
human eye to the red, green and blue (r, g, b, respectively) colour band values.

There is aNTSC(NationalTransportationSafetyCommission) television standard
for greyscale image pixels such that

α = 0.2989,β = 0.5870, γ = 0.1140

In Matlab, we write

Igr (x, y) = α. ∗ I (x, y, 1) + β. ∗ I (x, y, 2) + γ. ∗ I (x, y, 3),

Problem 2.5 Given a colour image such as I = rainbow.jpg, do the following.

(step.1) Choose your own values for the weighting coefficients α,β, γ.
(step.2) Convert a column 30 pixels wide to greyscale intensities in image I . Call

the new image Igr .
(step.3) Display the resulting mixed colour-greyscale image Igr .
(step.4) K Use cpselect to compare the pixels in the 5 wide pixel column in I

and Igr . �

2.4 Algebraic Operations on Pixel Intensities

In this section, we consider various operations on image pixel intensities, resulting
in changes in visual appearance of the image. Let g be a digital image (either colour

94 2 Working with Pixels

or greyscale). Let k ∈ [0, 255]. Then new images i1, i2, i3, i4 are obtained using the
image variable in simple algebraic expressions.

Image Algebraic Expressions I .

i1 = g + g,

i2 = (0.5)(g + g),

i3 = (0.3)(g + g),

i4 =
(

g
(g

2

))

(0.2).

Fig. 2.7 Sample colour image

Fig. 2.8 Pixel value intensity changes induced by algebraic expressions I

2.4 Algebraic Operations on Pixel Intensities 95

Example 2.6 Algebraic Operations I on Images.
In algebraic operations I, notice that image g is added to itself. Various algebraic
expressions can be put together to modify the pixel values in an image. MScript A.13
inAppendixA.2.3 implements algebraic expressions I on the colour image in Fig. 2.7
to obtain the resulting images shown in Fig. 2.8. For example, the implementation
of g + g in the leftmost image i1 in Fig. 2.8 results in a brighter image (all the pixel
intensities in the cycle image g have been doubled). �

Let h be a colour image and use the following algebraic expressions to change
the pixel intensities in h.

Image Algebraic Expressions II .

i5 = h + 30,

i6 = h − (0.2)h,

i7 = |h − (0.2)(h + h)| ,
i8 = (0.2) (h + (0.5)(h + h)) .

Fig. 2.9 Sample colour image

Fig. 2.10 Pixel value intensity changes induced by algebraic expressions II

96 2 Working with Pixels

Example 2.7 Algebraic Operations II on Images.
In algebraic operations II, notice that 30 is added to each of the intensities in image
h. MScript A.14 in Appendix A.2.3 implements algebraic expressions II on the leaf
colour image in Fig. 2.9 to obtain the resulting images shown in Fig. 2.10. For
example, the implementation of (0.2) (h + (0.5)(h + h)) in the rightmost image in
Fig. 2.10 results in a brighter image (all the pixel intensities in the cycle image are
sharply increased). �

Let img be a colour image and use the following algebraic expressions to change
the pixel intensities in img.

Image Algebraic Expressions III .

i9 = (0.8)img(:, :, 1) decrease red channel intensities,
i10 = (0.9)img(:, :, 2) slightly decrease green channel intensities,

i11 = (0.5)img(:, :, 2) sharply decrease green channel intensities,

i12 = (16.5)img(:, :, 3) sharply increase blue channel intensities.

Fig. 2.11 Sample video frame image showing scene edges

Example 2.8 Algebraic Operations III on Images.
In algebraic operations III, notice that the pixel intensities in each colour channel are
decreased by varying amounts or increased by a huge amount (in the blue channel).
MScript A.15 in Appendix A.2.3 implements algebraic expressions III on the video
frame colour image in Fig. 2.11 to obtain the resulting images shown in Fig. 2.12. For

2.4 Algebraic Operations on Pixel Intensities 97

Fig. 2.12 Color channel pixel intensity changes induced by algebraic expressions III

example, the implementation of (16.5)img(:, :, 3) in the rightmost image in Fig. 2.12
results in a brighter blue channel image (all the blue pixel intensities in the video
frame image are sharply increased). �

2.13.1: Colour Array 2.13.2: Sq

Fig. 2.13 Sample Thai grocery shelves

Problem 2.9 Offline Video Frame Colour Channel Changes.
Use the approach to changing image channel intensities in MScript A.15 in Appen-
dix AA.2.3 as a template for offline video processing, do the following.

1o ® Using Matlab script A.8 in Appendix A.1.5 as a template for offline video
processing, change the red channel intensities in each video frame image. Hint:
Replace the lines of Voronoï tessellation code with lines to code in MScript A.15
to handle and display changes in the green channel of each video frame image.

98 2 Working with Pixels

2o Repeat Step 1 to change the green channel intensities in each video frame image.
3o Repeat Step 1 to change the blue channel intensities in each video frame image.

�
Problem 2.10 Real-Time Video Frame Colour Channel Changes.
Use the approach to changing image channel intensities in MScript A.15 in Appen-
dix A.2.3 as a template for real-time video processing, do the following.

1o K Using Matlab script A.9 in Appendix A.1.5 as a template for offline video
processing, change the red channel intensities in each video frame image. Hint:
Replace the lines of Voronoï tessellation code with lines to code in Matlab
script A.8 to handle and display changes in the green channel of each video
frame image in real-time.

2o Repeat Step 1 to change the green channel intensities in each video frame image
in real-time.

3o Repeat Step 1 to change the blue channel intensities in each video frame image
in real-time. �
Distinct images g and h can be added, provided the images are approximately

the same size. To combine pixel values in different images, it is necessary that the
distinct images I,� have the same dimensions. To get around this same-size images
problem, choose any n × m image img, which is the larger of two images and just
copy a second image onto an n × m array of 1s or 0s (call it copy). Then img and
copy can be combined in various ways.

Example 2.11 Combining Pixel Intensities Across Separate Images.
The images in Fig. 2.13 showing Thai grocery store shelves. These Thai shelf images
are both approximately 1.5MB. MScript A.16 in Appendix A.2.1 illustrates how to
combine pixel intensities in pairs of different images. Two Thai grocery shelf images
are combined in different ways is the first row of images in Fig. 2.14. The second row
of images in Fig. 2.14 are result of algebraic operations on just one of the original
images. �
Problem 2.12 Choose three different pairs of colour images g, h and do the follow-
ing.

1o ® In Image Algebraic Expressions I, replace g, g with g, h and display the
changed images using MScript A.16 in Appendix A.2.1.

2o Repeat Step 1 using the Image Algebraic Expressions II.
3o Repeat Step 1 using the Image Algebraic Expressions III. �

There are many other possibilities besides the constructed images I1, . . . , I12
using the Algebraic Operations I, II and III. For example, one can determine largest
red colour value in a selected image row r , using

[r, c] = max(g(row, :, 1)).

Using g(r, c), new images can be constructed bymodifying the red channel values
using a maximum red channel value.

2.4 Algebraic Operations on Pixel Intensities 99

Fig. 2.14 Combining image pixel values using thai.m

Example 2.13 Experiment with maximum pixel intensities.
Sample results using MScript A.17 in Appendix refApCh2Sec:PixelValueChanges
are shown in Fig. 2.15. This is an external view of themodified red channel intensities

Fig. 2.15 External colour view of max-modified red channel intensities

Fig. 2.16 Internal greyscale view of max-modified red channel intensities

100 2 Working with Pixels

obtained by adding a fraction of a maximum red channel intensity in the first row
of an image. Internally, a colour channel is just a greyscale image (not what we
would imagine). An internal view of the modified red channel intensities is shown
in Fig. 2.16. �

Internal View of Colour Image Channels

Internally, a colour image channel is viewed as a greyscale image.

Problem 2.14 ® Example 2.13 illustrates the addition of fractions of a maximum
red channel intensity. For three colour images your own choosing, do the following.

(step.1) Use themin instead ofmax function to find a minimum red channel value
for an entire colour image.

(step.2) Subtract a fraction of the maximum red channel intensity from each of
the original red channel intensities.

(step.3) Display the results both as colour images and greyscale images. �

Problem 2.15 ® Repeat the steps in Problem 2.14 using a minimum colour chan-
nel intensity. �

Finding Image Edges

The hardest thing of all is to find a black cat in a dark room, especially
if there is no cat.
—Confucius [114].

2.5 Pixel Selection Illustrated with Edge Pixel Selection

One of the commonest forms pixel selection is in the form of edge pixels. The basic
approach is to detect those pixels that are on edges in either in a greyscale image or
in a colour channel.

2.5 Pixel Selection Illustrated with Edge Pixel Selection 101

Fig. 2.17 Sample greyscale image edges

Briefly, to find edge pixels, we first find the gradient orientation (gradient angle)
of each image pixel, i.e., angle of the tangent to each pixel. Let img be a 2D image
and let img(x, y) be a pixel at location (x, y). Then the gradient angle ϕ of pixel
img(x, y) is found in the following way.

Gx = ∂img(x, y)

∂x
.

Gy = ∂img(x, y)

∂y
.

ϕ = tan−1Gy

Gx
= tan−1

(∂img(x,y)
∂y

∂img(x,y)
∂x

)

.

In Canny’s approach to edge pixel detection [24], each image is filtered to remove
noise, which has the visual effect of smoothing an image. After the gradient ori-
entation for each pixel is found, then a double threshold for an hysteresis interval
on orientation angles is introduced by Canny. The basic idea is to choose all pixels
with gradient orientations that fall within the hysteresis interval. Edge pixels that fall
within the selected hysteresis interval are called strong edge pixels. All edge pixels

102 2 Working with Pixels

with gradient angles outside the hysteresis interval are calledweak edge pixels. The
weak edge pixels are ignored.

Algorithm 7: Colour Channel Edges Selection
Input : Read digital image img.
/* Capture colour image channel edges. */ ;1
Output: img �−→ edgesR, edgesR, edgesR.
/* Capture red channel pixel intensities. */ ;2
gR �−→img(:, :, 1);3
/* Capture green channel pixel intensities. */ ;4
gG �−→img(:, :, 2);5
/* Capture blue channel pixel intensities. */ ;6
gB �−→img(:, :, 3);7
/* Capture blue channel pixel intensities. */ ;8
edge(gR,′ canny′) �−→ imgR;9
edge(gG,′ canny′) �−→ imgG;10
edge(gB,′ canny′) �−→ imgB;11
/* Map edge pixel intensities in each channel onto a black channel image bk. */ ;12
edgesR �−→cat (3, imgR, bk, bk);13
edgesG �−→cat (3, bk, imgG, bk);14
edgesG �−→cat (3, bk, bk, imgB);15
/* Capture modified black image embossed with channel edges. */ ;16
Display edgesR, edgesR, edgesR;17

Before we separate out the edges from each colour image channel, we consider
the conventional approach to separating greyscale image edges embossed as white
pixels on a binary image.

Example 2.16 Figure2.17 shows the result of finding the strong edge pixels in a
greyscale image derived from a colour image usingMScript A.18 in Appendix A.2.5.
The basic approach is to start by converting a colour image to a greyscale image.
If we ignore the location of each colour pixel, then a colour image is an example
of a 3D image. Mathematically, each pixel p in location (x, y) in a colour image
is described by a vector (x, y, r, g, b) in a 5-dimensional Euclidean space, where
r, g, b are the colour channel brightness (intensity) values of pixel p. Traditionally,
edge detection algorithms require a greyscale image, which is a 2D image in which
each pixel intensity is visually a shade of grey ranging from pure white to pure black.
After choosing the pixels in a colour channel, then any of the usual edge detection
methods can be used on the single colour channel pixels. In this example, we use the
edge detection method introduced by John Canny [24].

Here are some of the details.

2.5 Pixel Selection Illustrated with Edge Pixel Selection 103

Colour Subimage
In this cycle image segment, the combined RGB channel pixels are shown.

BW Subimage Edges
In this cycle BW image segment, white edge pixels on a binary subimage are
shown. �

The steps to follow in edge pixel detection in each of the colour channels are
given in Algorithm7. Notice the parallel between the conventional approach to pixel
edge detection and colour channel edge detection in Algorithm7. In both cases, edge
pixels (either in white or in colour) are embossed on a black image. Sample strong
edge pixels for the red channel of a cycle image are shown in Fig. 2.18.

Example 2.17 Figure 2.19 shows the result of finding the strong edge pixels in the
green channel of a colour image using MScript A.18 in Appendix A.2.5. The story
starts by selecting all of the pixels in a colour image. Traditionally, edge detection
algorithms require a greyscale image. The pixels in a single channel of a colour image
have the appearance of a typical 2D greyscale image, except that pixel intensities
are pixel colour brightness values in a single channel. After choosing the pixels in
a colour channel, then any of the usual edge detection methods can be used on the
single colour channel pixels. Here again, we use Canny’s edge detection method.

	 img = imread(′carCycle. j pg′); % select RGB image

	 gR = img(:, :, 1); % select red channel pixels

	 imgR = edge(gR,′ canny′); % select red channel pixels

Here are some of the details.

104 2 Working with Pixels

Fig. 2.18 Red channel cycle edges

Colour Channel Subimage
In this cycle image segment, only the green channel pixels are shown.

2.5 Pixel Selection Illustrated with Edge Pixel Selection 105

Fig. 2.19 Green channel edges

Colour Channel Subimage Edges
In this cycle image segment, the green channel edge pixels on the wheel subimage
are shown. �

It is possible to combine colour channel edge pixels on a black image.

Example 2.18 Figure 2.20 shows the result of combining the red channel and the
green channel edge pixels again using MScript A.18 in Appendix A.2.5. This is
accomplished in a straightforward fashion by concatenating the separate images,
namely, imgR (red channel edges), imgG (green channel edges) and a (entirely
black image).

Here are some of the details.

Binary Edges Subimage
In this cycle image segment, only the green channel pixels are shown.

106 2 Working with Pixels

Fig. 2.20 Red green channel cycle edges

Colour Channel Subimage Edges
In this cycle image segment, the red channel and green channel edge pixels on
the wheel subimage are shown. Notice that many yellow edges are included in
the RG edges. The yellow edge pixels are at the higher (brighter) ends of the
Canny hysteresis intervals used to identify strong edge pixels. An entirely different
situation will arise, if we consider either RB or GB edge pixels (see Problem 2.19)
(Fig. 2.21). �

2.5 Pixel Selection Illustrated with Edge Pixel Selection 107

Fig. 2.21 Red blue channel cycle edges

Problem 2.19 Combined Color Channel Edge Pixels.
Extending the approach to combining colour edge pixels in Example 2.18, do the
following:

1o ®Display a combination of the red channel and blue channel edges on a black
image. Hint: See how this is done in MScript A.18 in Appendix A.2.5.

2o ® Display a combination of the green channel and blue channel edges on a
black image.

3o K Display a combination of the red, green, and blue channel edges on a black
image. �

Problem 2.20 Offline Video Frame Colour Channel Edges.
Use the approach to changing image channel intensities in MScript A.18 in Appen-
dix A.2.5 as a template for offline video processing, do the following.

1o K Using Matlab script A.8 in Appendix A.1.5 as a template for offline video
processing, display the red channel edges in each video frame image. Hint:
Replace the lines of Voronoï tessellation code with lines to code in MScript A.18
to handle and display the red channel edges in each video frame image.

108 2 Working with Pixels

2o Repeat Step 1 to handle and display the green channel edges in each video frame
image.

3o Repeat Step 1 to handle and display the blue channel edges in each video frame
image.

4o K Using Matlab script A.8 in Appendix A.1.5 as a template for offline video
processing, display the combined red and green channel edges in each video
frame image. Hint: Replace the lines of Voronoï tessellation code with lines to
code in MScript A.18 to handle and display the combined red and green channel
edges in each video frame image.

5o Repeat Step 4 to handle and display the combined red and blue channel edges in
each video frame image.

6o Repeat Step 4 to handle and display the combined green and blue channel edges
in each video frame image. �

Problem 2.21 Offline Video Frame Combined Colour Channel Edges.
Write a script to display offline the combined RGB channel edges in each video
frame image. Do this for two different videos. �

Problem 2.22 Real-Time Video Frame Colour Channel Edges.
Use the approach to changing image channel intensities in MScript A.18 in Appen-
dix A.2.5 as a template for real-time video processing, do the following.

1o UsingMatlab scriptA.9 inAppendixA.1.5 as a template for offline video process-
ing, display the red channel edges in each video frame image.Hint: Replace the
lines of Voronoï tessellation codewith lines to code inMatlab script A.9 to handle
and display the red channel edges in each video frame image in real-time.

2o Repeat Step 1 to handle and display the green channel edges in each video frame
image.

3o Repeat Step 1 to handle and display the blue channel edges in each video frame
image.

4o K Using Matlab script A.8 in Appendix A.1.5 as a template for offline video
processing, display the combined red and green channel edges in each video
frame image. Hint: Replace the lines of Voronoï tessellation code with lines to
code in MScript A.18 to handle and display the combined red and green channel
edges in each video frame image in real-time.

5o Repeat Step 4 to handle and display the combined red and blue channel edges in
each video frame image in real-time.

6o Repeat Step 4 to handle and display the combined green and blue channel edges
in each video frame image in real-time. �

Problem 2.23 Real-Time Video Frame Combined Colour Channel Edges.
Write a script to display in real-time the combined RGB channel edges in each video
frame image. Do this for two different videos. �

2.6 Function-Based Image Pixel Value Changes 109

Algorithm 8: Log-Based Image Pixel Changes
Input : Read digital image img.
Output: img �−→ log(img).
gR �−→img(:, :, 1);1
/* Capture red channel pixel intensities. */ ;2
gG �−→img(:, :, 2);3
/* Capture green channel pixel intensities. */ ;4
gB �−→img(:, :, 3);5
/* Capture blue channel pixel intensities. */ ;6
log(gR) �−→ imgR;7
log(gG) �−→ imgG;8
log(gB) �−→ imgB;9
/* Map log of pixel intensities in each channel to a modified channel image. */ ;10
captureModi f ied Image �−→cat (3, imgR, imgG, imgB);11
/* Capture modified channel intensities in a single image. */ ;12
Display captureModi f ied Image;13

2.6 Function-Based Image Pixel Value Changes

This section briefly introduces an approach to modifying image pixel values using
various functions. We illustrate this approach using the natural log of pixel values
over an selected colour image channels. The steps to follow in modifying the each of
the channel intensities resulting from the log of each colour channel pixel intensity
are show in Algorithm8.

Example 2.24 Figure 2.22 shows the result of a log-based modification of channel
pixel intensities in a colour image using AlgorithmMScript A.19 in Appendix A.2.6.
Here are sample coding steps in the basic approach.

	 img = imread(′carCycle. j pg′); % select RGB image

	 gR = img(:, :, 1); % select red channel pixels

	 imgR = log(double(gR)); % find log of red channel edge pixel intensities

	 s f = 0.2; % scaling factor

	 imgR = (s f). ∗ log(double(gR)); % select lower edge pixel intensities

Here are some of the details.

110 2 Working with Pixels

Fig. 2.22 Sample image after log-based pixel intensity changes

Colour Subimage
In this colour image segment, only the front wheel is shown.

Log-Based Colour Subimage
In this colour image segment, the combined log-modified channel intensities are
shown. �

2.6 Function-Based Image Pixel Value Changes 111

Problem 2.25 Function-Based Colour Channel Intensity Modifications.
Select three colour images of your own choosing and do the following.

Fig. 2.23 Sample image after cosine-based pixel intensity changes

1o ®Compute the cosine of each colour channel intensity and produce four images
like ones in Fig. 2.23. Hint: Modify MScript A.19 in Appendix A.2.6 to get the
desired result.

2o Repeat the preceding step for two different choices of the scaling factor to adjust
the brightness of the modified images. For example, 0.2 is the scaling factor in
MScript A.19 and 1.8 is the scaling factor used to obtain the results in Fig. 2.23.

Problem 2.26 Colour Channel Edge Information Content.
Select three colour images of your own choosing and do the following.

1o KCompute the information content of each colour channel edge pixel intensity
and produce four images like ones in Fig. 2.23. Hint: Find the total number of
pixels in each image. Assume that the edge pixel intensities in the digital image
img are random. In addition, let the probability p(img(x, y)) = 1

x∗y for each
image intensity img(x, y) for a pixel with coordinates (x, y), 1 ≤ x ≤ m, 1 ≤
y ≤ n in an n×m image.1 Then, for each colour channel pixel intensity, compute
the colour channel edge pixel information content h(img(x, y, k)), k = 1, 2, 3
of an edge pixel defined by

h(img(x, y, k)) := log2

(
1

p(img(x, y, k)

)

(colour channel pixel info. content).

And, for each colour pixel edge intensity, compute the colour edge pixel infor-
mation content h(img(x, y)), 1 ≤ x ≤ m, 1 ≤ y ≤ n of an edge pixel defined
by

h(img(x, y)) := log2

(
1

p(img(x, y)

)

(pixel information content).

1Many other ways to compute the probability of a pixel intensity img(x, y) are possible. There is
a restriction:

n∗m
∑

i=1

pi (img(r, c)) = 1, 1 ≤ r ≤ m, 1 ≤ c ≤ n.

112 2 Working with Pixels

2o Repeat the preceding steps for two different choices of the scaling factor to adjust
the brightness of the modified images. �

Problem 2.27 Colour Image Entropy and Its Modifications.
Select three colour images of your own choosing and do the following.

1o ® Give a formula for the Shannon entropy of a n × m colour image img.
2o ®Using the assumptions in Problem 2.26, write aMatlab orMathematica script

to compute and display the Shannon entropy of three colour images of your own
choosing.

3o KModify the Matlab script in Step 2 to do the following with the three colour
images of your own choosing.

3(a) Change the color image pixel intensities so that the entropy of the image
increases.

3(b) Change the color image pixel intensities so that the entropy of the image
decreases. �

2.7 Logical Operations on Images

The logical operations are not, and, or, and xor (exclusive or). This section introduces
the use of not, or, and xor (exclusive or) on image pixels. Later, it will be shown how
the and operation can be combined with what is known as thresholding to separate
the foreground from the background of images (see Sect. 2.8).

2.7.1 Complementing and Logical not of Pixel Intensities

For a greyscale image, the complement of the image makes dark areas lighter and
bright areas darker. For a binary image g, not (g) changes background (black) values
towhite and foreground (white) values to black. The not (g) produces the same results
as imcomplement (g).

Example 2.28 Mscript A.20 in Appendix A.2.7 illustrates changes in a greyscale
image in which the complement of each intensity is complemented and changes in a
binary image in which the logical not of each pixel intensity is computed. Figure2.24
shows two modifications every intensity in a greyscale image:

1o Complement of each greyscale pixel intensity. Notice how the photographer’s
coat is now mostly (not entirely) white and dull gray background areas become
very dark.

2o Addition of the maximum intensity to each greyscale pixel intensity. The result is
surprising, since it demonstrated the presence of blurred segments in the original
greyscale image.

2.7 Logical Operations on Images 113

Fig. 2.24 Sample complement and increased greyscale pixel intensities

Fig. 2.25 Sample complement and logically negated binary pixel intensities

Figure2.24 shows two modifications every intensity in a binary image:

3o Logical not of each greyscale pixel intensity. Notice how all black areas of the
binary become white and all white areas become black.

4o Complement of each binary pixel intensity. This produces the same result as the
complement of the binary image (Fig. 2.25). �

Table 2.1 XOR

x y xor(x,y)

0 0 0

0 1 1

1 0 1

1 1 0

2.7.2 Xor Operation on Pairs of Binary Images

To seewhat the xor operation does, consider Table 2.1,where x, y are pixel intensities
in a binary image. Table 2.1 is modelled after an exclusive or truth table. In Matlab,

114 2 Working with Pixels

2.26.1: Robots at start 2.26.2: Robots competing

Fig. 2.26 Sample colour images using robots.m

the exclusive or operation produces the following sample result on a pair of binary
images. To see what happens, consider the following pair of colour images.

% c o n s t r u c t i n g new images f rom o l d images u s i n g xo r
% i d e a f rom Solomon and Breckon , 2011
clc , close all , clear all

% What ’ s h a pp en i n g ?
g = imread (’race1.jpg’) ; h = imread (’race2.jpg’) ; % r e a d images
gbw = im2bw (g) ; hbw = im2bw (h) ; % c o n v e r t t o b i n a r y
check = xor (gbw , hbw) ;
subplot (1 , 3 , 1) , imshow (gbw) ; % d i s p l a y g
subplot (1 , 3 , 2) , imshow (hbw) ; % d i s p l a y h
subplot (1 , 3 , 3) , imshow (check) ; % d i s p l a y xo r (gbw , hbw)

Listing 2.1 Matlab code cars.m to produce Fig. 2.26.

Fig. 2.27 Sample xor images robots.m

Next, a pair of .png colour images in Fig. 2.26 are converted to binary images
(every pixel value is either 1 (white) or 0 (black) after applying the im2bw function
to each image. Then the xor function is applied (see Listing2.2) to the pair of binary
images to obtain the result shown in Fig. 2.27.

% c o n s t r u c t i n g new images f rom o l d images
close all
clear all

% What ’ s h a pp en i n g ?
%g = imr e ad (’ b i r d s 1 . jpg ’) ; h = imr e ad (’ b i r d s 2 . jpg ’) ; % r e a d png images
g = imread (’race1.jpg’) ; h = imread (’race2.jpg’) ; % r e a d png images
gbw = im2bw (g , 0 . 3) ; hbw = im2bw (h , 0 . 3) ; % c o n v e r t t o b i n a r y
check = xor (gbw , hbw) ; % xo r b i n a r y

i n t e n s i t i e s

2.7 Logical Operations on Images 115

figure ,
subplot (1 , 3 , 1) , imshow (gbw) ; % d i s p l a y gbw
subplot (1 , 3 , 2) , imshow (hbw) ; % d i s p l a y hbw
subplot (1 , 3 , 3) , imshow (check) ; % d i s p l a y xo r (gbw , hbw)

Listing 2.2 Matlab code to produce Fig. 2.27.

For the sake of completeness, the same experiment is performed on a pair of .jpg
colour images showing two different Thai grocery store displays. The interesting
thing here is seeing how the xor operation on the displays reveals movements of
similar items (bottles) from one display to the other (Fig. 2.28).

Fig. 2.28 Sample Thai Shelf images

% c o n s t r u c t i n g new images f rom o l d images
clc , clear all , close all % hou s e k e e p i n g
g = imread (’P9.jpg’) ; h = imread (’P7.jpg’) ; % r e a d j p g images
%
gbw = im2bw (g) ; hbw = im2bw (h) ; % c o n v e r t t o b i n a r y
check = xor (gbw , hbw) ; % xo r b i n a r y

i n t e n s i t i e s
subplot (1 , 3 , 1) , imshow (gbw) ; % d i s p l a y gbw
subplot (1 , 3 , 2) , imshow (hbw) ; % d i s p l a y hbw
subplot (1 , 3 , 3) , imshow (check) ; % d i s p l a y xo r (gbw , hbw)

Listing 2.3 Matlab code xor2.m to produce Fig. 2.29.

116 2 Working with Pixels

Fig. 2.29 Sample .png colour images

Fig. 2.30 Sample greyscale image thresholding

2.8 Separating Image Foreground From Background

Greyscale and colour images can be transformed into binary (black and white)
images, where the pixels in the foreground of an image are black and pixels in
the background of an image are white. The separation of image foreground from
background is accomplished using a technique called thresholding. The threshold-
ing method results in a binary image by changing each background pixel value to 0,
if a pixel value is below a threshold, and to 1, if a foreground pixel value is greater
than or equal to the threshold. Let th ∈ (0,∞] denote a threshold and let � denote
a greyscale image. Then

�(x, y) =
{

1, if �(x, y) > th,

0, otherwise.

% Th r e s h o l d i n g on g r e y s c a l e image
clc , clear all , close all % hou s e k e e p i n g
g = imread (’cameraman.tif’) ; % r e a d g r e y s c a l e image
h1 = im2bw (g , 0 . 1) ; % t h r e s h o l d = 0 . 1
h2 = im2bw (g , 0 . 4) ; % t h r e s h o l d = 0 . 5
h3 = im2bw (g , 0 . 6) ; % t h r e s h o l d = 0 . 5
subplot (1 , 4 , 1) , imshow (g) ; % d i s p l a y g r e y s c a l e image
subplot (1 , 4 , 2) , imshow (h1) ; % d i s p l a y t r a n s f o rm e d image
subplot (1 , 4 , 3) , imshow (h2) ; % d i s p l a y t r a n s f o rm e d image
subplot (1 , 4 , 4) , imshow (h3) ; % d i s p l a y t r a n s f o rm e d image

Listing 2.4 Matlab script to produce Fig. 2.30 using ex_greyth.m.

2.8 Separating Image Foreground From Background 117

Notice that th = 0.5works best in separating the cameraman from the background
(in fact, the background is no longer visible in Fig. 2.30 for th = 0.5). If there is
interest in isolating the foreground of a greyscale image, it is necessary to experiment
with different thresholds to obtain the best result. The code used to produce Fig. 2.30
is given in Listing2.4.

Problem 2.29 Reversing Greyscale Pixel Separation Process.
Partially reverse the thresholding process for a greyscale. Wherever there is a white
pixel in a thresholded image, change towhite the pixel in the corresponding greyscale
image. This reversal process will result in a greyscale where the foreground consists
of pixelswith varying intensities and the backgroundof the greyscale image is entirely
white. This reversal process will be important later, when feature extraction methods
are used based on varying pixel intensities. �

Separating the foreground from the background in colour images can either be
done uniformly (treating all three colour channels alike) or finely by thresholding
each colour channel individually. Sample results of the uniform separation approach
are shown in Fig. 2.31 using the code Listing2.5.

Fig. 2.31 Sample colour image thresholding

% Th r e s h o l d i n g a c o l o u r image
% What ’ s h a pp en i n g ?

g = imread (’rainbow.jpg’) ; % r e a d c o l o u r image
% g = imr e ad (’ p e n g u i n s . jpg ’) ; % r e a d c o l o u r image
h1 = im2bw (g , 0 . 1) ; % t h r e s h o l d = 0 . 1
h2 = im2bw (g , 0 . 4) ; % t h r e s h o l d = 0 . 4
h3 = im2bw (g , 0 . 5) ; % t h r e s h o l d = 0 . 5
subplot (1 , 4 , 1) , imshow (g) ; title (’Scottish shoreline’) ;
subplot (1 , 4 , 2) , imshow (h1) ; title (’th = 0.1’) ;
subplot (1 , 4 , 3) , imshow (h2) ; title (’th = 0.4’) ;
subplot (1 , 4 , 4) , imshow (h3) ; title (’th = 0.5’) ;

Listing 2.5 Matlab script to produce Fig. 2.31 using ex_2th.m.

Problem 2.30 Reversing Colour Pixel Separation Process.
Partially reverse the thresholding process for a colour image. Wherever there is a
white pixel in a thresholded colour image, change to white the pixel in the cor-
responding colour image. This reversal process will result in a colour where the
foreground consists of pixels with varying intensities for each colour channel for
each pixel and the background of the colour image is entirely white. This reversal
process will be important later, when feature extraction methods are used based on

118 2 Working with Pixels

varying pixel colour intensities. Common applications of this reversal process are
in signature forgery detection and camouflage detection in paintings and in satellite
images. �

Fig. 2.32 Sample colour image

2.9 Conjunction of Thresholded Colour Channels

Another useful technique in separating the foreground from the background in colour
images stems from an application of the logical and operation. The basic idea is to
threshold the pixel intensities in each colour channel and then experiment with the
conjunction of the resulting colour changes, either in pairs or the conjunction of all
three thresholded colour channels. Let � be a colour image, r, g, b colour channels
in �, and let r th, gth, bth denote thresholds on the red, green, blue colour channels,
respectively. Then

	 rbw = im2bw(�(:, :, r), r th); thresholded red channel,

	 gbw = im2bw(�(:, :, g), gth); thresholded green channel,

	 bbw = im2bw(�(:, :, b), bth); thresholded blue channel.

Then using the logical and operation, compute

2.9 Conjunction of Thresholded Colour Channels 119

	 arg = and(rbw, gbw); conjunction of r,g channels,

	 arb = and(gbw, bbw); conjunction of g,b channels,

	 agb = and(rbw, bbw); conjunction of r,b channels,

	 agb = and(and(rbw, gbw), bbw); conjunction of r,g,b channels.

The colour image in Fig. 2.32 is an example of macrophotography, showing a
closeup of grasshoppers.Macrophotography is closeup photography. Amacro lens
is capable of reproduction ratios greater than 1:1. The onscreen reproduction of a 1:1
macroimage results in a photograph greater than a lifesize image. Reproduction ratios
much greater than 1:1 is calledphotomicroscopy, usually accomplishedwith a stereo
zoom digital microscope. An application of the conjunction form of thresholding on
the macrophotograph of grasshoppers is shown in Fig. 2.33 using the sample code in
Listing2.6. Notice the best separation of the foreground from background is achieved
with a conjunction of the thresholded red and blue channels. This is not always the
case (see Problem 2.31).

	 agb = and(rbw, bbw); conjunction of r,b channels.

Fig. 2.33 Sample colour image thresholding with conjunction

% Th r e s h o l d i n g c o l o u r c h a n n e l s
clc , clear all , close all % hou s e k e e p i n g
g = imread (’carPoste.jpg’) ; % r e a d c o l o u r image
rth = 0 . 2 9 8 9 ; gth = 0 . 5 8 7 ; bth = 0 . 1 1 4 ; % NTSC we i g h t s
r = g (: , : , 1) ; gr = g (: , : , 2) ; b = g (: , : , 3) ; % c h a n n e l s
rbw = im2bw (r , rth) ; % t h r e s h o l d r
gbw = im2bw (gr , gth) ; % t h r e s h o l d g
bbw = im2bw (b , bth) ; % t h r e s h o l d b
o1 = and (rbw , gbw) ; o2 = and (gbw , bbw) ; o3 = and (rbw , bbw) ;
o4 = and (and (rbw , gbw) ,bbw) ;
subplot (1 , 4 , 1) ,imshow (o1) , title (’and(rbw,gbw)’) ;
subplot (1 , 4 , 2) ,imshow (o2) , title (’and(gbw,bbw)’) ;
subplot (1 , 4 , 3) ,imshow (o3) , title (’and(rbw,bbw)’) ;
subplot (1 , 4 , 4) ,imshow (o4) , title (’and(and(rbw,gbw),bbw)’) ;

Listing 2.6 Matlab script to produce Fig. 2.33 using ex_2th2.m.

Problem 2.31 Threshold and Conjunction Separation Process.
Use a combination of thresholding and conjunction on the colour channels for several
different colour images, starting with rainbow.jpg (Scottish rainbow) and seq4a.jpg
(hand). Do the following.

120 2 Working with Pixels

(and.1) Vary the weights for the thresholded rgb channels,
(and.2) Point out which conjunction of thresholded channels gives the best results.

The result will be best when there are more details in the foreground.
(and.3) For a particular colour image, explain why a particular conjunction of

colour channels works best.
(and.4) Besides the rainbow.jpg (Scottish rainbow) and seq4a.jpg (hand) images,

find a third colour image (your choice),where the conjunction of all thresh-
olded colour channels works best. �

Problem 2.32 Reversing Threshold and Conjunction Separation Process.
Partially reverse the thresholding-conjunction process for a colour image. Wherever
there is a white pixel in a binary image resulting from a conjunction of a combination
of thresholded colour channels, change to white the pixel in the corresponding colour
image. This reversal process will result in a colour where the foreground consists of
pixels with varying intensities for each colour channel for each foreground pixel and
the background of the colour image will be entirely white. �

The reversal process from the solutions of Problems 2.30 and 2.32 will also be
important later, when feature extraction methods are used based on varying pixel
colour intensities. Common applications of this reversal process are in signature
forgery detection and camouflage detection in paintings and in satellite images.

2.10 Improving Contrast in an Image

Image contrast can be improved by altering the dynamic range of an image. The
dynamic range of an image equals the difference between the smallest and largest
image pixel values. Transforms can be defined by altering the relation between the

Fig. 2.34 Dynamic range compression with eg_log1.m

2.10 Improving Contrast in an Image 121

dynamic range and the greyscale (colour) image pixel values. For example, an image
dynamic range can be altered by replacing each pixel value with its logarithm. Let
� denote an image. Then alter the pixel value at (x, y) using

�(x, y) = k loge(1 + (eσ − 1)�(x, y)), (2.1)

where (assuming 8 bit pixel values),

k = 255

loge(1 + max(�))
.

To simplify the implementation of Eq. (2.1), use the following technique to alter
all pixel values in �.

	 � = k. ∗ log(1 + im2double(�))

Next observe that, since � is a matrix, max(�) returns a row vector containing the
maximum pixel value from each column. To complete the implementation of k, use

	 k = mean((255)./ log(1 + max(�))).

The results of a number of different experiments in modifying the dynamic range
are shown in Fig. 2.34, using the code in Listing2.7.

% Compre s s i ng dynamic r a n g e o f an image
clc , clear all , close all % hou s e k e e p i n g
g = imread (’sig.jpg’) ; % Read i n image
subplot (2 , 3 , 1) , imshow (g) ; title (’original’) ;
g = rgb2gray (g) ;
subplot (2 , 3 , 2) , imshow (g) ; title (’rgb2gray(g)’) ;
g = im2double (g) ; % p i x e l v a l u e s −> doub l e
h = im2double (g) ; % p i x e l v a l u e s −> doub l e
k = (max (max (g))) . / (log (1 + max (max (g)))) ;
com1 = 1∗log (1 + h) ; % 1 s t c omp r e s s i o n
com2 = 2∗log (g + h) ; % 2nd c omp r e s s i o n
com3 = 5∗log (g + h) ; % 3 rd c omp r e s s i o n
com4 = k . ∗log (1 + h) ; % 4 t h c omp r e s s i o n
subplot (2 , 3 , 3) , imshow (com1) ; title (’1*log(1 + h)’) ;
subplot (2 , 3 , 4) , imshow (com2) ; title (’2*log(g + h)’) ;
subplot (2 , 3 , 5) , imshow (com3) ; title (’5*log(g + h)’) ;
subplot (2 , 3 , 6) , imshow (com4) ; title (’k.*log(1 + h)’) ;

Listing 2.7 Matlab script to produce Fig. 2.34 using eg_log1.m.

Notice that by increasing the value of the multiplier k, the overall brightness of the
image increases.2 The best result for the signature image is shown in the third image in
row 2 of Fig. 2.34, where 5.*log(g + h) is used on the image g. A less than satisfactory
result is obtained using k.*log(1 + im2double(g)). The logarithmic transform in
Eq. (2.1) induces a brightening of the foreground by spreading the foreground pixel
values over a wider range and a compression of the background pixel range. The

2Many thanks to Patrik Dahlström for pointing out the corrections in eg_log1.m.

122 2 Working with Pixels

narrowing of the background pixel range provides a sharper contrast between the
background and the foreground.

Problem 2.33 Let g denote either a greyscale or colour image. InMatlab, implement
Eq. (2.1) using (eσ − 1)g(x, y) instead of im2double(g) and show sample images
using several choices of σ. Use the cameraman image as well as the signature image
to show the results for different values of σ. �

Use the Matlab whos function to display the information about the current vari-
ables in the workspace, e.g., variables k and com4 in Listing2.7. Matlab constructs
the double data type in terms of the definition for double precision in IEEE Standard
754, i.e., double precision values require 64 bits (forMatlab, double is the default data
type for numbers). The im2double(g) function converts pixel intensities in image g
to type double.

2.11 Gamma Transform

An alternative to the logarithm approach in compressing the dynamic range of inten-
sities in an image, is the gamma (raise to a power) transform. Let I denote a digital
image, I (x, y) a pixel located at (x, y), k ∈ N (natural number 1, . . . ,∞), and
γ ∈ R

+ (positive reals). Basically, each pixel value is raised to a power using

I (x, y) = k (I (x, y))γ .

The constant k provides a means of scaling the transformed pixel values. Here are
rules-of-thumb for the choice of γ.

(rule.1) γ > 1: Increase contrast between high-value pixel values at the expense
of low-valued pixels.

(rule.2) γ < 1: Decrease contrast between high-value pixel values at the expense
of high-valued pixels.

% Gamma t r a n s f o rm
clc , clear all , close all % hou s e k e e p i n g
g = imread (’P9.jpg’) ; % r e a d image
% h = imr e ad (’ P7 . jpg ’) ; % r e a d image
g = im2double (g) ;
g1 = 2∗ (g . ^ (0 . 5)) ; g2 = 2∗ (g . ^ (1 . 5)) ; g3 = 2∗ (g . ^ (3 . 5)) ;
subplot (1 , 4 , 1) , imshow (g) ; % d i s p l a y g
title (’Thai shelves’) ;
subplot (1 , 4 , 2) , imshow (g1) ; % gamma = 0 . 5
title (’gamma = 0.5’) ;
subplot (1 , 4 , 3) , imshow (g2) ; % gamma = 1 . 5
title (’gamma = 1.5’) ;
subplot (1 , 4 , 4) , imshow (g3) ; % gamma = 3 . 5
title (’gamma = 3.5’) ;

Listing 2.8 Matlab script to produce Fig. 2.35 using myGamma.m.

2.12 Gamma Correction 123

Fig. 2.35 Gamma transformation of a Thai colour image

2.12 Gamma Correction

There is a nonlinear relationship between input voltage and output intensity in mon-
itor displays. This problem can be corrected by preprocessing image intensities with
an inverse gamma transform (also called inverse power law transform) using

gout =
(

g
1
γ

in

)γ+k

,

where gin is the input image and gout is the output image after gamma correction.
Gamma correction can be carried out using the Matlab imadjust function as shown
in gamma_adjust.m with sample results shown in Fig. 2.36. Unlike the results in
Fig. 2.35 with the gamma transform, the best result in Fig. 2.36 is obtained with a
lower γ value, namely, γ = 1.5 in Fig. 2.36 as opposed to γ = 3.5 in Fig. 2.35.

% Gamma c o r r e c t i o n t r a n s f o rm
clc , clear all , close all % hou s e k e e p i n g
g = imread (’P9.jpg’) ; % Tha i s h e l v e s image
%g = imr e ad (’ s i g . jpg ’) ; % Cu r r e n cy s i g n a t u r e
g = im2double (g) ;
g1 = imadjust (g , [0 1] , [0 1] , 0 . 5) ; % i n / ou r r a n g e [0 , 1]
g2 = imadjust (g , [0 1] , [0 1] , 1 . 5) ; % i n / ou r r a n g e [0 , 1]
g3 = imadjust (g , [0 1] , [0 1] , 3 . 8) ; % i n / ou r r a n g e [0 , 1]
subplot (1 , 4 , 1) , imshow (g) ; % d i s p l a y g

Fig. 2.36 Gamma correction of a Thai colour image

124 2 Working with Pixels

title (’Thai shelves’) ;
subplot (1 , 4 , 2) , imshow (g1) ; % gamma = 0 . 5
title (’gamma = 0.5’) ;
subplot (1 , 4 , 3) , imshow (g2) ; % gamma = 1 . 5
title (’gamma = 1.5’) ;
subplot (1 , 4 , 4) , imshow (g3) ; % gamma = 3 . 5
title (’gamma = 3.5’) ;

Listing 2.9 Matlab script to produce Fig. 2.36 using gamma_adjust.m.

Problem 2.34 ® Experiment with the currency signature in Fig. 2.34 using both
the gamma transform and inverse gamma transform. Which value of γ gives the best
result in each case? The best result will be the transformed image that has the clearest
signature.

Chapter 3
Visualising Pixel Intensity Distributions

Fig. 3.1 3D view of combined rgb pixel intensities in Fig. 3.4

This chapter introduces various ways to visualize pixel intensity distributions (see,
e.g., Fig. 3.1).Also includedhere are pointers to sources of generating points useful in
image tessellations and triangulations. In other words, image structure visualizations
carries with it tacit insights about image geometry.

The basic approach here is to provide 2D and 3D views of pixel intensities in
cropped digital images. By cropping a colour image, it is possible to obtain differ-
ent views of either the combined pixel colour values or the individual colour colour
channel pixel values within the same image. The importance of image cropping can-
not be overestimated. Image cropping extracts a subimage from an image. This
makes it possible to concentrate on that part of a natural scene or laboratory sample
that is considered interesting, relevant, deserving a closer look. Pixel intensities are

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2_3

125

126 3 Visualising Pixel Intensity Distributions

Fig. 3.2 Sample RGB image for the Salerno train station

Fig. 3.3 3D View of green • channel pixel Intensities with contours for Fig. 3.2

yet another source of generating points (sites) used to tessellate an image, result-
ing in image meshes that reveal image geometry and image objects from different
perspectives.

3 Visualising Pixel Intensity Distributions 127

Fig. 3.4 Subimage from cropped image in Fig. 3.2

Fig. 3.5 Red and blue channel values in Fig. 3.2

Example 3.1 Matlab script A.22 in Appendix A.3 is used to do the following:

1o Crop an rgb image to obtain a subimage. For example, the tiny image in Fig. 3.4
is the result of cropping the larger image in Fig. 3.2.

2o Produce a 3Dmesh showing the combined rgb pixel values. The result for cropped
image is shown in Fig. 3.1.

3o Produce a 3D mesh with contours for the red • channel values. The result for the
red channel values for the pixels in the cropped image is shown in Fig. 3.5.1.

4o Produce a 3Dmesh with contours for the green channel values. The result for the
green• channel values for the pixels in the cropped image is shown inFig. 3.3.The
green channel values in a colour image often tend to have the greatest number of
changes between theminimumandmaximumvalues. Hence, the green channel is
good place to look for non-uniformity in the selection of generating points (sites)
use in a Voronoï tessellation of an image. To see this, consider the difference
between the 3D meshes and their contours, starting with 3D mesh for the green
channel in Fig. 3.3, compared with the red channel values in Fig. 3.5.1 and blue
channel values in Fig. 3.5.2.

128 3 Visualising Pixel Intensity Distributions

5o Produce a 3D mesh with contours for the blue channel values. The result for the
blue • channel values for the pixels in the cropped image is shown in Fig. 3.5.2.
�

N.B.: Notice that histogram construction requires an intensity image.

3.1 Histograms and Plots

There are a number of ways to visualize the distribution of pixel intensities in a digital
image. A good way to get started is to visualize the distribution of pixel intensities
in an image.

Example 3.2 Sample Greyscale Histogram. Sample pixel intensity counts for each
greyscale pixel in Fig. 3.2 are shown in Fig. 3.6. To experiment with image pixel
intensity counts, see script A.21 in Appendix A.3. For the details, see Sect. 3.1.1
given next. �

Fig. 3.6 Greyscale train station image histogram

3.1 Histograms and Plots 129

Fig. 3.7 Image histogram with 256 bins

3.1.1 Histogram

An image histogram plots the relative frequency of occurrence of image pixel inten-
sity values against intensity values. Histograms are constructed using binning, since
it is usually not possible to include individual pixel intensity values in a histogram.
An image intensity bin (also called an image intensity bucket) is a set of pixel inten-
sities within a specified range. Typically, a histogram for an intensity image contains
256 bins, one pixel intensity per bin. Each intensity image histogram displays the
size (cardinality) of each pixel intensity bin. Image histograms are constructed using
a technique called binning. Image binning is a method of assigning each pixel
intensity to a bin containing matching intensities. Here is another example.

Example 3.3 Sample histogram bins.
The intensity (greyscale) image img in Fig. 3.7 has a wide range pixel counts for
each of the 256 intensities in the image. Thanks to the white T-shirt of the fisherman,
there are over 200 highest intensity pixels (intensity = 1). Again, notice that there
over 500 pixels with 0 intensity (black pixels). Let histogram bins cover the range
of intensities (one bin for each of the 256 intensities) be represented by

0, 1, 2, 3, . . . , i, i + 1, . . . , 253, 254, 255 (imageintensitybins).

And let img(x, y) be a pixel intensity at location (x, y). Let 0 ≤ i ≤ 255 represent the
intensity of bin i. Then all pixels with intensities matching the intensity of img(x, y)

130 3 Visualising Pixel Intensity Distributions

are binned in bin(i) the following way:

bin(i) = {img(x, y) : img(x, y) = i} so that

img(x, y) ∈ [i, i + 1) (ith intensity bin).

AsampleMatlab script for exploring binning for both colour images and greyscale
images, see see script A.21 in Appendix A.3. For an expanded study of binning,
see [21, §3.4.1]. �

Example 3.4 To inspect the numbers of intensities in a subimage, crop the a selected
image. For example, crop the image in Fig. 3.7, selecting only the fisherman’s head
and shoulders as shown in Fig. 3.8. Then, for intensities 80, 81, 82, use script A.21
in Appendix A.3 to compare the size of bins 80, 81, and 82 with the original image:

In other words, the cardinality of the bins in the cropped image decreases sharply
compared with the bins in the original image. �

In Matlab, the imhist function displays a histogram for a greyscale image. If � is
a greyscale image, the default display for imhist is 255 bins, one bin for each image
intensity. Use imhist(�,n) to display n bins in the histogram for � (see, e.g., Fig. 3.6
a sample greyscale histogram for the rgb plant image). Use

Fig. 3.8 Cropped image histogram with 256 bins

3.1 Histograms and Plots 131

� [counts, x] = imhist(�); (3.1)

to store the relative frequency values in counts for histogram with horizontal axis
values stored in x. See, also, the histeq function introduced in Sect. 3.6.

3.1.2 Stem Plot

A stem plot is a 2D plot that display function values as lollipops |◦ (a stem with a
circle end). Use the stem function to produce a stem plot. In the case of the relative
frequency of pixel intensities, a stem plot provides a visual alternative to a histogram
(the vertical lines in a histogram are replaced with |◦s (see, e.g., Fig. 3.12). A stem
plot is derived from a histogram using the information gathered in (3.1) to obtain
stem(x,counts). See, e.g., the stem plot in Fig. 3.12. Notice, also, that it is possible
to produce a 3D stem plot, using the stem3 function.

�plot(x, counts);

3.1.3 Plot

Relative to the vectors Counts and x extracted from a histogram, the plot function
produces a 2D plot of the relative frequency counts (see, e.g., Table 3.1).

3.1.4 Surface Plot

Relative to matrices gf (filtered image) and g (double precision greyscale image),
the surf and surfc functions produce 3D surface and 3D surface contour plots,
respectively. For example, to obtain a surface plot with a contour plot beneath the
surface using the rice image g and filtered image gf from Listing 3.4, try

132 3 Visualising Pixel Intensity Distributions

Table 3.1 Two sets of bin counts

image bin 80 bin 81 bin 82

39 41 35

2044 2315 2609

�surfc(gf , g); Filteredcontourplot

�surfc(gth, g); Thresholdedimagecontourplot

Notice evidence of the separation of image intensities in the first of the first of the
contour plots and the evidence of the results of thresholding the rice image in the
contour plot drawn beneath the surface in the second of the above surface plots.
Using surfc, we obtain a visual perspective of the results produced by the script in
Listing 3.4 in Fig. 3.16.

3.1 Histograms and Plots 133

% V i s u a l i s a t i o n e x p e r im e n t

g = imread (’rice.png’) ; % r e a d g r e y s c a l e image
g = im2double (g) ;
[x y] = meshgrid (max (g)) ;
z = 20 .∗log (1 + g) ;
figure , surfc (x , y , z) ; zlabel (’z = 20.*log(1 + g)’) ;

Listing 3.1 Matlab code in mesh.m to produce Fig. 3.9.

3.1.5 Wireframe Surface Plot

The meshgrid combined with surfc produces a wireframe surface plot with a con-
tour plot beneath the surface. This form of visualizing image intensities is shown
in Fig. 3.9. In Listing 3.1, meshgrid(g) is an abbreviation for meshgrid(g,g), trans-
forming the domain specified by the image g into arrays x and y, which are then used
to construct 3D wireframe plots.

3.1.6 Contour Plot

The contour function draws contour plot, with 3D surface values mapped to isolines,
each with a different colour.

Fig. 3.9 Wireframe parametric surface for rice.png max intensities

134 3 Visualising Pixel Intensity Distributions

Fig. 3.10 Red channel isolines for peppers.png

3.2 Isolines

An isoline for a digital image connects points in a 2D plane all representing the
same intensity. The points in an isoline represent heights above the x-y plane. In
the case of the red channel in an rgb, the points in an isoline represent brightness
levels of the colour red (see, e.g., Fig. 3.11). Each isoline belongs to a surface, say
the line indicating the locations of, for example, intensity 100 value. For an isoline,
there is an implicit scalar field defined in 2D such as the value 100 at locations (0,0),
(25,75). The Matlab clabel function is can be used to insert intensity values in an

Fig. 3.11 Red channel isoline values for peppers.png

3.2 Isolines 135

isoline. However, an attractive alternative to clabel is the combination of the set and
get functions, which make it possible to control the range of values represented by
isolines.1 Sample isolines are shown in the contour plot in Figs. 3.10.2 and 3.1.5,
produced by script in MScript A.23 Appendix A.3.3.

Problem 3.5 ®Experimentwith surf, surfc, stem, stem3, plot,mesh,meshc,mesh-
grid, contour and, in each case, display various visualizations, using the mini-image
represented by the array g in

� g = [12,−1, 55; 34,−1, 66;−123, 3, 56];

Repeat the same experiments with the pout.png greyscale image. Then demonstrate
the use of each of the visualization functions with each of the colour channels in a
sample colour image. �

Example 3.6 By way of illustration of the histogram and stem plot for an image
intensity distribution, consider the distribution of intensities for pout.tif (a useful
image in the Matlab library). A good overview of image histograms is given by
M. Sonka, V. Hlavac and R. Boyle [185, §2.3.2]. The utility of a histogram can be
seen in the fact that it is possible, for some images, to choose a threshhold value in
logarithmically compressing the dynamic range of an image, where the threshold is
an intensity in a valley between dominant peaks in the histogram. This is the case in
Fig. 3.12, where an intensity of approximately 120 provides a good threshold.

Fig. 3.12 Image pixel intensities distribution

1Instead of clabel, try a combination of set and get, e.g.,

� set(h,′ ShowText′,′ on′,′ TextStep′, get(h,′ LevelStep′))

This approach to labelling contour lines will give control over the height labels that are displayed
on the contour lines. For example, try get(h,′ LevelStep′) ∗ 2 to inhibit the lower height labels.

136 3 Visualising Pixel Intensity Distributions

% H i s t o g r a m e x p e r i m e n t
%% h o u s e k e e p i n g
clc , clear all , close all
%%
% T h i s s e c t i o n f o r c o l o u r i m a g e s
I = imread (’ fishermanHead . jpg ’) ;
% I = i m r e a d (’ f i s h e r m a n . j p g ’) ;
% I = i m r e a d (’ f o o t b a l l . j p g ’) ;
I = rgb2gray (I) ;
%%
% T h i s s e c t i o n f o r i n t e n s i t y i m a g e s
% I = i m r e a d (’ p o u t . t i f ’) ;
%%
% C o n s t r u c t h i s t o g r a m :
%
h = imhist (I) ;
[counts , x] = imhist (I) ;
counts
size (counts)
subplot (1 , 3 , 1) , imshow (I) ;
subplot (1 , 3 , 2) , imhist (I) ;
ylabel (’ pixel count ’) ;
subplot (1 , 3 , 3) , stem (x , counts) ;
grid on

Listing 3.2 Matlab code in hist.m to produce Fig. 3.12.

Fig. 3.13 Thresholded image via a histogram

Problem 3.7 K Experiment with threshold in ex_greyth.m using an image
histogram to choose an effective threshold from the valley between peaks in rela-
tive frequencies distribution displayed in the histogram. Using the cameraman.tif
image, obtain a result similar to that shown in Fig. 3.13 (call the modified Matlab

3.2 Isolines 137

scripthisth.m). Display the original image, thresholded image, and image histogram,
indicating the intensity you have chosen for the threshold. Also, display histh.m.
�

3.3 Colour Histograms

Also of interest is the distributions colour channel intensities in a colour image. After
recording the color channel intensities for each pixel, superimposed stem plots for
each colour serve to produce a colour histogram.

% Co lou r Image h i s t o g r am
% a l g o r i t hm from
% h t t p : / / www. mathworks . com / m a t l a b c e n t r a l / f i l e e x c h a n g e / a u t h o r s / 100633
close all
clear all

% What ’ s h a pp en i n g ?
g = imread (’rainbow-plant.jpg’) ; % r e a d rgb image
%g = imr e ad (’ s i t a r . jpg ’) ; % r e a d g r e y s c a l e image
nBins = 256 ; % b i n s f o r 256 i n t e n s i t i e s
rHist = imhist (g (: , : , 1) , nBins) ; % s av e r e d i n t e n s i t i e s
gHist = imhist (g (: , : , 2) , nBins) ; % s av e g r e e n i n t e n s i t i e s
bHist = imhist (g (: , : , 3) , nBins) ; % s av e b l u e i n t e n s i t i e s
figure
subplot (1 , 2 , 1) ; imshow (g) , axis on % d i s p l a y o r i g . image
subplot (1 , 2 , 2) % d i s p l a y h i s t o g r am
h (1) = stem (1 : 2 5 6 , rHist) ; hold on % red s tem p l o t
h (2) = stem (1 : 2 5 6 + 1 / 3 , gHist) ; % g r e e n s tem p l o t
h (3) = stem (1 : 2 5 6 + 2 / 3 , bHist) ; % b l u e s t em p l o t
hold off
set (h , ’marker’ , ’none’) % s e t p r o p e r t i e s o f b i n s
set (h (1) , ’color’ , [1 0 0])
set (h (2) , ’color’ , [0 1 0])
set (h (3) , ’color’ , [0 0 1])
axis square % make a x i s box s q u a r e

Listing 3.3 Matlab code in hist.m to produce Fig. 3.14.

Fig. 3.14 image pixel colour channel intensities distribution

138 3 Visualising Pixel Intensity Distributions

The plot in Fig. 3.14 shows a histogram the presents the combined colour channel
intensities for the plant image. By modifying the code in Listing 3.3, it is possible
to display three separate histograms, one for each colour channel in the plant image
(see Fig. 3.15).

3.4 Adaptive Thresholding

The limitations of global thresholding are overcome by using a different threshold
for each pixel neighbourhood in an image. Adaptive thresholding focuses on local
thresholds that are determined by pixel intensity values in the neighbourhood of each
pixel. The form of thresholding is important because pixel intensities tend to be fairly
uniform in pixel small neighbourhoods. Given an image �, neighbourhood filtered
image �f and threshold �f + C, modify each pixel value using

� � � − (�f + C).

Fig. 3.15 Three image pixel colour channel distributions

3.4 Adaptive Thresholding 139

A combination of the imfilter and fspecial filter functions can be used to compute
filtered image neighbourhood values. First, decide on an effective n × n neighbour-
hood size and use the averaging filter average filter option for fspecial. Then use the
replicate option to populate all image neighbourhoods with the average filter values
for each neighbourhood. For example, choose n = 9 for a 9 × 9 neigbourhood and
combine the two Matlab filters to obtain

� �f = imfilter(�, fspecial(′average′, [99]),′ replicate′);

% Hi s t og r am e x p e r im e n t
close all
clear all

g = imread (’rainbow-plant.jpg’) ; % r e a d rgb image
g = rgb2gray (g) ;
%g = imr e ad (’ r i c e . png ’) ; % r e a d g r e y s c a l e image
gf = imfilter (g , fspecial (’average’ , [1 5 1 5]) ,’replicate’) ;
gth = g − (gf + 20) ;
gbw = im2bw (gth , 0) ;
subplot (1 , 4 , 1) , imshow (gbw) ;
%s e t (gca , ’ x t i c k ’ , [] , ’ y t i ckMode ’ , ’ au to ’) ;
subplot (1 , 4 , 2) , imhist (gf) ; title (’avg filtered image’) ;
grid on
glog = imfilter (g , fspecial (’log’ , [1 5 1 5]) ,’replicate’) ;
gth = g − (glog + 100) ;
gbw = im2bw (gth , 0) ;
%g l og = i m f i l t e r (g , f s p e c i a l (’ p r e w i t t ’)) ;
%g l og = i m f i l t e r (g , f s p e c i a l (’ s o b e l ’)) ;
%g l og = i m f i l t e r (g , f s p e c i a l (’ l a p l a c i a n ’)) ;
%g l og = i m f i l t e r (g , f s p e c i a l (’ g a u s s i a n ’)) ;
%g l og = i m f i l t e r (g , f s p e c i a l (’ un sha rp ’)) ;
gbw = im2bw (gth , 0) ;
subplot (1 , 4 , 3) , imshow (gbw) ;
set (gca , ’xtick’ , [] , ’ytickMode’ ,’auto’) ;
subplot (1 , 4 , 4) , imhist (glog) ; title (’filtered image’) ;
grid on

Listing 3.4 Matlab code in adapt2.m to produce Fig. 3.16.

Problem 3.8 Adaptive Thresholding.
In addition to the average and log neighbourhood filtering options used by the fspe-
cial function, the following options are also available.

(filter.1) disk (circular averaging method),
(filter.2) gaussian (Gaussian lowpass filter),
(filter.3) laplacian (approximating 2D Laplacian operator),
(filter.4) motion (motion filter),
(filter.5) prewitt (Prewitt horizontal edge-emphasising filter) [160],
(filter.6) sobel (Sobel horizontal edge-emphasising filter) [180],
(filter.7) unsharp (unsharp contrast enhancement filter).

Try each of these filters as well as the average and log filters using the adaptive
thresholding method on the following images: pout.png and tooth819.tif. In each
case, show all of your results and indicate which filtering method works best using
adaptive thresholding (see, e.g., Fig. 3.16). �

140 3 Visualising Pixel Intensity Distributions

Fig. 3.16 Adaptive thresholding on rice image

3.5 Contrast Stretching

It is possible to stretch the dynamic range of an image, making image intensities
occupy a larger dynamic range. As a result, there is increased contrast between dark
and light areas of an image. This is accomplished using what is known as contrast
stretching, another example of pixel intensity transformation. The transformation
of each pixel value is carried out using the following method. Let

g = input image,

c, d = max(max(g)),min(min(g)), respectively,

a, b = new dynamic range for g,

g(x, y) = (g(x, y) − c)

(
a − b

c − d

)

+ a.

A combination of the stretchlim and imadjust functions can be used to carry out
contrast stretching on an image. For example, the choice of the new dynamic range

Fig. 3.17 Contrast stretching rainbow-on-shoe greyscale image

3.5 Contrast Stretching 141

is the 10th and 90th percentile points in the cumulative distributions of pixel values.
This means that in the new dynamic range, 10% of the pixel values will be less than
the new min d and 90% of the new pixel values will be greater than the max c.

% Co n s t r a s t − s t r e t c h i n g e x p e r im e n t
clear all
close all

g = imread (’rainbowshoe.jpg’) ; % r e a d c o l o u r image
%g = imre ad (’ r a i nbow . jpg ’) ; % r e a d c o l o u r image
% g = imr e ad (’ t o o t h 8 1 9 . t i f ’) ;
% g = imr e ad (’ t o o t h 2 . png ’) ;
%g = imr e ad (’ t o o t h . t i f ’) ;
%g = r g b 2 g r a y (g) ;
stretch = stretchlim (g , [0 . 0 3 , 0 . 9 7]) ;
h = imadjust (g , stretch , []) ;
subplot (1 , 2 , 1) , imshow (g) ;
title (’rgb image’) ;
% t i t l e (’ g r e y s c a l e image ’) ;
axis on
subplot (1 , 2 , 2) , imshow (h) ;
title (’contrast stretched’) ;
axis on

Listing 3.5 Matlab code in contrast.m to produce Fig. 3.19.

Fig. 3.18 Contrast stretching rainbow-on-shoe rgb image

In the contrast-stretched image in Fig. 3.17, the shoe and the spots on the floor to
the right of the shoe are now more visible, i.e., more distinguishable.2

Notice that contrast stretching is performed on an rgb image converted to
greyscale. It is possible to do contrast stretching directly on an rgb image (see,
e.g., Fig. 3.18). The changed distribution of relative frequencies of pixel values is
evident in the contrasting histograms in Fig. 3.20.

% Co n s t r a s t − s t r e t c h e d dynamic r a n g e s

g = imread (’tooth819.tif’) ;
stretch = stretchlim (g , [0 . 0 3 , 0 . 9 7]) ;
h = imadjust (g , stretch , []) ;

2The shoe image in Fig. 3.17, showing refracted light from the windows overlooking on an upper
staircase landing in building E2, EITC, U of Manitoba, was captured by Chido Uchime with a cell
phone camera.

142 3 Visualising Pixel Intensity Distributions

Fig. 3.19 Contrast stretching fossilised tooth image

Fig. 3.20 Histogram for contrast-stretched fossil tooth image

subplot (1 , 2 , 1) , imhist (g) ;
title (’tooth histogram’) ;
subplot (1 , 2 , 2) , imhist (h) ;
title (’new tooth histogram’)

Listing 3.6 Matlab code in histstretch.m to produce Fig. 3.20.

The choice of the new dynamic range is image-dependent. Consider, for example,
an image of a micro-slice of a 350,000year old tooth fossil found in Serbia in 1990.
This image and the corresponding contrast-stretched image is shown in Fig. 3.19. The
features of the tooth image are barely visible in the original image. After choosing
a new dynamic range equal to [0.03, . . . , 0.97], the features of the tooth are more
sharply defined.

The contrast between the distribution of relative frequencies of pixel values in
the original tooth image and contrast-stretched image can be seen by comparing the
histograms in Fig. 3.21, especially for the high intensities.

3.5 Contrast Stretching 143

Fig. 3.21 Histogram for contrast-stretched tooth fossil image

Problem 3.9 K Experiment with the tooth image tooth819.tif using contrast
stretching. The challenge here is to find a contrast-stretched image that more sharply
defines the parts of the tooth image. �

3.6 Histogram Matching

Contrast stretching can be generalised by extracting a target histogram distribution
from an input image. The basic approach requires the user to specify a desired range
for grey level intensities for histogram equalisation of an image. An example of how
this is done is given in Listing 3.7 with the corresponding equalised image shown in
Fig. 3.22.

% Hi s t og r am e q u a l i s a t i o n

g = imread (’tooth819.tif’) ; % t o o t h image
ramp = 4 0 : 6 0 ; % h i s t o g r am d i s t r i b u t i o n
h = histeq (g , ramp) ; % h i s t o g r am e q u a l i s a t i o n
subplot (1 , 2 , 1) , imshow (g) ;
title (’tooth histogram’) ;
subplot (1 , 2 , 2) , imshow (h) ;
title (’equalised image’)

Listing 3.7 Matlab code in histeqs.m to produce Fig. 3.22.

144 3 Visualising Pixel Intensity Distributions

Fig. 3.22 Histogram equalisation of tooth image

After some experimentation, it was found that the best result is obtained with
target histogram range equal to 40 : 60. This leads to the result shown in Fig. 3.23.
Even with this narrow range for the target histogram, the regions of the tooth in the
resulting image are not as sharply defined as they are in the contrast-stretched image
of the tooth in Fig. 3.19.

Problem 3.10 Experimentwith the tooth image tooth819.tifusinghistogrammatch-
ing. The challenge here is to identify a target histogram that more sharply defines
the parts of the tooth image. �

Fig. 3.23 Target histogram for tooth image

Chapter 4
Linear Filtering

This chapter introduces linear spatial filters. A linear filter is a time-invariant device
(function, or method) that operates on a signal to modify the signal in some fashion.
In our case, a linear filter is a function that has pixel (colour or non-colour) values
as its input. In effect, a linear filter is a linear function on sets of pixel feature values
such as colour, gradient orientation and gradient magnitude (especially, gradient
magnitude which is a measure of edge pixel strength), which are either modified or
exhibited in some useful fashion. For more about linear functions, see Sect. 5.1.

From an engineering perspective, one of the most famous as well as important
papers onfiltering is the 1953 paper byL.A.Zadeh [215].Very relevant to the interests
of computer vision are Zadeh’s ideal and optimumfilters. An ideal filter is a filter that
yields a desired signal without any distortion or delay. A good example of an ideal
filter is the Robinson shape filter from M. Robinson [167, Sect. 5.4, p. 159ff], useful
in solving shape recognition problems in computer vision. Ideal filters are often not
possible. So Zadeh introduced optimum filtering. An optimum filter is a filter that
yields the best (close) approximation of the desired signal. Another classic paper
that is important for computer visions J.F. Canny’s edge filtering method introduced
in [24] and elaborated in [25]. For a recent paper on scale-invariant filtering for edge
detection in digital images, see S. Mahmoodi [118]. For more about linear filters in a
general setting, see R.B. Holmes [84] and for linear filters in signal processing, see,
especially, D.S. Broomhead, J.P. Huke and M.R. Muldoon [20, Sect. 3].

4.1 Importance of Image Filtering

Previously, the focus was on manipulating the dynamic range of images to improve,
sharpen and increase the contrast of image features. In this chapter, the focus shifts
from sharpening image contrast to image filtering, which is based on weighted sums
of local neighbourhood pixel values. As a result, we obtain a means of removing

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2_4

145

http://dx.doi.org/10.1007/978-3-319-52483-2_5

146 4 Linear Filtering

image noise, sharpening image features (enhancing image appearance), and achieve
edge and corner detection. The study of image filtering methods has direct bearing
on various approaches to image analysis, image classification and image retrieval
methods. Indications of the importance of image filtering in image analysis and
computer vision can be found in the following filtering approaches.

