
FOCUS SERIES

Jean-Charles Pomerol

Concurrent, Real-Time and
Distributed Programming in Java

Threads, RTSJ and RMI

Badr Benmammar

First published 2018 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

Library of Congress Control Number: 2017957888

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISSN 2051-2481 (Print)
ISSN 2051-249X (Online)
ISBN 978-1-78630-258-8

© ISTE Ltd 2018

www.iste.co.uk
www.wiley.com

List of Acronyms. vii

Introduction . ix

Chapter 1. Introduction to Threads in Java 1

1.1. Processes versus threads . 1
1.2. Concurrent computing . 2
1.3. Thread creation. 3
1.4. Types of thread . 4
1.5. Monotask versus multitask . 5
1.6. Different states of a thread . 13
1.7. Lifecycle of a thread . 13
1.8. A few notes concerning threads . 16

1.8.1. Two threads without using sleep . 16
1.8.2. Time allocation between two threads 17
1.8.3. Priority between threads . 19

1.9. Programming a task: Timer and TimerTask 21
1.9.1. By specifying an initial delay . 21
1.9.2. With an initial delay and periodicity 23

Chapter 2. Thread Synchronization . 27

2.1. Synchronization upon termination: join() method 27
2.2. Resource in mutual exclusion: synchronized modifier 30
2.3. Shared variables: internal class . 33
2.4. The problem with mutual exclusions . 35
2.5. Synchronized block . 36
2.6. Synchronized instance method . 41
2.7. Shared variables: class variable . 43

Contents

2.8. Synchronization between threads . 45
2.8.1. Wait and notifyAll . 45
2.8.2. Wait and notify . 48

2.9. Classic Producer–Consumer pattern . 51
2.10. Semaphore in Java . 54

2.10.1. Before Java 1.5 . 55
2.10.2. After Java 1.5 . 57

Chapter 3. Real-Time Systems and Real-Time Java 61

3.1. Real-time systems . 61
3.1.1. Definition . 61
3.1.2. Examples of real-time operating systems 62
3.1.3. Types of real-time . 62
3.1.4. Architecture . 63
3.1.5. Task ordinance with priorities . 63

3.2. Java in real-time . 65
3.2.1. RTSJ (Real-Time Specification for Java) 65
3.2.2. Implementations . 67

Chapter 4. Distributed Programming in Java 71

4.1. Definition of a distributed application . 71
4.2. Communication in a distributed application 72

4.2.1. Low-level communication: socket . 72
4.2.2. High-level communication: middleware 89

Appendix . 127

Bibliography . 155

Index . 157

API Application Programming Interface

CNI Cygnus Native Interface

CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model

DGC Distributed Garbage Collection

FIFO First In, First Out

GC Garbage Collector

GCC GNU Compiler Collection

GCJ GNU Compiler for Java

GNU GNU’s Not Unix

IIOP Internet Inter-ORB Protocol

IP Internet Protocol

J2SE Java 2 Standard Edition

J2EE Java 2 Enterprise Edition

J2ME Java 2 Micro Edition

Acronyms

JDK Java SE Development Kit

JNI Java Native Interface

JRMP Java Remote Method Protocol

JSSE Java Secure Socket Extension

JVM Java Virtual Machine

KVM Kilo VM

OSI Open Systems Interconnection

PCP Priority Ceiling Protocol

PIP Priority Inheritance Protocol

RMI Remote Method Invocation

RMIC RMI Compiler

RPC Remote Procedure Call

RRL Remote Reference Layer

RTSJ Real-Time Specification for Java

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

URL Uniform Resource Locator

WinCE Windows Embedded Compact

This book constitutes an introduction to real-time and distributed
concurrent computing, using Java object-oriented language as a support tool
for describing algorithms. It describes in particular the synchronization
mechanisms (in cooperation and in competition) and data-sharing
mechanisms (internal class, static type variables) between threads in Java.
We then discuss the use of Java for real-time applications. Subsequently, a
presentation of RTSJ (Real-Time Specification for Java) is also introduced
in this book. Finally, a presentation of distributed computing can also be
found. We focus in particular on low-level communication using TCP
Sockets and high-level communication using Java RMI (Remote Method
Invocation) middleware. The book also contains an appendix including a set
of practical application exercises in relation to the theme of the book.
Knowledge of Java language is a prerequisite to properly understanding this
book.

Introduction

1

Introduction to Threads in Java

1.1. Processes versus threads

The operating system is tasked with allocating the necessary resources
(memory, processing time, inputs/outputs) to the processes and ensuring they
do not interfere with one another (isolation) [TAN 01].

This principle is illustrated in the following example in which variable a
is defined in two different classes. When executing both classes, the two
allocated memory zones for this variable are completely isolated.

Figure 1.1. Isolation between processes

2 Concurrent, Real-Time and Distributed Programming in Java

Most operating systems offer a distinction between:

– Heavy-weight processes: supposedly completely separate from one
another.

– Light-weight processes (threads): which share a memory space (as well
as other resources) in common.

DEFINITION 1.– A thread is a string of code capable of executing alongside
other processes. Threads do not execute at the same time but rather using
shared time, this is why it is important that a thread always gives others a
chance to execute.

The diagram below shows the execution and latency times for four
different threads.

Figure 1.2. Execution and latency times of four different threads

1.2. Concurrent computing

A concurrent programming language must allow the following:

– creation of threads;

– sharing data between threads;

– synchronization among threads: controlling the task execution order
depending on the two following models:

Introduction to Threads in Java 3

- Competition synchronization: when more than one thread is using the
same resource. There must then be a system for mutual exclusion in order to
avoid processes interfering with each other.

- Cooperation synchronization: when one thread waits for another to
finish executing before starting its own execution.

1.3. Thread creation

There are two ways to create a thread in Java:

– A class derived from java.lang.Thread:

- The java.lang.Thread implements Runnable class.

- Thread extends Object implements Runnable public class.

- The Thread class must implement the run() method.

- The daughter class inherits the run() method.

– A class that implements the Runnable interface:

- The class must implement the run() method.

Now, a question arises: which solution should we choose?

– Method 1: subclassing Thread:

- When parallelizing a class which does not inherit from another class
(autonomous class).

- Note: simple inheritance in java.

- extends Thread or implements Runnable, either way.

– Method 2: implement Runnable:

- When a superclass is imposed.

- Example, case involving applets:

public class MyThreadApplet extends Applet implements Runnable { }

- Only implements Runnable is valid.

4 Concurrent, Real-Time and Distributed Programming in Java

Let us look at the code:

– Method 1: subclassing Thread

class A extends Thread {
A () {...} // The constructor
...
public void run () {
... // What the Thread does
}
}
A p1 = new A(); // Creation of thread p1
p1.start(); // Starts the thread and executes p1.run()

– Method 2: class that implements Runnable

class B implements Runnable {
B () { ...} // Constructor
...
public void run() {
... // What the Thread does
}
}
B p = new B();
Thread p2 = new Thread(p);
...
p2.start(); // Starts the thread and executes p.run()

1.4. Types of thread

Two types of thread exist:

– User threads: this type of thread’s activity is time-restricted, meaning
its scenario is a process which ends after a certain amount of time. The JVM
functions as long as there are user threads being executed.

– Daemon threads: threads that execute in the background as long as the
program is running. Daemon threads are only there to serve user threads.
The JVM stops if there are only daemons.

Introduction to Threads in Java 5

Examples: syntax coloring in editors, garbage collectors
(DestroyJavaVM), etc.

– public final boolean isDaemon() in the Thread class to determine the
thread’s type.

– public final void setDaemon (boolean) of the Thread class indicates
whether the thread will be a daemon or not (user thread by default).

– It must be called before the thread starts using the start() command.

– Use setDaemon in the constructor.

Example: clock thread running in the background.

Clock class extends Thread {
 public clock () { setDaemon (true); }
 public void run () {
 while (true) {
 try {Thread.sleep (300) ;} catch (InterruptedException e) {}
 System.out.println ("tip");
 } // end while
 }// end run
public static void main(String arg[]){
A p1 = new A();
p1.start();
}// end main
}// end class

1.5. Monotask versus multitask

To illustrate multitask, let us begin by presenting a monotask execution.
In the following example, a parrot (Parrot0.java) converses in monotask with
the primary program (ChatAndLaunchTheParrot0.java):

class ChatAndLaunchTheParrot0 {
 public static void main(String args[]) {
 Parrot0 parrot = new Parrot0 ("coco",4);

6 Concurrent, Real-Time and Distributed Programming in Java

 blabla(); blabla();
 parrot.run ();
 for (int n=0; n<3; n++) {
 try {Thread.sleep(1000);}
 catch (InterruptedException e) {
 System.out.println (e.getMessage ());
 System.exit(1); }
 blabla ();
 }
}// end main
 private static void blabla() {
 System.out.println("blabla");
 }
}// end class

class Parrot0 {
 private String cri = null;
 private int fois = 0;
 public Parrot0 (String s, int i) {
 cri = s;
 fois = i;
 }
 public void run () {
 for (int n=0; n<fois; n++) {
 try {Thread.sleep (1000);} catch (InterruptedException e) {
 System.out.println(e.getMessage()); System.exit(1);
 }
 System.out.println (cri);
 } // end for
} // end run
} // end class

Executing the previous code results in the following:

 blabla
 blabla

Introduction to Threads in Java 7

 coco
 coco
 coco
 coco
 blabla
 blabla
 blabla

Nothing special, the primary program talks, passes to the parrot’s run and
the execution ends with the three blabla of the primary program.

To perform the multitask, a modification of the previous code is
necessary. We will perform this in two different ways.

– Extending the Thread class:

class ChatAndLaunchTheParrot2{
 public static void main(String args[]) {
Parrot2 parrot = new Parrot2 ("coco",10);
parrot.start();
 for (int n=0; n<10; n++) {
 try {
 Thread.sleep(1000);
 }
 catch(InterruptedException e) { }
 blabla();
 }
 }
 private static void blabla() {
 System.out.println("blabla");
 }
}

class Parrot2 extends Thread{
 private String cri = null;
 private int fois = 0;

8 Concurrent, Real-Time and Distributed Programming in Java

 public Parrot2 (String s, int i) {
 cri = s;
 fois = i;
 }
 public void run (){
 for (int n=0; n<fois; n++) {
 try {
 Thread.sleep(1000);
 }
 catch(InterruptedException e) { }
 System.out.println (cri);
 }
 }
}

Executing the previous code results in the following:

coco
blabla
coco
blabla
coco
blabla
coco
blabla
coco
blabla
coco
blabla
coco
blabla
coco
blabla

Introduction to Threads in Java 9

coco
blabla
coco
blabla

– Implementing the Runnable interface:

class ChatAndLaunchTheParrot1{
 public static void main(String args[]) {
Parrot1 objectParrot = new Parrot1 ("coco",10);
 Thread ThreadParrot = new Thread (objectParrot);
 ThreadParrot.start();
 for (int n=0; n<10; n++) {
 try {
 Thread.sleep(1000);
 }
 catch(InterruptedException e) { }
 blabla();
 }
 }
 private static void blabla() {
 System.out.println("blabla");
 }
}
class Parrot1 implements Runnable {
 private String cri = null;
 private int fois = 0;
 public Parrot1 (String s, int i) {
 cri = s;
 fois = i;
 }
 public void run (){
 for (int n=0; n<fois; n++) {
 try {

10 Concurrent, Real-Time and Distributed Programming in Java

 Thread.sleep(1000);
 }
 catch(InterruptedException e) { }
 System.out.println (cri);
 }
 }
}

Executing the previous code results in the following:

blabla
coco
blabla
coco
blabla
coco
blabla
coco
blabla
coco
blabla
coco
blabla
coco
blabla
coco
blabla
coco
blabla
coco

– run() is the method to redefine in order to place the Thread’s function.

– start() is a method that authorizes the Thread to initialize, and therefore
the execution of run. All it does is initialize the Thread and (not blocking the
calling Thread) does not wait for run to finish executing.

Introduction to Threads in Java 11

– It immediately returns to the execution of the calling Thread. The run
method of the Thread executes at the same time as the other Threads
(multitask).

– start() authorizes the Thread to start, but not necessarily immediately.

The following example simulates a race using threads. The idea is to
simulate a 1000 m race between two people named Jean and Paul. Since it is
necessary to have them running concurrently, each one of them will be taken
on by a thread.

The following program creates a general Runner class which inherits the
Thread.

class Runner extends Thread {
public Runner (String str) {
 super(str);
 }
public void run() {
 // Value i is incremented at the passage of the nth hundred meters
 for (int i =1; i<=10; i++) {
 System.out.println(i*100 + " m : " + getName());
 try {
sleep((int)(Math.random() * 1000));
 } catch (InterruptedException e) {}
 } // end for
 System.out.println(getName()+ " finishes ! ");
}// end run
} // end class

The test class, Race, is tasked with creating Runner instances and
launching them in the race with start().

class Race {
 public static void main (String[] args) {
 System.out.println("Passing: ");
 Runner Jean = new Runner ("Jean");

12 Concurrent, Real-Time and Distributed Programming in Java

 Runner Paul = new Runner ("Paul");
 Jean.start();
 Paul.start();
 }
}

Executing this code results in the following:

Passing:
100 m : Jean
100 m : Paul
200 m : Jean
200 m : Paul
300 m : Paul
300 m : Jean
400 m : Jean
500 m : Jean
600 m : Jean
400 m : Paul
700 m : Jean
500 m : Paul
600 m : Paul
800 m : Jean
900 m : Jean
1000 m : Jean
700 m : Paul
Jean finishes!
800 m : Paul
900 m : Paul
1000 m : Paul
Paul finishes!

Introduction to Threads in Java 13

1.6. Different states of a thread

A thread can be in one of the four following states:

– New: includes all moments between when it is created (by a
constructor) and the call for its start() method.

– Runnable: immediately after the start method is called.

– Blocked: representing the moments where the thread is waiting, for
example, when it is suspended by the sleep (long) method which pauses the
execution of the thread for a given amount of time.

– Terminated: when its run() method ends.

The state of a thread can be specified by the call for its getState() method.

1.7. Lifecycle of a thread

The lifecycle of a thread illustrates that it can be suspended by:

– waiting for the end of a sleep;

– waiting for an entry–exit block to end;

– waiting for a wait synchronization.

Figure 1.3 shows the lifecycle of a thread.

Figure 1.3. Lifecycle of a thread

14 Concurrent, Real-Time and Distributed Programming in Java

For the creation of threads in Java, we have eight constructors
(constructor surcharge) [ORA 17a]:

– Thread();

– Thread(Runnable target);

– Thread(Runnable target, String name);

– Thread(String name);

– Thread(ThreadGroup group, Runnable target);

– Thread(ThreadGroup group, Runnable target, String name);

– Thread(ThreadGroup group, Runnable target, String name, long
stackSize);

– Thread(ThreadGroup group, String name).

NOTE.– Numerous threads can execute simultaneously, it would be useful to
be able to control them as one single entity: to suspend them, stop them,
etc.

Java offers this possibility via the use of thread groups:
java.lang.ThreadGroup [ORA 17b].

– We group a named set of threads.

– They are controlled as one single unit.

– The JVM creates a minimum of one group of threads named the main.

– By default, a thread belongs to the same group as the one that created it
(its parent).

– getThreadGroup(): to know its thread group.

The class ThreadGroup has two constructors:

– ThreadGroup (String name);

– ThreadGroup (ThreadGroup parent, String name).

Introduction to Threads in Java 15

The following code creates a group of threads containing three threads:

ThreadGroup groupe1 = new ThreadGroup ("GP1");
Thread p1 = new Thread (groupe1, "P1"); // 8th Thread constructor
Thread p2 = new Thread (groupe1, "P2");
Thread p3 = new Thread (groupe1, "P3");

Control of the ThreadGroup goes through the use of standard methods
that are shared with Thread: interrupt(), destroy().

For example: applying the interrupt() method to GP1 means invoking this
method for each Thread within the group (P1, P2 and P3).

