
Building Web 
Applications with 
Visual Studio 2017

Using .NET Core and Modern JavaScript 
Frameworks
—
Philip Japikse
Kevin Grossnicklaus
Ben Dewey



Building Web 
Applications with Visual 

Studio 2017
Using .NET Core and Modern  

JavaScript Frameworks

Philip Japikse

Kevin Grossnicklaus

Ben Dewey



Building Web Applications with Visual Studio 2017

Philip Japikse			   Kevin Grossnicklaus		  Ben Dewey
West Chester, Ohio		  Ellisville, Missouri			  Charleston, South Carolina
USA				    USA 				    USA

ISBN-13 (pbk): 978-1-4842-2477-9			   ISBN-13 (electronic): 978-1-4842-2478-6
DOI 10.1007/978-1-4842-2478-6

Library of Congress Control Number: 2017947048

Copyright © 2017 by Philip Japikse, Kevin Grossnicklaus and Ben Dewey

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage 
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or 
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material 
contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Todd Green
Development Editor: Laura Berendson
Technical Reviewer: Eric Potter
Coordinating Editor: Jill Balzano
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail   
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC 
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM 
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/ 
rights-permissions. 

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and 
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web 
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to 
readers on GitHub via the book’s product page, located at www.apress.com/9781484224779. For more 
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484224779
http://www.apress.com/source-code


To Amy, Coner, Logan, and Skylar. Without your support and patience,  
this work would never have happened. Love you guys.

—Philip Japikse



v

Contents at a Glance

About the Authors����������������������������������������������������������������������������������������������������xix

About the Technical Reviewer���������������������������������������������������������������������������������xxi

Acknowledgments�������������������������������������������������������������������������������������������������xxiii

Introduction������������������������������������������������������������������������������������������������������������xxv

■■Part I: Visual Studio 2017 and .NET Core��������������������������������������������� 1

■■Chapter 1: Introducing Entity Framework Core������������������������������������������������������ 3

■■Chapter 2: Building the Data Access Layer with Entity Framework Core������������� 49

■■Chapter 3: Building the RESTful Service with ASP.NET Core MVC Services���������� 83

■■Chapter 4: Introducing ASP.NET Core MVC Web Applications����������������������������� 119

■■Chapter 5: Building the SpyStore Application with ASP.NET Core MVC�������������� 157

■■Part II: Client-Side Tooling and JavaScript Frameworks����������������� 209

■■Chapter 6: JavaScript Application Tools������������������������������������������������������������� 211

■■Chapter 7: Introduction to TypeScript���������������������������������������������������������������� 241

■■Chapter 8: Angular 2������������������������������������������������������������������������������������������ 281

■■Chapter 9: React������������������������������������������������������������������������������������������������� 329

Index���������������������������������������������������������������������������������������������������������������������� 389



vii

Contents

About the Authors����������������������������������������������������������������������������������������������������xix

About the Technical Reviewer���������������������������������������������������������������������������������xxi

Acknowledgments�������������������������������������������������������������������������������������������������xxiii

Introduction������������������������������������������������������������������������������������������������������������xxv

■■Part I: Visual Studio 2017 and .NET Core��������������������������������������������� 1

■■Chapter 1: Introducing Entity Framework Core������������������������������������������������������ 3

The SpyStore Database����������������������������������������������������������������������������������������������������� 4

Installing Visual Studio 2017 and .NET Core��������������������������������������������������������������������� 5

Installing Visual Studio���������������������������������������������������������������������������������������������������������������������������� 5

Installing the .NET Core SDKs������������������������������������������������������������������������������������������������������������������ 6

The .NET Core Command Line Interface (CLI)������������������������������������������������������������������������������������������ 8

Creating and Configuring the Solution and Projects��������������������������������������������������������� 8

Creating the Solution and Projects���������������������������������������������������������������������������������������������������������� 8

Changes to the Project Files������������������������������������������������������������������������������������������������������������������ 11

Updating the Target Framework������������������������������������������������������������������������������������������������������������ 11

Working with NuGet Packages���������������������������������������������������������������������������������������� 13

Manually Restoring Packages��������������������������������������������������������������������������������������������������������������� 13

Adding the Project References�������������������������������������������������������������������������������������������������������������� 14

Adding Entity Framework Core���������������������������������������������������������������������������������������� 14

Adding EF Packages to the SpyStore.DAL Project��������������������������������������������������������������������������������� 14

Installing/Updating Packages Using the SpyStore.DAL.csproj File�������������������������������������������������������� 16

Adding EF Packages to the SpyStore.Models Project���������������������������������������������������������������������������� 16

Adding Packages to the SpyStore.DAL.Tests Project����������������������������������������������������������������������������� 17



﻿■ Contents

viii

Building the Foundation�������������������������������������������������������������������������������������������������� 17

Understanding the DbContext Class������������������������������������������������������������������������������������������������������ 17

Building the Base Entity Class��������������������������������������������������������������������������������������������������������������� 22