4.1.1: RGB image 4.1.2: Intensities

Fig. 4.1 Sample actin fibres image filtering

Fast elliptical filtering: Radially-uniformbox splines are constructedvia repeated
convolution of a fixed number of box distributions byK.N. Chaudhury, A.Munoz-
Barrutia and M. Unser in [28]. A sample result of the proposed filtering methods
is shown in Fig. 4.1.

Gaussian Smoothing filtering: Thismethod has twomain steps given by S.S. Sya
and A.S. Prihatmanto [189]: (1) a given raster image is normalized in the RGB
colour so that the colour pixel intensities are in the range 0 to 225 and (2) the
normalized RGB image is converted to HSV to obtain a threshold for hue, satu-
ration and value in detecting a face that is being tracked by a Lumen social robot.
This application of Gaussian filtering by Sya and Prihatmanto illustrates the high
utility of the HSV colour space. Gaussian filtering is an example of non-linear
filtering. For more about this, see Sect. 5.6 and for more about the Appendix B.8.

Nonlinear adaptive median filtering (AMF): Nonlinear AMF is used by T.K.
Thivakaran and R.M. Chandrasekaran in [193].

Nearness of open neighbourhoods of pixels to given pixels: This approach by
S.A. Naimpally and J.F. Peters given in [128, 142, 151] and by others [73, 76,
137, 152, 162, 170]) introduces an approach to filtering an image that focuses
on the proximity of an open neighbourhood of a pixel to pixels external to the
neighbourhood. An open neighbourhood of a pixel is a set of pixels within a
fixed distance of a pixel which does not include the pixels along the border of

http://dx.doi.org/10.1007/978-3-319-52483-2_5

4.1 Importance of Image Filtering 147

the neighbourhood. For more about open sets and neighbourhoods of points, see
Appendix B.13 and B.14.

4.2 Filter Kernels

In linear spatial filters, we obtain filtered values of target pixels by means of linear
combinations of pixel values in a n × m neighborhood. A target pixel is located at
the centre of neighbourhood. A linear combination of neighbourhood pixel values is
determined by a filter kernel or mask. A filter kernel is an array the same size as a
neighbourhood, containing weights that are assigned to the pixels in the neighbour-
hood of a target pixel. A linear spatial filter convolves the kernel and neighbourhood
pixel values to obtain a new target pixel value. Let w denote a e × 3 kernel and let
g(x, y) be a target pixel in a 3 × 3 neighbourhood, then the new value of the target
pixel is obtained as the sum of the dot products of pairs of row vectors. For a pair of
1× n vectors a,b of the same size, the dot product is the sum of the products of the
values in corresponding positions, i.e.,

A · B =
n

∑

i=1

(ai)(bi)

After selecting a 3 × 3 kernel, the value of a target pixel g(x, y) in a 3 × 3 neigh-
bourhood of a digital image g is computed as a sum of dot products, i.e.,

g(x, y) =
3

∑

i=1

w(1, i)g(1, i)+
3

∑

i=1

w(2, i)g(2, i)+
3

∑

i=1

w(3, i)g(3, i).

For example, consider the following sample sum of dot products.

w =
⎡

⎣

1 0 −1
2 0 −2
1 0 −1

⎤

⎦ , n =
⎡

⎣

1 2 3
4 5 6
7 8 9

⎤

⎦ , t =
3

∑

i=1

w(i, :) · n(i, :).

The kernel w is called a Sobel mask and is used in edge detection in images [58,
Sect. 3.6.4] (see, also [Sect. 3][24, 54, 57, 120, 160]). In Matlab, the value of the
target pixel n(2, 2) for a given 3 × 3 array, can be computed using the dot (dot
product) function. This is illustrated in Listing 4.1.

148 4 Linear Filtering

% Sample t a r g e t p i x e l v a l u e u s i n g a 3x3 f i l t e r k e r n e l

w = [1 , 0 , −1 ; 2 ,0 , −2 ; 1 , 0 , −1] ;
n = [1 , 2 , 3 ; 4 , 5 , 6 ; 7 , 8 , 9] ;
p1 = dot (w (1 , :) ,n (1 , :))
p2 = dot (w (2 , :) ,n (2 , :))
p3 = dot (w (3 , :) ,n (3 , :))
t = (p1 + p2) + p3

Listing 4.1 Matlab code in target.m to produce a target value.

The steps in the convolution of a kernel with an image neighbourhood are sum-
marised, next.

(step.1) Define a n × n filter kernel k.
(step.2) Slide the kernel onto a n × n neighbourhood n in an image g (the centre

of the kernel lie on top of the neighbourhood target pixel).
(step.3) Multiply the pixel values by the corresponding kernel weights. If n(x, y)

lies beneath k(x, y), then compute n(x, y)k(x, y). For the ith row k(i ,:)
in k and ith row n(i ,:), compute the dot product k(i, :) · n(i, :). Then sum
the dot products of the rows.

(step.4) Replace the original target value with the new filtered value, namely, the
total of the dot products from step 3.

4.3 Linear Filter Experiments

Using what is known as a function handle @, a kernel can be defined in Matlab in
terms of an operation op such as max, median, min in the following manner.

� f unc = @(x)op(x(:));

The nlfilter (neighbourhood sliding filter) filters an image in terms of an n × n
neighbourhood and kernel (e.g., the basic approach is to compute the value of a
target pixel in a neighbourhood by replacing the original target pixel value with the
median value of the kernel entries). For the cameraman, image consider the design
of a median filter.

% F i l t e r e x p e r im e n t

g = imread (’cameraman.tif’) ;
subplot (1 , 4 , 1) , imshow (g) ;
subplot (1 , 4 , 2) , imhist (g) ;
func = @ (x)median (x (:)) ; % s e t f i l t e r
%fun c = @(x) max (x (:)) ; % s e t f i l t e r
%fun c = @(x) (u i n t 8 (mean (x (:)))) ; % s e t f i l t e r
h = nlfilter (g , [3 3] ,func) ;
subplot (1 , 4 , 3) , imshow (h) ;
title (’nlfilter(g,[3 3],func)’) ;
subplot (1 , 4 , 4) , imhist (h) ;

Listing 4.2 Matlab code in nbd.m to produce Fig. 4.2.

4.3 Linear Filter Experiments 149

Fig. 4.2 Median filter of cameraman.tif with Listing 4.2

To see how the neighbourhood sliding filter works, try the following experiment
shown in Listing 4.3.

% Expe r imen t w i t h f u n c t i o n h a n d l e

g = [1 , 2 , 3 ; 4 , 5 , 6 ; 7 , 8 , 9]
func = @ (x)max (x (:)) ; % s e t f i l t e r
func (g (3 , :))
h = nlfilter (g , [3 3] ,func)

Listing 4.3 Matlab code in sliding.m to produce filtered image.

Problem 4.1 Using selected images, use the max and mean functions to define
new versions of the nlfilter (see Listing 4.3 to see how this is done). In each case,
use subplot to display the original image, histogram for the original image, filtered
image, and histogram for the filtered image. �

4.4 Linear Convolution Filtering

The basic idea in this section is to use the fspecial function to construct various linear
convolution filter kernels. By way of illustration, consider constructing a kernel that
mimics the effect of motion blur. Motion blur is an apparent streaking of fast-
moving objects (see, e.g., Fig. 4.3). This can be achieved either by taking pictures
of fast moving objects while standing still or by continuous picture-taking while
moving a camera. The motion blur effect can be varied with different choices of
pixel length and counterclockwise angle of movement (the fspecial function is used
set up a particular motion blur kernel). In Fig. 4.3, global motion blur is shown in a
recent picture of a honey bee.

150 4 Linear Filtering

Fig. 4.3 Lin. Convolution. filter of honey bee with Listing 4.4

% L i n e a r c o n v o l u t i o n f i l t e r i n g
close all
clear all

g = imread (’bee-polen.jpg’) ;
%g = imr e ad (’ k i n g f i s h e r 1 . jpg ’) ;
subplot (1 , 2 , 1) , imshow (g) ;
kernel = fspecial (’motion’ , 5 0 , 4 5) ; %l e n =20 , CCangle =45
%k e r n e l = f s p e c i a l (’ mot ion ’ , 3 0 , 4 5) ; %l e n =20 , CCangle =45
h = imfilter (g , kernel , ’symmetric’) ;
subplot (1 , 2 , 2) , imshow (h) ;
title (’fspecial(motion,20,45)’) ;

Listing 4.4 Matlab code in convolve.m to produce Fig. 4.3.

Problem 4.2 Apply motion blur filtering exclusively to the part of the image in
Fig. 4.3 containing the honey bee. This will result in an image where only the honey
bee is motion blurred.
Hint: Use a combination of the roipoly region-of-interest function and the roifilt2
function (filter a region-of-interest (roi)). To see how this is done, try

� help roifilt2

The basic approach using the roifilt2 function is shown in Listing 4.5 in terms of
unsharp filtering one of the coins shown in Fig. 4.4. To take advantage of roi filtering,
youwill need to adapt the approach in Listing 4.4 in terms ofmirror filtering a region-
of-interest. �
% Sample r o i f i l t e r i n g

I = imread (’eight.tif’) ;
c = [222 272 300 270 221 1 9 4] ;
r = [21 21 75 121 121 7 5] ;
BW = roipoly (I , c , r) ;
H = fspecial (’unsharp’) ;
J = roifilt2 (H , I , BW) ;
subplot (1 , 2 , 1) , imshow (I) ; title (’roi = upper right coin’) ;
subplot (1 , 2 , 2) , imshow (I) ; title (’filtered roi = upper right coin’) ;

Listing 4.5 Matlab code in coins.m to produce Fig. 4.4.

4.5 Selecting a Region-of-Interest 151

Fig. 4.4 Region-of interest filtering with Listing 4.5

Fig. 4.5 Region-of interest selection with roipoly

4.5 Selecting a Region-of-Interest

With the roipoly or impoly functions, it is possible to select a polygon-shaped region-
of-interest within an image, interactively. A sample roi selected using roipoly is
shown in Fig. 4.5. This tool makes it possible to use the cursor to select the vertices
of an roi. This function returns a binary image that can be used as a kernel in kernel
filtering. A sample use of this tool is given in Listing 4.6. After you select an roi
by clicking on the vertices of a polygon in an image, then the roi is an image in its
own right. Sample histogram and bar3 (3D bar graph) for a selected roi are given in
Fig. 4.6.

152 4 Linear Filtering

Fig. 4.6 Region-of interest selection with Listing 4.6

% How t o u s e r o i p o l y
clear all
close all
g = imread (’rainbow-plant.jpg’) ; h = rgb2gray (g) ;
%g = imr e ad (’ f o r e s t . t i f ’) ;
%g = imr e ad (’ k i n g f i s h e r 1 . jpg ’) ;
%g = imr e ad (’ bee−po l e n . jpg ’) ;
%g = imr e ad (’ e i g h t . t i f ’) ;
%g = r g b 2 g r a y (g) ;
%c = [212 206 231 269 288 280 262 232 2 1 2] ; % column from r o i t o o l
%r = [53 96 112 107 74 49 36 36 5 3] ; % row from r o i t o o l
%c = [222 272 300 270 221 1 9 4] ; % column from r o i t o o l
%r = [21 21 75 121 121 7 5] ; % row from r o i t o o l
%[BW, r , c] = impo ly (g) ;
% manua l l y s e l e c t r , c v e c t o r s , doub l e−c l i c k i n g a f t e r s e l e c t i o n :
[BW , r , c] = roipoly (h)
B = roipoly (h , r , c) ; % i n t e r a c t i v e r o i s e l e c t i o n t o o l
%p = im h i s t (g (B)) ;
%np i x = sum (B (:)) ;
%f i g u r e ,
subplot (1 , 3 , 1) ,imshow (g) ; title (’original figure’) ;
%s u b p l o t (1 , 3 , 2) , i m h i s t (g (B)) ; t i t l e (’ r o i h i s t o g r am ’) ;
subplot (1 , 3 , 2) ,bar3 (h , 0 . 2 5 , ’detached’) , colormap ([1 0 0 ; 0 1 0 ; 0 0 1]) ;
title (’bar3(B,detached)’) ;
subplot (1 , 3 , 3) ,bar (B , ’stacked’) ,axis square ; title (’bar(B,stacked)’) ;

%s u b p l o t (1 , 3 , 3) , b a r 3 (np ix , ’ g rouped ’) ; t i t l e (’ b a r 3 graph ’) ;
%s u b p l o t (1 , 3 , 3) , b a r 3 (np ix , ’ s t a c k e d ’) ; t i t l e (’ b a r 3 graph ’) ;

Listing 4.6 Matlab code in roitool.m to produce Fig. 4.6.

4.5 Selecting a Region-of-Interest 153

Fig. 4.7 Region-of interest selection with Listing 4.6

Problem 4.3 To solve the problem of finding the vectors c, r for the roi for an image
g such as the one used in Listing 4.5, try

� [B,c,r] = roipoly(g)

Then rewrite the code in Listing 4.5 using roipoly to obtain the vectors c, r , instead
of manually inserting the c, r vectors to define the desired roi. Show what happens
when you select a roi containing the lower right hand coin in Fig. 4.4. A sample use
of roipoly in terms of the eight.tif image is shown in Fig. 4.7. �

4.6 Adding Noise to Image

One of the principal applications of filtering in image enhancement is noise removal.
By way of demonstrating the basic approach to removing noise from images, this
section illustrates how noise can be added and then removed from an image. The

154 4 Linear Filtering

imnoise function is to create a noisy image. This is done by adding one of the
following types of an image g and using mean filtering to remove the noise.

(noise.1) ‘gaussian’: adds white noise with mean m (default = 0) and variance v
(default = 0.01), with syntax

� g = imnoise(g,‘gaussian’,m,v)

(noise.2) ‘localvar’: adds zero mean Gaussian white noise with an intensity-
dependent variance, with syntax

� g = imnoise(g,‘localvar’,V)

whereV is either a vector or amatrixwith entries having double precision
values (see Listing 4.8 for an example).

(noise.3) ‘poisson’: generates Poisson noise from pixel values instead of adding
artificial noise to the pixel values, with syntax

� g = imnoise(g,‘poisson’)

(noise.4) ‘salt & pepper’: adds what looks like pepper noise to an image, with
syntax

� g = imnoise(g,‘salt&pepper’, d)

where d is the noise density (increasing the value of d increases the
density of the pepper-effect.

(noise.5) ‘speckle’: adds multiplicative noise to an image, with syntax

� g = imnoise(g,‘speckle’, v)

using the equation
j = g + ng,

where n is uniformly distributed random noise with mean 0 and variance
v (default value of v is 0.04).

Fig. 4.8 Image with added noise with Listing 4.7

4.6 Adding Noise to Image 155

% Adding n o i s e t o an image

g = imread (’forest.tif’) ;
subplot (1 , 3 , 1) , imshow (g) ; title (’forest image’) ;
nsp = imnoise (g , ’salt & pepper’ , 0 . 0 5) ; %s l i g h t p e p p e r i n g
% nsp = imno i s e (g , ’ s a l t & peppe r ’ , 0 . 1 5) ; %i n c r e a s e d p e pp e r
subplot (1 , 3 , 2) , imshow (nsp) ; title (’salt & pepper noise’) ;
g = im2double (g) ;
v = g (: , :) ;
np = imnoise (g , ’localvar’ ,v) ;
subplot (1 , 3 , 3) , imshow (np) ; title (’localvar noise’) ;

Listing 4.7 Matlab code in noise.m to produce Fig. 4.8.

Problem 4.4 Do the following:

(noisy.1) Show how to add noise to the forest.tif image using gaussian form of
noise. Display the resulting image with gaussian noise.

(noisy.2) Show how to add noise to the forest.tif image using poisson form of
noise. Display the resulting image with poisson noise.

(noisy.3) Show how to add noise to the forest.tif image using speckle form of
noise. Display the resulting image with speckle noise. �

4.7 Mean Filtering

A mean filter is the simplest of the linear filters. This form of filtering gives equal
weight to all pixels in an n × m neighbourhood, where a weight w is defined by

w = 1

nm
.

Fig. 4.9 Mean filtering an image with Listing 4.8

156 4 Linear Filtering

For example, in a 3 × 3 neighbourhood, w = 1
9 . Each pixel p value in an image is

replaced by the mean value of the pixel values from the n × m neighbourhood of
p. The end result of mean filtering is a smoothing of an image. Two applications of
mean filtering are noise suppression and preprocessing (smoothing) an image so that
subsequent operations on an image are more effective. After mean filter kernel has
been set up, then the imfilter function is used to carry out mean filtering an image
(see Listing 4.8).

% Mean f i l t e r i n g an image

g = imread (’forest.tif’) ;
subplot (2 , 3 , 1) , imshow (g) ; title (’forest image’) ;
nsp = imnoise (g , ’salt & pepper’ , 0 . 0 5) ; %s l i g h t p e p p e r i n g
% nsp = imno i s e (g , ’ s a l t & peppe r ’ , 0 . 1 5) ; %i n c r e a s e d p e pp e r
subplot (2 , 3 , 2) , imshow (nsp) ; title (’salt & pepper noise’) ;
g = im2double (g) ;
v = g (: , :) ;
np = imnoise (g , ’localvar’ ,v) ;
subplot (2 , 3 , 3) , imshow (np) ; title (’localvar noise’) ;
kernel = ones (3 , 3) / 9 ;
g1 = imfilter (g , kernel) ;
g2 = imfilter (nsp , kernel) ;
g3 = imfilter (np , kernel) ;
subplot (2 , 3 , 4) , imshow (g1) ; title (’mean-filtered image’) ;
subplot (2 , 3 , 5) , imshow (g2) ; title (’filter pepper image’) ;
subplot (2 , 3 , 6) , imshow (g3) ; title (’filter localvar image’) ;

Listing 4.8 Matlab code in meanfilter.m to produce Fig. 4.9.

Problem 4.5 Find the best mean filter for noise removal from salt & pepper and
localvar noisy forms of the bf forest.tif image.
Hint: Vary the mean filter kernel. �

Problem 4.6 Define an image g with the following matrix:

� g = [1,2,3,4,5; 6,7,8,9,10; 11,12,13,14,15; 16,17,18,19,20];

Show how the g matrix changes after mean-filtering with the kernel defined in List-
ing 4.8. �

4.8 Median Filtering

Median filtering is more effective than mean filtering. Each pixel p value in an image
is replaced by the median value of from the n × m neighbourhood of p. This form
of filtering preserves image edges, while eliminating noise spikes in image pixel
values. Rather than set up a filter kernel as in mean filtering, the medfilt2 function
is used to carry out median filtering in terms of a n ×m image neighbourhood1 (see
Listing 4.9).

1Usually, n = m = 3.

4.8 Median Filtering 157

Fig. 4.10 Mean filtering an image with Listing 4.9

% Median f i l t e r i n g an image

g = imread (’forest.tif’) ;
subplot (2 , 3 , 1) , imshow (g) ; title (’forest image’) ;
nsp = imnoise (g , ’salt & pepper’ , 0 . 0 5) ; %s l i g h t p e p p e r i n g
% nsp = imno i s e (g , ’ s a l t & peppe r ’ , 0 . 1 5) ; %i n c r e a s e d p e pp e r
subplot (2 , 3 , 2) , imshow (nsp) ; title (’salt & pepper noise’) ;
g = im2double (g) ;
v = g (: , :) ;
np = imnoise (g , ’localvar’ ,v) ;
subplot (2 , 3 , 3) , imshow (np) ; title (’localvar noise’) ;
g1 = medfilt2 (g , [3 , 3]) ;
g2 = medfilt2 (nsp , [3 , 3]) ;
g3 = medfilt2 (np , [3 , 3]) ;
subplot (2 , 3 , 4) , imshow (g1) ; title (’median-filtered image’) ;
subplot (2 , 3 , 5) , imshow (g2) ; title (’filter pepper image’) ;
subplot (2 , 3 , 6) , imshow (g3) ; title (’filter localvar image’) ;

Listing 4.9 Matlab code in medianfilter.m to produce Fig. 4.10.

Problem 4.7 Find the best median filter for noise removal from salt & pepper and
localvar noisy forms of the bf forest.tif image.
Hint: Vary the neighbourhood size. �

Problem 4.8 Define an image g with the following matrix:

� g = [1,2,3,4,5; 6,7,8,9,10; 11,12,13,14,15; 16,17,18,19,20];

Show how the g matrix changes after median-filtering with the neighbourhood
defined in Listing 4.9. �

158 4 Linear Filtering

4.9 Rank Order Filtering

Median filtering is a special case of what is known as rank order filtering. A max-
imum order filter selects the maximum value in a given neighbourhood. Similarly,
a minimum order filter selects the minimum value in a given neighbourhood. The
ordfilt2 function to carry out order filtering, using the syntax.

� filteredg = ordfilt2(g,order,domain)

replaces each pixel value in image g by the orderth pixel value in an ordered set of
neighbours specified by the nonzero pixel values in the domain. Using the maximum
order filter on g = forest.tif with a 5 × 5 neighbourhood, write

� maxfilter = ordfilt2(g,25,ones(5,5))

To implement a minimum order filter on g = forest.tif with a 5× 5 neighbourhood,
write

� minfilter = ordfilt2(g,1,ones(5,5))

See Listing 4.9 for a sample maximum order filter with 5 × 5 neighbourhood.

Fig. 4.11 Maximum order filtering an image with Listing 4.10

% Maximum o r d e r f i l t e r i n g an image

g = imread (’forest.tif’) ;
subplot (2 , 3 , 1) , imshow (g) ; title (’forest image’) ;
nsp = imnoise (g , ’salt & pepper’ , 0 . 0 5) ; %s l i g h t p e p p e r i n g
% nsp = imno i s e (g , ’ s a l t & peppe r ’ , 0 . 1 5) ; %i n c r e a s e d p e pp e r
subplot (2 , 3 , 2) , imshow (nsp) ; title (’salt & pepper noise’) ;

4.9 Rank Order Filtering 159

g = im2double (g) ;
v = g (: , :) ;
np = imnoise (g , ’localvar’ ,v) ;
subplot (2 , 3 , 3) , imshow (np) ; title (’localvar noise’) ;
g1 = ordfilt2 (g , 2 5 , ones (5 , 5)) ;
g2 = ordfilt2 (nsp , 2 5 , ones (5 , 5)) ;
g3 = ordfilt2 (np , 2 5 , ones (5 , 5)) ;
subplot (2 , 3 , 4) , imshow (g1) ; title (’max-order-filtered image’) ;
subplot (2 , 3 , 5) , imshow (g2) ; title (’filter pepper image’) ;
subplot (2 , 3 , 6) , imshow (g3) ; title (’filter localvar image’) ;

Listing 4.10 Matlab code in ordfilter.m to produce Fig. 4.11.

Problem 4.9 Define an image g with the following matrix:

� g = [1,2,3,4,5; 6,7,8,9,10; 11,12,13,14,15; 16,17,18,19,20];

Show how the g matrix changes after maximum order filtering with a 3 × 3 neigh-
bourhood rather than the 5 × 5 neighbourhood defined in Listing 4.8. �

Problem 4.10 Do the following:

(ordfilt.1) Find the best maximum order filter for noise removal from salt &
pepper and localvar noisy forms of the bf forest.tif image.

(ordfilt.2) Find the best minimum order filter for noise removal from salt & pep-
per and localvar noisy forms of the bf forest.tif image. �

Problem 4.11 Do the following:

(medfilt.1) Using the ordfilt2 function, give the formula for a median filter for
any image � in terms of a 5 × 5 and 9 × 9 neighbourhood.

(medfilt.2) Show the result of using ordfilt2 median filter relative to a 5 × 5
neighbourhood for noise removal from salt & pepper and localvar noisy forms
of the bf forest.tif image.

(medfilt.3) Show the result of using ordfilt2 median filter relative to a 3 × 3
neighbourhood for noise removal from salt & pepper and localvar noisy forms
of the forest.tif image. �

Problem 4.12 Use roipoly to select a polygon-shaped region (i.e., select a region-
of-interest (roi)) of a noisy image. Then set up a Matlab script that performs median
filtering on just the roi. The display the results of median filtering the roi for noise
removal from salt & pepper and localvar noisy forms of the bf forest.tif image.
�

4.10 Normal Distribution Filtering

Let x denote the pixel intensity of a digital image g, x̄ the average image pixel
intensity, and σ the standard deviation of the pixel intensities. The discrete form the
of the normal distribution of the pixel intensities is Gaussian function f : X → R

160 4 Linear Filtering

defined by

f (x) = 1

σ
√
2π

e− (x−x̄)2

2σ2 .

To carry normal distribution filtering using the fspecial function, it is necessary to
select an n × m kernel (usually, n = m) and standard deviation σ.

% Normal d i s t r i b u t i o n f i l t e r i n g an image

g = imread (’forest.tif’) ;
subplot (2 , 3 , 1) , imshow (g) ; title (’forest image’) ;
nsp = imnoise (g , ’salt & pepper’ , 0 . 0 5) ; %s l i g h t p e p p e r i n g
% nsp = imno i s e (g , ’ s a l t & peppe r ’ , 0 . 1 5) ; %i n c r e a s e d p e pp e r
subplot (2 , 3 , 2) , imshow (nsp) ; title (’salt & pepper noise’) ;
g = im2double (g) ;
v = g (: , :) ;
np = imnoise (g , ’localvar’ ,v) ;
subplot (2 , 3 , 3) , imshow (np) ; title (’localvar noise’) ;
lowpass = fspecial (’gaussian’ , [5 5] , 2) ;
g1 = imfilter (g , lowpass) ;
g2 = imfilter (nsp , lowpass) ;
g3 = imfilter (np , lowpass) ;
subplot (2 , 3 , 4) , imshow (g1) ; title (’norm-filtered image’) ;
subplot (2 , 3 , 5) , imshow (g2) ; title (’filter peppering’) ;
subplot (2 , 3 , 6) , imshow (g3) ; title (’filter localvar noise’) ;

Listing 4.11 Matlab code in gauss.m to produce Fig. 4.12.

Fig. 4.12 Maximum order filtering an image with Listing 4.11

Problem 4.13 By experimenting with different values of n for a n × n kernel and
σ, find a means of improving the normal distribution filtering of the forest.tif image
and its salt-&-pepper and localvar noisy versions of the same image. �

Chapter 5
Edges, Lines, Corners, Gaussian Kernel
and Voronoï Meshes

Fig. 5.1 Gaussian kernel f (x; σ = 0.81) plot

This chapter focuses on the detection of edges, lines and corners in digital images.
This chapter also introduces a number of non-linear filtering methods. A method is a
non-linear method, provided the output of the method is not directly proportional to
the input. For example, a method whose input is a real-valued variable x and whose
output is xα,α > 0 (power of x) is non-linear.

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2_5

161

162 5 Edges, Lines, Corners, Gaussian …

5.1 Linear Function

Let α be a scalar such as α ∈ R. A function (mapping) f : X → Y is a linear
function, provided, for a, b ∈ X, f (a + b) = f (a) + f (b) (additivity property)
and f (αb) = α f (b) (homogeneity property). For example, the mapping f (x) = x
is linear, since f (a + b) = a + b = f (a) + f (b) and f (αb) = αb = α f (b). In
other words, the plot of a linear function is a straight line. By contrast, a non-linear
function is a function that has non-linear output (a non-linear function does not
satisfy the additivity and homogeneity properties of a linear function). In addition,
the plot of a non-linear function is a curved line.

Fig. 5.2 Varying widths of planar Gaussian kernel plots

Example 5.1 Sample Gaussian Kernel Plots.
Let σ > 0 be a scale parameter, which is the standard deviation (average distance
from the mean of a set values). The expression σ2 is called the variance. The average
value or mean or middle of a set of data is denoted by μ. In this case, μ = 0 The 1D
Gaussian kernel function f : R −→ R

2 is defined by

f (x;σ) = 1

σ
√
2π

e− x2

2σ2 (Gaussian kernel function),

is a non-linear function with a curved planar plot such as the ones shown in Fig. 5.2.
In the definition of the 1D Gaussian kernel function f (x;σ), x is a spatial parameter
and σ is a scale parameter. Notice that as σ decreases (e.g., from σ = 0.81 in
Fig. 5.1 to σ = 0.61 in Fig. 5.2.1 and then to σ = 0.41 in Fig. 5.2.2), the width of
the Gaussian kernel plot shrinks. For this reason, σ is called a width parameter.
For other experiments with the 1D Gaussian kernel, try the Matlab script A.24 in
Appendix A.5.1. �

5.1 Linear Function 163

This Gaussian kernel is called a 1D (1 dimensional) kernel, since only a single
spatial parameter is used to define the kernel, namely x . The name 1D Gaussian
kernel comes from B.M. ter Haar Romeny in [65] .

Fig. 5.3 Corner-based
Voronoï mesh on colour
image

The corners in a digital image provide a good source of Voronoï mesh generators.
A Voronoï mesh derived from image corners provides a segmentation of an image.
Each segment in such amesh is a convex polygon.Recall that the straight line segment
between any pair points in a convex polygon belongs to the polygon. The motivation
for considering this form of image segmentation is that mesh polygons provide a
means of

1o Image segmentation. Voronoï meshes provide a straightforward means of parti-
tioning an image into non-intersecting convex polygons that facilitate image and
scene analysis as well as image understanding. �

2o Object recognition. Object corners determine distinctive (recognizable) convex
submeshes that can be recognized and compared. �

3o Pattern recognition. The arrangement of corner-based convex image submeshes
constitute image patterns that can be recognized and compared. See Sect. 5.13
for more about this. �

Example 5.2 Segmenting a Colour Image. A sample segmentation of a colour
image is shown in Fig. 5.3. In this image, a Voronoï mesh is derived from some of
the corners (shownwith ∗) in this image.Notice, for example, the rearwheel ismostly
covered by a 7-sided convex polygon. For more about this, see
Sect. 5.14. �

% Edge d e t e c t i o n f i l t e r i n g an imag e w i t h l o g i c a l n o t
clc , clear all , close all
g = imread (’circuit.tif’) ;
gz = edge (g , ’zerocross’) ;
subplot (1 , 3 , 1) , imshow (g) ; title (’circuit.tif’) ;

164 5 Edges, Lines, Corners, Gaussian …

Fig. 5.4 Logical not versus non-logical not image with Listing 5.1

subplot (1 , 3 , 2) , imshow (gz) ; title (’Zero cross filter’) ;
subplot (1 , 3 , 3) , imshow (~ gz) ; title (’Zero cross (log. not)’) ;

Listing 5.1 Matlab code in family mylogicalnot.m to produce Fig. 5.4.

5.2 Edge Detection

Quite a number of edge (and line) detection methods have been proposed. Prominent
among these filtering methods are those proposed by L.G. Roberts [166], J.M.S.
Prewitt [160], I. Sobel [180, 181] and the more recent Laplacian and Zero cross fil-
teringmethods. The Laplacian and Zero cross filters effect remarkable improvements
over the earlier edge detection methods. This can be seen in Figs. 5.5 and 5.6.

% Edge d e t e c t i o n f i l t e r i n g an imag e
clc , clear all , close all

%g = r g b 2 g r a y (i m r e a d (’ bee−p o l e n . j p g ’)) ;
g = imread (’circuit.tif’) ;
gr = edge (g , ’roberts’) ;
gp = edge (g , ’prewitt’) ;
gs = edge (g , ’sobel’) ;
gl = edge (g , ’log’) ;
gz = edge (g , ’zerocross’) ;
subplot (2 , 3 , 1) , imshow (g) ; title (’circuit.tif’) ;
subplot (2 , 3 , 2) , imshow (~ gr) ; title (’Roberts filter’) ;
subplot (2 , 3 , 3) , imshow (~ gp) ; title (’Prewitt filter’) ;
subplot (2 , 3 , 4) , imshow (~ gs) ; title (’Sobel filter’) ;
subplot (2 , 3 , 5) , imshow (~ gl) ; title (’Laplacian filter’) ;
subplot (2 , 3 , 6) , imshow (~ gz) ; title (’Zero cross filter’) ;

Listing 5.2 Matlab code in edges.m to produce Fig. 5.5.

5.2 Edge Detection 165

Fig. 5.5 Edge detection filtering an image with Listing 5.2

Fig. 5.6 Manitoba Dragonfly

Listing 5.2 illustrates the application of each of the common edge-filtering meth-
ods. Notice that the Matlab logical not operator. To experiment with logical not, try

166 5 Edges, Lines, Corners, Gaussian …

Fig. 5.7 Edges in a Manitoba Dragonfly image

% Samp l e l o g i c a l n o t o p e r a t i o n on an a r r a y
clc , clear all , close all

g = [1 1 1 1 0 0 0 0]
notg = ~g

Listing 5.3 from [11110000].]Use logicalnot.m to produce [00001111] from [11110000].

The approach in Script 5.3 can be used to reverse the appearance of each filtered
image from white edges on black background to black edges on white background
(see, e.g., Figs. 5.4 and 5.5, for edges extracted from Figs. 5.6 and 5.7).

The basic approach in edge detection filters is to convolve the n×n neighbourhood
of each pixel in an image with an n × n mask (or filter kernel), where n is usually an
odd integer. The term convolve means fold (roll) together. For a real-life example of
convolving, see http://www.youtube.com/watch?v=7EYAUazLI9k.

For example, the Prewitt and Sobel edge filters are used to convolve each
3 × 3 image neighbourhood (also called an 8-neighbourhood) with an edge fil-
ter. The notion of an 8-neighbourhood of a pixel comes from A. Rosenfeld
[170]. A Rosenfeld 8-neighbourhood is an square array of 8 pixels surrounding
a center pixel. Prewitt and Sobel edge filters are a pair of 3 × 3 masks (one mask
representing the pixel gradient in the x-direction and a second mask for the pixel
gradient in the y-direction).

Matlab favours the horizontal direction, filtering an image with only the mask
representing the gradient of a pixel in the x-direction. To see examples of masks, try

% Samp l e e d g e f i l t e r ma sk s
clc , clear all , close all

mPrewitt = fspecial (’prewitt’)
mSobel = fspecial (’sobel’)
mLaplace = fspecial (’laplacian’)

Listing 5.4 masks.m to produce sample masks.

Themasks available with theMatlab fspecial function favour the horizontal direc-
tion. For example, the Prewitt 3 × 3 mask is defined by

http://www.youtube.com/watch?v=7EYAUazLI9k

5.2 Edge Detection 167

mPrewi t t =
⎡

⎣

1 1 1
0 0 0

−1 −1 −1

⎤

⎦ .

The Laplacian edge filter L(x, y) is a 2D isotropic1 measure of the 2nd derivative
of an image g with pixel intensities g(x, y) defined by

L(x, y) = ∂2g

∂x2
+ ∂2g

∂y2
.

A commonly used Laplacian mask is defined by the following 3 × 3 array.

Laplacian =
⎡

⎣

0 −1 0
−1 4 −1
0 −1 0

⎤

⎦ .

For detailed explanations for the Laplacian, Laplacian of Gaussian, LoG, and
Marr edge filters, see http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm.

Problem 5.3 Using image enhancement methods from Chap.3, preprocess the
dragonfly2.jpg image and create a new image (call it dragonfly2.jpg). Find the
best preprocessing method to do edge detection filtering to obtain an image similar
to the one shown in Fig. 5.7. Display both the binary (black and white) and the (black
on white or logical not) edge image as shown in Fig. 5.7. In addition, type

� help edge

and experiment with different choices of the thresh and sigma (standard deviation
parameters for the Laplacian of the Gaussian (normal distribution) filtering method,
using

� gl = edge(g,′ log′, thresh, sigma)

Hint: Use im2double on an input image. Also, edge detection methods operate on
greyscale (not colour) images. �

5.3 Double Precision Laplacian Filter

% Norma l d i s t r i b u t i o n f i l t e r i n g an imag e

g = imread (’circuit.tif’) ;
gr = edge (g , ’roberts’) ;
gp = edge (g , ’prewitt’) ;
gs = edge (g , ’sobel’) ;
subplot (2 , 3 , 1) , imshow (g) ; title (’circuit.tif’) ;

1Isotropic means not direction sensitive, having the same magnitude or properties when measured
in different directions.

http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
http://dx.doi.org/10.1007/978-3-319-52483-2_3

168 5 Edges, Lines, Corners, Gaussian …

Fig. 5.8 Double precision Laplace filtering with Listing 5.5

subplot (2 , 3 , 2) , imshow (~ gr) ; title (’Roberts filter’) ;
subplot (2 , 3 , 3) , imshow (~ gp) ; title (’Prewitt filter’) ;
%
subplot (2 , 3 , 4) , imshow (~ gs) ; title (’Sobel filter’) ;
k = fspecial (’laplacian’) ; % c r e a t e l a p l a c i a n f i l t e r
glap = imfilter (double (g) ,k , ’symmetric’) ; % l a p l a c i a n e d g e s
glap = medfilt2 (glap , [3 3]) ;
subplot (2 , 3 , 5) , imshow (glap) ; title (’Floating pt Laplacian’) ;
%
k = fspecial (’log’) ; % c r e a t e l a p l a c i a n f i l t e r
glog = imfilter (double (g) ,k , ’symmetric’) ; % l a p l a c i a n e d g e s
glog = medfilt2 (glog , [3 3]) ;
subplot (2 , 3 , 6) , imshow (glog) ; title (’lower noise log filter’) ;

Listing 5.5 Matlab code in laplace.m to produce Fig. 5.8.

5.4 Enhancing Digital Image Edges

It has been observed by T. Lindeberg that the concept of an image edge is only what
we define it to be [113, p. 118]. The earlier attempts at edge detection by Roberts,
Prewitt and Sobel focused on the detection of points where the first order edge
gradient is high. Starting in the mid-1960s, jumps in brightness values are the kinds

5.4 Enhancing Digital Image Edges 169

of edges detected by Roberts [166]. Derivative approximations were computed by
R.M. Haralick either directly from pixel values or from local least squares fit [69].

First order edge filters such as Roberts, Prewitt, and Sobel filters are commonly
used as a step toward digital image segmentation. For images where edge-sharpening
is important, then second order image filtering methods are used.

A common method of edge-sharpening as a step toward image enhancement is
the second order Laplacian filter. For a pixel g(x, y) in an image g, the non-discrete
form of the Laplacian filter ∇2g(x, y) is defined by

∇2g(x, y) = ∂2g

∂x2
+ ∂2g

∂y2

For implementation purposes, the discrete form of the Laplacian filter ∇2g(x, y)
is defined by

∇2g(x, y) = f (x + 1, y) + f (x − 1, y) − 4 f (x, y) + f (x, y + 1) + f (x, y − 1)

The basic approach in a second order derivative approach to enhancing an image
is to subtract a filtered image from the original image, i.e., in terms of a pixel value
g(x, y), compute

g(x, y) = g(x, y) − ∇2g(x, y).

Fig. 5.9 Laplace image enhancement with Listing 5.6

% L a p l a c i a n edge −e n h a n c e d imag e

%A= im r e a d (’ c i r c u i t . t i f ’) ;
%g = r g b 2 g r a y (i m r e a d (’ Snap −04 a . t i f ’)) ;
g = imread (’Snap-04a.tif’) ;
k=fspecial (’laplacian’ , 1) ; %G e n e r a t e L a p l a c i a n f i l t e r
h2=imfilter (g , k) ; % F i l t e r imag e w i t h L a p l a c i a n k e r n e l
ge=imsubtract (g , h2) ; %S u b t r a c t L a p l a c i a n f r om o r i g i n a l .
subplot (1 , 3 , 1) , imshow (g) ; title (’Snap-04a.tif fossil’) ;
subplot (1 , 3 , 2) , imagesc (~ h2) ;
title (’Laplacian filtered image’) ; axis image ;

170 5 Edges, Lines, Corners, Gaussian …

subplot (1 , 3 , 3) , imshow (ge) ; title (’Enhanced image’) ;

Listing 5.6 Matlab code in enhance1.m to produce Fig. 5.9.

In Matlab, the second order Laplacian filter has an optional shape parameter α,
which controls the shape of the Laplacian (e.g., see Listing 5.6, where α = 1 (high
incidence of edges)). The original image in Fig. 5.18 is a recent Snap-04a.tif image
of an ostracod fossil from MYA (found in an ostracod colony trapped in amethyst
crystal from Brasil). In this image, there is a very high incidence edges and ridges,
handled with a high α value. Similarly, in the circuit.tif in Fig. 5.9, there are a high
incidence of lines, again warranting a high α value to achieve image enhancement.

Fig. 5.10 1D Gaussian kernel experiments

5.5 Gaussian Kernel

It was Carl Friedrich Gauss (1777–1895) who introduced the kernel (or normal
distribution) function named after him. Let x, y be linearly independent, random
real-valued variables with a standard deviation σ and mean μ. The goal is to exhibit
the distribution of either the x values by themselves or the combined x, y values
around the origin with μ = 0 for each experiment. The width σ > 0 of a set of x or
x, y values is called the standard deviation (average distance from the middle of a
set of data) and σ2 is called the variance. Typically, the plot of a set of sample values
with a normal distribution has a bell shaped curve (also callednormal curve arranged
around the middle of the values. The now famous example of the Gaussian kernel
plot appears on 10 Deutsch mark (10 DM) note shown in Fig. 5.10.1. A cropped

5.5 Gaussian Kernel 171

Fig. 5.11 1D Gaussian kernel experiments

Fig. 5.12 2D Gaussian kernel experiments

version of the 10 DM images is shown in Fig. 5.10.2. A very good overview of the
evolution of the Gaussian kernel is given by S. Stahl [186].

When all negative x or x, y values are represented are represented by their absolute
values, then the Gaussian of the values is called a folded normal distribution (see,
for example, F.C. Leone, L.S. Nelson and R.B. Nottingham [107]).

There are two forms of the Gaussian kernel to consider.

1D Gaussian kernel If we consider only sample values of x with standard devi-
ation σ and mean μ = 0, then the 1D Gaussian kernel function (denoted by
f (x;σ)) is defined by

f (x;σ) = 1

σ
√
2π

e− (x−0)2

2σ2 = 1

σ
√
2π

e− x2

2σ2 (1D Guassian kernel).

172 5 Edges, Lines, Corners, Gaussian …

It is the plot of the 1D kernel that is displayed on the 10 DM in Fig. 5.10.2.

Example 5.4 Sample 1DGaussian kernel plots are given in Fig. 5.11. To experiment
with different choices of the width parameter σ, try using the Mathematica script 1
in Appendix A.5.2. �

2D Gaussian kernel If we consider sample values of x and y with standard devia-
tion σ and means μx = 0,μy = 0, then the 2D Gaussian kernel function (denoted
by f (x, y;σ)) is defined by

f (x;σ) = 1

σ
√
2π

e− [(x−0)2+(y−0)2]
2σ2 = 1

σ
√
2π

e− x2n+y2

2σ2 (2D Guassian kernel).

Example 5.5 Sample continuous and discrete 2D Gaussian kernel plots are given
in Fig. 5.12. A discrete plot is derived from discrete values. By discrete, we mean
that distinct, separated. In this example, discrete values are used to obtain the plot
in Fig. 5.12.2. The plot in Fig. 5.12.1 is for less separated values and hence has a
continuous appearance, even though the plot is derived from discrete values. To
experiment with different choices of the width parameter σ, try using the Matlab
script A.25 in Appendix A.5.3. �

5.6 Gaussian Filter

This section briefly introduces Gaussian filtering (smoothing) of digital images. Let
x, y be the coordinates of a pixel in a 2D image Img, Img(x, y)the intensity of a
pixel located at (x, y) and let σ be the standard deviation of a pixel intensity relative
to the average intensity of the pixels in a neighbourhood of Img. The assumption
made here is that σ is the standard deviation of a probability distribution of the pixel
intensities in an image neighbourhood. The Gaussian filter (smoothing) 2D function
G(x, y;σ) is defined by

G(x, y;σ) = 1

σ
√
2π

e− x2+y2

2σ2 (Filtered value), or,

G(x, y;σ) = e− x2+y2

2σ2 (Simplified filtered value).Next,

Img(x, y) := G(x, y;σ) (G(x, y;σ) replaces pixel intensity Img(x, y)).

The basic approach in Gaussian filtering an image is to assign each pixel intensity
in a selected image neighbourhood with the filtered value G(x, y,σ). M. Sonka, V.
Hlavac and R. Boyle [184, Sect. 5.3.3, p. 139] observe that σ is proportional to the
size of the neighbourhood on which the Gaussian filter operates (see, e.g., Fig. 5.14
for Gaussian filtering of the cropped train image in Fig. 5.13).

5.6 Gaussian Filter 173

Fig. 5.13 Sample cropped CN train image

Fig. 5.14 Gaussian filtering a cropped image

Example 5.6 Gausian Filtering in Smoothing an Image.
To experiment with image smoothing using Gaussian filtering, try script A.26 in
Appendix A.5.4 (Figs. 5.15, 5.16 and 5.17). �

174 5 Edges, Lines, Corners, Gaussian …

Fig. 5.15 Tissue sample image

Fig. 5.16 Example 1: Restoring a noisy, blurred image

5.7 Gaussian Filter and Image Restoration

Example 5.7 Gausian Filtering in Smoothing and Blurring Square Subimages.
To experiment with image restoration and Gaussian filtering, try script A.27 in
Appendix A.5.5 (Fig. 5.18). �

5.8 Laplace of Gaussian Filter Image Enhancement 175

Fig. 5.17 Example 2: Restoring a noisy, blurred image

Fig. 5.18 Fossil image with Listing 5.6

5.8 Laplace of Gaussian Filter Image Enhancement

An alternative to a simple second order Laplacian filter, is the second order Laplacian
of a Gaussian filter. This is implemented inMatlab using the log option with fspecial
function.

Fig. 5.19 2nd Order Laplace image enhancement with Listing 5.7

176 5 Edges, Lines, Corners, Gaussian …

% R o t a t i o n a l l y s ymm e t r i c L a p l a c i a n o f G a u s s i a n e n h a n c e d imag e

g=imread (’circuit.tif’) ;
%g = r g b 2 g r a y (i m r e a d (’ Snap −04 a . t i f ’)) ;
%g = im r e a d (’ Snap −04 a . t i f ’) ;
k=fspecial (’log’ , [3 3] , 0 . 2) ; %G e n e r a t e L a p l a c i a n f i l t e r
h2=imfilter (g , k) ; % F i l t e r imag e w i t h L a p l a c i a n k e r n e l
ge=imsubtract (g , h2) ; %S u b t r a c t L a p l a c i a n f r om o r i g i n a l .
subplot (1 , 3 , 1) , imshow (g) ; title (’circuit.tif’) ;
subplot (1 , 3 , 2) , imagesc (~ h2) ;
title (’log filtered image’) ; axis image ;
subplot (1 , 3 , 3) , imshow (ge) ; title (’Enhanced image’) ;

Listing 5.7 Matlab code in logsym.m to produce Fig. 5.19.

Problem 5.8 Eliminate the salt-n-pepper effect of the second-order Laplacian image
enhancement shown in Fig. 5.19. Show your results for the circuit.tif and one other
image of your own choosing.

5.9 Zero-Cross Edge Filter Image Enhancement

In most cases, the most effective of the second order filter approaches to image
enhancement stems from an application of the R. Haralick zero-crossing filtering
method (see, e.g., the zero-crossing enhancement of the circuit.tif image inFig. 5.20).

In a discrete matrix representation of a digital image, there are usually jumps in
the brightness values, if the brightness values are different. To interpret jumps in
brightness values relative to local extrema of derivatives, it is helpful to assume that
pixel values come from a sampling of a real-valued function of a digital image g that
is a bounded and connected subset of the plane R2. Then jumps in derivative values
indicates points of high first derivative of g or to points of relative extrema in the
second derivative of g [69, p. 58]. For this reason, Haralick viewed edge detection
as fitting a function to sample values. The directional derivative of g at point (x, y)
is defined in terms of a direction angle α by

gα
′(x, y) = ∂g

∂x
sinα + ∂g

∂y
cosα,

and the second directional derivative of g at point (x, y) is then

gα
′′(x, y) = ∂2g

∂x2
sin2 α + 2∂2g

∂xy
sinα cosα + ∂2g

∂y2
cos2 α

Assuming that g is a cubic polynomial in x and y, then the gradient and gradient
direction of g can be estimated in terms of α at the center of a neighbourhood used
to estimate the value of g. In an n × n neighbourhood of g, the value of g(x, y) is
computed as a cubic in a linear combination of the form

5.9 Zero-Cross Edge Filter Image Enhancement 177

g(x, y) = k1 + k2x + k3y + k4x
2 + · · · + k10y

3.

The angle α is defined to be

sinα = k2
√

k22 + k23

,

cosα = k3
√

k22 + k23

.

Then the second derivative of g(x, y) in the direction α is approximated by

g′′
α(x, y) = 6[k7sin3α + k8sin

2α

+ k9sinα cos2α + k10cos
3α]ρ

+ 2[k4sin2α + k5sinα cosα + k6cos
2α].

So when is a pixel marked as an edge pixel in the zero-crossing approach to edge
detection? Haralick points to changes in the second and first derivatives as a zero-
crossing indicator. That is, if, for some ρ, |ρ| < ρ0, where ρ0 is slightly smaller than
the length of the side of a pixel, and

g′′
α(ρ) < 0 or g′′

α(ρ) = 0, and g′
α(ρ) 	= 0,

then a negatively sloped zero crossing of the estimated second derivative has been
found and the target neighbourhood pixel is marked as an edge pixel.

Fig. 5.20 Laplace image enhancement with Listing 5.8

% Zero − c r o s s i n g imag e e n h a n c em e n t

%g= im r e a d (’ c i r c u i t . t i f ’) ;
g = rgb2gray (imread (’Snap-04a.tif’)) ;
%g = im r e a d (’ Snap −04 a . t i f ’) ;

178 5 Edges, Lines, Corners, Gaussian …

g = im2double (g) ;
h2=edge (g , ’zerocross’ , 0 , ’nothinning’) ;
h2 = im2double (h2) ;
ge=imsubtract (g , h2) ; %S u b t r a c t L a p l a c i a n f r om o r i g i n a l .
subplot (1 , 3 , 1) , imshow (g) ; title (’Snap-04a.tif’) ;
subplot (1 , 3 , 2) , imagesc (~ h2) ;
title (’zero-cross filtered image’) ; axis image ;
subplot (1 , 3 , 3) , imshow (ge) ; title (’Enhanced image’) ;

Listing 5.8 Matlab code in zerox.m to produce Fig. 5.20.

The Matlab edge function implementation has two optional parameters, namely,
thresh and filter h. By choosing h = 0, the output image has closed contours and
by choosing no thinning as the filtering method, the edges in the output image
are not thinned. Notice that the edge-detection image in Fig. 5.20 is superior to the
edge-detection image in Fig. 5.19 or in 5.9. Why? For some images such as the
Snap_04a.tif image, the zero-crossing method does not work well. Evidence of this
can be seen in Fig. 5.21.

Fig. 5.21 Laplace image enhancement with Listing 5.8

Problem 5.9 Try other filters besides nothinning (used in Listing 5.8) and look for
the best zero-crossing filter image enhancement of the dragonfly2.jpg and as well
as one other image of your own choosing. For each of the two images, give both the
binary and logical not edge image.

5.10 Anisotropy Versus Isotropy in Edge Detection

The term isotropicmeans having the samemagnitude or propertieswhenmeasured in
different directions. The isotropic edge detection approach is direction-independent.
Isotropic edge detection was proposed byD.Marr and E. Hildreth [120], an approach
that offers simplicity and uniformity at the expense of smoothing across edges.
Gaussian smoothing of edges was proposed by A.P. Witkin [212] by convolving
an image with a Gaussian kernel. Let Io(x, y) denote an original image, I (x, y, t)
a derived image and G(x, y, t) a Gaussian kernel with variance t . Then the original
image is convolved with the Gaussian kernel in the following way.

5.10 Anisotropy Versus Isotropy in Edge Detection 179

t ∈ [0,∞], continuum of scales t ≥ 0,

G(x, y; t) = 1

2πt
e− x2+y2

2t ,

I (x, y, t) = Io(x, y) ∗ G(x, y; t),

where the convolution is performed only over the variables x, y and the scale para-
meter t after the semicolon specifies the scale level (t is the variance of the Gaussian
filter G(x, y; t)). At t = 0, the scale space representation is the original image. An
increasing number of image details are removed as t increases, i.e., image smooth-
ing increases as t increases. Image details smaller than the

√
t are removed from an

image. The fspecial function is used to achieve Gaussian smoothing an image.

Fig. 5.22 Gaussian smoothing circuit.tif with Listing 5.9

% G a u s s i a n imag e sm o o t h i n g

g = imread (’circuit.tif’) ;
subplot (2 , 3 , 1) , imshow (g) ; title (’circuit.tif’) ;
g1 = fspecial (’gaussian’ , [1 5 1 5] , 6) ;
g2 = fspecial (’gaussian’ , [3 0 3 0] , 1 2) ;
subplot (2 , 3 , 2) , imagesc (g1) ; title (’gaussian,[3 3],1’) ;
axis image ;
subplot (2 , 3 , 3) , imagesc (g2) ; title (’gaussian,[30 30],12’) ;
axis image ;

Listing 5.9 Matlab code in iostropy.m to produce Fig. 5.22.

An alternative to the isotropic edge detection is anisotropic diffusion, proposed by
P. Pierona and J. Malik [139] (see, also, [152]). The term anisotropic means having
different magnitude or properties when measured in different directions. In other
words, the anisotropic approach to edge detection is direction-dependent (Fig. 5.23).

180 5 Edges, Lines, Corners, Gaussian …

Fig. 5.23 Wavelet smoothing circuit.tif with Listing 5.10

% T h i s f u n c t i o n u s e s f u n c t i o n s :
% w a v e f a s t , w av e c u t , w a v e d i s p l a y , wav eb a c k

g = imread (’circuit.tif’) ;
% I s o l a t e e d g e s o f p i c t u r e u s i n g t h e 2D w a v e l e t t r a n s f o r m
[c , s] = wavefast (g , 1 , ’sym4’) ;
figure , wavedisplay (c , s , −6) ;
title (’direction dependence of wavelets’) ;
% Ze r o t h e a p p r o x i m a t i o n c o e f f i c i e n t s
% [nc , y] = w a v e c u t (’ a ’ , c , s) ;
% Compute t h e a b s o l u a t e v a l u e o f t h e i n v e r s e
% e d g e s = a b s (wav eb a c k (nc , s , ’ sym4 ’)) ;
% D i s p l a y b e f o r e and a f t e r im a g e s
% f i g u r e ;
% s u b p l o t (1 , 2 , 1) , imshow (g) , t i t l e (’ O r i g i n a l Image ’) ;
% s u b p l o t (1 , 2 , 2) , imshow (m a t 2 g r a y (e d g e s))

Listing 5.10 Matlab code in directions.m to produce Fig. 5.23.

Next, consider enhancing the circuit.tif image using the edges found using the
wavelets to detect edges. A preliminary result of wavelet image enhancement is
shown in Fig. 5.24. Two things can be observed. First, the wavelet form of edge
detection is less effective than Haralick’s zero crossing edge detection method. Sec-
ond, at this very preliminary stage, it can be observed that the wavelet edge detection

5.10 Anisotropy Versus Isotropy in Edge Detection 181

method does not result in satisfactory image enhancement. More work needs to be
done before one can evaluate the image enhancement potential of the wavelet edge
detection method (see Problem 5.10).

Fig. 5.24 Image Enhancement circuit.tif with Listing 5.11

% T h i s f u n c t i o n u s e s w a v e f a s t , w av e c u t , wav eb a c k

g = imread (’circuit.tif’) ;
% I s o l a t e e d g e s u s i n g 2D w a v e l e t t r a n s f o r m
[c , s] = wavefast (g , 1 , ’sym4’) ;
% Ze r o t h e a p p r o x i m a t i o n c o e f f i c i e n t s
[nc , y] = wavecut (’a’ , c , s) ;
% Compute t h e a b s o l u a t e v a l u e o f t h e i n v e r s e
edges = abs (waveback (nc , s , ’sym4’)) ;
% D i s p l a y b e f o r e and a f t e r im a g e s
figure ;
subplot (1 , 3 , 1) , imshow (g) , title (’Original Image’) ;
subplot (1 , 3 , 2) , imshow (edges) ;
title (’waveback(nc, s, sym4)’) ;
g = im2double (g) ; h = g − edges ;
subplot (1 , 3 , 3) , imshow (h) ;
title (’im2double(g) - edges’) ;

Listing 5.11 Matlab code in directions2.m to produce Fig. 5.24.

Problem 5.10 Experiment with enhancing images using the wavelet detection
method with 3 other images besides the circuit.tif image. For example, use wavelets
to detect edge and to perform image enhancement with the Snap_4a.tif and the
blocks.jpg images.

5.11 Detecting Edges and Lines in Digital Images

This section briefly presents J.F. Canny’s approach2 to edge detection based on his
M.Sc. thesis completed in 1983 at the MIT Artificial Intelligence Laboratory [24].
The term edge direction means the direction of the tangent to a contour that an edge

2See http://www.cs.berkeley.edu/~jfc/papers/grouped.html.

http://www.cs.berkeley.edu/~jfc/papers/grouped.html

182 5 Edges, Lines, Corners, Gaussian …

defines in 2D space. Canny introduced a mask to detect edge direction by convolving
a linear edge detection function aligned normal to the edge direction of a projection
with a projection function parallel to the edge direction.

Theprojection functionof choice is aGaussian.After an imagehas been convolved
with a symmetric Gaussian, then the log function is applied to the smoothed image.

Fig. 5.25 Canny edges in circuit.tif with Listing 5.12

% Canny e d g e d e t e c t i o n
clc , close all , clear all

g = imread (’circuit.tif’) ;
subplot (2 , 3 , 1) , imshow (g) ; title (’circuit.tif’) ;
g1 = fspecial (’gaussian’ , [1 5 1 5] , 6) ;
g2 = fspecial (’gaussian’ , [3 0 3 0] , 1 2) ;
subplot (2 , 3 , 2) , imagesc (g1) ; title (’gaussian,[15 15],6’) ;
axis image ;
subplot (2 , 3 , 3) , imagesc (g2) ; title (’gaussian,[30 30],12’) ;
axis image ;
[bw , thresh] = edge (g , ’log’) ;
subplot (2 , 3 , 4) , imshow (~ bw , []) ; title (’log filter’) ;
[bw , thresh] = edge (g , ’canny’) ;
subplot (2 , 3 , 5) , imshow (~ bw , []) ; title (’canny filter’) ;
[bw , thresh] = edge (imfilter (g , g1) ,’log’) ;
subplot (2 , 3 , 6) , imshow (~ bw , []) ; title (’log-smoothed filter’) ;

Listing 5.12 Matlab code in logsmooth.m to produce Fig. 5.25.

5.11 Detecting Edges and Lines in Digital Images 183

In another round of experiments, the LoG (Laplacian of Gaussian) edge detection
method is computed with Gaussian smoothing of circuit.tif using a 3 × 3 kernel
with a standard deviation 1.5. This approach to edge detection does result in some
improvement in Canny edge detection applied to the original image. This can be seen
in the increased number of horizontal and vertical edges in log filtering g0. This is
shown in Fig. 5.26. Also, it was found that increasing the size of the kernel decreases
LoG filter performance (see Problem 5.11).

% Log o f G a u s s i a n e d g e d e t e c t i o n

g = imread (’circuit.tif’) ;
%s u b p l o t (2 , 3 , 1) , imshow (g) ; t i t l e (’ c i r c u i t . t i f ’) ;
g0 = fspecial (’gaussian’ , [3 3] , 1 . 5) ;
subplot (2 , 3 , 1) , imagesc (g1) ; title (’g0=gaussian,[3 3],1.5’) ;
axis image ;
g1 = fspecial (’gaussian’ , [1 5 1 5] , 7 . 5) ;
g2 = fspecial (’gaussian’ , [3 1 3 1] , 1 5 . 5) ;
subplot (2 , 3 , 2) , imagesc (g1) ; title (’g1=gaussian,[15 15],7.5’) ;
axis image ;
subplot (2 , 3 , 3) , imagesc (g2) ; title (’g2=gaussian,[31 31],15.5’) ;
axis image ;
[bw , thresh] = edge (g , ’log’) ;
subplot (2 , 3 , 4) , imshow (~ bw , []) ; title (’log filter g’) ;
[bw , thresh] = edge (g , ’canny’) ;
subplot (2 , 3 , 5) , imshow (~ bw , []) ; title (’canny filter g’) ;
[bw , thresh] = edge (imfilter (g , g0) ,’log’) ;
subplot (2 , 3 , 6) , imshow (~ bw , []) ; title (’log-smoothed filter g0’) ;

Listing 5.13 Matlab code in logsmooth2.m to produce Fig. 5.26.

Problem 5.11 Try LoG filtering g1 and g2 Listing 5.13 as well as other Gaussian
smoothing of the dragonfly2.jpg image and look for choices of kernel size and
standard deviation that lead to an improvement over Canny filtering the original
image. Notice that the LoG filter method has a thresh option (all edges not stronger
than thresh are ignored) and a sigma option (standard deviation of the LoG filter
(Laplacian of theGaussianmethod). Experiment with these LoG optional parameters
to obtain an improvement over the result in Fig. 5.26. In addition, notice that the
Canny edge filter has an optional two element thresh parameter (the first element
in the Canny thresh parameter is a low threshold and the second parameter is a high
threshold). Experiment with the edge Canny thresh parameter to improve on the
result given in Fig. 5.26.

184 5 Edges, Lines, Corners, Gaussian …

Fig. 5.26 Canny edges in circuit.tif with Listing 5.13

Fig. 5.27 Sample corners

5.12 Detecting Image Corners

This section introduces Harris–Stephens corner detection [71] (see, Fig. 5.28 for the
results of finding corners in circuit.tif). A corner is defined to be the intersection of
edges (i.e., a target pixel where there are two dominant and different edge directions
in the neighbourhood of the target pixel). See, e.g., the corners inside the dotted
circles in Fig. 5.27, where each corner is a juncture for a pair of edges with different
edge directions. In conflict with corner detection are what are known as interest
points. An interest point is an isolated point which is a local maximum or minimum
intensity (a spike), line ending or point on a curve such as a ridge (concavity down)
or valley (concavity up). If only corners are detected, then the detected points will
include interest points. It is then necessary to do post processing to isolate real
corners (separated from interest points). The details concerning this method will be

5.12 Detecting Image Corners 185

given later. The corner detection results for kingfisher1.jpg are impressive, where
only corner detection is perform only in a small region-of-interest in the image (see
Fig. 5.29).

Fig. 5.28 Corners in circuit.tif with Listing 5.14

% Image c o r n e r d e t e c t i o n

% g = im r e a d (’ c i r c u i t . t i f ’) ;
g = imread (’kingfisher1.jpg’) ;
g = g (1 0 : 2 5 0 , 3 0 0 : 6 0 0) ; % n o t u s e d w i t h c i r c u i t . t i f
corners = cornermetric (g , ’Harris’) ; % d e f a u l t
corners (corners <0) = 0 ;
cornersgray = mat2gray (corners) ;
figure ,
subplot (1 , 3 , 1) , imshow (~ cornersgray) ;
title (’g,Harris’) ;
corners2 = cornermetric (g , ’MinimumEigenvalue’) ;
corners2 = mat2gray (corners2) ;
subplot (1 , 3 , 2) , imshow (imadjust (corners2)) ;
title (’g,MinimumEigenvalue’) ;
cornerpeaks = imregionalmax (corners) ;
results = find (cornerpeaks==true) ;
[r g b] = deal (g) ;
r (results) = 2 5 5 ;
g (results) = 2 5 5 ;
b (results) = 0 ;
RGB = cat (3 , r , g , b) ;
subplot (1 , 3 , 3) , imshow (RGB) ;
title (’imregionalmax(corners)’) ;

Listing 5.14 Matlab code in findcorners.m to produce Fig. 5.28.

Fig. 5.29 Corners in kingfisher1.jpg with Listing 5.14

186 5 Edges, Lines, Corners, Gaussian …

Fig. 5.30 Corners and peaks detected in a colour image

Problem 5.12 The corner and peak detection method implemented in Listing 5.14
is restricted to greyscale images (required by the cornermetric function). To see
this, type

� help cornermetric

Give amatlab script called cornerness.m that makes it possible to use the cornermet-
ric on colour images. Your adaptation of the cornermetric should produce (i) colour
image showing the location of corners on the input colour image and (ii) colour image
showing the location both the corners and peaks on the input colour image. Do this
so that corners and peaks are visible on each input colour image. Demonstrate the use
of your script on peppers.png and two other colour images that you select. For the
peppers.png colour image, your cornerness.m script should produce output similar
to the three images in Fig. 5.30, but instead of a black background, your script should
display the locations of the corners and peaks on each input colour image.

p

q

r

x

y

pqr

Vp

Vq

Fig. 5.31 Voronoï region Vp = Intersection of closed half-planes

5.13 Image Corner-Based Voronoï Meshes Revisited 187

Fig. 5.32 Corner-based Voronoï mesh

5.13 Image Corner-Based Voronoï Meshes Revisited

This section revisits Voronoï meshes on digital images using image corners and
carries forward the discussion on image geometry started in Sect. 1.22.

5.13.1 Voronoï Tessellation Details

AVoronoïmesh is also called a Voronoï tessellation. A Voronoï tiling (covering) of a
digital image with convex polygons is called a Voronoï tessellation [202, 203]. This
is different from the notion of 2D tessellation, which is a tiling of a plane region with
regular polygons. Recall that a regular polygon is an n-sided polygon whose sides
are all the same length. By contrast, the polygons in a Voronoï tiling are usually not
regular.

The convex polygons in a Voronoï mesh are called Voronoï regions, based on
Voronoï’s method used to construct the polygons [40, Sect. I.1, p. 2] (see, also,
[41, 143]).

http://dx.doi.org/10.1007/978-3-319-52483-2_1

188 5 Edges, Lines, Corners, Gaussian …

5.13.2 Sites for Voronoï Polygons

Let S ⊂ E , a finite-dimensional normed linear space. The Euclidean plane is an
example. Elements of S are called sites to distinguish them from other points in
E [41, Sect. 2.2, p. 10]. Let p ∈ S. A Voronoï region of p ∈ S (denoted Vp) is
defined by

Vp =
{

x ∈ E : ‖x − p‖ ≤
∀q∈S

‖x − q‖
}

.

The Voronoï region Vp depicted as the intersection of finitely many closed half
planes in Fig. 5.31 is a variation of the representation of a Voronoï region in the
monograph byH. Edelsbrunner [41, Sect. 2.1, p. 10], where each half plane is defined
by its outward directed normal vector. The rays from p and perpendicular to the sides
of Vp are comparable to the lines leading from the center of the convex polygon in
G.L. Dirichlet’s drawing [35, Sect. 3, p. 216].

Remark 5.13 Voronoï Polygons.
A Voronoï region of a site p ∈ S contains every point in the plane that is closer to
p than to any other site in S [52, Sect. 1.1, p. 99]. Let Vp, Vq be Voronoï polygons
(see, e.g., Fig. 5.31). If Vp ∩ Vq is a line, ray or straight line segment, then it is called
a Voronoï edge. If the intersection of three or more Voronoï regions is a point, that
point is called a Voronoï vertex. �

A nonempty set A of a space X is a convex set, provided αA+ (1−α)A ⊂ A for
each α ∈ [0, 1] [12, Sect. 1.1, p. 4]. A simple convex set is a closed half plane (all
points on or on one side of a line in R2).

Lemma 5.14 ([41, Sect. 2.1, p. 9]) The intersection of convex sets is convex.

Proof Let A, B ⊂ R
2 be convex sets and let K = A ∩ B. For every pair points

x, y ∈ K , the line segment xy connecting x and y belongs to K , since this property
holds for all points in A and B. Hence, K is convex.

Lemma 5.15 ([143]) A Voronoï region of a point is the intersection of closed half
planes and each region is a convex polygon.

Proof From the definition of a closed half-plane

Hpq =
{

x ∈ R2 : ‖x − p‖ ≤
q∈S

‖x − q‖
}

,

Vp is the intersection of closed half-planes Hpq , for all q ∈ S − {p} [40], forming a
polygon. From Lemma 5.14, Vp is a convex.

From an application point of view, Voronoï mesh segments a digital image. This
is especially important in the case where the sites used to construct a mesh have some
significance in the structure of a image. For example, by choosing the corners in an

5.13 Image Corner-Based Voronoï Meshes Revisited 189

image as a set of sites, each Voronoï region of a site p that has the property that all
points in the region are nearest p than to any other corner in the image. In effect, the
points in a Voronoï region of a corner site p are symmetrically arranged around the
particular corner p. This property holds true for each the Voronoï region in a corner
mesh.

Fig. 5.33 Corners found with Matlab script A.28

5.14 Steps to Construct a Corner-Based Voronoï Mesh

The steps to construct a corner-based Voronoï mesh on a digital image are given next.