The following code shows the creation of a thread tree:

// 1st ThreadGroup constructor
ThreadGroup groupe1 = new ThreadGroup("GP1");
Thread p1 = new Thread(groupe1, "P1");
Thread p2 = new Thread(groupe1, "P2");
Thread p3 = new Thread(groupe1, "P3");
// 2nd ThreadGroup constructor
ThreadGroup groupe11 = new ThreadGroup(groupe1, "GP11");
Thread p4 = new Thread(groupe11, "P4");
Thread p5 = new Thread(groupe11, "P5");

which gives us the following tree diagram:

Figure 1.4. Thread tree

16 Concurrent, Real-Time and Distributed Programming in Java

1.8. A few notes concerning threads

1.8.1. Two threads without using sleep

In the following segment, we will launch two threads without using sleep,
the primary program and another thread.

class ChatAndLaunchTheParrot7 {
 public static void main(String args[]) {
 Parrot7 parrot = new Parrot7("coco",10);
 parrot.start();
 for (int n=0; n<10; n++) blabla();
 }
 private static void blabla() { System.out.println("blabla"); }
}
class Parrot7 extends Thread {
 private String cri = null;
 private int fois = 0;
 public Parrot7(String s, int i) {
 cri = s;
 fois = i;
}
 public void repeter() { System.out.println(cri); }
 public void run() {
 for (int n=0; n<fois; n++) repeter();
 }
}

Execution:

blabla
blabla
blabla
blabla
blabla
blabla

Introduction to Threads in Java 17

blabla
blabla
blabla
blabla
coco
coco
coco
coco
coco
coco
coco
coco
coco
coco

This is clearly a multitask execution but the execution time is too short to
visualize the allocation of the CPU between the two threads.

1.8.2. Time allocation between two threads

In order to visualize the allocation of time between two threads, we will
have to increase the number of iterations to 5 million by examining which
thread executes in multiples of 500 thousand.

The code is as follows:

public class InfernalRace1 {
 public static void main(String[] args){
 Runner A = new Runner("A");
 Runner B = new Runner("B");
 A.start();
 B.start();
} // end main
} // end class InfernalRace1

class Runner extends Thread {
 String nom;

18 Concurrent, Real-Time and Distributed Programming in Java

 public Runner(String name) {
 super(name);
 this.name = name;
 }
 public void run() {
 long PedalStroke = 0;
 while (PedalStroke < 5000000) {
 PedalStroke++;
 if ((PedalStroke % 500000) == 0) {
System.out.println("Runner " + name + " performs " + PedalStroke + " pedal
strokes.");
 } // end if
 } // end while
}// end run
}// end class Runner

Execution:

Runner A performs 500000 pedal strokes.
Runner B performs 500000 pedal strokes.
Runner B performs 1000000 pedal strokes.
Runner A performs 1000000 pedal strokes.
Runner B performs 1500000 pedal strokes.
Runner A performs 1500000 pedal strokes.
Runner A performs 2000000 pedal strokes.
Runner B performs 2000000 pedal strokes.
Runner A performs 2500000 pedal strokes.
Runner B performs 2500000 pedal strokes.
Runner A performs 3000000 pedal strokes.
Runner B performs 3000000 pedal strokes.
Runner A performs 3500000 pedal strokes.
Runner B performs 3500000 pedal strokes.
Runner A performs 4000000 pedal strokes.
Runner B performs 4000000 pedal strokes.
Runner A performs 4500000 pedal strokes.

Introduction to Threads in Java 19

Runner B performs 4500000 pedal strokes.
Runner A performs 5000000 pedal strokes.
Runner B performs 5000000 pedal strokes.

CONCLUSION.– Java does not require that the system be "time-sliced": that
is, the same amount of time is given to threads with the same level of
priority.

1.8.3. Priority between threads

The setPriority method sets a level of priority between the different
threads. The value must be between a minimum value, MIN_PRIORITY,
and a maximum one, MAX_PRIORITY.

The following code illustrates the role of the priorities between threads:

public class InfernalRace2 {
 public static void main(String[] args) {
 Runner A = new Runner("A"); Runner B = new Runner("B");
A.setPriority(Thread.MAX_PRIORITY);
B.setPriority(Thread.MIN_PRIORITY);
System.out.println("Thread Runner " + A.name + " has priority = "
+ A.getPriority());
System.out.println("Thread Runner " + B.name + " has priority = "
+ B.getPriority());
 A.start(); B.start();
 }
}

class Runner extends Thread {
 String name
 public Runner(String name) {
 super(name);
 this.name = name;
 }
 public void run() {
 long PedalStroke = 0;

20 Concurrent, Real-Time and Distributed Programming in Java

 while (PedalStroke < 5000000) {
 PedalStroke++;
 if ((PedalStroke % 500000) == 0) {
 System.out.println("Runner " + name + " performs " +
PedalStroke + " pedal strokes.");
 }
}
}
}

Execution:

Thread Runner A has priority = 10
Thread Runner B has priority = 1
Runner A performs 500000 pedal strokes.
Runner A performs 1000000 pedal strokes.
Runner A performs 1500000 pedal strokes.
Runner A performs 2000000 pedal strokes.
Runner A performs 2500000 pedal strokes.
Runner A performs 3000000 pedal strokes.
Runner A performs 3500000 pedal strokes.
Runner A performs 4000000 pedal strokes.
Runner A performs 4500000 pedal strokes.
Runner A performs 5000000 pedal strokes.
Runner B performs 500000 pedal strokes.
Runner B performs 1000000 pedal strokes.
Runner B performs 1500000 pedal strokes.
Runner B performs 2000000 pedal strokes.
Runner B performs 2500000 pedal strokes.
Runner B performs 3000000 pedal strokes.
Runner B performs 3500000 pedal strokes.
Runner B performs 4000000 pedal strokes.
Runner B performs 4500000 pedal strokes.
Runner B performs 5000000 pedal strokes.

Introduction to Threads in Java 21

Thread A accessed the CPU first because it had maximum priority.
Thread B executes at the end of thread A because it has minimum priority.
Priority allowed us to define an order of execution between the two threads.

– Priority between threads: method setPriority(int).

– The priorities of threads are between 1 and 10.

– Three constants represent the limit and median values.

– The higher the value, the higher the priority of the thread to access the
processor.

– MIN_PRIORITY: minimum priority (1).

– NORM_PRIORITY: normal priority (5).

– MAX_PRIORITY: maximum priority (10).

– Normal priority is assigned by default to a new thread.

1.9. Programming a task: Timer and TimerTask

In the following section, we wish to program tasks either after an initial
delay (this is the case for the launch of a simulation after a certain time, for
example) or after a certain delay but periodically (in the case of software
upgrades).

1.9.1. By specifying an initial delay

The following code launches a task once after 4 seconds.

import java.util.Scanner;
import java.util.TimerTask;
import java.util.Timer;
class InitiateTheParrot11{
 public static void main(String args[]) {
 Parrot11 parrot = new Parrot11("coco", 3);
 Timer timer = new Timer();
 timer.schedule(parrot, 4000);
 String response="yes";

22 Concurrent, Real-Time and Distributed Programming in Java

 do {
 System.out.println("blabla");
 System.out.println("blabla");
 System.out.println("would you like to continue chatting? (y/n)");
 response =new Scanner(System.in).nextLine();
 } while (response.equals("y"));
 timer.cancel();
 }
}

import java.util.TimerTask;
class Parrot11 extends TimerTask {
 private String cri = null;
 private int fois = 0;
 public Parrot11(String s, int i) {
 cri = s;
 fois = i;
 }
 public void repeter() {
 System.out.println(cri);
 }
 public void run() {
 for (int i = 0; i < fois; i++) {
 repeter();
 }
 }
}

Execution:

blabla
blabla
would you like to continue chatting? (y/n)
y
blabla

Introduction to Threads in Java 23

blabla
would you like to continue chatting? (y/n)
coco
coco
coco
y
blabla
blabla
would you like to continue chatting? (y/n)
n

The definition of class TimerTask is as follows:

– public abstract class TimerTask extends Object implements Runnable.

– TimerTask is an abstract class which implements Runnable, thus a run()
method; we need to inherit the TimerTask class and redefine the run()
method which codes the task to be performed.

– run() is the only abstract method in TimerTask.

– A Timer starts the execution of the task.

– A Timer corresponds to a thread which will successively execute the
tasks.

– schedule(task, long milliseconds) programs the task by specifying an
initial delay in milliseconds.

– The cancel() method stops the Timer’s programming.

1.9.2. With an initial delay and periodicity

import java.util.Scanner;
import java.util.TimerTask;
import java.util.Timer;
class InitializeTheParrot11{
 public static void main(String args[]) {
 Parrot11 parrot = new Parrot11("coco", 3);
 Timer timer = new Timer();

24 Concurrent, Real-Time and Distributed Programming in Java

 timer.schedule(parrot, 3000, 2000);
 String response="yes";
 do {
 System.out.println("blabla");
 System.out.println("blabla");
 System.out.println("would you like the parrot to continue? (y/n)");
 response =new Scanner(System.in).nextLine();
 } while (response.equals("y"));
 timer.cancel();
 }
}

import java.util.TimerTask;
class Parrot11 extends TimerTask {
 private String cri = null;
 private int fois = 0;
 public Parrot11(String s, int i) {
 cri = s;
 fois = i;
 }
 public void repeter() {
 System.out.println(cri);
 }
 public void run() {
 for (int i = 0; i < fois; i++) {
 repeter();
 }
 }
}

schedule(task, long delay, long period) programs the task after a delay
for periodic executions: times are given in milliseconds.

Introduction to Threads in Java 25

Execution:

blabla
blabla
would you like the parrot to continue? (y/n)
coco
coco
coco
coco
coco
coco
ncoco coco
coco

The task is launched after 3 seconds for a periodic execution of
2 seconds.

2

Thread Synchronization

2.1. Synchronization upon termination: join() method

In the following example, there are two writers (EcrivainA and
EcrivainB): one will write ABC 10 times and the other will write XYZ 10
times. Each word (ABC or XYZ) will be written letter by letter with a return
after the last letter of each word.

The following code represents this scenario:1

1 For a color version of the codes appearing in this chapter, see www.iste.co.uk/benmammar/
java.zip

www.iste.co.uk/benmammar/java.zip
www.iste.co.uk/benmammar/java.zip

28 Concurrent, Real-Time and Distributed Programming in Java

Execution:

AXBYC
ABZ
XC
AYZ
XBC
AYBC
AZ
XBC
AYBC
AZ
XBC
ABYZ
XC
AYBC
AZ
XBC
Ecrivain de ABC a fini
YZ
XYZ
XYZ
XYZ
Ecrivain de XYZ a fini

There is concurrence between both writers and that is the reason why we
obtained the above execution. Using the join() method of the Thread class,
we can synchronize the two threads. EcrivainB will be launched after the
termination of EcrivainA (class Prog55.java following).

The code presented after join() will be executed after the end of the
execution of the code located before join().

Thread Synchronization 29

This type of synchronization called upon termination.

public class Prog55 {
 public static void main (String argv[]) {
 Ecrivain EcrivainA, EcrivainB;
 EcrivainA = new Ecrivain ("ABC");
 EcrivainB = new Ecrivain ("XYZ");
 EcrivainA.start();
 try {
 EcrivainA.join();
 }
 catch(InterruptedException e) {
 System.out.println(e.getMessage());
 System.exit(1);
 }
 EcrivainB.start();
 }
}

Execution:

ABC
ABC
ABC
ABC
ABC
ABC
ABC
ABC
ABC
ABC
Ecrivain de ABC a fini
XYZ
XYZ
XYZ

30 Concurrent, Real-Time and Distributed Programming in Java

XYZ
XYZ
XYZ
XYZ
XYZ
XYZ
XYZ
Ecrivain de XYZ a fini

2.2. Resource in mutual exclusion: synchronized modifier

Take the following code: the print method displays a word letter by letter
with a line break at the end of the last letter. The writers go through a printer
to write.

Both writers are now addressing a common printer. They “squash” the
text variable of the printer (imprimeur). The whole thing is still illegible (see
the execution below).

Thread Synchronization 31

Execution:

AXYYZ
Z
AXYYZ
Z
AXYYZ
AC
XYYZ
Z
XABBC
C
AXYYZ
Z
AXYYZ
Z
XABBC
C
XABBC
C
XABBC
Ecrivain de XYZ a fini
C
Ecrivain de ABC a fini

The use of “synchronized” is indispensable to resolve this problem, as is
shown in the following code:

32 Concurrent, Real-Time and Distributed Programming in Java

“synchronized” defines a lock or a mutual exclusion on the print method: at
most one thread can execute the method at one time.

This new execution results in the following:

Execution:

ABC
XYZ
ABC
XYZ
ABC
XYZ
ABC
XYZ
ABC
XYZ
ABC
XYZ

Thread Synchronization 33

ABC
XYZ
ABC
XYZ
ABC
XYZ
ABC
XEcrivain de ABC a fini
YZ
Ecrivain de XYZ a fini

A writer, at the moment of executing the method, has this method’s lock.
The lock is attached to the next iteration and therefore the second writer
takes over to display his text and so on until the end of the execution.

2.3. Shared variables: internal class

In the following, we will discuss variable sharing between threads. The
following code illustrates a usage scenario:

34 Concurrent, Real-Time and Distributed Programming in Java

Class Perroquet20 is located within the class PerroquetsMatheux20, and
the join method is used so as not to display the value of the counter before
the termination of the two threads.

As a result of these rules of visibility in Java, the variable compteur
(counter) is visible/accessible from the class Perroquet20 and therefore from
both thread objects perroquetA and perroquetB; however, the instance
variables cri and fois (cry and times) by Perroquet20 exist in as many copies
as instances of Perroquet20. Both threads therefore access a shared/common
space of variables.

Unlike processes which each possess their own clearly outlined
workspace, separate from other processes.

Execution:

coco 1
bonjour 2
bonjour 3
coco 4
bonjour 5
coco 6
bonjour 7
bonjour 8
bonjour 9
coco 10
bonjour 11
coco 12
bonjour 13
coco 14
coco 15
bonjour 16
coco 17
bonjour 18
coco 19
coco 20
compteur = 21

Thread Synchronization 35

2.4. The problem with mutual exclusions

To illustrate the problem with mutual exclusions, we will replace the
counter++ instruction, located in the class Perroquet20 by its equivalent:
value = counter + 1 and counter = value (valeur).

The two parrot (perroquet) threads work in alternation: one thread can be
paused in the middle of executing its repeater (repeter) method so that the
thread controller allows the other one to execute (sleep between the two new
instructions in the class Perroquet21).

36 Concurrent, Real-Time and Distributed Programming in Java

Execution:

coco 1
bonjour 1
coco 2
coco 3
bonjour 3
coco 4
bonjour 4
coco 5
bonjour 5
coco 6
bonjour 7
coco 7
bonjour 8
coco 8
bonjour 9
coco 9
coco 10
bonjour 10
bonjour 11
bonjour 12
compteur = 12

The counter variable is shared, but value is different for each thread. It
will happen that both threads must work on the same value before being able
to increment it.

2.5. Synchronized block

In the following, the section where the arrow points is the one causing an
issue:

Thread Synchronization 37

We must therefore find a way to define this part as a critical section. The
following represents the solution to this problem:

38 Concurrent, Real-Time and Distributed Programming in Java

– We have created a new Counter class in order to create a new “counter”
object because the syntax of “synchronized” requires it.

– The keyword “synchronized” defines an instruction block which can
only execute exclusively, even if other threads would like to execute it.

– When the thread perroquetA executes this synchronized block and the
thread perroquetB wishes to begin execution of this same block, perroquetB
must wait. Once perroquetA has finished, perroquetB can take over.

– Only one thread can execute the synchronized block at once.

– The block is said to be in mutual exclusion or even to be critical
section.

– If the other threads wish to execute this section, they must wait for the
critical section thread to finish.

– If there is more than one thread waiting for one synchronized block
when it becomes available, the controller will only authorize one to execute.

– The sleep() call does not cause a thread to exit the critical section.

Execution:

bonjour 1
coco 2
bonjour 3
coco 4
bonjour 5
coco 6
coco 7
bonjour 8
coco 9
bonjour 10
bonjour 11
coco 12
coco 13
bonjour 14

Thread Synchronization 39

coco 15
bonjour 16
bonjour 17
coco 18
coco 19
bonjour 20
compteur = 20

The following diagram illustrates three threads that are in mutual
exclusion in relation to a single object.

The third thread will execute the critical section if it is freed by the
central thread.

Figure 2.1. Critical section shared between three threads. For a
color version of the figure, see www.iste.co.uk/benmammar/java.zip

40 Concurrent, Real-Time and Distributed Programming in Java

Figure 2.2. Critical section shared between three threads. For a color
version of the figure, see www.iste.co.uk/benmammar/java.zip

synchronized(object) means that the block is in mutual exclusion relative to
a monitor of this object (objet): the threads that are synchronized around the
same object are in mutual exclusion.

The left and center threads have a critical section, the thread on the right
has a critical section, but not with the two other threads.

The monitor “plays” the role of supervisor, ensuring that only one thread
at a time can execute the critical section supervised by it: it is a locking
mechanism.

Thread Synchronization 41

The “monitor” mechanism of an object applies to all instances of Object:
it is therefore a mechanism implemented within the heart of Java.

The thread that executes an object’s “synchronized” becomes the owner
of this object’s monitor.