Adding the Category Model Class���������������������������������������������������������������������������������������������������������� 24

Adding the Categories DbSet����������������������������������������������������������������������������������������������������������������� 26

Migrations����������������������������������������������������������������������������������������������������������������������� 26

Executing EF .NET CLI Commands��������������������������������������������������������������������������������������������������������� 27

Creating the First Migration������������������������������������������������������������������������������������������������������������������� 27

Applying the Migration�������������������������������������������������������������������������������������������������������������������������� 29

Creating Migration SQL Scripts������������������������������������������������������������������������������������������������������������� 30

Understanding CRUD Operations Using Entity Framework���������������������������������������������� 31

Creating Records����������������������������������������������������������������������������������������������������������������������������������� 31

Reading Records����������������������������������������������������������������������������������������������������������������������������������� 31

Updating Records���������������������������������������������������������������������������������������������������������������������������������� 32

Deleting Records����������������������������������������������������������������������������������������������������������������������������������� 33

Unit Testing EF Core�������������������������������������������������������������������������������������������������������� 34

Creating the CategoryTests Class���������������������������������������������������������������������������������������������������������� 34

Testing EF CRUD Operations������������������������������������������������������������������������������������������������������������������ 37

Adding the Core Repository Interface and Base Class���������������������������������������������������� 41

Adding the IRepo Interface�������������������������������������������������������������������������������������������������������������������� 41

Adding the Base Repository������������������������������������������������������������������������������������������������������������������ 43

Adding the Category Repository������������������������������������������������������������������������������������������������������������ 46

Summary������������������������������������������������������������������������������������������������������������������������� 47

■■Chapter 2: Building the Data Access Layer with Entity Framework Core������������� 49

The SpyStore Database��������������������������������������������������������������������������������������������������� 49

Navigation Properties and Foreign Keys������������������������������������������������������������������������� 50

Handling Display Names������������������������������������������������������������������������������������������������� 51

Mixing EF with Stored Procedures and Functions����������������������������������������������������������� 51



﻿■ Contents

ix

Finishing the Model Classes�������������������������������������������������������������������������������������������� 52

Updating the Category Model���������������������������������������������������������������������������������������������������������������� 52

Adding the Product Model��������������������������������������������������������������������������������������������������������������������� 52

Adding the Shopping Cart Record Model����������������������������������������������������������������������������������������������� 53

Adding the Order Model������������������������������������������������������������������������������������������������������������������������� 54

Adding the Order Detail Model�������������������������������������������������������������������������������������������������������������� 54

Adding the Customer Model������������������������������������������������������������������������������������������������������������������ 55

Updating the StoreContext��������������������������������������������������������������������������������������������������������������������� 56

Updating the Database to Match the Model�������������������������������������������������������������������� 58

Creating the Migration��������������������������������������������������������������������������������������������������������������������������� 58

Deploying the Migration������������������������������������������������������������������������������������������������������������������������ 58

Adding the Stored Procedure and User Defined Function����������������������������������������������� 58

Adding a New Migration������������������������������������������������������������������������������������������������������������������������ 59

Implementing the Up() Method�������������������������������������������������������������������������������������������������������������� 59

Implementing the Down() Method��������������������������������������������������������������������������������������������������������� 60

Updating the Database�������������������������������������������������������������������������������������������������������������������������� 60

Adding the OrderTotal Calculated Field��������������������������������������������������������������������������� 60

Updating the Order Class����������������������������������������������������������������������������������������������������������������������� 60

Making OrderTotal a Computed Column������������������������������������������������������������������������������������������������ 60

Adding a New Migration and Update the Database������������������������������������������������������������������������������� 61

Automating the Migrations���������������������������������������������������������������������������������������������� 61

Adding the View Models�������������������������������������������������������������������������������������������������� 62

The Product with Category View Model������������������������������������������������������������������������������������������������� 62

The Order Detail with Product Info View Model������������������������������������������������������������������������������������� 63

The Order with OrderDetails View Model����������������������������������������������������������������������������������������������� 63

The Cart Record with Product Infor View Model������������������������������������������������������������������������������������ 64

Completing the Repositories������������������������������������������������������������������������������������������� 64

Extending the Interfaces������������������������������������������������������������������������������������������������������������������������ 64

Adding/Updating the Repositories��������������������������������������������������������������������������������������������������������� 67



﻿■ Contents

x

Initializing the Database with Data���������������������������������������������������������������������������������� 75

Creating Sample Data���������������������������������������������������������������������������������������������������������������������������� 76

Using the Sample Data�������������������������������������������������������������������������������������������������������������������������� 78

Using the Initializer in Tests������������������������������������������������������������������������������������������������������������������� 80

Creating NuGet Packages for the Data Access Library���������������������������������������������������� 81

Setting the NuGet Properties����������������������������������������������������������������������������������������������������������������� 81

Creating the NuGet Packages���������������������������������������������������������������������������������������������������������������� 81