1o Select a digital image Im.
2o Select an upper bound n on the number of corners to detect in Im.
3o Find up to n corners in Im. The corners found form a set of sites.
4o Display the corners in Im. This display provides a handle for the next step. N.B.:

At this point in a Matlab® script, use the hold on instruction. This hold-on step
is not necessary in Mathematica®10

5o Find the Voronoï region for each site. This step constructs a Voronoï mesh on
Im. �

Example 5.16 Constructing a Voronoï mesh on an Image.
A sampleVoronoïmesh is shown on the image in Fig. 5.32. To implement theVoronoï

190 5 Edges, Lines, Corners, Gaussian …

Fig. 5.34 Image corners on full-size and cropped image

mesh construction steps in Matlab, use a combination of the corner function and
voronoi functions. Let X,Y be the x- and y-coordinates of the image corners found
using the corner function. Then use voronoi(X,Y) to find the x- and y-coordinates of
the vertices in each of the regions in a Voronoï mesh. Then the Matlab plot function
can be used to draw the Voronoï mesh on a selected digital image. �

Problem 5.17 For three digital images of your own choosing, construct a Voronoï
mesh on each image. Do this for the following upper bounds on the number of sites:
30, 50, 80, 130. �

5.15 Extreme Image Corners in Set of Mesh Generators

To include the extreme image corners in a set of mesh generators, used the following
steps.

1o im := greyscale image;
2o [m, n] := size of image im; % use size[im] in Matlab
3o let C := set of interior image corners;
4o let f c be the coordinates of the extreme image corners;
5o let Cim := [C; f c]; % Cim contains coords. of all im corners
6o superimpose Cim on image im;

Remark 5.18 Superimposing corners on a full-size as well as on cropped image.
A 480 × 640 colour image of a Salerno motorcycle is shown in Fig. A.49. Using the
Matlab script A.28, the corners are found in both the full image in Fig. A.51.1 and in
a cropped image in Fig. A.50.1. Notice that there are a number different methods that
can be used to crop an image (these cropping methods are explained in the comments
in script A.28. �

5.15 Extreme Image Corners in Set of Mesh Generators 191

Example 5.19 A 480 × 640 colour image of an Italian Carabinieri auto is shown
in Fig. 5.33. Using the Matlab script A.28 in Appendix A.5.6, the corners are found
in both the full image in Fig. 5.34.1 and in a cropped image in Fig. 5.34.2. Notice
that there are a number different methods that can be used to crop an image (these
cropping methods are explained in the comments in script A.28. �

5.16 Voronoï Mesh on an Image with Extreme Corners

This section demonstrates the effectiveness of the inclusion of image corners in the
set of sites (generators) in constructing a Voronoï mesh on a 2D digital image. To
superimpose a Voronoï mesh on an image using the set of sites that includes the
extreme image corners, do the following.

1o start with Cim from Step 5 in the image corner method;
2o let X := Cim(:, 1), x-coordinates of the image corners;
3o let Y := Cim(:, 2), y-coordinates of the image corners;
4o let [vx, vy] := voronoi(X,Y), coordinates of the image corners;
5o superimpose the resulting Voronoï on image im;

Example 5.20 Voronoï Mesh on Corner Sites.
The corner-basedVoronoïmeshes shown in this section are obtained using theMatlab
script reflst:VoronoiMeshOnImage. By including the extreme image corners in the

Fig. 5.35 Voronoï Mesh on image with extreme corners

192 5 Edges, Lines, Corners, Gaussian …

Fig. 5.36 Voronoï Mesh on image without extreme corners

set of generating points (sites), we obtain a Voronoï mesh like the one shown in
Fig. 5.35. Notice the convex polygons surrounding parts of the inside corners in
Fig. 5.35 that result from including the extreme corners in the set of generators used
to derived the image mesh (Figs. 5.36 and 5.37). �

% g r a d i e n t s : S , Garg , 2 0 1 4 , m o d i f i e d by J . F . P . , 2015
% h t t p : / / www . ma t hwo r k s . com / m a t l a b c e n t r a l / f i l e e x c h a n g e /
% 46408− h i s t o g r am −of− o r i e n t e d − g r a d i e n t s −−hog−−code −u s i n g −ma t l a b /
% c o n t e n t / h o g _ f e a t u r e _ v e c t o r .m
clear all ; close all ; clc ;
im=imread (’floorplan.jpg’) ;
if size (im , 3) ==3

im=rgb2gray (im) ; end
im=double (im) ; rows=size (im , 1) ; cols=size (im , 2) ;
Ix=im ; Iy=im ; % B a s i c M a t r i x a s s i g n m e n t s
for i = 1 : rows−2 % G r a d i e n t s i n X d i r e c t i o n .

Iy (i , :) = (im (i , :) −im (i + 2 , :)) ; end
for i = 1 : cols−2 % G r a d i e n t s i n Y d i r e c t i o n .

Ix (: , i) = (im (: , i)−im (: , i +2)) ; end
angle=atand (Ix . / Iy) ; % e d g e g r a d i e n t a n g l e s
angle=imadd (angle , 9 0) ; % An g l e s i n r a n g e (0 , 1 8 0)
magnitude=sqrt (Ix . ^ 2 + Iy . ^ 2) ;
imwrite (angle , ’gradients.jpg’) ;
imwrite (magnitude , ’magnitudes.jpg’) ;
subplot (2 , 2 , 1) , imshow (imcomplement (uint8 (angle))) , title (’edge

gradients’) ;
subplot (2 , 2 , 2) , plot (Ix , angle) , title (’angles in [0,180]’) ;
subplot (2 , 2 , 3) , imshow (imcomplement (uint8 (magnitude)) , [0 2 5 5]) ,
title (’x-,y-gradient magnitudes in situ’) ;
subplot (2 , 2 , 4) , plot (Ix , magnitude) , title (’x-,y-gradient magnitudes’) ;

Listing 5.15 Matlab code in hog.m to produce Fig. 5.39.

5.16 Voronoï Mesh on an Image with Extreme Corners 193

Fig. 5.37 Image corners on full-size and cropped image

Fig. 5.38 Alhambra floorplan

194 5 Edges, Lines, Corners, Gaussian …

Fig. 5.39 Edges found with Listing 5.15 using Fig. 5.38

5.17 Image Gradient Approach to Isolating Image Edges

To arrive at a reasonable image corner-based segmentationmesh, it is often necessary
to isolate image edges before an attempt is made to find image corners. The basic
approach is to limit the search for image corners to parts of image edges without the
noise by image regions that typically surround image corners. In addition, the corner-
detection is aided by thinning image edges such as those found building floorplans
(see, e.g., the floorplan for the Alhambra in Fig. 5.38). The basic steps to do this are
as follows.

1o Find image gradients in the x- and y-directions (Gx, Gy). Notice that each pair
of gradients defines a vector in the Euclidean plane for a 2D image.

2o Fine the Gradient magnitude ‖Gradx,Grady‖ = √

Gx2 + Gy2 for each image
gradient vector. �

3o Let magnitudes := array of gradient magnitudes. �
4o Convert the white edges surrounded by black regions to black edges surrounded

by white regions. This can be done using eitherMatlab imcomplement or a com-
bination of Mathematica 10 ColorNegate and Binarize to achieve a collection
of crisp black edges on white. �

5.17 Image Gradient Approach to Isolating Image Edges 195

Fig. 5.40 Edges found with Listing 5.15

% g r a d i e n t s : S . Garg , 2 0 1 4 , m o d i f i e d by J . F . P . , 2015
clear all ; close all ; clc ;
% im= im r e a d (’ f l o o r p l a n . j p g ’) ;
im=imread (’redcar.jpg’) ;
if size (im , 3) ==3

im=rgb2gray (im) ; end
im=double (im) ; rows=size (im , 1) ; cols=size (im , 2) ;
Ix=im ; Iy=im ; %B a s i c M a t r i x a s s i g n m e n t s
for i = 1 : rows−2 % G r a d i e n t s i n X d i r e c t i o n .

Iy (i , :) = (im (i , :) −im (i + 2 , :)) ; end
for i = 1 : cols−2 % G r a d i e n t s i n Y d i r e c t i o n .

Ix (: , i) = (im (: , i)−im (: , i +2)) ; end
angle=atand (Ix . / Iy) ; % e d g e p i x e l g r a d i e n t s i n d e g r e e s
angle=imadd (angle , 9 0) ; %An g l e s i n r a n g e (0 , 1 8 0)
magnitude=sqrt (Ix . ^ 2 + Iy . ^ 2) ;
imwrite (angle , ’gradients.jpg’) ;
imwrite (magnitude , ’magnitudes.jpg’) ;
figure , imshow (uint8 (angle)) ;
figure , imshow (imcomplement (uint8 (magnitude))) ;
% f i g u r e , p l o t (Ix , a n g l e) ;
% f i g u r e , p l o t (Ix , m a g n i t u d e) ;

Listing 5.16 Matlab code in hog.m to produce Fig. 5.40.

Example 5.21 Edge Thinning Using Image Gradient Magnitudes. A sample thin-
ning of the thick lines in the Alhambra floorplan image is shown in Fig. 5.40. In this
image, each of the thick floorplan borders has been reduced to thin line segments. The
result is a collection of thinly bordered large-scale convex polygons. The Alhambra
floorplan gradient angles are displayed in Fig. 5.41. �

196 5 Edges, Lines, Corners, Gaussian …

Fig. 5.41 Edges found with Listing 5.16

5.18 Corners, Edges and VoronoÏ Mesh

The results from Example 5.21 provide a basis for finding a minimum number of
image corners, leading to the construction of an effective Voronoï Mesh. In section,
we again consider the Alhambra floorplan image.

Fig. 5.42 Image corners found with Listing A.28

5.18 Corners, Edges and VoronoÏ Mesh 197

Fig. 5.43 Voronoï mesh on the thinned Alhambra floorplan

The Matlab script A.28 applied to the Alhambra floorplan (limited to thinned
edges) produces the result shown in Figs. 5.42 and 5.43.

Problem 5.22 Voronoï Mesh on Corners in Image Edges.
Using the Alhambra floorplan image and three additional images from your own
colour image archive (not images found on the web), superimpose a corner-based
Voronoï Mesh on the thinned edges of each image. Notice that this approach differs
from the approach given in Sect. 5.14, which does not consider image edges.

Hint: Choose images containing lots of straight edges such as images containing
houses or buildings (Fig. 5.43). �

Chapter 6
Delaunay Mesh Segmentation

Fig. 6.1 Region centroid-based delaunay mesh on colour image

This chapter introduces segmentation of digital images using Delaunay meshes. An
image is segmented by separating the image into almost disjoint regions. The interiors
of image segments do not overlap. Each segment contains points that belong only
to the segment. Adjacent segments have a common border. The common border of
adjacent segments means (1) all points in the interior of a segment belong only to

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2_6

199

200 6 Delaunay Mesh Segmentation

the segment, (2) segments do not partition an image into disjoint regions, since each
pair of adjacent segments in an image segmentation have a common border. In this
chapter, an image is segmented into triangular segments in a mesh using an approach
to planar triangulation introduced by Delaunay. A Delaunay mesh is the result of
what is known as a triangulation.

Example 6.1 A sample Delaunay mesh covering of a colour image is shown in
Fig. 6.1. This mesh is constructed with a set of regional centroids (used as generating
points) found in the image. For more about this, see Sect. 6.4. �

6.1 Delaunay Triangulation Generates a Triangular Mesh

Delaunay triangulations, introduced byB.NDelone [Delaunay] [33], represent pieces
of a continuous space. This representation supports numerical algorithms used to
compute properties such as the density of a space. A triangulation is a collection of
triangles, including the edges and vertices of the triangles in the collection. A 2D
Delaunay triangulation of a set of sites (generators) S ⊂ R

2 is a triangulation of the
points in S. Let p, q ∈ S. A straight edge connecting p and q is a Delaunay edge if
and only if the Voronoï region of p [41, 143] and Voronoï region of q intersect along
a common line segment [40, Sect. I.1, p. 3]. For example, in Fig. 1.3, Vp ∩ Vq = xy.
Hence, pq is a Delaunay edge in Fig. 1.3.

Fig. 6.2 p, q ∈
S, pq = delaunay edge

p

q

r

x

y

(pqr)

Vp

Vq

A triangle with vertices p, q, r ∈ S is a Delaunay triangle (denoted �(pqr) in
Fig. 1.3), provided the edges in the triangle are Delaunay edges. A Delaunay mesh
on a plane surface is a collection Delaunay triangles that cover the surface. In other
words, every point belongs to a triangle in a surface mesh. Here are the steps to
generate a corner-based Delaunay mesh (see, e.g., Fig. A.5 using Matlab® A.4 in
Appendix A.1.3).

1o Find the set of corners S in an image. Include in S the extreme NS and EW image
corners.

2o Connect each pair of nearest corners x, y ∈ Swith a straight edge xy. ADelaunay
triangle results from connectingwith straight edges corners x, y, r that are nearest
each other.

http://dx.doi.org/10.1007/978-3-319-52483-2_1
http://dx.doi.org/10.1007/978-3-319-52483-2_1
http://dx.doi.org/10.1007/978-3-319-52483-2_1

6.1 Delaunay Triangulation Generates a Triangular Mesh 201

3o Repeat step 2o until all pairs of corners are connected. �
Every planar convex polygon has a nonempty interior so that there are uncountably

infinite number points between any pair of points in the polygon.

Theorem 6.2 A planar Delaunay triangle is not a convex polygon.

Problem 6.3 Prove Theorem6.2. Give an example a Delaunay triangle in an image.
�

Delaunay Wedge

A planar Delaunay wedge is a Delaunay triangle with an interior that
contains an uncountably infinite number of points. The interior of a
Delaunay triangle is that part of the triangle between the edges. It is
assumed that every Delaunay triangle connecting generating points in
an image defines a Delaunay edge. �

Let S be a set of mesh generating points. Recall that a closed half-plane Hps

Hps =
{

x ∈ R2 : ‖x − p‖ ≤
s∈S

‖x − s‖
}

,

A Delaunay wedge with vertices p, q, r ∈ S (denoted Wp,q,r) is defined by

Vp,q,r =
⋂

Hps : for all s ∈ {q, r} .

That is, a Delaunay wedge is the intersection of closed half planes Hps , for all
s ∈ {q, r} − p.

Theorem 6.4 A planar Delaunay wedge is a convex polygon.

Proof Immediate from Lemma 5.15, since a Delaunay wedge is the intersection of
closed half planes in spanning a Delaunay triangle �(pqr), stretching from vertex
p to the opposite edge qr .

Problem 6.5 Give an example of a Delaunay wedge in an image. �

6.2 Triangle Circumcircles

For simplicity, let E be the Euclidean space R
2. For a Delaunay triangle �(pqr),

a circumcircle passes through the vertices p, q, r of the triangle (see Fig. 6.3 for
an example). The center of a circumcircle u is the Voronoï vertex at the inter-
section of three Voronoï regions, i.e., u = Vp ∩ Vq ∩ Vr . The circumcircle radius
ρ = ‖u − p‖ = ‖u − q‖ = ‖u − r‖ [40, Sect. I.1, p. 4], which is the case in Fig. 6.3.

http://dx.doi.org/10.1007/978-3-319-52483-2_5

202 6 Delaunay Mesh Segmentation

p

q

r

u

Fig. 6.3 Circumcircle

Lemma 6.6 Let circumcircle ©(pqr) pass through the vertices of a Delaunay tri-
angle �(pqr), then the following statements are equivalent.

1o The center u of ©(pqr) is a vertex common to Voronoï regions Vp, Vq , Vr .
2o u = cl Vp ∩ cl Vq ∩ clVr .
3o Vp δ Vq δ Vr .

Proof 1o ⇔ 2o ⇔ 3o.

Theorem 6.7 A triangle �(pqr) is a Delaunay triangle if and only if the center of
the circumcircle ©(pqr) is the vertex common to three Voronoï regions.

Proof The circle©(pqr)has centeru = clVp ∩ clVq ∩ clVr (Lemma6.6)⇔©(pqr)
center is the vertex common to three Voronoï regions Vp, Vq , Vr ⇔ pq, pr , qr are
Delaunay edges ⇔ �(pqr) is a Delaunay triangle.

Fig. 6.4 a Image edges and b Image corners

6.3 Constructing a Corner-Based Delaunay Mesh on Image Edges 203

Fig. 6.5 Image mesh

6.3 Constructing a Corner-Based Delaunay Mesh on Image
Edges

The steps to construct a corner-based Delaunay mesh on image edges are as follows.

1o Detect the edges in a given image Im.
Example: Fig. 6.4a. �

2o Find the set of corners S of the edges in the image Im. Include in S the extreme
NS and EW image corners.
Example: Fig. 6.4b. �

3o Connect each pair of nearest corners x, y ∈ Swith a straight edge xy. ADelaunay
triangle results from connecting with straight edges between corners x, y, r that
are nearest each other. �

4o Repeat step 3o until all pairs of corners are connected. N.B. It is assumed that
each triangular region of the mesh is a Delaunay wedge.
Example: Fig. 6.5. �

Problem 6.8 Give a Matlab script that constructs a corner-based Delaunay mesh on
image for three image of your own choosing.N.B.: Choose your images from a your
personal collection of images not taken from the web. �

204 6 Delaunay Mesh Segmentation

6.6.1: 2D centroid 6.6.2: 3D centroid

Fig. 6.6 2D convex region & 3D Wolfram Stanford Bunny centroids

6.4 Centroid-Based Delaunay Image Mesh

This section briefly introduces an alternative to the corner-based approach to con-
structing a Delaunay mesh on an image using geometric centroids. A geometric
centroid is the center of mass of an image region. An image region is a bounded set
of points in an image. For instance, let X be a set of points in a n × m rectangular
2D region containing points with coordinates (xi , yi) , i = 1, . . . , n in the Euclidean
plane. Then the coordinates xc, yc of the discrete form of the centroid of a 2D region
are

xc = 1

n

n
∑

i=1

xi , yc = 1

m

m
∑

i=1

yi .

The coordinates xc, yc, zc of the discrete form of the centroid of a 3D region in
Euclidean space R3 are

xc = 1

n

n
∑

i=1

xi , yc = 1

m

m
∑

i=1

yi , zc = 1

h

h
∑

i=1

zi .

Example 6.9 2D and 3D Image Region Centroids.
In Fig. 6.6, the red dot • indicates the location of a region centroid. Two examples
are shown, namely, centroid • in a 2D convex region in Fig. 6.6.1 and centroid • in
a 3D region occupied with the Wolfram Stanford Bunny in Fig. 6.6.2. To experiment
with finding other region centroids, see MScript 2 and MScript 3 in Appendix A.
See, also, Sect. 6.4.1. �

6.4 Centroid-Based Delaunay Image Mesh 205

The basic approach is to use image region centroids as generating points in Delau-
nay mesh construction. Here are the steps to do this.

1o Find the region centroids in a given image Im.
2o Connect each pair of nearest centroids x, y ∈ S with a straight edge xy. A Delau-

nay triangle results from connecting with straight edges for centroids x, y, r that
are nearest each other.

3o Repeat step 2o until all pairs of centroids are connected. N.B. It is also assumed
that each triangular region of the mesh is a Delaunay wedge. �

6.4.1 Finding Image Centroids

6.7.1: Salerno fisherman 6.7.2: Image region centroids

Fig. 6.7 Image region centroids

Example 6.10 Region centroids on an image.
A sample plot of the image region centroids are shown in Fig. 6.7.1 on the image
in Fig. 6.7.2 using Matlab® script A.30 in Appendix A.6.2. For more about this, see
Appendix B.3. �

6.4.2 Finding Image Centroidal Delaunay Mesh

Example 6.11 Region centroid-based Delaunay triangulation on an image.
A sample plot of the image region centroid-based Delaunay mesh is shown in
Fig. 6.8.2 (relative to the region centroids in Fig. A.57.1) using Matlab® script A.31
in Appendix A.6.3. For more about this, see Appendix B.3. �

206 6 Delaunay Mesh Segmentation

6.8.1: lifting body 6.8.2: Image region centroids

Fig. 6.8 Image region centroid-based Delaunay mesh

Maximal Nucleus Triangle Clusters .

Notice that clusters of small triangles define shapes of image objects such as
the fisherman, fishing rod and prominent darker rocks in the picture in Fig. 6.7.1.

Also notice that every Delaunay triangle is the nucleus of a cluster
of Delaunay triangles. Each image object shape is associated with a nucleus having
a maximal number of adjacent triangles, forming a Maximal Nucleus Triangle
Cluster (MNTC). An object shape is defined by an MNTC cluster. A triangle �A
is adjacent to a nucleus triangle N , provided �A has either an edge or a vertex in
common with N .

6.4.3 Finding Image Centroidal Voronoï Mesh

Example 6.12 Region centroid-based Voronoï mesh on an image.
A sample plot of the image region centroid-basedVoronoïmesh is shown in Fig. 6.9.2
(relative to the region centroids in Fig. 6.9.1) using Matlab® script A.32 in Appen-
dix A.6.4. For more about this, see Sect. 6.4. �

Maximal Nucleus [Polygon] Clusters .

Notice that clusters of Voronoï polygonswith inscribedDelaunay Triangles define
shapes of image objects such as the fisherman’s head, fishing rod and prominent
darker rocks in the picture in Fig. 6.7.1. Also notice that every Voronoï polygon

6.4 Centroid-Based Delaunay Image Mesh 207

is the nucleus of a cluster of Voronoï polygons. Each image object
shape is associated with a nucleus having a maximal number of adjacent polygons,
forming a Maximal Nucleus Cluster (MNC). An object shape is defined by an
MNC cluster. A polygon �A is adjacent to a nucleus triangle N , provided �A
has an edge in common with N . For more about MNCs in Voronoï meshes, see
Appendix B.12.

6.9.1: lifting body 6.9.2: Image region Centroidal
Voronoï Mesh

Fig. 6.9 Image region centroid-based Voronoï mesh

6.4.4 Finding Image Centroidal Voronoï Superimposed
on a Delaunay Mesh

Example 6.13 Region centroid-basedVoronoï over Delaunaymesh on an image.
A sample plot of the image region centroid-based Voronoï over a Delaunay mesh is
shown in Fig. 6.10.2 (relative to the region centroidal Delaunay mesh in Fig. 6.10.1)
using Matlab® script A.33. �

Maximal Nucleus [Polygon-Triangle] Clusters .

Notice that clusters of Voronoï polygons with inscribed Delaunay triangle corners
define shapes of imageobjects such as thefisherman’s head, fishing rod andprominent
darker rocks in the picture in Fig. 6.7.1. Also notice that every Voronoï polygon

is the nucleus of a cluster of Voronoï polygons. Each image object

208 6 Delaunay Mesh Segmentation

6.10.1: Fisherman Delaunay Triangle Clusters

6.10.2: Image region Centroidal Voronoïon Delaunay Triangle Mesh

Fig. 6.10 Image region centroid-based Voronoï over Delaunay mesh

6.4 Centroid-Based Delaunay Image Mesh 209

shape is associated with a nucleus having a maximal number of adjacent polygons
with inscribed Delaunay Triangle corners, forming a Maximal Nucleus [Polygon-
Triangle] Cluster (MNptC). An object shape is defined by an MNptC cluster. A
polygon � � A is adjacent to a nucleus triangle N , provided � � A has an edge in
common with N . For more about MNCs in Voronoï meshes, see Appendix B.12.

Problem 6.14 Give a Matlab script that false colours (your choice of colour) the
maximal nucleus triangle of each MNTC in a centroid-based Delaunay mesh on an
image for three images of your own choosing. False colour each triangle adjacent
to the maximal nucleus triangle. N.B.: Choose your images from a your personal
collection of images not taken from the web. In this problem, image centroids are
used instead of corners as a source of generating points in constructing the Delaunay
triangulation mesh. �

Problem 6.15 Give a Matlab script that false colours (your choice of colour) the
maximal nucleus triangle of each MNC in a centroid-based Voronoï mesh on an
image for three images of your own choosing. False colour each triangle adjacent
to the maximal nucleus triangle. N.B.: Choose your images from a your personal
collection of images not taken from the web. In this problem, image centroids are
used instead of corners as a source of generating points in constructing the Voronoï
mesh. �

Problem 6.16 Give a Matlab script that false colours (your choice of colour) the
maximal nucleus triangle of each MNptC in a centroid-based Voronoï-Delaunay
triangulation mesh on an image for three images of your own choosing. False colour
each triangle adjacent to themaximal nucleus polygonwith inscribed triangle corners.
N.B.: Choose your images from a your personal collection of images not taken from
the web. In this problem, image centroids are used instead of corners as a source of
generating points in constructing the Voronoï mesh. �

Chapter 7
Video Processing. An Introduction
to Real-Time and Offline Video Analysis

7.1.1: Initial Frame

7.1.2: Later Frame

Fig. 7.1 Voronoï tiling of video frames in tracking moving objects

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2_7

211

212 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

Fig. 7.2 Perception angle

This chapter introduces video processing with the focus on tracking changes in
video frame images. Video frame changes can be detected in the changing shapes,
locations and distribution of the polygons (regions) in Voronoï tilings of the frames
(see, e.g., Fig. 7.1). The study of video frame changes can be done either in real-
time or offline. Real-time video frame analysis is the preferred method, provided the
analysis can be carried out in a reasonably short time for each frame. Otherwise, for
more time-consuming analysis of video frame content, offline processing is used.
From a computer vision perspective, scenes recorded by a video camera depend on
the camera aperture angle and its view of a visual field, which is analogous to the
human perception angle (see Fig. 7.2). For more about this, see Sect. 7.3.

Example 7.1 Tiling Video Frames of Moving Toy Tractors in Real-Time.
The tiling of an initial frame of a video1 showing a race between rolling toy tractors
is shown in Fig. 7.1.1. Image centroids are used as generating points of the Voronoï
regions in this tiling. Each the frame centroids is represented by a ∗. The locations
of the centroids as well as the numbers, locations and shapes of the tiling polygons
change from one frame to the next one, reflecting changes in the positions of the
tractors over time. For example, in Fig. 7.1.2, the number of polygons covering the
larger of the two tractors has increased in number in a later frame in the same
video. This is an example of video frame tiling carried out in real-time (during video
capture). �

7.1 Basics of Video Processing

This section briefly introduces some of the essentials of video processing, leading
to object detection in videos. A good introduction to video processing is given by
T.B. Moselund [125].

The basic unit in a video is a frame. A frame is an individual digital image in a
linear sequence of images.

1Many thanks to Braden Cross for this video frame.

7.1 Basics of Video Processing 213

Basis Steps in Video Analysis.

webcam �−→ image acquisition �−→ pre − processing �−→
frame structuring �−→ classification

�

7.1.1 Frame Point Processing

Every frame is a set of pixels susceptible to any of the standard image processing
techniques such as false colouring, pixel selection (e.g., centroid, corner and edge
pixels), pixel manipulation (e.g., RGB �−→ greyscale), pixel (point) processing (e.g.,
adjusting color channel brightness), filtering (e.g., frame noise reduction, histogram
equalization, thresholding) and segmentation (e.g., separation of pixels into non-
overlapping regions).

7.1.2 Image Acquisition

Video processing beginswith the image acquisition process. This process ismarkedly
different from snapshots. Image acquisition is basically a two step process in which
a single image is added to a sequence of images called frames.

Videos consume huge amounts of memory for their storage. Hence, image com-
pression is a central concern in video image acquisition. The MPEG (Motion Picture
Experts Group) standard was designed to compress video signals from 4 to 6 Mbps
(megabits per second). MPEG-1 and MPEG-2 compression reduces spatial and tem-
poral redundancies.

With the MPEG approach to compression, each frame is coded separated using
JPEG (Joint Photographic Experts Group) lossy compression. JPEG uses piecewise
uniform quantization. A quantizer is determined by an encoder that partitions an
input set of signal values in classes and a decoder that specifies the set of output
values. Let x be a signal value. This quantization process is modelled with a selector
function Si(x) on a set Ri (a partition cell). A selector function Si(x) is an example
of what is known as an indicator function 1R of a partition cell, defined by

1R(x) =
{

1, if x ∈ R (input signal x belongs to partition cell R),

0, otherwise.

214 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

A video selector function Si for partition cell Ri is defined by the indicator function
1Ri on cell Ri, i.e.,

Si(x) = 1Ri(x).

A good introduction to JPEG lossy compression is given by A. Gersho and
R.M. Gray [56, Sect. 5.5, pp. 156–161].

Further compression of a video stream is accomplished by detecting redundance
in consecutive frames are often almost the same. More advanced forms of the com-
position of audio-visual information is accomplished by the MPEG-4 standard. This
standard views audio-visual data as objects that combine each object state with a
set of methods that define object behaviour. For more about this as well as the
MPEG-7 andMPEG-21 standards, see F. Camastra andA.Vinciarelli [23, Sect. 3.8.1,
pp. 90–93].

Fig. 7.3 Path-connected shapes A,B

7.1.3 Blobs

A blob (binary large object) is a set of path-connected pixels in a binary image. The
notion of connectedness makes it possible to extend the notion of a blob to grey-blobs
in greyscale and colour-blobs in colour images.

Polygons are connected, provided the polygons share one or more points. For
example, a pair of Voronoï regions A and B that have a common edge are connected.
Again, for example, a pair of Delaunay triangles that have a common vertex are
connected. In that case, connected Voronoï polygons with a common edge containing
n points are n-adjacent. Similarly, Delaunay triangles that have a common vertex
containing n points are both connected and n-adjacent. A pair of Delaunay triangles
with a common vertex are 1-adjacent.

A sequence p1, . . . , pi, pi+1, . . . , pn of n pixels or voxels is a path, provided
pi, pi+1 are adjacent (no pixels in between pi and pi+1). Pixels p and q are path-
connected, provided there is a path with p and q as endpoints. Similarly, image
shapes A and B (any polygons) are path-connected, provided there is a sequence
S1, . . . , Si, Si+1, . . . , Sn of n adjacent shapes with A = S0 and B = Sn.

7.1 Basics of Video Processing 215

Example 7.2 Path-Connected Shapes.
Shapes A and B in Fig. 7.3 are connected, since there is a path (sequence containing
pairwise adjacent shapes) between A and B. �

For more about connectedness from digital image perspective, see R. Klette and
A. Rosenfeld [94, Sect. 2.2.1, pp. 46–50].

Example 7.3 Path-Connected Voronoï Nucleus Clusters.
Polygons A and B in a Voronoï nucleus cluster are connected, since there is always
a path (sequence containing pairwise adjacent polygons) between A and B. �

From a path-connectedness perspective, a grey-blob in a greyscale image is path-
connected set of greyscale pixels. In fact, every collection of path connected shapes
in a greyscale image are grey-blobs. Similarly, a colour-blob in a colour image is
path-connected set of colour pixels. And every collection of path connected shapes
in a colour image are colour-blobs. This means that one can always find blobs in
video frame images. For more about video image blobs, see T.B. Moselund [125,
Chap. 7, pp. 103–115].

Fig. 7.4 Video object detection steps

7.1.4 Frame Tiling and Frame Geometry

Either in real-time or offline, every video frame can be tiled (tessellated) with a
Voronoï diagram or tiling each frame using Delaunay’s triangulation method, i.e.,
connect sites of neighbouring Voronoï regions with straight edges to form multiple
triangles covering a video frame. A natural outcome of either form of frame tiling is
mesh clustering and object recognition. The fundamentally important step in his form
of video processing is the selection of sites (generating points) used to construct either
frame Voronoï regions or Delaunay triangles. After the selection of frame generating
points, a frame can be tiled. Frame tiling takes along the path that leads to video
object detection (see Fig. 7.4 for the steps leading to frame object detection).

216 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

7.2 Voronoï Tiling of Video Frames

Recall that a Voronoï tiling of a plane surface is a covering of the surface with non-
overlapping Voronoï regions. Each 2D Voronoï regions of a generating point is an
n-sided polygon (briefly, ngon). In effect, a planar Voronoï tiling is a covering of a
surface with non-overlapping ngons. Video frame tilings have considerable practical
value, since the contour of the outer polygons surrounding a frame object can be
measured and compared.

7.5.1: Contour 1 7.5.2: Contour 2

Fig. 7.5 Centroid-based contours video frame objects

Example 7.4 Voronoï tiling of a Video Frame and Object Contours.
The video frames in Fig. 7.1 are examples of Voronoï tilings using centroids as
generating points. Let × represent a location of a centroid in a Voronoï region. Then
the contour of a frame object is identified with a line that connects the centroids of the
Voronoï regions surrounding the object. Two examples of centroid-based contours
of frame objects are shown in Fig. 7.5. �

The contour of a frame object defines its shape. Shapes are similar, provided
the shapes are, in some sense, close to each other (see Sect. 7.4 for an approach to
measuring the similarity between shapes).

7.3 Detection of Shapes in Video Frames

The detection of personal spaces in the motion of people in video sequences is aided
by constructing Voronoï tilings (also called Voronoï diagrams) on each video frame.
A personal space is defined by a comfort distance between persons in motion. Let d
be a distance (in meters) between persons. Four types of comfort distances between
persons have been identified by E. Hall [66], namely,

Intimate: 0 ≤ d ≤ 0.5 m (Friendship distance).
Personal: 0.5 ≤ d ≤ 1.25 m (Conversational distance).

7.3 Detection of Shapes in Video Frames 217

Social: 1.25 ≤ d ≤ 3.5 m (Impersonal distance).
Public: d ≥ 3.5 m (Public Speaking distance).

Based on the notion of comfort distance between persons, an approach to the
study of motion of persons in a succession of video frames is suggested by J.C.S.
Jacques and others [86]. In this study, a perceived personal space (PPS) is introduced
relative to the changing distances between persons in a succession of Voronoï-tiling
of video frames. Let fv be a video frame, Rc the radius of a circular sector with angle
α around a person at point c in a frame tiling, απ

360o the area of the personal sector.
Then the the personal space PPS(fv) of a frame fv [86, Sect. 3.2, p. 326] is defined
by

PPS(Vf) ≥ απ

360o
R2
c m (Video frame perceived personal distance).

Then PPS is defined to be the area of the region formed by the intersection of a
person’s visual field and correspondingVoronoï polygon [86]. The region of attention
focus of a person’s visual field is estimated to be a circular sector with an approximate
aperture angle of 40o. Let f be the focal length and D the diameter of an aperture.
The aperture angle [122] of a lens (e.g., human eye) is the apparent angle α of the
lens aperture as seen from the focal point, defined by

α = 2tan−1

(
D

2f

)

(aperture angle).

Fig. 7.6 Contour distances

A form of clustering in Voronoï tilings on greyscale video frames is introduced
by E.A.B. Over, I.T.C. Hooge and C.J. Erkelens [136]. The basic approach was to
identify a cluster whose center is a Voronoï region of a point s and whose boundary
region is defined by that part of the tiling occupied by all points between surround
generating points and s. The homogeneity of the intensities of a polygon is used as
a means of identifying each cluster center.

218 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

7.4 Measuring Shape Similarity and the Voronoï Visual
Hull of an Object

Visual hulls of frame objects are introduced by K. Grauman, G. Shakhnarovich and
T. Darrell [60]. In a Voronoï tiling of a video frame, a visual hull (VH) of an object
a collection of polygons that surround an object. Each class of objects will have a
characteristic VH. For example, the VH of a vehicle wheel will have a round shape
containing small polygons surrounding a tiny polygon on the while hub. For a person
who is standing, the VH will have a rectangular shape, covering the the silhouette
of the person. Let A be the set of points on the contour of a sample object and let
B be the contour of a known object. The Hausdorff distance [75, Sect. 22, p. 128]
between a point x and a set A (denoted by D(x,A)) is defined by

D(x,A) = min {‖x − a‖ : a ∈ A} (Hausdorff point − set distance).

The similarity distance D(A,B) between the two contours A and B, represented
by a set of uniformly sampled points in A and B [60, Sect. 2, p. 29], is defined by

D(A,B) = max

{

max
a∈A

D(a,B),max
b∈B

D(b,A)

}

(Similarity Distance).

Example 7.5 Similarity Distance Between Visual Hulls of Objects.

The contour distances D(A,Bi) between question mark shape A in Fig. 7.7.1 is

compared with the distance between points along the contours of three different
Aha! shapes B1,B2,B3 in Fig. 7.6. In this example, check the value of

maxContourDistance := max {D(A,B1),D(A,B2),D(A,B3)} .

The shapes B1,B2,B3 would be considered close to the shape , provided maxCon-
tourDistance is close to zero. �

The similarity between the shapes of visual hulls in a sequence of video frames is
measured relative to a distance between known visual hull shapes. LetA,Bi be known
shapes with distance D(A,Bi). And let S0 be a known shape that is compared with
shape Sj, 1 ≤ j ≤ n in a sequence of n video frames. The distance D(A,Bi) between
known shapes A,Bi is compared with the summation of the distances between a base
shape S0 and a succession of shapes Si in a sequence of video frames. A and S0 have
similar shapes, provided the sum of the differences between n shape contours S0
and Sj is close to (approximately equal to) the distance D(A,Bi), i.e.,

7.4 Measuring Shape Similarity and the Voronoï Visual Hull of an Object 219

D(A,Bi) ≈
n

∑

j=1

⎛

⎜
⎜
⎝

∑

a∈S0
b∈Sj

‖a − b‖

⎞

⎟
⎟
⎠

(Similar Frame Shapes).

Let ε > 0 be a small number. Shapes A and S0 are considered close, provided

shapeDiff (S0, Sj) :=
n

∑

j=1

⎛

⎜
⎜
⎝

∑

a∈S0
b∈Sj

‖a − b‖

⎞

⎟
⎟
⎠

.

∣
∣D(A,Bi) − shapeDiff (S0, Sj)

∣
∣ ≤ ε.

Example 7.6 Comparing Shapes.
Let A be a known shape and let Bi be a shape similar to A. Let S0 := A, i.e., let S0 be
the same as the known shape A. Then, for shapes S1, . . . , Sj, . . . , Sn and some small
ε > 0, check if

∣
∣D(A,Bi) − shapeDiff (A, Sj)

∣
∣ ≤ ε for 1 ≤ j ≤ n. �

In measuring the similarity of shapes in a sequence of video frames, the basic
approach is to compute the sum of the normed distances ‖a − b‖ for points a, b
along the contours of the shapes S0 and Sj. This means that we start by remembering
the known shape S0 and compare this known shape with shape Sj found in each video
frame.

7.7.1: Known Shapes Dis-
tance

7.7.2: Video Frame Shapes

Fig. 7.7 Hunt for similar video frame shapes

220 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

The hunt for similar shapes in video frames reduces to a comparison of the dis-
tance between known shapes and similarity distances between a succession of frame
shapes.

Example 7.7 Hunt for Similar Video Frame Shapes.
The distance between known similar shapes is represented in Fig. 7.7.1. A sequence
of video frames containing shapes S0, . . . , Sj, Sj+1, Sj+2, 0 ≤ j ≤ n is represented in
Fig. 7.7.2.

The similarity distance D(A,Bi) between question mark shapes in Fig. 7.7.1
is compared with the distance between points along the contours of frame shapes

containing amixture of and Aha! shapes in a video frame sequence in Fig. 7.7.2.

This comparison fails, since the similarity distance between and is usually not

close for small ε values. Strangely enough, the shape can be deformed (mapped)

into the shape. To see how this is done, see [144, Sect. 5.3]. �

7.5 Maximal Nucleus Clusters

Notice that every polygon in a Voronoï tessellation of a surface is the centre (nucleus)
of a cluster containing all polygons that are adjacent to the nucleus. A Voronoï mesh
nucleus is any Voronoï region that is the centre of a collection of Voronoï regions
adjacent to the nucleus.

Definition 7.8 Maximum Nuclear Cluster (MNC) [147]. A cluster of connected
polygons with nucleus N is maximal, provided N has the highest number of adja-
cent polygons in a tessellated surface (denoted by (denoted by maxCN)). Similarly,
a descriptive nucleus cluster is maximal, provided N has the highest number of
polygons in a tessellated surface descriptively near N , (denoted by maxC�N). �

Maximal nucleus clusters (MNCs) serve as indicators of high object concentra-
tion in a tessellated image. A method that can be used to find MNCs in Voronoï
tessellations of digital images is given in Algorithm 9.

7.5 Maximal Nucleus Clusters 221

Algorithm 9: Construct Maximal Nucleus Cluster
Input : Digital images img.
Output: MNCs on image img.

1 img �−→ TitledImg/*(Voronoï tessellation)*/;
2 Choose a Voronoï region in TitledImg: *;
3 ngon �−→TiledImg;
4 NoOfSides �−→ngon;
5 /* Count no. of sides in ngon & remove it from TitledImg. */;
6 TiledImg := TiledImg \ ngon;
7 ContinueSearch := True;
8 while (TiledImg 	= ∅ and ContinueSearch) do
9 ngonNew �−→TiledImg;

10 TiledImg := TiledImg \ ngonNew;
11 NewNoOfSides �−→ngonNew;
12 if (NewNoOfSides > NoOfSides) then
13 ngon := ngonNew;
14 else
15 /* Otherwise ignore ngonNew: */

16 if (TiledImg = ∅) then
17 ContinueSearch := False;
18 maxCN := ngon;
19 /* MNC found; Discontinue search */;

Example 7.9 Let X be the collection of Voronoï regions in a tessellation of a subset
of the Euclidean plane shown in Fig. 7.8 with nuclei N1,N2,N3 ∈ X. In addition,
let 2X be the family of all subsets of Voronoï regions in X containing maximal
nucleus clustersCN1,CN2,CN3 ∈ 2X in the tessellation. Then, for example, intCN2 ∩
intCN3 	= ∅, since CN2,CN3 share Voronoï regions. Hence, CN2 overlaps CN3 	= ∅
(see [147]). Notice that there Voronoï regions surrounding nucleus N1 that share
an edge (are adjacent to) Voronoï regions surrounding nucleus Ns. For this reason,
we say that C N1 adjacent C N2. Either adjacent or overlapping MNCs have shapes
determined by their perimeters, which surround regions-of-interest in a tessellated
image.This observation leads to ausefulmethod in thedetectionof objects-of-interest
in video frame images. �

In short, a maximal nucleus cluster (MNC) is a cluster that is a collection of
Voronoï regions in which the nucleus (center of the cluster) has the highest number of
adjacent polygons. It is possible for a Voronoï tessellation of a digital image to have
more than one MNC. Each cluster polygon is a Voronoï region of a generating point.
One way to find an approximate contour of a cluster is to connect each neighbouring
pair of adjacent polygon generating points with a straight edge.

222 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

Fig. 7.8 CN1 adjacent CN2 and CN2 overlaps CN3

Example 7.10 Sample Maximal Nuclei Cluster Contours.
Amap of the milkyway2 is shown in Fig. 7.9.1. The contours of twomaximal nucleus
clusters are shown in Fig. 7.9.2. The orange • in Fig. 7.11 indicate the locations of
pixels, each with a different gradient orientation angle, and which serve as mesh
generators. The contours are found by connecting neighbouring pair of generating
points of the Voronoï polygons that are adjacent to the cluster nucleus (see, e.g.,
Fig. 7.10). �

There are two basic types of cluster contours useful in identifying object shapes
in tessellated digital images.

1o Fine Cluster Contour. In polygons adjacent to a cluster nucleus, a fine cluster
contour is a path in which each neighbouring pair of generating points is con-
nected by a straight edge. In other words, a file cluster contour is a straight
edge-connected path containing adjacent straight edges. Straight edges are adja-
cent, provided the edges have a common end-point.

2o Coarse Cluster Contour. In polygons that surround those polygons adjacent to
a cluster nucleus, a coarse cluster contour is a path in which each neighbouring
pair of generating points is connected by a straight edge.

2http://www.atlasoftheuniverse.com/milkyway2.jpg.

http://www.atlasoftheuniverse.com/milkyway2.jpg

7.5 Maximal Nucleus Clusters 223

Fig. 7.9 Contours of
maximal nucleus clusters on
a milkyway image

7.9.1: milkyway

7.9.2: Cluster contours

Example 7.11 Sample Coarse and Fine luster Contours.
Two maximal nucleus clusters CN1,CN2 are shown in Fig. 7.10. Each of these clus-
ters is surrounded by both fine- and coarse-contours. �

224 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

Fig. 7.10 Straight-edge path-connected cluster contours on clusters CN1,CN2

7.6 Problems

Problem 7.12 Gradient orientation-based Voronoï mesh.
Capture two .mp4 files with 100 frames in each file and do the following in real-time
during video capture.

1o For each frame image, find up to 100 pixels with different gradient orientations
and locations.

2o Let S be the set of pixels with different gradient orientations found in Step 1.
3o For each frame, construct the Voronoï mesh V (S), using S as the set of generating

points.
4o Display two sample frames with mesh V (S) superimposed on it.
5o Repeat Steps 1–4 for up to 300 pixel gradient orientations.

Problem 7.13 RGB-based Voronoï mesh.
Capture two .mp4 files with 100 frames in each file and do the following in real-time
during video capture.

1o For each frame image, find up to 100 pixels with different colour intensities and
locations.

7.6 Problems 225

2o Let S be the set of pixels with different colour intensities found in Step 1.
3o For each frame, construct the Voronoï mesh V (S), using S as the set of generating

points.
4o Display two sample frames with mesh V (S) superimposed on it.
5o Repeat Steps 1–4 for up to 300 pixel colour intensities.

Problem 7.14 HSV-based Voronoï mesh.
Capture two .mp4 files with 100 frames in each file and do the following in real-time
during video capture.

1o Convert each RGB frame to the HSV colour space.
2o For each frame image, find up to 100 pixels with different hue-values and loca-

tions, i.e., each pixel found will have a hue and value that is different from the
other pixels in img.

3o Let S be the set of pixels with different hues and values found in Step 2.
4o For each frame, construct the Voronoï mesh V (S), using S as the set of generating

points.
5o Display two sample frames with mesh V (S) superimposed on it.
6o Repeat Steps 2–5 for up to 300 pixel hue-value combinations.

Problem 7.15 Gradient orientation & green channel-based Voronoï mesh.
Capture two .mp4 files with 100 frames in each file and do the following in real-time
during video capture.

1o For each frame image, find up to 100 pixels with different green channel colour
intensity and gradient orientation combinations and locations, i.e., each pixel
found will have a green intensity and gradient orientation that is different from
the other pixels in each frame image.

2o Let S be the set of pixels with different hues and values found in Step 1.
3o For each frame, construct the Voronoï mesh V (S), using S as the set of generating

points.
4o Display two sample frames with mesh V (S) superimposed on it.
5o Repeat Steps 1–4 for up to 300 pixel green intensity-gradient orientation combi-

nations.

Problem 7.16 Fine Cluster Contours.
Capture three .mp4 files with 100 frames in each file and do the following in real-time
during video capture.

1o capture video frames.
2o Select 100 corners in each frame image.
3o Tile (tessellate) each frame with a Voronoï diagram.
4o Recall that eachVoronoï polygon is the nucleus of a cluster, which is a collection

of polygons adjacent to a central polygon called the cluster nucleus. The focus
of this step is on maximal nucleus clusters, i.e., a maximal nucleus cluster is a
nucleus cluster in which the Voronoï nucleus polygon has a maximal number of
adjacent polygons. In each frame, identify the Voronoï nuclei polygons with the
maximum number of adjacent polygons.

226 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

5o False-colour with green each maximal nucleus polygon.
6o False-colour with yellow each of the polygon adjacent to the cluster nucleus.
7o Fine Cluster Contours. In each frame, identify the fine-contours of each maxi-

mal nucleus clusters. For the adjacent polygons surrounding each maximal poly-
gon, connect each pair of neighbouring corners with a straight edge. For a sample
pair of fine-contours on maximal nucleus clusters in a Voronoï tessellation of a
milkyway image, see Example 7.10.

8o Repeat Step 1 for 300 corners. �
Problem 7.17 Coarse Cluster Contours.
Instead of identifying the fine cluster contours, repeat the steps in Problem 7.16 and
find the coarse cluster contours for the maximal nucleus clusters in each video frame.
For two coarse cluster contours in the same image, see Example 7.11. Important:
In your solution this problem, comment on which is more effective in identifying the
shapes of frame object, fine cluster contours or coarse cluster contours. �
Problem 7.18 Centroid-based Voronoï nucleus clustering.
Do Problem 7.16 for frame image centroids instead of frame corners to tessellate
each video frame. �
Problem 7.19 Gradient orientation-based Voronoï nucleus clustering.
Do Problem 7.16 for frame pixel gradient orientations instead of frame corners to
tessellate each video frame. �
Problem 7.20 Gradient orientation & green channel-based Voronoï nucleus
clustering.
Do Problem 7.16 for frame pixel gradient orientations and green channel intensities
instead of frame corners to tessellate each video frame. �
Problem 7.21 Corner & green channel-based Voronoï nucleus clustering.
Do Problem 7.16 for frame corners and green channel intensities instead of just frame
corners to tessellate each video frame. That is, for each frame image, find up to 100
corners with different green channel colour intensity combinations and locations,
i.e., each corner found will have a green intensity that is different from the other
corners in each frame image. �
Problem 7.22 Corner & red channel-based Voronoï nucleus clustering.
Do Problem 7.16 for frame corners and red channel intensities instead of just frame
corners to tessellate each video frame. That is, for each frame image, find up to 100
corners with different red channel colour intensity combinations and locations, i.e.,
each corner found will have a red intensity that is different from the other corners in
each frame image. �
Problem 7.23 Corner & blue channel-based Voronoï nucleus clustering.
Do Problem 7.16 for frame corners and blue channel intensities instead of just frame
corners to tessellate each video frame. That is, for each frame image, find up to 100
corners with different blue channel colour intensity combinations and locations, i.e.,
each corner found will have a red intensity that is different from the other corners in
each frame image. �

7.6 Problems 227

Problem 7.24 Corner & RGB-based Voronoï nucleus clustering.
Do Problem 7.16 for frame corners and RGB colour intensities instead of just frame
corners to tessellate each video frame. That is, for each frame image, find up to 100
corners with different RGB colour intensity combinations and locations, i.e., each
corner found will have a RGB intensity that is different from the other corners in
each frame image. �

Problem 7.25 Frame Object Detection.
Do the following.

1o Select a digital image. Repeat the steps in Problem 7.16 to tile and find the
contours of maximal nucleus clusters (MNCs) in the selected image. Choose
and store (in a variable Target) a selected contour of a maximal nucleus cluster
(MNC) in the tiled image.
Note: The Target contour will be used in the next steps to find contours in video
frames that are similar to the Target contour.
Hint: Choose a target image containing objects that are similar to one or more of
the objects in video framesmade in the following steps. Also notice that similarity
in this problem means approximately the same.

2o Repeat the steps in Problem 7.16 to capture and tile the frames in three .mp4 files
in real-time.

3o Offline, do the following using the frames in the .mp4 files from Step 2.

(a) Let S1, . . . , Sj, . . . , Sn be MNC fine contours (shapes) in n frames in the
selected .mp4 file.

(b) Select small number ε > 0. Note: This is the contour similarity threshold.
(c) Compute the similarity distance D(Target, Sj), for 1 ≤ j ≤ n, i.e., for each

MNC contour found.
(d) Do the following for each video frame. If D(Target, Sj) ≤ ε, then false

colour the nucleus of the MNC for the Sj contour. In a separate .jpg file, save
frame containing a contour of an MNC that has a shape similar to the Target
contour.

(e) Record your findings in a table of comparisons between the known Target
contour and at most 5 examples of contours of MNCs found in the captured
.mp4 files:
Table:
Frame Image Image Distance

j Target Sj D(Target,Sj)
Hint: Use a Snipping Tool to capture the Target and Sj images for this Table.

4o Comment on the similarity between the Target vs. the video frame Sj contours
(shapes) found.

5o Comment on which choice of the number ε that works best.
6o Repeat Steps 1 to 5 for 5 different Targets and 5 different videos of different

scenes. �

228 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

Problem 7.26 Gradient orientation-based fine cluster contour similarities.
Do Problem 7.25 for generating points that are frame pixel gradient orientations
instead of frame corners to tessellate each video frame. That is, in each frame, choose
generating points that are pixel gradient orientations instead of corners to test the
similarity between a known shape and the shapes in captured .mp4 files. �

Problem 7.27 RGB pixel intensities-based fine cluster contour similarities.
DoProblem7.25 for frameRGBpixel intensities instead of frame corners to tessellate
each video frame. That is, choose generating points that are RGB pixel intensities
instead of corners to test the similarity between a known shape and the shapes in
captured .mp4 files. �

Problem 7.28 Green channel pixel intensities-based fine cluster contour simi-
larities.
Do Problem 7.25 for generating points that are frame green channel pixel intensi-
ties instead of frame corners to tessellate each video frame. That is, in each frame,
choose generating points that are frame green channel pixel intensities instead of
corners to test the similarity between a known shape and the shapes in captured
.mp4 files. �

Problem 7.29 Corner and Green channel pixel intensities-based fine cluster
contour similarities.
Do Problem 7.25 for generating points that are corners with different green channel
pixel intensities to tessellate each video frame. That is, in each frame, choose gen-
erating points that are corners with different green channel pixel intensities instead
of corners to test the similarity between a known shape and the shapes in captured
.mp4 files. �

Problem 7.30 Repeat the steps in Problem 7.25 by doing Problem 7.17 in Step
7.25.2. That is, measure the similarity between shapes by measuring the difference
between the coarse cluster contour of a known image object Target and the coarse
cluster contours that identify the shapes of objects in each video frame. �

Problem 7.31 This problem focuses on coarse cluster contours (call them coarse
perimeters). Consider three levels of coarse perimeters:

S1P: Level 1 coarse perimeter (our our starting point–call it supra 1 perimeter or
briefly S1P).

S2P: Level 2 coarse perimeter (supra 2 perimeter or briefly S2P) that contains a
supra 1 perimeter.

S3P: Level 3 coarse perimeter (supra 3 perimeter or briefly S3P) that contains a
S2P and S1P.

Level 3 is unlikely.
The occurrence of S2P containing S1P is the promising case in terms of object
recognition. Do the following:

7.6 Problems 229

1o Detect when a S1P is contained in a S2P. Announce this in the work space along
with the lengths of the S1P and S2P perimeters. Put a tiny circle label (1) on the
S1P and a (2) on S2P.

2o Detect when S3P contains S2P. Announce this in the work space along with the
lengths of the S1P and S2P perimeters. Put a tiny circle label (2) on S2P, (3) on
S3P.

3o Detect when S3P contains S2P and S2P contains S1P. Announce this in the work
space along with the lengths of the S1P, S2P, S3P perimeters. Put a tiny circle
label (1) on the S1P and a (2) on S2P and a (3) on S3P.

4o Detect when S2P does not contain S1P and S3P does not contain S1P. Announce
this in the work space along with the lengths of the S1P, S2P, S3P perimeters.
Put a tiny circle label (1) on the S1P and a (2) on S2P.

5o Produce a new figure that suppresses (ignores) MNCs on the border of an image
and displays S1P (case 1).

6o Produce a new figure that suppresses (ignores) MNCs on the border of an image
and displays S1P, S2P (case 2). Include (1), (2) circle labels. Announce this in
the work space along with the lengths of the S1P and S2P perimeters.

7o Produce a new figure that suppresses (ignores) MNCs on the border of an image
and displays S1P, S2P, S3P (case 3). Announce this in the work space along with
the lengths of the S1P, S2P, S3P perimeters. Put a tiny circle label (1) on the S1P
and a (2) on S2P and a (3) on S3P.

Suggestion by Drew Barclay : Select SnP contained within S(n+1)P so that the
line segments making up each of the contours do not ever intersect. In addition, the
minimum and maximum X/Y values have greater absolute values for S(n+1)P.
For this problem : Try object recognition in a traffic video to see which of the
above cases works best.
Hint : Crop frame 1 of a video and use that crop for each of the video frames. Let k
equal the number of SURF keypoints selected. Try k = 89 and k = 377 to see some
very interesting coarse perimeters. �

An edgelet is a set of edge pixels. An edgelet has been found by S. Belongie,
J. Malik and J. Puzicha [13] to be useful in the study of object shapes. In the context
of maximal nucleus cluster (MNC) contours, a contour edgelet is a set of edge
pixels in the contour of an MNC, restricted to just the mesh generating points that
are the endpoints of the edges in a MNC contour. Let be the the ith edgelet ei be
defined by

ei = {g ∈ MNC : g is a mesh generator of a MNC polygon} .

Let |ei| be the number of mesh generators in a mesh contour edgelet and let Pr(ei)
(probability of the occurrence of edgelet ei) be defined by

Pr(ei) = 1

|ei| = 1

size of ei
(MNC Contour Edgelet Probability).

230 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

In a sequence of tessellated video frames, let mi be the frequency of occurrence
of edgelets with the same number of mesh generators as edgelet e1. For edgelets
e1, e2, · · · , ei, · · · , ek in k video frames, let m1,m2, · · · ,mi, · · · ,mk be the fre-
quencies of occurrence of the k edgelets. The histogram for the edgelet frequencies
defines the shape context of the edgelets. The underlying assumption is that if a pair
of edgelets ei, ej each has the same number of mesh generators, then ei, ej will have
have similar shapes.

Problem 7.32 Let V be a video containing Voronoï tessellated frames. Do the fol-
lowing:

1. Crop each video frame (select only one or more the central rectangular regions,
depending on the size of the rectangles used to partition a video frame). Work
with the central rectangular region for the next steps.

2. Tessellate each frame using SURF points as mesh generators. Experiment with
the number of SURF points to use as mesh generators, starting with 10 SURF
points.

3. Find the MNCs in each video frame.

Fig. 7.11 Cluster contours

7.6 Problems 231

4. Find the edgelets e1, e2, · · · , ei, · · · , ek in k video frames. Display each of the
edgelets found in two of the video frames.

5. Determine |ei|, the number of mesh generators in mesh contour edgelet ei.
6. Display the edgelet shapes (a) by themselves and (b) superimposed on anMNC.

Hint: extract an MNC from a video frame and display the MNC by itself with
superimposed edgelet. See, e.g., Fig. 7.12.

7. Find the frequencies m1,m2, · · · ,mi, · · · ,mk of occurrence of the k edgelets.
That is, for each edgelet ei, determine the number of edgelets that have the same
size |ei| as ei. For example, if three edgelets have size |ei| for edgelet e1, then
m1 := 3.

8. Compute Pr(ei), the probability of the occurrence of edgelet ei, for each of the
edgelets in each of the video frames.

9. Give Matlab script to display a histogram for the frequencies m1,m2, · · · ,mi,

· · · ,mk .
10. Give Matlab script to display a compass plot for frequencies m1,m2, · · · ,mi,

· · · ,mk .

Fig. 7.12 Edgelet in a
cluster contour

7.12.1: edgelet

7.12.2: edgeletLabels

232 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

11. Give Matlab script to display a log-polar plot for edgelet frequencies.Hint: the
basic approach is to bin the edgelet frequencies of a video frame into a polar
histogram. For examples, see O. Tekdas and N. Karnad [192, Fig. 3.1, p. 8].

12. Give Matlab script to display a plot Pr(ei) against ei.
13. Give Matlab script to display a 3D contour plot Pr(ei) against ei and mi. Hint:

For a sample solution, see Matlab script A.34 in Appendix A.7.1. �

Let N be the sample size used to study video frame edgelets. For instance, if we
shoot a video with 150 frames, then N := 150. For this work, N equals the number
of frames containing tessellated video images. The chi-squared distribution3 χ2

s is a
measure of the deviation of a sample s from the expectation for the sample s and is
defined by

χ2
s =

k
∑

i=1

mi − NPr(ei)

NPr(ei)
.

Eisemann-Klose-Magnor Shape Cost Function
Cshape(ei, ej)

The Eisemann-Klose-Magnor costCshape(ei, ej) between two shape con-
texts [44, p. 10] ei, ej is defined to be theχ2

s for the pair of shape contexts.

Problem 7.33 Let V be a video containing Voronoï tessellated frames. Do the fol-
lowing:

1. Repeat steps 1 to 8 in Problem 7.32.
2. Give Matlab script to compute χ2

s for a tessellated video frame.
3. Give Matlab script to plot χ2

s values for 10 sample videos. �

7.7 Shape Distance

The focus here is on computing what is known as the cost for the distance between
MNC contour edgelets. The approach here is an extension of the basic notion of a
cost function for distance introduced by M. Eisemann, F. Klose and M. Magnor [44,
p. 10]. Let ei, ej be edgelets and let a, b > 0 be constants used to adjust the cost
function Cdist(ei, ej) defined by

Cdist(ei, ej) = a
(

1 + e−b‖ei−ej‖) .

3http://mathworld.wolfram.com/Chi-SquaredTest.html.

http://mathworld.wolfram.com/Chi-SquaredTest.html

7.7 Shape Distance 233

The selection of a and b is based on arriving at the maximal cost of the distance
between ei and ej. For example, let b := 1 and let a := D(ei, ej) (C̆ech distance
between the pair edgelet point sets) defined by

D(ei, ej) = min
{‖x − y‖ : x ∈ ei, y ∈ ej

}

.

We are interested in defining a cost function of the distance between a target MNC
contour edgelet etarget and an sample edgelet ej in a video. Then, for example,
Cdist(etarget, ej) is defined by

Cdist(etarget, ej) = a
(

1 + e−b‖etarget−ej‖)

∣
∣
∣
∣
∣
∣

a=D(etarget ,ej),b=1

.

Problem 7.34 K
Let V be a video containing Voronoï tessellated frames. Do the following:

1. Crop each video frame (select only one or more the central rectangular regions,
depending on the size of the rectangles used to partition a video frame). Work
with the central rectangular region for the next steps.

2. Tessellate each frame using SURF points as mesh generators. Experiment with
the number of SURF points to use as mesh generators, starting with 10 SURF
points.

3. Select an edgelet etarget that is the set of generators that are the endpoints of the
edges along a fine contour of a target object shape.

4. Select an edgelet ej from a sample video. The selected edgelet should be extracted
from a video frame containing a MNC contour that is similar to the known target
shape. In other words, to select ej, verify that

∣
∣D(etarget, ej) − shapeDiff (etarget, ej)

∣
∣ ≤ ε.

See Sect. 7.5 in this book for the methods used to compute D(etarget, ej) and
shapeDiff (etarget, ej). It may be necessary to pad etarget or ej with zeros, if one of
these edgelets has fewer edge pixels than the other edgelet.
Hint: Check the number of pixels in both edgelets, before attempting to compute
the distance between etarget and ej.

5. Give Matlab script to compute the cost distance function Cdist(etarget, ej).
6. Repeat steps 1 to 5 for other choices of edgelets ej and the same target. Also,

experiment with other choices of a, b in the cost distance function.
7. Repeat steps 1 to 5 for other choices of edgelets ej in 10 different videos and a

different target. Also, experiment with other choices of a, b in the cost distance
function.

8. Give Matlab script to display a 3D contour plot Cdist(etarget, ej) against a and b
for the 10 selected videos.

9. Comment on the choices of a and b in computing Cdist(etarget, ej). �

234 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

7.8 Weight Function for Edgelets

In general, for edgelets ei, ej, the Eisemann-Klose-Magnor weight functionC
(

ei, ej
)

is defined by
C

(

ei, ej
) = Cdist

(

ei, ej
) + Cshape

(

ei, ej
)

.

For this work, this cost function is specialized in terms of a pair edgelets etarget, ej,
giving rise to C

(

etarget, ej
)

defined by

C
(

etarget, ej
) = Cdist

(

etarget, ej
) + Cshape

(

etarget, ej
)

.

Problem 7.35 Let V be a video containing Voronoï tessellated frames. Do the fol-
lowing:

1. Repeat Steps 1 to 5 in Problem 7.34.
2. In Problem 7.34.5, include in your Matlab script the computation of the shape

cost Cshape
(

etarget, ej
)

.
3. In Step 2 of this Problem, compute the overall cost C

(

etarget, ej
)

.
4. Repeat Steps 7.35.1 to 7.35.3 for 10 different videos and different targets.
5. Give Matlab script to display a 2D plot C

(

etarget, ej
)

against videos 1, · · · , 10.
6. Give Matlab script to display a 3D contour plot C

(

etarget, ej
)

against Cdist(

etarget, ej
)

and Cshape
(

etarget, ej
)

for the 10 selected videos.
7. Comment on the results of the 2D and 3D plots obtained. �

Fig. 7.13 Contour edge pixels from the edgelet in Fig. 7.12.2

7.9 Maximum Edgelets

The first new element in object recognition in tessellated images is the introduction
of maximumMNC contour edgelets (denoted bymaxei) that are edgelets containing
all contour edge pixels, i.e.,

7.9 Maximum Edgelets 235

max|ei| = no. of contour edge pixels , not just straight edge endpoints.

Example 7.36 Let ei denote the edgelet Fig. 7.12.2, which is the ith edgelet in a
collection of tessellated video frames. Edgelet ei contains 9 mesh generating points.
In otherwords, ei is notmaximal. To obtainmaxei, identify all of the edge pixels along
each contour straight edge. For example, maxei would include the endpoints g5, g6 as
well as the interior pixels in the contour straight edge g5g6 shown in Fig. 7.13. �

Problem 7.37 Let V be a video containing Voronoï tessellated frames. Write a
Matlab script to do the following:

1. Crop each video frame (select only one or more the central rectangular regions,
depending on the size of the rectangles used to partition a video frame). Work
with the central rectangular region for the next steps.

2. Tessellate each frame using SURF points as mesh generators. Experiment with
the number of SURF points to use as mesh generators, starting with 10 SURF
points.

3. Find the MNCs in each tessellated frame.
4. Display the MNC in the tessellated frame. Highlight the nucleus in red and the

polygons surround the nucleus in yellow, all with with 50% opacity (adjust the
opacity so that the subimage underlying the MNC can be clearly see).

5. For the selectedMNC, determine themaximumfine contour edgelet for theMNC
(call it maxei).

6. Display (plot) the points in maxei by itself.
7. Display (plot) the points (in red) in maxei superimposed on the image MNC.
8. Repeat Steps 1 to 7 for 10 different videos.
9. Comment on the results obtained. �

Fig. 7.14 Four sample MNCs in a Voronoï mesh

236 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

7.15.1: fine edgelet 7.15.2: coarse edgelet

Fig. 7.15 Fine and coarse MNC contour edgelets

7.9.1 Coarse Contour Edgelets

The second new element is the inclusion of coarse contour edgelets in the study of
object shapes in tessellated digital images. Until now, the focus has been on fine
contour edgelets define by the straight edges connecting the generating points for all
polygons adjacent to the nucleus in a mesh MNC. Now we want to consider edgelets
defined by the straight edges connecting the generating points for the polygons
surround the fine contour polygons.

Example 7.38 Let maxefine denote a maximum fine contour edgelet and let
maxecoarse denote a maximum coarse contour edgelet. For example, in Fig. 7.15.1,
the dotted lines · · · · · · represent the endpoints and interior straight edge pixels
in a fine MNC contour edgelet maxefine in the Voronoï mesh shown in Fig. 7.14. In
Fig. 7.15.1, the dotted lines · · · · · · represent the endpoints and interior straight edge
pixels in a coarse MNC contour edgelet maxecoarse in the Voronoï mesh shown in
Fig. 7.14. �

Problem 7.39 Let V be a video containing Voronoï tessellated frames. Write a
Matlab script to do the following:

7.9 Maximum Edgelets 237

1. Crop each video frame (select only one or more the central rectangular regions,
depending on the size of the rectangles used to partition a video frame). Work
with the central rectangular region for the next steps.

2. Tessellate each frame using SURF points as mesh generators. Experiment with
the number of SURF points to use as mesh generators, starting with 10 SURF
points.

3. Find the MNCs in each tessellated frame.
4. Display the MNC in the tessellated frame. Highlight the nucleus in red and the

polygons surround the nucleus in yellow, all with with 50% opacity (adjust the
opacity so that the subimage underlying the MNC can be clearly see).

5. For the selectedMNC, determine themaximumfine contour edgelet for theMNC
(call it maxei).

6. Display (plot) the points in maxei by itself.
7. Display (plot) the points (in red) in maxei superimposed on the image MNC.
8. Repeat Steps 1 to 7 for 10 different videos.
9. Comment on the results obtained. �

7.9.2 Connected Mesh Regions that are MNCs

Let MNC1,MNC2 be a pair of maximal nucleus clusters in a Voronoï tessellation.
MNC1,MNC2 are connected, provided the MNCs have adjacent polygons or have
at least one polygon in common (see, e.g., Fig. 7.16).

Fig. 7.16 Three connected
MNCs in a Voronoï mesh

238 7 Video Processing. An Introduction to Real-Time and Offline Video Analysis

7.17.1: MNC1, MNC2 have adja-
cent Voronoï mesh polygons

7.17.2: MNC1, MNC3 share
three Voronoï mesh polygons

Fig. 7.17 Two forms of connected MNCs

Example 7.40 Let MNC1,MNC2 be represented in Fig. 7.17.1. This pair of

MNCs is connected, since they have a pair of adjacent Voronoï regions. It
is also possible for a pair of MNCs to have one or more Voronoï regions in com-
mon. In Fig. 7.17.2, MNC1,MNC3 have three polygons in common. In both cases,
these MNCs are considered strongly connected, since they share more than one
pixel. �

Problem 7.41 Let V be a video containing Voronoï tessellated frames. Write a
Matlab script to do the following:

1. Crop each video frame (select only one or more the central rectangular regions,
depending on the size of the rectangles used to partition a video frame). Work
with the central rectangular region for the next steps.

2. Tessellate each frame using SURF points as mesh generators. Experiment with
the number of SURF points to use as mesh generators, starting with 10 SURF
points.

3. Find the MNCs in each tessellated frame.
4. Determine if theMNCS are connected by adjacent polygons. If a pair of adjacent

MNCsare found, display theMNCsandhighlight in orange (or someother bright
colour) the adjacent polygons.