Thread.sleep does not remove ownership of a monitor, not even
temporarily.

2.6. Synchronized instance method

In the following, we will modify the code from section 2.5 in order to
create a synchronized instance method. The new code is as follows:

42 Concurrent, Real-Time and Distributed Programming in Java

The resulting execution is demonstrated in the diagram below.

Plus1 is a method that uses mutual exclusion and increments “val” by one
unit for each thread that possesses the lock of the method.

– In Java, each object possesses a single monitor (supervisor) which can
keep critical sections. It ensures that only one thread can execute the critical
section supervised by the monitor,

– synchronized (object) { instr } monitor associated with the object.

– synchronized void Method(){....} monitor associated with the method.

– The object is locked while the synchronized block is executed.

– In Java, each object also possesses a waiting queue.

Thread Synchronization 43

2.7. Shared variables: class variable

In the following section, we will present an example of thread
cooperation (teacher vs. students). We have teacher teaching students new
words.

The students must repeat each word three times, maybe more.

Figure 2.3. Consumer/producer example. For a color version
of the figure, see www.iste.co.uk/benmammar/java.zip

44 Concurrent, Real-Time and Distributed Programming in Java

The naive code for this example is as follows:

Execution:

nouveau mot pour perroquet ? (sinon non)
bla
nouveau mot pour perroquet? (sinon non)
coco bla
coco bla
coco bla
jaco bla
jaco bla
jaco bla
blu
nouveau mot pour perroquet ? (sinon non)
coco blu
coco blu
coco blu

Thread Synchronization 45

blo
coco blu
coco blu
coco blu
coco blu
coco blu
coco blu
nouveau mot pour perroquet ? (sinon non)
jaco blo
jaco blo
jaco blo
jaco blo
jaco blo
.....

One static variable "mot" (known as a class variable) is shared between
the two parrot threads which must learn it and then repeat it. Thereafter, the
main thread enters another word (mot).

At first, they must wait with a loop for the first word and if the professor
provides new words too fast, the two parrots may “skip” some!

Objective: to avoid a waiting mechanism between the professor and the
parrot students: the students wait for a new word (nouveau mot) to learn, the
professor, when teaching a word, must wait for the students to have had time
to learn and repeat it, before teaching a new one.

2.8. Synchronization between threads

2.8.1. Wait and notifyAll

In the following code, we created an object called attheboard to share
between producer and consumer. This object must have two methods: the

46 Concurrent, Real-Time and Distributed Programming in Java

first is used by the consumer (learn) and the second is used by the
producer (teach).

Execution:

nouveau mot pour perroquet ? (sinon non)
master
nouveau mot pour perroquet ? (sinon non)
coco master
coco master
coco master
jaco master

Thread Synchronization 47

jaco master
jaco master
RSD
coco RSD
coco RSD
coco RSD
jaco RSD
jaco RSD
jaco RSD
nouveau mot pour perroquet ? (sinon non)
no

– The wait and notifyAll methods are defined in the class
java.lang.Object and are therefore inherited by the whole class (including
notify).

– The wait method pauses (blocks) a thread’s execution, until a condition
is met. Meeting this condition is signaled by another thread using notify or
notifyAll methods.

– When the wait method is invoked using a synchronized method, at the
same time as the execution is paused, the lock set on the object through
which the method was invoked is dropped. As soon as the wake condition
arises, the thread waits to be able to take over the lock and continue the
execution.

– Note here the primary difference between sleep and wait:

- sleep blocks the execution but the thread maintains hold of the lock
(terminates its execution);

- wait blocks the execution but the thread frees the lock (a second
thread can execute the critical section).

48 Concurrent, Real-Time and Distributed Programming in Java

2.8.2. Wait and notify

In the following code, compared with the previous section, we have
replaced notifyAll with notify:

Execution:

coco bonjour
coco bonjour
coco bonjour

Thread Synchronization 49

RSD
coco RSD
coco RSD
coco RSD
nouveau mot pour perroquet ? (sinon non)
encore
jaco encore
jaco encore
jaco encore
nouveau mot pour perroquet ? (sinon non)
bizarre
coco bizarre
coco bizarre
coco bizarre
nouveau mot pour perroquet ? (sinon non)
vraiment
jaco vraiment
jaco vraiment
jaco vraiment
nouveau mot pour perroquet ? (sinon non)
no

One single thread is freed from waiting by notify. Only one single parrot
student is learning at a time.

notify() only wakes up one thread at a time; there is no specification on
the selected thread! It is the thread controller that chooses (the mechanism is
not on a FIFO basis).

A second example of producer consumer is shown in the following
figure. It presents users arriving at a station to wait for a bus; a bus arrives,
loads the users into the station and leaves. If one user arrives too late, they
miss the bus.

50 Concurrent, Real-Time and Distributed Programming in Java

class BusSimple {
 public static void main (String args[]) {
 Station BusStation = new Station ();
 Bus b = new Bus (BusStation, 2000);
 Usager u [] = {new Usager ("A", BusStation, 1500), new Usager ("B",
BusStation, 3000),
 new Usager("C",BusStation, 1000), new Usager ("D",BusStation,
1500), new Usager
 ("E",BusStation, 1000)} ;
 b.start () ;
 for (int i = 0 ; i < u.length ; i++)
 u[i].start () ;
 }
}

The shared object is BusStation (of type Station); it contains two methods
as expected. One is used by the producer (chargerUsagers) and another is
used by the consumer (attendreBus).

Thread Synchronization 51

The class BusSimple is used to launch five users as well as the bus.

Execution:

C arrive a la station
E arrive a la station
A arrive a la station
D arrive a la station
Bus arrive a la station
D est monte dans le bus
A est monte dans le bus
E est monte dans le bus
C est monte dans le bus
Bus repart de la station
B arrive a la station

2.9. Classic Producer–Consumer pattern

We will talk about classic patterns in the case of a single producer and a
single consumer.

The example used here is for a professor teaching a student four new
words. The student must repeat each word three times.

Figure 2.4. Classic Producer–Consumer pattern. For a color
version of the figure, see www.iste.co.uk/benmammar/java.zip

52 Concurrent, Real-Time and Distributed Programming in Java

The code for this example is as follows:

Execution:

nouveau mot a enseigner au perroquet?
Speak
nouveau mot a enseigner au perroquet?
coco Speak
coco Speak
coco Speak
House
nouveau mot a enseigner au perroquet?
coco House
coco House
coco House
Bonjour

Thread Synchronization 53

nouveau mot a enseigner au perroquet?
coco Hello
coco Hello
coco Hello
Chat
coco Chat
coco Chat
coco Chat

– The problem is simplified, one single teacher and one single parrot, and
one waits for the other:

- The parrot waits for a new word to learn.

- The teacher waits for the parrot to read and repeat the word.

– This classic pattern is known as Producer–Consumer:

– Both functions must be synchronized so that:

- the consumer waits until there is nothing to consume.

- while (motAuTableau == null)

- the producer waits while the consumer is not ready to consume.

- while (motAuTableau != null)

54 Concurrent, Real-Time and Distributed Programming in Java

There can also be models with more than one producer and more than one
consumer. One such example is as follows:

– “Producers” threads that produce data and place them into a message
queue.

– “Consumers” threads that take the data from the queue.

– The producers and consumers must not access the queue at the same
time (critical section).

A possible implementation of this model would realize synchronization
in relation to the message queue.

– The producers:

- when the queue is full: block;

- when there are spaces available: unblock.

– The consumers:

- when the queue is empty: block;

- when there is data in the queue: unblock.

2.10. Semaphore in Java

DEFINITION.– A semaphore is a high-level object that helps manage the
concurrent access to a shared resource, which accepts at most N concurrent
access.

Thread Synchronization 55

Examples:

– managing entrances/exits in a parking lot with N spaces;

– managing a waiting room at a doctor’s office, hairdressing salon,
insurance company, etc. with N available chairs.

2.10.1. Before Java 1.5

A semaphore object encapsulates one whole and two atomic operations of
incrementation and decrementation. The method P contains the wait and
method V contains the notify.

A possible class used to implement the semaphore is as follows:

Each thread that wishes to access the critical section must use the method
P and, subsequently, it will decrement the counter variable.

After access by the first four threads, the content of the critical section
and the value of the counter will be as follows in the case where a fifth
thread should wish to access the critical section.

56 Concurrent, Real-Time and Distributed Programming in Java

If T4 exits the critical section, it has to use method V (increment the
counter and make a notify).

As T5 is the only thread to have been blocked by wait, it will enter the
critical section after it receives a notify from T4.

Thread Synchronization 57

After all the threads have exited the critical section, the state of the latter
and the value of the counter will be as follows:

2.10.2. After Java 1.5

Version 1.5 of Java and its package java.util.concurrent (along with all of
its sub-packages) provide high-level synchronization tools.

– Operation P (acquire()): decrements the counter; blocks if it is negative
while waiting to be able to decrement it.

– Operation V (release()): increments the counter; sends a notify if the
counter is negative or null.

58 Concurrent, Real-Time and Distributed Programming in Java

– We can see the semaphore as a set of chips, with two operations:

- take a chip or, if necessary, wait until there is one available;

- acquire(), usually with wait;

- put a chip back;

- release(), usually with notify.

– A semaphore has one chip and it is very similar to a lock.

The following example is the management of a parking lot using
semaphores. The class parameter Semaphore indicates the size of the lot.

Execution:

Thread 2 is not in the parking lot
Thread 3 is not in the parking lot
Thread 4 is not in the parking lot
Thread 0 is not in the parking lot

Thread Synchronization 59

Thread 1 is not in the parking lot
Thread 1 enters the parking lot
Thread 2 enters the parking lot
Thread 3 enters the parking lot
Thread 1 exits the parking lot
Thread 0 enters the parking lot
Thread 0 exits the parking lot
Thread 4 enters the parking lot
Thread 2 exits the parking lot
Thread 4 exits the parking lot
Thread 3 exits the parking lot

By replacing the instruction Semaphore sem = new Semaphore(3) with
Semaphore sem = new Semaphore(1) in the previous code, we obtain the
following execution:

Thread 2 is not in the parking lot
Thread 3 is not in the parking lot
Thread 4 is not in the parking lot
Thread 0 is not in the parking lot
Thread 1 is not in the parking lot
Thread 0 enters the parking lot
Thread 0 exits the parking lot
Thread 4 enters the parking lot
Thread 4 exits the parking lot
Thread 1 enters the parking lot
Thread 1 exits the parking lot
Thread 3 enters the parking lot
Thread 3 exits the parking lot
Thread 2 enters the parking lot
Thread 2 exits the parking lot

3

Real-Time Systems and Real-Time Java

3.1. Real-time systems

3.1.1. Definition

Real-time systems are different from other systems by virtue of the fact
that they take into account time-relating restrictions in cases where
respecting time delays is as important as the accuracy of the result; in other
words, the system must not only deliver exact results, it must deliver them
within the imparted time-limits.

In real-time computing, the correct behavior of a system depends not only
on the logical processing results, but also on the time at which the results are
produced [STA 88].

Examples:

– An ATM cannot take 5 minutes to deliver money.

– A radar cannot take 2 seconds to react.

– An ABS system cannot take more than 150 ms to acquire information
and 1 second to react (ABS refers to assisted braking systems using in motor
vehicles, which prevent the wheels from locking up under intense braking).

62 Concurrent, Real-Time and Distributed Programming in Java

3.1.2. Examples of real-time operating systems

– Windows CE (Windows Embedded Compact), often referred to as
WinCE, is a variation of Windows for onboard systems and other minimalist
systems used, for instance, in handheld computers.

– LynxOS is a real-time operating system based on the UNIX platform
developed by the company LynuxWorks for onboard applications.

– LynxOS is mostly used for onboard systems such as critical aviation
software, the military, industrial manufacturing and in the communication
industry.

3.1.3. Types of real-time

– Flexible real-time:

- The response by the system after a certain delay progressively reduces
its use.

- Penalties are not catastrophic.

- These systems accept variations in data processing of the order of a
half-second (or 500 ms) or even a second.

Examples: multimedia systems, if a couple of pictures are not displayed,
it does not jeopardize the operation of the whole system.

– Firm real-time:

- Response from the system within acceptable delays is essential.

- The result is of no use after the deadline.

Examples: financial trading, etc.

– Hard real-time:

- Response from the system within delays is vital.

- A lack of response is catastrophic.

Examples: air traffic control, nuclear reactor control, etc.

Real-Time Systems and Real-Time Java 63

3.1.4. Architecture

– Monotask architecture

- A real-time system with a single task is easy to define. All it takes is
to indefinitely repeat the following list of tasks:

- Wait for stimulus.

- Act accordingly to stimulus.

Example: automatic radar.

– Multitask architecture:

- Each task could be performed by a thread. A resource could be
protected by a critical section. The length of critical sections affects the
response time from the system.

Example: intrusion detection system (IDS) that performs various tasks in
real-time, including:

– Internet traffic analysis;

– identifying IPs involved in an attack;

– firewall reconfiguration;

– visual notification of the alert: displaying the alert in one or more
management consoles.

3.1.5. Task ordinance with priorities

Priorities help organize tasks. The higher the value of a priority, the
higher the priority for a task to access the processor. Priorities can be
dynamic or static.

In a real-time system, a task is generally never blocked by a lower
priority task.

– Consider two threads T1 and T2.

– T1 has a high priority (ex: 10), T2 has a low priority (ex: 1).

64 Concurrent, Real-Time and Distributed Programming in Java

– Upon launching the two threads, T1 must execute before T2.

– At a certain point, T1 is blocked (ex: by wait()), T2 runs and enters the
critical section.

– T1 unblocks and attempts to acquire the lock.

– T2 is never ordinanced and never releases the lock

– T2 executes before T1.

– Non-management of priority inversion can have disastrous effects.

– Indeed, as the absence of management of priority inversion implies that
a high-priority task cannot execute, it is possible for a reaction to emergency
situations not to be performed.

Example: an emergency stop order for a nuclear reactor that would be
blocked by a minor-priority order.

– There is no simple solution that avoids inversions of priority. It is,
nonetheless, possible to implement measures that limit these risks. In
particular, it is possible to authorize access to critical sections only to
similar-priority threads.

Two solutions are proposed:

– Priority ceiling:

- Priority Ceiling Protocol (PCP): this consists of associating a priority
cap each resource. The priority of the resource among the tasks that can use
it plus 1. Ordinance transfers this priority to each task which accesses this
resource. When a task has finished using the resource, its priority returns to
its original value.

– Priority inheritance:

- Priority Inheritance Protocol (PIP): when a task T2 (high-priority) is
blocked while accessing resource R, the blocking task T1 (low-priority)
inherits the priority of T2. T1 uses the priority inherited until the liberation
of R, where it reencounters the priority it had prior to its acquisition.

Real-Time Systems and Real-Time Java 65

3.2. Java in real-time

Originally, Java was designed for onboard devices. But Java quickly
started being used for Web applications (applets). Java was then used for the
following applications:

– Classic J2SE (Java 2 Standard Edition) for the client work station (JVM
classic, HotSpot).

– Business J2EE (Java 2 Enterprise Edition) for the development of
business applications (HotSpot).

– Reduced J2ME (Java 2 Micro Edition) for mobile systems such as
personal assistant pads and mobile phones (classic JVM, Kilo VM (KVM),
Card VM (JVM onboard on printed chip)).

Note that the language here is not designed for real-time, for the
following reasons:

– lack of expertise in ordinancing;

– Windows has trouble managing priorities between threads;

– for notify() or notifyAll() there are no specifications on the selected
thread, not necessarily FIFO;

– it is one of the few Java functionalities that is not mobile;

– problems with Garbage Collector/GC;

– GC can be executed at any time;

– GC can last a given amount of time;

– GC cannot be pre-empted;

– GC pre-empts any thread.

3.2.1. RTSJ (Real-Time Specification for Java)

This is a proposition for extending the JVM with real-time functionalities
(JVM RTSJ) [JAV 17a].

66 Concurrent, Real-Time and Distributed Programming in Java

Specifications performed by a group of experts from a number of firms
(Sun, IBM, QNX, Nortel, etc.).

Restrictions:

– Compatibility with existing: any non-real-time Java application can run
on a JVM RTSJ.

– No syntaxic expansion.

– No material or power prerequisite.

– Predictable execution time.

– Granularity: nanoseconds. 64 bits (ms) + 32 bits (ns).

– RTSJ improves Java real-time programming in the following fields:

– Memory management.

– Clock and time-management.

– Ordinance and “schedulable” objects.

– Real-time threads.

– Management on asynchronous events and timers.

– Synchronization and resource-sharing.

– Addedpackage: javax.realtime [JAV 17b].

– Three interfaces.

– 47 classes.

– 15 exceptions.