5. Determine if theMNCS are connected by shared polygons, i.e., MNCs that have
one or more polygons in common. If a pair of MNCs with shared polygons are
found, display the MNCs and highlight in orange (or some other bright colour)
the shared polygons.

7.9 Maximum Edgelets 239

6. Display each MNC in the tessellated frame. Highlight the nucleus in red and
the polygons surround the nucleus in yellow, all with with 50% opacity (adjust
the opacity so that the subimage underlying the MNC can be clearly see).

7. For the selected MNC, determine the maximum fine contour edgelet for the
MNC (call it maxei).

8. Display (plot) the points in maxei by itself.
9. Display (plot) the points (in red) in maxei superimposed on the image MNC.

10. Repeat Steps 1 to 9 for 10 different videos.
11. Comment on the results obtained. �

Chapter 8
Lowe Keypoints, Maximal Nucleus Clusters,
Contours and Shapes

Fig. 8.1 30 keypoints in Dirichlet tessellation of CN train video frame

This chapter carries forward the use of Voronoï meshes superimposed on digital
images as a means revealing image geometry and the shapes that result from contour
lines surrounding maximal nucleus clusters (MNCs) in a mesh. Recall that every
polygon in a Voronoï mesh is a nucleus of a cluster of polygons. Here, the term
nucleus refers to the fact that in each MNC, there is always a polygon that is a
cluster center. For more about this, see Appendix B.12 (MNC) and Appendix B.13
(nucleus).

The focus of this chapter on an image geometry approach to image and scene
analysis. To facilitate image and scene analysis, a digital image can be viewed as a
set of points (pixels) susceptible to the whole spectrum of mathematical structures
commonly found in geometry and in the topology of digital images.

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2_8

241

242 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

The typical geometry structures found in image geometry include points, lines,
circles, triangles, andpolygons aswell equations that specify the positions and config-
urations of the structures. In other words, image geometry is an analytic geometry
view of images. In digital images, these geometric structures also include image
neighbourhoods, image clusters, image segments, image tessellations, collections of
image segment centroids, sets of points nearest a particular image point such as a
region centroid, image regions gathered together as near sets, adjacent image regions,
and the geometry of polygonal image regions.

Another thing to notice that is the topology of digital images. A topology of
digital images (or image topology) is the study of the nearness of pixels to sets of
pixels. Such a topological approach to digital images leads to meaningful groupings
of the parts of a digital image that includes sets of pixels with border pixels excluded
(open sets) or sets of pixels that with border pixels included (closed sets). This basic
approach in the study of images is a direct result of A. Rosenfeld’s discovery of 4-
and 8-neighbourhoods [170] (see, also, [94, 142]).

A tessellation of an image is a tiling of the image with polygons. The polygons
can have varying numbers of sides.

Example 8.1 Sample Corner-Based Tessellated Image.

(4gon covering most of the fisherman’s hat).
An example of a Dirichlet (aka Voronoï) tessellated image is the fisherman shown
in Fig. 8.1. Matlab script Appendix A.2 is used to produce this image tiling with 233
corners. The red dots • identify locations of corners in the image. Notice the red dots
in the extreme box corners of the image (these are added to provide a more accurate
tessellation). Without these box corners, the tiling of the image drifts into infinity.
The polygons in this form of tiling have varying numbers of sides. A more accurate
tiling of an image image results fromwhat are known as SIFT (scale-invariant feature
transform) keypoints. More about this later. �

The fact that structured images reveal hidden information in images is the main
motivation for tessellating an image. Structured images are then analysed in terms
of their component parts such as subsets of image regions, local neighbourhoods,
regional topologies, nearness and remoteness of sets, local convex sets andmappings
between image structures.

8.1 Image Analysis

Image analysis focuses on various digital image measurements, e.g., pixel size, pixel
adjacency, pixel feature values, pixel neighbourhood membership, pixel gradient
orientation, pixel gradient magnitude, pixel intensity (either colour channel intensity
or greyscale intensity), pixel intensities distribution (histograms), closeness of image

8.1 Image Analysis 243

neighbourhoods, binning (collecting pixel intensities within a particular range in a
bin or bucket) image size, and image resolution (see, e.g., Fig. 8.2 showing HSV
pixel intensities). Another important part of image analysis is the detection of pixel
features that are invariant to image scaling, translation, rotation and partially invariant
to illumination changes and affine or 3D projection. This can be done using D.G.
Lowe’s SIFT (Scale-Invariant Feature Transform) [115] (see, also, [116]). For more
about this, see Sect. 8.8.

Each image pixel has its own geometry with respect to gradient orientation, gra-
dient magnitudes in the x- and y-directions, and what is known as edge strength.
The edge strength of a pixel equals its gradient magnitude. The implementation of
SIFT leads to the detection of what are known as image keypoints, which are those
pixels that have different gradient orientations and gradient magnitudes. For more
about this, see Sect. 8.6.

Binning provides a basis for the construction of image histograms. An excellent
introduction to binning is given by W. Burger and M.J. Burge [21, Sect. 3.4.1] (for
more about this, see Sect. 3.1).

Fig. 8.2 HSV pixel
intensities

There are a number of important region-based approaches in image analysis are
isodata thresholding (binarizing images), Otsu’s method (greyscale image thresh-
olding), watershed segmentation (computed using a distance map from foreground
pixels to background regions), maximum Voronoï mesh nuclei (identifying mesh
polygons with the maximum number of sides), and non-maximum suppression
(finding local maxima by suppressing all pixels that are less likely than their sur-
rounding pixels) [211]. In image analysis, object and background pixels are asso-
ciated with different adjacencies (neighbourhoods) [3]. There are two basic types

http://dx.doi.org/10.1007/978-3-319-52483-2_3

244 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

of neighbourhoods, namely, adjacency neighbourhoods [102, 170] and topological
neighbourhoods [77, 142]. Using different geometries, an adjacency neighbourhood
is defined by pixels adjacent to a given pixel. Adjacency neighbourhoods are com-
monly used in edge detection in digital images.

Fig. 8.3 Fingerprint Pixel
Keypoints = •

8.2 Scene Analysis

Scene analysis focus on the structure of digital images.
An image scene is a snapshot of what a camera sees at an instant in time. Image

structures include shapes of image objects, dominant image shapes, and image geom-
etry (e.g., subimages bounded by polygons in a tessellated image). Video frames offer
a perfect hunting ground for image structures that change or remain fixed over time.

Fig. 8.4 HSV hues

8.2 Scene Analysis 245

A visual scene is a collection of objects in a visual field that captures our attention.
In human vision, a visual field is the total area in which objects can be seen. A normal
visual field is about 60◦ from the vertical meridian of each eye and about 60◦ above
and 75◦ below the horizontalmeridian.A sampleDirichlet tessellation of a 640 × 480
digital image containing fisherman scene is shown in Fig. 8.1. Here, the locations of
up to 60 image key colour-feature values are the source of sites used to generate the
fisherman diagram. The • indicates the location of a keypoint, i.e., a pixel with a
particular gradient orientation (Fig. 8.3).

Example 8.2 Fingerprint Pixel Keypoints.
Examples of pixel keypoints (each keypoint pixel has a different gradient orientation
and gradient magnitude) are shown as red • bullets in the fingerprint subimage in
Fig. 8.3. �

Example 8.3 Visualizing Edge Pixel Gradients.
The fingerprint subimage in Fig. 8.4 displays colourized pixel gradients in the HSV
colour space, i.e., the three gradients for each pixel are used to select HSV channel
values, where

{hue, saturation, value} = {orientation, xGradientMag, yGradientMag} .

The edge pixels of a fingerprint are displayed with varying colours and intensities
in Fig. 8.2. The HSV channel values for each pixel are determined using the gradient
orientation (Hue), gradient magnitude in the x-direction (Saturation) and gradient
magnitude in the y-direction (Value) of each edge pixel are combined to achieve
a visualization of the pixel gradient information. To see how this is done, see the
Mathematica script 6 in Appendix A.8.5. Try doing the same thing using the RGB
and Lab colour spaces. Recall that the CIE Lab color space describes colours visible
to the human eye. Lab is a 3D color space model, where L represents lightness of
the colour, the position of the colour between red/magenta and green along an a axis,
and the position of the colour between yellow and blue along a b axis. Hint: see
Matlab script A.37 and Mathematica script 7 in Appendix A.8.5. �

Source of Image Geometry Information

The important thing to notice is that a Voronoï region V (p) is a set of
all points nearer to a particular generating point p ∈ S than to any other
generating point in the set of generating points S. Hence, the proximity
of each point in the interior of a Voronoï region V (p) is a source of
image geometry information about a particular generating point such as
a corner, centroid, or keypoint in a digital image scene. �

246 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

The scale-invariant feature transform (SIFT) transform by David Lowe is usually
used for image keypoint detection.

Fig. 8.5 Keypoints =+

The foundations for scene analysis are built on the pioneering work by
A. Rosenfeld work on digital topology [98, 168–172] (later called digital geom-
etry [94]) and others [39, 99, 102, 104, 105]. The work on digital topology runs
parallel with the introduction of computational geometry by M.I. Shamos [175] and
F.P. Preparata [158, 159], building on the work on spatial tessellations by G. Voronoi
[201, 203]and others [27, 53, 64, 103, 124, 196].

To analyze and understand image scenes, it is necessary to identify the objects
in the scenes. Such objects can be viewed geometrically as collections of connected
edges (e.g., skeletonizations or edges belonging to shapes or edges in polygons) or
image regions viewed as sets of pixels that are in some sense near each other or set of
points near a fixed point (e.g., all points near a site (also, seed or generating point) in a
Voronoï region [38]). For this reason, it is highly advantageous to associate geometric
structures in an image with mesh-generating points (sites) derived from the fabric of
an image. Image edges, corners, centroids, critical points, intensities, and keypoints
(image pixels viewed as feature vectors) or their combinations provide ideal sources
of mesh generators as well as sources of information about image geometry.

8.3 Pixel Edge Strength 247

Fig. 8.6 Image geometry: pixel gradient orientation at location (x, y)

8.7.1: 13 Strength Radii 8.7.2: 89 Strength Radii

Fig. 8.7 Two sets of intensity image edge pixel strengths represented by circle radii magnitudes.
The orientation angle of each radius corresponds to the gradient orientation of the circle center
keypoints

8.3 Pixel Edge Strength

This sectionbriefly looks at pixel edge strength (also calledpixel gradientmagnitude).
The edge strength of pixel Img(x, y) (also called the pixel gradient magnitude)

is denoted by E(x, y) and defined by

E(x, y) =
√

(
∂ Img(x, y)

∂x

)2

+
(

∂ Img(x, y)

∂y

)2

(Pixel edge strength)

=
√

Gx (x, y)2 + Gy(x, y)2.

248 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

Example 8.4 Intensity Image Pixel Edge Strengths.
The length of the radius of the large circle surrounding the head in Fig. 8.5 represents
the edge strength of the pixel in the center of this circle. The angle of this radius
(approximately 75◦) represents the gradient orientation of the central pixel. The cir-
cles themselves are called gradient orientation circles. Each circle center is called
a keypoint (called a Speeded-Up Robust Features (SURF) point in Matlab, which
is a rendition of the original D.G. Lowe Scale Invariant Feature Transform (SIFT)
point [116]). In Mathematica®, keypoints are called interest points. This large head
circle comes from the collection of 13 gradient orientation circles in Fig. 8.7.1. Again,
for example 89 gradient orientation circles are displayed in Fig. 8.7.2. The SURF
points found in an image will each have different edge strength and gradient orienta-
tion.Using the edge strength of each pixel, it is possible to use the≤ to induce a partial
ordering of the all keypoints found in an image. To experiment finding keypoints in
different intensity images, try the Matlab script A.62 in Appendix A.8.3. �

It is possible to control howmany SURF points to choose asmesh generators. This
choice is important, since typical scenes either in single shot images or, especially,
in video frames, there are many different objects.1

Example 8.5 Colour Image Pixel Edge Strengths.
A collection of 13 gradient orientation circles in a colour image are displayed
in Fig. 8.14.2. Again, for example 89 gradient orientation circles are displayed in
Fig. 8.14.3. To experiment finding keypoints in different colour images, try the Mat-
lab script A.62 in Appendix A.8.3. In this script, an extra step is needed to convert
the colour image to an intensity image. �
Remark 8.6 Edge Pixel Strength Geometry.
A sample pixel edge strength is represented by the length of the hypotenuse in see
Fig. 8.7.1. This is part of the image geometry shown in Fig. 8.6, illustrated in terms
of the edge pixels along the whorls of a fingerprint. Here is a summary of the results
for two pixel edge strengths experiments.

cameraman.tif 180 keypoints found (13 and 89 edge strengths displayed in the
intensity image in Fig. 8.7).

fisherman.jpg 1051 keypoints found (13 and 89 edge strengths displayed in the
intensity image in Fig. 8.14).

The analog of edge pixel strength in 2D images is the length of the radius of a sphere
with a keypoint at is center in a 3D image. In either case, keypoints provide a basis for
object recognition and solid foundation for the study of image geometric patterns in
2D and 3D images. A common approach in the study of image objects and geometry
is to used keypoints as generators of either Voronoï or Delaunay tessellations of
images. In either case, the result image mesh reveals clusters of polygons. Recall
that every mesh polygon is the nucleus of a mesh nerve. Often, interest (key) points

1See answer 171744 in http://www.mathworks.com/matlabcentral/answers/ for an approach to
selecting the number of SURF points.

http://www.mathworks.com/matlabcentral/answers/

8.3 Pixel Edge Strength 249

tend to cluster around mesh polygons in image regions where the image entropy
(and corresponding information levels) is highest. Those high entropy nucleus mesh
cluster are good hunting grounds for the recognition of image objects and patterns.
Mesh nucleus clusters are examples of Edelsbrunner-Harer nerves [42] (see, also,
[148, 150]). �

Fig. 8.8 Sample cropped traffic image

8.4 Cropping and Sparse Representations of Digital Images

For complex video frames such as traffic video frames, it is necessary to crop each
frame and then select only a portion of the cropped frame to tessellate. By cropping
an image, we mean removing the outer parts of an image to isolate and magnify a
region of interest. See, for example, the regions in the sample cropped traffic video
frame in Fig. 8.8. For a traffic video, a promising approach is to crop the central part
of each frame. See, e.g., P. Knee [95] for common approaches to cropping an image.
A sparse representation of an image is some form of either a reduction or expansion
of the image. Repeated sparse representation results in a sequence of images called
a Gaussian pyramid by P.J. Burt and E.H. Adelson [22].

Remark 8.7 Sparse Representations.
Sparse representation of digital images is a promising research area (basically,
a followup to the approach suggested by P. Knee [95]). See, e.g., P.J. Burt and
E.H. Adelson [22] and, more recently, for scalable visual recognition by B. Zhao
and E.P. Xing [219]. The article by B. Zhao and E.P. Xing not only presents an

250 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

Fig. 8.9 Sample traffic video frame image

Fig. 8.10 Sample cropped traffic video frame image

interesting approach to scalable visual recognition, it also gives an extensive review
of the literature for this research area in computer vision. For a Matlab script that
illustrates a Gaussian pyramid scheme. A pyramid scheme is a construction of a
sequence of gradual image changes. TheMathWorks approach in aGaussian pyramid
scheme yields two different ways by constructing a sequence of image reductions or
a sequence of image expansions, see script A.35 in Appendix A.8.1. �

Example 8.8 Sparse Representations of a Cropped Image.
A sample traffic video frame is shown in Fig. 8.9. This image is complex and has
more information than we want. In the search for interesting shapes, it helps to crop
a complex image, selecting that part of image we want to explore. For a sample
cropped traffic image, see Fig. 8.10. Next try out reduction and expansion pyramid
schemes on the cropped image, using scriptA.35 inAppendixA.8.1. For the sequence
of reduced images, see Fig. 8.11.1 and for the sequence of expanded images, see
Fig. 8.11.2. In the sequence of shadow shapes in Fig. 8.12, extracted from the expan-
sion images in Fig. 8.11.1, notice that the second of these shadow shapes in Fig. 8.12.2

8.4 Cropping and Sparse Representations of Digital Images 251

8.11.1: Pyramid reduction

8.11.2: Pyramid expansion

Fig. 8.11 Two sets of sparse representations of a cropped image

8.12.1: Shadow shape

1

8.12.2: Shadow shape

2

8.12.3: Shadow shape

3

Fig. 8.12 Sequence of auto shadow shapes from Fig. 8.11.2

is clearer than the first shadow shape in Fig. 8.12.1 aswell as the third shadow shape in

Fig. 8.12.3. Then in Fig. 8.12.2 provides a good laboratory in the study
of image object shapes using computational geometry techniques from the previous
chapters. �

Example 8.9 Sparse Representations Using Wavelets.
Wavelets are a class of functions that localize a given function with respect to space
and scaling [208]. Formore aboutwavelets, seeY.Shimizu,Z.Zhang,R.Batres [177].
A sample wavelet based sparse representation pyramid scheme is in Fig. 8.13, using
script 4 in Appendix A.8.2. �

252 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

Fig. 8.13 Sample sparse representation pyramid scheme using wavelets

8.5 Shape Theory and the Shapes of 2D Image Objects:
Towards Image Object Shape Detection

Basically, a plane shape like the auto shadow shape in Fig. 8.12.2 is a container
for a spatial region in the plane. In the context of shape detection of objects in
digital images, the trick is to isolate and compare shapes of interest in a sequence
of images such as those found in a video. K. Borsuk was one of the first to suggest
studying sequences of plane shapes in his theory of shapes [17]. For an expository
introduction to Borsuk’s notion of shapes, see K. Borsuk and J. Dydak [18]. Borsuk’s
initial study of shapes has led to a variety of applications in science (see, e.g., the
shape of capillarity droplets in a container by F. Maggi and C. Mihaila [117] and

8.5 Shape Theory and the Shapes of 2D Image … 253

shapes of 2D water waves and hydraulic jumps by M.A. Fontelos, R. Lecaros, J.C.
López-Rios and J.H. Ortega [51]). For more about the basics of shape theory, see
N.J. Wildberger [210]. For shapes from a physical geometry perspective with direct
application in detecting shapes of image objects, see J.F. Peters [145].

Image object shape detection and object class recognition are of great interest
in Computer Vision. For example, basic shape features can represented by bound-
ary fragments and shape appearance can be represented by patches such as the

auto shadow shape in the traffic video frame Fig. 8.12.2. This is
basic approach to image object shape detection by A. Opelt, A. Pinz and A. Zis-
serman in [133]. Yet another recent Computer Vision approach to image object
shape detection reduces to the problem of finding the contours of an image object,
which correspond to object boundaries and symmetry axes. This is the approach
suggested by I. Kokkinos and A. Yuille in [97]. A promising approach in image
object shape detection in video frames is to track changing image object contours
(shapes) and minimizing an energy function that combines region, boundary and
shape information. This approach shape detection in videos is given by M.S. Allili
and D. Ziou in [5].

Basic Approach in Image Object Shape Detection

In the study of object shapes in a particular image, a good practice is to consider
each object shape as a member of a class of shapes. A class of shapes is a set
of shapes with matching features. Then image object shape detection reduces to
checking whether the features of a particular image object shape match the features
of a representative of a known class of shapes. The focus here is on shapemembership
in a particular class of shapes. In other words, a particular shape A is a member of a
known class C , provided the feature values of shape Amatch up with feature values
of a representative shape in class C . For example, an obvious place to look for a
comparable shape feature is shape perimeter length. Similar shapes have similar
perimeter lengths. If we add shape edge colour to the mix of comparable shape
features, then colour image object shapes start dropping into different shape classes,
depending on the shape perimeter length and perimeter edge colour of each shape.

254 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

8.14.1: Salerno Fisherman 8.14.2: 13 Strength Radii

8.14.3: 89 Strength Radii

Fig. 8.14 Two sets of colour image edge pixel strengths represented by circle radii magnitudes.
The orientation angle of each radius corresponds to the gradient orientation of the circle center
keypoints

8.6 Image Pixel Gradient Orientation and Magnitude

This section briefly looks at the derivation of pixel gradient orientation and gradient
magnitudes.

Let Img be digital image and let Img(x, y) equal the intensity of a pixel at
location (x, y). Since Img(x, y) is a function of two variables x, y, we compute the

8.6 Image Pixel Gradient Orientation and Magnitude 255

partial derivative of Img(x, y) with respect to x
(

denoted by ∂ Img(x,y)
∂x

)

, which is

the gradient magnitude of pixel Img(x, y) in the x-direction. The partial derivative
∂ Img(x,y)

∂x is represented, for example, by the • on the horizontal axis in Fig. 8.6.

Similarly, ∂ Img(x,y)
∂y is the gradient magnitude of pixel Img(x, y) in the y −

direction, which is represented, for example, by the• on the vertical axis in Fig. 8.6.
Let Gx (x, y),Gy(x, y) denote the edge pixel gradient magnitudes in the x- and y-
directions, respectively.

Example 8.10 Two Approaches to Computing an Image Partial Derivative.
Let the Rosenfeld 8-neighbourhood of a 2D pixel intensity f (x, y) (denoted by
Nbhd(f (x, y))) be defined by

Nbhd(f (x, y)) =
⎡

⎣

f (x − 1, y + 1) f (x, y + 1) f (x + 1, y + 1)
f (x − 1, y) f (x, y) f (x + 1, y)

f (x − 1, y − 1) f (x, y − 1) f (x + 1, y − 1)

⎤

⎦ =
⎡

⎣

0 0 0
0 1 1
0 1 2

⎤

⎦ .

The numbers such as f (x − 1, y) = 0 f (x, y) = 1 f (x + 1, y) = 1 are pixel inten-
sities with the center of neighbourhood Nbhd(f (x, y)) at f (x, y) = 1 (very close to
black). Next, use Li M. Chen’s method of computing the discrete partial derivatives
of f (x, y) [29, Sect. 7.2.1, p. 84].

∂ f (x, y)

∂x
= f (x + 1, y) − f (x, y) = 1 − 1 = 0,

∂ f (x, y)

∂y
= f (x, y + 1) − f (x, y) = 0 − 1 = −1.

An alternative to Chen’s method is the preferred widely used approach called the
Sobel partial derivative given by J.L.R. Herran [78, Sect. 2.4.2, p. 23].

∂ f (x, y)

∂x
= 2

4
f (x + 1, y) − f (x − 1, y)

+ 1

4
f (x + 1, y + 1) − f (x − 1, y + 1)

+ 1

4
f (x + 1, y + 1) − f (x − 1, y + 1) = −2

4
− 2

4
= −1.

∂ f (x, y)

∂y
= 2

4
f (x, y + 1) − f (x, y − 1)

256 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

+ 1

4
f (x + 1, y + 1) − f (x + 1, y − 1)

+ 1

4
f (x − 1, y + 1) − f (x − 1, y − 1) = 2

4
+ 2

4
= 1.

The Sobel partial derivative is named after I. Sobel [181]. �

Fig. 8.15 Sample pixel
gradient orientations

Example 8.11 Sample arctan values.
For sample arctan values (imagine pixel gradient orientations), see Fig. 8.15. To
experiment with plotting arctan values, see the Mathematica® notebook 5 in
Appendix A.8.4. �

Let ϑ(x, y) be the gradient orientation angle of the edge pixel Img(x, y) in
image Img. This angle is found by computing the arc tangent of the ratio the edge
pixel gradient magnitudes. Compute ϑ(x, y) using

ϑ(x, y) = tan−1

[
∂ Img(x,y)

∂y
∂ Img(x,y)

∂x

]

= tan−1

[
Gy

Gx

]

(Pixel gradient orientation).

Example 8.12 Highlighted Gradient Orientations.
The number of keypoints in an image can be massive. For this reason, visualizing
the locations of image keypoints is difficult. A solution to this problem is to use
colour to highlight the different keypoints in the their locations in an image. High-
lighted pixel gradient orientations in afingerprint are shown inFig. 8.6. To experiment
with highlighting the gradient orientations of keypoints in different images, see the
Mathematica® notebook 6 in Appendix A.8.5. �

8.7 Difference-of-Gaussians 257

8.16.1: Original image 8.16.2: k=1.5,σ=5.55

8.16.3: k=1.5,σ=0.98

Fig. 8.16 DoG images for different values of k, σ

8.7 Difference-of-Gaussians

ADifference-of-Gaussians (DoG) function is defined by convolving a Gaussian with
an image at two different scale levels and computing the difference between the pair
of convolved images. Let Img(x, y) be an intensity image letG(x, y, σ) be a variable
scale Gaussian defined by

258 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

8.17.1: Original image 8.17.2: k=1.5,σ=5.55

8.17.3: k=1.5,σ=0.98

Fig. 8.17 Cameraman DoG images for different values of k, σ

8.7 Difference-of-Gaussians 259

G(x, y, σ) = 1

2πσ 2
e− x2+y2

2σ2 .

Let k be a scaling factor and let ∗ be a convolution operation. FromD.G. Lowe [116],
we obtain a difference-of-Gaussians image (denoted by D(x, y, σ) defined by

D(x, y, σ) = G(x, y, kσ) ∗ Img(x, y) − G(x, y, σ) ∗ Img(x, y)

Then use D(x, y, σ) to identify potential interest points that are invariant to scale
and orientation.

Example 8.13 Fisherman DoG Images.
For the picture of the fisherman in Fig. 8.16.1, the pair of images in Fig. 8.16 display
the results of the Difference-of-Gaussian approach for two sets of values for the
scaling factor k and standard deviation σ using Matlab script A.38 in Appendix
A.8.6.

DoG.1 Use k = 1.5, σ = 5.55 to produce the DoG image in Fig. 8.16.2.
DoG.2 Use k = 1.5, σ = 0.98 to produce the DoG image in Fig. 8.16.3.

Smaller standard deviations in a Difference-of-Gaussians (DoGs) lead to better DoG
images. �

Example 8.14 Cameraman DoG Images.
For the picture of the cameraman in Fig. 8.16.1, the pair of images in Fig. 8.17
display the results of the Difference-of-Gaussian approach for two sets of values for
the scaling factor k and standard deviation σ using Matlab script A.38 in Appendix
A.8.6.

DoG.1 Use k = 1.5, σ = 5.55 to produce the DoG image in Fig. 8.17.2.
DoG.2 Use k = 1.5, σ = 0.98 to produce the DoG image in Fig. 8.17.3.

Again, notice that smaller standard deviations in a DoG lead to better DoG
images. �

260 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

8.8 Image Keypoints: D.G. Lowe’s SIFT Approach

The Scale-Invariant Feature Transform (SIFT) introduce by D.G. Lowe [115, 116]
is a mainstay in solving object recognition as well as object tracking problems. SIFT
works in a scale space to capture multiple scale levels and image resolutions. There
are four main stages in a SIFT computation on a digital image.

SIFT.1 Use difference-of-Gaussian function to identify potential interest points that
are invariant to scale and orientation.
Note: This step is implemented using the approach in Examples 8.13 and
8.14.

SIFT.2 Select keypoints based on measures of their stability. In this case, edge pixel
strengths are partially ordered using the relation ≤. Choose a number k of
keypoints to select and then select the edge pixels that have the highest
strengths.
Note: This step is implemented using the approach in Example 8.4 for inten-
sity images, in Example 8.5 for colour images and explained in Remark 8.6.

SIFT.3 One of the features of each keypoint is its gradient orientation (direction).
Keypoints distinguished based on their gradient orientation.
Note: Two approaches to computing the partial derivatives needed to find
pixel gradient directions are given in Example 8.10.

SIFT.4 Local pixel gradient magnitudes in the x- and y- directions are used to
compute pixel edge strengths. Note: See Sect. 8.6 for an explanation and
examples. �

Remark 8.15 Keypoints, Edge Strength and Mesh Nerves.
A sample pixel edge strength is represented by the length of the hypotenuse in see
Fig. 8.7.1. This is part of the image geometry shown in Fig. 8.6, illustrated in terms
of the edge pixels along the whorls of a fingerprint. Here is a summary of the results
for two pixel edge strengths experiments.

chipmunk.jpg 860 keypoints found (144 and 233 keypoints displayed in the inten-
sity image in Fig. 8.14).

cycleImage.jpg 2224 keypoints found (144 and 233 keypoints displayed in the
intensity image in Fig. 8.7).

carPoste.jpg 902 keypoints found (144 and 233 keypoints displayed in the inten-
sity image in Fig. 8.14).

The analog of edge pixel strength in 2D images is the length of the radius of a
sphere with a keypoint at is center in a 3D image. In either case, keypoints pro-
vide a basis for object recognition and solid foundation for the study of image
geometric patterns in 2D and 3D images. A common approach in the study of
image objects and geometry is to used keypoints as generators of either Voronoï
or Delaunay tessellations of images (see, e.g., Fig. 8.18 for a Voronoi tessellation of
a cycle image using 144 keypoints and Fig. 8.19 for a tessellation using 377 key-
points). In either case, the result image mesh reveals clusters of polygons. Recall

8.8 Image Keypoints: D.G. Lowe’s SIFT Approach 261

8.18.1: cyle image 8.18.2: 144 keypoints

8.18.3: cyle Voronoï mesh

Fig. 8.18 144 keypoint-generated Voronoï mesh

262 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

that every mesh polygon is the nucleus of a mesh nerve. Often, interest (key) points
tend to cluster around mesh polygons in image regions where the image entropy
(and corresponding information levels) is highest. Those high entropy nucleus mesh
cluster are good hunting grounds for the recognition of image objects and patterns.
Mesh nucleus clusters are examples of Edelsbrunner-Harer nerves [42] (see, also,
[148, 150]) . �

8.9 Application: Keypoint Boundaries of Image
Mesh Nuclei

This section introduces a practical application of keypoints found in the polygons
along the boundary of an image mesh nucleus. This is a continuation of the study
of different forms of mesh edgelets introduced in Problem 7.31. For more about
edgelets, see Appendix B.5.

Recall that there are at least four different types contour edgelets surrounding
the nucleus in a Maximal Nucleus Cluster (MNC). A nucleus is the central and
most important part of a mesh cluster. For more about contour edgelets, see Appen-
dixB.3. Detection of variousmesh nuclei leads to the study ofmesh nerves, which are
collections of what are known as MNC spokes. Each spoke is a combination of a
MNC nucleus and an adjacent polgon. A mesh nerve is a collection of spoke-like
projections centered on a mesh nucleus. Think of a maximal nucleus cluster (MNC)
like the one in the Voronoï mesh superimposed on the Poste vehicle outside a train
station in Salerno, Italy, shown in Fig. 8.20 and in 8.21.2 as a collection of spokes
radiating out from an MNC nucleus. Mesh nerves are useful in the detection and
classification of image objects. For more about mesh nerves, see Appendix B.13.
The four basic types of MNC contour edgelets are given next.

Types of MNC Contour Perimeters

IP Edgelet fine perimeter (our starting point-call it interior perimeter or briefly
IP). This form of nucleus perimeter earns the name interior, since this edgelet
perimeter is inside the level 1 coarse perimeter S1P.

S1P: Level 1 coarse perimeter 1 (our starting point-call it supra Level 1
perimeter or briefly S1P). This form of nucleus contour edgelet earns the name
supra 1 contour, since this edgelet consists of line segments between keypoints
(or, in general, mesh sites) of the polygons that are adjacent to the IP polygons. A
S1P edgelet defines the most primitive of the coarse shapes of an MNC, namely,
a S1P shape.

S2P: Level 2 coarse perimeter 2 (supra 2 perimeter or briefly S2P) that con-
tains a supra 1 perimeter. This form of coarse contour edgelet earns the name
supra 2 contour, since this edgelet consists of line segments between keypoints

http://dx.doi.org/10.1007/978-3-319-52483-2_7

8.9 Application: Keypoint Boundaries of Image Mesh Nuclei 263

8.19.1: 377 keypoints

8.19.2: cyle Voronoï mesh

Fig. 8.19 377 keypoint-generated Voronoï mesh

264 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

Fig. 8.20 Fine edgelet in a maximal nucleus cluster (MNC)

of the polygons that are along the outside border of the S1P polygons. A S2P
edgelet defines an intermediate coarse shapes of an MNC, namely, a S2P shape.

S3P: Level 3 coarse perimeter 3 (supra 3 perimeter or briefly S3P) that con-
tains a S2P and S1P. This form of coarse contour edgelet earns the name supra
3 contour, since this edgelet consists of line segments between keypoints of the
polygons that are along the outside border of the S2P polygons. A S2P edgelet
defines a maximally coarse shapes of an MNC, namely, a S3P shape.

The simplest of the nucleus contours is the edgelet formed by connecting the
keypoints inside the Voronoï mesh polygons that are adjacent to an MNC nucleus.
This is the fine nucleus contour (also called the fine perimeter) of an MNC. The
sub-image inside a fine contour usually encloses part of an object of interest. The
length of a fine contour (nucleus perimeter) traces the shape of small objects and is a
source of useful information in fine-grained recognition of an object that has a shape
that closely matches the shape of a target object.

Example 8.16 Fine Edgelet = Interior Perimeter IP.
An example of an IP (interior perimeter) edgelet is shown in Fig. 8.21.1. This edgelet
is formed by the connected blue line segments•—• using the keypoints surrounding
the nucleus. This edgelet reflects the underlying geometry for a maximal nucleus
cluster. An in situ view of this edgelet is shown in Fig. 8.21.2. The Voronoï mesh

8.9 Application: Keypoint Boundaries of Image Mesh Nuclei 265

8.21.1: IP edgelet geometry

8.21.2: Image IP

Fig. 8.21 Visualized image geometry via MNC fine contour edgelet

shown in Fig. 8.21.2 is constructed with 89 keypoints. This image edgelet tells us
something about the geometry of a subimage containing the maximal nucleus. This
geometry appears in the form of a shape described by the IP edgelet. For more about
shapes, see B.18. In the best of all possible worlds, this edgelet will enclose an
interesting image region that contains some object. �

266 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

8.10 Supra (Outer) Nucleus Contours

Coarse nucleus contours are useful in detecting the shapes of large image objects.
A coarse nucleus contour is found by connecting the keypoints inside the Voronoï
mesh polygons that are along the border of the fine perimeter polygons of an MNC
nucleus. Coarse contours are also called supra- or outer-contours in an MNC. The
length of a coarse contour (nucleus perimeter) traces the shape of medium-sized
objects covered by an MNC. The S1P (level 1 supra perimeter) is the innermost
MNC coarse contour.

Example 8.17 Supra Level 1 (S1P) MNC Perimeter.
The combination of an S1P contour and IP (interior perimeter) contour surrounding
an MNC nuclueus is shown in Fig. 8.23.2. In this example, S1P contour is viewed in
isolation from the IP contour.

A S1P (coarse perimeter) edgelet is shown in Fig. 8.22. This edgelet is formed by
the connected blue line segments •—• using the keypoints in the polygons along
the border of the fine contour polygons surrounding a nucleus polygon. This edgelet
gives us the outer shape of an area covered by MNC polygons. An in situ view of
this S1P edgelet is shown in Fig. 8.23.3. This image edgelet tells us something about
the geometry of a subimage covered by a maximal nucleus polygon. This geometry
appears in the form of a shape described by the S1P edgelet.

Notice that most of the polygons in the Voronoï mesh covering the image in
Fig. 8.23.1 have been suppressed in Fig. 8.23.2. Instead, only the S1P polygons (dis-

played as red polygons) are shown in in Fig. 8.23.3. These S1P polygons

Fig. 8.22 S1P coarse
edgelet geometry in a
maximal nucleus cluster
(MNC)

8.10 Supra (Outer) Nucleus Contours 267

8.23.1: Voronoï mesh

8.23.2: S1P edgelet on mesh 8.23.3: S1P edgelet on mesh

8.23.4: S1P edgelet by itself

Fig. 8.23 Visualized image geometry via MNC S1P coarse contour edgelet

268 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

Fig. 8.24 Closeup of S1P
nucleus

surround a yellow MNC nucleus (for a closeup view of an S1P nucleus,
see Fig. 8.24). Because we are interested in seeing what part of a subimage is covered
by a S1P perimeter, the S1P polygons are suppressed in Fig. 8.23.4. Now only S1P
perimeter is displayed as a sequence of connected green line segments •—• using
the keypoints as endpoints of each line segment in the S1P. Clearly the S1P contour
shape encloses more of the middle part of the Poste vehicle than a fine IP contour
shape. For more about shapes, see Appendix B.18. In the best of all possible worlds,
this edgelet will enclose an interesting image region that contains some object. �

8.11 Quality of a MNC Contour Shape

Quality of an MNC contour shape

The quality of theMNC contour shape will depend on the target shape that we select.
In an object recognition setting, a target shape is the shape of an object we wish to
compare with sample shapes in either a single image or in a sequence of video image
frames. The quality of an MNC contour shape is high in cases where the perimeter
of a target shape is close to the length of a sample MNC contour perimeter. In other

8.11 Quality of a MNC Contour Shape 269

words, the quality of an MNC contour shape is proportional to the closeness of a
target contour shape to a sample contour shape.

8.12 Coarse S2P and S3P (Levels 2 and 3) MNC Contours

This section pushes the envelope for MNC contours by considering Level 2 and level
3 MNC contours, i.e3., S2P and S3P MNC contours. S2P contours are often tightly
grouped around S1P contours in an MNC cluster on an image, since the sites (e.g.,
keypoints or corners) are usually found in the interior of an image rather than along
the image borders. This often happens, provided the number of selected sites is high
enough.

Example 8.18 Coarse S1P and S2P Maximal Nucleus Cluster Contours.
The number of keypoints is 89 in the construction of theVoronoïmesh on thePoste car
image in Fig. 8.25. Notice how the keypoints cluster around the driver andmonogram
on the Poste vehicle as well as around the Poste wheels. So we can expect to find a
maximal nucleus cluster in the middle of the Poste car shown in Fig. 8.23.4.

A combination of S1P, S2P and S3P contour edgelets are shown in Fig. 8.26. An
S2P contour edgelet is shown in white in Fig. 8.26. Notice how the S2P contour is

Fig. 8.25 Groupings of 89 keypoints on Poste Car Mesh

270 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

Fig. 8.26 Sample tightly grouped S2P and S1P contours

tightly grouped around the S1P contour. Here is a summary of the lengths of these
contours:

S1P contour length 943.2667 pixels.
S2P contour length 1384.977 pixels.

For object recognition purposes, comparing an S2P contour in a target image with
an S2P in a sample image such as a video frame is useful. The caution here is that
the tight grouping of the resulting S2P and S1P contours is dependent on the number
of keypoints that you choose. A choice of 89 or higher number of keypoints usually
produces a good result. �

Example 8.19 Keypoint Mesh with S1P, S2P and S3P Maximal Nucleus Cluster
Contours.
A combination of S1P, S2P and S3P contour edgelets are shown in Fig. 8.27. Now
S3P contour is displayed as a sequence of connected red line segments •—• using

8.12 Coarse S2P and S3P (Levels 2 and 3) MNC Contours 271

Fig. 8.27 Sample tightly grouped S3P, S2P and S1P contours

the keypoints as endpoints of each line segment in the S3P. Each S3P line segment
is drawn between the keypoints in a pair of adjacent polygons along the border of
the S2P polygons. Here is a summary of the lengths of these contours:

S1P contour length 943.2667 pixels.
S2P contour length 1384.977 pixels.
S2P contour length 2806.5184 pixels.

Unlike the S2P contour, the line segments in a S3P contour are usually not tightly
grouped around the inner contours surrounding the MNC nucleus. This is reflected
in the number of pixels in the S3P contour, which is more than double the number
of pixels in the S2P contour. The absence of tight grouping reflects the influence of
the image edge and corner polygons in the Voronoï mesh. �

8.13 Experimenting with the Number of Keypoints

So far, we have considered a tessellated image containing only one maximal nucleus
cluster. By varying the number of generating points (either corners or keypoints
some other form of mesh generators), it is possible to vary the number of MNCs

272 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

8.28.1: Voronoï mesh

8.28.2: Dual fine contour IP edgelets

Fig. 8.28 Visualized image geometry via dual, overlapping MNCs

8.13 Experimenting with the Number of Keypoints 273

8.29.1: Dual coarse S1P and fine IP edgelets

8.29.2: Dual coarse S1P edgelets by themselves

Fig. 8.29 Visualized image geometry via dual MNCs coarse contours

274 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

in a tessellated image. The goal is to construct an image mesh that contains either
adjacent or overlapping MNCs, which serve as markers of image objects. Adjacent
MNCs are maximal nucleus clusters in which a polygon in one MNC shares an edge
with a polygon in the other MNC. Overlapping MNCs occur whenever an entire
polygon is common to both MNCs (see, e.g., Figs. 8.28 and 8.29).

After we obtain a Voronoï mesh with multiple MNCs for a selected number of
keypoints, the MNCs can either separated (covering different parts of an image) or
overlapping. It then is helpful to experiment with either small or very large changes in
the number of keypoints in the search for meshes with multiple, overlapping MNCs
that are tightly grouped. The ideal situation is to find overlapping MNCs so that the
difference in the S1P and S2P contours lengths is small. Let ε be a positive number
and let S1Pc, S2Pc be the lengths (in pixels). For example, let ε = 500. Then find
an MNC so that

|S1Pc − S2Pc| < ε.

Notice that neighbouring (in the sense of close but neither adjacent nor overlap-
ping) MNCs are possible. Neighbouring MNCs are MNCs that are either adjacent,
overlapping or separated by at most one polygon.

Fig. 8.30 Sample neighouring and non-neighbouring MNCs

Example 8.20 Neighbouring MNCs.
Several neighbouring and non-neighbouring MNCs are shown in the keypoint-based
Voronoï mesh in Fig. 8.30. In solving an object recognition problem, the shape of an
image region of interest is defined by the perimeter of the region, which is compared
with the shape of subimage covered by a MNC in a sample image. That is, the length
of the contour of a target MNC would be compared with the lengths of each of the
contours of MNCs in a sample image or video frame. Similar shapes reveal similar
image regions covered by MNCs. �

8.13 Experimenting with the Number of Keypoints 275

A mesh with neighbouring MNCs can result in contours that cover a region of
interest in an image.We illustrate this with a small change in the number of keypoints
from Example 8.19, i.e., we select 91 instead of 89 keypoints as generators of a
Voronoï diagram superimposed on an image.

Example 8.21 Edgelet Shapes on Dual, Overlapping MNCs.
The combination of an S1P contour and IP (interior perimeter) contours surrounding
a pair of MNC nuclei is shown in Fig. 8.29.1. Notice that the S1P contour now covers
a large portion of the central portion of the Poste vehicle, which is getting closer to
what we want for object recognition purposes.

A pair of S2P (coarse perimeter) edgelets (in white) overlapping a pair of S2P
edgelets are shown surrounding dual MNC nuclei in Fig. 8.31. These edgelets are
formed by the connected green line segments •—• (S1P coarse contour) and con-
nected white S2P coarse contour using the keypoints in the polygons that include
some border polygons. These edgelet gives us the outer shape of an area covered by
MNC polygons. These mostly concentric image edgelets tell us something about the
geometry of the subimage covered by the dual MNCs.

Surrounding the S2P contours are a pair of S3P edgelets formed by the connected
red line segments•—• (S3P coarse contours). The overlapping S2P and S3P coarse
contours covering the Poste vehicle are shown in Fig. 8.32.

Fig. 8.31 Dual coarse S1P and S2P contours on overlapping MNCs

276 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

Fig. 8.32 Dual S1P, S2P and S3P contours on overlapping MNCs

Notice that most of the polygons in the Voronoï mesh covering the image in
Fig. 8.23.1 have been suppressed in Fig. 8.23.2. With the selection of 91 keypoints as
mesh generators, we obtain dual yellow nuclei in overlapping MNC nuclei, namely,

and (for a closeup view of these dual nuclei, see Fig. 8.33). These

Fig. 8.33 Closeup of dual MNC nuclei

8.13 Experimenting with the Number of Keypoints 277

overlapping MNC nuclei are important, since that cover a part of the image where
neighbouring keypoints are not only close together but also cover a part of the image
where the entropy is highest (in effect, where the information level is highest in this
image). �

8.14 Coarse Perimeters on Dual MNCs

Example 8.22 Coarse Contours Surrounding Dual, Overlapping MNCs.
Because we are interested in seeing what part of a subimage is covered by a S1P
perimeter, the S1P polygons are suppressed in Fig. 8.23.4. Now only S1P perimeter is
displayed as a sequence of connected green line segments•—• using the keypoints
as endpoints of each line segment in the S1P. Clearly the S1P contour shape encloses
more of the middle part of the Poste vehicle than a fine IP contour shape. For more
about shapes, see Appendix B.18. In the best of all possible worlds, this edgelet will
enclose an interesting image region that contains some object. �

Example 8.23 Keypoint Mesh with S1P, S2P and S3P Maximal Nucleus
Cluster Contours.
A combination of S1P, S2P and S3P contour edgelets are shown in Fig. 8.27. Now
S3P contour is displayed as a sequence of connected red line segments •—• using
the keypoints as endpoints of each line segment in the S3P. Each S3P line segment
is drawn between the keypoints in a pair of adjacent polygons along the border of
the S2P polygons. Here is a summary of the lengths of these coarse contours:

S1P contour length 841.8626 pixels.
S2P contour length 1292.1581 pixels.
S2P contour length 2851.7199 pixels.

Unlike the S2P contour, the line segments in the S3P contour are not tightly grouped
around the inner contours surrounding the MNC nucleus. This is reflected in the
number of pixels in the S3P contour, which is more than double the number of pixels
in the S2P contour. The absence of tight grouping reflects the influence of the image
edge and corner polygons in the Voronoï mesh. �

8.15 Rényi Entropy of Image MNC Regions

In this section, we call attention to the Rényi entropy of maximal nucleus clusters
covering image regions with high information levels.

Image region with high entropy .

278 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

It is known that the entropy of an image MNC is higher than the entropy of sur-
rounding non-MNC regions [153]. It is also known that Rényi entropy corresponds
to the information level of a set of data. For each increase in Rényi entropy there is
a corresponding increase in the underlying information level in MNC regions of a
Voronoï mesh on a digital image. This result concerning the entropy of the tessella-
tion of digital images stems from a recent study by E. A-iyeh and J.F. Peters [2]. In
our case, the Rényi entropy of an MNC corresponds to the information level of that
part of an image covered by an MNC.

Let p(x1), . . . , p(xi), . . . , p(xn) be the probabilities of a sequence of events
x1, . . . , xi , . . . , xn and let β ≥ 1. Then the Rényi entropy [164] Hβ(X) of a set
of event X is defined by

Hβ(X) = 1

1 − β
ln

n
∑

i=1

pβ(xi) (Rényi entropy).

Rényi’s entropy is based on the work by R.V.L. Hartley [72] and H. Nyquist [129]
on the transmission of information. A proof that Hβ(X) approaches Shannon entropy
as β −→ 1 is given P.A. Bromiley, N.A. Thacker and E. Bouhova-Thacker in [19],
i.e.,

lim
β−→1

1

1 − β
ln

n
∑

i=1

pβ(xi) = −
n

∑

i=1

pi lnpi .

Fig. 8.34 Single MNC in Voronoï mesh generated by 376 keypoints

8.15 Rényi Entropy of Image MNC Regions 279

Fig. 8.35 3D plots for MNC and non-MNC entropy

Example 8.24 MNC versus non-MNC Entropy on the Poste Tessellation
with 376 Keypoints.
A single MNC in a Voronoï mesh with 376 keypoints is shown in Fig. 8.34. 3D
plots showing the distribution of Rényi’s entropy values with varying β are shown
in Fig. 8.35 for the MNC and non-MNC mesh regions. A comparison of the Rényi’s
entropy values for the MNC and non-MNC region is given in the plot in Fig. 8.36.
Observe that the Rényi’s entropy values of the MNC region sharply increase and
diverge from the non-MNC region. This implies that the information content around
the Poste auto driver’s head covered by the MNC is higher than the surrounding
image regions in this particular Voronoï mesh. �

Example 8.25 MNC versus non-MNC Entropy on the Video Frame Tessellation
with 145 Keypoints.
Dual MNCs in a Voronoï mesh with 145 keypoints is shown in Fig. 8.37. 3D plots
showing the distribution of Rényi’s entropy values with varying β are shown in
Fig. 8.38 for the MNC and non-MNC mesh regions. A comparison of the Rényi’s
entropy values for the MNC and non-MNC region is given in the plot in Fig. 8.39.
Observe that the Rényi’s entropy values of the MNC regions increase monotonically
and are greater than the entropy of the non-MNC regions. This implies that the
information content around the front of the train engines covered by the MNCs is
higher than the surrounding image regions in this particular Voronoï mesh. �

The information of order β contained in the observation of the event xi with
respect to the random variable X is defined by H(X). In our case, it is information
level of the observation of the quality of a Voronoï mesh cell viewed as random event
that is considered in this study.

A main result reported in [2] is the correspondence between image quality and
Rényi entropy for different types of tessellated digital images. In other words, the

280 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

Fig. 8.36 Combined MNC and non-MNC entropy plot for 376-keypoint-based mesh

Fig. 8.37 Dual MNCs in Voronoï mesh generated by 145 keypoints on video frame

Fig. 8.38 3D Plots for MNC and Non-MNC entropy for a 145 keypoint-based video frame

8.15 Rényi Entropy of Image MNC Regions 281

Fig. 8.39 Combined MNC
and Non-MNC entropy plot
for 145-keypoint-based mesh

Fig. 8.40 Rényi entropy
versus quality of tessellated
images

correspondence between the Rényi entropy of mesh cells relative to the quality of
the cells varies for different classes of images.

For example, withVoronoï tessellations of images of humans, Rényi entropy tends
to be higher for higher quality mesh cells (see, e.g., the plot in Fig. 8.40 for different
Rényi entropy levels, ranging from β = 1.5 to 2.5 in 0.5 increments).

8.16 Problems

Problem 8.26 K
Let Img be a Voronoï tessellated image using SURF keypoints. Do the following:

1. Select k keypoints, starting with 10 SURF points.
2. Find the maximal nucleus clusters (MNCs) on the Img.
3. Draw the fine IP edgelet geometry (by itself, not on an image). Use blue for the

IP line segments. See, for example, 1P edgelet geometry in Fig. 8.21.1.
4. Draw the coarse S1P edgelet geometry (by itself, not on an image). Use blue for

the S1P line segments. See, for example, S1P edgelet geometry in Fig. 8.22.

282 8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes

5. Draw the fine IP contour surrounding the MNC nucleus on an image. Use blue
for the IP line segments.

6. Draw the coarse S1P contour surrounding the MNC nucleus on an image. Use
green for the S1P line segments.

7. Draw the coarse S2P contour surrounding the MNC nucleus on an image. Use
white for the S1P line segments.

8. Choose a positive number ε and let S1Pc, S2Pc be the lengths (in pixels) of the
level 1 and level 2 MNC contours, respectively. Adjust ε so that

|S1Pc − S2Pc| < ε.

9. Repeat Step 1 for k = 13, 21, 34, 55, 89, 144, 233, 610 keypoints, until two over-
lapping or adjacent MNCs are found on the Img. �

Problem 8.27 Select 3 different images. Do the following:

1. Select k keypoints, starting with 10 SURF points.
2. Tessellate a selected image Img, covering it with a Voronoï mesh.
3. Find the maximal nucleus clusters (MNCs) on the Img.
4. Compute Rënyi entropy of eachMNC. Hint: Let x be the area of a mesh polygon.

Compute the probability P(x) = 1
x , assuming that the occurrence of polygon area

in an image tessellation is a random event.
5. Compute Rënyi entropy of the non-MNC region of the Img.
6. Plot the MNC versus the non-MNC image entropies for β = 1.5 to 2.5 in 0.5

increments.
7. Repeat Step 1 for k = 13, 21, 34, 55, 89, 144, 233, 610 keypoints for each of the

selected images. �

Chapter 9
Postscript. Where Do Shapes Fit
into the Computer Vision Landscape?

Fig. 9.1 Sample portrayal of shapes in a sequence of video frames

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2_9

283

284 9 Postscript. Where Do Shapes Fit into the Computer Vision Landscape?

9.1 Shapes in Natural Scenes

Shapes are elusive creatures that drift in and out of natural scenes that we sometimes
perceive, store in memory and record with digital cameras. In a sequence of video
frame images, for example, shapes such as the ones shown in Fig. 9.1 sometimes
deform into other shapes. In Fig. 9.1, there is a sequence of deformations (represented
by �−→) like in Fig. 9.2.

Fig. 9.2 Sample sequence of shape deformations

This changing shape phenomenon becomes important in detecting and comparing
image object shapes that appear in one form in one frame in a video and reappear in
an either a minor or major altered form in another frame in the same video.

In this introduction to the foundations of computer vision, a trio of tools are
used to extract from digital images information that is useful in the detection and
classification of image objects and their shapes. The three main tools that we use
are geometry, topology and algorithms. The end result is an application of what H.
Edelsbrunner and J.L. Harer call topics in computational topology [42].

The Inner Workings of Computational Topology

H. Edelsbrunner and J.L. Harer observe that Geometry gives a concrete
face to topological structures, and algorithms offer a means to construct
them at a level of complexity that passes the threshold necessary for
practical applications. [42, p. xi].

Image geometry appears in various forms. The archetypal geometric structures in
images is in the formof various image regions underlying polygons (Voronoï regions)
in Voronoï tessellations and triangles (Delaunay triangular regions) in Delaunay
triangulations. A level up in the hierarchy of geometric structures in images is the
detection of maximal nucleus clusters (MNCs) containing nuclei and spokes that
definemesh nerve structures (for more about this, see Sect. 1.23 andAppendix B.13).

Hidden contours of the nucleus polygon are present in everyMNC.Moving further
up the hierarchy of geometric structures in images, we find both fine and coarse

http://dx.doi.org/10.1007/978-3-319-52483-2_1

9.1 Shapes in Natural Scenes 285

Fig. 9.3 Open set X =

edgelets surrounding each MNC nucleus. These are the now the familiar collections
of connected straight edges. In a fine contour, each straight edge is drawn between
generating points along the border of an MNC nucleus polygon.

We have seen numerous examples of fine contours. Taking this image geometry
a step further (moving outward along the border of a fine contour), we can identify
a course contour surrounding each fine contour. In a coarse contour, each straight
edge is drawn between generating points along the border of fine contour.

Image topology supplies uswith structures useful in the analysis and classification
of image regions. The main structure in an image topology is an open set. Basically,
an open set is a set of elements that does not include the elements on its boundary.
In these foundations, open sets first appeared in Sect. 1.2. For more about open sets,
see Appendix B.14. Here is another example.

Example 9.1 Open set of pixels.
Let a colour image img be represented by the set of picture elements in Fig. 9.3.
The picture elements (pixels) are represented by tiny squares. A pixel can be viewed
as fat point, i.e., a physical point that has area, which contrasts with a point in the
Euclidean plane. An example of an open set is the interior of img:

In this case, a pixel {p} (written simply as p) is an open set that belongs to X ,
provided p has a hue intensity value sufficiently close to one of the hue intensities
in X . If the hue of p is blue, then is a border pixel of X . The interior int img
equals X and the blue pixels in img do not belong to X . The set X is an example of
an open set in digital geometry. The set X is an example of a digital open set. �

Image topologies are defined on image open sets. An image topology is a collec-
tion of open sets τ on image open set X with the following properties.

1o The empty set ∅ is open and ∅ is in τ .
2o The set X is open and X is in τ .
3o If A is a sub-collection of open sets in τ , then

http://dx.doi.org/10.1007/978-3-319-52483-2_1

286 9 Postscript. Where Do Shapes Fit into the Computer Vision Landscape?

⋃

B∈A
B is a open set in τ .

In other words, the union of open sets in τ is another open set in τ .
4o If A is a sub-collection open sets in τ , then

⋂

B∈A
B is a open set in τ .

In effect, the intersection of open sets in τ is another open set in τ . �
Anopen set X with a topology τ on it, is called a topological space. In otherwords,

the pair (X, τ) is called a topological space. A common example of topological
space that we have seen repeatedly is the collection of open Voronoï regions. An
open Voronoï region is a Voronoï region that includes all pixels in its interior and
does not include its edges) on a tessellated digital image.

It can be shown that a digital image itself is an open set. In addition, the collection
of open Voronoï regions satisfies the properties required for a topology. In that case,
we call the topology arising out of a Voronoï tessellated image a digital Voronoï
topology. That is, a digital Voronoï topology on a tessellated digital image is a
collection of open Voronoï regions that satisfy the properties of a topology. For more
about topology, see Appendix B.19.

Topology had its beginnings in the 19th century with the work of a number of
mathematicians, especially H. Poincaré. The work of K. Borsuk during the 1930s
ushered in a paradigm shift in topology in which the focus was the study of shapes.
Applied shape theory is a center piece in the foundations of computer vision. For
more about shape theory, see Appendix B.18.

In computer vision, shapes are often repeated in a sequence of video frames.
And one of the preoccupations of this form of vision is shape-tracking. A shape
that occurs in one frame is highly likely to reoccur in a succession of neighbouring
frames. The interest lies in the detecting a particular shape (call it the target shape)
and then observing the occurrence of a similar shape that is approximately the same
as the target shape.

Fig. 9.4 worldsheet wshD �→ torusC

9.1 Shapes in Natural Scenes 287

Example 9.2
A sample portrayal of shapes in a sequence of video frames is shown in Fig. 9.1.
Over time, the ring torus is the first of the video frames in Fig. 9.1 breaks open and
stretches out, eventually assuming a tubular shape. The deformation of one shape
into another shape is a common occurrence in the natural world.

Image Object Shape Detection

The trick in image object shape detection is to view the changes in a
shape over a sequence of video frames as approximations of an original
shape that we might have detected in an initial video frame image.

In an extreme case such as the one in Fig. 9.4, some form of worldsheet rolls up
(over time), forming a ring torus. In topological terms, there is a continuous mapping
from a planar worldsheet wshM in R

2 to a ring torus f (wshM) in R
3. Aworldsheet

D (denoted by wshD) is a collection of strings that cover a patch in a natural scene. A
string is either a wiggly or straight line segment. In string theory, a string is defined
by the path followed by a particle moving through space. Another name for such
a string is worldline [130–132]. The idea of a string works well in explaining the
sequences of shapes in video frames in which the paths followed by photons has
been recorded by a video camera.

This mapping from a worldsheet to a torus is represented in Fig. 9.4. A ring torus
is tubular surface in the shape of a doughnut, obtained by rotating a circle of radius
r (called the tube radius) about an axis in the plane of the circle at distance c from
the torus center. Worldsheet wshM maps to (rolls up into) the tubular surface of a
ring torus in 3-space, i.e., there is a continuous mapping from wshM in 2-space to
ring torus surface f (sheetM) in 3-space. �

9.2 Shape Estimates

This section briefly covers part of the ground for shape estimation. The basic idea
is twofold. First, we need some means of measuring the shape of an image object.
Second, we to decide when one shape is approximately the same as another shape.
For simplicity, we consider only 2D shapes, here.

In the plane, shapes are known by their perimeters and areas. The focus here is on
perimeters that are collections of connected straight edges. Recall that edges e, e′ are
connected, provided there is a path between e and e′. A perimeter that is composed

288 9 Postscript. Where Do Shapes Fit into the Computer Vision Landscape?

of connected straight edges is called an edgelet. An edgelet is a connected edgelet,
provided every pair of straight edges in the edgelet are themselves connected. An
image region shape perimeter is a connected edgelet.

Algorithm 10: Comparing Image Region Shape Perimeters that are Edgelets
Input : Read digital image regions T, R.
Output: shapeSimilarity (Shape perimeters similarity measurement).
/* edgeletT equals a shape perimeter in a target image region T */ ;1
edgeletT ← connectedTarget Edges ⊂ T ;2
/* edgelet R equals a shape perimeter in a sample image region R */ ;3
edgelet R ← connectedRegionEdges ⊂ R;4
/* ε = upper bound on similarity between shape edgelets */ ;5
ε ← small + ve Real Number;6
/* Compare shape perimeters: */ ;7

8

shapeSimilari t y (edgeletT, edgelet R) =
{

1, if |edgeletT − edgelet R| < ε,

0, otherwise.

/* One Shape edgelet approximates another one, provided shapeSimilari t y = 1 */

9.5.1: Target Drone Video Frame Region 9.5.2: Sample Region in a Drone Video
Frame

Fig. 9.5 Target and Sample Drone Video Frame Regions

Since image regions are known by their shape perimeters, it is possible to compare
the shape perimeter that encloses an image region containing a target object with the
shape perimeter of an image region containing an unknown object. Notice that, after
tessellating an image and identifying the maximal nucleus clusters (MNCs) in the
tessellated image, each MNC contour surrounding an MNC nucleus polygon is a
shape perimeter.

9.2 Shape Estimates 289

Example 9.3 Sample Pair of Traffic Drone Video Frame Shape Perimeters.
A sample pair of drone traffic video frames are shown in Fig. 9.5. To obtain a shape
perimeter from each of these video frames, we do the following:

1o Select video frame images img1, img2.
2o Select a set of mesh generating points S.
3o Select a video frame image img ∈ {img1, img2}.
4o Superimpose on img1 a Voronoö diagram V (S), i.e., tessellate img, covering

img with Voronoö regions V (s), using each generating point (site, seed point)
s ∈ S.

5o Identify a MNC in the image diagram V (S) (call it MNC(s)).
6o Identify coarse edgelet contour MNCedgelet in img (a target MNC shape

perimeter in a video frame).

9.6.1:Video frame target shape perimeter 9.6.2:Region shape perimeter sample

Fig. 9.6 Pair of Video frame shape perimeters

7o Repeat Step 3, after obtaining a target MNC shape perimeter in img (call it
MNCedgeletT) to obtain a sample video frame image MNC coarse edgelet
contour MNCedgelet R (a sample MNC shape perimeter in a video frame).
The result of this step is the production of a pair MNC shape perimeters
(MNCedgeletT and MNCedgelet R) embedded in a pair video frame images.
An embedded target shape perimeter MNCedgeletT is shown in Fig. 9.6.1
and an embedded sample region shape perimeter MNCedgelet R is shown
in Fig. 9.6.2.

8o Next extract a pair of pure plane shape perimeters from the embedded MNC
perimeters. Note: This is done to call attention to the edgelets whose lengths
we want to measure and compare.

290 9 Postscript. Where Do Shapes Fit into the Computer Vision Landscape?

9o Select shape perimeter edgelet ∈ {MNCedgeletT,MNCedgelet R}.
10o Extract a shape perimeter shape from edgelet (the result of this step is pure

plane shape perimeter without the underlying image MNC).

9.7.1: Target shape
perimeter

9.7.2: Region shape
perimeter sample

Fig. 9.7 Pair of pure planar edgelet-based shape perimeters

11o Repeat Step 9, after obtaining the first MNC shape perimeter (call it edgeletT)
to obtain a sample MNC shape perimeter edgelet R (a sample MNC shape
perimeter in a video frame). The result of this step is the production of a pair
of pure plane shape perimeters (edgeletT and edgelet R) embedded in a pair
of contours MNCs in Voronoï-tessellated video frame images. An target shape
perimeter edgeletT is shown in Fig. 9.7.1 and a sample region shape perime-
ter edgelet R is shown in Fig. 9.7.2.

12o Use edgeletT and edgelet R as inputs in Algorithm 10 (compute the similarity
between the target and sample MNC shape perimeters).

13o Compute the value of shapeSimilari t y (edgeletT, edgelet R). �

For more about shape boundaries, see Appendix B.18.

Problem 9.4 Shape deformation.
® Give three examples of shape deformation in a sequence of video frames.
Hint: Compare shape perimeters. A change in a shape perimeter happens whenever
there is a change in image object shape either due to a change in camera position
or a change in a natural scene object. A common example is video that records
movements of humans or other animals or birds. �

Problem 9.5 Shape perimeters similarity measurement.
K Implement Algorithm 10. �

Appendix A
Matlab and Mathematica Scripts

This Appendix contains Matlab® and Mathematica® scripts referenced in the chap-
ters. Matlab® R2013b is used to write the Matlab scripts.

A.1 Scripts from Chap. 1

A.1.1 Digital Image Corners

Fig. A.1 Sample image corners

% s c r i p t : Genera t ingPoin t sOnImage .m
% image geometry : image co r n e r s
% p a r t 1 : image co r n e r s + Voronoi diagram on image
% p a r t 2 : p l o t image co r n e r s + Voronoi diagram by themse lve s
%
clear all ; close all ; clc ; % housekeep ing
%%
img=imread (’carRedSalerno.jpg’) ;
g = double (rgb2gray (img)) ; % conve r t t o g r e y s c a l e image

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2

291

http://dx.doi.org/10.1007/978-3-319-52483-2_1

292 Appendix A: Matlab and Mathematica Scripts

Fig. A.2 Sample image corners

%
% pa r t 1 :
%
cornersMin = corner (g) ; % min . no . of c o r n e r s
% i d e n t i f y image boundary c o r n e r s
box_corners = [1 , 1 ; 1 ,size (g , 1) ;size (g , 2) , 1 ;size (g , 2) ,size (g , 1)] ;
% conc a t e n a t e image boundary c o r n e r s & s e t of i n t e r i o r image co r n e r s
cornersMin = cat (1 ,cornersMin ,box_corners) ;
% s e t up d i s p l a y of cornersMin on rgb image
figure , imshow (img) , . . .

hold on , axis on , axis tight , % s e t up co r n e r s d i s p l a y on rgb image
plot (cornersMin (: , 1) , cornersMin (: , 2) , ’g*’) ;
% s e t up cornerMin−based Voronoi diagram on rgb image
redCarMesh = figure , imshow (img) , . . .

hold on , axis on , axis tight ,
voronoi (cornersMin (: , 1) ,cornersMin (: , 2) ,’gx’) ; % b lue edges
% uncomment nex t l i n e t o save Voronoi diagram :
% savea s (redCarMesh , ’ imageMesh . png ’) ; % save copy of image
%
% pa r t 2 :
%
corners = corner (g , 1 000) ; % up to 1000 co r n e r s
% conc a t e n a t e image boundary c o r n e r s & s e t of i n t e r i o r image co r n e r s
corners = cat (1 ,corners ,box_corners) ;
% p l o t s p e c i f i e d no . of c o r n e r s :
figure , imshow (g) , . . .

hold on , axis on , axis tight , % s e t up co r n e r s p l o t
plot (corners (: , 1) , corners (: , 2) , ’b*’) ;
% c o n s t r u c t co rne r−based Voronoi diagram
planarMesh = figure
voronoi (corners (: , 1) ,corners (: , 2) ,’bx’) ; % b lue edges
% uncomment nex t l i n e t o save Voronoi diagram :
% savea s (planarMesh , ’ planarMesh . png ’) ; % save copy of image

Listing A.1 Matlab script in GeneratingPointsOnImage.m to display corners on a digital
image.

Remark A.1 Views of Corners on a Colour Image.
Image corners provide a first look at mesh generating points, leading to the study of
digital image geometry. Sample image corners plus image boundary corners extracted
from a colour image are shown in situ in Fig.A.1.1 with the construction of the

Appendix A: Matlab and Mathematica Scripts 293

corner-basedVoronoï mesh superimposed on the image in Fig.A.1.2, produced using
Matlab® script A.1. A plot of 1000 image corners plus image boundary corners is
given in Fig.A.2.1 and a plot of the corner-basedVoronoïmesh is shown in Fig.A.2.2,
also using Matlab script A.1. For more about this, see Sect. 1.22. �

A.1.2 Implementation of Voronoï Tessellation Algorithm

Fig. A.3 Image interior corners plus image boundary corners-based Voronoï mesh

% s c r i p t : VoronoiMeshOnImage .m
% image geometry : ove r l a y Voronoi mesh on image
%
% see h t t p : / / homepages . u lb . ac . be /~ dgonze / INFO / mat lab . html
% r e v i s e d 23 Oct . 2016
clear all ; close all ; clc ; % housekeep ing
g=imread (’fisherman.jpg’) ;
% im=imread (’ cy c l e . jpg ’) ;
% g=imread (’ ca rRedSa le rno . jpg ’) ;
%%
img = g ; % save copy of co l ou r image to make ove r l a y p o s s i b l e
g = double (rgb2gray (g)) ; % conve r t t o g r e y s c a l e image
% co r n e r s = co rn e r (g) ; % min . no . of c o r n e r s
k = 233; % s e l e c t k c o r n e r s
corners = corner (g ,k) ; % up to k co r n e r s
box_corners = [1 , 1 ; 1 ,size (g , 1) ;size (g , 2) , 1 ;size (g , 2) ,size (g , 1)] ;

http://dx.doi.org/10.1007/978-3-319-52483-2_1

294 Appendix A: Matlab and Mathematica Scripts

corners = cat (1 ,corners ,box_corners) ;
vm = figure , imshow (img) , . . .
axis on , hold on ; % s e t up image ove r l a y
voronoi (corners (: , 1) ,corners (: , 2) ,’g’) ; % red edges
% vorono i (c o r n e r s (: , 1) , c o r n e r s (: , 2) , ’ g . ’) ; % red edges
% imf i n f o (’ ca rRedSa le rno . jpg ’)
% f i gu r e , mesh (g (300 :350 ,300 :350)) , . . .
% ax i s t i g h t , z l a b e l (’ rgb p i x e l i n t e n s i t y ’)
% x l a b e l (’ g (300 :350) ’) , y l a b e l (’ g (300 :350) ’) % l a b e l axes
% savea s (vm, ’ VoronoiMesh . png ’) ; % save copy of image

Listing A.2 Matlab script in VoronoiMeshOnImage.m to construct a corner-based Voronoï
mesh.

Remark A.2 Another view of Corner-based Voronoï mesh on a Colour Image.
Another example of corner-based digital image geometry is given here. A Voronoï
mesh derived from image corners plus image boundary corners extracted from a
colour image and superimposed on a colour image is shown in Fig.A.3, produced
using Matlab® script A.2. For more about this, see Sect. 1.22. �

Fig. A.4 Sample image corners

% s c r i p t : VoronoiMesh1000CarPolygons .m
% image geometry : Voronoi mesh image polygons
% I n t e r i o r + boundary co rne r s−based Voronoi mesh p l o t :
% Not i ce t h e co r n e r c l u s t e r s .
%
% Pa r t 1 : p l o t of d e f a u l t i n t e r i o r + boundary c o r n e r s
% Pa r t 2 : p l o t of up to 2000 i n t e r i o r + boundary c o r n e r s
%
clear all ; close all ; clc ; % housekeep ing
%%
g=imread (’carRedSalerno.jpg’) ;
% g=imread (’ peppe r s . png ’) ;
g = double (rgb2gray (g)) ; % conve r t t o g r e y s c a l e image
%
% Pa r t 1
%

http://dx.doi.org/10.1007/978-3-319-52483-2_1

Appendix A: Matlab and Mathematica Scripts 295

corners = corner (g) ; % f i n d up min . image co r n e r s
size (corners)
% ge t image box co r n e r s
box_corners = [1 , 1 ; 1 ,size (g , 1) ;size (g , 2) , 1 ;size (g , 2) ,size (g , 1)] ;
corners = cat (1 ,corners ,box_corners) ; % combine c o r n e r s
figure , imshow (g) , hold on ; % s e t up polygon d i s p l a y
voronoi (corners (: , 1) ,corners (: , 2) ,’x’) ; % d i s p l a y polygons
%
% Pa r t 2
%
corners2000 = corner (g , 2 000) ; % f i n d up to 2000 co r n e r s
corners2000 = cat (1 ,corners2000 ,box_corners) ; % combine c o r n e r s
size (corners2000)
figure , imshow (g) , hold on ; % s e t up polygon d i s p l a y
voronoi (corners2000 (: , 1) ,corners2000 (: , 2) ,’x’) ; % d i s p l a y polygons
% imf i n f o (’ ca rRedSa le rno . jpg ’)

Listing A.3 Matlab script inVoronoiMesh1000CarPolygons.m to construct a corner-based
Voronoï mesh.

Remark A.3 Contrasting plots of Corner-based Voronoï meshes.
The plot of a Voronoï mesh derived from the default number of image corners plus
image boundary corners extracted from a colour image is shown in Fig.A.4.1, pro-
duced using Matlab script A.3. In addition, the plot of a Voronoï mesh derived from
up to 2000 image corners plus image boundary corners extracted from a colour image
is shown in Fig.A.4.2, also produced using Matlab script A.3. In this case, the plot
of a Voronoï mesh constructed from 200 interior corners contrasts with the plot of a
Voronoï mesh constructed from 1338 interior corners. 1338 is the maximum number
of corners found in the Salerno auto image in this example. For more about this, see
Sect. 1.22. �

A.1.3 Implementation of Delaunay Tessellation Algorithm

Fig. A.5 Sample 50 corner triangulation with Voronoi mesh overlay on image

http://dx.doi.org/10.1007/978-3-319-52483-2_1

296 Appendix A: Matlab and Mathematica Scripts

% s c r i p t : DelaunayOnImage .m
% image geometry : Delaunay t r i a n g l e s on image
%
% Pa r t 1 : d e f a u l t i n t e r i o r + boundary co rne r s−based t r i a n g u l a t i o n
% Pa r t 2 : Up to 2000 i n t e r i o r + boundary co rne r s−based t r i a n g u l a t i o n
%
clear all ; close all ; clc ; % housekeep ing
%%
g=imread (’carRedSalerno.jpg’) ;
% g=imread (’8 x8g r i d . jpg ’) ;
% g=imread (’ Fox−2 s t a t e s . jpg ’) ;
img = g ; % save copy of co l ou r image
g = double (rgb2gray (g)) ; % conve r t t o g r e y s c a l e image
%
% Pa r t 1
%
corners = corner (g , 5 0) ; % d e f a u l t image co r n e r s
box_corners = [1 , 1 ; 1 ,size (g , 1) ;size (g , 2) , 1 ;size (g , 2) ,size (g , 1)] ;
corners = cat (1 ,corners ,box_corners) ; % combined co r n e r s
figure , imshow (img) , hold on ; % s e t up ove r l a y of mesh on image
% vorono i (c o r n e r s (: , 1) , c o r n e r s (: , 2) , ’ x ’) ; % i d e n t i f y polygons
TRI = delaunay (corners (: , 1) ,corners (: , 2)) ; % i d e n t i f y t r i a n g l e s
triplot (TRI ,corners (: , 1) ,corners (: , 2) ,’b’) ; % meshes on image
%
% co rne r Delaunay t r i a n g u l a t i o n wi th Voronoi mesh ove r l a y :
%
figure , imshow (img) , hold on ; % s e t up ove r l a y of mesh on image
% vorono i (c o r n e r s (: , 1) , c o r n e r s (: , 2) , ’ x ’) ; % i d e n t i f y polygons
TRI = delaunay (corners (: , 1) ,corners (: , 2)) ; % i d e n t i f y t r i a n g l e s
triplot (TRI ,corners (: , 1) ,corners (: , 2) ,’b’) ; % meshes on image
voronoi (corners (: , 1) ,corners (: , 2) ,’y’) ; % i d e n t i f y polygons
%
% Pa r t 2
%
corners1000 = corner (g , 2 000) ; % f i n d 1000 image co r n e r s
corners1000 = cat (1 ,corners1000 ,box_corners) ; % combined co r n e r s
figure , imshow (img) , hold on ; % s e t up ove r l a y of mesh on image
% vorono i (c o r n e r s (: , 1) , c o r n e r s (: , 2) , ’ x ’) ; % i d e n t i f y polygons
TRI = delaunay (corners1000 (: , 1) ,corners1000 (: , 2)) ; % i d e n t i f y t r i a n g l e s
triplot (TRI ,corners1000 (: , 1) ,corners1000 (: , 2) ,’b’) ; % meshes on image

Fig. A.6 Sample 2000 corner triangulation with Voronoi mesh overlay on image

Appendix A: Matlab and Mathematica Scripts 297

%
% co rne r Delaunay t r i a n g u l a t i o n wi th Voronoi mesh ove r l a y :
%
figure , imshow (img) , hold on ; % s e t up ove r l a y of mesh on image
% vorono i (c o r n e r s (: , 1) , c o r n e r s (: , 2) , ’ x ’) ; % i d e n t i f y polygons
TRI = delaunay (corners1000 (: , 1) ,corners1000 (: , 2)) ; % i d e n t i f y t r i a n g l e s
triplot (TRI ,corners1000 (: , 1) ,corners1000 (: , 2) ,’b’) ; % meshes on image
voronoi (corners1000 (: , 1) ,corners1000 (: , 2) ,’y’) ; % i d e n t i f y polygons
% imf i n f o (’ ca rRedSa le rno . jpg ’)

Listing A.4 Matlab script in DelaunayOnImage.m to construct a corner-based Delaunay
triangulation mesh on image.

Remark A.4 Contrasting Corner-based Delaunay triangulation on an image.
The Delaunay triangulation derived from 50 image corners plus image boundary
corners extracted from a colour image is shown in Fig.A.5.1, produced usingMatlab
script A.4. The sameDelaunay triangulationwithVoronoïmesh overlay on the image
is shown in Fig.A.5.1, also produced using Matlab script A.4.

In addition, theDelaunay triangulation derived fromup to 2000 image corners plus
image boundary corners extracted from a colour image is shown in Fig.A.6.1, pro-
duced using Matlab script A.4. In this case, the Delaunay triangulation constructed
from 50 interior corners contrasts with the plot of a Delaunay triangulation con-
structed from 1338 interior corners. Although we have call for 2000 corners, 1338
is the maximum number of corners found in the Salerno auto image in this exam-
ple. Again the 1338-strong corner-based Delaunay triangulation with Voronoï mesh
overlay on the image is shown in Fig.A.6.2, also produced using Matlab script A.4.
For more about this, see Sect. 1.22. �

Fig. A.7 Sample image mesh plots

http://dx.doi.org/10.1007/978-3-319-52483-2_1

298 Appendix A: Matlab and Mathematica Scripts

Fig. A.8 Sample image triangulation plots

% s c r i p t : De l aunayCorne rT r i ang l e s .m
% image geometry : Delaunay t r i a n g l e s from image co r n e r s
% p lu s Delaunay t r i a n g u l a t i o n wi th Voronoi mesh ove r l a y
%
clear all ; close all ; clc ; % housekeep ing
%%
g=imread (’carRedSalerno.jpg’) ;
% g=imread (’ Fox−2 s t a t e s . jpg ’) ;
img = g ; % save copy of co l ou r image
g = double (rgb2gray (g)) ; % conve r t t o g r e y s c a l e image
%
% Pa r t 1
%
corners = corner (g , 5 0) ; % d e f a u l t image co r n e r s
box_corners = [1 , 1 ; 1 ,size (g , 1) ;size (g , 2) , 1 ;size (g , 2) ,size (g , 1)] ;
corners = cat (1 ,corners ,box_corners) ; % combined co r n e r s
figure , imshow (g) , hold on ; % s e t up ove r l a y of mesh on image
% vorono i (c o r n e r s (: , 1) , c o r n e r s (: , 2) , ’ x ’) ; % i d e n t i f y polygons
TRI = delaunay (corners (: , 1) ,corners (: , 2)) ; % i d e n t i f y t r i a n g l e s
triplot (TRI ,corners (: , 1) ,corners (: , 2) ,’b’) ; % meshes on image
%
% 50 co rne r Delaunay t r i a n g u l a t i o n wi th Voronoi mesh ove r l a y :
%
figure , imshow (g) , hold on ; % s e t up ove r l a y of mesh on image
% vorono i (c o r n e r s (: , 1) , c o r n e r s (: , 2) , ’ x ’) ; % i d e n t i f y polygons
TRI = delaunay (corners (: , 1) ,corners (: , 2)) ; % i d e n t i f y t r i a n g l e s
triplot (TRI ,corners (: , 1) ,corners (: , 2) ,’b’) ; % meshes on image
voronoi (corners (: , 1) ,corners (: , 2) ,’r’) ; % i d e n t i f y polygons
%
% Pa r t 2
%
corners2000 = corner (g , 2 000) ; % f i n d 1000 image co r n e r s
box_corners = [1 , 1 ; 1 ,size (g , 1) ;size (g , 2) , 1 ;size (g , 2) ,size (g , 1)] ;
corners2000 = cat (1 ,corners2000 ,box_corners) ; % combined co r n e r s
figure , imshow (g) , hold on ; % s e t up ove r l a y of mesh on image
% vorono i (c o r n e r s (: , 1) , c o r n e r s (: , 2) , ’ x ’) ; % i d e n t i f y polygons
TRI2000 = delaunay (corners2000 (: , 1) ,corners2000 (: , 2)) ; % i d e n t i f y t r i a n g l e s
triplot (TRI2000 ,corners2000 (: , 1) ,corners2000 (: , 2) ,’b’) ; % meshes on image
%
% 2000− co r n e r Delaunay t r i a n g u l a t i o n wi th Voronoi mesh ove r l a y :
%
figure , imshow (g) , hold on ; % s e t up ove r l a y of mesh on image

Appendix A: Matlab and Mathematica Scripts 299

% vorono i (c o r n e r s (: , 1) , c o r n e r s (: , 2) , ’ x ’) ; % i d e n t i f y polygons
TRI2000 = delaunay (corners2000 (: , 1) ,corners2000 (: , 2)) ; % i d e n t i f y t r i a n g l e s
triplot (TRI2000 ,corners2000 (: , 1) ,corners2000 (: , 2) ,’b’) ; % meshes on image
voronoi (corners2000 (: , 1) ,corners2000 (: , 2) ,’r’) ; % i d e n t i f y polygons
% imf i n f o (’ ca rRedSa le rno . jpg ’)

Listing A.5 Matlab script in DelaunayCornerTriangles.m to construct a corner-based
Delaunay triangulation mesh by itself.

Remark A.5 Contrasting Corner-based Delaunay triangulation Voronoï mesh
plots.
The Delaunay triangulation derived from 50 image corners plus image boundary
corners extracted from a colour image is shown in Fig.A.7.1, produced usingMatlab
script A.5. In addition, a Voronoï mesh overlay on the same Delaunay triangulation
derived from 50 image corners plus image boundary corners extracted from a colour
image is shown in Fig.A.7.2, also produced using Matlab script A.5.

Similarly, the plot of a Delaunay triangulation derived from up to 2000 image
corners plus image boundary corners extracted from a colour image is shown in
Fig.A.8.1. After that, a Voronoï mesh overlay on the same Delaunay triangulation
derived from up to 2000 image corners plus image boundary corners extracted from
a colour image is shown in Fig.A.8.2, also produced using Matlab script A.5. For
more about this, see Sect. 1.22. �

A.1.4 Implementation of Combined Voronoï-Delaunay
Tessellation Algorithm

% s c r i p t : DelaunayVoronoiOnImage .m
% image geometry : Delaunay t r i a n g l e s on Voronoi mesh on image
%
clear all ; close all ; clc ; % housekeep ing
%%
% Exper iment wi th Delaunay t r i a n g u l a t i o n Voronoi mesh ov e r l a y s :
g=imread (’cycle.jpg’) ;
% g=imread (’ ca rRedSa le rno . jpg ’) ;
img = g ; % save copy of co l ou r image
g = double (rgb2gray (g)) ; % conve r t t o g r e y s c a l e image
corners = corner (g , 5 0) ; % f i n d 1000 image co r n e r s
box_corners = [1 , 1 ; 1 ,size (g , 1) ;size (g , 2) , 1 ;size (g , 2) ,size (g , 1)] ;
corners = cat (1 ,corners ,box_corners) ; % combined co r n e r s
figure , imshow (img) , hold on ; % s e t up ove r l a y of mesh on image
voronoi (corners (: , 1) ,corners (: , 2) ,’y’) ; % i d e n t i f y polygons
TRI = delaunay (corners (: , 1) ,corners (: , 2)) ; % i d e n t i f y t r i a n g l e s
triplot (TRI ,corners (: , 1) ,corners (: , 2) ,’b’) ; % meshes on image
% imf i n f o (’ c y c l e . jpg ’)
% imf i n f o (’ ca rRedSa le rno . jpg ’)

Listing A.6 Matlab script in DelaunayVoronoiOnImage.m to construct a Delaunay
triangulation on Voronoï mesh overlay on an image.

Remark A.6 Second Experiment: Corner-based Delaunay triangulation Voronoï
mesh overlays.

http://dx.doi.org/10.1007/978-3-319-52483-2_1

300 Appendix A: Matlab and Mathematica Scripts

The Delaunay triangulation combined with Voronoï mesh each derived from 50
image corners plus image boundary corners extracted from a colour image is shown
in Fig.A.9, produced using Matlab script A.6. For more about this, see Sect. 1.22.
�

Fig. A.9 Combination of 50 corner Delaunay triangulation plus Voronoï mesh overlay on an image

% s c r i p t : DelaunayOnVoronoi .m
% image geometry : Delaunay t r i a n g l e s on Voronoi mesh polygons
%
clear all ; close all ; clc ; % housekeep ing
%%
g=imread (’fisherman.jpg’) ; % i npu t c o l ou r image
% g=imread (’ ca rRedSa le rno . jpg ’) ; % i npu t c o l ou r image
g = double (rgb2gray (g)) ; % conve r t t o g r e y s c a l e image
corners = corner (g , 5 0) ; % f i n d up to 50 image co r n e r s
box_corners = [1 , 1 ; 1 ,size (g , 1) ;size (g , 2) , 1 ;size (g , 2) ,size (g , 1)] ;
corners = cat (1 ,corners ,box_corners) ; % box + i n n e r c o r n e r s
figure , imshow (g) , hold on ; % s e t up combined meshes
voronoi (corners (: , 1) ,corners (: , 2) ,’x’) ; % Voronoi mesh
TRI = delaunay (corners (: , 1) ,corners (: , 2)) ; % Delaunay mesh
triplot (TRI ,corners (: , 1) ,corners (: , 2) ,’r’) ; % combined meshes
% imf i n f o (’ f i she rman . jpg ’)
% imf i n f o (’ ca rRedSa le rno . jpg ’)

Listing A.7 Matlab script in DelaunayOnVoronoi.m to construct a Delaunay triangulation
on Voronoi mesh by itself.

Remark A.7 Third Experiment: Corner-based Delaunay triangulation Voronoï
tessellation overlays.
The Delaunay triangulation combined with Voronoï tessellation, each derived from
50 image corners plus image boundary corners extracted from a colour image, is

http://dx.doi.org/10.1007/978-3-319-52483-2_1

Appendix A: Matlab and Mathematica Scripts 301

Fig. A.10 Corner-based Delaunay triangulation plus Voronoï mesh overlays on an image

shown in Fig.A.10, produced using Matlab script A.7. For more about this, see
Sect. 1.22. �

A.1.5 Offline Video Processing Script for Chap. 1

% s c r i p t : o f f l i n eVo r ono i .m
% OFFLINE VIDEO VORONOI AND DELAUNAY MESH (CORNERS)
% Of f l i n e corne r−based Voronoi t e s s e l l a t i o n of v ideo f rames
% Example by D. V i l l a r from August 2015 expe r imen t
% Revised v e r s i o n : 15 Dec . 2015 , 7 Nov . 2016.
%
close all , clear all , clc % workspace housekeep ing
%%
% I n i t i a l i z e i n pu t and ou t pu t v ideos
videoReader = vision .VideoFileReader (’moving_hand.mp4’) ;
videoWriter = vision .VideoFileWriter (’offlineVoronoiResult1.avi’ , . . .

’FileFormat’ , ’AVI’ , . . .
’FrameRate’ ,videoReader .info .VideoFrameRate) ;

videoWriter2 = vision .VideoFileWriter (’offlineDelaunayResult1.avi’ , . . .
’FileFormat’ , ’AVI’ , . . .
’FrameRate’ ,videoReader .info .VideoFrameRate) ;

% Capture one frame to ge t i t s s i z e .
videoFrame = step (videoReader) ;
frameSize = size (videoFrame) ;

runLoop = true ;
frameCount = 0 ;

disp (’Processing video... Please wait.’)

http://dx.doi.org/10.1007/978-3-319-52483-2_1
http://dx.doi.org/10.1007/978-3-319-52483-2_1

302 Appendix A: Matlab and Mathematica Scripts

Fig. A.11 Offline corner-based Voronoï tessellation of video frame images

% 100 frame video
while runLoop && frameCount < 100

% Get t h e nex t frame and co r n e r s
videoFrame = imresize (step (videoReader) , 0 . 5) ;
frameCount = frameCount + 1 ;
videoFrameGray = rgb2gray (videoFrame) ;
videoFrameGray = medfilt2 (videoFrameGray , [5 5]) ;
C = corner (videoFrameGray , 300) ; % ge t up to 300 frame co r n e r s
[a ,b] = size (C) ;
% Capture Voronoi t e s s e l l a t i o n of v ideo frame
if a > 2

[VX ,VY] = voronoi (C (: , 1) ,C (: , 2)) ;
% Cre a t i ng ma t r i x of l i n e segments i n t h e form [x_11 y_11 x_12 y_12 . . .
% . . . x_n1 y_n1 x_n2 y_n2]
A = [VX (1 , :) ; VY (1 , :) ; VX (2 , :) ; VY (2 , :)] ;
A (A>5000) = 5000; A (A<−5000) = −5000;
A = A ’ ;

% Disp l ay Voronoi t e s s e l l a t i o n of v ideo frame
videoFrame2 = insertMarker (videoFrame , C , ’+’ , . . .

’Color’ , ’red’) ;
videoFrame2 = insertShape (videoFrame , ’Line’ , A , ’Color’ , ’red’) ;

% Disp l ay t h e anno t a t e d v ideo frame us ing t h e v ideo p l a y e r o b j e c t .
step (videoWriter , videoFrame2) ;

else
step (videoWriter , videoFrame) ;

end

Appendix A: Matlab and Mathematica Scripts 303

end

disp (’Processing complete.’)

% Clean up : v ideo housekeep ing
release (videoWriter) ;
disp (’offlineVoronoiResult1.mp4 has been produced.’)
release (videoWriter2) ;
disp (’offlineDelaunayResult1.mp4 has been produced.’)

Listing A.8 Matlab script in offlineVoronoi.m to construct Voronoï tessellation of video
frames offline.

Remark A.8 Offline Video Manipulation: Corner-based Voronoï tessellation
overlays on Video frames.
Recall that a Voronoï tessellation of a digital image is a tiling of the image with
Voronoï region polygons. Each Voronoï region polygon is constructed using a gen-
erating point (seed, or site). For more about this, see Appendix B.19. An offline
Voronoï tessellation of the frames in a video, each derived from 300 image corners
extracted from each video frame image, is shown in Fig.A.11, produced usingMatlab
script A.8. For more about this, see Sects. 1.24 and 1.24.1. �

A.1.6 Real-Time Video Processing Script for Chap. 1

Fig. A.12 Real-time corner-based Voronoï tessellation of video frame images

% s c r i p t : s c r i p t : rea lT ime1 .m
% Real−t ime Voronoi mesh :
% corne r−based t e s s e l l a t i o n of v ideo f rames .
% See l i n e s 32−33.
% Example from D. V i l l a r , J u l y 2015 Compute Vis ion Exper iment .
% Revised 7 Nov . 2016

http://dx.doi.org/10.1007/978-3-319-52483-2_1
http://dx.doi.org/10.1007/978-3-319-52483-2_1
http://dx.doi.org/10.1007/978-3-319-52483-2_1

304 Appendix A: Matlab and Mathematica Scripts

%
close all , clear all , clc % housekeep ing
%%

% Crea t e t he webcam ob j e c t .
cam = webcam (2) ;

% Capture one frame to ge t i t s s i z e .
videoFrame = snapshot (cam) ;
frameSize = size (videoFrame) ;

% Crea t e t he v ideo p l a y e r o b j e c t .
videoPlayer = vision .VideoPlayer (’Position’ , [100 100 [frameSize (2) , frameSize

(1)]+30]) ;
videoWriter = vision .VideoFileWriter (’realTimeVoronoiResult.mp4’ , . . .

’FileFormat’ , ’MPEG4’ , ’FrameRate’ , 10) ;

runLoop = true ;
frameCount = 0 ;

% 100 frame video
while runLoop && frameCount < 100

% Get t h e nex t frame .
videoFrame = snapshot (cam) ;
frameCount = frameCount + 1 ;
videoFrameGray = rgb2gray (videoFrame) ;

% Voronoi us ing c o r n e r s
C = corner (videoFrameGray , 100) ;
[VX ,VY] = voronoi (C (: , 1) ,C (: , 2)) ;

% Cre a t i ng ma t r i x of l i n e segments i n t h e form [x_11 y_11 x_12 y_12 . . .
% . . . x_n1 y_n1 x_n2 y_n2]
A = [VX (1 , :) ; VY (1 , :) ; VX (2 , :) ; VY (2 , :)] ;
A (A>5000) = 5000; A (A<−5000) = −5000;
A = A ’ ;

videoFrame = insertMarker (videoFrame , C , ’+’ , . . .
’Color’ , ’red’) ;

videoFrame = insertShape (videoFrame , ’Line’ , A , ’Color’ , ’red’) ;

% Disp l ay t h e anno t a t e d v ideo frame us ing t h e v ideo p l a y e r o b j e c t .
step (videoPlayer , videoFrame) ;
step (videoWriter , videoFrame) ;

end

% Clean up (v ideo camera housekeep ing)
clear cam ;
release (videoWriter) ;
release (videoPlayer) ;

Listing A.9 Matlab script in realTime1.m to construct Voronoï tessellation of video frames in
real-time.

Remark A.9 Real-time Video Manipulation: Corner-based Voronoï tessellation
overlays on Video frames.
A real-time Voronoï tessellation (tiling) of the frames in a video, each derived from
100 image corners extracted from each video frame image, is shown in Fig.A.12,
produced usingMatlab script A.9. Remarkably, there is usually little or no noticeable
delay between video frames during real-time video frame tiling, since the computa-
tion speed of most computers is high. For more about this, see Sect. 1.24.2. �

http://dx.doi.org/10.1007/978-3-319-52483-2_1

Appendix A: Matlab and Mathematica Scripts 305

A.2 Scripts from Chap. 2

A.2.1 Digital Image Pixels

Fig. A.13 Sample images

Fig. A.14 Sample cpselect(g, h) window, g = leaf.jpg, h = leafGrey.jpg

% s c r i p t : i n s p e c t P i x e l s .m
% Use c p s e l e c t (g , h) t o i n s p e c t p i x e l s i n a r a s t e r image
% comment : CTRL<r > , uncomment : CTRL<t >
% Each p i x e l i s r e p r e s e n t e d by a t i n y squa r e
clc , close all , clear all % housekeep ing

http://dx.doi.org/10.1007/978-3-319-52483-2_2

306 Appendix A: Matlab and Mathematica Scripts

Fig. A.15 Sample images

Fig. A.16 Sample images

%%
% inpu t a p a i r of images .
% Choices :
% 1 . I npu t two cop i e s of t h e same image
% 2 . I npu t two d i f f e r e n t images .
% Examples :
%
% cho i ce 1 :
% g = imread (’ camera . jpg ’) ; h = imread (’ camera . jpg ’) ;
% g = imread (’ peppe r s . png ’) ; h = imread (’ peppe r s . png ’) ;
% cho i ce 2 :
g = imread (’naturalTessellation.jpg’) ; h = imread (’imgGrey.jpg’) ;
% use c p s e l e c t t o o l
cpselect (g ,h)

Listing A.10 Matlab code in inspectPixels.m.

Remark A.10 Inspect regions of a raster image.
The colour image in Fig.A.13.1 provide input to the sample cpselect() tool GUI
shown in Fig.A.14. Using this GUI, the following results are obtained.

Appendix A: Matlab and Mathematica Scripts 307

Fig. A.17 Sample image regions

308 Appendix A: Matlab and Mathematica Scripts

1o is the pixel inspection window showing a greyscale image
region (zoomed in at 50%) that is displayed in Fig.A.15.2. This inspection win-
dow is shown in context in the cpselect display in Fig.A.15.2. A closeup of an
image region extracted from Fig.A.16.1 is shown in Fig.A.17.1. In this closeup,
the tiny squares representing individual image pixels are clearly seen.

2o is the pixel inspection window showing a color image region
(zoomed in at 400%) that is displayed in Fig.A.16.2. This inspection window is
shown in context in the cpselect display in Fig.A.16.2. A closeup of an image
region extracted from Fig.A.15.1 is shown in Fig.A.17.2. In this closeup of a
greyscale image region, the tiny squares representing image pixels are not as
evident.

For more about this, see Sect. 2.1. �

A.2.2 Colour Image Channels

Fig. A.18 Sample colour image red, green, blue channels

% s c r i p t : p i x e lChanne l s .m
% Disp lay c o l o r image channe l v a l u e s
% S c r i p t i d e a from :
% h t t p : / /www. mathworks . com / ma t l a b c e n t r a l / p r o f i l e / a u t h o r s /1220757−sixwwwwww
clc , clear all , close all
img = imread (’carCycle.jpg’) ; % Read image
% img = imread (’ c a r Po s t e . jpg ’) ; % Read image
red = img (: , : , 1) ; % Red channe l
green = img (: , : , 2) ; % Green channe l
blue = img (: , : , 3) ; % Blue channe l
rows = size (img , 1) ; columns = size (img , 2) ;
rc = zeros (rows , columns) ;
justR = cat (3 , red , rc , rc) ;
justG = cat (3 , rc , green , rc) ;
justB = cat (3 , rc , rc , blue) ;

http://dx.doi.org/10.1007/978-3-319-52483-2_2

Appendix A: Matlab and Mathematica Scripts 309

captureOriginal = cat (3 , red , green , blue) ;
figure , imshow (captureOriginal) , . . .

axis square , axis on ;
figure ,
subplot (1 , 4 , 1) ,imshow (captureOriginal) , . . .

axis square , axis on ,title (’img reconstructed’) ,
subplot (1 , 4 , 2) ,imshow (justR) , . . .

axis square , axis on ,title (’img reds’) ,
subplot (1 , 4 , 3) ,imshow (justG) , . . .

axis square , axis on ,title (’img greens’) ,
subplot (1 , 4 , 4) ,imshow (justB) , . . .

axis square , axis on ,title (’img blues’)

Listing A.11 Matlab code in pixelChannels.m

Remark A.11 Sample Red, Green and Blue Colour Channels.
Pixel colour channels are in Fig.A.18, using script A.11. For more about this, see
Sect. 2.1. �

A.2.3 Colour 2 Greyscale Conversion

Fig. A.19 Sample colour image �−→ greyscale image

Fig. A.20 Sample colour image �−→ greyscale pixel intensities

http://dx.doi.org/10.1007/978-3-319-52483-2_2

310 Appendix A: Matlab and Mathematica Scripts

% s c r i p t : rgb2grey .m
% Colour t o g r e y s c a l e conve r s i on .
clc , clear all , close all
%%
img = imread (’naturalTessellation.jpg’) ;
% f i gu r e , imshow (img) , a x i s on ;
imgGrey = rgb2gray (img) ;
imwrite (imgGrey ,’imgGrey.jpg’) ;
figure ,
subplot (1 , 2 , 1) , plot (img (1 , :)) , . . . % row 1 co l ou r i n t e n s i t i e s

axis square ; title (’row 1 colour values’) ;
subplot (1 , 2 , 2) ,plot (imgGrey (1 , :)) , . . . % row 1 g r e y s c a l e i n t e n s i t i e s

axis square ; title (’row 1 greyscale values’) ;
figure ,
subplot (1 , 2 , 1) , imshow (img) , . . . % d i s p l a y co l ou r image

axis on ; title (’orginal image’) ;
subplot (1 , 2 , 2) , imshow (imgGrey) , . . . % d i s p l a y g r e y s c a l e image

axis on ; title (’greyscale image’) ;

Listing A.12 Matlab code in rgb2grey.m.

Remark A.12 Sample Colour to Greyscale Conversion.
The result of converting a colour image to a greyscale image is shown in Fig.A.19,
using script A.12. Sample plots of colour pixel and greyscale pixel intensities are
shown in Fig.A.20. For more about this, see Sect. 2.1. �

A.2.4 Algebraic Operations on Pixel Intensities

Fig. A.21 Sample colour image �−→ pixel intensity changes

% s c r i p t : p i x e lCyc l e .m
% Sample p i x e l va lue changes I .
clc , clear all , close all
%%
g = imread (’leaf.jpg’) ;
% g = imread (’ ca rCyc l e . jpg ’) ;
figure , imshow (g) ,axis on ;
figure ,
i1 = g + g ; % add image p i x e l v a l u e s
subplot (3 , 4 , 1) , imshow (i1) , . . .

axis off ; title (’g + g’) ; % d i s p l a y sum
i2 = (g + g) . ∗ 0 . 5 ; % ave rage p i x e l v a l u e s
subplot (3 , 4 , 2) , imshow (i2) , . . .

axis off ; title (’(g + g).*0.5’) ; % d i s p l a y ave rage
i3 = (g + g) . ∗ 0 . 3 ; % 1/3 p i x e l v a l u e s

http://dx.doi.org/10.1007/978-3-319-52483-2_2

Appendix A: Matlab and Mathematica Scripts 311

subplot (3 , 4 , 3) , imshow (i3) , . . .
axis off ; title (’(g + g).*0.3’) ; % d i s p l a y reduced va l u e s

i4 = ((g . / 2) .∗g) . ∗ 2 ; % doubled p i x e l va lue p r oduc t s
subplot (3 , 4 , 4) , imshow (i4) , . . .

axis off ; title (’((g./2).*g).*2’) ; % d i s p l a y doubled va l u e s

Listing A.13 Matlab code in pixelCycle.m.

Remark A.13 Sample Algebraic Operations on Pixel Intensities I.
The result of algebraic operations on pixel intensities is shown in Fig.A.21, using
script A.13. For more about this, see Sect. 2.4. �

Fig. A.22 Another colour image �−→ pixel intensity changes

% Sample p i x e l va lue changes I I .
clc , clear all , close all
h = imread (’naturalTessellation.jpg’) ;
figure , imshow (h) ,axis on ;
i5 = h + 30; % p i x e l v a l u e s + 30
figure ,
subplot (3 , 4 , 5) , imshow (i5) , . . .

axis off ; title (’h + 30’) ; % d i s p l a y augmented image p i x e l s
i6 = imsubtract (h , 0 . 2 . ∗h) ; % p i x e l va lue d i f f e r e n c e s
subplot (3 , 4 , 6) , imshow (i6) , . . .

axis off ; title (’h-0.2.*h’) ; % d i s p l a y p i x e l d i f f e r e n c e s
i7 = imabsdiff (h , ((h + h) . ∗ 0 . 5)) ; % ab s o l u t e va lue of d i f f e r e n c e s
subplot (3 , 4 , 7) , imshow (i7) , . . .

axis off ; title (’|h-((h + h).*0.5)|’) ; % d i s p l a y abs of d i f f e r e n c e s
i8 = imadd (h , ((h + h) . ∗ 0 . 5)) . ∗ 2 ; % summed p i x e l v a l u e s doubled
subplot (3 , 4 , 8) , imshow (i8) , . . .

axis off ; title (’h+((h + h).*0.5)).*2’) ; % d i s p l a y doubled sums

Listing A.14 Matlab code in pixelLeaf.m.

Remark A.14 Sample Algebraic Operations on Pixel Intensities II.
The result of algebraic operations on pixel intensities is shown in Fig.A.22, using
script A.14. For more about this, see Sect. 2.4. �

Fig. A.23 Yet another colour image �−→ pixel intensity changes

http://dx.doi.org/10.1007/978-3-319-52483-2_2
http://dx.doi.org/10.1007/978-3-319-52483-2_2

312 Appendix A: Matlab and Mathematica Scripts

% s c r i p t : p ixe lR .m
% Sample p i x e l va lue changes I I I .
clc , clear all , close all
%%
img = imread (’leaf.jpg’) ;
% img = imread (’CVLab−3. jpg ’) ;
figure , imshow (img) ,axis on ;
% s e t up dummy image
rows = size (img , 1) ; columns = size (img , 2) ;
a = zeros (rows , columns) ;
% f i l l dummy image wi th new red b r i g h t n e s s v a l u e s
figure ,
i9 = cat (3 , (0 . 8) .∗img (: , : , 1) ,a ,a) ; % changed red i n t e n s i t i e s
subplot (3 , 4 , 9) , imshow (i9) , . . .

axis off ; title (’i9 (0.8).*red’) ; % d i s p l a y modi f i ed red i n t e n s i t i e s
% f i l l dummy image wi th new green b r i g h t n e s s v a l u e s
i10 = cat (3 ,a , (0 . 9) .∗img (: , : , 2) ,a) ; % changed green i n t e n s i t i e s
subplot (3 , 4 , 10) , imshow (i10) , . . .

axis off ; title (’i10 (0.9).*green’) ; % d i s p l a y newgreen i n t e n s i t i e s
% f i l l dummy image wi th new green b r i g h t n e s s v a l u e s
i11 = cat (3 ,a , (0 . 5) .∗img (: , : , 2) ,a) ; % changed green i n t e n s i t i e s
subplot (3 , 4 , 11) , imshow (i11) , . . .

axis off ; title (’i11 (0.5).*green’) ; % d i s p l a y new green i n t e n s i t i e s
i12 = cat (3 ,a ,a , (1 6 . 5) .∗img (: , : , 3)) ; % changed b lue i n t e n s i t i e s
subplot (3 , 4 , 12) , imshow (i12) , . . .

axis off ; title (’i12 (16.5).*blue’) ; % d i s p l a y new blue i n t e n s i t i e s

Listing A.15 Matlab code in pixelR.m.

Remark A.15 Sample Algebraic Operations on Pixel Intensities III.
The result of algebraic operations on pixel intensities is shown in Fig.A.23, using
script A.15. For more about this, see Sect. 2.4. �

Fig. A.24 Yet another colour image �−→ pixel intensity changes

http://dx.doi.org/10.1007/978-3-319-52483-2_2

Appendix A: Matlab and Mathematica Scripts 313

% s c r i p t : t ha iR .m
% co n s t r u c t i n g new images from old images
% Sample p i x e l va lue changes IV .
clc , clear all , close all
%%

% What ’ s happening ?
%g = imread (’ ra inbow . jpg ’) ; h = imread (’ gems . jpg ’) ;
g = imread (’P9.jpg’) ; h = imread (’P7.jpg’) ;
i1 = g + h ; % add image p i x e l v a l u e s
subplot (2 , 4 , 1) , imshow (i1) ; title (’g + h’) ; % d i s p l a y sum
i2 = (g + h) . ∗ 0 . 5 ; % ave rage p i x e l v a l u e s
subplot (2 , 4 , 2) , imshow (i2) ; title (’(g+h).*0.5’) ; % d i s p l a y ave rage
i3 = (g + h) . ∗ 0 . 3 ; % 1/3 p i x e l v a l u e s
subplot (2 , 4 , 3) , imshow (i3) ; title (’(g+h).*0.3’) ; % d i s p l a y reduced va l u e s
i4 = (g + h) . ∗ 2 ; % doubled p i x e l va lue sums
subplot (2 , 4 , 4) , imshow (i4) ; title (’(g+h).*2’) ; % d i s p l a y doubled va l u e s
i5 = g + 30; % p i x e l va lue + 30
subplot (2 , 4 , 5) , imshow (i5) ; title (’g + 30’) ; % d i s p l a y augmented image p i x e l s
i6 = imsubtract (h ,i3) ; % p i x e l va lue d i f f e r e n c e s
subplot (2 , 4 , 6) , imshow (i6) ; title (’(h-i3)’) ; % d i s p l a y p i x e l d i f f e r e n c e s
i7 = imabsdiff (h , ((g + h) . ∗ 0 . 5)) ; % ab s o l u t e va lue of d i f f e r e n c e s
subplot (2 , 4 , 7) , imshow (i7) ; title (’(h-((g+h).*0.5))’) ; % d i s p l a y abs of

d i f f e r e n c e s
i8 = imadd (h , ((g + h) . ∗ 0 . 5)) . ∗ 2 ; % summed p i x e l v a l u e s doubled
subplot (2 , 4 , 8) , imshow (i8) ; title (’(h+((g+h).*0.5))’) ; % d i s p l a y doubled sums

Listing A.16 Matlab code using thai.m to produce Fig.A.24.

Remark A.16 Sample Algebraic Operations on Pixel Intensities IV.
The result of algebraic operations on pixel intensities is shown in Fig.A.24, using
script A.16. For more about this, see Sect. 2.4. �

% s c r i p t : maxImage .m
% Modifying co l ou r channe l p i x e l v a l u e s us ing a max i n t e n s i t y
clc , clear all , close all % housekeep ing
%%
g = imread (’camera.jpg’) ; % read co l ou r image
[r ,c] = max (g (1 , : , 1)) ; % g (r , c) = max red i n t e n s i t y i n row 1
h = g (: , : , 1) + (0 . 1) .∗g (r ,c) ; % add (0 . 1) max red va lue t o a l l p i x e l v a l u e s
h2 = g (: , : , 1) + (0 . 3) .∗g (r ,c) ; % add (0 . 3) max red from a l l p i x e l v a l u e s
h3 = g (: , : , 1) + (0 . 6) .∗g (r ,c) ; % add (0 . 6) max red from a l l p i x e l s
rows = size (g , 1) ; columns = size (g , 2) ;
a = zeros (rows , columns) ; % b lack image
captureR1 = cat (3 , h , a , a) ; % red channe l image
captureR2 = cat (3 , h2 , a , a) ; % red channe l image
captureR3 = cat (3 , h3 , a , a) ; % red channe l image
figure , % i n t e r n a l view of a red channe l i s a g r e y s c a l e image
subplot (1 , 3 , 1) , imshow (h) ,title (’g(:,:,1)+(0.1).*g(r,c)’) ;
subplot (1 , 3 , 2) , imshow (h2) ,title (’g(:,:,1)+(0.3).*g(r,c)’) ;
subplot (1 , 3 , 3) , imshow (h3) ,title (’g(:,:,1)+(0.6).*g(r,c)’) ;
figure , % e x t e r n a l view of a red channe l i s a co l ou r image
subplot (1 , 3 , 1) , imshow (captureR1) ,title (’red channel captureR1’) ;
subplot (1 , 3 , 2) , imshow (captureR2) ,title (’red channel captureR2’) ;
subplot (1 , 3 , 3) , imshow (captureR3) ,title (’red channel captureR3’) ;

Listing A.17 Find max red intensity in row 1 in an image, using maxImage.m

http://dx.doi.org/10.1007/978-3-319-52483-2_2

314 Appendix A: Matlab and Mathematica Scripts

Fig. A.25 Sample changes in colour channel and on greyscale intensities

Remark A.17 Sample Algebraic Operations on Pixel Intensities V.
The result of algebraic operations on colour channel and on greyscale pixel inten-
sities is shown in Fig.A.25, using script A.17. The result of concatenating the orig-
inal colour intensities with scaled maximum red channel intensities is shown in
Fig.A.25.1. Similarly, The result of concatenating the original greyscale intensities
with scaled maximum greyscale intensities is shown in Fig.A.25.2. For more about
this, see Sect. 2.4. �

A.2.5 Selecting and Displaying Edge Pixel
Colour Pixel Intensities

% s c r i p t : imageEdgesOnColorChannel .m
% Edge Colour Channel p i x e l s mapped to new i n t e n s i t i e s
clc , clear all , close all
%%
img = imread (’trains.jpg’) ;
% img = imread (’ ca rCyc l e . jpg ’) ;
figure ,imshow (img) , . . .

axis square , axis on , title (’colour image display’) ;
gR = img (: , : , 1) ; gG = img (: , : , 2) ; gB = img (: , : , 3) ;
imgRGB = edge (rgb2gray (img) ,’canny’) ; % g r e y s c a l e edges i n B/W

http://dx.doi.org/10.1007/978-3-319-52483-2_2

Appendix A: Matlab and Mathematica Scripts 315

Fig. A.26 Salerno station trains

imgR = edge (gR ,’canny’) ; % red channe l edges i n B/W
imgG = edge (gG ,’canny’) ; % green channe l edges i n B/W
imgB = edge (gB ,’canny’) ; % b lue channe l edges i n B/W
figure ,imshow (imgRGB) , . . .

axis square , axis on , title (’BW edges’) ;
figure ,
subplot (1 , 3 , 1) ,imshow (imgR) , . . .

axis square , axis on , title (’R channel edges’) ;
subplot (1 , 3 , 2) ,imshow (imgG) , . . .

axis square , axis on , title (’G channel edges’) ;
subplot (1 , 3 , 3) ,imshow (imgB) , . . .

axis square , axis on , title (’B channel edges’) ;
rows = size (img , 1) ; columns = size (img , 2) ;
a = zeros (rows , columns) ; % b lack image
captureR = cat (3 , gR , a , a) ; % red channe l image
captureG = cat (3 , a , gG , a) ; % green channe l image
captureB = cat (3 , a , a , gB) ; % red channe l image
edgesR = cat (3 ,imgR ,a ,a) ; % red channe l edges image
edgesG = cat (3 ,a ,imgG ,a) ; % green channe l edges image
edgesB = cat (3 ,a ,a ,imgB) ; % b lue channe l edges image
edgesBscaled = edgesB+0 . 2 ; % s c a l e d b lue edges
edgesRG = cat (3 ,imgR ,imgG ,a) ; % RG t e c h n i c o l o r edges
figure ,imshow (edgesRG) , . . .

axis square , axis on , title (’technicolor RG edges’) ;
edgesRB = cat (3 ,imgR ,a ,imgB) ; % RB t e c h n i c o l o r edges
figure ,imshow (edgesRB) , . . .

axis square , axis on , title (’technicolor RB edges’) ;
figure ,imshow (captureR) , . . .

axis square , axis on , title (’red channel pixels’) ;
figure ,imshow (edgesR) , . . .

316 Appendix A: Matlab and Mathematica Scripts

Fig. A.27 Sample Canny train edges in binary and in colour, using Script A.18

Fig. A.28 Canny edges for each colour image channel, using Script A.18

axis square , axis on , title (’red channel edge pixels’) ;
figure ,imshow (captureG) , . . .

axis square , axis on , title (’green channel pixels’) ;
figure ,imshow (edgesG) , . . .

axis square , axis on , title (’green channel edge pixels’) ;
figure ,
subplot (1 , 2 , 1) ,imshow (captureR) , . . .

axis square , axis on , title (’red channel’) ;
subplot (1 , 2 , 2) ,imshow (edgesR) , . . .

axis square , axis on , title (’red edges’) ;
figure ,
subplot (1 , 2 , 1) ,imshow (captureG) , . . .

axis square , axis on , title (’green channel’) ;
subplot (1 , 2 , 2) ,imshow (edgesG) , . . .

axis square , axis on , title (’green edges’) ;
figure ,
subplot (1 , 2 , 1) ,imshow (captureB) , . . .

axis square , axis on , title (’blue channel’) ;
subplot (1 , 2 , 2) ,imshow (edgesBscaled) , . . .

axis square , axis on , title (’blue edges’) ;

Listing A.18 Matlab code in imageEdgesOnColorChannel.m.

Appendix A: Matlab and Mathematica Scripts 317

Fig. A.29 Canny edges for combined red and blue colour channels, using Script A.18

Remark A.18 Sample Canny Colour Channel Edges.
Script A.18 produces the following results.

1o BinaryCannyedges (seeFig.A.27.1) andRGBCannyedges (seeFig.A.27.2) are
extracted from the colour image in Fig.A.26.

2o FigureA.28 displays binary Canny edges for each colour channels extracted
from the colour image in Fig.A.26.

3o Binary Canny edges for each colour image channel are shown in Fig.A.28.
4o Canny edges for the combined red and blue colour channels in Fig.A.26 are

shown in Fig.A.29.
5o Canny edges for the red colour channels in Fig.A.26 are shown in Fig.A.30.
6o Canny edges for the green colour channels in Fig.A.26 are shown in Fig.A.31.

For more about this, see Sect. 2.5. �

http://dx.doi.org/10.1007/978-3-319-52483-2_2

318 Appendix A: Matlab and Mathematica Scripts

Fig. A.30 Sample Canny train edges in binary and in colour using Script A.18

Fig. A.31 Canny edges for each colour image channel using Script A.18

A.2.6 Function-Based Pixel Value Changes

% s c r i p t : c ameraP ixe l sMod i f i ed .m
% Changing Colour Channel Values .
% Method : s c a l e d log of channe l i n t e n s i t i e s
%
clc , clear all , close all
%%
img = imread (’CNtrain.jpg’) ; % Read image
% img = imread (’ ca rCyc l e . jpg ’) ;

Appendix A: Matlab and Mathematica Scripts 319

Fig. A.32 Video frame �−→ log-modified image

Fig. A.33 Sequence of log-modified video frame colour channel images

gR = img (: , : , 1) ; gG = img (: , : , 2) ; gB = img (: , : , 3) ;
% g (: , :) s p e c i f i e s a l l image p i x e l i n t e n s i t i e s
% double (g (: , :)) c o nv e r t s p i x e l i n t e n s i t i e s t o type double
% l e t x be a number of type double
% log (x) = n a t u r a l log of x
% log (double (g (: , :))) computes log a l l p i x e l i n t e n s i t i e s
% 0 . 2 .∗ l og (double (g (: , :))) r educe s each p i x e l channe l i n t e n s i t y
% img = s t o r e s a r r a y t o modi f i ed p i x e l channe l i n t e n s i t i e s
imgR = 0 . 2 .∗log (double (img (: , : , 1))) ;
imgB = 0 . 2 .∗log (double (img (: , : , 2))) ;
imgG = 0 . 2 .∗log (double (img (: , : , 3))) ;
rows = size (img , 1) ; columns = size (img , 2) ;
a = zeros (rows , columns) ;
justR = cat (3 , imgR , a , a) ;
justG = cat (3 , a , imgB , a) ;
justB = cat (3 , a , a , imgG) ;
captureOriginal = cat (3 , gR , gG , gB) ;
figure , imshow (captureOriginal) , . . .

axis square , axis on ;
captureModifiedImage = cat (3 , imgR , imgB , imgG) ;
figure , imshow (captureModifiedImage) , . . .

axis square , axis on ;
figure ,
subplot (1 , 4 , 1) ,imshow (captureModifiedImage) , . . .

axis square , axis on ,title (’img reconstructed’) ,
subplot (1 , 4 , 2) ,imshow (justR) , . . .

320 Appendix A: Matlab and Mathematica Scripts

axis square , axis on ,title (’log img reds’) ,
subplot (1 , 4 , 3) ,imshow (justG) , . . .

axis square , axis on ,title (’log img greens’) ,
subplot (1 , 4 , 4) ,imshow (justB) , . . .

axis square , axis on ,title (’log img blues’)

Listing A.19 Matlab code in cameraPixelsModified.m.

Remark A.19 Sample Log-modified Video Frame Colour Channel images.
Script A.19 produces the following results.

1o A single Single Video frame image in Fig.A.32.1 mapped to reconstructed log-
modified image in Fig.A.32.2.

2o A sequence log-modified colour channel images is shown in Fig.A.33.

For more about this, see Sect. 2.6. �

A.2.7 Logical Operations on Images

Fig. A.34 Max-intensity modified greyscale image

Fig. A.35 Complement versus not of greyscale pixel intensities

http://dx.doi.org/10.1007/978-3-319-52483-2_2

Appendix A: Matlab and Mathematica Scripts 321

% s c r i p t : i n v e r t .m
% Greysca l e image complement and Log i ca l Not of Binary image
clc , clear all , close all % housekeep ing
%%
g = imread (’cameraman.tif’) ; % read g r e y s c a l e image
gbinary = im2bw (g) ; % conve r t t o b i n a r y image
gnot = not (gbinary) ; % not of bw i n t e n s i t i e s
% gbinaryComplement = imcomplement (gb ina ry) ;
% gbinaryComplement = imcomplement (gnot) ;
gbinaryComplement = imcomplement (g) ;
figure ,
subplot (1 , 3 , 1) , imshow (g) , . . .

axis square , axis on , title (’greyscale image’) ;
h = imcomplement (g) ; % i n v e r t image (complement)
subplot (1 , 3 , 2) , imshow (h) , . . .

axis square , axis on , title (’image complement’) ;
[r ,c] = max (g) ; % max i n t e n s i t y l o c a t i o n
h2 = g + g (r ,c) ; % max−i n c r e a s e d i n t e n s i t i e s
subplot (1 , 3 , 3) , imshow (h2) , . . .

axis square , axis on , title (’add max intensity’) ;
figure ,
subplot (1 , 3 , 1) , imshow (gbinary) , . . .

axis square , axis on , title (’binary image’) ;
subplot (1 , 3 , 2) , imshow (gnot) , . . .

axis square , axis on , title (’not of image’) ;
subplot (1 , 3 , 3) , imshow (gbinaryComplement) , . . .

axis square , axis on , title (’ image complement’) ;

Listing A.20 Matlab source invert.m to produce Fig. 2.24.

Remark A.20 Sample complement, negation, and max-intensity modified
greyscale image.
Script A.20 produces the following results.

1o Pixel maximum intensity provides a basis for modifying greyscale image inten-
sities in Fig.A.34.

2o Logical not versus complement of a greyscale image is shown in Fig.A.35.

For more about this, see Sect. 2.6. �

A.3 Scripts from Chap. 3

A.3.1 Pixel Intensity Histograms (Binning)

% s c r i p t : h i s t og ramBins .m
% Histogram and stem p l o t expe r imen t
%
clc , clear all , close all % housekeep ing
%%
% This s e c t i o n f o r co l ou r images
I = imread (’trains.jpg’) ; % sample RGB image
% I = imread (’ CNtra in . jpg ’) ;
% I = imread (’ f ishermanHead . jpg ’) ;
% I = imread (’ f i she rman . jpg ’) ;
% I = imread (’ f o o t b a l l . jpg ’) ;

http://dx.doi.org/10.1007/978-3-319-52483-2_2
http://dx.doi.org/10.1007/978-3-319-52483-2_2
http://dx.doi.org/10.1007/978-3-319-52483-2_3

322 Appendix A: Matlab and Mathematica Scripts

Fig. A.36 Greyscale pixel intensities histogram and stem plot

I = rgb2gray (I) ;
%
% This s e c t i o n f o r i n t e n s i t y images
%I = imread (’ pout . t i f ’) ;
%
% Cons t r u c t h i s t og ram :
%
h = imhist (I) ;
[counts ,x] = imhist (I) ;
for j=1:size (x)

[j ,counts (j)]
end
% coun t s
size (counts)
subplot (1 , 3 , 1) , imshow (I) ;
subplot (1 , 3 , 2) , imhist (I) ,
grid on ,
ylabel (’pixel count’) ;
subplot (1 , 3 , 3) , stem (x ,counts) ,
grid on

Listing A.21 Matlab source histogramBins.m, illustrates binning pixel intensities in an
intensity image.

Remark A.21 Sample greyscale image and stem plot.
ScriptA.21 produces the results shown inFig.A.36. Formore about this, see Sect. 3.1.
�

http://dx.doi.org/10.1007/978-3-319-52483-2_3

Appendix A: Matlab and Mathematica Scripts 323

A.3.2 Pixel Intensity Distributions

Fig. A.37 Sample grid on a colour image

Fig. A.38 Sample pixel 3D views of pixel intensities

324 Appendix A: Matlab and Mathematica Scripts

% s c r i p t : imageMesh .m
% image geometry : v i s u a l i z i n g rgb p i x e l i n t e n s i t y d i s t r i b u t i o n
%
clear all ; close all ; clc ; % housekeep ing
%%
img = imread (’trains.jpg’) ; % sample RGB image
% img=imread (’ c a r P o l i z i a . jpg ’) ;
figure , imshow (img) , . . .

axis on , grid on , xlabel (’x’) ,ylabel (’y’) ;
% img = imcrop (img) ;
% [r , c] = s i z e (img) ; % de t e rmine cropped image s i z e
% r , c
figure , imshow (img (300 :360 ,300 :380)) , . . .

axis on , grid on , xlabel (’x’) ,ylabel (’y’) ;
% conve r t t o 64 b i t (double p r e c i s i o n) fo rma t
% s u r f & s u r f c need double p r e c i s i o n : 64 b i t p i x e l v a l u e s
img = double (double (img)) ;
% Cr = g r a d i e n t (img (: , : , 1)) ;
% Cg = g r a d i e n t (img (: , : , 2)) ;
% Cb = g r a d i e n t (img (: , : , 2)) ;
% co l ou r channe l g r a d i e n t s of manual ly crop image :
Cr = gradient (img (300 :360 ,300 :380 ,1)) ;
Cg = gradient (img (300 :360 ,300 :380 ,2)) ;
Cb = gradient (img (300 :360 ,300 :380 ,3)) ;
figure ;
% vm3D = s u r f (img (: , :)) ;
vm3D = surf (img (300 :360 ,300 :380)) ;
axis tight ,zlabel (’rgb pixel intensities’) ,
xlabel (’x:gradient(img(:,:)’) ,ylabel (’y:gradient(img(:,:)’) ; % l a b e l axes
saveas (vm3D ,’3DcontourMesh.png’) ; % save copy of image
vm3Dred = figure ,
% s u r f c (img (: , : , 1) , Cr) ,
surfc (img (300 :360 ,300 :380 ,1) ,Cr) ,
axis tight ,zlabel (’red channel pixel intensities’) , . . .
xlabel (’x:gradient(img(:,:,1)’) ,ylabel (’y:gradient(img(:,:,1)’) ; % l a b e l axes
vm3Dgreen = figure ,
% s u r f c (img (: , : , 2) ,Cg) ,
surfc (img (300 :360 ,300 :380 ,2) ,Cg) ,
axis tight ,zlabel (’green channel pixel intensities’) , . . .
xlabel (’x:gradient(img(:,:,2)’) ,ylabel (’y:(img(:,:,2)’) ; % l a b e l axes
vm3Dblue = figure ,
% s u r f c (img (: , : , 3) ,Cb) ,
surfc (img (300 :360 ,300 :380 ,3) ,Cb) ,
axis tight ,zlabel (’blue channel pixel intensities’) , . . .
xlabel (’x:gradient(img(:,:,3)’) ,ylabel (’y:gradient(img(:,:,3)’) ; % l a b e l axes
saveas (vm3D ,’3DcontourMesh.png’) ; % save copy of image
saveas (vm3Dred ,’3DcontourMeshRed.png’) ; % save copy of red channe l con tou r mesh
saveas (vm3Dgreen ,’3DcontourMeshGreen.png’) ; % save copy of red channe l con tou r

mesh
saveas (vm3Dblue ,’3DcontourMeshRed.png’) ; % save copy of red channe l con tou r

mesh
% acce s s and d i s p l a y i n g (i n t h e work space) manual ly cropped image :
% rgb340341 = img (340 ,341) ,
% rgb340342 = img (340 ,342) ,
% rgb340343 = img (340 ,343) ,
% red = img (340 :343 , 1) ,
% green = img (340 :343 , 2) ,
% blue = img (340 :343 , 3)

Listing A.22 Matlab source imageMesh.m.

Remark A.22 Sample colour image grid, 3D mesh for colour intensities and 3D
contour mesh for green channel intensities plots.

Appendix A: Matlab and Mathematica Scripts 325

Script A.22 produces the results shown in Fig.A.38.1 andA.38.2 for the colour image
with grid overlay shown in Fig.A.37. For more about this, see Sect. 3.1. �

A.3.3 Pixel Intensities Isolines

Fig. A.39 Sample grid on a colour image

% Source : i s o l i n e s .m
% V i s u a l i s a t i o n expe r imen t wi th i s o l i n e s
%
clc , close all , clear all % housekeep ing
g = imread (’peppers.png’) ; % read co l ou r image
figure , imshow (g) ,axis on , grid on ;
figure ,
contour (g (: , : , 1)) ; % i s o l i n e s w/ o va l u e s
figure ,
[c ,h] = contour (g (: , : , 1)) , % red channe l i s o l i n e s
clabel (c ,h ,’labelspacing’ , 80) ; % i s o l i n e l a b e l spac ing
hold on
set (h ,’ShowText’ ,’on’ ,’TextStep’ ,get (h ,’LevelStep’)) ;
colormap jet , title (’peppers.png red channel isoline values’) ;

Listing A.23 Matlab code in isolines.m to produce the colour channel isolines shown in
Fig.A.40.

http://dx.doi.org/10.1007/978-3-319-52483-2_3

326 Appendix A: Matlab and Mathematica Scripts

Fig. A.40 Sample colour image isolines with and without labels

Remark A.23 Sample colour channel isolines with and without labels.
Script A.23 produces the results shown in Fig.A.40.1 andA.40.2 for the colour image
with grid overlay shown in Fig.A.39. For more about this, see Sect. 3.1. �

A.4 Scripts from Chap. 4

The scripts AppendixA.4 are embedded in Chap.4.

A.5 Scripts from Chap. 5

A.5.1 1D Gaussian Kernel Plots

% gauss ianSmooth ing .m
% Sc r i p t f o r 1D Gauss ian k e r n e l p l o t s
% Or i g i n a l s c r i p t by Matthew B r e t t 6 / 8 / 99
% Thanks ex tended to R . H e t t i a r a c h c h i f o r nos c o r r e c t i o n .
% r e v i s e d 24 Oct . 2016
clear all , close all , clc

% make v e c t o r s of p o i n t s f o r t h e x a x i s
% minx = 1 ; maxx = 55 ; x = minx : maxx ; % fo r d i s c r e t e p l o t s
% f i n e n e s s = 1 / 100 ;
% f i n e x = minx : f i n e n e s s : maxx ; % fo r con t i nuous p l o t s

% im = read (’ peppe r s . png ’) ;
% im = rgb2hsv (im) ; % use row of im i n s t e a d of nos v a r i a b l e (below) .

%% Let mean u = 0 . The formula f o r 1D Gauss ian k e r n e l i s d e f i n ed by
% 1 (x^2)
% f (x) = −−−−−−−−−−−− exp[− −−−−−−−−−]
% v∗ s q r t (2∗ p i) (2v^2)
% where v (or sigma) i s t h e s t a nd a r d d ev i a t i o n , and u i s t h e mean .

http://dx.doi.org/10.1007/978-3-319-52483-2_3
http://dx.doi.org/10.1007/978-3-319-52483-2_4
http://dx.doi.org/10.1007/978-3-319-52483-2_4
http://dx.doi.org/10.1007/978-3-319-52483-2_5

Appendix A: Matlab and Mathematica Scripts 327

Fig. A.41 Varying widths of 1D Gaussian kernel plots

% 1D Gauss ian k e r n e l sigma :
%%
sigma1 = 0 . 4 1 ; % 0 . 5 1 , 1 . 5 ;
rng (’default’) ;
nos = randn (1 , 100) ;
fineness = nos / 1 0 0 ;
kernx = min (nos) :fineness :max (nos) ;
skerny = 1 / (sigma1∗sqrt(2∗pi)) ∗ exp(−kernx . ^ 2 / (2∗sigma1^2)) ; % v = o . 51 , 1 , 3
figure
plot (kernx , skerny ,’r’) , . . .

legend (’f(x;sigma=0.41)’ ,’Location’ ,’NorthEast’) ;
sigma2 = 0 . 6 1 ; % 1 . 0 ;
skerny = 1 / (sigma2∗sqrt(2∗pi)) ∗ exp(−kernx . ^ 2 / (2∗sigma2^2)) ; % v = 1 ,3
figure
plot (kernx , skerny ,’r’) , . . .

legend (’f(x;sigma=0.61)’ ,’Location’ ,’NorthEast’) ;
sigma3 = 0 . 8 1 ; %1 . 2 ;
skerny = 1 / (sigma3∗sqrt(2∗pi)) ∗ exp(−kernx . ^ 2 / (2∗sigma3^2)) ; % v = 1 ,3
figure
plot (kernx , skerny ,’r’) , . . .

legend (’f(x;sigma=0.81)’ ,’Location’ ,’NorthEast’) ;

Listing A.24 Matlab script in gaussianSmoothing.m to obtain sample 1D Gaussian kernel
plots.

328 Appendix A: Matlab and Mathematica Scripts

Remark A.24 Varying the width of 1D Gaussian kernel plots.
Sample plots of the 1D Gaussian kernel function are shown in Fig.A.41 using
Matlab® script A.24. For more about this, see AppendixA.5.2 and Example5.1 in
Chap.5. �

A.5.2 Gaussian Kernel Experimenter

Fig. A.42 1D Gaussian kernel experiments

Remark A.25 About the 1D Gaussian kernel.
Sample plots of 1D Gaussian kernel function are shown in Fig.A.42 using the
Mathematica® Manipulate function. Try doing the same things usingMatlab®. Let σ
be thewidth of theGaussian kernel plot, centered around 0. Thewidth σ > 0 is called
the standard deviation (average distance from the middle of a set of data) and σ2 is
called the variance. The average value or mean or middle of a set of data is denoted
by μ. In this case, μ = 0. The 1D Gaussian kernel function f (x; sigma), x ∈ R

(reals) is defined by

f (x;σ) = 1

σ
√
2π

e− (x−0)2

2σ2 = 1

σ
√
2π

e− x2

2σ2 (1D Gaussian kernel).

In the definition of the 1D Gaussian kernel function f (x;σ), x is a spatial parameter
and σ is a scale parameter. The semicolon between x and σ separates the two types of
parameters. For x , try letting x range over the pixel intensities in a row or column of
either a colour or grayscale image, letting the scale parameter σ be a small value such
as σ = 0.5. For more about this, see B.M. ter Haar Romeny in [65]. For other papers

http://dx.doi.org/10.1007/978-3-319-52483-2_5

Appendix A: Matlab and Mathematica Scripts 329

by ter Haar Romeny on computer vision, visualization, and the Gaussian kernel, see
http://bmia.bmt.tue.nl/people/bromeny/index.html. �

Mathematica 1 Plotting 1D Gaussian kernel function values.

(*TU Delft 1D Gaussian kernel experimenter. Original script from(*TU Delft 1D Gaussian kernel experimenter. Original script from(*TU Delft 1D Gaussian kernel experimenter. Original script from

2008Biomedical Image − Analysis,2008Biomedical Image − Analysis,2008Biomedical Image − Analysis,

Technische Universiteit Eindhoven, the Netherlands.Technische Universiteit Eindhoven, the Netherlands.Technische Universiteit Eindhoven, the Netherlands.

Revised 19 Oct. 2016.Revised 19 Oct. 2016.Revised 19 Oct. 2016.

))*)

Manipulate[Plot[(1/(σSqrt[2π]))Exp[−x∧2/(2σ∧2)],Manipulate[Plot[(1/(σSqrt[2π]))Exp[−x∧2/(2σ∧2)],Manipulate[Plot[(1/(σSqrt[2π]))Exp[−x∧2/(2σ∧2)],
{x,−5, 5},PlotRange->{0, 1}], {{σ, 1}, .2, 4},{x,−5, 5},PlotRange->{0, 1}], {{σ, 1}, .2, 4},{x,−5, 5},PlotRange->{0, 1}], {{σ, 1}, .2, 4},
FrameLabel → Style[“f(x;σ):1D Gaussian Kernel”,Large],LabelStyle → Red]FrameLabel → Style[“f(x;σ):1D Gaussian Kernel”,Large],LabelStyle → Red]FrameLabel → Style[“f(x;σ):1D Gaussian Kernel”,Large],LabelStyle → Red]

A.5.3 2D Gaussian Kernel Plots

Fig. A.43 2D Gaussian kernel experiments

% gauss ian2DKerne lExper iment .m
% Sc r i p t t o produce a lmos t con t i nuous as we l l as d i s c r e t e 2D Gauss ian k e r n e l

p l o t s
% Matthew B r e t t 6 / 8 / 99
% r e v i s e d 24 Oct . 2016

% seed random number g e n e r a t o r

clear all , close all , clc

% parame t e r s f o r Gauss ian k e r n e l

http://bmia.bmt.tue.nl/people/bromeny/index.html

330 Appendix A: Matlab and Mathematica Scripts

rng (’default’) ;
nos = randn (1 , 100) ;
fineness = mean (nos) ;
fineness = fineness∗5;
%
FWHM = 4 ;
sig = FWHM /sqrt(8∗log (2))
%
% 2d Gauss ian k e r n e l − f a i r l y con t i nuous
Dim = [20 20] ;
% f i n e n e s s = 0 . 5 5 ; % . 1
[x2d ,y2d] = meshgrid(−(Dim (2) −1) / 2 :fineness : (Dim (2) −1) / 2 , . . .

−(Dim (1) −1) / 2 :fineness : (Dim (1) −1) / 2) ;
gf = exp(−(x2d .∗x2d + y2d .∗y2d) / (2∗sig∗sig)) ;
gf = gf /sum (sum (gf)) / (fineness^2) ;
figure
colormap hsv
surfc (x2d+Dim (1) / 2 ,y2d+Dim (2) / 2 ,gf) , . . .

legend (’f(x,y,sigma=1.6986)’ ,’Location’ ,’NorthEast’) ;
beta = 1 ;
brighten (beta)

% 2d Gauss ian k e r n e l − d i s c r e t e
[x2d ,y2d] = meshgrid(−(Dim (2) −1) / 2 : (Dim (2) −1) /2 ,− (Dim (1) −1) / 2 : (Dim (1) −1) / 2) ;
gf = exp(−(x2d .∗x2d + y2d .∗y2d) / (2∗sig∗sig)) ;
gf = gf /sum (sum (gf)) ;
figure
bar3 (gf ,’r’) , . . .

legend (’f(x,y,sigma=1.6986)’ ,’Location’ ,’NorthEast’) ;
axis ([0 Dim (1) 0 Dim (2) 0 max (gf (:)) ∗ 1 . 2])
axis xy
%
%
%

Listing A.25 Matlab script in gaussian2DKernelExperiment.m to obtain sample
continuous and discrete 2D Gaussian kernel plots.

Remark A.26 Continuous and discrete 2D Gaussian kernel plots.
Sample plots of the 2D Gaussian kernel function are shown in Fig.A.43 using
Matlab® script A.25. �

A.5.4 Gaussian Smoothing an Image

% s c r i p t : g a u s s i a n F i l t e r S imp l e .m
% Gauss ian f i l t e r i n g (smoothing) a cropped image :
% See , a l s o :
% h t t p : / / s t a c kove r f l ow . com / q u e s t i o n s /2773606 / gauss i an− f i l t e r −in−mat lab
clear all , close all , clc
%%
img = imread (’CNtrain.jpg’) ;
% img = imread (’ t i s s u e . png ’) ;
img = imcrop (img) ; % crop image
% img = img (80 + [1 : 2 5 6] , 1 : 2 5 6 , :) ;
figure , imshow (img) , . . .

grid on , title (’Sample subimage’) ;
%# Crea t e t h e gau s s i an f i l t e r wi th h s i z e = [5 5] and sigma = 2
G = fspecial (’gaussian’ , [5 5] , 2) ;
%# F i l t e r (smooth) image

Appendix A: Matlab and Mathematica Scripts 331

Fig. A.44 Cropped image

Ig = imfilter (img ,G ,’same’) ;
%# Disp l ay
figure , imshow (Ig) , . . .

grid on , title (’Gaussian smoothed image [5 5],2’) ;
G2 = fspecial (’gaussian’ , [3 3] , 1 . 2) ;
%# F i l t e r (smooth) image
Ig2 = imfilter (img ,G2 ,’same’) ;
%# Disp l ay
figure , imshow (Ig2) , . . .

grid on , title (’Gaussian smoothed image [3 3],1.2’) ;
G3 = fspecial (’gaussian’ , [2 2] , 0 . 8) ;
%# F i l t e r (smooth) image
Ig3 = imfilter (img ,G3 ,’same’) ;
%# Disp l ay
figure , imshow (Ig3) , . . .

grid on , title (’Gaussian smoothed image [2 2],0.8’) ;

Listing A.26 Matlab script ingaussianFilterSimple.m to smooth an image usingGaussian
filtering.