– Four errors.

– RTSJ: Threads

– One interface:

– Schedulable: object that can be ordinanced, extends
java.lang.Runnable.

– public interface Schedulable extends java.lang.Runnable.

– Two new classes:

Real-Time Systems and Real-Time Java 67

– RealtimeThread.

– public class RealtimeThread extends java.lang.Thread implements
Schedulable.

– Can access the heap. Of lower priority than the GC (DestroyJavaVM).

– NoHeapRealtimeThread.

– public class NoHeapRealtimeThread extends RealtimeThread.

– Its priority is higher than the GC. Works within the Scoped Memory,
the objects within this thread are allocated to this memory.

– ScopedMemory presents the following characteristics:

– Has the lifespan of the real-time thread occupying it.

– Is not managed by the garbage collector.

– Objects can be allocated within a ScopedMemory (rather than in
HeapMemory).

– Objects are free at the end of the scope.

– A NoHeapRealtimeThread cannot access the Heap.

– Therefore, a NoHeapRealtimeThread cannot be blocked by the Garbage
Collector.

– Priorities are organized as follows:

– Thread < RealtimeThread < Garbage Collector < NoHeapRealtime
Thread.

3.2.2. Implementations

The following three studied implementations are:

– Reference implementation: RI.

- Destined for research and aiming to demonstrate the feasibility of the
Java real-time adventure. Performed by the company TimeSys [TIM 17]. It
also exists for Linux/x86.

68 Concurrent, Real-Time and Distributed Programming in Java

The execution of its code is presented in the following diagram:1

Figure 3.1. Reference implementation

– OpenSource implementation: jRate.

jRate is a university project (Irvine University in California) run by Angelo
Corsaro [UCI 17].

jRate is composed of:

– Java.

– C++ (via CNI).

– CNI: Cygnus Native Interface

– The same goal as JNI (Java Native Interface): to allow access to the
JVM via a language other than Java.

– CNI: only C++.

– Direct correspondence between Java and C++.

1 For a color version of the codes appearing in this chapter, see www.iste.co.uk/benmammar/
java.zip

www.iste.co.uk/benmammar/java.zip
www.iste.co.uk/benmammar/java.zip

Real-Time Systems and Real-Time Java 69

– Simpler.

– Faster.

– jRate is an extension of GCJ.

Reminder: the GNU project was launched by Richard Stallman in 1984,
while he was working at MIT (Massachusetts Institute of Technology) in the
artificial intelligence laboratory, in order to create a free and complete
operating system. GNU Compiler Collection, abbreviated to GCC, is a set of
compilers created by the GNU project. GCC is a free software capable of
compiling various languages including C, C++, Objective-C, Java (GCJ),
Ada and Fortran.

– Proprietary implementation: JamaicaVM.

This is a commercialized solution by the company AICAS [AIC 17].
AICAS is a major supplier of Java Virtual Machine, JamaicaVM, for
onboard electronics requiring Hard Real-time. Aicas is present in aerospace,
automotive and industrial robotics market segments. It possesses a real-time
GC.

The following diagram gives an idea of its implementation:

Figure 3.2. Implementation of JamaicaVM

4

Distributed Programming in Java

4.1. Definition of a distributed application

An application is divided into a number of units.

– Each unit is placed on a different machine.

– Each unit can execute on a different system.

– Each unit can be programed in a different language.

Figure 4.1. Monolithic application versus distributed application. For a color version
of the figure, see www.iste.co.uk/benmammar/java.zip

www.iste.co.uk/benmammar/java.zip

72 Concurrent, Real-Time and Distributed Programming in Java

4.2. Communication in a distributed application

4.2.1. Low-level communication: socket

4.2.1.1. Definition

A network socket is a model that allows processes to communicate and
synchronize with one another, either on the same machine or over a network.

Sockets were developed by Berkeley University (California) in 1986.

The original interface designed by Berkeley was for C but since then
sockets have been implemented in various languages.

For Java, the Socket class in the package java.net appearing in J2SE 1.4
(6 Feb 2002) is used to implement sockets.

4.2.1.2. Modes of communication

Sockets directly use the services of the transport layer in the OSI model
(UDP or TCP protocols), which in turn use the services of the network layer
(IP protocol).

Sockets enable two processes to communicate with one another through a
link identified by an IP address and a port number.

– Connected mode (comparable to a telephone communication), using the
TCP protocol. In this mode of communication, a sustainable connection is
established between the two processes, in such a way that the destination
address is not required for each data package.

– Non-connected mode (similar to a communication by mail), using the
UDP protocol. This mode requires the address of the destination for each
package, and does not require a confirmation of receipt.

Communication requires two sockets: one for each of the two programs
communicating over the network.

– One socket for the client.

– One socket for the server (there is a second socket for the connection on
the server side).

Distributed Programming in Java 73

The mode of IP communication used, UDP or TCP, corresponds to the
type of socket.

In the following section, we will focus on TCP sockets.

In Java, each instance of the Socket class is associated with an object of
the InputStream class (to read the socket) and an object from the
OutputStream class (to write the socket).

– The server will use two types of sockets.

– The first, called the connection socket, serves to wait for a client.

– In Java, creating a connection socket can be done by simply instancing
the object of the ServerSocket class from the package java.net.

Example: ServerSocket conn = new ServerSocket(10080).

– The second, called the communication socket, is used to dialogue with
the client.

– Once the connection socket is created, we will then ask it to wait for a
client and obtain the communication socket that will allow it to dialogue
with the client.

– Socket comm = conn.accept().

– We can then communicate with the client using the input and output
streams associated with the socket.

- ServerSocket (numberPort): creates a ServerSocket object on this port
number.

- accept(): waits for a connection from a slow client machine. Upon the
arrival of a connection demand from a client machine, a socket is created to
connect to the server. This will be the object returned with the blocking
method accept().

- ServerSocket (numberPort, int backlog): creates a ServerSocket object
on this port number with a queue for the connection of a size specified by the
backlog.

– Connection demands, when the queue is full, are rejected and cause an
exception from the client’s side. By default, the size is 50.

74 Concurrent, Real-Time and Distributed Programming in Java

A few methods:

– accept(): waits for a connection from a client machine.

– close(): closes the ServerSocket and any ongoing sockets obtained by
its accept method.

– isClosed(): indicates whether the socket is closed.

– getLocalPort(): returns the local port number.

– InetAddress getInetAddress(): returns the server address. InetAddress
represents an IP address and potentially the name of the machine.

– getHostName(): returns the host name memorized in the InetAddress
type object, under the form of a chain of characters.

– getHostAddress(): returns the IP address memorized in the InetAddress
type object, under the form of a chain of characters.

– getByName (String host): returns the IP (InetAddress object)
depending on the name in the parameters.

The aim of the following code is to find the IP address corresponding to a
machine name passed as an argument:

import java.net.*;
public class ResolveName{
 public static void main(String[] args){
InetAddress adresse;
try{
adresse=InetAddress.getByName("localhost");
System.out.println(adresse.getHostAddress());
adresse=InetAddress.getByName("www.facebook.com");
System.out.println(adresse.getHostAddress());
System.out.println(adresse);
}catch(UnknownHostException e) { }
}
}

www.facebook.com

Distributed Programming in Java 75

Execution:

127.0.0.1
31.13.75.36
www.facebook.com/31.13.75.36

Unlike the server, the client only uses one single socket: the
communication socket.

– Connection to the server and obtaining the communication socket.

– Socket comm = new Socket ("localhost", 10080).

– The Socket constructor is a blocking method on the client side.

We can then communicate with the server using the input and output
streams associated with the socket.

– Nine constructors of which two are said to be deprecated, so seven
constructors, including:

- Socket (String host, int port).

- Socket (InetAddress address, int port).

- Uses the IP: InetAdress.

A few methods:

– close(): properly closes the socket and is likely to raise an exception
UnknownHostException.

– getOutputStream(): returns an OutputStream for the socket.

– getInputStream(): returns an InputStream for the socket.

– getPort(): returns the distant port number to which the socket is
connected.

– InetAddress getInetAddress(): returns the address of the distant
machine.

– isClosed(): indicates whether the socket is closed.

– isConnected(): returns the state of the socket connection.

– connect (SocketAddress adresseSocket): connects the server to the
socket.

www.facebook.com/31.13.75.36

76 Concurrent, Real-Time and Distributed Programming in Java

– connect (SocketAddress adresseSocket, int timeout): connects the
socket to the server with an epiration value in the order of the milliseconds.

– Raises a SocketTimeoutException if the delay has already expired.

– SocketAddress is an abstract class.

– InetSocketAddress inherits SocketAddress and is a class representing
an InetAddress and a port.

– InetSocketAddress(InetAddress ina, int port).

– InetSocketAddress(String hostName, int port).

– getAddress().

– getHostname().

– getPort().

The following code is used to create a socket with a timeout by using
connect:

Socket sock = null;
try {
 int port = XYZ;
 int timeOut = 3000;
 SocketAddress sockAddr = new InetSocketAddress("host", port);
 sock = new Socket(); // The Socket constructor creates a socket with no
connection.
 sock.connect(sockAddr, timeOut); // The delay is in milliseconds so 3
seconds.
} catch (UnknownHostException e) {
} catch (SocketTimeoutException e) {
} catch (IOException e) {
}

A connection request blocks until the connection is established or the
timeout expires; if the delay has expired, a SocketTimeoutException is
raised.

Distributed Programming in Java 77

4.2.1.3. Example of communication

In the following, we present a very simple example of communication
with the TCP sockets:

– The client sends a message to the server.

– The server confirms receipt and requests the next word.

– To disconnect, the client sends the word “no”.

Figure 4.2. Example of communication with Sockets. For a
color version of the figure, see www.iste.co.uk/benmammar/java.zip

The server code is as follows:

import java.net.*;
import java.io.*;
class ServerEcho {
 public static void main(String args[]) {
 ServerSocket server = null;
 try {
 server = new ServerSocket(7777); // connection socket
 while (true) {
 Socket sock = server.accept(); // waiting
 System.out.println("connected");
 PrintWriter sockOut = new PrintWriter(sock.getOutputStream(), true);
 BufferedReader sockIn = new BufferedReader(new
 InputStreamReader(sock.getInputStream()));
 String recu;

www.iste.co.uk/benmammar/java.zip

78 Concurrent, Real-Time and Distributed Programming in Java

 while ((recu = sockIn.readLine()) != null) {
 System.out.println("recu:"+recu);
 sockOut.println("next? ");
 } //end while
 sockOut.close();
 sock.close();
 } //end while (true)
 } catch (IOException e) {
try {server.close();}
catch (IOException e2) {}
} // end first catch
}// end main
 } // end class

Figure 4.3. Diagram of communication with Sockets. For a color
version of the figure, see www.iste.co.uk/benmammar/java.zip

www.iste.co.uk/benmammar/java.zip

Distributed Programming in Java 79

The client code is as follows:

import java.io.*;
import java.net.*;
import java.util.Scanner;
public class ClientEcho {
 public static void main(String[] args) throws IOException {
 Socket sock = null;
 PrintWriter sockOut = null;
 BufferedReader sockIn = null;
 try {sock = new Socket("localhost", 7777); // the communication socket.
 sockOut = new PrintWriter(sock.getOutputStream(), true); //force write
 sockIn = new BufferedReader(new InputStreamReader(sock.getInput
Stream()));
 } catch (UnknownHostException e) {
 System.err.println("host unreachable: localhost");
 System.exit(1);
 } catch (IOException e) {
 System.err.println("cannot connect to: localhost");
 System.exit(1);
 }
 System.out.println("press any key to close");
 Scanner scan = new Scanner(System.in);
 String message = scan.next().toLowerCase();
 while (! message.equals("no")) {
 sockOut.println(message);
 String recu = sockIn.readLine();
 System.out.println("server -> client:" + recu);
 message = scan.next().toLowerCase();
 }
 sockOut.close();
 sockIn.close();
 sock.close();
 }
}

80 Concurrent, Real-Time and Distributed Programming in Java

The execution is as follows:

– On the server side:

connected
received: hello
received: bye

– Client side:

press any key to close
hello
server -> client: next ?
bye
server -> client: next ?
no

Note that, for the characters, the Java language uses the “char” type based
on Unicode encoded in 16 bit. The transmission over the networks is based
on an 8 bit byte.

Telecommunication methods for Java are therefore based on the transfer
of bytes.

– Convert a String into bytes[]:

- String chaine = "ABCD";

- byte[] message=chaine.getBytes();

– Convert a byte[] into a String:

- chaine = new String(message);

4.2.1.4. Direct write onto the stream of a socket

The following code enables direct writing onto the stream of a socket:

OutputStream sockOut = socket.getOutputStream();
// Obtain the writing OutputStream of the socket.
// We use it directly to write new bytes.
byte[] buffer = new byte[1024];

Distributed Programming in Java 81

buffer = "ABCD".getBytes();
try {
 sockOut.write(buffer);
// write(buffer) writes all the bytes of the buffer.
sockOut.flush();
 // flush() should force the writing of the buffer content onto the float.
// Does not wait for the buffer to fill up.
 sockOut.write(buffer, 0, 2);
// write(buffer, pos, nbre) writes number of bytes (nbre) from the
indicated position (pos) .
} catch (IOException e) {}

The write and flush can raise a particular IOException, an attempt to
write on a closed float.

In the following segment, we will transfer various data by passing
through a single chain of characters:

try {
 OutputStream sockOut = socket.getOutputStream();
 byte[] buffer = new byte[1024];
 String envoi = "chain String"+" "+(-1234)+" "+12.34+" "+true;
 buffer = envoi.getBytes();
 sockOut.write(buffer, 0, envoi.length());
 sockOut.flush();
} catch (IOException e) {}

4.2.1.5. Direct read the stream of a socket

The following code allows a direct read of the stream of a socket:

InputStream sockIn = socket.getInputStream();
// Obtain the read InputStream of the socket.
byte[] buffer = new byte[1024];
int read;
try {
 read = sockIn.read(buffer);

82 Concurrent, Real-Time and Distributed Programming in Java

// read the stream and store it into the buffer. Returns the number of
read bytes.
System.out.write(buffer, 0, lu);
// display the buffer on the standard output.
} catch (IOException e) {}

The end of float can be normal (closed writing) or accidental
(disconnection of end of writing process).

The reading operations can raise an IOException.

4.2.1.6. High-level reading and writing

DataOutputStream makes it possible to write any type of Java primitive
on all systems.

The following code writes data in a known format in a socket:

DataOutputStream sockDataOut = null;
try {
sockDataOut = new DataOutputStream(socket.getOutputStream());
sockDataOut.writeByte(6); //writes the first byte of the number.
sockDataOut.writeChar('c'); //writes the character that corresponds to the
first 2 bytes.
 sockDataOut.writeBoolean(true); //writes the Boolean on a byte.
 sockDataOut.writeInt(-1234); // writes the number on 4 bytes.
 sockDataOut.writeDouble(12.34); // writes the double on 8 bytes.
 sockDataOut.flush(); // should force write the content of the buffer onto the
float, if there is a buffer.
 sockDataOut.writeUTF("chaine String"); // writes the String by encoding it
into UTF-8 modified.
} catch (IOException e) {
}

For the reading of Java data in a known format from a socket, we must
use DataInputStream that allows us to read any type of Java primitive on all
systems.

Distributed Programming in Java 83

DataInputStream sockDataIn = null;
try {
 sockDataIn = new DataInputStream(socket.getInputStream());
 byte by = sockDataIn.readByte(); // returns the next byte.
 char c = sockDataIn.readChar(); // returns the next character.
 boolean bo = sockDataIn.readBoolean();
// reads a byte and returns false if the byte is == 0.
 int i = sockDataIn.readInt(); // reads 4 bytes and returns the corresponding
number.
 double d = sockDataIn.readDouble(); // reads 8 bytes and returns the
corresponding double.
 String s = sockDataIn.readUTF(); // decodes the bytes into characters and
returns the subsequent String.
} catch (EOFException e) {
} catch (IOException e) {
}

Any of the above methods raise EOFException if the end of the float is
reached.

To write the text in a socket:

PrintWriter sockWriter = new PrintWriter(socket.getOutputStream()));
sockWriter.print("chaine String");
sockWriter.print(1234);
sockWriter.print(12.34);
sockWriter.println(true);

– We create a PrintWriter attached to the OutputStream.

– We can then directly read any Java type with print or println.

– None of these methods generate Exceptions.

The following code allows a user to read a socket’s text line by line:

try{
BufferedReader sockReader = new BufferedReader(new InputStreamReader
(socket.getInputStream()))

84 Concurrent, Real-Time and Distributed Programming in Java

String line;
while ((line = sockReader.readLine()) != null) System.out.println(line);
} catch (IOException e) {}

– We create a BufferedReader attached to the InputStream.