Remark A.27 Continuous and discrete 2D Gaussian kernel plots.
Sample results of Gaussian kernel are shown in Fig.A.45 of the cropped subimage
in Fig.A.44, using script A.26. �

332 Appendix A: Matlab and Mathematica Scripts

A.5.5 Image Restoration

% s c r i p t : g a u s s i a n F i l t e r .m
% Gauss ian b l u r f i l t e r on a cropped image :
% Image cou r t e s y of A.W. P a r t i n .
% Sample a p p l i c a t i o n of t h e deconvreg f u n c t i o n .
% Try docsea r ch deconvreg f o r more about t h i s .
clear all , close all , clc

Fig. A.45 2D Gaussian smoothing a subimage experiments

Appendix A: Matlab and Mathematica Scripts 333

Fig. A.46 Tissue image and cropped image for restoration experiments

%%
img = imread (’tissue.png’) ;
% 1 d i s p l a y t i s s u e sample
figure , imshow (img) , . . .

grid on , axis tight , title (’Tissue image’) ;
% 2 crop image
img = imcrop (img) ; % too l−based c ropp ing
% img = img (125 + [1 : 2 5 6] , 1 : 2 5 6 , :) ; % manual c ropp ing
figure , imshow (img) , . . .

title (’Cropped tissue image’) ;
% 3 b l u r : convolve gau s s i a n smoothed image wi th cropped image
psf = fspecial (’gaussian’ , 11 , 5) ; % ps f = po i n t sp r ead f u n c t i o n
blurred = imfilter (img ,psf ,’conv’) ; %convolve img wi th p s f
figure , imshow (blurred) , . . .

title (’Convolved point spread image 1’) ;
% 4 no i s e : g au s s i a n smooth b l u r r e d image
v = 0 . 0 2 ; % sugge s t ed v = 0 . 02 , 0 . 002 , 0 . 001 , 0 . 005
blurredNoisy = imnoise (blurred ,’gaussian’ , 0 . 000 ,v) ; %0 vs . 0 .001
figure , imshow (blurredNoisy) , . . .

title (’Blurred noisy image 1’) ;
% 5 r e s t o r e image (f i r s t pa s s)
np = v∗prod (size (img)) ; % no i s e power
% ou tpu t 1 : r e s t o r e d image reg1 & ou tpu t of Lagrange m u l t i p l i e r
[reg1 LAGRA] = deconvreg (blurredNoisy ,psf ,np) ;
figure , imshow (reg1) , . . .

title (’Restored image reg1’) ;
% 6 b l u r : convolve gau s s i a n smoothed image and cropped image
psf2 = fspecial (’gaussian’ , 8 , 5) ; % ps f = po i n t sp r ead f u n c t i o n
blurred2 = imfilter (img ,psf2 ,’conv’) ; %convolve img wi th p s f
figure , imshow (blurred2) , . . .

title (’Convolved point spread image 2’) ;
% 7 no i s e
v2 = 0 . 005 ; % sugge s t ed v = 0 . 02 , 0 . 002 , 0 . 001 , 0 . 005
blurredNoisy2 = imnoise (blurred2 ,’gaussian’ , 0 . 001 ,v2) ; %0 vs . 0 .001
figure , imshow (blurredNoisy2) , . . .

title (’Blurred noisy image 2’) ;
% 8 r e s t o r e image (second pass)
np2 = v2∗prod (size (img)) ; % no i s e power
% ou tpu t 2 : r e s t o r e d image reg2 & ou tpu t of Lagrange m u l t i p l i e r

334 Appendix A: Matlab and Mathematica Scripts

[reg2 LAGRA2] = deconvreg (blurredNoisy2 ,psf2 ,np2) ;
figure , imshow (reg2) , . . .

title (’Restored image reg2’) ;

Listing A.27 Matlab script in gaussianFilter.m to deblur an image.

Remark A.28 Image restoration experiments.
Script A.27 produces the following results.

1o FigureA.46: Selection of image region in Fig.A.46.1 and cropped image in
Fig.A.46.2.

2o FigureA.47: (1) Blur: cropped image convolved with Gaussian smoothed image,
(2) Noise: injection of noise in blurred image, and (3) Restoration 1.

Fig. A.47 Experiment 1: convolution, noise injection and cropped tissue image restoration

Appendix A: Matlab and Mathematica Scripts 335

3o FigureA.48: (1) Blur: cropped image convolved with Gaussian smoothed image,
(2) Noise: injection of noise in blurred image, and (3) Restoration 2.

For more about this, see Sect. 5.6. �

A.5.6 Image Corners

Fig. A.48 Experiment 2: convolution, noise injection and cropped tissue image restoration

% s c r i p t : imageCorners .m
% imageCorners .m
% Find ing image co rne r s , R . He t t i a r a c h c h i , 2015
% r e v i s e d 23 Oct . 2016

http://dx.doi.org/10.1007/978-3-319-52483-2_5

336 Appendix A: Matlab and Mathematica Scripts

Fig. A.49 Region selection using Matlab script A.28

Fig. A.50 Image corners & Voronoi mesh on cropped cycle image

clear all ; close all ; clc ;
%%
% im=imread (’ peppe r s . png ’) ;
% im=imread (’ C a r a b i n i e r i . jpg ’) ;
im=imread (’cycle.jpg’) ;
%
figure , imshow (im) ;
% crop method 1

Appendix A: Matlab and Mathematica Scripts 337

Fig. A.51 Image corners & Voronoi mesh on full cycle image

im2 = imcrop (im)
figure , imshow (im2) , . . .

grid on , title (’cropped image’) ;
% crop method 2
% imcrop (im , [xmin ymin width h e i g h t])
% im2 = imcrop (im , [180 300 300 300]) ;
% crop method 3
% imcrop (im , [xmin [v e r t i c a l width] ymin [h o r i z o n t a l width]])
% im2 = im(200 + [1 : 150] , 180 + [1 : 3 2 0] , :) ; % crop image
g2=rgb2gray (im2) ;
[m2 ,n2]=size (g2) ;
C2 = corner (g2 , 5 0) ; %f i n d up to 50 co r n e r s
%add fou r c o r n e r s of t h e image to C
fc2=[1 1 ;n2 1 ; 1 m2 ; n2 m2] ;
C2=[C2 ;fc2] ;
figure ,image (im2) , hold on , . . .

grid on , title (’corners on cropped image’) ,
resultOne = plot (C2 (: , 1) , C2 (: , 2) , ’g+’) ;
figure ,image (im2) , hold on , . . .

grid on , title (’Voronoi mesh on cropped image’) ,
result2 = plot (C2 (: , 1) , C2 (: , 2) , ’g+’) ;
voronoi (C2 (: , 1) ,C2 (: , 2) ,’g.’) ; % red edges
% imwr i t e (r e s u l t 2 , ’ c o r n e r s 2 . jpg ’) ;

%%
g=rgb2gray (im) ;
[m ,n]=size (g) ;
C = corner (g , 5 00) ; %f i n d up to 500 co r n e r s
%add fou r c o r n e r s of t h e image to C
fc=[1 1 ;n 1 ; 1 m ; n m] ;
C=[C ;fc] ;
figure ,image (im) , hold on , . . .

grid on , title (’corners on whole image’) ,
resultTwo = plot (C (: , 1) , C (: , 2) , ’g+’) ;
figure ,image (im) , hold on , . . .

grid on , title (’Voronoi mesh on whole image’) ,
result = plot (C (: , 1) , C (: , 2) , ’g+’) ;
voronoi (C (: , 1) ,C (: , 2) ,’g.’) ; % red edges
% imwr i t e (r e s u l t , ’ c o r n e r s . jpg ’) ;

Listing A.28 Matlab code in imageCorners.m to produce Fig.A.50.1.

338 Appendix A: Matlab and Mathematica Scripts

Remark A.29 Superimposing corners on full as well as on cropped image with
corresponding Voronoï tessellations.
A 480× 640 colour image of Salerno motorcycle image is shown in Fig.A.49. Using
the Matlab script A.28, the corners are found in both the full image in Fig.A.51.1
and in a cropped image in Fig.A.50.1. Then, a 500 corner-based Voronoï mesh is
found (see Fig.A.51.2) and 50 corner-based Voronoï mesh is found (see Fig.A.50.2).
Notice that there are a number different methods that can be used to crop an image
(these cropping methods are explained in the comments in script A.28. For more
about this, see Sect. 5.13. �

A.5.7 Voronoï Mesh with and Without Image Corners

Fig. A.52 Voronoï mesh on cropped cycle image with and without corners

% s c r i p t : VoronoiMeshOnImage .m
% image geometry : ove r l a y Voronoi mesh on image
%
% see h t t p : / / homepages . u lb . ac . be /~ dgonze / INFO / mat lab . html
% r e v i s e d 23 Oct . 2016
clear all ; close all ; clc ; % housekeep ing
g=imread (’fisherman.jpg’) ;
% im=imread (’ cy c l e . jpg ’) ;
% g=imread (’ ca rRedSa le rno . jpg ’) ;
%%
img = g ; % save copy of co l ou r image to make ove r l a y p o s s i b l e
g = double (rgb2gray (g)) ; % conve r t t o g r e y s c a l e image
% co r n e r s = co rn e r (g) ; % min . no . of c o r n e r s
k = 233; % s e l e c t k c o r n e r s
corners = corner (g ,k) ; % up to k co r n e r s
box_corners = [1 , 1 ; 1 ,size (g , 1) ;size (g , 2) , 1 ;size (g , 2) ,size (g , 1)] ;
corners = cat (1 ,corners ,box_corners) ;
vm = figure , imshow (img) , . . .
axis on , hold on ; % s e t up image ove r l a y

http://dx.doi.org/10.1007/978-3-319-52483-2_5

Appendix A: Matlab and Mathematica Scripts 339

voronoi (corners (: , 1) ,corners (: , 2) ,’g’) ; % red edges
% vorono i (c o r n e r s (: , 1) , c o r n e r s (: , 2) , ’ g . ’) ; % red edges
% imf i n f o (’ ca rRedSa le rno . jpg ’)
% f i gu r e , mesh (g (300 :350 ,300 :350)) , . . .
% ax i s t i g h t , z l a b e l (’ rgb p i x e l i n t e n s i t y ’)
% x l a b e l (’ g (300 :350) ’) , y l a b e l (’ g (300 :350) ’) % l a b e l axes
% savea s (vm, ’ VoronoiMesh . png ’) ; % save copy of image

Listing A.29 Matlab code in VoronoiMeshOnImage.m to produce Fig.A.52.1.

Remark A.30 Superimposing corners on full as well as on cropped image.
In this section, the 480× 640 colour image of an Italian Carabinieri auto in Fig.A.49
is cropped. Then image corners provide a set of sites that are used to construct a
Voronoï mesh on the cropped image. Using the Matlab script A.29, image corners
are included in the set of interior image corners are used to construct a Voronoï
mesh in Fig.A.52.1, which demonstrates the effectiveness of extreme image corners
in producing a fine-grained image mesh. By contrast, see the coarse-grain Voronoï
mesh that results from the exclusion of the extreme image corners in the set of interior
image corners that are used to construct a Voronoï mesh in Fig.A.52.2. For more
about this, see Sect. 5.13. �

A.6 Scripts from Chap. 6

A.6.1 Finding 2D and 3D Image Centroids

Fig. A.53 Sample 2D image region centroids

http://dx.doi.org/10.1007/978-3-319-52483-2_5
http://dx.doi.org/10.1007/978-3-319-52483-2_6

340 Appendix A: Matlab and Mathematica Scripts

Mathematica 2 script: Stanford Bunny.nb: UNISA coin centroid.

(* Digital Image Region Centroid *)(* Digital Image Region Centroid *)(* Digital Image Region Centroid *)

img = ;img = ;img = ;
c = ComponentMeasurements[img,“Centroid”][[All, 2]][[1]];c = ComponentMeasurements[img,“Centroid”][[All, 2]][[1]];c = ComponentMeasurements[img,“Centroid”][[All, 2]][[1]];
Show[img,Graphics[{Black,PointSize[0.02],Point[c]}]]Show[img,Graphics[{Black,PointSize[0.02],Point[c]}]]Show[img,Graphics[{Black,PointSize[0.02],Point[c]}]] �

Fig. A.54 Sample 3D image region centroids

Mathematica 3 StanfordBunny centroid.

(* 3D Region centroids *)(* 3D Region centroids *)(* 3D Region centroids *)

gr = ExampleData[{“Geometry3D”,“StanfordBunny”}];gr = ExampleData[{“Geometry3D”,“StanfordBunny”}];gr = ExampleData[{“Geometry3D”,“StanfordBunny”}];
gm = DiscretizeGraphics[gr];gm = DiscretizeGraphics[gr];gm = DiscretizeGraphics[gr];
c2 = RegionCentroid[gm]c2 = RegionCentroid[gm]c2 = RegionCentroid[gm]
Show[Graphics3D[Prepend[First[gr],Opacity[0.6]]],Show[Graphics3D[Prepend[First[gr],Opacity[0.6]]],Show[Graphics3D[Prepend[First[gr],Opacity[0.6]]],
Graphics3D[{PointSize[0.03],Black,Point@c2}],Axes → True,Graphics3D[{PointSize[0.03],Black,Point@c2}],Axes → True,Graphics3D[{PointSize[0.03],Black,Point@c2}],Axes → True,

LabelStyle → Black,AxesLabel → {x, y, z},PlotTheme->“Scientific”,LabelStyle → Black,AxesLabel → {x, y, z},PlotTheme->“Scientific”,LabelStyle → Black,AxesLabel → {x, y, z},PlotTheme->“Scientific”,

FaceGrids → All,FaceGrids → All,FaceGrids → All,

FaceGridsStyle → Directive[Gray,Dotted]FaceGridsStyle →FaceGridsStyle → Directive[Gray,Dotted]FaceGridsStyle →FaceGridsStyle → Directive[Gray,Dotted]FaceGridsStyle →
Directive[Gray,Dotted]]Directive[Gray,Dotted]]Directive[Gray,Dotted]]

�

Appendix A: Matlab and Mathematica Scripts 341

Remark A.31 Digital image region centroids.
A sample 2D image region centroid is shown in Fig.A.53.2 on the image in
Fig.A.53.1 using Mathematica® script 2. In Fig.A.53.1, the digital image shown
a UNISA coin from a 1982 football tournament in Salerno, Italy. In Fig.A.53.2, the
location of the centroid of the UNISA coin is identified with the black dot •.

A sample 3D image region centroid is shown in Fig.A.54.2 on the 3D Stanford
bunny image in Fig.A.54.1 using Mathematica® script 3. The coordinates for the
bunny centroid in Fig.A.54.2 are

(x, y, z) = (−0.0267934,−0.00829883, 0.0941362).

For more about this, see Appendix A.6.2 and Sect. 6.4. �

A.6.2 Another Approach in Finding Image Centroids

Fig. A.55 Image region centroids

% s c r i p t : f i n dCen t r o i d s .m
% cen t r o i d−based image Delaunay mesh
clc , clear all , close all
%%
im = imread (’fisherman.jpg’) ;
% im = imread (’ l i f t i n g b o d y . png ’) ;
figure ,
imshow (im) , axis on ;
% i f s i z e (im , 3) ==3
% g=rgb2gray (im) ;
% end
[m ,n]=size (im) ;
bw = im2bw (im , 0 . 5) ; % t h r e s h o l d a t 50%
bw = bwareaopen (bw , 2) ; % remove o b j e c t s l e s s 2 than p i x e l s

http://dx.doi.org/10.1007/978-3-319-52483-2_6

342 Appendix A: Matlab and Mathematica Scripts

stats = regionprops (bw ,’Centroid’) ; % c e n t r o i d c o o r d i n a t e s
centroids = cat (1 ,stats .Centroid) ;
fc=[1 1 ;n 1 ; 1 m ; n m] ; % i d e n t i f y image co r n e r s
centroids=[centroids ;fc] ;

% super impose mesh on image
figure ,
imshow (im) ,hold on
plot (centroids (: , 1) ,centroids (: , 2) ,’r+’)
hold on ;
X=centroids (: , 1) ;
Y=centroids (: , 2) ;

% con s t u c t de launay t r i a n g u l a t i o n
% TRI = de launay (X,Y) ;
% t r i p l o t (TRI ,X,Y, ’ y ’) ;

Listing A.30 Matlab script in findCentroids.m to obtain plot of centroids on an image.

Remark A.32 Region centroids on an image.
A sample plot of the image region centroids are shown in Fig.A.55.2 on the image
in Fig.A.55.1 usingMatlab® script A.30. For more about this, see Appendix B.3 and
Sect. 6.4. �

A.6.3 Finding Image Centroidal Delaunay Mesh

Fig. A.56 Image region centroid-based Delaunay mesh

% f indCen t ro ida lDe launayMesh .m
% cen t r o i d−based image Delaunay mesh
clc , clear all , close all
%%
im = imread (’fisherman.jpg’) ;
% im = imread (’ l i f t i n g b o d y . png ’) ;

http://dx.doi.org/10.1007/978-3-319-52483-2_6

Appendix A: Matlab and Mathematica Scripts 343

% i f s i z e (im , 3) ==3
% g=rgb2gray (im) ;
% end
[m ,n]=size (im) ;
bw = im2bw (im , 0 . 5) ; % t h r e s h o l d a t 50%
bw = bwareaopen (bw , 2) ; % remove o b j e c t s l e s s 2 than p i x e l s
stats = regionprops (bw ,’Centroid’) ; % c e n t r o i d c o o r d i n a t e s
centroids = cat (1 ,stats .Centroid) ;
fc=[1 1 ;n 1 ; 1 m ; n m] ; % i d e n t i f y image co r n e r s
centroids=[centroids ;fc] ;

% super impose mesh on image
figure ,
imshow (im) ,hold on
plot (centroids (: , 1) ,centroids (: , 2) ,’r+’)
hold on ;
X=centroids (: , 1) ;
Y=centroids (: , 2) ;

% con s t u c t de launay t r i a n g u l a t i o n
TRI = delaunay (X ,Y) ;
triplot (TRI ,X ,Y ,’y’) ;

Listing A.31 Matlab script infindCentroidalDelaunayMesh.m to obtain plot of centroid-
based Delaunay mesh on an image.

Remark A.33 Region centroid-based Delaunay triangulation on an image.
A sample plot of the image region centroid-based Delaunay mesh is shown in
Fig.A.56.2 (relative to the region centroids in Fig.A.56.1) usingMatlab® script A.31.
For more about this, see Sect. 6.4. �

A.6.4 Finding Image Centroidal Voronoï Mesh

Fig. A.57 Image region centroid-based Voronoï mesh

http://dx.doi.org/10.1007/978-3-319-52483-2_6

344 Appendix A: Matlab and Mathematica Scripts

% s c r i p t : f i ndCen t ro ida lVorono iMesh .m
% cen t r o i d−based image Voronoi mesh
clc , clear all , close all
%%
im = imread (’fisherman.jpg’) ;
% im = imread (’ l i f t i n g b o d y . png ’) ;
% i f s i z e (im , 3) ==3
% g=rgb2gray (im) ;
% end
[m ,n]=size (im) ;
bw = im2bw (im , 0 . 5) ; % t h r e s h o l d a t 50%
bw = bwareaopen (bw , 2) ; % remove o b j e c t s l e s s 2 than p i x e l s
stats = regionprops (bw ,’Centroid’) ; % c e n t r o i d c o o r d i n a t e s
centroids = cat (1 ,stats .Centroid) ;
fc=[1 1 ;n 1 ; 1 m ; n m] ; % i d e n t i f y image co r n e r s
centroids=[centroids ;fc] ;
% super impose mesh on image
figure ,
imshow (im) ,hold on
plot (centroids (: , 1) ,centroids (: , 2) ,’r+’)
hold on ;
X=centroids (: , 1) ;
Y=centroids (: , 2) ;

% c o n s t r u c t Voronoi mesh

[vx ,vy] = voronoi (X ,Y) ;
plot (vx ,vy ,’g-’) ;

Listing A.32 Matlab script in findCentroidalVoronoiMesh.m to obtain plot of centroid-
based Voronoï mesh on an image.

Remark A.34 Region centroid-based Voronoï mesh on an image.
A sample plot of the image region centroid-based Voronoï mesh is shown in
Fig.A.57.2 (relative to the region centroids in Fig.A.57.1) usingMatlab® script A.32.
For more about this, see Sect. 6.4. �

A.6.5 Finding Image Centroidal Voronoï Superimposed
on a Delaunay Mesh

% s c r i p t : f indCent ro ida lVornonoiOnDelaunayMesh .m
% cen t r o i d−based image Delaunay and Voronoi mesh
clc , clear all , close all
%%
im = imread (’fisherman.jpg’) ;
% im = imread (’ l i f t i n g b o d y . png ’) ;
% i f s i z e (im , 3) ==3
% g=rgb2gray (im) ;
% end
[m ,n]=size (im) ;
bw = im2bw (im , 0 . 5) ; % t h r e s h o l d a t 50%
bw = bwareaopen (bw , 2) ; % remove o b j e c t s l e s s 2 than p i x e l s
stats = regionprops (bw ,’Centroid’) ; % c e n t r o i d c o o r d i n a t e s
centroids = cat (1 ,stats .Centroid) ;
fc=[1 1 ;n 1 ; 1 m ; n m] ; % i d e n t i f y image co r n e r s
centroids=[centroids ;fc] ;
% super impose mesh on image

http://dx.doi.org/10.1007/978-3-319-52483-2_6

Appendix A: Matlab and Mathematica Scripts 345

Fig. A.58 Image region centroid-based Voronoï over Delaunay mesh

figure ,
imshow (im) ,hold on
plot (centroids (: , 1) ,centroids (: , 2) ,’r+’)
hold on ;
X=centroids (: , 1) ;
Y=centroids (: , 2) ;

% con s t u c t de launay t r i a n g u l a t i o n

TRI = delaunay (X ,Y) ;
triplot (TRI ,X ,Y ,’y’) ;

% c o n s t r u c t Voronoi mesh

[vx ,vy] = voronoi (X ,Y) ;
plot (vx ,vy ,’k-’) ;

Listing A.33 Matlab script in findCentroidalVoronoiOnDelaunayMesn.m to obtain
plot of centroid-based Voronoï over Delaunay mesh on an image.

Remark A.35 Region centroid-based Voronoï over Delaunay mesh on an image.
A sample plot of the image region centroid-based Voronoï over a Delaunay mesh is
shown in Fig.A.58 (relative to the region centroidal Delaunay mesh in Fig.A.58.1)
using Matlab® script A.33. For more about this, see Sect. 6.4. �

http://dx.doi.org/10.1007/978-3-319-52483-2_6

346 Appendix A: Matlab and Mathematica Scripts

A.7 Scripts from Chap. 7

A.7.1 Edgelet Measurements in Voronoï Tessellated
Video Frames

The following is a sample solution to Problem7.32.

% Cropping Voronoi t e s s e l l a t e d v ideo f rames to exp l o r e e d g e l e t me t r i c s
% So l u t i o n by Drew Barc lay , 2016
%
% Ca l l t h i s s c r i p t wi th :
% −v i d e oF i l e : t h e name of t h e v ideo f i l e t o e x t r a c t f rames from
% (use ’ ’ f o r webcam)
% −numPoints : t h e number of co r n e r p o i n t s t o use
%
% example use : Problem1 (’ Tra in .mp4 ’ , 30)
%%

function Problem1 (videoFile , numPoints)
close all

%For sav ing e d g e l e t s
saveFrameNums = [10 , 3 0] ;

%Se t up d i r e c t o r y f o r s t i l l s , t a r g e t con tour , e t c .
[pathstr , name , ext] = fileparts (videoFile) ;
savePath = [’./’ name ’/’ int2str (numPoints) ’points’] ;
if ~exist (savePath , ’dir’)

mkdir (savePath) ;
end

if strcmp (videoFile , ’’) %Make anonymous f u n c t i o n s f o r f rames / loop cond
cam = webcam () ;
keepGoing = @ (frames) frames < 100;
getFrame = @ () snapshot (cam) ;

else
v = VideoReader (videoFile) ;
keepGoing = @ (frames) hasFrame (v) ;
getFrame = @ () readFrame (v) ;

end

% Crea t e t he v ideo p l a y e r ob j e c t , pu r e l y f o r v i s u a l feedback .
videoPlayer = vision .VideoPlayer () ;
edgeletPlayer = vision .VideoPlayer () ;

frameCount = 0 ;

cropRect = [] ;

edgelets = {} ;

while keepGoing (frameCount)
% Get t h e nex t frame .
videoFrame = getFrame () ;

% Find what t o crop i f we haven ’ t y e t .
if length (cropRect) == 0

[videoFrame , cropRect] = imcrop (videoFrame) ;
close figure 1 ; %Close t h e imcrop f i g u r e , which s t a y s around .

else
videoFrame = imcrop (videoFrame , cropRect) ;

end

videoFrameG = rgb2gray (videoFrame) ;

http://dx.doi.org/10.1007/978-3-319-52483-2_7
http://dx.doi.org/10.1007/978-3-319-52483-2_7

Appendix A: Matlab and Mathematica Scripts 347

frameCount = frameCount + 1 ;

[corners , voronoiLines , MNCs] = MakeMeshAndFindMNC (videoFrameG , true ,
numPoints) ;

videoFrameT = insertMarker (videoFrame , corners , ’+’ , . . .
’Color’ , ’red’) ;

videoFrameT = insertShape (videoFrameT , ’Line’ , voronoiLines , . . .
’Color’ , ’red’) ;

contourFrame = 255 ∗ ones (size (videoFrameT) , ’uint8’) ;

for i = 1 :length (MNCs)
mnc = MNCs{i} ;
% draw the f i n e c l u s t e r con tou r connec t i ng ne i ghbo r s
x=mnc (: , 1) ; y=mnc (: , 2) ;
%a r r ange p o i n t s c lockwi se t o ge t t h e polygon
xy = orderPoints (x , y) ;
videoFrameT = insertShape (videoFrameT , ’Polygon’ , . . .

{xy} , ’Color’ , . . .
{’green’} , ’Opacity’ , 1) ; %mark con t ou r s

contourFrame = insertShape (contourFrame , ’Polygon’ , . . .
{xy} , ’Color’ , . . .
{’green’} , ’Opacity’ , 1) ; %mark con t ou r s on t h e i r own

if i == 1
edgelets{frameCount} = mnc ;

end

if i == 1 && any (frameCount == saveFrameNums)
%Save p ic s , d e f i n ed above in saveFrameNums
edgeletPic = insertMarker (videoFrame , mnc , ’+’ , . . .
’Color’ , ’red’) ;
edgeletPic = insertShape (edgeletPic , ’Polygon’ , . . .

{xy} , ’Color’ , . . .
{’green’} , ’Opacity’ , 1) ; %mark con t ou r s

edgeletPic = insertShape (edgeletPic , ’FilledPolygon’ , . . .
{xy} , ’Color’ , . . .
{’green’} , ’Opacity’ , 0 . 2) ; %mark con t ou r s

imwrite (edgeletPic , [savePath ’frame’ . . .
int2str (frameCount) ’.png’]) ;

end
end

%Update v ideo p l a y e r
pos = get (videoPlayer ,’Position’) ;
pos (3) = size (videoFrame , 2) + 30 ;
pos (4) = size (videoFrame , 1) + 30 ;
set (videoPlayer ,’Position’ ,pos) ;
step (videoPlayer , videoFrameT) ;

%Cause con tou r p l a y e r t o ’ s t i c k ’ t o t h e r i g h t of t h e main v ideo
pos (1) = pos (1) + size (videoFrame , 2) + 30 ;
set (edgeletPlayer ,’Position’ ,pos) ;
step (edgeletPlayer , contourFrame) ;

end

%We are done now , de t e rmine | e _ i |
%Note : i f code runs s lowly , t h i s can be op t im ized in a few ways
eSize = cellfun (@length ,edgelets) ;
m = {} ;
for i = 1 :length (eSize)

m{i} = 1 ;
%Count how many o t h e r e d g e l e t s have t h e same s i z e
for j = 1 :length (eSize)

if i ~= j && eSize (i) == eSize (j)

348 Appendix A: Matlab and Mathematica Scripts

m{i} = m{i} + 1 ;
end

end
end
eProb = cellfun (@ (e) 1 /length (e) , edgelets) ;

%Histogram of m_i
figure , histogram (cell2mat (m)) , title (’Histogram of m_i’) ;
xlabel (’Frequency’) , ylabel (’Count at that Frequency’) ;

%Now, do a compass p l o t .
%I have modi f i ed t h i s t o t r y and look decen t .
mags = unique (cell2mat (m)) ;
zs = mags .∗ exp (sqrt(−1) ∗ (2 ∗ pi ∗ (1 :length (mags)) / length (mags))) ;
%The above even ly space s ou t t h e magni tudes by making them
%Complex numbers wi th a magni tude equa l t o t h e i r f r equency va l u e s
%And phases e qu a l l y spaced
figure , compass (zs) , title (’Compass Plot of m_i’) ;

%TODO: log po l a r p l o t

figure , plot (1 :length (eProb) , eProb) , title (’Pr(e_i) vs. e_i’) ;
xlabel (’e_i’) , ylabel (’Pr(e_i)’) ;

%3d coun tou r p l o t
tri = delaunay (1 :length (eSize) , cell2mat (m)) ;
figure , trisurf (tri , 1 :length (eSize) , cell2mat (m) , eProb) , title (’Pr(e_i) vs

. e_i and m_i’) ;
xlabel (’e_i’) , ylabel (’m_i’) , zlabel (’Pr(e_i)’) ;

end

%Take po in t s , o r d e r them to t h e r i g h t angle , r e t u r n [x1 , y1 , x2 , y2 . . .]
function xy = orderPoints (x , y)

cx = mean (x) ;
cy = mean (y) ;
a = atan2 (y − cy , x − cx) ;
[~ , order] = sort (a) ;
x = x (order) ;
y = y (order) ;
xy = [x ’ ; y ’] ;
xy = xy (:) ; %merge t h e two such t h a t we ge t [x1 , y1 , x2 . .]
if length (xy) < 6

%our polygon i s a l i n e , dummy va lue i t
xy = [0 0 0 0 0 0] ;

end
end

function [corners , voronoiLines , MNCs]=MakeMeshAndFindMNC (videoFrameG , useSURF ,
numPoints)

if useSURF
points = detectSURFFeatures (videoFrameG) ;
[features , valid_points] = extractFeatures (videoFrameG , points) ;
corners = valid_points .selectStrongest (numPoints) .Location ;
corners = double (corners) ;

else
corners = corner (videoFrameG , numPoints) ;

end

voronoiLines = [] ;
MNCs = {} ;

if (length (corners) < 5)
return ;

end

[VX ,VY] = voronoi (corners (: , 1) , corners (: , 2)) ;

Appendix A: Matlab and Mathematica Scripts 349

% Crea t i ng ma t r i x of l i n e segments i n t h e form
% [x_11 y_11 x_12 y_12 . . . x_n1 y_n1 x_n2 y_n2]
A = [VX (1 , :) ; VY (1 , :) ; VX (2 , :) ; VY (2 , :)] ;
A (A>5000) = 5000; A (A<−5000) = −5000;
A = A ’ ;
voronoiLines = A ;

%Now f i n d maximal nuc l eu s c l u s t e r
[V ,C] = voronoin (corners , {’Qbb’ ,’Qz’}) ; %Opt ions added to avo id co−s p e r i c a l

e r r o r , see mat lab documenta t ion
%Limi t va lues , can ’ t draw i n f i n i t e t h i n g s
V (V > 5000) = 5000;
V (V < −5000) = −5000;
numSides=cellfun (@length ,C) ;
maxSides=max (numSides) ;
ind=find (numSides==maxSides) ;
N=size (corners , 1) ;
for i=1:length (ind)

xy= [] ;
for j=1:N

if (ind (i) ~=j) %Find t h e co rn e r p o i n t s which have t h i s edge
s = size (intersect (C{ind (i) } ,C{j})) ;
if (s (2) >1)%i f ne ighbor vo rono i r e g i on

xy=[xy ;corners (j , :)] ; %keep t he xy coords of a d j a c e n t
polygon

end
end

end
MNCs{i} = xy ;

end
end

Listing A.34 Matlab code in Problem734.m to obtain edgelet measurements for each Voronoi
tessellated video from.

A.8 Scripts from Chap. 8

Fig. A.59 Sample colour used in Gaussian pyramid scheme in script A.35

http://dx.doi.org/10.1007/978-3-319-52483-2_8

350 Appendix A: Matlab and Mathematica Scripts

A.8.1 Gaussian Pyramid Scheme

Remark A.36 Pyramid scheme for Gaussian reduction and expansion of a
colour.
A sample colour image in Fig.A.59 is used in a Gaussian pyramid scheme in a
sequence of image reductions in Fig.A.60.1 and in a sequence of image expansions
in Fig.A.60.2. To experiment with Gaussian reduction and expansion of an image,
try Matlab script A.35. �

Fig. A.60 Sample Gaussian pyramid schemes

% pyramidScheme .m
% Gauss ian pyramid r e d u c t i o n and expans ion of an image
% cf . S e c t i on 8 .4 on c ropp ing & sp a r s e r e p r e s e n t a t i o n s
clear all , close all , clc

im0 = imread (’flyoverTraffic.jpg’) ;
% im0 = imread (’ peppe r s . png ’) ;
% im0 = imread (’ cameraman . t i f ’) ;

% Crop (e x t r a c t) an i n t e r e s t i g subimage
im0 = imcrop (im0) ;
%%

im1 = impyramid (im0 ,’reduce’) ;
im2 = impyramid (im1 ,’reduce’) ;
im3 = impyramid (im2 ,’reduce’) ;

im4 = impyramid (im0 ,’expand’) ;
im5 = impyramid (im4 ,’expand’) ;
im6 = impyramid (im5 ,’expand’) ;

Appendix A: Matlab and Mathematica Scripts 351

figure , imshow (im0) ;
figure ,
subplot (1 , 3 , 1) , imshow (im1) ;
subplot (1 , 3 , 2) , imshow (im2) ;
subplot (1 , 3 , 3) , imshow (im3) ;
figure ,
subplot (1 , 3 , 1) , imshow (im4) ;
subplot (1 , 3 , 2) , imshow (im5) ;
subplot (1 , 3 , 3) , imshow (im6) ;

Listing A.35 Matlab code in pyramidScheme.m to produce a Laplacian pyramid scheme as
shown in two different ways in Fig.A.62.

A.8.2 Wavelet Pyramid Scheme

Fig. A.61 Sample sparse representation using a wavelet

352 Appendix A: Matlab and Mathematica Scripts

Mathematica 4 Wavelet-based sparseRepresentation.nb pyramid scheme.

(*Sparse Representation Pyramid Scheme Using a Wavelet Transform)(*Sparse Representation Pyramid Scheme Using a Wavelet Transform)(*Sparse Representation Pyramid Scheme Using a Wavelet Transform)

dwd = WaveletBestBasis[DiscreteWaveletPacketTransform[,dwd = WaveletBestBasis[DiscreteWaveletPacketTransform[,dwd = WaveletBestBasis[DiscreteWaveletPacketTransform[,

Padding → “Extrapolated”]];Padding → “Extrapolated”]];Padding → “Extrapolated”]];
imgFunc[img_, {___, 1|2|3}]:=imgFunc[img_, {___, 1|2|3}]:=imgFunc[img_, {___, 1|2|3}]:=
Composition[Sharpen[#, 0.5]&, ImageAdjust[#, {0, 1}]&, ImageAdjust, ImageComposition[Sharpen[#, 0.5]&, ImageAdjust[#, {0, 1}]&, ImageAdjust, ImageComposition[Sharpen[#, 0.5]&, ImageAdjust[#, {0, 1}]&, ImageAdjust, Image

Apply[Abs, #1]&][Apply[Abs, #1]&][Apply[Abs, #1]&][
img]img]img]
imgFunc[img_,wind_]:=Composition[ImageAdjust, ImageApply[Abs, #1]&][img];imgFunc[img_,wind_]:=Composition[ImageAdjust, ImageApply[Abs, #1]&][img];imgFunc[img_,wind_]:=Composition[ImageAdjust, ImageApply[Abs, #1]&][img];
WaveletImagePlot[dwd,Automatic, imgFunc[#1, #2]&,BaseStyle → Red,WaveletImagePlot[dwd,Automatic, imgFunc[#1, #2]&,BaseStyle → Red,WaveletImagePlot[dwd,Automatic, imgFunc[#1, #2]&,BaseStyle → Red,

ImageSize → 800]ImageSize → 800]ImageSize → 800] �

Remark A.37 Digital image region centroids.
A sample wavelet-based sparse representation pyramid scheme for a 2D image
is shown in Fig.A.61 using Mathematica® script 4. For more about this, see
Sect. 8.4. �

Fig. A.62 Sample pixel edge strengths represented by circle radii magnitudes

A.8.3 Pixel Edge Strength

Remark A.38 Pixel strength.
Let I mg be a digital image. Recall that pixel edge strength E(x, y) for a pixel
I mg(x, y) at location (x, y) is defined by

http://dx.doi.org/10.1007/978-3-319-52483-2_8

Appendix A: Matlab and Mathematica Scripts 353

E(x, y) =
√(

∂ I mg(x, y)

∂x

)2

+
(

∂ I mg(x, y)

∂y

)2

(Pixel edge strength)

=
√

Gx (x, y)2 + G y(x, y)2.

The edge strength of the red • hat pixel in Fig.A.62.1 is represented by the length
of the radius of the circle centered on the hat pixel.

A global view of multiple pixel edge strengths is shown in Fig.A.62.2. To exper-
iment with finding the edge strengths of pixels, try Matlab script A.36. �

% p i x e l edge s t r e n g t h d e t e c t i o n
% N.B . : each p i x e l found i s a keypo in t
clc ; clear all , close all ;
% g = imread (’ cameraman . t i f ’) ;
% I = g ;
g = imread (’fisherman.jpg’) ;
I = rgb2gray (g) ; % nece s s a r y s t e p f o r co l ou r images
points = detectSURFFeatures (I) ;
% a cqu i r e edge p i x e l s t r e n g t h s
[features ,keyPts] = extractFeatures (I ,points) ;
% r e co r d number of k eypo i n t s found
keyPointsFound = keyPts
% s e l e c t number p i x e l edge s t r e n g t h s t o d i s p l a y on o r i g i n a l image
figure ,
imshow (g) ; hold on ;
plot (keyPts .selectStrongest (13) ,’showOrientation’ ,true) ,
axis on , grid on ;
figure ,
imshow (g) ; hold on ;
plot (keyPts .selectStrongest (89) ,’showOrientation’ ,true) ,
axis on , grid on ;

Listing A.36 Matlab code in pixelEdgeStrength.m to produce Fig.A.62.

A.8.4 Plotting Arctan Values

Fig. A.63 Plotting arctan values between 5 and −5

354 Appendix A: Matlab and Mathematica Scripts

Remark A.39 A sample plot of arctan values is shown in Fig.A.63. Try doing the
same things using Matlab®. �

Mathematica 5 Plotting arctan values.

(* compute arc tangents *)(* compute arc tangents *)(* compute arc tangents *)

ArcTan[−1]ArcTan[−1]ArcTan[−1]
N [ArcTan[−1]/Degree]N [ArcTan[−1]/Degree]N [ArcTan[−1]/Degree]
N [ArcTan[+50]/Degree]N [ArcTan[+50]/Degree]N [ArcTan[+50]/Degree]
N [ArcTan[−1.5]/Degree]N [ArcTan[−1.5]/Degree]N [ArcTan[−1.5]/Degree]
Plot[ArcTan[x], {x,−8, 8}]Plot[ArcTan[x], {x,−8, 8}]Plot[ArcTan[x], {x,−8, 8}]
Plot[N [ArcTan[x]/Degree], {x,−8, 8},AxesLabel → {x,ArcTan},Plot[N [ArcTan[x]/Degree], {x,−8, 8},AxesLabel → {x,ArcTan},Plot[N [ArcTan[x]/Degree], {x,−8, 8},AxesLabel → {x,ArcTan},
LabelStyle → Directive[Blue,Bold],LabelStyle → Directive[Blue,Bold],LabelStyle → Directive[Blue,Bold],

Fig. A.64 Representation of fingerprint pixel intensities

Appendix A: Matlab and Mathematica Scripts 355

GridLines → {{{Pi,Dashed}, {2Pi,Thick}},GridLines → {{{Pi,Dashed}, {2Pi,Thick}},GridLines → {{{Pi,Dashed}, {2Pi,Thick}},
{{−80,Orange},−.5, .5, {80,Orange}}}]{{−80,Orange},−.5, .5, {80,Orange}}}]{{−80,Orange},−.5, .5, {80,Orange}}}]

A.8.5 Pixel Geometry: Gradient Orientation
and Gradient Magnitude

Remark A.40 Each pixel intensity in Fig.A.64 is a representation of the HSB (Hue
Saturation Brightness) colour channel values that correspond to the pixel (gradient
orientation (angle), gradient magnitude in the x-direction, gradient magnitude in the
x-direction) in a fingerprint. Try Mathematica script 6 to see how the pixel gradient
orientations of the pixels varying with each fingerprint. The HSV (Hue Saturation
Value) colour space inMatlab is equivalent to the HSB colour space inMathematica.
�

Mathematica 6 RGB and LAB Views of Fingerprint Gradients.

(* Visualize edge pixel gradient orientations *)(* Visualize edge pixel gradient orientations *)(* Visualize edge pixel gradient orientations *)

i = ;i = ;i = ;
orientation = GradientOrientationFilter[i, 1]//ImageAdjust;orientation = GradientOrientationFilter[i, 1]//ImageAdjust;orientation = GradientOrientationFilter[i, 1]//ImageAdjust;
magnitude = GradientFilter[i, 1]//ImageAdjust;magnitude = GradientFilter[i, 1]//ImageAdjust;magnitude = GradientFilter[i, 1]//ImageAdjust;
ColorCombine[{orientation,magnitude,magnitude},“HSB”]ColorCombine[{orientation,magnitude,magnitude},“HSB”]ColorCombine[{orientation,magnitude,magnitude},“HSB”]

Remark A.41 In Fig.A.65.1, each pixel intensity is a representation of the RGB
colour channel values that correspond to the pixel (gradient orientation (angle), gra-
dient magnitude in the x-direction, gradient magnitude in the x-direction) in a fin-
gerprint. In Fig.A.65.2, each pixel intensity is a representation of the LAB colour
channel values that correspond to the pixel (gradient orientation (angle), gradient
magnitude in the x-direction, gradient magnitude in the x-direction) in a fingerprint.
Try Mathematica script 6 for different images to see how the pixel gradients vary
with each image. �

Mathematica 7 Fingerprint Gradients in RGB and LAB.

(* Visualize pixel gradients *)(* Visualize pixel gradients *)(* Visualize pixel gradients *)

i = ;i = ;i = ;
orientation = GradientOrientationFilter[i, 1]//ImageAdjust;orientation = GradientOrientationFilter[i, 1]//ImageAdjust;orientation = GradientOrientationFilter[i, 1]//ImageAdjust;

356 Appendix A: Matlab and Mathematica Scripts

Fig. A.65 Colorized image gradients

magnitude = GradientFilter[i, 1]//ImageAdjust;magnitude = GradientFilter[i, 1]//ImageAdjust;magnitude = GradientFilter[i, 1]//ImageAdjust;
ColorCombine[{orientation,magnitude,magnitude},“RGB”]ColorCombine[{orientation,magnitude,magnitude},“RGB”]ColorCombine[{orientation,magnitude,magnitude},“RGB”]
ColorCombine[{orientation,magnitude,magnitude},“LAB”]ColorCombine[{orientation,magnitude,magnitude},“LAB”]ColorCombine[{orientation,magnitude,magnitude},“LAB”]
Remark A.42 In Fig.A.66, a LAB colour space view of an image is given. To exper-
iment with other LAB coloured images, try Matlab script A.37. �

Fig. A.66 LAB colour space view of an image

Appendix A: Matlab and Mathematica Scripts 357

% LAB co lou r space : Co lou r i z e image r e g i o n s .
% s c r i p t : LABexperiment .m
clear all ; close all ; clc ; % housekeep ing
%%
img = imread (’fisherman.jpg’) ;

labTransformation = makecform (’srgb2lab’) ;
lab = applycform (img ,labTransformation) ;
figure , imshow (lab) , axis , grid on ;

Listing A.37 Matlab source LABexperiment.m.

A.8.6 Difference-of-Gaussians Image

Fig. A.67 Colour image and DoG image

358 Appendix A: Matlab and Mathematica Scripts

Remark A.43 The image in Fig.A.67.2 results from a difference of Gaussians con-
volved with the original image in Fig.A.67.1. Let I mg(x, y) be an intensity image
let G(x, y,σ) be a variable scale Gaussian defined by

G(x, y,σ) = 1

2πσ2
e− x2+y2

2σ2 .

Let k be a scaling factor and let ∗ be a convolution operation. FromD.G. Lowe [116],
we obtain a difference-of-Gaussians image (denoted by D(x, y,σ) defined by

D(x, y,σ) = G(x, y, kσ) ∗ I mg(x, y) − G(x, y,σ) ∗ I mg(x, y)

Then use D(x, y,σ) to identify potential interest points that are invariant to scale
and orientation. �

% DoG: D i f f e r e n c e of Gauss i ans .
% s c r i p t : dogImg .m
clear all ; close all ; clc ; % housekeep ing
%%
k = 1 . 5 ; % vs . 1 . 1 , 1 . 5 , 33 .5
sigma1 = 5 . 5 5 ; % vs . 0 . 30 , 0 . 98 , 0 . 99 , 5 .55
sigma2 = sigma1∗k ;
hsize = [8 , 8] ;
% g=imread (’ cameraman . t i f ’) ;
g=rgb2gray (imread (’fisherman.jpg’)) ;
%%
gauss1 = imgaussfilt (g ,sigma1) ;
gauss2 = imgaussfilt (g ,sigma2) ;
%
dogFilterImage = gauss2 − gauss1 ; % d i f f e r e n c e of Gauss i ans
imshow (dogFilterImage , []) , axis , grid on ;
% t i t l e (’DOG Image ’ , ’ FontSize ’ , f o n t S i z e) ;

Listing A.38 Matlab source GaussianImageNew.m.

A.8.7 Image Keypoints and Voronoï Mesh

Fig. A.68 Image keypoints and Voronoï mesh

Appendix A: Matlab and Mathematica Scripts 359

Remark A.44 Two views of image geometry are shown in Fig.A.68.

View.1 Keypoint Gradient Orientation View. Each of the 21 keypoints in
Fig.A.68.1 is the center of a circle. The radius of each circle equals the
edge strength of a keypoint.

Example A.45 Fisherman’s hat keypoint.

: For example, there is a keypoint located on the near side of
the fisherman’s hat in Fig.A.68.1. The angle of the line segment —— from the
center of the hat keypoint circle to the circumference is identified with the gradient
orientation of the keypoint. �

Each of the red edges —— in Fig.A.68.1 is a side of polygon in the Voronoï
tessellation derived from one of the keypoints.

View.2 Display of 89 Keypoints in a Voronoï Tessellation of an Image. There are
89 keypoints represented by ◦s in Fig.A.68.2. In this case, the keypoints
are shown without the surrounding circles shown in Fig.A.68.1. Notice that
the many of the keypoints are tightly grouped around the fisherman. This
suggests a basis for object recognition, which we exploit in Chap. 8. �

% method : f i n d s t r o n g e s t k eypo i n t s i n an image and
% use keypo i n t s as g e n e r a t o r s of Voronoi r e g i o n s
% s c r i p t : k e y po i n t sExp t 5 g r a d i e n t s .m
clear all ; close all ; clc ; % housekeep ing
% g=imread (’ peppe r s . png ’) ;
g=imread (’fisherman.jpg’) ;
img = g ; % save copy of co l ou r image to make ove r l a y p o s s i b l e
g = rgb2gray (g) ;
% g = double (rgb2gray (g)) ; % cponve r t t o g r e y s c a l e image
pts = detectSURFFeatures (g) ;
[features ,keyPts] = extractFeatures (g ,pts) ;
figure ,imshow (img) , axis on , hold on ;
plot (keyPts .selectStrongest (21) ,’showOrientation’ ,true) ;

%% pa r t 1 − vorono i mesh i s super imposed on the image us ing SURF keypo i n t s
%p l o t vo rono i mesh on the image
% XYLoc=keyP t s . Loca t i on ; %f o r a l l k eypo i n t s − uncomment t h i s and comment l i n e s

14 and 15 below
strongKey=keyPts .selectStrongest (21) ;%use only f o r a s e l e c t e d number of

s t r o n g e s t k eypo i n t s
XYLoc=strongKey .Location ;
X=double (XYLoc (: , 1)) ;
Y=double (XYLoc (: , 2)) ;
voronoi (X ,Y ,’-r’) ;

%% pa r t 2 − d i s p l a y t h e keypo i n t s w i t hou t t h e su r r ound ing c i r c l e s and wi t hou t a
mesh

%ge t XY coo r d i n a t e s of key p o i n t s
% XYLoc=keyP t s . Loca t i on ; %f o r a l l k eypo i n t s − uncomment t h i s and comment l i n e s

23 and 24 below

http://dx.doi.org/10.1007/978-3-319-52483-2_8

360 Appendix A: Matlab and Mathematica Scripts

strongKey=keyPts .selectStrongest (89) ;%use only f o r a s e l e c t e d number of
s t r o n g e s t k eypo i n t s

XYLoc=strongKey .Location ;
X=double (XYLoc (: , 1)) ;
Y=double (XYLoc (: , 2)) ;
figure ,imshow (img) , axis on , hold on ;
plot (X ,Y ,’ro’) ;
% p l o t (X,Y, ’ g ∗ ’) ;
% vorono i (X,Y, ’− r ’) ;
%% pa r t 3 ove r l a y mesh on p o i n t s
voronoi (X ,Y ,’-g’) ;
%% pa r t 5 k eypo i n t s on image
figure ,imshow (img) , axis on , hold on ;
plot (X ,Y ,’ro’) ;

Listing A.39 Matlab script in keypointsExpt5gradients.m to display corners on a digital
image. Source: keypointsExpt5gradients.m

Appendix B
Glossary

Fig. B.1 Analog signal and its sampled digital version

B.1 A

A

A/D: Analog-to-digital conversion accomplished by taking samples of an analog
signal at appropriate intervals. The A/D process is known as sampling. See
Fig.B.1 for an example.

B.2 B

B

bdy A: Set of boundary points of the set A. See, also, Open set, Closed set.

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2

361

362 Appendix B: Glossary

Bit depth: Bit depth quantifies howmany unique colors are available in an image’s
color palette in terms of the number of 0’s and 1’s, or “bits,” which are used to
specify each color.

Example B.1 Bit Depth. Digital camera colour image usually has a bit depth of 24
bits with 8-bits per colour.1 �

Blob: A blob (binary large object) is a set of path-connected pixels in a binary
image. For the details, see Sect. 7.1.3. See, also, Connected, Path-connected.

Boundary region of a set: The boundary region of a set is the set of points in a
boundary region of a set A (denoted by reA) that includes the boundary set bdyA,
i.e., bdyA ⊂ reA. See Boundary set, Open set, Closed set, Interior of a set.

Example B.2 Sample boundary regions of sets.

Earth atmosphere Region of space above the earth surface.
Raspberry pi board The boundary region of a Raspberry pi is its board:

https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale/ For example, the
boundary region of a binary clock is its enclosure:
http://frederickvandenbosch.be/?p=1999

Window glass exterior Region space surrounding a window pane of glass is the
boundary region of the glass.

Electromagnetic spectrum outside visible light That part of the electromagnetic
spectrum below 400nm (ultraviolet, X-ray and gamma radiation) and above
700nm (infrared, terahertz, microwave, radio wave radiation) of known photons.
Recall that a photon is an elementary particle, which is the quantum of all forms
of electromagnetic radiation.

Region outside a closed half space Set of points on edge of a planar set and con-
stitutes the boundary of interior of the set. See Half space, polytope.

2D Image exterior region Region of the plane outside any 2D image. A Rosen-
feld 8-neighbourhood plus the pixels along its borders.

Exterior region of a 2D Image Rosenfeld neighbourhood All 2D image pixels
outside an open Rosenfeld 8-neighbourhood. �

Boundary set: The boundary set of a nonempty set A (denoted by bdyA) is the
set of points along the border of and adjacent to a nonempty set. Then bdyA is
the set of those points nearest A and not in A. Put another way, let A be any set
in the Euclidean plane X . A point p ∈ X is a boundary point of A, provided the
neighbourhood of p(denoted by N (p)) intersects both A and the set of all points
in X not in A [100, Sect. 1.2, p. 5]. Geometrically, p is on the edge between A
and the complement of A in the plane. See Boundary region, Neighbourhood
of a point, Hole.

Example B.3 Sample boundary sets.

1http://www.cambridgeincolour.com/tutorials/bit-depth.htm.

http://dx.doi.org/10.1007/978-3-319-52483-2_7
https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale/
http://frederickvandenbosch.be/?p=1999
http://www.cambridgeincolour.com/tutorials/bit-depth.htm

Appendix B: Glossary 363

orange pulp exterior The skin of an orange is the boundary of the orange interior
(the orange pulp).

egg exterior Egg shell that is the boundary of an egg yoke.
window frame Window frame surrounding a pane of glass is the boundary of the

glass.
empty box Empty box bounded on each side with a wall. Example: shoe box with

no shoes or any else in it.
Plane subset boundary Set of points on edge of a planar set and constitutes the

boundary of interior of the set.
subimage Any Subimage that includes its boundary pixels. A Rosenfeld 8-

neighbourhood plus the pixels along its borders. �

Brightness: Brightness is a relative expression of the intensity of the energy output
of a visible light source [67, Sect. 1.4]. It is expressed as a total energy value or
as the amplitude at the wavelength of visible light where the intensity is greatest.
In the HSV colour space in Matlab®, Value (Lightness in HSL colour space or
Intensity in the HSI colour space) is the same as brightness in the HSB colour
space in Mathematica®. Brightness in the HSB (or Value in the HSV) colour
model is an attribute of a visual sensation in which a visible area appears to emit
more or less light [68]. See, also, Hue, HSV.

B.3 C

C Symbol for set of complex numbers. See, also, Complex numbers, Riemann
space.

Candela: A Candela is the SI (Standard International) base unit of luminous
intensity, i.e., luminous power per unit solid angle emitted by a point light source
in a particular direction. The contribution of each wavelength is weighted by the
standard luminosity function [209], defined by

Ev = illuminance measurement.

r1 = radius of the limiting aperture.

r2 = radius of the light source.

d = physical distance between the light source and aperture.

D = distance between an aperture plane and a photometer:

= r21 + r22 + d.

A = area of source aperture.

Lv(Ev, D, A) = Ev D2

A
(Luminosity function).

364 Appendix B: Glossary

Example B.4 Sample luminous intensity distribution for an incandescent light
bulb.
For a sample luminous intensity distribution for an incadescent light bulb, see:
http://www.pozeen.com/support/lighting_basics.html#.WDWH6bIrJXU

The luminosity of each light beam is measured in candela. The luminous intensity
distribution provides a fingerprint for each light source. �

Centroid: Let X be a set of random events, x ∈ X, P(x) = the probability that
event x occurs and let D(X) be the cumulative distribution function (CDF) that
the describes the probability that X takes on a value less than or equal to x , em
i.e.,

D(X) = P(X ≤ x) =
∑
X≤x

P(x), and

P(x) = D′(x) (Derivative of D(X)).

Let ρ : X → (R) be a probability density function on X , x ∈ X . A centroid is a
center of mass s∗ of a region V . It corresponds to a measure of central location
for a region, defined by

s∗ =
∫

V xρ(x)dx∫
V ρ(x)dx

.

For more details about region centroids, see Q. Du, V. Faber and
M. Gunzburger [38, p. 638]. For the discrete form of centroid, see Sect. 6.4.

Fig. B.2 Sample closed half space = L ∪ {all points above L}

Closed halfspace: Given a line L in an n-dimensional space, a closed half space
is a closed set of points that includes those points on the line L as well as all
points above L . Such a half space is closed because it includes the its boundary
points on the line L . This halfspace is also called an upper half space. We obtain
a lower half space, provide the half space includes all points on the line L as well
as all points below L . See, also, Boundary region, Boundary set, Closed set,
Polytope, Closed Lower Half Space, Closed Upper Half Space.

http://www.pozeen.com/support/lighting_basics.html#.WDWH6bIrJXU
http://dx.doi.org/10.1007/978-3-319-52483-2_6

Appendix B: Glossary 365

Example B.5 2D Closed Half Space.
A sample 2D closed half space is shown in Fig.B.2. This form of a half space lives
in the Euclidean plane represented by all vectors in R2. Try drawing the closed half
plane that includes all points −∞ < x < +∞ and 5 ≤ y ≤ +∞. �

Closed lower halfspace: A closed lower half space is the set of all points below
as well as on a boundary line.

Closed upper halfspace: A closed upper half space is the set of all points above
as well as on a boundary line.

Fig. B.3 Sample closed upper and lower half spaces

Example B.6 Sample 2D Closed Upper and Lower Halfspaces.
The two types of 2D closed half spaces are shown in Fig.B.3. The half space in
Fig.B.3.1 is an example of closed upper half space. This half space is closed, since it
includes all planar points above as well as on the line that is the boundary of the half
space. The half space in Fig.B.3.2 is an instance of a closed lower half space. In this
case, the half space consists of all planar points on and below the indicated line. The
line in closed lower half space forms the boundary of the half space. In both cases,
each half space is unbounded one side of a line. �

Closed set: A set of points that includes its boundary and interior points. Let A
be a nonempty set, intA the interior of A, bdyA the boundary of A. Then A is a
closed set, provided A = intA ∪ bdyA, i.e., A is closed, provided A is the union
of the set of points in its interior and in its boundary.

Example B.7 Sample closed sets.

whole orange The skin of an orange plus its pulp.
egg exterior Egg shell plus the egg yoke.
window frame Window frame holding a pane of glass.
Planar subset Set of points in the interior and boundary of a planar set.
subimage The interior of any 2D or 3D subimage plus its boundary pixels. A

Rosenfeld 8-neighbourhood plus the pixels along its borders. �

366 Appendix B: Glossary

C Complex numbers. C is the set of complex numbers. Let a, b ∈ R be real
numbers, i = √−1. A complex number z ∈ C has the form

z = a + bi (Complex number).

Fig. B.4 Complex plane with projection to a Riemann sphere

Complex Plane C: The complex plane is the plane of complex numbers (also
called the (see z-plane). See, for example, Fig.B.4.1) in Fig.B.4. Points z in the
complex plane are of the form z = a + bi, a, b ∈ R, i = √−1. The origin of
the complex plane is at z = 0 = 0 + 0i . A Riemann surface is the union of
the complex planes with infinity (denoted by C ∪ {∞}). A projection from the
complex plane to a Riemann sphere, which touches the complex z-plane at a point
S at z = 0 = 0+0i and whose central axis is a line joining the top of the sphere at
N diametrically opposite S. A line joining N (at infinity∞) to a point z pierces the
surface of the sphere at the point P (see Fig.B.4.2). For a visual perspective on the
complex plane and Riemann sphere, providing insights important for computer
vision, see E. Wegert [206]. See, also, Riemann surface, C, z

Colour pixel value: Pixel colour intensity or brightness. See Gamma Correc-
tion, RGB, HSV.

Compact set: Let X be a topological space and let A ⊆ X . Briefly, a cover of
a nonempty set A in a space X is a collection of nonempty subsets in X whose
union is A. Put another way, let C (A) be a cover of A. Then

C (A) =
⋃
B⊂X

B (Cover of the nonempty set A).

The set A is a compact set, provided every open covering of A has a finite
subcovering [100, S 1.5, p. 17]. See Cover, Topological space.

Appendix B: Glossary 367

Example B.8 Compact Picture Sets.
The interior of every nonempty set of picture points A in the Euclidean plane is com-
pact, since intA has a covering C (intA) = ⋃

X∈2I nt A

X . And C (intA) always contains

a finite collection that also covers intA, i.e., a finite subcover that is an open cover
of intA. �

Complement of a set: Let A be a subset of X . The complement of A (denoted by
Ac) is the set of all points in X that are not in A.

Example B.9 Let A be a 2D digital image. Then Ac is the set of all points in plane
not in A. �

Computational photography (CPh): CPh is the use of cameras to capture,
record and analyze natural scenes for possible followup actions such as collision-
avoidance. Cph records a scenewithmultiple imageswith epsilon variation, either
by recording a changing scene in a video with some form of video camera such
as the web cam. See, for example:
https://www.microsoft.com/accessories/en-au/products/webcams/
Cph also records a scene by varying digital camera parameters (e.g., zoom, focus,
landscape, portrait in Nikon® Coolpix AW300 camera) in recording a scene or
by recording a changing scene with varying camera parameters such as field of
view, depth of field and illumination (see, e.g., [46, Sect. 2.1, p. 245ff]).

Computer Vision: Computer vision is the study of the automation of tasks that
are performed by the human eye as well as the acquiring, processing, analyzing
and understanding of digital images and videos. For downloadable articles in
Computer Vision, see the Cornell University e-print service at https://arxiv.org/
list/cs.CV/recent.
See, for example, H. Rhodin, C. Richart, D. Casas, E. Insafutdinov, M. Shafiei,
H.-P. Seidel, B. Schiele and C. Theobalt on motion capture with two fisheye
cameras [165]. See, for example:
http://camerapedia.wikia.com/wiki/Lomographic_Fisheye_Camera
and
https://en.wikipedia.org/wiki/Fisheye_lens
Motion capture is also possible using the rolling shutter approach in which a
scene is recorded with either a still camera such as a cell phone camera or video
camera by scanning across a scene rapidly so that not all parts of a scene are
recorded at the same time. See, for example:
http://wikivisually.com/wiki/Rolling_shutter/wiki_ph_id_7.During playback, an
entire scene is displayed as a single image, giving the impression that all aspects
of a scene have been captured in a single instant. This approach to scene capture
contrasts with the common global shutter approach in which an entire image
frame is captured at the same time.

https://www.microsoft.com/accessories/en-au/products/webcams/
https://arxiv.org/list/cs.CV/recent
https://arxiv.org/list/cs.CV/recent
http://camerapedia.wikia.com/wiki/Lomographic_Fisheye_Camera
https://en.wikipedia.org/wiki/Fisheye_lens
http://wikivisually.com/wiki/Rolling_shutter/wiki_ph_id_7

368 Appendix B: Glossary

Fig. B.5 Subaru EyeSight® images, courtesy of Winnipeg Subaru

Fig. B.6 Subaru EyeSight® field-of-view, courtesy of Winnipeg Subaru

Example B.10 Collision Avoidance Vision Systems.
Vision systems are designed to have a particular field of view. The field of view of a
vision system is the extent that annatural scene is observable at anygiven instant.Both
angle of view and natural scene depth are important field of view measurements. For
example,2 the dual cameras in the Subaru EyeSight® vision system (see Fig.B.5.1)
is designed for collision avoidance in situations like the one in Fig.B.5.2. The field
of view for the EyeSight vision system is 30o and the depth of its field of view is
112m (see Fig.B.6). �

Connectedness A property of sets that share points. A set X is disconnected,
provided that there are disjoint open sets A and B such that X = A ∪ B, i.e., X
is the union of the disjoint sets A and B. A set X is connected, provided X does
not contain disjoint sets whose union is X .

Example B.11 Disconnected Sets.
Let a set of line segments be represented by Fig.B.7. Consider the set of points in
line pr , which is equal the union of the points in the line segments pq and qr (this
is the set Y in Fig.B.7). And let B be the set of points in the line segment s, t . From
Fig.B.7, X = Y ∪ B. Hence, X is disconnected. �

2Many thanks to Kyle Fedoruk for supplying the Subaru EyeSight® vision system images.

Appendix B: Glossary 369

Fig. B.7 Disconnected set

Example B.12 Disconnected Set of Voronoï Regions.
Let Voronoï regions A and C be represented by the polygons in Fig.B.8. Notice that
polygons A and B have edges in common. In effect, A and C are not disjoint. Let
X = A ∪ C . The set X is disconnected, since A and C are disjoint. �
Example B.13 Connected Sets.
Let a set Y containing a pair of line segments be represented by Fig.B.7. Let the set
C be the points in line p, q and let D be the points in line q, r . Since Y = C ∪ D,
the set Y is connected. �

Example B.14 Connected Set of Voronoï Regions.
Let Voronoï regions be represented by the polygons in Fig.B.8. Notice that polygons
A and B have a common edge. In effect, A and B are not disjoint. Let Y = A ∪ B.
The set Y is connected, since A and B are not disjoint. �
Connected line segments Line segments are connected, provided the line seg-

ments have a common endpoint. For example, in Fig.B.7, line segments p, q and
q, r are connected. See Disconnected, Path-connected.

Fig. B.8 Connected Voronoï
regions

370 Appendix B: Glossary

Connected polygons Polygons are connected, provided the polygons share one
or more points. See Disconnected, Path-connected.

Example B.15 Connected Voronoï Polygons.
For example, the pair of Voronoï regions A and B in Fig.B.8 are connected, since
A and B have a common edge. Similarly, the pair of Voronoï regions B and C in
Fig.B.8. However, the pair of Voronoï regions A and C in Fig.B.8 are not connected
polygons, since A and C have no points in common, i.e., A and C are disjoint sets.
�

Fig. B.9 Sample continuous distributions

Continuous A mathematical object X is continuous, provided all elements of
X are within a neighbourhood of nearby points [173]. Let X be a nonempty
set, x, y ∈ X . For example, a function f : X −→ R is continuous, provided,
whenever x is near y, f (x) is near f (y). Again, for example, let

f (x) = e− x
2σ2

σ
√
2π

, with standard deviation σ.

In the interval −6 ≤ x ≤ x , the distribution of values for f (x) is continuous.
This distribution is shown in Fig.B.9.1 and the continuous cumulative density
distribution of values for f (x) is shown in Fig.B.9.2. See, also, Discrete.

Contour A contour is a collection of connected straight edges surrounding the
nucleus of a MNC. The endpoints of contour straight edges are the generating
points used to construct the polygons surrounding theMNC nucleus. See edgelet,
contour edgelet, MNC.

Contour edgelet A contour edgelet is a set of points in surrounding a MNC
nucleus. Initially, an edgelet will contain only generating points that are the end-
points of the edges in either a coarse (outer) or fine (inner) contour of a MNC.
By joining each pair of generating points nearest other in MNC contour polygons

Appendix B: Glossary 371

with a line segment, an edgelet gains the points (pixels) on each contour line
segment. In tessellated video frames, an edgelet is a set of points in a frame MNC
contour.

Cover of a set A cover of a nonempty set A in a space X is a collection of non-
empty subsets in X whose union is A. Put another way, let C (A) be a cover of A.
Then

C (A) =
⋃
B⊂X

B (Cover of the nonempty set A).

Example B.16 Finite cover of a 2D digital image.
Let img be a 2D digital image, S ⊂ I mg a set of mesh generating points, V (S) a
Voronoï mesh on I mg. Notice that each point in I mg belongs to a Voronoï region
V (s), s ∈ S. This means that I mg ⊆ ⋃

s∈S
V (s). For reason, V (S) covers I mg. We

can always find a subset S′ ⊆ S so that V (S′) ⊆ V (S). That is, every Voronoï mesh
V (S′) is a subcover of V (S). Let s ′ be a generating point in S′. Then

I mg ⊆
⋃
s ′∈S

V (s ′) ⊆
⋃
s∈S

V (s)

In other words, every mesh cover of I mg have a finite sub-mesh that is a cover of
I mg. �

Convex body A convex body is a compact convex set [61, Sect. 3.1, p. 41].
A proper convex body has a nonempty interior. Otherwise, a convex body is
improper. See Convex set, Compact.

Convex combination A unique straight line segment p0 p1, p0 = p1 is defined
by two points p0 = p1 so that the line passes through both points [42, Sect. I.4, p.
20]. Each point on x ∈ p0 p1 can be written as x = (1−t)p0+tp1 for some t ∈ R.
Notice that p0 p1 is a convex set containing all points on the line (see Fig.B.10.1).
Edelsbrunner–Harer Convex Combination Method: Then we can construct a
convex set containing all points on the triangular face formed by three points after
we a third point a2 to the original set {p0, p1}. That is, we construct a line segment
convex set so that is a triangle with a filled triangle face.

for t = 0, we get x = p0,

for t = 1, we get x = p1,

for 0 < t < 1, we get a point in between p0 and p1.