– We can then directly read the chain of characters with readLine().

– readLine() returns the read line without the end character(s) and null if
it reaches the end of float.

4.2.1.7. Transmitting objects through the sockets

In the following segment, we will discuss transmitting objects through
the sockets.

Example: a client connects to a server to find out a student’s major and
grade.

– A table of students is stored on the server side.

– A client connects to the server and wishes to obtain a student’s info.

– The client must send the name of the student to the server.

– The server reads the name, confirms receipt, browses the table to find
the student and finally saves the student object.

– This object is sent to the client using the sockets.

– The object is read by the client (restore).

– The client displays the characteristics of the object.

– The object transmitted via the network must be serializable.

import java.io.Serializable;
public class Student implements Serializable{
 String name;
 String major;
 int moy;

Distributed Programming in Java 85

 Student (String name, String major, int moy) {
 this.name = name;
 this.major = major;
 this.moy = moy;
 }
 String getNom() {
 return nom;
 }
 public String toString() {
 return "Student: "+name+" "+major+" : "+moy;
 }
}

The Student class is shared between the client and the server1.

1 For a color version of the codes appearing in this chapter, see www.iste.co.uk/ benmammar/
java.zip

www.iste.co.uk/ benmammar/java.zip
www.iste.co.uk/ benmammar/java.zip

86 Concurrent, Real-Time and Distributed Programming in Java

Execution:

Server side:

connected
received: A

Client side:

server -> client: Student: A GL: 13

Distributed Programming in Java 87

4.2.1.8. Communications between a Java applet and a server using
sockets

The following execution shows a communication between an applet and a
server using sockets:

Figure 4.4. Communication between an applet and a server with the Sockets. For a
color version of the figure, see www.iste.co.uk/benmammar/java.zip

The implementation of the server is as follows:

import java.io.*;
import java.net.*;
import java.util.*;
public class NetServer {
 public static void main(String[] args) {
 try{
 ServerSocket serverSocket = new ServerSocket(8765);
 Socket clientSocket = serverSocket.accept();
 BufferedReader in = new BufferedReader(new

www.iste.co.uk/benmammar/java.zip

88 Concurrent, Real-Time and Distributed Programming in Java

 InputStreamReader(clientSocket.getInputStream()));
 PrintWriter out = new
 PrintWriter(clientSocket.getOutputStream(), true);
 while (true) {
 Integer numb = new Integer(in.readLine());
 System.out.println("recu: " + numb.intValue());
 out.println(numb.intValue()+1);
 }
 }catch(IOException ex){System.err.println(ex);}
 }
}

The implementation of the client is as follows:

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
public class NetApplet extends Applet implements ActionListener {
 TextField numbField;
 Label display;
 Socket socket;
 public void init() {
 try {
 socket = new Socket("localhost",8765);
 } catch (UnknownHostException e) {System.out.println("Unknown
host");}
 catch (IOException e) { System.out.println("IO Exception");}
 numbField = new TextField(6);
 add(numbField);
 Button button = new Button("Send");
 add(button);
 button.addActionListener(this);
 display = new Label("Pas de nombre");

Distributed Programming in Java 89

 add(display);
 }
 public void actionPerformed(ActionEvent e) {
 int numb = 0;
 String numbStr = null;
 BufferedReader in = null;
 PrintWriter out = null;
 String actionCommand = e.getActionCommand(); // know the source of
the event
 if (e.getSource() instanceof Button)
 if (actionCommand.equals("Send")){
 try {numb = Integer.parseInt(numbField.getText());}
 catch (NumberFormatException ex) {System.out.println
("Number Format Exception");}
 try {
 in = new BufferedReader(new
 InputStreamReader(socket.getInputStream()));
 out = new PrintWriter(socket.getOutputStream(), true);
 }
 catch (IOException ex) {System.out.println("IO
Exception");}
 out.println(numb);
 try {numbStr = in.readLine();}
 catch (IOException ex) {System.out.println("Applet receive
 failed:");}
 display.setText(numbStr);
 }
 }
}// end of class

4.2.2. High-level communication: middleware

These are layers offering more complex services. These layers are created
using TCP/UDP layers.

90 Concurrent, Real-Time and Distributed Programming in Java

Example: call from a method in a distant entity.

– The middleware is an intermediary layer (software layer) that fits into
the communication infrastructure of a network and the elements of the
distributed application.

Figure 4.5. Position of Middleware in a network. For a color version of
the figure, see www.iste.co.uk/benmammar/java.zip

– The distributed environments are based (for the most-part) on an RPC
mechanism (remote procedure call).

– This mechanism functions with a request/response mode.

– The client makes a request (asks for a service).

– The server then processes the request and, finally, returns a response to
the client.

The RPC possesses the following characteristics:

– Procedural programming, so not object-oriented.

– Parameters and return values are primitive type.

– No “distant reference”.

Subsequently, middleware evolved in the following ways:

– JAVA RMI (Remote Method Invocation).

www.iste.co.uk/benmammar/java.zip

Distributed Programming in Java 91

- Mono-language; Java, multiplatform: from JVM to JVM.

- CORBA (Common Object Request Broker Architecture).

- Multi-language, multiplatform.

- DCOM (Distributed Component Object Model) de Microsoft.

- Multi-language, communication between distributed software
components.

In the following section, we will focus on Java RMI.

Figure 4.6. RPC operation. For a color version of the
figure, see www.iste.co.uk/benmammar/java.zip

4.2.2.1. Introduction to RMI

RMI allows virtual Java machines to communicate whether they are on
the same machine or on two distinct machines.

java.rmi: API integrated into the JDK 1.1 and more (since 1997).

In order for the clients to access distant services, they must be saved in a
registry.

www.iste.co.uk/benmammar/java.zip

92 Concurrent, Real-Time and Distributed Programming in Java

The RMI registry is called rmiregistry and it possesses a hashing table
where the keys are names and the values are distant objects.

Figure 4.7. rmiregistry

The operating principle of an RMI application is the following:

– The server creates the objects and saves them in the rmiregistry.

– This allows the clients to locate the objects and get references towards
these objects.

– When a client wishes to summon an object remotely, it checks the
rmiregistry to locate the object: it supplies the name of the object and
receives a reference towards this distant object (a stub).

– With the newly obtained reference, the client will be able to summon
the methods of this object.

The methods of the proxy B summon the real methods on the distant
object B by traveling over the network.

– When a client obtains a reference to a distributed object, it obtains in
fact a reference to a stub.

Distributed Programming in Java 93

– A stub is a proxy (local representative of a distant object) that is loaded
into the client upon obtaining the reference.

– The client therefore summons, via its reference, the methods that reside
in the stub that summons the real methods on the distant object by travelling
over a network.

– This is the mechanism that ensures the transparency of calls.

Figure 4.8. Operation of an RMI application. For a color version of
the figure, see www.iste.co.uk/benmammar/java.zip

Figure 4.9 represents the stages of a call for a distant method.

4.2.2.2. RMI architecture

Figure 4.10 represents the RMI architecture.

www.iste.co.uk/benmammar/java.zip

94 Concurrent, Real-Time and Distributed Programming in Java

Figure 4.9. Stages of a distant method call. For a color version of the
figure, see www.iste.co.uk/benmammar/java.zip

Figure 4.10. RMI architecture. For a color version of the figure, see
www.iste.co.uk/benmammar/java.zip

www.iste.co.uk/benmammar/java.zip
www.iste.co.uk/benmammar/java.zip

Distributed Programming in Java 95

– First layer: stub/skeleton.

- Stub: local representative of the distributed object.

 - Initiates a connection with the distant JVM by transmitting the
distant summon to the layer of reference objects (RRL).

 - Assembles the parameters in preparation for their transfer to the
distant JVM.

 - Waits for the results of the remote invocation, disassembles the
value or the exception returned and returns the value by calling it.

- Skeleton: used to locate the distributed object.

 - Disassembles the parameters for the distant method.

 - Calls on the requested method.

 - Assembly of the result (returned value or exception) destined to the
caller.

- Remarks: The skeleton is no longer necessary since Java 2 (1998).

- A similar class of generic skeleton is shared between all distant
objects.

- Furthermore, up until version 5.0 of J2SE (2004), a stub compiler
called RMIC (Java RMI Compiler) was required to generate the stub/
skeleton before saving on the RMI registry.

- Now, it is possible to generate them dynamically (no need to use the
RMIC).

– Second layer: RRL (object reference layer).

- Helps obtain the reference of the distant object by consulting the
rmiregistry.

- rmiregistry executes on each machine hosting distant objects.

- Only one rmiregistry per JVM.

- rmiregistry accepts service requests on port 1099 (by default).

– Third layer: transport.

- Uses a communication protocol above TCP/IP.

96 Concurrent, Real-Time and Distributed Programming in Java

- During a method call, the stub transmits the call to the RRL layer, the
latter transmits the request to the transport layer of the RMI that is above the
TCP/IP and transfers the request by climbing up to the skeleton that calls
upon the distant object.

- By default, RMI uses the protocol JRMP (Java Remote Method
Protocol) on port 1099. This is a protocol that is used to call distant methods.

 - JRMP is the communication protocol of RMI, used only between
applications written in Java

 - Original version.

 - Integrated in the language.

 - Simple to use.

- Starting from Java 2, and for compatibility with CORBA,
communications between the client and the server can be performed using
the protocol IIOP (Internet Inter-ORB Protocol).

 - Recent version.

 - Compatible with CORBA.

 - More difficult to implement.

In this case, the package javax.rmi is required

4.2.2.3. Deploying the RMI

A number of packages are used to deploy RMI:

– java.rmi.Naming

– java.rmi.Remote

– java.rmi.RemoteException

– java.rmi.server.UnicastRemoteObject

– java.rmi.registry.LocateRegistry

– java.rmi.NotBoundException

java.rmi.Naming: is a final class: public final class Naming extends
Object.

– The server can record a distant object using the bind() (or rebind())
method.

Distributed Programming in Java 97

– static void bind (String name, Remote obj) throws
AlreadyBoundException, MalformedURLException, RemoteException.

– static void rebind (String name, Remote obj) throws RemoteException,
MalformedURLException.

– Note: bind() throws an exception if an object is already recorded under
the same name in the registry (same name for two different objects).

Remote is an interface for designing distant objects.

– The client will find the object thanks to the lookup() method.

– static Remote lookup (String name) throws NotBoundException,
MalformedURLException, RemoteException

The following will deploy RMI:

– Server side:

- The definition of an interface containing the methods that can be
called remotely (the interface is shared with the client).

- Writing a class that implements this interface.

- Writing a class (server) that will instance the object and record it
while giving it a name in the RMI registry.

– Client side:

- Obtaining a reference on the distant object from its name.

- Calling method from that reference.

To deploy RMI, follow the steps given below:

Shared interface between the client and the server:

The interface must extend java.rmi.Remote.

import java.rmi.Remote;
import java.rmi.RemoteException;
 public interface Hello extends Remote {
 public String Bonjour() throws RemoteException;
 }

98 Concurrent, Real-Time and Distributed Programming in Java

– Remote is a methodless interface.

– An object that implements the Hello interface is an object that supports
distant access to its methods.

– All methods must launch a RemoteException.

Figure 4.11. Deploying RMI. For a color version of the figure, see
www.iste.co.uk/benmammar/java.zip

Implementing the class that implements the interface on the server side:

import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
public class HelloImpl extends UnicastRemoteObject implements Hello
{
 public HelloImpl() throws RemoteException {
 }
public String Bonjour() throws RemoteException {
 return "Bonjour tous le monde !";
 }
}

www.iste.co.uk/benmammar/java.zip

Distributed Programming in Java 99

– It must implement the Hello interface.

– It must extend the UnicastRemoteObject.

– Unicast: the distant object exists in one unique copy on one single
machine.

– It can implement methods other than the one in the interface, but these
will not be remotely accessible.

– The builders launch a RemoteException.

– Therefore, the user must always write one.

Implementing the server:

import java.net.MalformedURLException;
import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
public class HelloServer {
 public static void main(String[] args) {
 try {
LocateRegistry.createRegistry(1099);
 } catch (RemoteException e1) {
 System.err.println("rmiregistry is already launched on this port");
 System.exit(1);
 }
 Hello hello;
 try {
 hello = new HelloImpl();
 Naming.rebind("rmi://localhost:1099/Hello",hello);
 } catch (RemoteException e) {
 System.err.println("have you launched rmiregistry?");
 System.exit(1);
 } catch (MalformedURLException e) {

100 Concurrent, Real-Time and Distributed Programming in Java

 throw new InternalError("the URL is incorrect");
 }
 }
}

The general format of an RMI URL is rmi://host:port/Nom.

Example: Naming.rebind("rmi://localhost:1099/Hello",hello).

– Only the Name is mandatory.

– The protocol by default is rmi.

– The default port is 1099.

– The default host is localhost.

Examples of valid URLs:

– Name (port 1099 on localhost).

– //172.16.2.125/Name (port = 1099).

– //172.16.2.125:2000/Name.

Implementing the client:

import java.net.MalformedURLException;
import java.rmi.Naming;
import java.rmi.NotBoundException;
import java.rmi.RemoteException;
public class HelloClient {
 public static void main(String[] args) {
 String url = null;
 Hello hello = null;
 try {
 url = "rmi://localhost:1099/Hello";
 hello = (Hello) Naming.lookup(url); // hello is the Stub
} catch (MalformedURLException e) {
 System.err.println("The URL " + url + "is incorrect");
System.exit(1);
 } catch (RemoteException e) {

Distributed Programming in Java 101

 System.err.println("Have you launched the rmiregistry ?");
 System.exit(2);
 } catch (NotBoundException e) {
 System.err.println("Have you launched the server?");
 System.exit(2);
 }
try {
 System.out.println(hello.Hello()); // call remote method
 } catch (RemoteException e) {
 System.err.println("The server appears to be down");
 System.exit(4);
 }
 }
}

– Launch server.

– Launch client.

– Execution on client side:

Bonjour tout le monde !

To implement an RMI application, you must first:

– Write the Remote interface(s).

- Hello.java.

– Write its (their) implementation(s).

- HelloImpl.java.

– Write the server.

- HelloServer.java.

– Write the client.

- HelloClient.java.

Note: it is possible to regroup both classes (server and interface
implementation) in the same class.

102 Concurrent, Real-Time and Distributed Programming in Java

The following example discusses this type of case. It is a remote
multiplication.

The interface:

import java.rmi.Remote;
import java.rmi.RemoteException;
public interface Hello extends Remote {
public int multi (int a, int b) throws RemoteException;
}

Implementing the server:

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
public class HelloServer extends UnicastRemoteObject implements
Hello {
public HelloServer() throws RemoteException {}
public int multi(int a, int b) throws RemoteException {
return a * b; }
public static void main(String[] args) {
 try {
 LocateRegistry.createRegistry(1099);
 } catch (RemoteException e1) {
 System.err.println("rmiregistry is already launched on this port");
 System.exit(1);
 }
 try {
HelloServer objet = new HelloServer();
Naming.rebind("badr",object);
System.out.println("Server ready");
}

Distributed Programming in Java 103

catch(Exception e) {
System.err.println("Error: " + e.getMessage());
}
}
}

A few notes surrounding bind and rebind:

The following code is correct:

HelloServer object = new HelloServer();
Naming.rebind("badr",object);
Naming.rebind("badr1",object);

There is the possibility to attribute more than one name to the same
object: bind or rebind regardless.

The following code generates an exception:

HelloServer object = new HelloServer();
HelloServer object1 = new HelloServer();
Naming.bind("badr",object);
Naming.bind("badr",object1);

The following code is correct:

HelloServer object = new HelloServer();
HelloServer object1 = new HelloServer();
Naming.rebind("badr",object);
Naming.rebind("badr",object1);

It works with a rebind because it is a resave; badr only refers to object1.

Implementing the client:

import java.rmi.*;
public class HelloClient {
public static void main(String[] args) {
try {

104 Concurrent, Real-Time and Distributed Programming in Java

 Hello reference = (Hello)Naming.lookup("badr");
 int resultat = reference.multi(5,12);
 System.out.println("The multiplication is: " + result); }
catch(Exception e) { System.err.println("Error: " + e.getMessage()); }
}
}

Execution:

– Server side: Server ready.

– Client side: The multiplication is 60.

The following class is useful for generating the registry:

– public final class LocateRegistry extends Object.

– Class used to generate the rmiregistry in the package java.rmi.registry.

– createRegistry method:

- static Registry createRegistry (int port): create registry.

- LocateRegistry.createRegistry(1099): create registry on port 1099.

- createRegistry is a static method that returns a Registry.

- public interface Registry extends Remote.