A line segment convex set is also a convex hull of two point, since it is the
smallest convex set containing the two points. In the case where have more than
two points, the above construction is repeated for {p0, p1, p2} by adding all points
y = (1−t)p0+tp1 for some 0 ≤ t ≤ 1. The result is a triangle-shaped convex hull
with a filled in triangle face (see, e.g., Fig.B.10.2). Using the convex combination
method on a set of 4 points, we obtain the convex hull shown in Fig.B.10.3.

372 Appendix B: Glossary

Fig. B.10 Construction of a convex hull of 5 points

Repeating this construction for a set of 5 points, we obtain the convex hull shown
in Fig.B.10.4.
In general, starting with a set {p0, p1, p2, . . . , pk} containing k + 1 points, the
convex combination construction method can be done in one step, calling x =

l∑
i=0

ti pi a convex combination of the points pi , provided
l∑

i=0
ti = 1 and ti ≥ 0 for

all 0 ≤ i ≤ k. In that case, the set of convex combinations is the convex hull of
the points pi . �

Convex hull Let A be a nonempty set. The smallest convex set containing the set
of points in A is the convex hull of A (denoted by convhA). G.M. Ziegler [220, p.
3] a method of constructing a convex hull of a set of points K (convhK), defined
by the intersection of all convex sets that contain K . For practical purposes, let
convhK be a 2D convex hull with K ⊂ R2. Then a 2D convex hull convhK is
defined by

convhK =
⋂ {

K ′ ⊆ R
2 : K ⊆ K ′ with convK ′} (Ziegler Method).

A convex hull of a finite nonempty set A is called a polytope [11]. An impor-
tant application of convex hulls is the determination of the shape of a set of
points. R.A. Jarvis introduced shape convex hulls [88]. For more about this, see
H. Edelsbrunner, D.G. Kirkpatrick and R. Seidel [43]. See, also, Convex set,
Convex combination, Polytope, Shape.

Example B.17 Sample 2D and 3D Convex Hull Shapes.
Sample 2D and 3D convex hulls of points are shown in Fig.B.11. A 7-sided convex
hull of 55 randomly selected points in the image plane is shown in Fig.B.11.1. Notice
that this convex hull exhibits an important property of all convex hulls, namely, a
convex hull is a closed set, e.g., a 2d convex hull is the union of all points in its

Appendix B: Glossary 373

Fig. B.11 Sample 2D and 3D convex hulls of sets of points

boundary set and interior set. In the plane, every convex set contains an infinite
number of points. The 55 points on the vertices, on the edges and in the interior
of the 7-gon shaped convex hull are shown in Fig.B.11.2. A 3D convex hull of 89
points is shown in Fig.B.11.3. The 89 points on the surfaces and in the interior of
the sample 3D convex hull are shown in Fig.B.11.4. �

374 Appendix B: Glossary

Fig. B.12 Sample MNC contour and Voronoï region convex hulls of sets of points

Example B.18 Sample Voronoï convex hulls.
Fine MNC contours are usually convex hulls of a set of points, namely, the points
in the MNC nucleus plus the remaining points in the interior of the fine contour set.
A sample fine MNC contour convex hull is shown in Fig.B.12.1. Notice that MNC
contour convex hulls approximate the shape of the region of a digital image that the
convex hull covers. Every MNC nucleus is a convex hull of the its vertices plus its
interior points. A sample nucleus convex hull is shown in Fig.B.12.2. Sometimes a
coarse MNC contour is a convex hull. Try finding examples of coarse MNC contours
that are convex hulls and that are not convex hulls. �

In a computational geometry setting where a digital image is tessellated
with a Voronoï diagram, coarseMNC contours that are also convex hulls
provide signatures of the objects covered by the coarse contour. �

Convex set A nonempty set A in an n-dimensional Euclidean space is a convex
set (denoted by convA), provided every straight line segment between any two
points in the set is also contained in the set. For example, let A be a nonempty set
of points in the Euclidean plane. The set A is a convex set, provided

(1 − λ)x + λy ∈ A, for all x, y ∈ A, 0 ≤ λ ≤ 1 (Convexity property).

A nonempty set A is strictly convex, provided A is closed and

(1 − λ)x + λy ∈ A, for all x, y ∈ A, x = y, 0 < λ < 1 (Strict Convexity property).

Appendix B: Glossary 375

The earliest appearance of convexity appears in definitions of a convex
surface in about 250 B.C. by Archimedes in his Sphere and Cylinder. On
Paraboloids, Hyperboloids and Ellipsoids [7]. Archimedes’ definitions
of a convex surface are given by P.M. Gruber [61, Sect. 3.1]. A good
introduction to Archimedes in given by T.L. Heath in [7]. For a com-
plete introduction to convex sets, see P. Mani-Levitska [119]. And for an
introduction to convex geometry, see P. M. Gruber and J. M. Wills [62].
For an introduction to convexity in the context of digital images,
see J.F. Peters [144]. �

Theorem B.19 A Voronoï region in the Euclidean plane is a proper convex body.

Proof See J.F. Peters [144, Sect. 11, p. 307].

Example B.20 Strictly Convex set.
Let p be a mesh generating point and let Vp (also written V (p) be a Voronoï region.
In Fig.B.13, the Voronoï region A = Vp is a strictly convex set, since A is closed
and it has the Strict Convexity property. �

Fig. B.13 Convex regions in an apple Voronoï mesh

Theorem B.21 Every Voronoï region is a strictly convex set.

Remark B.22 Proof sketch To get the proof started, use pencil and paper to make
a sketch of a polygon in a Voronoï mesh. With your sketch in mind, show that a
Voronoï region V (s) is a closed set for each mesh generating point s. Take any two
points p, q in a Voronoï region V (s). Draw a line segment with endpoints p, q. From
the definition of a Voronoï region, argue that all of the points on the line segment pq
are in V (s). Since V (s) is a closed set and all of the points on each line segment in
V (s) are contained V (s), then V (s) is a strictly convex set. �

376 Appendix B: Glossary

Convexity property A family of convex sets has the convexity property, pro-
vided the intersection of any number of sets in the family belongs to the fam-
ily [182]. See Convex set.

Zelins’kyi-Kay-Womble Convexity Structure.
Y.B. Zelins’kyi [216] observes that Solan’s view of convexity means that
the set of all subsets of a set is convex. The notion of axiomatic convexity
from Solan and Zelins’kyi has its origins in the 1971 paper by D.C. Kay
and E.W. Womble [91], elaborated by V.V. Tuz [197]. For more about
this in the context of digital images, see J.F. Peters [144, Sect. 1.7, pp.
24–26]. �

B.4 D

D11

Data compression: Reduction in the number of bits required to store data (text,
audio, speech, image and video).

Digital video: Time-varying sequence of images captured by digital camera (see,
e.g., S. Akramaullah [4, p. 2]).

Fig. B.14 3D plot

Appendix B: Glossary 377

Dimension: A space X is an n-dimensional space (denoted byRn), provided each
vector in X has n components. For example, R2 is a 2D Euclidean space (2D
image plane) and C

2 is a 2D Riemann space.

Example B.23 2D, 3D, 5D and 5D Euclidean Spaces. The analog signal inFig.B.1.1
belongs to a 2D Euclidean space (each vector v = (x, y) in the plane has two
components). The plot in Fig.B.14 belongs to a 3D Euclidean space. Each vector
v = (x, y, z) has 3 components derived from a RGB colour image g (a raster image
in which each pixel is a blend of red, green and blue channel intensities).

In a corner-based tessellation of a static RGB colour image, each geometric
region is described by vectors (r, g, b, cm, area) with at least 5 components: r (red
intensity), b (blue intensity), g (green intensity), cm (centroid) and area (shape area).
In other words, a corner-based mesh on a colour image belongs to a 5D space.

Each geometric region in an RGB video frame image is described by a vector
(r, g, b, cm, area, t)with 6 components: r (red intensity), b (blue intensity), g (green
intensity), cm (centroid), area (shape area), and t (time). In effect, shapes in a video
belong to a space-time 6D space. �

Discrete: By discrete, we mean that objects such as digital image intensities dis-
tinct, separated values. A digital image in a HSV colour space is an example of an
object that is discrete, since its values are both distinct and separated. For another
example of discreteness, see Example5.5 in Sect. 5.5. Discrete values contrasts
with continuous values such as the values of the function f (x) = x2. See, also,
Continuous in Appendix B.3.

B.5 E

E

|ei |. Number of edge pixels in edgelet ei . Initially, |ei | will equal the number of
mesh generators in a MNC contour. Later, |ei | will equal the total number of edge
pixels in contour edgelet (denoted by |maxei |), i.e.,

|maxei | = no. of all contour edge pixels , not just endpoints.

∥
∥ei − e j

∥
∥. Compute D(ei , e j) = max

{‖x − y‖ : x ∈ ei , y ∈ e j
}
, since ei and e j

are sets of pixels.
Edgelet. Set of edge pixels. The term edgelet comes from S. Belongie, J. Malik

and J. Puzicha [13, p. 10]. In this work, the notion of an edgelet is extended to
contour edgelet (set of edge pixels in an MNC contour). See Contour, Contour
edgelet, MNC. See, especially, Appendix B.3.

Expected value: Let p(x) be the probability of x . Let N be the number of digital
sample values. For the i th digital signal value x(i), p(x(i)) = 1

n is its probability.
The expected value of x(i) (denoted by 〈x(i)〉 or E [x(i)]) is

http://dx.doi.org/10.1007/978-3-319-52483-2_5

378 Appendix B: Glossary

〈x(i)〉 =
∑

i

x(i)p(x(i)) (Expected value ofx(i))

Note: The approximation of a digital signal is its expected value. In the context
of video signal analysis, x̂(i) denotes the expected value of the i th digital sample
of an analog signal either from an optical sensor in a digital camera or in a video
camera. �

B.6 F

F

Frame: Single digital image either from a conventional non-video camera or a
frame is a single image in a video.

B.7 G

G

Gamma γ Correction: Let R be a camera signal in response to incoming light
and let γ, a, b be real numbers. Typically, a camera adjusts R using a gamma
transform defined by

R �−→ a R
1
γ + b (Gamma transform).

For the details, see Sect. 2.11. For more about this, see Z.-N. Li, M.S. Drew and
J. Liu [111, Sect. 4].

Gamut mapping: Mapping a source signal to a display (e.g., LCD) that meets
the requirements of the display. Colour saturation is kept within the boundaries
of the destination gamut to preserve relative colour strength and out-of-gamut
colours from a source are compressed into the destination gamut. A graphical
representation of the destination gamut (nearest colour) and outside gamut (true
colour) is shown in https://en.wikipedia.org/wiki/Gamut.
Basically, this is accomplished in practice using gamma correction. See Gamma
γ Correction.

Generating point: Agenerating point is a point used to construct aVoronoï region.
Site and Generator are other names for a mesh generating point. Let S be a set
of sites, s ∈ S, X a set of points used in constructing a Voronoï mesh, V (s) a
Voronoï region defined by

V (s) = {x ∈ X : ‖x − s‖ ≤ ‖x − q‖ for all q ∈ X} . (Voronoï region).

http://dx.doi.org/10.1007/978-3-319-52483-2_2
https://en.wikipedia.org/wiki/Gamut

Appendix B: Glossary 379

Example B.24 A generating point used to construct a Voronoï region on a 2D digital
image is a pixel. Examples are corner and edge pixel. �

Geodetic graph: A graph G is a geodetic graph, provided, for any two vertices
p, q on G, there is at most one shortest path between p and q. A geodetic line is
a straight line, since the shortest path between the endpoints of a straight line is
the line itself. For more about this, see J. Topp [195]. See, also, Convex hull.

Example B.25 Geodetic Graphs.
A sample geodetic graph with edges drawn between points (vertices) on a map
is shown in Fig.B.15.1. Let p, q1, q2, . . . , q8 be vertices in the geodetic graph in
Fig.B.15.2. The dotted lines between the pairs of vertices p, qi are examples of
geodetic lines, since the dotted line drawn between the endpoints is the shortest line
that can be drawn between the endpoints. Give an example of geodetic graph that is
a contour edgelet surrounding the nucleus in a Voronoï MNC. �

Fig. B.15 Sample geodetic lines in a geodetic graph

A geodetic graph become interesting when the graph is a convex hull of
a set of map points, since a geodetic convex hull approximates the shape
of a map region covered by the hull. Try finding a geodetic convex hull
by connection the center of mass of the cities in a local region. �

380 Appendix B: Glossary

B.8 H

H

Halfspace: Given a line L in an n-dimensional vector spaceRn space, a half space
is a set of points that includes those points on one side of the boundary line L . The
points on the line L are included in the half space, provided the half space is closed.
Otherwise, the half space is open. See, also, Boundary region, Boundary set,
Open set, Polytope, Closed half space Closed lower half space, Closed upper
half space, Open half space, Open lower half space, Open upper half space.

Hole: A set with an empty interior. In the plane, a portion of the plane with a
portion of it missing, i.e., a portion of the plane with a puncture in it (a cavity in
the plane). A geometric structure that cannot be continuously shrunk to a point,
since there is always part of the structure that is missing. See, also, Interior, Open
set.

Fig. B.16 Overlapping
annuli

Example B.26 Sample holes.

donut Center of a donut, center of a torus.
punctured annulus Annulus (ring-shaped region) with a hole in its center. See,

for example, the overlapping annuli in Fig.B.16. Homology theory provides a
method for detecting holes in topological spaces (see, e.g., [101, Sect. 3.2, p.
108ff]).

empty orange skin Space inside the skin of an orange without its pulp.
empty egg shell Space inside an Egg shell without the egg yoke.
empty window frame Space inside a Window frame without a pane of glass.
empty interior set Set of points in boundary of a planar set with an empty interior.
binary image island Dark region surround by white pixels in a binary image.
empty subimage A 2D or 3D subimage that includes its boundary pixels and with

no pixels in its interior. The analogue of a subimage that is a hole is a completely
black surrounded by a white region. In mathematical morphology,3 a hole is a
foreground region containing dark pixels (white pixels adjacent a hole are the

3See, e.g., Sect. 6.6.2, p. 146 in http://www.cs.uu.nl/docs/vakken/ibv/reader/chapter6.pdf.

http://www.cs.uu.nl/docs/vakken/ibv/reader/chapter6.pdf

Appendix B: Glossary 381

boundary pixels of the hold). A Rosenfeld 8-neighbourhood defines a hole with
a dark center surrounded by 7 white pixels. Notice that a hole defines a shape, a
contour surrounding a hole. Question: Can we say that a circle and a pizza plate
have the shape? Or a rectangle and a ruler?

For more about holes in mathematical morphology, see M. Sonka, V. Hlavac and R.
Boyle [184, Chap.13]. For an introduction to holes from a topological perspective,
see S.G. Krantz [100, Sect. 1.1] and [101, pp. 1, 95, 108]. �

Fig. B.17 Mapping image
with holes to image with
holes filled

Example B.27 MM Closing Operation to remove holes from the foreground of
an image. A mathematical morphology (MM) closing Operation is used to remove
holes (pepper noise) from the foreground of an image. Let I mg be a 2D image with
holes. In effect, closing maps I mg onto a new image without holes. The following
Mathematica script uses the MM closing operation to fill the holes in a noisy image
(see, e.g., Fig.B.17).

Mathematica 8 Removing holes (dark specks) from a colour image.

(* Filling holes in an image foreground *)(* Filling holes in an image foreground *)(* Filling holes in an image foreground *)

I mg = ;I mg = ;I mg = ;
Closing[Img, 1]Closing[Img, 1]Closing[Img, 1]
Try writing aMatlab script to remove black holes from a colour (not a binary) image.
�

Hue: Hue of a colour is the wavelength of the colour within the visible light spec-
trum at which the energy output is greatest [67, Sect. 1.4]. Hue is a point char-
acteristic of colour, determined at a particular point in the visible light spectrum
and measured in nanometers. Let R, G, B be red, green, blue colour. A. Hanbury
and J. Serra [68, Sect. 2.2.1, p. 3] define saturation S and hue H ′ expressions in
the following way.

S =
{

max{R,G,B}−min{R,G,B}
max{R,G,B} , if max {R,G, B} = 0,

0, otherwise.

382 Appendix B: Glossary

and

H ′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

undefined, if S = 0,
G−B

max{R,G,B}−min{R,G,B} , if R = max {R,G, B} = 0,

2 + B−R
max{R,G,B}−min{R,G,B} , ifG = max {R,G, B} = 0,

4 + R−G
max{R,G,B}−min{R,G,B} , if B = max {R,G, B} = 0.

Then 60o H ′ equals the hue value in degrees. See Saturation, Value, HSV.

Hue Saturation Value (HSV): The HSV (Hue Saturation Value) theory is com-
monly used to represent the RGB (Red Green Blue) colour technical model [67].
The HSV colour space was introduced in 1905 by A. Munsell [127] and elabo-
rated in 1978 by G.H. Joblove and D. Greenberg [89] to compensate for technical
and hardware limitations for applications in colour display systems. Hue is an
angular component, Saturation is a radial component and Value (Lightness) is the
colour intensity along vertical in the 3D color model that shows the geometry of
the HSV colour space in https://en.wikipedia.org/wiki/HSL_and_HSV.
Complete, detailed views of the HSV color model are given by J. Halus̆ka [67]
and A. Hanbury and J. Serra [68].

Huffman coding: A lossless data compression algorithm that uses a small number
of bits to encode common characters.4 To see an example of Huffman coding for
a digital image, try using the Matlab script A.2 in Appendix A.1 with any digital
colour image.

B.9 I

I

i : Imaginary number i = √−1. See, also, z, Complex plane, Riemann surface.
Int A: Interior of a set nonempty set A, a set without boundary points. See, also,

Open set, Closed set, Boundary set.

Example B.28 Sample interior sets.

orange pulp Orange without its skin.
Earth subregion The region of the Earth below its surface.
subimage Subimage that does not include its boundary pixels. A Rosenfeld

8-neighbourhood that does not include the pixels along its boundaries. �

Image quality: See SSIM, UQI.
Infimum: The infimum of a set A (denoted by infA) is the greatest lower bound

of the set A.

4For the details about Huffman coding, see E.W. Weisstein at http://mathworld.wolfram.com/
HuffmanCoding.html.

https://en.wikipedia.org/wiki/HSL_and_HSV
http://mathworld.wolfram.com/HuffmanCoding.html
http://mathworld.wolfram.com/HuffmanCoding.html

Appendix B: Glossary 383

B.10 K

K

Key Frame Selection: Selection of video frames exhibiting the most change.

Example B.29 Adaptive Key Frame Selection. Adaptive key frame selection is an
approach to efficient video coding suggested by J. Jun et al. in [121]. For exam-
ple, adaptive video video frame selection is achievable by selecting video frames in
which there are significant changes in image tessellation polygons. For example, in
a changing scene recorded by a webcam, overlay polygons on video frames tem-
porally close together usually will vary only slightly. By contrast, the areas of the
overlay polygons on temporally separated video frames often will vary significantly
in recording a changing scene. �

Keypoint: A keypoint is a feature of a curve (edgelet) in a digital image. The goal
of keypoint detection is to identify salient digital image regions such as corners
and blobs. Keypoint-based methods extract point features that are stable with
view variations, an observation by R. Fabbri and B.B. Kimia [47]. An approach
to fast keypoint detection in video sequences is given by L. Baroffio, M. Cesana,
A. Redondi and M. Tagliasacchi [9], using the S. Leutenegger, M. Chli and R.Y.
Siegwart Binary Robust Invariant Scalable Keypoints (BRISK) algorithm [108].
See SIFT, SURF.

B.11 L

L

Luminance. The light reflected from a surface (denoted by L(λ)). Let E be the
incident illumination, λ wavelength, R ∈ [0, 1] reflectivity or reflectance of a
surface. Then L(λ) has a spectrum given by

L(λ) = E(λ)R(λ) cd m−2.

Luminance is measured in SI units of candela per square meter (cd/m2). Candela
is the SI (Standard International) base unit of luminous intensity, i.e., luminous
power per unit solid angle emitted by a point light source in a particular direction.
See, also, Candela, Photon, Quantum optics.

384 Appendix B: Glossary

B.12 M

M

mi frequency. Number of occurrences of edgelets with the same number of edge
pixels as edgelet ei .

m1, m2, . . . , mi, . . . , mk. Frequencies of occurrences of k edgelets.
Maximal Nucleus Cluster (MNC) A maximal nucleus cluster is a cluster of con-

nected polygons with nucleus N is maximal, provided N has the highest number
of adjacent polygons in a tessellated surface [147]. See MNC, Nucleus.

Fig. B.18 Voronoï mesh on CN train video frame image

Fig. B.19 Max nucleus clusters on CN train video frame image

MNC Nucleus cluster A Nucleus cluster (NC) in a Voronoï mesh on a digital
image is a cluster of Voronoï regions that are connected polygons with nucleus
N . Every Voronoï region is the nucleus of cluster of neighbouring polygons. A
nucleus that has the maximal (largest) number of adjacent polygons is the center

Appendix B: Glossary 385

of aMNC. For the details, see Sect. 7.5. See, also,MNC-based image object shape
recognition Methods B.12.

Example B.30 A sample Vornonï mesh on a CN train image is shown in Fig.B.18.2.

A pair of mesh nuclei such as are shown in Fig.B.19.1. These red nuclei
each has the highest number of adjacent polygons. Hence, these red nuclei are the
centers of maximal nucleus clusters (MNCs) shown in Fig.B.19.2. �

Fig. B.20 Sample MNC circle

MNC-based image object shape recognition Methods There are three basic
methods that can be used to achieve image object shape recognition, namely,

Method 1: Inscribed Circle Perimeter Inside MNC contours. The
circle-perimetermethod gets its inspiration fromV.Vakil [198]. To begin, choose a
keypoint-based Voronoï-tessellated query image Q like the one in Fig.B.20 and a
Voronoï-tessellated video frame test image T . Identify anMNC in Q and anMNC
in T .Measure the perimeter of circles inscribed in coarse-grained and fine-grained
nucleus contours and that are centered on each image MNC nucleus generating
point. See, for example, the coarse-grained circle on the MNC in Fig.B.20.

http://dx.doi.org/10.1007/978-3-319-52483-2_7

386 Appendix B: Glossary

Method 2: Edge Strength. Again, choose a keypoint-based Voronoï-
tessellated query image Q like the one in Fig.B.20 and a Voronoï-tessellated
video frame test image T . Identify an MNC in Q with a nucleus NQ(q) with
generating point q and an MNC in T with nucleus NT (t) with generating point t .
Measure and compare the edge strengths of q and t .

Method 3: Circle Perimeter-Edge Strength. Combine Methods 1 and
2. That is, compare the circle perimeters and edge strengths of a keypoint-based
Voronoï-tessellated query image Q like the one in Fig.B.20 and a Voronoï-
tessellated video frame test image T .

Table B.1 MNC border circle perimeters compared

image Q image T Fine PQ Fine PT
∣∣PQ − PT

∣∣ ε

· · · · · · · · · · · ·
image Q image T Coarse PQ Coarse PT

∣∣PQ − PT
∣∣ ε

· · · · · · · · · · · ·

Here are the details.

Method 1: Inscribed Circle Perimeter Inside MNC contours

1o Method 1: Randomly choose one of the keypoints in a fine-grained border
about an image MNC.

2o Use the chosen fine-grained border keypoint and the nucleus keypoint as the
endpoints of a circle radius (call it r f ine).

3o On a MNC in the query image Q and test image T , draw a circle with radius
r f ine. Make the circle border colour a bright red.

4o Let ©Q f ine be a fine-grained circle on centered on the nucleus keypoint of an
MNC in the query image Q and let ©T f ine be a fine-grained circle on centered
on the nucleus keypoint of anMNC in the test imageT . Let PQ, PT the lengths of
the perimeters of ©Q f ine,©T f ine, respectively. Choose and object recognition
threshold ε > 0. Let Obj ect Recogni zed be a Boolean variable. Then

Object Recognized =
{
1, if

∣∣PQ − PT

∣∣ < ε,

0, otherwise

In other words, an object in a query image is recognized, provided the difference∣∣PQ − PT

∣∣ < ε is small enough.

Appendix B: Glossary 387

5o Highlight in a bright green MNC circles in video frames containing recognized
a recognized object.

6o In zip file, save the query image and video frame images containing a recognized
object.

7o Repeat Step 1 to Step 6, for a coarse-grained border of an MNC. Then, for
coarse-grained circles ©Qcoarse,©T coarse centered on query and test image
MNCs, compute difference the perimeters

∣∣PQ − PT

∣∣ < ε. Save your findings
in a Table (see TableB.1).

Table B.2 MNC keypoint edge strengths compared

image Q image T PE TE |PE − TE | ε

· · · · · · · · · · · ·

Method 2: Edge strengths of MNC nucleus generating points

1o Let keypoint(x,y) be the keypoint at location (x, y) in an MNC nucleus. Let
Gx (x, y),G y(x, y) denote the edge pixel gradient magnitudes in the x- and
y-directions, respectively.

2o The edge strength of pixel I mg(x, y) (also called the pixel gradient magnitude)
is denoted by E(x, y) and defined by

E(x, y) =
√(

∂ I mg(x, y)

∂x

)2

+
(

∂ I mg(x, y)

∂y

)2

(Pixel edge strength)

=
√

Gx (x, y)2 + G y(x, y)2.

Let QE , TE be the edge strengths of the keypoints of the nuclei for the query
image Q and test image T , respectively. Then compute

Object Recognized =
{
1, if |PE − TE | < ε,

0, otherwise

In other words, the difference between the edge strengths |PE − TE | < ε is
small enough the MNC object in image Q and image T are similar, recognized.

3o Summarize your findings for each video in a table (see TableB.2).

MNC spoke. See Nerve in Appendix B.13.
MSSIM Mean SSIM image quality index. Let X,Y be the rows and columns of

an n × m digital image, row xi ∈ X, 1 ≤ i ≤ n, column y j ∈ Y , 1 ≤ j ≤ m
such that

388 Appendix B: Glossary

x = (x1, . . . , xn) , y = (y1, . . . , xm) .

The Mean SSIM value, measure of overall image quality, is defined by

M SSI M(X,Y) =
n,m∑
i=1
j=1

SSI M
(
xi , y j

)
nm

.

For more about this, see SSIM.

B.13 N

N

Fig. B.21 MNC spokes in a
mesh nerve

Nanometer: 1nm = 1 × 10−9 m or 3.937 × 10−8 in or 10Å (Ångströms). RGB
colour wavelengths are measured in nanometers

Neighbourhood of a point: Let ε be a positive real number and inf A The neigh-
bourhood of a point p in the plane (denoted by N (p, ε)) is defined by

N (p, ε) = {
x ∈ R

2 : ‖x − p‖ < ε
}
(Open Nhbd of p).

Notice that N (p, ε) is an open neighbourhood, since it excludes boundary points
of x in the plane. A closed neighbourhood (denoted by clN (p, ε)) includes both
its interior points and its boundary points, defined by

N (p, ε) = {
x ∈ R

2 : ‖x − p‖ ≤ ε
}
(Closed Nhbd of p).

For more about this, see J.F. Peters [142, Sect. 1.14]. See Open set, Closed set.

Appendix B: Glossary 389

Nerve: A mesh nerve is a collection of spoke-like projections on a mesh nucleus.
Think of a maximal nucleus cluster (MNC) as a collection of spokes. Each spoke
is a combination of a MNC nucleus and an adjacent polygon. An example of two
MNC spokes are shown in Fig.B.21, namely, spoke N A1 and spoke N A2. Both of
the sample spokes share a mesh nucleus N . The study of MNC spokes takes us in
the direction of a deeper view of digital image geometry revealed by a keypoint-
based nuclei in a Voronoï mesh superimposed on an image. A spoke-based mesh
nerve is an example of an Edelsbrunner–Harer nerve [42, 150] .

Noise: Compression of digital videomay introduce distortions or noise (also called
a visual artifact).Noise affects the visual quality perceived by an end-user of either
a digital image or video.

Nucleus: A nucleus is the central and most important part of a mesh cluster. See,
also, the entry on nerve in Appendix B.13 and the MNC entry in Appendix B.12.

B.14 O

O

Object tracking: In a digital video sequence, identify moving objects and track
them from frame to frame. In practice, each frame is segmented into regions with
similar colour and intensity and which are likely to have somemotion. This can be
accomplished by tessellating each video frame, covering each frame with poly-
gons that are Voronoï regions, then comparing the changes in particular polygons
from frame to frame. For more about this, see S.G. Hoggar [83, Sect. 12.8.3, p.
441].

Open lower halfspace: An open lower half space is the set of all points below
but not on a boundary line.

Open upper halfspace: An open upper half space is the set of all points above
but not on on a boundary line.

Fig. B.22 Sample open upper and lower half spaces

390 Appendix B: Glossary

Example B.31 Sample 2D Open Upper and Lower Halfspaces.
The two types of 2D open half spaces are shown in Fig.B.22. The half space in
Fig.B.22.1 is an example of open upper half space. This half space is open, since it
includes all planar points above but not on the dotted line that is the boundary of the
half space. The half space in Fig.B.22.2 is an instance of a open lower half space. In
this case, the half space consists of all planar below but not on the indicated dotted
line. The dotted line in the open lower half space forms the boundary of the half
space. In both cases, each half space is unbounded one side of a line. �

Open set: A set of points without a boundary.

Example B.32 Sample open sets.

orange pulp Orange without its skin.
egg interior Egg without its shell.
window glass Window glass without its frame.
set interior Interior of any set without a boundary.
subimage Any Subimage that does not include its boundary pixels. A Rosenfeld

8-neighbourhood is an open set, since it does not include the pixels along its
boundaries. �

Lemma B.33 Every 2D digital image is an open set.

Proof Each point inR2 with integer coordinates is potentially the location of a digital
image pixel. Every 2D digital image is restricted to those pixels within its borders.
The borders of a digital image do not include those pixels outside to its borders. The
boundary of a digital image A is the set of points outside X and adjacent to A, That
is, a digital image does not include its boundary pixels. Hence, a digital image is an
open set.

Theorem B.34 Every subimage in a 2D digital image is an open set.

Proof Every subimage in a 2D digital image is also a digital image in the Euclidean
plane. Hence, from LemmaB.33, every subimage is an open set.

Theorem B.35 Every Rosenfeld neighbourhood in a 2D digital image is an open
set.

Proof A Rosenfeld neighbourhood is a subimage in 2D digital image. Hence, from
TheoremB.34, every Rosenfeld neighbourhood is an open set.

B.15 P

P

Path: sequence p1, . . . , pi , pi+1, . . . , pn of n pixels or voxels is a path, provided
pi , pi+1 are adjacent (no pixels in between pi and pi+1).

Appendix B: Glossary 391

Path-connected: Pixels p and q are path-connected, provided there is a path with
p and q as endpoints. Image shapes A and B (any polygons) are path-connected,
provided there is a sequence S1, . . . , Si , Si+1, . . . , Sn of n adjacent shapes with
A = S0 and B = Sn . See Blob.

Performance: Speed of video coding process.
Pixel: Smallest component in a raster image. A pixel’s dimensions are determined

by optical sensor and scene geometry models. Normally, a pixel is the smallest
component in the analysis of image scenes. Sub-pixel analysis is possible in very
refined views of image scenes. For sub-pixel analysis, see T. Blashke, C. Burnett
and A. Pekkarinen [16, Sect. 12.1.3, p. 214].

Pixel intensity: Pixel value or amount of light emitted by a pixel. In a greyscale
image, a white pixel emits the maximum amount of light and a black pixel emits
zero light. In a colour image, the intensity of a colour channel pixel is its colour
brightness.

Photon: A photon is an electromagnetic radiation energy packet, formulated by
Einstein in 1917 to explain the photoelectric effect. For more about this, see M.
Orszag, [134]. See, also, Quantum optics.

Planck’s constant h The constant h = 6.6262 × 10−27 erg seconds = 6.6262 ×
10−34 J s. The energy E of a photon with frequency ν is E = hν. Let T be the
absolute temperature if a source, c = 2.998 × 10−23 ms−1 the speed of light,
k = 1.381 × 10−23 K−1 Boltzmann’s constant, λ wavelength. Planck’s law for
black body radiation (denoted by Bν(T)) is defined by

B(λ) = 2h

c2
λ5

e
hc

kλT −1
Wm−2m−1.

This is the power emitted by a light source such as the filament of an incandescent
light bulb:
https://en.wikipedia.org/wiki/Incandescent_light_bulb.
For the details, see P. Corke [31].

Point Another name for digital image pixel.
Polytope: Let Rn be an n-dimensional Euclidean vector space, which is where

polytopes live. A polytope is a set of points A ⊆ R
n that is either a convex hull

of set of points K (denoted by convh A(K)) or the intersection of finitely many
closed half spaces in R

n . This view of polytopes is based on [220, p. 5]. Notice
that non-convex polytopes are possible, since the intersection of finitelymany half
spaces may not be the smallest convex set containing a set of points. Polytopes
are commonly found in Voronoï tessellations of digital images. See, also, Convex
hull, Convex set, Half space.

https://en.wikipedia.org/wiki/Incandescent_light_bulb

392 Appendix B: Glossary

Fig. B.23 Sample 2D
polytopes

Example B.36 Polytopes.
The two types of polytopes are shown in Fig.B.23. The polytope in Fig.B.23.1 is a
convex hull of 9 points (represented the black • dots). The polytope in Fig.B.23.1
is the intersection of 5 closed half spaces. �

B.16 Q

Q

Quality of a digital image: Mean SSIM (MSSIM) index. See MSSIM, SSIM.
Quality of an Voronoï region: Recall that a Voronoï region is a polygon with n

sides. Let V (s) be a Voronoï region and let Q(V (s)) be the quality of V (s). The
quality of Q(V (s)) is highest when the polygon sides are equal in length.

Example B.37 Let A be the area of V (s) with 4 sides having lengths l1, l2, l3, l4.
Then

Q(V (s)) = 4A

l21 + l22 + l23 + l24
.

Q(V (s))will vary, depending on the area and the number of sides in a Voronoï region
polygon. Let Qi (V (si)) (briefly, Qi) be the quality of polygon i with 1 ≤ i ≤ n, n ≥
1. And let S be set of generating points, V (S) a Voronoï tessellation. Then

Q(V (S)) = 1

n

n∑
i=1

Qi (Global Mesh Quality Index).

Theorem B.38 [1]
For any Voronoï-tessellated plane surface, a set of generating points exists for which
the quality of the mesh cells is maximum.

Quality of an MNC contour shape: The quality of an MNC contour shape is
proportional to the closeness of a target contour shape to a sample contour shape.

Appendix B: Glossary 393

In other words, an MNC contour shape is high, provided the difference between a
target MNC contour perimeter and a sample MNC contour perimeter is less than
some small positive number ε.

Quantum optics: The study of light and interaction between light and matter at
the microscopic level. For more about this, see C. Fabre [48]. See, also, Photon.

B.17 R

R

R: Set of reals (real numbers).
R

2: Euclidean plane (2-space). 2D digital images live in R2.
R

3: Euclidean 3-space. 3D digital images live in R
3.

Reality: What we experience as human beings.
RGB: Red Green Blue colour technical model. For the RGB wavelengths based

on the CIE (Commission internationale de l’ëclairage: International Commission
on Illumination) 1931 color space, see
https://en.wikipedia.org/wiki/CIE_1931_color_space.

Regular polygon: An n-sided polygon in which all sides are the same length
and are symmetrically arranged about a common center, which means that a
regular polygon is both equiangular and equilateral. For more about this, see
E.W. Weisstein [207].

Riemann surface: A Riemann surface is a surface that covers the complex plane
(z-plane or z-sphere) with sheets. See Complex plane, C.

B.18 S

S

Sampling: Extracting samples from an analog signal at appropriate intervals. A
continuous analog signal xa(t) such as the signal from an optical sensor in a digital
camera or in a web cam, is captured over a temporal interval t . Let T > 0 denote
the sampling period (duration between samples) and let n be the sample number.
The ratio And x(n) is a digital sample of the analog signal xa(t) at time t , provided

xa(n) = x(nT), nth for some sampling period T > 0.

2π

T
= sampling frequency or sampling rate.

Example B.39 Sampled Optical Sensor Signal.
A time-varying analog signal x(t) over time t is shown in Fig.B.1.1. A collection of
n digital signal samples x(n) is shown in Fig.B.1.2. Here, the sampling period is T

https://en.wikipedia.org/wiki/CIE_1931_color_space

394 Appendix B: Glossary

(duration between sampled signals). Each spike in Fig.B.1.2 represents a sampled
signal (either image or video frame). �

Fig. B.24 Monotonicity of
brightness, saturation and
hue from [67]

Saturation: Saturation is an expression for the relative bandwidth of the visible
output from a light source [67, Sect. 1.4]. Notice that saturation is an interval
characteristic of colour, determined over an interval, not at a point. Saturation is
represented by the steepness of the colour curves in Fig.B.24. Notice that blue
has the greatest saturation. The hue of a colour becomes more pure as saturation
increases.

Fig. B.25 Polygon edges
surrounding a triangle shape

Shape: A shape is the external form or appearance of something. In the context of
digital images, a shape is the outline of an area of an image. In terms of subimages,
the shape of a subimage is identified with its set of edge pixels called an shape
edgelet such as the edge pixels along sides of polygon covering an unknown
shape (see, e.g., Fig.B.25). A straightforward approach to identifying a subimage
shape A is compare the contour edgelet eA or boundary of A with the contour
edgelet eB of a known shape B. For the details, see Sect. 7.7. For an introduction to
shape context descriptors, see M. Eisemann, F. Klose and M. Magnor [44, p. 10].
Another approach to comparing shapes covered by polygons is to compare the

http://dx.doi.org/10.1007/978-3-319-52483-2_7

Appendix B: Glossary 395

total area of the polygons covering one shape with the total area of the polygons
covering another shape (see, e.g., the shape measure given by D.R. Lee and G.T.
Sallee in [106]).

Example B.40 MNC shape.
The fine (or coarse) contour of anMNC in a Voronoï tessellation of a digital image is
a set of edge pixels belonging to the line segments between pairs of mesh generators
of the polygons along the border of either the nucleus (fine contour case) or along the
border polygons of the MNC. Such line segments are called edgelets. For example,
let edgeletMNC be a fine contour of an MNC in a Voronoï tessellation of a digital
image. The shape of an object covered by anMNC is approximated by edgeletMNC.
�

Shape boundary: In the maximal nucleus cluster (MNC) approach to image
object shape recognition, either the shape boundary is approximated by either
a coarse or fine contour of an MNC nucleus. This approach is based on an obser-
vation by T.M. Apostol and M.A. Mnatsakanian [6], namely, that any planar
region can be dissected into smaller pieces that the can rearranged to form any
other polygonal region of equal area. For image object shape recognition relative
to the shape of a query image object and the shape of test image object, there is a
basic requirement, namely, shapes are equivalent provided they have equal areas
and equal perimeters. A weakened form of this requirement is that shapes are
approximately the same, provided the shapes have either approximately the same
perimeter or approximately the same area. The situation becomesmore interesting
when an MNC contour K is the boundary of a convex hull C of the set of MNC
interior points. Let p(K), p(C) be the perimeters of K and C , respectively. From
G.D. Chakerian [26], we know that C = k, provided p(K), p(C). Extending
Chakerian’s result, let K Q,CQ be the perimeter of the boundary and of the con-
vex hull of an MNC of a query image shape Q with perimeters p(KQ), p(CQ)

and let KT ,CT be the perimeter of the boundary and of the convex hull of an
MNC of a video frame test image shape T with perimeters p(KT), p(CT). Then
shape Q is close to shape T , if and only if

Q ≈ T, provided p(K Q) ≈ p(KT) and p(CQ) ≈ p(CT),

i.e., boundary perimeters p(KQ), p(KT) are close and convex hull perimeters
p(CQ), p(CT).
See, also, Shape, Convex Hull, Convex Set, MNC, Boundary region of a set,
Boundary Set and Jeff Weeks lecture5 on the shape of space and how the uni-
verse could be a Poincaré dodecahedral space: https://www.youtube.com/watch?
v=j3BlLo1QfmU.

5Many thanks to Zubair Ahmad for pointing this out.

https://www.youtube.com/watch?v=j3BlLo1QfmU
https://www.youtube.com/watch?v=j3BlLo1QfmU

396 Appendix B: Glossary

Fig. B.26 Query image Q and test image T boundary and convex hull perimeters

Example B.41 Comparing query and test image shape convex hulls and bound-
aries. In Fig.B.26, query and test image shape boundaries and convex hulls are
represented by p(K Q), p(KT) and p(KT), p(CT), respectively. In each case, the
shape boundary contains the shape convex hull. The basic approach is the compare
lengths of the boundaries p(KQ), p(KT) and convex hull perimeters p(CQ), p(CT).
Let ε be a positive number. Then the test image shape approximates the query image
shape, provided

∣∣p(KQ) − p(KT)
∣∣ ≤ ε and

∣∣p(CQ) − p(CT)
∣∣ ≤ ε.

The end result is a straightforward approach to image object shape recognition,
assuming the boundary length and convex hull perimeter are close enough. �

Shape Edgelet: See ExampleB.40 and Sect.B.18.
SI: Standard International based unit of measurement. There are 7 SI base units,

namely,

meter length. Abbreviation: m.
kilogram mass. Abbreviation: kg.
second time. Abbreviation: s.
ampere electric current. Abbreviation: i, e.g., i = 100 amps.
kelvin temperature. Abbreviation: K, 1K = 1oC = 9

5
o
F = 9

5
o
R.

candela luminous intensity. Abbreviation: cd.
mole amount of substance. Abbreviation: mol, e.g., 2 mol of water, 1 mol of

dioxygen.

SIFT: Scale-Invariant Feature Transform (SIFT) introduced by D.G. Lowe [115,
116] is a mainstay in solving object recognition as well as object tracking prob-
lems.

Similarity Distance: Let A be the set of points on the contour of a sample object
and let B be the contour of a known object. The Hausdorff distance [75, Sect. 22,
p. 128] between a point x and a set A (denoted by D(x, A)) is defined by

D(x, A) = min {‖x − a‖ : a ∈ A} (Hausdorff point-set distance).

Appendix B: Glossary 397

The similarity distance D(A, B) between the two contours A and B, represented
by a set of uniformly sampled points in A and B [60, Sect. 2, p. 29], is defined by

D(A, B) = max

{
max
a∈A

D(a, B),max
b∈B

D(b, A)

}
(Similarity Distance).

Signal quality: The expected value of a signal compared with an actual signal.

Example B.42 Signal Quality Measure.
Mean squared error (MSE). Let x̂(n) denote the approximate nth digital signal value
and let N be the number of samples. The expected value of the ith digital signal value
xi (denoted x̂i) is the approximation of xi . Then M SE(x) is a measure of the quality
of a signal x = (x1, . . . , xn) is defined by

M SE(x) =

N∑
i=1

(
xi − x̂i

)2
N

.

In our case, a signal is a vector of pixel intensities such as the rowor column intensities
in a greyscale digital image. �

Spoke See Nerve in Appendix B.13.
SSIM Structural similarity image measure. A measure of image structural simi-

larity that compares local patterns of pixel intensities that have been normalized
for luminance and contrast, introduced by Z. Wang, A.C. Bovik, H.R. Sheikh and
E.P. Simoncelli [205]. SSIM computes structural similarity by comparing image
intensities in a row x and column y of the image with n columns and m rows,
defined by

x = (x1, . . . , xn) , y = (y1, . . . , xm) .

Let μx ,μy be the average pixel intensity in the x and y directions, respectively.
Let σx ,σx be image signal contrast in the x and y directions, respectively, defined
by

σx =
(

n∑
i=1

(xi − μx)

n − 1

) 1
2

,σy =
(

m∑
i=1

(
yi − μy

)
m − 1

) 1
2

.

Let σxy (used to compute SSIM(x,y)) be defined by

σxy =
(

n∑
i=1

(xi − μx)
(
yi − μy

)
n − 1

)
.

Let C1,C2 be constants used to avoid instability when average intensity values
are very close to each other. Then the similarity measure SSIM between signals
x and x is defined by

398 Appendix B: Glossary

SSI M(x, y) =
(
2μxμy + C1

) (
2σxy + C2

)
(
μ2

x + μ2
y + C1

) (
σ2

x + σ2
y + C2

) .
See MSSIM, Quality of a digital image.

SURF: Speeded up robust features, introduced by H. Bay, A. Ess, T. Tuytelaars
and L.V. Gool [10]. SURF is a scale- and rotation-invariant detector and descrip-
tor. SURF integrates the gradient information in an image subpatch. SURF is
implement in Matlab.

B.19 T

T

Tessellation: A tessellation of an image is a tiling of the image with polygons.
The polygons can have varying numbers of sides. See Example8.1.

Tiling: A tiling is a covering of a surface with polygons (traditionally, regular
polygons). See Cover.

Topological space: A nonempty set X with a topology τ on it, is a topological
space. See Topology, Open set.

Topology: A collection of open sets τ on a nonempty open set X is a topology on
X [126, Sect. 12, p. 76], [100, Sect. 1.2, p. 1], [128, Sect. 1.6, p. 11], provided

1o The empty set ∅ is open and ∅ is in τ .
2o The set X is open and X is in τ .
3o If A is a sub-collection of open sets in τ , then

⋃
B∈A

B is a open set in τ .

In other words, the union of open sets in τ is another open set in τ .
4o If A is a sub-collection open sets in τ , then

⋂
B∈A

B is a open set in τ .

In other words, the intersection of open sets in τ is another open set in τ . �

See Topological space, Open set.

http://dx.doi.org/10.1007/978-3-319-52483-2_8

Appendix B: Glossary 399

Brief History of Topology.
For a detailed history of topology in four stages (eras), see J. Mil-
nor [123]. Part 1 of this history traces the origins of topology back to
1736 and the first topological statement with L. Euler’s solution to the
seven bridges of Königsberg problem. Part 2 covers the introduction of
2-dimensional manifolds in the 19th century, starting with the work by
S. L’Huilier, 1812–1823, on the surface of a polyhedron in Euclidean
3-space that is drilled through with n holes. Part 3 of this history covers
the study of 3-dimensional manifolds, starting with the 1898 work by
P. Heegard on the decomposition of closed orientable 3-manifolds as the
union of two handle-bodies of the same genus and which intersect only
along their boundaries. Part 4 covers 4-dimensional manifolds, starting
with the work by A.A.Markov, 1958, and the work by J.H.C.Whitehead
in 1949. �

B.20 U

U

UQI: Universal Quality Index defined by Z. Wang and A.C. Bovik in [204]. Let
μx ,μy be the average pixel intensity in the x and y directions, respectively. Let
σx ,σx be image signal contrast in the x and y directions, respectively, defined by

σx =
(

n∑
i=1

(xi − μx)

n − 1

) 1
2

,σy =
(

m∑
i=1

(
yi − μy

)
m − 1

) 1
2

.

Let σxy (used to compute SSIM(x,y)) be defined by

σxy =
(

n∑
i=1

(xi − μx)
(
yi − μy

)
n − 1

)
.

U Q I (x, y) is defined by

U Q I (x, y) =
(
4σxyμxμy

)
(
μ2

x + μ2
y

) (
σ2

x + σ2
y

) ,
In [204, Sect. II, p. 81], x is an original image signal and y is a test image signal.
Notice that in a greyscale image, x is a row of pixel intensities and y is a column
of pixel intensities. This is the same as SSI M(x, x), when C1 = C2 = 0 in the
structural similarity image measure SSI M(x, x). See SSIM.

400 Appendix B: Glossary

B.21 V

V

Value: The value (brightness) of colour is a relative expression of the intensity of
the energy output of visible light source [67, Sect. 1.4].

Viewpoint: A position affording a good view.
Video signal processing: Minimize noise, offline as well as online analysis of

video frames using image processing and computer vision methods, and exploit
the geometry and temporal nature of the video frames.

Virtual: Almost or nearly as described but not completely based on a strict defi-
nition of what is being described.

Virtual reality: Virtual world. Portrayal of a human 3D view of reality. See, for
example, L. Valente, E. Clua, A.R. Silva and R. Feijó on live-action virtual reality
games [199] based on a mixed reality model. See, for example:
https://en.wikipedia.org/wiki/Category:Mixed_reality
and
https://en.wikipedia.org/wiki/Mixed_reality
and
http://www.pokemongo.com/fr-ca/

Visual quality: Measure of perceived visual deterioration in an output video
compared with an original scene. Visual deterioration results from lossy image
(e.g., .jpg) or video compression techniques.

B.22 W

W

Webcam: Video camera that streams its images in real-time to a computer network.
For applications, see E.A. Vlieg [200].

B.23 X

X

X: Greek letter, pronounced Kai as in Kailua (kai lua) in Kailua, Hawaii.
arXiv: For downloadable articles in Physics, Mathematics, Computer Science,

Quantitative Biology, Quantitative Finance, Statistics, see the Cornell University
e-print service at https://arxiv.org/.

https://en.wikipedia.org/wiki/Category:Mixed_reality
https://en.wikipedia.org/wiki/Mixed_reality
http://www.pokemongo.com/fr-ca/
https://arxiv.org/

Appendix B: Glossary 401

B.24 Z

Z

z: z = a + bi, a, b ∈ R, a complex number. See Complex number, Complex
plane.

Z: Set of integers.

References

1. A-iyeh, E.: Point pattern voronoï tessellation quality and improvement, information and
processing: applications in digital image analysis. Ph.D. thesis, University of Manitoba,
Department of Electrical and Computer Engineering’s (2016). Supervisor: J.F. Peters

2. A-iyeh, E., Peters, J.: Rényi entropy in measuring information levels in Voronoï tessellation
cells with application in digital image analysis. Theory Appl. Math. Comput. Sci. 6(1), 77–95
(2016). MR3484085

3. Aberra, T.: Topology preserving skeletonization of 2d and 3d binary images. Master’s the-
sis, Technische Universität Kaiserslautern, Kaiserslautern, Germany (2004). Supervisors: K.
Schladitz, J. Franke

4. Akramaullah, S.: Digital Video Concepts, Methods and Metrics. Quality, Compression, Per-
formance, and Power Trade-Off Analysis, Xxiii+344 pp. Springer, Apress, Berlin (2015)

5. Allili, M., Ziou, D.: Active contours for video object tracking using region, boundary and
shape information. Signal Image Video Process. 1(2), 101–117 (2007). doi:10.1007/s11760-
007-0021-8

6. Apostol, T.,Mnatsakanian,M.:Complete dissections: converting regions and their boundaries.
Am. Math. Mon. 118(9), 789–798 (2011)

7. Archimedes: sphere and cylinder. On paraboloids, hyperboloids and ellipsoids, trans. and
annot. by A. Czwalina-Allenstein. Cambridge University Press, UK (1897). Reprint of 1922,
1923, Geest & Portig, Leipzig 1987, TheWorks of Archimedes, ed. by T.L. Heath, Cambridge
University Press, Cambridge (1897)

8. Baerentzen, J., Gravesen, J., Anton, F., Aanaes, H.: Computational Geometry Processing.
Foundations, Algorithms, and Methods. Springer, Berlin (2012). doi:10.1007/978-1-4471-
4075-7, Zbl 1252.68001

9. Baroffio, L., Cesana, M., Redondi, A., Tagliasacchi, M.: Fast keypoint detection in video
sequences, pp. 1–5 (2015). arXiv:1503.06959v1 [cs.CV]

10. Bay, H., Ess, A., Tuytelaars, T., Gool, L.: Speeded-up robust features (surf). Comput. Vis.
Image Underst. 110(3), 346–359 (2008)

11. Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer Academic Publishers, The
Netherlands (1993)

12. Beer, G., Lucchetti, R.: Weak topologies for the closed subsets of a metrizable space. Trans.
Am. Math. Soc. 335(2), 805–822 (1993)

13. Belongie, S.,Malik, J., Puzicha, J.:Matching shapes. In: Proceedings of the IEEE International
Conference onComputer Vision (ICCV2001), vol. 1, pp. 454–461. IEEE (2001). doi:10.1109/
ICCV.2001.937552

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2

403

http://dx.doi.org/10.1007/s11760-007-0021-8
http://dx.doi.org/10.1007/s11760-007-0021-8
http://dx.doi.org/10.1007/978-1-4471-4075-7
http://dx.doi.org/10.1007/978-1-4471-4075-7
http://arxiv.org/abs/1503.06959v1
http://dx.doi.org/10.1109/ICCV.2001.937552
http://dx.doi.org/10.1109/ICCV.2001.937552

404 References

14. Ben-Artzi, G., Halperin, T., Werman, M., Peleg, S.: Trim: triangulating images for efficient
registration, pp. 1–13 (2016). arXiv:1605.06215v1 [cs.GR]

15. Benhamou, F., Goalard, F., Languenou, E., Christie,M.: Interval constraint solving for camera
control andmotion planning. ACMTrans. Comput. Logic V(N), 1–35 (2003). http://tocl.acm.
org/accepted/goualard.pdf

16. Blashke, T., Burnett, C., Pekkarinen, A.: Luminaires. In: de Jong, S., van der Meer, F. (eds.)
Image Segmentation Methods for Object-Based Analysis and Classification, pp. 211–236.
Kluwer, Dordrecht (2004)

17. Borsuk, K.: Theory of Shape. Monografie Matematyczne, Tom 59. [Mathematical Mono-
graphs, vol. 59] PWN—Polish Scientific Publishers (1975). MR0418088, Based on K. Bor-
suk, Theory of Shape, Lecture Notes Series, vol. 28, Matematisk Institut, Aarhus Universitet,
Aarhus (1971). MR0293602

18. Borsuk, K., Dydak, J.: What is the theory of shape? Bull. Aust. Math. Soc. 22(2), 161–198
(1981). MR0598690

19. Bromiley, P., Thacker, N., Bouhova-Thacker, E.: Shannon entropy, Rényi’s entropy, and infor-
mation. Technical report, The University ofManchester, U.K. (2010). http://www.tina-vision.
net/docs/memos/2004-004.pdf

20. Broomhead, D., Huke, J., Muldoon, M.: Linear filters and non-linear systems. J. R Stat. Soc.
Ser. B (Methodol.) 54(2), 373–382 (1992)

21. Burger, W., Burge, M.: Digital Image Processing. An Algorithmic Introduction Using Java,
2nd edn, 811 pp. Springer, Berlin (2016). doi:10.1007/978-1-4471-6684-9

22. Burt, P., Adelson, E.: The Laplacian pyramid as a compact image code. IEEETrans. Commun.
COM–31(4), 532–540 (1983)

23. Camastra, F., Vinciarelli, A.: Machine Learning for Audio, Image and Video Analysis, Xvi +
561 pp. Springer, Berlin (2015)

24. Canny, J.: Finding edges and lines in images.Master’s thesis, MIT,MITArtificial Intelligence
Laboratory (1983). ftp://publications.ai.mit.edu/ai-publications/pdf/AITR-720.pdf

25. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell. 8, 679–698 (1986)

26. Chakerian, G.: A characterization of curves of constant width. Am. Math. Mon. 81(2), 153–
155 (1974)

27. Chan, M.: Topical curves and metric graphs. Ph.D. thesis, University of California, Berkeley,
CA, USA (2012). Supervisor: B. Sturmfels

28. Chaudhury, K., Munoz-Barrutia, A., Unser, M.: Fast space-variant elliptical filtering using
box splines, pp. 1–42 (2011). arXiv:1003.2022v2

29. Chen, L.M.: Digital Functions and Data Reconstruction. Digital-Discrete Methods, Xix+207
pp. Springer, Berlin (2013). doi:10.1007/978-1-4614-5638-4

30. Christie, M., Olivier, P., Normand, J.M.: Camera control in computer graphics. Com-
put. Graph. Forum 27(8), 2197–2218 (2008). https://www.irisa.fr/mimetic/GENS/mchristi/
Publications/2008/CON08/870.pdf

31. Corke, P.: Robitics, Vision and Control. Springer, Berlin (2013). doi:10.1007/978-3-642-
20144-8

32. Danelljan, M., Häger, G., Khan, F., Felsberg, M.: Coloring channel representations for visual
tracking. In: Paulsen, R., Pedersen, K. (eds.) SCIA 2015. LNCS, vol. 9127, pp. 117–129.
Springer, Berlin (2015)

33. Delaunay, B.D.: Sur la sphère vide. Izvestia Akad. Nauk SSSR, Otdelenie Matematicheskii i
Estestvennyka Nauk 7, 793–800 (1934)

34. Deza, E., Deza, M.M.: Encyclopedia of Distances. Springer, Berlin (2009)
35. Dirichlet, G.: Über die reduktion der positiven quadratischen formen mit drei unbestimmten

ganzen zahlen. Journal für die reine und angewandte 40, 221–239 (1850). MR
36. Drucker, S.: Intelligent camera control for graphical environments. Ph.D. thesis, Massa-

chusetts Institute of Technology, Media Arts and Sciences (1994). http://research.microsoft.
com/pubs/68555/thesiswbmakrs.pdf. Supervisor: D. Zeltzer

http://arxiv.org/abs/1605.06215v1
http://tocl.acm.org/accepted/goualard.pdf
http://tocl.acm.org/accepted/goualard.pdf
http://www.tina-vision.net/docs/memos/2004-004.pdf
http://www.tina-vision.net/docs/memos/2004-004.pdf
http://dx.doi.org/10.1007/978-1-4471-6684-9
ftp://publications.ai.mit.edu/ai-publications/pdf/AITR-720.pdf
http://arxiv.org/abs/1003.2022v2
http://dx.doi.org/10.1007/978-1-4614-5638-4
https://www.irisa.fr/mimetic/GENS/mchristi/Publications/2008/CON08/870.pdf
https://www.irisa.fr/mimetic/GENS/mchristi/Publications/2008/CON08/870.pdf
http://dx.doi.org/10.1007/978-3-642-20144-8
http://dx.doi.org/10.1007/978-3-642-20144-8
http://research.microsoft.com/pubs/68555/thesiswbmakrs.pdf
http://research.microsoft.com/pubs/68555/thesiswbmakrs.pdf

References 405

37. Drucker, S.: Automatic conversion of natural language to 3d animation. Ph.D. thesis, Univer-
sity of Ulster, Faculty of Engineering (2006). http://www.paulmckevitt.com/phd/mathesis.
pdf. Supervisor: P. McKevitt

38. Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: applications and algo-
rithms. SIAM Rev. 41(4), 637–676 (1999). MR1722997

39. Eckhardt, U., Latecki, L.J.: Topologies for the digital spaces Z2 and Z
3. Comput. Vis. Image

Underst. 90(3), 295–312 (2003)
40. Edelsbrunner,H.:Geometry andTopology ofMeshGeneration, 209 pp.CambridgeUniversity

Press, Cambridge (2001)
41. Edelsbrunner,H.:AShortCourse inComputationalGeometry andTopology, 110pp. Springer,

Berlin (2014)
42. Edelsbrunner, H., Harer, J.: Computational Topology. An Introduction, Xii+110 pp. American

Mathematical Society, Providence (2010). MR2572029
43. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane.

IEEE Trans. Inf. Theory IT-29(4), 551–559 (1983)
44. Eisemann,M.,Klose, F.,Magnor,M.:Towards plenoptic raumzeit reconstruction. In:Cremers,

D., Magnor, M., Oswald, M., Zelnik-Manor, L. (eds.) Video Processing and Computational
Video, pp. 1–24. Springer, Berlin (2011). doi:10.1007/978-3-642-24870-2

45. Escolano, F., Suau, P., Bonev, B.: Information Theory in Computer Vision and Pattern Recog-
nition. Springer, Berlin (2009)

46. Nielson, F. (ed.): Emerging Trends in Visual Computing, Xii+388 pp. Springer, Berlin (2008)
47. Fabbri, R., Kimia, B.: Multiview differential geometry of curves, pp. 1–34 (2016).

arXiv:1604.08256v1 [cs.CV]
48. Fabre, C.: Basics of quantum optics and cavity quantum electrodynamics. Lect. Notes Phys.

531, 1–37 (2007). doi:10.1007/BFb0104379
49. Favorskaya, M., Jain, L., Buryachenko, V.: Digital video stabilization in static and dynamic

situations. In: Favorskaya, M., Jain, L. (eds.) Intelligent Systems Reference, vol. 73, pp.
261–310. Springer, Berlin (2015)

50. Fechner, G.: Elemente der Psychophysik, 2 vols. E.J. Bonset, Amsterdam (1860)
51. Fontelos, M., Lecaros, R., López-Rios, J., Ortega, J.: Stationary shapes for 2-d water-waves

and hydraulic jumps. J. Math. Phys. 57(8), 081,520, 22 pp. (2016). MR3541857
52. Frank, N., Hart, S.: A dynamical system using the Voronoi tessellation. Am. Math. Mon.

117(2), 92–112 (2010)
53. Gardner, M.: On tessellating the plane with convex polygon tiles. Sci. Am. 116–119 (1975)
54. Gaur, S., Vajpai, J.: Comparison of edge detection techniques for segmenting car license

plates. Int. J. Comput. Appl. Electr. Inf. Commun. Eng. 5, 8–12 (2011)
55. Gersho, A., Gray, R.: Vector Quantization and Signal Compression. Kluwer Academic Pub-

lishers, Norwell (1992). ISBN: 0-7923-9181-0
56. Gersho, A., Gray, R.: Vector Quantization and Signal Compression, Xii + 732 pp. Kluwer

Academic Publishers, Boston (1992)
57. Gonzalez, R., Woods, R.: Digital Image Processing. Prentice-Hall, Upper Saddle River, NJ

07458 (2002). ISBN: 0-20-118075-8
58. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn, Xxii + 954 pp. Pearson Prentice

Hall, Upper Saddle River (2008)
59. Gonzalez, R., Woods, R., Eddins, S.: Digital Image Processing Using Matlab®, Xiv + 609

pp. Pearson Prentice Hall, Upper Saddle River (2004)
60. Grauman, K., Shakhnarovich, G., Darrell, T.: Coloring channel representations for visual

tracking. In: Comaniciu, R.M.D.S.D., Kanatani, K. (eds.) Statistical Methods in Video
Processing (SMVP) 2004. LNCS, vol. 3247, pp. 26–37. Springer, Berlin (2004)

61. Gruber, P.: Convex and discrete geometry, Grundlehren der MathematischenWissenschaften,
vol. 336, Xiv+578 pp. Springer, Berlin (2007). MCS2000 52XX, 11HXX, ISBN: 978-3-540-
71132-2, MR2335496

62. Gruber, P.M., Wills, J.M. (eds.): Handbook of Convex Geometry. North-Holland, Amsterdam
(1993) vol. A: lxvi+735 pp.; vol. B: ilxvi and 7371438 pp. ISBN: 0-444-89598-1,MR1242973

http://www.paulmckevitt.com/phd/mathesis.pdf
http://www.paulmckevitt.com/phd/mathesis.pdf
http://dx.doi.org/10.1007/978-3-642-24870-2
http://arxiv.org/abs/1604.08256v1
http://dx.doi.org/10.1007/BFb0104379

406 References

63. Grünbaum, B., Shephard, G.: Tilings and Patterns, Xii+700 pp. W.H. Freeman and Co., New
York (1987). MR0857454

64. Grünbaum, B., Shepherd, G.: Tilings with congruent tiles. Bull. (New Ser.) Am. Math. Soc.
3(3), 951–973 (1980)

65. terHaarRomeny,B.:Computer vision andmathematica.Comput.Vis. Sci.5(1), 53–65 (2002).
MR1947476

66. Hall, E.: The Silent Language. Doubleday, Garden City (1959)
67. Halus̆ka, J.: On fields inspired with the polar HSV – RGB theory of colour, pp. 1–16 (2015).

arXiv:1512.01440v1 [math.HO]
68. Hanbury, A., Serra, J.: A 3d-polar coordinate colour representation suitable for image analy-

sis. Technical report, Vienna University of Technology (2003). http://cmm.ensmp.fr/~serra/
notes_internes_pdf/NI-230.pdf

69. Haralick, R.: Digital step edges from zero crossing of second directional derivatives. IEEE
Trans. Pattern Anal. Mach. Intell. PAMI-6(1), 58–68 (1984)

70. Haralick, R., Shapiro, L.: Computer and Robot Vision. Addison-Wesley, Reading (1993)
71. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 8th

Alvey Vision Conference, pp. 147–151 (1988)
72. Hartley, R.: Transmission of information. Bell Syst. Tech. J. 7, 535 (1928)
73. Hassanien, A., Abraham, A., Peters, J., Schaefer, G., Henry, C.: Rough sets and near sets

in medical imaging: a review. IEEE Trans. Info. Technol. Biomed. 13(6), 955–968 (2009).
doi:10.1109/TITB.2009.2017017

74. Hausdorff, F.: Grundzüge der Mengenlehre, Viii + 476 pp. Veit and Company, Leipzig (1914)
75. Hausdorff, F.: Set Theory, trans. by J.R. Aumann, 352 pp. AMS Chelsea Publishing, Provi-

dence (1957)
76. Henry, C.: Near sets: theory and applications. Ph.D. thesis, University of Manitoba, Depart-

ment of Electrical and Computer Engineering (2010). http://130.179.231.200/cilab/. Super-
visor: J.F. Peters

77. Henry, C.: Arthritic hand-finger movement similarity measurements: tolerance near set
approach. Comput. Math. Methods Med. 2011, 1–14 (2011). doi:10.1155/2011/569898

78. Herran, J.: Omnivis: 3d space and camera path reconstruction for omnidirectional vision.Mas-
ter’s thesis, Harvard University, Mathematics Department (2010). Supervisor: Oliver Knill

79. Hettiarachchi, R., Peters, J.: Voronoï region-based adaptive unsupervised color image seg-
mentation, pp. 1–2 (2016). arXiv:1604.00533v1 [cs.CV]

80. Hidding, J., van de Weygaert, R., G. Vegter, B.J., Teillaud, M.: The sticky geometry of the
cosmic web, pp. 1–2 (2012). arXiv:1205.1669v1 [astro-ph.CO]

81. Hlavac, V.: Fundamentals of image processing. In: Cristóbal, H.T.G., Schelkens, P. (eds.)
Optical and Digital Image Processing. Fundamentals and Applications, pp. 25–48. Wiley-
VCH, Weinheim (2011)

82. Hoggar, S.: Mathematics of Digital Images. Cambridge University Press, Cambridge (2006).
ISBN: 978-0-521-78029-2

83. Hoggar, S.: Mathematics of Digital Images, Xxxii + 854 pp. Cambridge University Press,
Cambridge (2006)

84. Holmes, R.: Mathematical foundations of signal processing. SIAM Rev. 21(3), 361–388
(1979)

85. Houit, T., Nielsen, F.: Video stippling, pp. 1–13 (2010). arXiv:1011.6049v1 [cs.GR]
86. Jacques, J., Braun, A., Soldera, J., Musse, S., Jung, C.: Understanding people in motion in

video sequences using Voronoi diagrams. Pattern Anal. Appl. 10, 321–332 (2007). doi:10.
1007/s10044-007-0070-1

87. Jähne, B.: Digital Image Processing, 6th revised, extended edn. Springer, Berlin (2005). ISBN:
978-3-540-24035-8 (Print) 978-3-540-27563-3 (Online)

88. Jarvis, R.: Computing the shape hull of points in the plane. In: Proceedings of the Computer
Science Conference on Pattern Recognition and Image Processing, pp. 231–241. IEEE (1977)

89. Joblove, G., Greenberg, D.: Color spaces for computer graphics. In: Proceedings of the 5th
AnnualConference onComputerGraphics and InteractiveTechniques, pp. 20–25.Association
for Computing Machinery (1978)

http://arxiv.org/abs/1512.01440v1
http://cmm.ensmp.fr/~serra/notes_internes_pdf/NI-230.pdf
http://cmm.ensmp.fr/~serra/notes_internes_pdf/NI-230.pdf
http://dx.doi.org/10.1109/TITB.2009.2017017
http://130.179.231.200/cilab/
http://dx.doi.org/10.1155/2011/569898
http://arxiv.org/abs/1604.00533v1
http://arxiv.org/abs/1205.1669v1
http://arxiv.org/abs/1011.6049v1
http://dx.doi.org/10.1007/s10044-007-0070-1
http://dx.doi.org/10.1007/s10044-007-0070-1

References 407

90. Karimaa, A.: A survey of hardware accelerated methods for intelligent object recognition
on camera. In: Świa̧tek, J., Grzech, A., Świa̧tek, P., Tomczak, J. (eds.) Advances in Systems
Science, vol. 240, pp. 523–530. Springer, Berlin (2013)

91. Kay, D.,Womble, E.: Automatic convexity theory and relationships between the carathèodory,
helly and radon numbers. Pac. J. Math. 38(2), 471–485 (1971)

92. Kim, I., Choi, H., Yi, K., Choi, J., Kong, S.: Intelligent visual surveillance-A survey. Int. J.
Control Autom. Syst. 8(5), 926–939 (2010)

93. Kiy, K.: A new real-time method of contextual image description and its application in robot
navigation and intelligent control. In: Favorskaya, M., Jain, L. (eds.) Intelligent Systems
Reference, vol. 75, pp. 109–134. Springer, Berlin (2015)

94. Klette, R., Rosenfeld, A.: Digital Geometry. Geometric Methods for Digital Picture Analysis.
Morgan Kaufmann Publishers, Amsterdam (2004)

95. Knee, P.: Sparse representations for radar with Matlab examples. Morgan & Claypool Pub-
lishers (2012). doi:10.2200/S0044ED1V01Y201208ASE010

96. Kohli, P., Torr, P.: Dynamic graph cuts and their applications in computer vision. In: Cipolla,
G.F.R., Battiato, S. (eds.) Computer Vision, pp. 51–108. Springer, Berlin (2010)

97. Kokkinos, I., Yuille, A.: Learning an alphabet of shape and appearance for multi-class object
detection. Int. J. Comput. Vis. 93(2), 201–225 (2011). doi:10.1007/s11263-010-0398-7

98. Kong, T., Roscoe, A., Rosenfeld, A.: Concepts of digital topology. Special issue on digital
topology. Topol. Appl. 46(3), 219–262 (1992). Am. Math. Soc. MR1198732

99. Kong, T., Rosenfeld, A.: Topological Algorithms for Digital Image Processing. North-
Holland, Amsterdam (1996)

100. Krantz, S.: A Guide to Topology, Ix + 107 pp. The Mathematical Association of America,
Washington (2009)

101. Krantz, S.: Essentials of topology with applications, Xvi+404 pp. CRC Press, Boca Raton
(2010). ISBN: 978-1-4200-8974-5. MR2554895

102. Kronheimer, E.: The topology of digital images. Special issue on digital topology. Topol.
Appl. 46(3), 279–303 (1992). MR1198735

103. Lai, R.: Computational differential geometry and intinsic surface processing. Ph.D. thesis,
University ofCalifornia, LosAngeles, CA,USA (2010). Supervisors: T.F.Chan, P. Thompson,
M. Green, L. Vese

104. Latecki, L.: Topological connectedness and 8-connectedness in digital pictures. Comput. Vis.
Graph. Image Process. 57, 261–262 (1993)

105. Latecki, L., Conrad, C., Gross, A.: Preserving topology by a digitization process. J. Math.
Imaging Vis. 8, 131–159 (1998)

106. Lee, D., Sallee, G.: A method of measuring shape. Geogr. Rev. 60(4), 555–563 (1970)
107. Leone, F., Nelson, L., Nottingham, R.: The folded normal distribution. TECHNOMETRICS

3(4), 543–550 (1961). MR0130737
108. Leutenegger, S., Chli, M., Siegwart, R.: Brisk: binary robust invariant scalable keypoints. In:

Proceedings of the 2011 IEEE International Conference on Computer Vision, pp. 2548–2555.
IEEE (2011)

109. Li, L., Wang, F.Y.: Advanced Motion Control and Sensing for Intelligent Vehicles. Springer,
Berlin (2007)

110. Li, N.: Retrieving camera parameters from real video images. Master’s thesis, The Univer-
sity of British Columbia, Computer Science (1998). http://www.iro.umontreal.ca/~poulin/
fournier/theses/Li.msc.pdf

111. Li, Z.N., Drew, M., Liu, J.: Color in Image and Video. Springer, Berlin (2014). doi:10.1007/
978-3-319-05290-8_4

112. Lin, Y.J., Xu, C.X., Fan, D., He, Y.: Constructing intrinsic Delaunay triangulations from the
dual of geodesic Voronoi diagrams, pp. 1–32 (2015). arXiv:1605.05590v2 [cs.CG]

113. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Com-
put. Vis. 30(2), 117–154 (1998)

114. Louban, R.: Image Processing of Edge and Surface Defects. Materials Science, vol. 123.
Springer, Apress (2009). See pp. 9–29 on edge detection

http://dx.doi.org/10.2200/S0044ED1V01Y201208ASE010
http://dx.doi.org/10.1007/s11263-010-0398-7
http://www.iro.umontreal.ca/~poulin/fournier/theses/Li.msc.pdf
http://www.iro.umontreal.ca/~poulin/fournier/theses/Li.msc.pdf
http://dx.doi.org/10.1007/978-3-319-05290-8_4
http://dx.doi.org/10.1007/978-3-319-05290-8_4
http://arxiv.org/abs/1605.05590v2

408 References

115. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the 7th
IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999). doi:10.
1109/ICCV.1999.790410

116. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.
60(2), 91–110 (2004). doi:10.1023/B:VISI.0000029664.99615.94

117. Maggi, F., Mihaila, C.: On the shape of capillarity droplets in a container. Calc. Var. Partial
Differ. Equ. 55(5), 122 (2016). MR3551302

118. Mahmoodi, S.: Scale-invariant filtering design and analysis for edge detection. R. Soc. Proc.:
Math. Phys. Eng. Sci. 467(2130), 1719–1738 (2011)

119. Mani-Levitska, P.: Characterizations of convex sets. Handbook of Convex Geometry, vol. A,
B, pp. 19–41. North-Holland, Amsterdam (1993). MR1242975

120. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. Ser. B 207(1167),
187–217 (1980)

121. Mery, D., Rueda, L. (eds.): Advances in Image andVideoTechnology,Xviii+959 pp. Springer,
Berlin (2007)

122. Michelson, A.: Studies in Optics. Dover, New York (1995)
123. Milnor, J.: Topology through the centuries: low dimensional manifolds. Bull. (New Ser.) Am.