- In the package java.rmi.registry.

- LocateRegistry.createRegistry(1099): create a distant registry
(rmiregistry).

– getRegistry method:

- Returns a reference towards the distant registry.

- Various signatures:

 - static Registry getRegistry().

 - static Registry getRegistry(int port).

 - static Registry getRegistry(String host).

 - static Registry getRegistry(String host, int port).

Distributed Programming in Java 105

 - static Registry getRegistry(String host, int port,
RMIClientSocketFactory csf)

Example of application:

String [] NamesSaved = LocateRegistry.getRegistry("localhost",
1099).list();
liste (): method of the Registry interface which returns the list of names
recorded in the registry.

4.2.2.4. Parameter exchanges in RMI

The parameters exchanged through the Java RMI must be:

– Primitive types: int, short, double, boolean …, also String.

– Serializable objects.

– Remote objects.

The primitive types are transmitted by value (copy).

The Serializable objects are serialized, transmitted, then deserialized
(transmitted by value).

The Remote objects are transmitted under the form of distant references.

– Primitive types:

The following code represents the implementation of the method “multi”
on the server side:

public int multi (int a, int b) throws RemoteException {
 return a * b;
}

The method call on the client side is as follows:

try {
 Hello reference = (Hello)Naming.lookup("badr");
 int result = reference.multi(5,12);
 System.out.println("The multiplication is: " + result);
}catch(Exception e) { System.err.println("Error: " + e.getMessage()); }

106 Concurrent, Real-Time and Distributed Programming in Java

In the previous example, the call is performed by value.

– Transmitting a Serializable object:

Example: we wish to use a data server to store a set of 2D coordinates
describing the positions of a certain number of vehicles on a plane.

This server will have to include the following functionalities:

– Creating a new position and attributing it a name.

– Read-access to the positions.

– Access to the number of positions.

– The server must implement a hashing-Table.

– In java, the Hashtable class is the one found in the package java.util.

Figure 4.12. rmiregistry. For a color version of the figure, see
www.iste.co.uk/benmammar/java.zip

www.iste.co.uk/benmammar/java.zip

Distributed Programming in Java 107

In our case:

– The keys are the names given to the positions.

– The values are the 2D coordinates of the vehicles.

– The shared interface is as follows:

import java.rmi.*;
 public interface Position extends Remote {
 public void insererTable (Point p, String nom) throws
RemoteException;
 public Point position (String nom) throws RemoteException ;
 public int nombreCles() throws RemoteException ;
}

The previous interface implements the following:

– Creating a new position and attributing a name.

– Read-access to the positions.

– Access to the number of positions.

The Point class must implement Serializable.

import java.io.Serializable ;
public class Point implements Serializable {
 public float x;
 public float y;
 public Point(float xx,float yy) {
 x = xx;
 y = yy;
 }
public String toString() {
 return("("+x+", "+y+")") ;
 }
}

108 Concurrent, Real-Time and Distributed Programming in Java

The implementation of the server:

import java.rmi.*;
import java.rmi.server.*;
import java.net.*;
import java.util.Hashtable;
import java.rmi.registry.*;
public class Serveur extends UnicastRemoteObject implements Position
{
 private Hashtable h;
public Serveur() throws RemoteException {
 h = new Hashtable() ;
 }
 public void insererTable(Point p,String nom) throws RemoteException
{
 h.put(nom,p);
 }
public Point position(String nom) throws RemoteException {
 return((Point) h.get(nom));
 }
 public int nombreCles() throws RemoteException {
 return(h.size());
 }
public static void main(String [] args) {
 try {
 Serveur ib = new Serveur();
 try {
LocateRegistry.createRegistry(1099);
 } catch (RemoteException e1) {
 System.err.println("rmiregistry is already launched on this port");
 System.exit(1);
 }
 Naming.rebind("rmi://localhost:1099/Data",ib);
 System.out.println("Ready"); }
 catch (RemoteException re) {

Distributed Programming in Java 109

 System.out.println(re) ; }
 catch(MalformedURLException e) {
 System.out.println(e) ; }
 }
}

The implementation of the client:

import java.rmi.* ;
 public class Client {
 public static void main(String [] args) {
 try {
 Position b =(Position) Naming.lookup("Data");
 System.out.println(b.nombreCles()) ;
 b.insererTable(new Point(11,5),"P0") ;
 b.insererTable(new Point(14,9),"P1");
 System.out.println(b.nombreCles());
 System.out.println(b.position("P0")) ;
 System.out.println(b.position("P1")) ;
 }
 catch (Exception e) {
 System.out.println(e) ; }
 }
 }

Execution:

– Server side:

Ready

– Client side:

0
2
(11.0, 5.0)
(14.0, 9.0)

110 Concurrent, Real-Time and Distributed Programming in Java

Ignoring Serializable in the Point definition as follows:

public class Point {
 public float x ;
 public float y ;
 public Point(float xx,float yy) {
 x = xx;
 y = yy;
 }
public String toString() {
 return("("+x+", "+y+")") ;
 }
}

will give us the following execution:

– Server side:

Ready // The transmission has not yet occurred.

– Client side:

0 // primitive type int does not pose a problem.

 java.rmi.MarshalException: error marshalling arguments; nested
exception is:

 java.io.NotSerializableException: Position

The problem occurs for the Point type object transmission which must be
Serializable.

Transmitting Remote objects: RMI multi-thread servers (chatrooms):

– Each client is a thread and has three possible actions: join, talk or leave.

– The server must now maintain a list of distributed objects (Remote).

– Use synchronized to guarantee coherence across the data.

Distributed Programming in Java 111

– The client’s actions must be displayed to other clients.

– Thread implemented using Jframe (Swing)

First client:

Second client:

112 Concurrent, Real-Time and Distributed Programming in Java

Third client:

When the third client disconnects, the first client should see this:

Distributed Programming in Java 113

The second client will be as follows:

import java.rmi.*;
public interface ChatInterface extends Remote {
 public void rejoindre (Notify n) throws RemoteException;
 public void parler (Notify n, String s) throws RemoteException;
 public void laisser (Notify n) throws RemoteException;
}
import java.rmi.*;
public interface Notify extends Remote { // Notify refers to a client
 public String getName() throws RemoteException;
 public void setName(String s) throws RemoteException;
 public void joinMessage (String name) throws RemoteException;
 public void sendMessage (String name, String message) throws
RemoteException;
 public void exitMessage (String name) throws RemoteException;
} // name is the name of the client.

On the server side:

public class Serveur extends UnicastRemoteObject implements
ChatInterface {

114 Concurrent, Real-Time and Distributed Programming in Java

private Collection<Notify> threadList = new ArrayList<Notify>();
 public Serveur() throws RemoteException {}
public synchronized void join (Notify n) throws RemoteException {
threadList.add(n);
// browse the list
for (Iterator i = threadList.iterator();i.hasNext();) {
Notify client = (Notify)i.next(); // retrieve element in the list
client.joinMessage(n.getName());
 }
 }
…
…

Collection is an interface implemented by ArrayList.

iterator() is a Collection method that returns an Iterator on the table (Iterator
is an interface to designate an iterator on the table).
hasNext() and next() are methods of the Iterator.

Part of the class that implements Notify:

Distributed Programming in Java 115

4.2.2.5. Security management in RMI

Security is important when code is downloaded (it can be risky to execute
code from a remote server). Being able to transmit executable code remotely
is, in theory, a security flaw. When transmitting code locally, there is no
security issue.

– Solution:

- Implement a “security manager”.

– General solution in Java:

- Use class java.lang.SecurityManager (extends Object).

- This allows the specification of permissions to access files, networks,
etc.

– Specific solution for RMI:

- Use class java.rmi.RMISecurityManager.

- public class RMISecurityManager extends SecurityManager.

With RMI, there are two ways to manage security:

– Use a sub-class of SecurityManager instead of RMISecurityManager.

public class SecurityManagerOuvert extends SecurityManager{
public void checkPermission(Permission perm) { }
}

– Use RMISecurityManager in conjunction with (from Java 2) a file
describing permissions policy: file “java.policy”.

The file java.policy defines the security policy in order to specify
authorized actions.

In: C:\Program Files (x86)\Java\jdk1.8.0_25\jre\lib\security.

116 Concurrent, Real-Time and Distributed Programming in Java

Example of content in the file java.policy:

grant {
 permission java.security.AllPermission;
};

It allows all method calls (no security policy).

grant {
permission java.net.SocketPermission "*:1024-65535", "connect,
accept";
permission java.net.SocketPermission "*:80", "connect";
permission java.io.FilePermission "C:\\temp\\m2rsd.txt", "read";
permission java.io.FilePermission "C:\\temp\\test.exe ", "read, write,
delete, execute";
};

It allows socket connections on ports 1024 to 65535 for all RMI clients
and connections to the default Webserver (port 80) on all machines. It also
defines access rights in relation to cited files.

To install a security manager, execute the following code:
System.setSecurityManager(new SecurityManager()));

Example:

public static void main (String args[]) { // server
System.setSecurityManager (new SecurityManager ()) ;
try {
LocateRegistry.createRegistry(1099);
 } catch (RemoteException e1) {
 System.err.println("rmiregistry is already launched on this port");
 System.exit(1);
 }

Distributed Programming in Java 117

To use java.policy:

$ javac Server.java
$ java -Djava.security.policy=java.policy Server

We can also use RMI with TLS:

– Transport Layer Security (TLS), previously known as Secure Sockets
Layer (SSL), is a security protocol for exchanges over the Internet.

– Since J2SE 5.0 (2004), it is possible to use TLS with RMI.

– TLS acts as an additional layer that ensures data-security, located
between the application layer and the transport layer.

Objective:

– Server authentication.

– Optionally, client authentication.

– Data confidentiality (or encrypted session).

– Integrity of exchanged data.

– The JSSE API (Java Secure Socket Extension) makes it possible to
manipulate secure sockets in Java responding to SSL specifications.

– The JSSE classes and interfaces are grouped into packages javax.net
and javax.net.ssl.

Figure 4.13. RMI with TLS. For a color version of the figure, see
www.iste.co.uk/benmammar/java.zip

www.iste.co.uk/benmammar/java.zip

118 Concurrent, Real-Time and Distributed Programming in Java

4.2.2.6. Dynamic class loading

– Java classes are hosted on a Web server.

– This avoids holding all class definitions locally.

– The same class files are shared by all clients.

– Only classes that are needed are loaded.

– In this case, we can turn towards dynamic loading:

- Place the java class (stub, for example) in a Web server that is
accessible by the client. For example: http://monserveur.fr/test.

- Implement a SecurityManager:

 - Add the following line in the client and the server:
System.setSecurityManager(new SecurityManager()));

 - Execute the following on the server: java -
Djava.security.policy=java.policy Server

 - Execute the client by supplying the dynamic class loading URL:

 - java -Djava.rmi.server.codebase=http://myserver.fr/test/

 - Djava.security.policy=java.policy Client

The stub on the server side is as follows:

import java.rmi.Naming;
public class HelloClient {
public HelloClient() {
try {
Hello obj = (Hello)Naming.lookup("Hello");
System.out.println(obj.Bonjour());
} catch (Exception e) {

http://monserveur.fr/test.
http://myserver.fr/test/

Distributed Programming in Java 119

System.out.println("HelloClient exception: " + e);
}
}
}

HelloClient.java is a class shared between various RMI clients.

The following code represents an RMI client using dynamic class
loading:

import java.rmi.server.RMIClassLoader;
import java.util.Properties;
public class DynamicClient {
public DynamicClient() throws Exception {
// Install a security manager (without this manager, loading is unauthorized)
System.setSecurityManager(new SecurityManager());
Properties p = System.getProperties();
/Indicate the download path
String url = p.getProperty("java.rmi.server.codebase");
// Download desired class
Class clientClass = RMIClassLoader.loadClass(url, "HelloClient");
// Create an instance of class
clientClass.newInstance();
}
public static void main (String args[]) {
try {DynamicClient dc = new DynamicClient();
} catch (Exception e) {System.out.println(e);}
}
}

4.2.2.7. Asynchronicity in RMI: callback methods

In RMI, the client calls a method located on the server side.

Requirement: during execution, the server can launch processes on the
client side.

120 Concurrent, Real-Time and Distributed Programming in Java

Perform a call from the server towards the clients.

Objective: increase dynamism.

In this case, each element (client or server) can play both roles
indifferently (client and server simultaneously).

Server calls towards the client are called callbacks.

– Since the server does not know the way this type of method is
implemented and that its execution time can be long, the callbacks will
generally be implemented as asynchronous operations.

– The server avoids penalizing the other clients with a synchronous call.

– Synchronous call → Blocked execution awaiting result.

– The callback is a mechanism that allows the introduction of
asynchronicity in RMI, whose invocations are naturally synchronous and
blocking.

– An asynchronous method is always void (returns no result).

– The program making the call does not need an immediate result; if not,
it will be blocked.

– In Java methods are synchronous except for the start() method of a
thread.

– start() does not block the calling thread.

– The client passes the object to callback (Remote object) as a parameter
to the server.

– The client leaves its coordinates to be called back subsequently.

– First interface: ServerInterface (server side implementation).

– The server executes an asynchronous call on the object.

– A thread must perform the callback.

– Second interface: InterfaceCallback (client side implementation).

Distributed Programming in Java 121

Figure 4.14. Callback in RMI. For a color version of the figure, see
www.iste.co.uk/benmammar/java.zip

To perform the callback, we need six classes as follows:

Figure 4.15. Necessary classes for a callback. For a color version of
the figure, see www.iste.co.uk/benmammar/java.zip

www.iste.co.uk/benmammar/java.zip
www.iste.co.uk/benmammar/java.zip

122 Concurrent, Real-Time and Distributed Programming in Java

InterfaceCalback.java: interface containing the callback method. This
interface is implemented by Callback.java.

An example of this interface is as follows:

import java.rmi.Remote ;
import java.rmi.RemoteException ;
public interface InterfaceCallback extends Remote {
 public void doCallback () throws RemoteException ;
}

It is the interface of the callback method that is implemented on the client
side.

Callback.java: the class that implements the callback method. This class
is available only on the client side to implement the callback method.

import java.rmi.RemoteException ;
import java.rmi.server.UnicastRemoteObject ;
public class Callback extends UnicastRemoteObject implements
InterfaceCallback {
public Callback () throws RemoteException {}
public void doCallback () throws RemoteException {
 System.out.println ("Bonjour tous le monde") ;
}
}

Servant.java: the thread which launches the callback method.

import java.rmi.*;
public class Servant extends Thread {
private InterfaceCallback obj ;
public Servant (InterfaceCallback obj) {
this.obj = obj ;
}
public void run () { // execution as a separate thread
try {Thread.sleep (3000) ; } catch (InterruptedException e) { }

Distributed Programming in Java 123

try {obj.doCallback () ; // executes the callback, calls the method on the
client side
}
catch (RemoteException e) {
 System.err.println ("Return call failed: " + e) ;
}
}
}

InterfaceServer.java: interface containing the method used by the server
in order to call back the client, the parameter of this method is the object to
call back. This interface is implemented by Server.java.

import java.rmi.Remote;
import java.rmi.RemoteException;
public interface InterfaceServeur extends Remote {
 public void callMeBack (InterfaceCallback obj) throws RemoteException
;
}

The callMeBack method is used by the client.

Client.java: creates the object and passes it to the server (call the method
of the InterfaceServer that is implemented on the server side).

Make a classic RMI to be called back:

import java.rmi.Naming ;
public class Client {
public static void main(String [] args) throws Exception {
Callback obj = new Callback () ; // creation of the callback object
InterfaceServeur serv= (InterfaceServeur) Naming.lookup ("Server");
System.out.println ("Starting call");
serv.callMeBack (obj) ; // call request
}
}

124 Concurrent, Real-Time and Distributed Programming in Java

Server.java: implements the method that calls back the client passing the
received object of this last thread.

import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.rmi.server.UnicastRemoteObject;
public class Server extends UnicastRemoteObject implements
InterfaceServer {
public Server () throws RemoteException { }
public void callMeBack (InterfaceCallback obj) throws RemoteException {
Servant servant = new Servant (obj) ; // Creation of the thread
servant.start () ; // Initialization of the thread
}
public static void main(String [] args) throws Exception {
try {LocateRegistry.createRegistry(1099);} catch (RemoteException e1) {
 System.err.println("rmiregistry is already launched on this
port");System.exit(1); }
Server serv = new Server () ;
Naming.rebind ("Server" , serv) ;
System.out.println ("Server ready") ;
}
}

Execution:

Server side: server ready.

Client side: starting call.

Hello everyone.

Distributed Programming in Java 125

4.2.2.8. Distributed garbage collector in RMI

– Difficulty: distributed environment so remote references.