Math. Soc. 52(4), 545–584 (2015)
124. Gavrilova,M.L. (ed.): Generalized Voronoi Diagrams: AGeometry-Based Approach to Com-

putational Intelligence, Xv + 304 pp. Springer, Berlin (2008)
125. Moselund, T.: Introduction to Video and Image Processing. Building Real Systems andAppli-

cations, Xi + 227 pp. Springer, Heidelberg (2012)
126. Munkres, J.: Topology, 2nd edn., Xvi + 537 pp. Prentice-Hall, Englewood Cliffs (2000), 1st

edn. in 1975. MR0464128
127. Munsell, A.: A Color Notation. G. H. Ellis Company, Boston (1905)
128. Naimpally, S., Peters, J.: TopologywithApplications. Topological Spaces viaNear andFar,Xv

+ 277 pp. World Scientific, Singapore (2013). American Mathematical Society. MR3075111
129. Nyquist, H.: Certain factors affecting telegraph speed. Bell Syst. Tech. J. 3, 324 (1924)
130. Olive, D.: Algebras, lattices and strings 1986. Unification of fundamental interactions. Proc.

R. Swed. Acad. Sci. Stockh. 1987, 19–25 (1987). MR0931580
131. Olive, D.: Loop algebras, QFT and strings. Proc. Strings Superstrings, Madr. 1987, 217–2858

(1988). World Scientific Publishing, Teaneck, NJ. MR1022259
132. Olive, D., Landsberg, P.: Introduction to string theory: its structure and its uses. Physics and

mathematics of strings. Philos. Trans. R. Soc. Lond. 329, pp. 319–328 (1989). MR1043892
133. Opelt, A., Pinz, A., Zisserman, A.: Learning an alphabet of shape and appearance for multi-

class object detection. Int. J. Comput. Vis. 80(1), 16–44 (2008). doi:10.1007/s11263-008-
0139-3

134. Orszag, M.: Quantum Optics. Including Noise Reduction, Trapped Ions, Quantum Trajecto-
ries, and Decoherence. Springer, Berlin (2016). doi:10.1007/978-3-319-29037-9

135. Ortiz, A., Oliver, G.: Detection of colour channels uncoupling for curvature-insensitive seg-
mentation. In: F.P. et al. (ed.) IbPRIA 2003. LNCS, vol. 2652, pp. 664–672. Springer, Berlin
(2003)

136. Over, E., Hooge, I., Erkelens, C.: A quantitative method for the uniformity of fixation density:
the Voronoi method. Behav. Res. Methods 38(2), 251–261 (2006)

137. Pal, S., Peters, J.: Rough Fuzzy Image Analysis. Foundations andMethodologies. CRC Press,
Taylor & Francis Group, London: ISBN: 13: 9781439803295. ISBN: 10, 1439803293 (2010)

138. Paragios, N., Chen, Y., Faugeras, O.: Handbook ofMathematicalModels in Computer Vision.
Springer, Berlin (2006)

139. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans.
Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

140. Peters, J.: Proximal Delaunay triangulation regions, pp. 1–4 (2014). arXiv:1411.6260 [math-
MG]

141. Peters, J.: Proximal Voronoï regions, pp. 1–4 (2014). arXiv:1411.3570 [math-MG]

http://dx.doi.org/10.1109/ICCV.1999.790410
http://dx.doi.org/10.1109/ICCV.1999.790410
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1007/s11263-008-0139-3
http://dx.doi.org/10.1007/s11263-008-0139-3
http://dx.doi.org/10.1007/978-3-319-29037-9
http://arxiv.org/abs/1411.6260
http://arxiv.org/abs/1411.3570

References 409

142. Peters, J.: Topology of Digital Images - Visual Pattern Discovery in Proximity Spaces. Intel-
ligent Systems Reference Library, vol. 63, Xv + 411 pp. Springer, Berlin (2014). Zentralblatt
MATH Zbl 1295 68010

143. Peters, J.: Proximal Voronoï regions, convex polygons, & Leader uniform topology. Adv.
Math. 4(1), 1–5 (2015)

144. Peters, J.: Computational Proximity. Excursions in the Topology of Digital Images. Intelligent
Systems Reference Library, vol. 102, Viii + 445 pp. Springer, Berlin (2016). doi:10.1007/978-
3-319-30262-1

145. Peters, J.: Two forms of proximal physical geometry. axioms, sewing regions together, classes
of regions, duality, and parallel fibre bundles, pp. 1–26 (2016). To appear in Adv. Math.: Sci.
J., vol. 5 (2016). arXiv:1608.06208

146. Peters, J., Guadagni, C.: Strong proximities on smooth manifolds and Voronoi diagrams. Adv.
Math. Sci. J. 4(2), 91–107 (2015). Zbl 1339.54020

147. Peters, J., İnan, E.: Rényi entropy in measuring information levels in Voronoï tessellation
cells with application in digital image analysis. Theory Appl. Math. Comput. Sci. 6(1), 77–95
(2016). MR3484085

148. Peters, J., İnan, E.: Strongly proximal Edelsbrunner-Harer nerves. Proc. Jangjeon Math. Soc.
19(2), 563–582 (2016)

149. Peters, J., İnan, E.: Strongly proximal Edelsbrunner-Harer nerves in Voronoï tessellations.
Proc. Jangjeon Math. Soc. 19(3), 563–582 (2016). arXiv:1604.05249v1

150. Peters, J., İnan, E.: Strongly proximal Edelsbrunner-Harer nerves in Voronoï tessellations, pp.
1–10 (2016). arXiv:1605.02987v3

151. Peters, J., Naimpally, S.: Applications of near sets. Notices Am. Math. Soc. 59(4), 536–542
(2012). doi:10.1090/noti817.MR2951956

152. Peters, J., Puzio, L.: Image analysis with anisotropic wavelet-based nearness measures. Int.
J. Comput. Intell. Syst. 2(3), 168–183 (2009). doi:10.1016/j.ins.2009.04.018

153. Peters, J., Tozzi, A., İnan, E., Ramanna, S.: Entropy in primary sensory areas lower than in
associative ones: the brain lies in higher dimensions than the environment. bioRxiv 071977,
1–12 (2016). doi:10.1101/071977

154. Poincaré, H.: La Science et l’Hypothèse. Ernerst Flammarion, Paris (1902). Later ed.; Champs
sciences, Flammarion, 1968 & Science and Hypothesis, trans. by J. Larmor, Walter Scott
Publishing, London, 1905; cf. Mead Project at Brock University. http://www.brocku.ca/
MeadProject/Poincare/Larmor_1905_01.html

155. Poincaré, J.: L’espace et la géomètrie. Revue de m’etaphysique et de morale 3, 631–646
(1895)

156. Poincaré, J.: Sur la nature du raisonnementmathématique. Revue deméaphysique et demorale
2, 371–384 (1894)

157. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2010). doi:10.
1007/978-3-642-04018-4. MR2590236

158. Preparata, F.: Convex hulls of finite sets of points in two and three dimensions. Commun.
Assoc. Comput. Mach. 2(20), 87–93 (1977)

159. Preparata, F.: Steps into computational geometry. Technical report, Coordinated Science Lab-
oratory, University of Illinois (1977)

160. Prewitt, J.: Object Enhancement and Extraction. Picture Processing and Psychopictorics.
Academic Press, New York (1970)

161. Prince, S.: Computer Vision. Models, Learning, and Inference, Xvii + 580 pp. Cambridge
University Press, Cambridge (2012)

162. Pták, P., Kropatsch, W.: Nearness in digital images and proximity spaces. In: Proceedings of
the 9th International Conference on Discrete Geometry, LNCS 1953, 69–77 (2000)

163. Ramakrishnan, S., Rose, K., Gersho, A.: Constrained-storage vector quantization with a uni-
versal codebook. IEEE Trans. Image Process. 7(6), 785–793 (1998). MR1667391

164. Rényi, A.: On measures of entropy and information. In: Proceedings of the 4th Berkeley
Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–547. University of
California Press, Berkeley, California (2011). Math. Sci. Net. Review. MR0132570

http://dx.doi.org/10.1007/978-3-319-30262-1
http://dx.doi.org/10.1007/978-3-319-30262-1
http://arxiv.org/abs/1608.06208
http://arxiv.org/abs/1604.05249v1
http://arxiv.org/abs/1605.02987v3
http://dx.doi.org/10.1090/noti817. MR2951956
http://dx.doi.org/10.1016/j.ins.2009.04.018
http://dx.doi.org/10.1101/071977
http://www.brocku.ca/MeadProject/Poincare/Larmor_1905_01.html
http://www.brocku.ca/MeadProject/Poincare/Larmor_1905_01.html
http://dx.doi.org/10.1007/978-3-642-04018-4
http://dx.doi.org/10.1007/978-3-642-04018-4

410 References

165. Rhodin, H., Richart, C., Casas, D., Insafutdinov, E., Shafiei, M., Seidel, H.P., Schiele, B.,
Theobalt, C.: Egocap: egocentric marker-less motion capture with two fisheye cameras, pp.
1–11 (2016). arXiv:1609.07306v1 [cs.CV]

166. Roberts, L.: Machine perception of three-dimensional solids. In: Tippett, J. (ed.) Optical and
Electro-Optical Information Processing. MIT Press, Cambridge (1965)

167. Robinson, M.: Topological Signal Processing, Xvi+208 pp. Springer, Heidelberg (2014).
ISBN: 978-3-642-36103-6. doi:10.1007/978-3-642-36104-3. MR3157249

168. Rosenfeld, A.: Distance functions on digital pictures. Pattern Recognit. 1(1), 33–61 (1968)
169. Rosenfeld, A.: Digital Picture Analysis, Xi + 351 pp. Springer, Berlin (1976)
170. Rosenfeld, A.: Digital topology. Am. Math. Mon. 86(8), 621–630 (1979). Am. Math. Soc.

MR0546174
171. Rosenfeld, A., Kak, A.: Digital Picture Processing, vol. 1, Xii + 457 pp. Academic Press,

New York (1976)
172. Rosenfeld, A., Kak, A.: Digital Picture Processing, vol. 2, Xii + 349 pp. Academic Press,

New York (1982)
173. Rowland, T., Weisstein, E.: Continuous. Wolfram Mathworld (2016). http://mathworld.

wolfram.com/Continuous.html
174. Ruhrberg, K.: Seurat and the neo-impressionists. In: Art in the 20th Century, pp. 25–48.

Benedict Taschen Verlag, Koln (1998)
175. Shamos, M.: Computational geometry. Ph.D. thesis, Yale University, New Haven, Connecti-

cut, USA (1978). Supervisors: D. Dobkin, S. Eisenstat, M. Schultz
176. Sharma, O.: A methodology for raster to vector conversion of colour scanned maps. Master’s

thesis, University of New Brunswick, Department of Geomatics Engineering (2006). http://
www2.unb.ca/gge/Pubs/TR240.pdf

177. Shimizu, Y., Zhang, Z., Batres, R.: Frontiers in Computing Technologies for Manufacturing
Applications. Springer, London (2007). ISBN: 978-1-84628-954-5

178. Slotboom, B.: Characterization of gap-discontinuities in microstrip structures, used for opto-
electronic microwave switching, supervisor: G. Brussaard. Master’s thesis, Technische Uni-
versiteit Eindhoven (1992). http://alexandria.tue.nl/extra1/afstversl/E/394119.pdf

179. Smith, A.: A pixel is not a little square (and a voxel is not a little cube), vol. 6. Technical
report, Microsoft (1995). http://alvyray.com/Memos/CG/Microsoft/6_pixel.pdf

180. Sobel, I.: Camera models and perception. Ph.D. thesis, Stanford University, Stanford (1970)
181. Sobel, I.: An Isotropic 3x3Gradient Operator,MachineVision for Three-Dimensional Scenes,

pp. 376–379. Freeman, H., Academic Press, New York (1990)
182. Solan, V.: Introduction to the axiomatic theory of convexity [Russian with English and French

Summaries], 224 pp. Shtiintsa, Kishinev (1984). MR0779643
183. Solomon, C., Breckon, T.: Fundamentals of Digital Image Processing. A Practical Approach

with Examples in Matlab, X + 328 pp. Wiley-Blackwell, Oxford (2011)
184. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision. Springer,

Berlin (1993). doi:10.1007/978-1-4899-3216-7
185. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 829 pp.

Cengage Learning, Stamford (2008). ISBN: -13 978-0-495-24438-7
186. Stahl, S.: The evolution of the normal distribution. Math. Mag. 79(2), 96–113 (2006).

MR2213297
187. Stijns, E., Thienpont, H.: Fundamentals of photonics. In: Cristóbal, G., Schelkens, P., Thien-

pong, H. (eds.) Optical and Digital Image Processing, pp. 25–48. Wiley, Weinheim (2011).
ISBN: 978-3-527-40956-3

188. Stijns, E., Thienpont, H.: Fundamentals of photonics. In: Cristóbal, H.T.G., Schelkens, P.
(eds.) Optical and Digital Image Processing. Fundamentals and Applications, pp. 25–48.
Wiley-VCH, Weinheim (2011)

189. Sya, S., Prihatmanto, A.: Design and implementation of image processing system for lumen
social robot-humanoid as an exhibition guide for electrical engineering days, pp. 1–10 (2015).
arXiv:1607.04760

http://arxiv.org/abs/1609.07306v1
http://dx.doi.org/10.1007/978-3-642-36104-3
http://mathworld.wolfram.com/Continuous.html
http://mathworld.wolfram.com/Continuous.html
http://www2.unb.ca/gge/Pubs/TR240.pdf
http://www2.unb.ca/gge/Pubs/TR240.pdf
http://alexandria.tue.nl/extra1/afstversl/E/394119.pdf
http://alvyray.com/Memos/CG/Microsoft/6_pixel.pdf
http://dx.doi.org/10.1007/978-1-4899-3216-7
http://arxiv.org/abs/1607.04760

References 411

190. Szeliski, R.: Computer Vision. Algorithms and Applications, Xx + 812 pp. Springer, Berlin
(2011)

191. Takita, K., Muquit, M., Aoki, T., Higuchi, T.: A sub-pixel correspondence search technique
for computer vision applications. IEICE Trans. Fundam.E87-A(8), 1913–1923 (2004). http://
www.aoki.ecei.tohoku.ac.jp/research/docs/e87-a_8_1913.pdf

192. Tekdas, O., Karnad, N.: Recognizing characters in natural scenes. A feature study. CSci
5521 Pattern Recognition, University of Minnesota, Twin Cities (2009). http://rsn.cs.umn.
edu/images/5/54/Csci5521report.pdf

193. Thivakaran, T., Chandrasekaran, R.: Nonlinear filter based image denoising using AMF
approach. Int. J. Comput. Sci. Inf. Secur. 7(2), 224–227 (2010)

194. Tomasi, C.: Cs 223b: introduction to computer vision. Matlab and images. Technical report,
Stanford University (2014). http://www.umiacs.umd.edu/~ramani/cmsc828d/matlab.pdf

195. Topp, J.: Geodetic line, middle and total graphs. Mathematica Slovaca 40(1), 3–
9 (1990). https://www.researchgate.net/publication/265573026_Geodetic_line_middle_and_
total_graphs

196. Toussaint, G.: Computational geometry and morphology. In: Proceedings of the First Interna-
tional Symposium for Science on Form, pp. 395–403. Reidel, Dordrecht (1987). MR0957140

197. Tuz, V.: Axiomatic convexity theory [Russian]. Rossiïskaya Akademiya Nauk. Matematich-
eskie Zametki [Math. Notes and Math. Notes] 20(5), 761–770 (1976)

198. Vakil, V.: The mathematics of doodling. Am. Math. Mon. 118(2), 116–129 (2011)
199. Valente, L., Clua, E., Silva, A., Feijó, R.: Live-action virtual reality games, pp. 1–10 (2016).

arXiv:1601.01645v1 [cs.HC]
200. Vlieg, E.: Scratch by Example. Apress, Berlin (2016). doi:10.1007/978-1-4842-1946-1_10.

ISBN: 978-1-4842-1945-4
201. Voronoi, G.: Sur une fonction transcendante et ses applications à la sommation de quelque

séries. Ann. Sci. Ecole Norm. Sup. 21(3) (1904)
202. Voronoï, G.: Nouvelles applications des paramètres continus à la théorie des formes quadra-

tiques. J. für die reine und angewandte Math. 133, 97–178 (1907). JFM 38.0261.01
203. Voronoï, G.: Nouvelles applications des paramètres continus à la théorie des formes quadra-

tiques. J. für die reine und angewandte Math. 134, 198–287 (1908). JFM 39.0274.01
204. Wang, Z., Bovik, A.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84

(2002). doi:10.1109/97.995823
205. Wang,Z.,Bovik,A., Sheikh,H., Simoncelli, E.: Imagequality assessment: fromerror visibility

to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
206. Wegert, E.: Visual Complex Functions. An Introduction to Phase Portraits, Xiv + 359 pp.

Birkhäuser, Freiburg (2012). doi:10.1007/978-3-0348-0180-5
207. Weisstein, E.: Regular polygon.WolframMathworld (2016). http://mathworld.wolfram.com/

RegularPolygon.html
208. Weisstein, E.:Wavelet.WolframMathworld (2016). http://mathworld.wolfram.com/Wavelet.

html
209. Wen,B.J.: Luminancemeter. In: Luo,M. (ed.) Encyclopedia ofColor Science andTechnology,

pp. 824–886. Springer, New York (2016). doi:10.1007/978-1-4419-8071-7
210. Wildberger, N.: Algebraic topology: a beginner’s course. University of South

Wales (2010). https://www.youtube.com/watch?v=Ap2c1dPyIVo&index=40&list=
PL6763F57A61FE6FE8

211. Wirjadi, O.: Models and algorithms for image-based analysis of microstructures. Ph.D. thesis,
TechnischeUniversität Kaiserslautern, Kaiserslautern, Germany (2009). Supervisor: K. Berns

212. Witkin, A.: Scale-space filtering. In: Proceedings of the 8th International Joint Conference
on Artificial Intelligence, pp. 1019–1022. Karlsruhe, Germany (1983)

213. Xu, L., Zhang, X.C., Auston, D.: Terahertz beam generation by femtosecond optical pulses
in electo-optic materials. Appl. Phys. Lett. 61(15), 1784–1786 (1992)

214. Yung, C., Choi, G.T., Chen, K., Lui, L.: Trim: triangulating images for efficient registration,
pp. 1–13 (2016). arXiv:1605.06215v1 [cs.GR]

215. Zadeh, L.: Theory of filtering. J. Soc. Ind. Appl. Math. 1(1), 35–51 (1953)

http://www.aoki.ecei.tohoku.ac.jp/research/docs/e87-a_8_1913.pdf
http://www.aoki.ecei.tohoku.ac.jp/research/docs/e87-a_8_1913.pdf
http://rsn.cs.umn.edu/images/5/54/Csci5521report.pdf
http://rsn.cs.umn.edu/images/5/54/Csci5521report.pdf
http://www.umiacs.umd.edu/~ramani/cmsc828d/matlab.pdf
https://www.researchgate.net/publication/265573026_Geodetic_line_middle_and_total_graphs
https://www.researchgate.net/publication/265573026_Geodetic_line_middle_and_total_graphs
http://arxiv.org/abs/1601.01645v1
http://dx.doi.org/10.1007/978-1-4842-1946-1_10
http://dx.doi.org/10.1109/97.995823
http://dx.doi.org/10.1007/978-3-0348-0180-5
http://mathworld.wolfram.com/RegularPolygon.html
http://mathworld.wolfram.com/RegularPolygon.html
http://mathworld.wolfram.com/Wavelet.html
http://mathworld.wolfram.com/Wavelet.html
http://dx.doi.org/10.1007/978-1-4419-8071-7
https://www.youtube.com/watch?v=Ap2c1dPyIVo&index=40&list=PL6763F57A61FE6FE8
https://www.youtube.com/watch?v=Ap2c1dPyIVo&index=40&list=PL6763F57A61FE6FE8
http://arxiv.org/abs/1605.06215v1

412 References

216. Zelins’kyi, Y.: Generalized convex envelopes of sets and the problem of shadow. J. Math. Sci.
211(5), 710–717 (2015)

217. Zhang, X., Brainard, D.: Estimation of saturated pixel values in digital color imaging. J.
Opt. Soc. Am. A 21(12), 2301–2310 (2004). http://color.psych.upenn.edu/brainard/papers/
Zhang_Brainard_04.pdf

218. Zhang, Z.: Affine cameral. In: Ikeuchi, K. (ed.) Computer Vision. A Reference Guide, pp.
19–20. Springer, Berlin (2014)

219. Zhao, B., Xing, E.: Sparse output coding for scalable visual recognition. Int. J. Comput. Vis.
119, 60–75 (2016). doi:10.1007/s11263-015-0839-4

220. Ziegler, G.: Lectures on Polytopes. Springer, Berlin (2007). doi:10.1007/978-1-4613-8431-
1

http://color.psych.upenn.edu/brainard/papers/Zhang_Brainard_04.pdf
http://color.psych.upenn.edu/brainard/papers/Zhang_Brainard_04.pdf
http://dx.doi.org/10.1007/s11263-015-0839-4
http://dx.doi.org/10.1007/978-1-4613-8431-1
http://dx.doi.org/10.1007/978-1-4613-8431-1

Subject Index

Symbols
Ac, 367
C I E , 393
G(x, y,σ), 172
M N T C , 206
M N ptC , 209
N (p, ε), 388
N4(p), 45
N24(p), 49
N8(p), 46
RG B, 393
SI FT , 248
SU RF , 248
T H z, 33
V (S), 378, 392
Vp , 7
∠((x, y), (a, b)), 58
bdy A, 361, 362
re A, 362
Nbhd, 256
i , 382

imaginary number, 382
x, y, 399
z, 366, 401
Conv A, 374
Convh A, 372
∂ f (x,y)

∂x , 256
∂ f (x,y)

∂y , 256
∂ f
∂x , 58
γ, 122, 123
C, 366
N, 19
N
0+, 27

R, 50
R
1, 50

R
2, 50, 56

R
3, 50, 56

R
n , 50

IP, 264
S1P, 264
S2P, 264
S3P, 264
μ, 163, 329
μx ,μy , 398, 399
∇ f , 58
æB30Dx − yæ B30D, 7, 50
æB30Dx − yæ B30D2, 50
æB30Dxæ B30D, 50
σ, 163, 172, 329
σ2, 163, 329
σx ,σx , 398, 399
dtaxi , 51
h, 391
i , 366
img(:, :), 91
img(:, :, k), k = 1, 2, 3, 91
nm, 33
x · y, 57
z

complex number, 401
.png, 25

history, 25
1D kernel Gaussian, 163, 327

definition, 163
plot, 327

24-neighbourhood, 50
2D kernel Gaussian, 329

plot, 329
2D pixel, 256

edge strength, 249
gradient magnitude, 249
partial derivative, 256

3D pixel, 249

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2

417

418 Subject Index

edge strength, 249
4-neighbourhood, 45
8-neighbourhood, 166

A
Adaptive thresholding, 138
Adjacent, 206, 207, 209

polygon, 207
polygon-triangle, 209
triangle, 206

Adjacent MNCs, 274
definition, 274

Adjacent polygon, 207
definition, 207

Adjacent polygon-triangle, 209
definition, 209

Adjacent triangle, 206
definition, 206

Algebraic expression, 94, 95
colour image, 96

Algebraic operation, 94, 311
on pixel intensities, 94, 311
on pixel intensities II, 311
on pixel intensities III, 312
on pixel intensities IV, 314
on pixel intensities V, 314

Algorithm
color channel edges, 100
corner Delaunay mesh, 75
corner Delaunay on Voronoï mesh, 76
corner Voronoï mesh, 66
edgelet-based shape similarity, 288
image geometry, 10
Log-Based Pixel Intensity Changes, 109
offline video frame Voronoï mesh, 79, 82

Alhambra, 194
floorplan, 194

Analog-to-digital, 361
A/D, 361

Application, 262
edgelets, 262
keypoints, 262

Autonomous driving, 60
pixel classification, 60

B
Binary image, 12

not of, 113
complement, 113
definition, 12

Bit depth, 362

Black body radiation, 391
Blob, 362
Boundary region of a set, 362

definition, 362
re A, 362

Boundary set, 362
bdy A, 362
definition, 362

Brightness, 363
definition, 363
HSB colour model, 363

C
Camera, 7, 60, 367

affine, 7
Canon, 61
CCD, 61
cell phone, 367
control, 60
digital, 7
face detection, 61
fisheye, 367
fisheye converter, 61
gamma, 7
gamma tomography, 7
Hybrid IS, 60
infrared, 7
intelligent, 60
intelligent control, 60
ISAPS technology, 61
Nikon, 61
pinhole, 7
stability, 60
steady hold, 60
thermographic, 7
video, 367

Candela, 364
definition, 364

Centroid, 204–207, 339, 341–343, 345, 364
2D region, 204
3D region, 204
definition (continuous form), 364
Delaunay mesh, 205, 342
discrete form, 204
geometric, 204
image region plot, 205, 341
on 2D image region, 339
on 3D image region, 341
on image region, 205, 341
Voronoï-Delaunay mesh, 207, 345
Voronoï mesh, 206, 343

CIE, 393

Subject Index 419

RGB color space, 393
Class of shapes, 253

features, 253
representative, 253

Closed half space, 364
lower, 365
upper, 365

Closed set
closed half space, 364

Cluster, 5, 12
image regions, 5
k-means, 5
maximal nucleus, 12
MNC, 12
nucleus, 12
shape, 12

Coarse contour, 285
definition, 285

Color space, 245, 355, 356
HSB, 355
HSV, 245, 355
LAB, 245, 355, 356
LAB definition, 245
RGB, 355

Colour, 27, 363, 382, 394, 400
brightness, 363
false colour, 27
hue, 382
saturation, 394
true colour, 27
value, 400

Colour channel
img(:, :, k), k = 1, 2, 3, 91
edge detection, 100
filter transmittance, 90
log-based, 109
recombined, 92
separate, 90
separated, 92

Colour image, 93, 310
�→ greyscale, 93
greyscale conversion, 310
intensities plot, 310

Colour pixel, 90
applications, 90
blue channel, 90
brightness, 90
green channel, 90
intensity, 90
object tracking, 90
red channel, 90
segmentation, 90
value, 90

Colour pixel intensity, 320, 325, 326
3D mesh isolines plot, 325
3D mesh plot, 325
isolines, 326
isolines labels, 326
log-modified pixels, 320

Colour space, 12
HSB, 12
HSV, 12
RGB, 12

Compact, 366
picture, 367

Compact set, 366
definition, 366

Complex plane, 366
visual perspective, 366

Computational geometry, 7–9, 374
basic approach, 8
definition, 9
Delaunay triangle, 7
Delaunay triangulation, 7, 10
image object shape, 10
lines, 9
object shape, 10
site, 7
structures, 8
Voronoï diagram, 374
Voronoï regions, 7
Voronoï tessellation, 10

Computational photography, 367
CPh, 367
definition, 367

Computational topology, 284
algorithms, 284
application, 284
geometry, 284
three topics, 284
topology, 284

Computer vision, 7, 250, 253, 284, 329, 367,
368

algorithms, 284
applied computational topology, 284
arXiv, 367
definition, 367
field of view, 368
geometry, 284
human eye, 367
image object, 253
motion capture, 367
object class recognition, 253
problems, 7
robot navigation, 7
shape detection, 253

420 Subject Index

sparse representation, 250
structures, 7
Subaru EyeSight®, 368
topology, 284
trio of tools, 284
video stabilization, 7
visualization, 329

Computer vision foundations, 284
algorithms, 284
geometry, 284
topology, 284
trio of tools, 284

Connected, 369, 370
line segments, 369
polygons, 370
Voronoï Regions, 369

Connected set, 368
definition, 368

Connected straight edges, 288
definition, 288

Connectedness, 368, 369
Continuous, 370

definition, 370
Contour, 285, 370

coarse, 285
edgelet, 371
fine, 285
MNC, 370
straight edge, 370

Contour edgelet, 230, 371
definition, 230, 371

Contrast stretching, 140
explanation, 140
pixel intensity transformation, 140

Convex, 6, 39, 40
convex polygon, 39
convex set, 39
hull, 6
image texture, 40
line segment, 39
set, 6

Convex body, 371
definition, 371

Convex combination, 372
convex hull of a set of points, 372
definition, 372
Edelsbrunner-Harer method, 372

Convex hull, 6, 72, 372, 395, 396
2D, 374
3D, 374
coarse MNC contour, 374
construction, 372
definition, 72, 372

fine MNC contour, 374
MNC, 72
MNC nucleus, 374
perimeter, 395, 396
shape, 6, 72, 372
Ziegler construction method, 372

Convex set, 10, 72, 374, 375
2D definition, 10
Convexity property, 375
definition, 72, 374, 375
Strict Convexity property, 375
strictly convex, 375

Convexity, 376
axiomatic, 376
strong contact, 376
Zelins’kyi-Kay-Womble, 376

Convolve, 166, 334
definition, 166
edge filter, 166
image with Gaussian spread, 334

Corner, 81, 293
image boundary, 293
on image, 293
plot, 293

Cover, 371
covering, 371
definition, 371

Cpselect, 308
tool GUI, 308

Crop, 249
definition, 249
video frame, 249

Cumulative distribution, 364
CDF, 364

D
Delaunay, 6, 200, 201

edge, 201
mesh, 200, 201, 205
nearest corners, 201
planar triangle, 201
planar triangulation, 200
planar wedge, 201
triangle, 201, 203
triangle interior, 201
triangulation, 6, 200
uncountably infinite, 201
wedge, 201, 203, 205

Delaunay mesh, 67
definition, 67

Delaunay mesh nerve, 70
definition, 70

Subject Index 421

nucleus, 70
Delaunay triangle, 68
Delaunay triangulation, 10, 67

benefit, 10
Digital image, 12

.bmp, 25

.gif, 25

.jpg, 25

.png, 25

.svg, 25

.tif, 25
angles, 7
background, 116
basic content, 7
binary, 12
colour, 12
colour channels, 118
definition, 12
Euclidean space, 8
foreground, 116
formats, 25
geometry, 7
greyscale, 12
noise, 153
patterns, 8
pixels, 7
set of point samples, 15
structures, 8
thresholding, 116
vector space, 8

Digital topology, 9, 246
digital geometry, 9, 246
Rosenfeld, 9, 246

Digital video, 376
Digital visual space, 17
Dimension, 377

2D Euclidean space, 377
2D Riemann space, 377
definition, 377

Disconnected set, 368
definition, 368

Discrete, 172, 377
definition, 172, 377

Distance, 50, 218, 397
between pixels, 51
Euclidean, 7, 50
Hausdorff, 218, 397
Manhattan, 51
similarity, 218, 397
taxicab, 51

Dot product, 57, 147
Dynamic range, 120

E
Edge detection, 162, 178, 179

anisotropic, 179
Canny, 102, 181
colour channel, 102
greyscale image, 102
isotropic, 178
Laplacian, 164
Prewitt, 164
Roberts, 164
Sobel, 164
Zero cross, 164

Edge pixel, 101, 243, 262
colour channel, 102
colour channel edges, 105
combined channel edges, 105
gradient angle, 101
gradient orientation, 101
strength, 262

Edge pixel strength, 249
2D, 249
3D, 249

Edgelet, 230, 262, 285, 288, 349, 394
coarse, 285
connected, 288
contour, 262
definition, 230, 288, 394
fine, 285
measurements, 349
MNC, 262
perimeter, 288

Edges, 318
Canny, 318
Canny binary display, 318
Canny green channel display, 318
Canny red channel display, 318
Canny red on blue display, 318
Canny RGB display, 318

Entropy, 278
information level, 278
MNC, 278
nonMNC, 278
Rényi, 278

Epipolar line, 4
definition, 4

Epipolar plane, 4
definition, 4

Epipole, 4
definition, 4

Euclidean norm, 7
Euclidean space, 50

3-space, 50
distance, 50

422 Subject Index

norm, 50
n-space, 50
plane, 50
real line, 50

F
False colour, 50, 52, 53, 55, 58, 60

8-neighbourhood, 53, 55
greyscale image, 55
image pattern, 52
RGB image, 53

Field of view, 368
angle, 368
definition, 368
depth, 368
Subaru EyeSight®, 368

Filter, 145, 146, 164, 169
convolution, 148, 179
corner, 184
edge, 145, 164
Gaussian, 146
Gaussian smoothing, 178
ideal, 145
interest point, 184
kernel (mask), 147
Laplacian, 169
linear convolution, 149
linear spatial, 146
median filtering, 156
neighbourhood sliding filter, 148
non-linear, 146, 162
normal distribution filtering, 159
optimum, 145
rank order filtering, 158
target pixel, 147
Zadeh, 145
zero crossing, 176

Filter kernel, 166
mask, 166

Fine contour, 285
definition, 285

Focus, 8
image content, 8
image structures, 8

Frame analysis, 212
offline, 212
real-time, 212

G
Gamma correction, 378
Gamma transform, 122

inverse transform, 123
Gaussian, 172, 329, 331, 334

1D kernel, 163, 329
2D kernel filtering, 331
blurring, 334
filtering, 172
pointSpread, 334
scale parameter σ, 163, 329
smoothing, 172
spatial parameter, 163, 329

Gaussian kernel, 329
1D, 329
1D kernal plot, 329
mean μ, 163, 329
middle μ, 163, 329
scale parameter σ, 163, 329
spatial parameter, 163, 329
variance σ2, 163, 329
width σ, 163, 329
width parameter σ, 163

Generating point, 66, 67, 378
definition, 66, 67
Delaunay triangle vertex, 66
generator, 378
image, 67
image corner pixels, 293
site, 378
Voronoï region generator, 66

Geodetic graph, 6, 379
contour edgelet, 379
convex hull, 379
definition, 6, 379

Geodetic line, 6, 379
definition, 6, 379

Geometry, 4, 9, 187, 246
circumcircle, 201
closed half plane, 188, 201
computational, 9, 246
continuous space, 200
convex polygon, 187, 188, 192, 194, 201
convex set, 188
corner, 192, 194
digital, 9, 246
edge, 188, 201
epipolar, 4
generator, 200
half plane, 188
mesh, 187
nearest corners, 203
plane region, 187
polygon, 188
ray, 188
region, 188, 190

Subject Index 423

regular polygon, 187
simple convex set, 188
site, 188, 200
straight edge, 200, 203
tessellation, 187
tiling, 187
triangle, 200
triangulation, 200
vertex, 188, 190
wedge, 201

Gradient, 58, 194
angle, 194
direction, 194
image, 58
magnitude, 194

Gradient magnitude, 247, 255
x-direction, 255
y-direction, 255
definition, 247

Gradient orientation, 81, 256
definition, 256

Greyscale image, 12, 93, 310
not of, 113
complement, 113
definition, 12
intensities plot, 310
NTSC standard, 93

Greyscale pixel intensity, 321, 323
complement, 321
histogram, 323
max-intensity modified, 321
negation, 321
stem plot, 323

H
Histogram, 60, 143

equalization, 60
matching, 143

Histogram matching, 143
Hole, 381

annulus, 381
mathematical morphology (MM), 381

HSV, 382
arXiv, 382
colour space, 382
Hue,Saturation,Value, 382

Hue, 382
chroma, 382
definition, 382
wavelength of colour, 382

Human eye, 61
fovea centralis, 61

Hypotenuse, 249
edge strength, 249
length, 249

I
Ideal filter, 145

definition, 145
shape, 145

Image, 5, 9, 18, 40, 81, 98, 116, 200, 204,
246, 250, 335, 337, 338

2D region centroid, 339
3D region centroid, 341
accessing pixel values, 42
background, 116
centroid, 205
combining image intensities, 98
convex polygon, 40
convolve, 335
corner, 81, 203, 337
corners Voronoï mesh, 338
cropped, 250, 335, 337
cropped image corners Voronoï mesh,
338

displaying pixel values, 42
edge detection, 100
entropy, 112
Euclidean space, 18
foreground, 116
geometry, 9, 40, 246
line segment, 40
modifying pixel values, 42
noise injection, 335
pixel value, 42
raster image, 18
region, 40, 204
region centroid, 204
restoration, 335
segment, 200
segmentation, 5
skeletonization, 40
texture, 40
Thai shelf, 98
thresholding, 116
Tomasi model, 18

Image analysis, 243
binning, 243
histograms, 243
measurements, 243
region-based approach, 244

Image bin, 129
definition, 129

Image capture, 367

424 Subject Index

global shutter, 367
rolling shutter, 367

Image cropping, 126
definition, 126
importance, 126

Image geometric nerve, 70
definition, 70

Image geometry, 66, 242, 284
contour, 285
definition, 242
Delaunay triangular regions, 284
Delaunay triangulations, 284
detecting, 66
maximal nucleus cluster, 284
MNC, 284
nerve structures, 284
Voronoï regions, 284
Voronoï tessellations, 284

Image object, 395, 396
shape, 395, 396
shape recognition, 395, 396

Image point, 13
definition, 13
picture point, 13
pixel, 13
point sample, 13

Image processing, 8
colour spaces, 8
edge detection, 8
filtering, 8
spatial description, 8
texture, 8

Image quality, 382
SSIM, 382
UQI, 382

Image region, 308
closeup, 308
cpselect tool, 308
inspection window, 308
pixel tiny squares, 308
zoom in, 308

Image scene, 245
definition, 245

Image sensor, 62
3CCD, 62
Bayer pattern, 62
Foveon, 62

Image topology, 242, 285
definition, 242, 286
open set, 285
structures, 285

Image type, 27
binary, 26

floating point, 28
greyscale, 27, 93
true colour, 27

Infimum of a set, 382
definition, 382

Inkscape, 25
vector graphics editor, 25

Intelligence, 60
Intelligent, 60

camera control, 60
camera design, 60
motion detection, 60
multimedia, 60
object recognition, 60
visual surveillance, 60

Interior of a set, 382
definition, 382
int A, 382

K
Kernel, 147

mask, 147
Keypoint, 248, 262, 361, 383

edge strength, 262
gradient magnitude, 361
gradient orientations, 361
image locations, 361
interest point, 248
mesh generators, 361
seed points, 361
SIFT, 248
SURF, 248
SURF features, 361

Keypoints application, 249
image geometric patterns, 249
object recognition, 249

L
Lens, 61

fish-eye, 61
Nikon Rayfact, 61

Light, 383
luminance, 383

Linear filter, 145
definition, 145

Linear function, 162
additivity property, 162
definition, 162
homogeneity property, 162
plot, 162

Logical operations, 112

Subject Index 425

xor, 113
Logical operator, 114

xor, 114
Luminance, 383
Luminosity, 364

function, 364

M
Machine vision, 67

intelligent systems approach, 67
Macrophotography, 119

reproduction ratio, 119
Manifold, 5

topological space, 5
Voronoï, 5

Mapping, 378
closing, 381
gamut, 378

Mathematica, 194, 329
Binarize, 194
ColorNegate, 194
FrameLabel, 329
LabelStyle, 329
Manipulate, 329
Plot, 329
PlotRange, 329

Mathematical morphology, 433
closing, 433
MM, 433

Matlab, 12, 15, 46, 194
= assign, 39
% comment, 39
bar3, 151
clabel, 135
colorbar, 15
colormap, 15
colour image, 12
cpselect, 89, 308
dot, 147
double precision, 122
fspecial, 149
help, 26
histeq, 143
im2bw, 26
im2double, 122
im2uint16, 27
imadjust, 140
image, 21
imagesc, 15
imcomplement, 194
imcrop, 46
imfilter, 156

imfinfo, 16
imgradient, 59
imhist, 131
impoly, 151
improfile, 39, 40
imread, 39
imresize, 59
imshow, 39
imtool, 27, 39
imwrite, 29
line, 39, 40
logical not, 166
max, 121
medfilt2, 156
nlfilter, 148
noise, 154
ordfilt2, 158
rand, 24
rgb2gray, 27
roifilt2, 150
roipoly, 151
stem, 131
stretchlim, 140
subplot, 24
whos, 122

Matlab parameter, 22
CDataMapping, 22

MatlabScript
3D pixel intensities plot, 324
algebraic Ops on Pixels I, 311
algebraic Ops on Pixels II, 311
algebraic Ops on Pixels III, 312
algebraic Ops on Pixels IV, 313
colour image edges, 317
colour to greyscale conversion, 310
corner Delaunay image mesh, 297
corner Delaunay triangles, 299
corner Voronoï image mesh, 294
corner Voronoï mesh, 295
Delaunay on Voronoi mesh by itself, 300
Delaunay-Voronoi on image, 299, 300
Gaussian deblurring, 334
histogram, 322
image corner pixels, 292
image keypoints and Voronoï mesh, 361
inpsecting colour image channels, 309
inpsecting image regions, 306
invert, 321
isolines, 326
log-modified pixels, 320
maximum red pixel intensities, 314
offline Voronoï video capture, 303
Problem734, 349

426 Subject Index

real-time Voronoï video capture, 304
Maximal Nucleus [Polygon-Triangle] Clus-

ter, 209
definition, 209

Maximal Nucleus [Polygon] Cluster, 207
definition, 207

Maximal nucleus cluster, 72, 220, 384, 395
coarse contour, 395
convex hull, 72
definition, 72, 220
fine contour, 395
MNC, 72, 220, 384
shape recognition, 395

Maximal Nucleus Triangle Cluster, 206
definition, 206

Measure, 219
shape similarity, 219

Measurements, 243
closeness of image neighbourhoods, 243
pixel adjacency, 243
pixel feature values, 243
pixel gradient magnitude, 243
pixel gradient orientation, 243
pixel neighbourhood membership, 243
pixel size, 243

Mesh, 9, 246, 249, 294, 361
clusters, 249
corners, 294
generators, 9, 246, 249, 361
keypoints, 249, 361
nucleus, 249
polygons, 249
video frame, 294
Voronoï, 294, 361

Mesh generating points, 293
image corners, 293
image corners plot, 293

Mesh nerve, 69, 75
definition, 69
Delaunay, 70
geometric, 69
image geometric, 70
interesting, 75
Voronoï, 70

Method, 161
non-linear, 161

MNC, 72, 207, 220, 262, 274, 285, 385, 395
adjacent, 221, 274
algorithm, 221
center, 385
cluster of polygons, 72
contour, 262, 285, 395
definition, 72, 207, 220

edgelets, 285
MaximalNucleus [Polygon]Cluster, 207
mesh nerve, 72
neighbouring, 274
nerve, 262
nucleus, 72, 385
nucleus cluster, 385
overlapping, 221, 274
spoke, 262

MNC contour, 264, 386, 395
convex hull boundary, 395
inscribed circle, 386
IP Edgelet, 264
S1P Edgelet, 264
S2P Edgelet, 264
S3P Edgelet, 264
supra contour, 264

MNC IP contour, 264
definition, 264

MNC S1P contour, 264
definition, 264

MNC S2P contour, 264
definition, 264

MNC S3P contour, 264
definition, 264

MNptC, 209
definition, 209
Maximal Nucleus [Polygon-Triangle]
Cluster, 209

MNTC, 206
definition, 206
Maximal Nucleus Triangle Cluster, 206

Mona Lisa, 18
Motion planning, 60

robotic, 60

N
Natural scene, 2

definition, 2
optical sensor array-based, 3

Nbd of a pixel, 166
Neighbourhood, 45, 46, 49, 50

24-neighbourhood, 49, 50
8-neighbourhood, 46, 48, 53
Rosenfeld, 45, 46, 49, 50

Neighbourhood of a point, 388
closed, 388
open, 388

Neighbouring MNCs, 274
definition, 274

Nerve, 70, 262, 389
cluster of polygons, 72

Subject Index 427

definition, 70, 389
Delaunay mesh, 70
Delaunay mesh nerve def., 70
Edelsbrunner-Harer, 262, 389
image mesh, 70
image mesh nerve def., 70
MNC, 389
nucleus, 72
spoke, 262, 389
Voronoï, 72
Voronoï mesh, 70
Voronoï mesh nerve def., 70

Network of cameras, 4
calibrate, 4

Noise, 334
power, 334

Non-linear function, 162
definition, 162
plot, 162

Non-linear method, 161, 162
definition, 161, 162

Notation, 91
image, 91

NTSC television standard, 93
Nucleus, 206, 207, 209, 220, 249, 262, 389

definition, 220, 262
Delaunay triangle, 206
descriptive, 220
mesh cluster, 249
mesh polygon, 249
MNC, 207, 220, 389
MNptC, 209
MNTC, 206
Polygon-Triangle, 209
Voronoï polygon, 207
Voronoï region, 220

Nucleus of a mesh nerve, 72
definition, 72

Number, 366
complex, 366

O
Object, 9, 246

edges, 9, 246
skeletonization, 9, 246

Object contour, 218, 397
Object shape, 206, 207, 209, 253

class of shapes, 253
detection, 253
MNC, 207
MNptC, 209
MNTC, 206

Object tracking, 389
Offline Video Processing, 81

basic steps, 81
Open half space, 380

lower, 389
upper, 389

Open set, 5, 285
definition, 285
open half space, 380
pixels, 285

Open Voronoï region, 286
definition, 286

Optical sensor, 60
camera, 60
spectral responsivity, 90

Optimum filter, 145
definition, 145

Overlapping MNCs, 274
definition, 274

P
Partial derivative, 256

Chen’s Method, 256
Sobel’s Method, 256

Pattern
colour pattern rule, 53
grey pattern rule, 55

Perception, 212
angle, 212
aperture angle, 212

Perimeter, 288
edgelet, 288
shape, 288

Photomicroscopy, 119
Photon, 391

definition, 391
Einstein, 391

Photon energy, 391
Photonics, 30
Physical continuum, 17
Picture element, 87
Pixel, 13, 48, 49, 60, 61, 81, 87–89, 247, 309,

317, 391
representation, 88
binary, 90
bit depth, 88
channel, 90
classification, 60
colour, 15, 30, 90
colour channel value, 93
colour channels, 309
definition, 14, 88

428 Subject Index

edge, 100
edge strength, 247
edge strength definition, 247
false colour, 48
geometric square, 15
gradient, 61
gradient magnitude, 247
gradient orientation, 81
grey tone, 12
greyscale, 90
information content, 112
inspect, 88
intensity, 18, 90, 93, 391
intensity image, 27
neighbourhood, 49
point sample, 13, 15
raster image, 14
selection, 100, 317
sub-pixel, 15, 61
value, 90

Pixel edge strength, 247
definition, 247
gradient magnitude, 247

Pixel gradient, 245, 355
x-direction magnitude, 245, 355
y-direction magnitude, 245, 355
orientation, 245, 355

Pixel intensity, 98, 126
not of, 112
complement, 112
log-based, 109
max, 98
source of generating points, 126

Planck’s constant, 391
Plane figure, 78
Plane tiling, 78
Plot, 172

continuous, 172
discrete, 172

Pointillism, 52
false colour, 52
French pointillisme, 52

Polytope, 391
convex hull, 391

Pure geometric nerve, 69
definition, 69

Pyramid scheme, 250, 351
definition, 250
expansion, 250, 351
Gaussian, 250, 351
reduction, 250, 351

Q
Quality, 392

contour shape, 393
Global Voronoï Mesh Quality Index, 392
Voronoï region, 392

Quantum optics, 393
definition, 393

R
Raster image, 14, 88

aliasing, 14
jaggies, 14
pixel, 88
tile, 88

Raster image technology, 88
origin, 88

Real-time, 305
video frame tessellation, 305
video frame tiling, 305

Real-Time Video Processing
basic steps, 83

Region, 204, 246
centroid, 204
image, 204
Voronoï, 246

Region-based approach, 244
binarizing images, 244
isodata thresholding, 244
non-maximum suppression, 244
Otsu’s method, 244
watershed segmentation, 244

Region of interest, 151
Renyi entropy, 278

definition, 278
image quality, 281
information level, 278
information order, 279
MNC, 278, 279
nonMNC, 278, 279

RGB, 393
wavelengths, 393

Rgb colour space, 30
Riemann surface, 366, 393

complex numbers, 366
set, 366

Rule, 58, 60
pixel angle, 60
vector pair angle, 58

S
Saturation, 394

Subject Index 429

definition, 394
Scalable visual recognition, 250
Scene, 9, 12, 60, 246

analysis, 9, 246
geometry, 60
mesh cover, 12
Salerno Poste Auto, 12

Seed point, 78, 294, 361
centroid, 78
corner, 78, 293, 294
critical, 78
edge, 78
generator, 78
key, 78
keypoints, 361
pixel intensity, 78
salient, 78
site, 78

Segmentation, 200
color pixel, 90
segment, 200
triangular segment, 200

Set, 362, 365–368, 381, 382, 390, 393, 401
boundary, 362
boundary region, 362
closed, 365
closed half space, 364
closed upper half space, 365
closed upper lower space, 365
complement, 367
complex numbers, 366
connected, 368
disconnected, 368
hole, 381
integers, 401
interior, 382, 390
open, 390
open half space, 380
open lower half space, 389
open upper half space, 389
real numbers, 393

Shape, 3, 9, 27, 72, 206, 207, 209, 212, 216,
218, 219, 246, 253, 264, 284, 287,
372, 386, 395–397

2D water waves, 253
area, 395, 396
boundary, 395, 396
boundary length, 395, 396
capillarity droplets, 253
closeness, 219
contour, 216, 219
convex hull, 72, 372, 395, 396
corner detection, 27

definition, 287, 395
deformation, 284
Delaunay triangulation, 3
detection, 3, 253
doughnut, 287
edgelet, 395
features, 253
image object, 253
inscribed circle, 386
measure, 395
member of a known class, 253
membership, 253
MNC, 207, 395
MNptC, 209
MNTC, 206
nucleus site edge strength, 386
object, 253
of space, 395
perimeter, 395
plane, 253
recognition, 395, 396
recognition methods, 386
S1P, 264
S2P, 264
S3P, 264
similarity, 216, 219
skeletonization, 9, 246
theory, 253
torus, 287
tubular, 287
video frame, 253, 287
visual hull, 218, 397
Voronoï region, 212
worldsheet, 287

Shape detection, 253, 287
basic approach, 253
trick, 287

Shape perimeter, 288
definition, 288

Shape recognition, 395
basic requirement, 395
shape of space, 395

Shape recognition method, 386
edge strength, 386
inscribed circle, 386

Shape theory, 253
algebraic topology, 253
basics, 253
physical geometry, 253

SIFT, 248, 397
keypoint, 248, 397

Signal, 361
analog, 361

430 Subject Index

Silouette, 4
Site, 9, 66, 245, 246

centroid, 9, 246
definition, 66
Delaunay triangle vertex, 66
keypoint, 245
Voronoï region generator, 66

Space, 17
Sparse representation, 249, 250

definition, 249
Gaussian pyramid, 249
pyramid scheme, 250
wavelet-based pyramid scheme, 352

Spoke, 389
definition, 389

SSIM, 398
definition, 398
Structural similarity in an image, 398

Statistics, 163, 329
mean μ, 163, 329
standard deviation σ, 163, 329
variance σ2, 163, 329

Strictly convex, 375
definition, 375

String, 287
definition, 287
worldline, 287

Subaru EyeSight® vision system, 368
dual cameras, 368

SURF, 248, 398
keypoints, 248

Surface, 383
reflectance, 383
reflectivity, 383

T
Tesselation, 294, 361

corner-based, 294
Delaunay, 297, 299
Dirichlet, 299, 361
keypoint-based, 361
offline video frame, 303
real-time video frame, 304
Voronoï, 294, 299, 361

Tessellation, 67, 78, 398
definition, 398
Delaunay, 67, 78
Dirichlet, 67, 78

Texture, 39
improfile, 39
intensities pattern, 39

Thresholding, 116

Tiling, 398
definition, 398

Topological space, 286, 398
definition, 286

Topology, 5, 398
definition, 398
history, 399
on open set, 398

U
UQI, 399

Universal Quality Index, 399
UXW, 19

V
Value, 400

definition, 400
HSV colour space, 400

Vector
2D, 58
column vector, 58
gradient, 58

Vector space, 56
angle between vectors, 57
Euclidean plane, 56
local, 56

Video, 5, 212, 287
Voronoï tessellation, 5
frame, 212
photon path, 287
stippling, 5

Video frame, 212, 287
changes, 212
cropping, 249
photon path, 287
tiling, 212

Video processing, 81, 108, 212
colour channel, 98
frame changes, 212
frame tilings, 212
offline, 81, 98
offline colour channel edges, 108
real-time, 83, 98
real-time colour channel edges, 108

Virtual reality, 400
arXiv, 400
gaming, 400

Visible spectrum, 33
frequency, 33
wavelength, 33

Vision, 245

Subject Index 431

human, 245
visible colours, 245

Vision system, 368
Subaru EyeSight®, 368

Visual field, 14, 245
definition, 14, 245
human, 245
photography, 15

Visual hull
object contour, 218, 397

Visual pattern, 52
false colour, 52
pointillist, 52

Visual recognition, 250
scalable, 250

Visual scene, 245
visual field, 245

Visual space, 17
Visualisation, 125

contour plots, 132
cropped image, 126
histogram, 129
histogram valley, 136
isolines, 326
isolines labels, 326
pixel intensity distributions, 125
plot, 131
stem plot, 131
surface plot, 132
wireframe surface, 133

Voronoï, 5, 9, 187, 246
corner-based, 190
diagram, 5, 6
edge, 188
generating points, 192, 194
geodesic, 6
manifolds, 5
mesh, 9, 187, 190, 246
polygon, 188
region, 187, 188, 201
region vertices, 190
segmentation, 5
sites, 192, 194
tessellation, 5, 187
tiling, 187
vertex, 188

Voronoï diagram, 66
2D definition, 10
3D definition, 10

Voronoï mesh, 66, 67, 293, 294, 361

algorithm, 66
corner-based, 66, 68, 293, 294
definition, 67
Dirichlet tessellation, 67
image, 67
image geometry, 69
keypoint-based, 361
on image, 293
overlay, 68
plot, 293
tessellated digital image, 69

Voronoï mesh nerve, 70
definition, 70
nucleus, 70

Voronoï region, 67, 68, 378
definition, 67
generating point, 378
site, 378

Voronoï tessellation, 10, 220, 303, 305
2D definition, 10
3D definition, 10
benefit, 10
definition, 303
MNC, 220
offline video frame, 303
real-time video frame, 305

W
Wavelet, 251

definition, 251
sparse representation, 251
sparse representation pyramid, 352

Worldsheet, 287
definition, 287

X
Xor, 114

table, 114

Z
Zoom, 88

in, 89
in at 100%, 89
in at 800%, 89
resample, 88
zooming in, 88

	Preface
	Contents
	1 Basics Leading to Machine Vision
	1.1 What Is Computer Vision?
	1.2 Divide and Conquer Approach
	1.3 Voronoï Diagrams Superimposed on Images
	1.4 A Brief Look at Computational Geometry
	1.5 Framework for Digital Images
	1.6 Digital Visual Space
	1.7 Creating Your Own Images
	1.8 Randomly Generated Images
	1.9 Ways to Display Images
	1.10 Digital Image Formats
	1.11 Image Data Types
	1.12 Colour Images
	1.12.1 Colour Spaces
	1.12.2 Colour Channels

	1.13 Colour Lookup Table
	1.14 Image Geometry, a First Look
	1.15 Accessing and Modifying Image Pixel Values
	1.16 RGB, Greyscale, and Binary (BW) Images
	1.17 Rosenfeld 8-Neighbourhood of a Pixel
	1.18 Distances: Euclidean and Taxicab Metrics
	1.19 False Colours: Pointillist Picture Painting
	1.19.1 False-Colour an RGB Image Pattern
	1.19.2 False-Colour a Greyscale Image Pattern

	1.20 Vector Spaces Over Digital Images
	1.20.1 Dot Products
	1.20.2 Image Gradient

	1.21 What a Camera Sees: Intelligent Systems View
	1.21.1 Intelligent System Approach in Camera Vision Systems
	1.21.2 Scene Colour Sensing by Cameras

	1.22 Image Geometry: Voronoï and Delaunay Meshes on an Image
	1.22.1 Voronoï Mesh on Car Image
	1.22.2 What a Voronoï Image Sub-Mesh by Itself Reveals

	1.23 Nerve Structures
	1.23.1 Delaunay Mesh on Car Image
	1.23.2 Combined Voronoï and Delaunay Meshes on Car Image

	1.24 Video Frame Mesh Overlays
	1.24.1 Offline Video Frame Processing
	1.24.2 Real-Time Video Processing

	2 Working with Pixels
	2.1 Picture Elements
	2.2 Separating Colour Image Channels
	2.3 Colour to Greyscale Conversion
	2.4 Algebraic Operations on Pixel Intensities
	2.5 Pixel Selection Illustrated with Edge Pixel Selection
	2.6 Function-Based Image Pixel Value Changes
	2.7 Logical Operations on Images
	2.7.1 Complementing and Logical not of Pixel Intensities
	2.7.2 Xor Operation on Pairs of Binary Images

	2.8 Separating Image Foreground From Background
	2.9 Conjunction of Thresholded Colour Channels
	2.10 Improving Contrast in an Image
	2.11 Gamma Transform
	2.12 Gamma Correction

	3 Visualising Pixel Intensity Distributions
	3.1 Histograms and Plots
	3.1.1 Histogram
	3.1.2 Stem Plot
	3.1.3 Plot
	3.1.4 Surface Plot
	3.1.5 Wireframe Surface Plot
	3.1.6 Contour Plot

	3.2 Isolines
	3.3 Colour Histograms
	3.4 Adaptive Thresholding
	3.5 Contrast Stretching
	3.6 Histogram Matching

	4 Linear Filtering
	4.1 Importance of Image Filtering
	4.2 Filter Kernels
	4.3 Linear Filter Experiments
	4.4 Linear Convolution Filtering
	4.5 Selecting a Region-of-Interest
	4.6 Adding Noise to Image
	4.7 Mean Filtering
	4.8 Median Filtering
	4.9 Rank Order Filtering
	4.10 Normal Distribution Filtering

	5 Edges, Lines, Corners, Gaussian Kernel and Voronoï Meshes
	5.1 Linear Function
	5.2 Edge Detection
	5.3 Double Precision Laplacian Filter
	5.4 Enhancing Digital Image Edges
	5.5 Gaussian Kernel
	5.6 Gaussian Filter
	5.7 Gaussian Filter and Image Restoration
	5.8 Laplace of Gaussian Filter Image Enhancement
	5.9 Zero-Cross Edge Filter Image Enhancement
	5.10 Anisotropy Versus Isotropy in Edge Detection
	5.11 Detecting Edges and Lines in Digital Images
	5.12 Detecting Image Corners
	5.13 Image Corner-Based Voronoï Meshes Revisited
	5.13.1 Voronoï Tessellation Details
	5.13.2 Sites for Voronoï Polygons

	5.14 Steps to Construct a Corner-Based Voronoï Mesh
	5.15 Extreme Image Corners in Set of Mesh Generators
	5.16 Voronoï Mesh on an Image with Extreme Corners
	5.17 Image Gradient Approach to Isolating Image Edges
	5.18 Corners, Edges and VoronoÏ Mesh

	6 Delaunay Mesh Segmentation
	6.1 Delaunay Triangulation Generates a Triangular Mesh
	6.2 Triangle Circumcircles
	6.3 Constructing a Corner-Based Delaunay Mesh on Image Edges
	6.4 Centroid-Based Delaunay Image Mesh
	6.4.1 Finding Image Centroids
	6.4.2 Finding Image Centroidal Delaunay Mesh
	6.4.3 Finding Image Centroidal Voronoï Mesh
	6.4.4 Finding Image Centroidal Voronoï Superimposed on a Delaunay Mesh

	7 Video Processing. An Introduction to Real-Time and Offline Video Analysis
	7.1 Basics of Video Processing
	7.1.1 Frame Point Processing
	7.1.2 Image Acquisition
	7.1.3 Blobs
	7.1.4 Frame Tiling and Frame Geometry

	7.2 Voronoï Tiling of Video Frames
	7.3 Detection of Shapes in Video Frames
	7.4 Measuring Shape Similarity and the Voronoï Visual Hull of an Object
	7.5 Maximal Nucleus Clusters
	7.6 Problems
	7.7 Shape Distance
	7.8 Weight Function for Edgelets
	7.9 Maximum Edgelets
	7.9.1 Coarse Contour Edgelets
	7.9.2 Connected Mesh Regions that are MNCs

	8 Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes
	8.1 Image Analysis
	8.2 Scene Analysis
	8.3 Pixel Edge Strength
	8.4 Cropping and Sparse Representations of Digital Images
	8.5 Shape Theory and the Shapes of 2D Image �
	8.6 Image Pixel Gradient Orientation and Magnitude
	8.7 Difference-of-Gaussians
	8.8 Image Keypoints: D.G. Lowe's SIFT Approach
	8.9 Application: Keypoint Boundaries of Image Mesh Nuclei
	8.10 Supra (Outer) Nucleus Contours
	8.11 Quality of a MNC Contour Shape
	8.12 Coarse S2P and S3P (Levels 2 and 3) MNC Contours
	8.13 Experimenting with the Number of Keypoints
	8.14 Coarse Perimeters on Dual MNCs
	8.15 Rényi Entropy of Image MNC Regions
	8.16 Problems

	9 Postscript. Where Do Shapes Fit into the Computer Vision Landscape?
	9.1 Shapes in Natural Scenes
	9.2 Shape Estimates

	MatLab & Mathematica Scripts
	A.1 Scripts from Chap.1
	A.1.1 Digital Image Corners
	A.1.2 Implementation of Voronoï Tessellation Algorithm
	A.1.3 Implementation of Delaunay Tessellation Algorithm
	A.1.4 Implementation of Combined Voronoï-Delaunay Tessellation Algorithm
	A.1.5 Offline Video Processing Script for Chap.1
	A.1.6 Real-Time Video Processing Script for Chap.1
	A.2 Scripts from Chap.2
	A.2.1 Digital Image Pixels
	A.2.2 Colour Image Channels
	A.2.3 Colour 2 Greyscale Conversion
	A.2.4 Algebraic Operations on Pixel Intensities
	A.2.5 Selecting and Displaying Edge Pixel Colour Pixel Intensities
	A.2.6 Function-Based Pixel Value Changes
	A.2.7 Logical Operations on Images
	A.3 Scripts from Chap.3
	A.3.1 Pixel Intensity Histograms (Binning)
	A.3.2 Pixel Intensity Distributions
	A.3.3 Pixel Intensities Isolines
	A.4 Scripts from Chap.4
	A.5 Scripts from Chap.5
	A.5.1 1D Gaussian Kernel Plots
	A.5.2 Gaussian Kernel Experimenter
	A.5.3 2D Gaussian Kernel Plots
	A.5.4 Gaussian Smoothing an Image
	A.5.5 Image Restoration
	A.5.6 Image Corners
	A.5.7 Voronoï Mesh with and Without Image Corners
	A.6 Scripts from Chap.6
	A.6.1 Finding 2D and 3D Image Centroids
	A.6.2 Another Approach in Finding Image Centroids
	A.6.3 Finding Image Centroidal Delaunay Mesh
	A.6.4 Finding Image Centroidal Voronoï Mesh
	A.6.5 Finding Image Centroidal Voronoï Superimposed on a Delaunay Mesh
	A.7 Scripts from Chap.7
	A.7.1 Edgelet Measurements in Voronoï Tessellated Video Frames
	A.8 Scriptsaut]Barclay, D. from Chap.8
	A.8.1 Gaussian Pyramid Scheme
	A.8.2 Wavelet Pyramid Scheme
	A.8.3 Pixel Edge Strength
	A.8.4 Plotting Arctan Values
	A.8.5 Pixel Geometry: Gradient Orientation and Gradient Magnitude
	A.8.6 Difference-of-Gaussians Image
	A.8.7 Image Keypoints and Voronoï Mesh

	Glossary
	B.1 A
	B.2 B
	B.3 C
	B.4 Daut]Solan, V.P.aut]Zelins'kyi, Y.B.aut]Kay, D.C.aut]Womble, E.W.aut]Tuz, V.V.
	B.5 E
	B.6 F
	B.7 G
	B.8 H
	B.9 I
	B.10 K
	B.11 L
	B.12 M
	B.13 N
	B.14 O
	B.15 P
	B.16 Q
	B.17 R
	B.18 S
	B.19 T
	B.20 Uaut]Milnor, J.
	B.21 V
	B.22 W
	B.23 X
	B.24 Z

	Refs
	Index