– Goal: prevent referencing message losses.

A distant object is made available for the DGC (distributed garbage
collector), if there are no more stubs present.

– With RMI: double mechanism managed by:

- Reference counting: number of clients counting the object.

 - Each reference transmission +1.

 - Each end of referencing –1.

- Lease: Memory that is “let” to an object for a limited time.

 - By default 600000 milliseconds (10 min), changeable with the
property java.rmi.dgc.leaseValue (starting in version 1.1 of the JDK).

 - To modify it, do it upon launching the program:

$ java -Djava.rmi.dgc.leaseValue=20000 Server.

If the counter falls below 0 or if the lease expires, the object becomes a
candidate for the DGC.

Exercise 1: lifecycle of a thread

Consider the following class:

class Parrot4 extends Thread{
 private String cri = null;
 private int fois = 0;
 public Parrot4 (String s, int i) {
 cri = s;
 fois = i;}
 public void run() {
 System.out.println("Thread parrot:"
 + Thread.currentThread().getName());
 for (int n=0; n<fois; n++) {
 try { Thread.sleep(1000); }
 catch(InterruptedException e) { }
 System.out.println(cri);
 }
 }
}

class ChatAndLaunchParrot4{
 public static void main(String args[]) {
 Parrot4 parrot = new Parrot4("coco",5);

Appendix

128 Concurrent, Real-Time and Distributed Programming in Java

 parrot.start();
 System.out.println("Thread chatty : "
 + Thread.currentThread().getName());
 for (int n=0; n<15; n++) {
 try { Thread.sleep(1000);}
 catch(InterruptedException e) { }
 System.out.print("Thread parrot isAlive: "+ parrot.isAlive()+"\t");
 blabla();
 }
 }
 private static void blabla() {
 System.out.println("blabla");
 }
}

Question: Launch the execution of the above program.

What is the name of the primary thread, what is the name given by
default to the other thread? What is the point of the isAlive() method? Hint:
the class method currentThread() returns a pointer on the object Thread,
which calls this method.

Exercise 2: properties of different threads

Consider the following two classes:

class Parrot5 extends Thread {
 private String cri = null;
 private int fois = 0;
 public Parrot5(String s, int i) {
 super("parrot");
 cri = s;
 fois = i;
}
public void run(){
 afficheThreads();

Appendix 129

 for (int n=0; n<fois; n++) {
 try { Thread.sleep(1000); }
 catch(InterruptedException e) { }
 System.out.println(cri) }
 afficheThreads(); }
 private void afficheThreads() {
 Thread[] tabThread = new Thread[Thread.activeCount()];
 int nbrThread = Thread.enumerate(tabThread);
 for (int i = 0; i < nbrThread ; i++)
 System.out.println(i + "-ieme Thread: " + tabThread[i].getName());
 }
}

class ChatAndLaunchParrot5 {
 public static void main(String args[]) {
 Thread.currentThread().setName("chatty");
 Parrot5 parrot = new Parrot5("coco",15);
 parrot.start();
 for (int n=0; n<5; n++) {
 try { Thread.sleep(1000); }
 catch(InterruptedException e) { }
 blabla();
 }
 }
 private static void blabla() {
 System.out.println("blabla");
 }
 }

Hint: The method setName (String name) makes it possible to name a
thread. The Thread builder offers the possibility to name it as follows:
Thread (String name).

The class method activeCount () gives the number of active threads in the
calling thread’s group.

130 Concurrent, Real-Time and Distributed Programming in Java

The class method enumerates (Thread[] table) stores in the given table the
references of the active threads in the calling thread’s group and sub-groups.
It returns the number of active threads obtained.

Question: launch the execution of the previous program.

The procedure displayThreads() is called before and after the loop for the
method run().
The active threads before the loop were:
Number 0 Thread: chatty
1st Thread: parrot
After the loop for, they became:
Number 0 Thread: parrot
1st Thread: DestroyJavaVM

Explain this result, what is DestroyJavaVM?

Exercise 3: four counters in parallel

The objective for this exercise is to create four counters executing in
parallel.

Each "counter" has a name (Toto for example) and it counts from 1 to 10.
It pauses randomly between each number (0 to 5000 milliseconds for
example). Each counter displays a number (for example, Toto will display,
"Toto: 3"); n displays a message such as "Toto has finished counting to 10"
when it has finished.

The counter class possesses one single attribute, which is the name of the
String-type counter.

Write the counter class and test it by launching 4 that count up to 10. See
which one finishes first (the four counters are named Tata, Titi, Toto, Tutu).

Make 2 versions: one where the threads are created with a Thread
daughter-class, and one where they are created with an instance of a separate
class that implements Runnable.

Appendix 131

Exercise 4: resource in mutual exclusion

Consider the following three java classes:

public class Printer1 {
 private String text;
 public Printer1() {
 text="";
}
 public void print(String t) {
 text=t;
 for (int j=0;j<text.length()-1; j++) {
 System.out.print(text.charAt(j));
 try { Thread.sleep(100);}
 catch (InterruptedException e) {};
 } // end for
System.out.println(text.charAt(text.length()-1));
 }
}

public class Prog56 {
 public static void main (String argv[]) {
 Writer2 writerA, writerB;
 Printer1 print= new Printer1();
 writerA = new Writer2("ABC", print);
 writerB = new Writer2("XYZ", print);
 writerA.start();
 writerB.start();
 }
}

public class Writer2 extends Thread {
 private String text;
 private Printer1 print;
 public Writer2(String t, Printer1 i) {
 print=i;

132 Concurrent, Real-Time and Distributed Programming in Java

 text=t;
 }

 public void run() {
 for (int i=0; i<10; i++) {
 print.print(text);
 try { sleep((long)(Math.random() * 100));}
 catch (InterruptedException e) {}
 } // end for
 System.out.println("writer of " +text+" has finished");
 }
}

– In the class Printer1, describe the behavior of the print method.

– Describe the behavior of a thread of type Writer2 (explain the run()
method).

– Launch the execution of Prog56. Why is the result of the prints
illegible?

– Change in the class Printer1 the signature of the print method to public
synchronized void print (String t) and restart the execution of Prog56.

– What is the point of the synchronized method?

Exercise 5: program a task with an initial delay and a periodicity

We wish to teach a student the multiplication table for 7, and this is why
we want to program a task that displays the multiplication table of 7 every 4
seconds and with an initial delay of 2 seconds. The result is obtained in the
following form:

Do you still want to learn the multiplication table? (y/n)

The multiplication table for 7 is:

1 * 7 = 7
2 * 7 = 14
3 * 7 = 21

Appendix 133

4 * 7 = 28
5 * 7 = 35
6 * 7 = 42
7 * 7 = 49
8 * 7 = 56
9 * 7 = 63
10 * 7 = 70

PS: Any answer other than “y” cancels the programming.

Exercise 6: shared variables: internal class

Consider the two following classes (the class Parrot20 is called internal
class because it is located inside the class MathsParrots20), and there is a
single java file called MathsParrots20.java.

public class MathsParrots20{
 private int counter;
 public static void main(String args[]) {
 new MathsParrots20();
 }
 public MathsParrots20() {
 counter = 1;
 Parrot20 parrotA = new Parrot20("coco", 10);
 Parrot20 parrotB = new Parrot20("hello", 10);
 parrotA.start();
 parrotB.start();
 try {
 parrotA.join();
 parrotB.join();
 }
 catch(InterruptedException e) { }
 System.out.println("counter = "+counter);
 }

 class Parrot20 extends Thread {
 private String cri = null;

134 Concurrent, Real-Time and Distributed Programming in Java

 private int fois = 0;
 public Parrot20(String s, int i) {
 cry = s;
 times = i;
 }
 public void repeat() {
 String repeat = cry + " " + counter;
 System.out.println(repeat);
 counter++;
 try { Thread.sleep((int)(Math.random()*1000)); }
 catch(InterruptedException e) { }
 }
 public void run(){
 for (int n=0; n<fois; n++) repeat();
 }
 }
 }

– Launch and examine the execution.

– Hint: join() is used in order to display the value of the counter before
the end of the two threads. Due to the visibility rules in Java, the counter
variable is visible/accessible from the Parrot20 class and therefore for both
parrotA and parrotB threads. The two threads therefore access a shared space
common to all variables, unlike the processes that possess their own work
space separate from other processes.

– Reuse the simulation of a race to simulate a race between five runners
A, B, C, D and E and display the rank of each runner.

Example:

– A has arrived in first place

– B has arrived in second place

– D has arrived in third place

– …

Appendix 135

Exercise 7: shared variables: global variable (static)

Before beginning: under Java, each letter can be coded via the char type
that also has a whole value. Test and examine the following code:

System.out.println(‘A’);
System.out.println(‘A’+0);
System.out.println(‘A’+1);
System.out.println((char)(‘A’ + 0));
System.out.println((char)(‘A’ + 1));
System.out.println("Display the alphabet:");
 for (int i = 0; i < 26; i++) {
 System.out.print((char)(‘A’ + i)+" ");
 }

– Reuse the example of a race to simulate a race between five runners A,
B, C, D and E and display the rank for each runner. You should use a loop to
launch the five threads.

Example of execution:

– A has arrived in first place

– B has arrived in second place

– D has arrived in third place

– …

– Simulate the four threads A, B, C and D, which calculate respectively
the factorial of 4, 5, 6 and 7. If the order of termination is A, B, C and D, you
should also display:

A is very fast
B is fast
C is average
D is slow

136 Concurrent, Real-Time and Distributed Programming in Java

Exercise 8: synchronization of threads

This exercise deals with the problems of concurrent access to a bank
account (resource-sharing in general). For the following Counter class, its
method Nulloperation is meant to leave the level at 0.

public class Counter {
 private int balance = 0;
 public void operationNulle(int sum) {
 balance += sum;
 System.out.print(" add " + sum);
 balance -= sum;
 System.out.println(" remove " + sum);
 }
 public int getBalance() {
 return balance;
 }
}

Consider the following class that contains the thread Operation and the
primary thread:

public class Operation extends Thread {
 private Counter Counter;
 public Operation(String nom, Counter Counter) {
 super(name);
 this.Counter = Counter;
 }
public void run() {
 while (true) {
 int i = (int) (Math.random() * 1001);
 String nom = getName();
 System.out.println(" I am thread:" +name);
 Counter.operationNulle(i);
 int balance = Counter.getBalance();
 if (balance!= 0) {

Appendix 137

 System.out.println(" I am thread " + name + ":**balance=" +
balance);
 System.exit(1);
 }
 }
 }
public static void main(String[] args) {
 Counter Counter = new Counter();
 for (int i = 0; i < 3; i++) {
 Operation operation = new Operation("" + (char)(‘A’ + i),
Counter);
 operation.start();
 }
 }
}

Question: examine the code and execute the Operation class.

Determine the encountered problem: operationNull should leave the
Counter balance unchanged (at 0), and yet, after a moment, the balance
changes from 0. Explain.

Modify the code to prevent this problem.

Exercise 9: applet and thread

An applet is a small Java destined to be downloaded and executed
through a web browser. Once compiled, an applet must be called in an html
file. Then, in order to be executed, the html file will be visualized in a
browser or in the appletviewer tool.

Copy the following code into a file named Prog11.java.

import java.awt.Graphics ;
import java.applet.Applet;
public class Prog11 extends Applet {

138 Concurrent, Real-Time and Distributed Programming in Java

 public void paint (Graphics g) {
 g.drawLine (10, 30, 200, 30);
 g.drawRect (20, 40, 100, 50);
 g.drawOval (140, 40, 50, 50);
 g.drawString ("hello!", 10, 120);
 }
}

Our class inherits the Applet class: simply redefine the paint method
using the draw method of the Graphics class.

Copy the following code into a file titled drawing.html

<html> <body> <applet code="Prog11.class" width=350 height=150>
</applet> </body></html>

Execute drawing.html (by clicking directly on the file), or the command-
line using appletviewer drawing.html. You can also execute Prog11.java
under Netbeans. For the browser, just make sure the java plugin is present.

Explain the different methods in paint.

Consider the following class:

import java.awt.Graphics;
import java.awt.Color;
import java.applet.Applet;
public class Prog12 extends Applet {
 public void init() {
 setSize(220,120);
 setForeground(Color.red);
 setBackground(Color.white); }
 public void paint(Graphics g) {
 g.drawLine(10, 30, 200, 30);
 g.fillRect(20, 40, 100, 50);
 g.setColor(Color.blue);
 g.drawOval(140, 40, 50, 50);

Appendix 139

 g.drawString("text draw", 10, 60);
}
}

The init method is called only once at the creation of the applet.

Initialization of the applet: modification of its size, and the background
and drawing colors.

Execute the applet.

Explain the different methods in init and paint.

Consider the following CounterThread class:

public class CounterThread extends Applet implements Runnable {
 Thread t;
 int Count;
 public void init() {
 Count=0;
 t=new Thread(this); // t must take an object as a parameter
 t.start();
}
 public void run() {
 while (Count < 20) {
 Count++;
 repaint();
 try {Thread.sleep(1000); } catch (InterruptedException e) {}
 }
 }
 public void paint(Graphics g) {
 g.drawString(Integer.toString(Count),10,10);
 System.out.println("Count= "+Count);
 }
}

140 Concurrent, Real-Time and Distributed Programming in Java

Execute the applet and examine the result.

Would it be possible to declare the CounterThread class differently, why?

I can pass this to the Thread builder, why?

Modify the previous code for Counter ten times faster and without
stopping.

Exercise 10: concurrent access with semaphores

Consider the following class:

import java.util.concurrent.Semaphore;
 class Process2 extends Thread{
 private int id;
 private Semaphore sem;
 public Process2(int i, Semaphore s) {
 id = i;
 sem = s;}
 private void busy()
 {
 try{sleep((int)(Math.random()*1000));}
 catch (InterruptedException e){}
 }
 private void noncritical() {
 System.out.println("Thread " + id + "is not in the critical section");
 busy();
 }
 private void critical() {
 System.out.println("Thread " + id + "enters the critical section");
 busy();
 System.out.println("Thread " + id + "exits the critical section");
 }
 public void run() {
 noncritical();

Appendix 141

 try {
 sem.acquire();
 } catch (InterruptedException e){ }
 critical();
 sem.release();
 }
 public static void main(String[] args) {
Semaphore sem = new Semaphore(4);
 Process2[] p = new Process2[4];
 for (int i = 0; i < 4; i++) {
 p[i] = new Process2(i, sem);
 p[i].start();
 }
 }
}

Questions:

1) Launch the execution and explain the Semaphore declaration sem =
new Semaphore(4); that is, the point of the number 4, what does 4 mean
here?

2) Restart the execution by changing the number 4 to 3, 2, 1 and 0,
respectively. Explain for each one.

3) With the Semaphore declaration, sem = new Semaphore(1); put
sem.release(); in comment. Execute and explain.

Exercise 11: Sleeping barber’s problem (producer/consumer
with semaphore)

A barber owns a salon with one barber seat and a waiting room
containing N waiting seats.

– If he has no customers, the barber sits on the barber seat.
– When a customer arrives:

- If the waiting room is full, the customer comes back later.
- If the barber is asleep, he wakes him up, sits on the barber seat and

waits for his haircut.

142 Concurrent, Real-Time and Distributed Programming in Java

- If the barber is busy when the customer arrives, the customer sits and
falls asleep on one of the N chairs in the waiting room, he must wait for the
barber seat to be available.

– When the barber is done with one haircut, he exits the customer and
goes to wake up one of the customers in the waiting room.

– If the waiting room is empty, the barber goes back to sleep on his
barber seat and waits for another customer to arrive.

The point of this exercise is to associate a thread with the barber as well
as with every customer and program a sleeping barber session in Java. The
use of semaphores is required to guarantee the mutual exclusion among the
threads.

Hint: A client is characterized by its name and three semaphores:
FreeChairs, Wake, BarberChair.

FreeChairs: manages the mutual exclusion in relation to the waiting
room.

Wake: use in order to allow the client to wake the barber if the latter is
asleep.

BarberChair: manages the mutual exclusion in relation to the barber
chair.

A barber is characterized by two semaphores Wake, BarberChair.

Upon initialization, ensure that the two semaphores – Wake, BarberChair
– are in common with barber and the client threads.

Example of initialization:

Barber c = new Barber(Wake, BarberChair);

Client cl = new Client("Client " + i + ":", FreeChairs, Wake,
BarberChair);

In the Semaphore class, the tryAcquire() method attempts to acquire a
chip to access the critical section (returns true in case of success, false in
case of failure).

Appendix 143

Example: while (!FreeChairs.tryAcquire()) sleep(5000); could be used in
the client’s run in order to put itself into wait-mode if there are no free
chairs.

Exercise 12: entry/exit management of a parking lot

In this Exercise, we wish to count the entries and exits of the vehicles in a
parking lot to display the number of available spaces in the parking lot every
time a car exits. The parking lot’s operation is simple: there is one single
entry to the parking lot that has a capacity of N.

The point of this exercise is to count the number of free spaces in the
parking lot using only one shared variable.

This variable must be declared in a class Car (the thread which represents
the behavior of a Car) as follows: static int cont=N;

One single class is necessary in this exercise (Car class), and the latter is
characterized by an integer number i and a semaphore s.

Exercise 13: philosophers’ dinner

This problem is a great classic [DIJ 70]. Five philosophers are reunited to
perform two major activities: think and eat. Each philosopher thinks for a
random amount of time, eats (if possible) during a random amount of time,
then goes back to thinking. When a philosopher asks to eat, a plate of
spaghetti is waiting. The five plates are laid out around a round table as
shown in the figure below:

144 Concurrent, Real-Time and Distributed Programming in Java

For a philosopher to eat his spaghetti, two forks are necessary: his (the
one on the right) and his neighbor’s to the left. Naturally, if one of the
neighbors is already eating, the philosopher cannot eat and must wait for one
or both of the forks to free up.

The solution to this problem must be as optimized as possible: one
philosopher wanting but not being able to eat must wait his turn without
using up CPU time uselessly.

Each philosopher performs the cycle a number of times: THINK, ASK
FOR FOOD, EAT.

We naturally cannot see two philosophers eating side-by-side at the same
time.

One thread can see itself be denied access to a resource during an
undetermined amount of time. It is then said that the thread is starving. A
philosopher cannot eat during a set amount of time when starving. However,
there is a situation of inter-blocking when all philosophers attempt to take a
fork at the same time.

– Program a solution in java that uses two classes: Dinner (contains the
"main", etc.) and Philo (thread corresponding to the activity of a
philosopher).

Example of execution:

Philo0 is thinking
Philo2 is thinking
Philo1 is thinking
Philo3 is thinking
Philo4 is thinking
Philo4 wants to eat
Philo4 is eating
Philo0 wants to eat
Philo3 wants to eat
Philo1 wants to eat
Philo1 is eating
Philo2 wants to eat

Appendix 145

Philo4 has finished eating
Philo3 is eating
Philo4 is thinking
Philo1 has finished eating
Philo1 is thinking
Philo0 is eating
Philo4 wants to eat
Philo1 wants to eat
Philo3 has finished eating
Philo3 is thinking
Philo2 is eating
Philo0 has finished eating
Philo0 is thinking
Philo4 is eating
...

– During your tests, ensure that no two side-by-side philosophers are
eating at the same time, and that there is no starvation, and of course, that
there is no inter-blocking.

Exercise 14: producer/consumer

Consider the three following java classes: B.java, Producer.java and
Consumer.java.

The Producer and the Consumer share an object b of type B.

class B {
private Object [] buffer;
private int taille ;
private int prem, der, nbObj;
public B (int t) {
taille = t;
buffer = new Object [taille];
prem = 0;
der = 0;
nbObj = 0;
}

146 Concurrent, Real-Time and Distributed Programming in Java

public synchronized void depose (Object obj) {
while (cond1) try {wait ();}catch (InterruptedException e) {}
buffer [der] = obj;
der = (der + 1) % size;
nbObj = nbObj + 1;
notify ();
}
public synchronized Object collected () {
while (cond2) try {wait ();}catch (InterruptedException e) {}
Object obj = buffer [prem];
buffer [prem] = null;
prem = (prem + 1) % size;
nbObj = nbObj - 1;
notify ();
return (obj);
}
} // end B

class Producer implements Runnable {
private B b;
private int val;
public Producer (B b) {this.b = b;}
public void run () {
while (true) {
b.putsdown (new Integer (val));
System.out.println (Thread.currentThread ().getName () +"has put down" +
val);
val ++;
try {Thread.sleep ((int)(Math.random ()*100));}catch (Interrupted
Exception e) {}
}
}// end run
}// endProducer

Appendix 147

class Consumer implements Runnable {
private B b;
public Consumer (B b) {this.b = b;}
public void run () {
Integer val;
while (true) {
val = (Integer) b.preleve();
System.out.println (Thread.currentThread ().getName () +"collected" + val);
try {Thread.sleep ((int)(Math.random ()*300));}catch (Interrupted
Exception e) {}
}
}// end run
}// end Consumer

– Complete the code of class B by giving cond1 and cond2.

– In the putsdown method, what is the role of the instruction der = (der +
1) % size?

– Based on the previous question, what is the type of buffer used for an
object of type B?

– Write the class Primary.java, the latter launches two threads P of type
Producer and C of type Consumer. The name of the thread P must be Prod
and the name of the thread C must be Consu. The size of the shared buffer
is 4.

Exercise 15: thread synchronization

You are responsible for a large computer project tasked with piloting
automatic cars. Unfortunately, they do not drive in the same direction and
the road that these cars use has a one-way section. At any moment, more
than one car (N in the general case) can circulate on the one-way road on
condition that they are going the same way, if at least one car is present on
the one-way segment, the cars on the other side will have to wait for the road
to be available.

148 Concurrent, Real-Time and Distributed Programming in Java

Here is the possible operation before your intervention:

Use thread synchronization to sort this problem.

Exercise 16: factorial and Fibonacci with the TCP sockets

Consider the following function:

Function factorial (n: int): integer
Beginning
 If n > 1
 Return n * factorial(n - 1)
 Else
 Return 1
 End if
End

– Implement this function on the server side and create a client/server
model using TCP sockets under Java; the client will have an integer n (>=0)
to the client, and the latter must respond with a factorial (n).

– The Fibonacci sequence is a series of integers in which each entry is the
sum of the two integers that preceded it. It generally begins with the
numbers 0 and 1 (sometimes 1 and 1) and its first numbers are: 0, 1, 1, 2, 3,
5, 8, 13, 21, etc. Your client must now send an integer n to the server, and
the latter must respond with the nth number of the Fibonacci sequence. For
example, if the client sends 8 to the server, it recovers 13 (the eighth
number).

Appendix 149

Exercise 17: mystery with the TCP sockets

– What is the mystery method of the following Java class?

//// A.java
import java.io.*;
public class A{
 public static void mystery (InputStream in, OutputStream out) throws
IOException {
 byte buf[] = new byte[1024]; int n;
 while((n=in.read(buf))!=-1) out.write(buf,0,n);
 in.close();
 out.close();
 }
}

– Consider the following two java classes:

/////////// Client.java
import java.io.*;
import java.net.*;
public class Client{
 public static void main(String []args) throws IOException {
 Socket sock = new Socket(InetAddress.getLocalHost(),9001);
 A.mystery(new
 FileInputStream("./src/test1"),sock.getOutputStream());
 sock.close();
 }
}

//// Server.java
import java.io.*;
import java.net.*;

150 Concurrent, Real-Time and Distributed Programming in Java

public class Serveur{
 public static void main(String []args) throws IOException {
 Socket sock = new ServerSocket(9001).accept();
 A.mystery(sock.getInputStream(),new
 FileOutputStream("./src/test2"));
 sock.close();
 }
}

– What does this application do by executing the two classes (Client and
Server) in localhost?

– By using two different machines (a machine on the client side
and another on the server side), what will be the objective of this
application?

Exercise 18: managing a counter with the TCP sockets

We have a list of bank counters. A counter is characterized by its account
holder, its number and its balance.

The client connects to the server and sends an integer M, the server must
respond with the list of counter account holders who have a higher balance
than M.

– Write the two classes ClientCounter and ServeurCounter according to
the TCP sockets model in java.

– Now, your client must connect to the server by sending a counter
number in order to recover all information on this counter (under the form of
an object for a first version and the form of a chain of characters for a second
version). Make the necessary modifications to your code in order to answer
this question.

Appendix 151

Exercise 19: applet and TCP sockets

Create the following client/server model:

For a color version of the figure, see www.iste.co.uk/benmammar/java.zip

Improve the HMI on the client side and the processing on the server side
in order to perform classic banking operations:

– Open a new Counter;

– Add money to a Counter with a known number;

– Withdraw from a Counter with a known number;

– Display the name of the account holder and the balance of a Counter
with a known number;

– Display the Counter number when the name of the account holder is
known;

– Display the average sum of the balances of all the Counters;

– Display the Counter list.

www.iste.co.uk/benmammar/java.zip

152 Concurrent, Real-Time and Distributed Programming in Java

Exercise 20: arithmetic operations with TCP sockets

In this exercise, ADD, MUL, DIV and SUB correspond, respectively, to
operations of adding, multiplying, dividing and subtracting.

Your objective is to create a client/server application using TCP sockets.
The client sends two operands to the server as well as the operation to
perform (all three in the form of a single chain of characters), and the server
responds with the result of the operation. For example, if the client were to
send to the server:

– ADD 6 1, the server would respond with 7.

– MUL 10 88, the latter would respond with 880.

– SOUS 5 9, the server would respond with -4.

– DIV 9 8, the server would respond with 1.125. (Real division).

– PARIS 6 7, the server would respond with hhhhh error.

Exercise 21: multiplication tables with TCP sockets

– Create a client/server model using TCP sockets java; the client sends an
integer to the server (4 for example), and the latter responds with the
multiplication table of the integer.

The client would, for example, have to display:

Multiplication table of 4:

0 4 8 12 16 20 24 28 32 36 40

– Your client must now send a table of integers, saying {1, 6, 8, 9, 13,
10}.

– The server must respond with the sub-table containing only even
integers ({6, 8, 10}).

Exercise 22: low-level manipulations of TCP sockets

Using low-level TCP socket manipulations (write of OutputStream and
read InputStream), write a client/server model in which the client sends the
server a phrase containing two words (ex. PARIS MADRID).

Appendix 153

The server will spread via the same sentence but over two lines (each
word on one line).

In this example, the server will respond with:

PARIS
MADRID

Exercise 23: manipulating character chains with RMI

– Using Java RMI, write a remote method to calculate the inverse of a
word. For this, we need to write the shared interface between the client and
the server, the client implementation and the server implementation.

– Add a second remote method to return the sub-string containing the
four characters at the beginning of this word.

– Add a third remote method to find out whether the word is a
palindrome.

Exercise 24: Fibonacci with RMI

The Fibonacci sequence is a series of integers in which each number is
the sum of the two numbers before it. It generally begins with 1 and its first
numbers are: 1, 1, 2, 3, 5, 8, 13, 21, etc.

Using Java RMI, write a remote method that has a parameter of number n
and that returns the n first integers of the sequence. Sending 5, for example,
to the server, the latter will respond with the following chain of characters: 1,
1, 2, 3, 5.

Exercise 25: bowtie with RMI

Using Java RMI, write a remote method that receives a chain of
characters with an odd number of characters (you will have to perform a test
on the length of the word) and displays it in the shape of a bowtie. For
example:

h o
he lo

154 Concurrent, Real-Time and Distributed Programming in Java

hello
he lo
h o

Exercise 26: registry service with RMI

We wish to implement a registry service that records names and phone
numbers and allows the user to access them using a name. The registry must
be accessible remotely via RMI. We consider that the name and number are
chains of characters.

– Define an RMI interface that responds to these specifications.

– Develop a server object implanting this interface.

– Develop a client that questions the aforementioned server object.

[AIC 17] AICAS, available at: http://www.aicas.com/, 2017.

[DIJ 71] DIJKSTRA E.W., “Hierarchical ordering of sequential processes” in BRINCH
HANSEN P. (ed.), The Origin of Concurrent Programming, Springer, New York,
1971.

[ORA 17a] ORACLE, “Class Thread”, available at: https://docs.oracle.com/javase/7/
docs/api/java/lang/Thread.html, 2017.

[ORA 17b] ORACLE, “Class ThreadGroup” available at: https://docs.oracle.com/
javase/7/docs/api/java/lang/ThreadGroup.html, 2017.

[JAV 17a] JAVA® COMMUNITY PROCESS, “Real-Time Specification for Java”,
available at: http://www.rtsj.org/, 2017.

[JAV 17b] JAVA® COMMUNITY PROCESS, “Package javax.realtime”, available at:
http://www.rtsj.org/specjavadoc/javax/realtime/package-summary.html, 2017.

[STA 88] STANKOVIC J.A., “Misconceptions about real-time computing: a serious
problem for next-generation systems”, Computer, vol.21, no.10, pp.10–19, 1988.

[TAN 01] TANENBAUM A.S., “Multimedia Operating Systems” in Modern
Operating Systems, 2nd ed., Prentice-Hall, Upper Saddle River, 2001.

[TIM 17] TIMESYS, available at: http://www.timesys.com/, 2017.

[UCI 17] UNIVERSITY OF CALIFORNIA, “Irvine”, available at: http://www.uci.edu/,
2017.

Bibliography

http://www.aicas.com/
http://www.rtsj.org/
http://www.rtsj.org/specjavadoc/javax/realtime/package-summary.html
http://www.timesys.com/
http://www.uci.edu/
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadGroup.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadGroup.html

Index

A, C, D

acquire, 57, 58, 61, 64
API, 91, 117
asynchronous, 66, 120
CNI, 68
CORBA, 91, 96
DCOM, 91
destroy, 15
DGC, 125

G, H, I

GC, 65, 67, 69
GCC, 69
GCJ, 69
GNU, 69
hashtable, 106, 108
IIOP, 96
IP, 72–75, 95, 96

J, K, L

J2EE, 65
J2ME, 65
J2SE, 65, 72, 95, 117
JDK, 91, 125

JNI, 68
JRMP, 96
JSSE, 117
KVM, 65
Linux, 67
low-level, 72

M, N, O

mobile, 65
Nortel, 66
notify, 47–49, 55–58, 65, 113, 114
number, 17, 66, 71–75, 81–83, 89,

96, 106, 107, 125
OSI, 72

Q, R, S

QNX, 66
real-time, 61–63, 65–67, 69
release, 57, 58
Remote, 90, 95–98, 101, 102, 104,

105, 107, 110, 113, 115, 120, 122,
123, 125

RMIC, 95
RPC, 90, 91
RRL, 95

RTSJ, 65, 66
run, 3–11, 13, 16, 18, 19, 22–24, 66,

122
secure, 117
semaphore, 54, 55, 58, 59
socket, 72–77, 79–83, 87–89, 116,

117
SSL, 117

T, V, W

TCP, 72, 73, 77, 89, 95, 96
Timer, 21–24
variable, 1, 30, 33, 34, 36, 43, 45, 55
wait, 10, 13, 38, 45, 47–49, 55, 56,

58, 63, 64, 73, 81
WinCE, 62

	Contents
	Acronyms
	Intro
	Intro to Threads in Java
	Processes versus threads
	Concurrent computing
	Thread creation
	Types of thread
	Monotask versus multitask
	Different states of a thread
	Lifecycle of a thread
	A few notes concerning threads
	Programming a task: Timer and TimerTask

	Thread Synchronization
	Synchronization upon termination: join() method
	Resource in mutual exclusion: synchronized modifier
	Shared variables: internal class
	The problem with mutual exclusions
	Synchronized block
	Synchronized instance method
	Shared variables: class variable
	Synchronization between threads
	Classic Producer–Consumer pattern
	Semaphore in Java

	Real-Time Systems & Real-Time Java
	Real-time systems
	Java in real-time

	Distributed Programming in Java
	Definition of a distributed application
	Communication in a distributed application
	Exercise 1: lifecycle of a thread

	Appendix
	Exercise 2: properties of different threads
	Exercise 3: four counters in parallel
	Exercise 4: resource in mutual exclusion
	Exercise 5: program a task with an initial delay and a periodicity
	Exercise 6: shared variables: internal class
	Exercise 7: shared variables: global variable (static)
	Exercise 8: synchronization of threads
	Exercise 9: applet and thread
	Exercise 10: concurrent access with semaphores
	Exercise 11: Sleeping barber’s problem (producer/consumer with semaphore)
	Exercise 12: entry/exit management of a parking lot
	Exercise 13: philosophers’ dinner
	Exercise 14: producer/consumer
	Exercise 15: thread synchronization
	Exercise 16: factorial and Fibonacci with the TCP sockets
	Exercise 17: mystery with the TCP sockets
	Exercise 18: managing a counter with the TCP sockets
	Exercise 19: applet and TCP sockets
	Exercise 20: arithmetic operations with TCP sockets
	Exercise 21: multiplication tables with TCP sockets
	Exercise 22: low-level manipulations of TCP sockets
	Exercise 23: manipulating character chains with RMI
	Exercise 24: Fibonacci with RMI
	Exercise 25: bowtie with RMI
	Exercise 26: registry service with RMI

	Biblio
	Index