Summary������������������������������������������������������������������������������������������������������������������������� 82

■■Chapter 3: Building the RESTful Service with ASP.NET Core MVC Services���������� 83

Introducing the MVC Pattern������������������������������������������������������������������������������������������� 83

The Model���������������������������������������������������������������������������������������������������������������������������������������������� 83

The View������������������������������������������������������������������������������������������������������������������������������������������������ 83

The Controller���������������������������������������������������������������������������������������������������������������������������������������� 84

Introducing ASP.NET Core MVC Web API�������������������������������������������������������������������������� 84

ASP.NET Core and .NET Core������������������������������������������������������������������������������������������������������������������ 84

Dependency Injection���������������������������������������������������������������������������������������������������������������������������� 85

Determining the Runtime Environment������������������������������������������������������������������������������������������������� 85

Routing�������������������������������������������������������������������������������������������������������������������������������������������������� 86

Creating the Solution and the Core MVC Project������������������������������������������������������������� 87

Adding the Package Source for the Data Access Layer������������������������������������������������������������������������� 90

Updating and Adding NuGet Packages�������������������������������������������������������������������������������������������������� 90

The ASP.NET Core “Super” Packages���������������������������������������������������������������������������������������������������� 91

MVC Projects and Files���������������������������������������������������������������������������������������������������� 92

The Program.cs File������������������������������������������������������������������������������������������������������������������������������� 92

The appsettings.json File(s)������������������������������������������������������������������������������������������������������������������� 93

The runtimeconfig.template.json File���������������������������������������������������������������������������������������������������� 94

The Startup.cs File��������������������������������������������������������������������������������������������������������������������������������� 94

The Controllers Folder������������������������������������������������������������������������������������������������������������������������� 100

The wwwroot Folder���������������������������������������������������������������������������������������������������������������������������� 100

The web.config File����������������������������������������������������������������������������������������������������������������������������� 101

The launchsettings.json File���������������������������������������������������������������������������������������������������������������� 101



﻿■ Contents

xi

Controllers and Actions������������������������������������������������������������������������������������������������� 102

Controllers������������������������������������������������������������������������������������������������������������������������������������������� 102

Actions������������������������������������������������������������������������������������������������������������������������������������������������� 102

An Example Controller������������������������������������������������������������������������������������������������������������������������� 104

Exception Filters������������������������������������������������������������������������������������������������������������ 108

Creating the SpyStoreExceptionFilter�������������������������������������������������������������������������������������������������� 108

Adding the Exception Filter for All Actions������������������������������������������������������������������������������������������� 110

Building the Controllers������������������������������������������������������������������������������������������������� 110

The Category Controller����������������������������������������������������������������������������������������������������������������������� 111

The Customer Controller���������������������������������������������������������������������������������������������������������������������� 112

The Search Controller�������������������������������������������������������������������������������������������������������������������������� 113

The Orders Controller�������������������������������������������������������������������������������������������������������������������������� 113

The Product Controller������������������������������������������������������������������������������������������������������������������������� 114

The Shopping Cart Controller�������������������������������������������������������������������������������������������������������������� 115

Using the Combined Solution���������������������������������������������������������������������������������������� 118

The Unit Test Solution���������������������������������������������������������������������������������������������������� 118

Summary����������������������������������������������������������������������������������������������������������������������� 118

■■Chapter 4: Introducing ASP.NET Core MVC Web Applications����������������������������� 119

Introducing the “V” in ASP.NET Core MVC��������������������������������������������������������������������� 119

Creating the Solution and the Core MVC Project����������������������������������������������������������� 120

Updating and Adding NuGet Packages������������������������������������������������������������������������������������������������ 122

Routing Revisited���������������������������������������������������������������������������������������������������������� 123

The Route Table����������������������������������������������������������������������������������������������������������������������������������� 123

URL Templates and Default Values������������������������������������������������������������������������������������������������������ 123

MVC Web Applications Projects and Files��������������������������������������������������������������������� 124

The Program.cs File����������������������������������������������������������������������������������������������������������������������������� 124

The appsettings.json File��������������������������������������������������������������������������������������������������������������������� 124

The Startup.cs File������������������������������������������������������������������������������������������������������������������������������� 124

The Controllers Folder������������������������������������������������������������������������������������������������������������������������� 126

The Views Folder��������������������������������������������������������������������������������������������������������������������������������� 126

The wwwroot Folder���������������������������������������������������������������������������������������������������������������������������� 126



﻿■ Contents

xii

Controllers, Actions, and Views������������������������������������������������������������������������������������� 129

ViewResults����������������������������������������������������������������������������������������������������������������������������������������� 129

Views��������������������������������������������������������������������������������������������������������������������������������������������������� 130

Layouts������������������������������������������������������������������������������������������������������������������������������������������������ 133

Partial Views���������������������������������������������������������������������������������������������������������������������������������������� 134

Sending Data to Views������������������������������������������������������������������������������������������������������������������������� 134

Package Management with Bower������������������������������������������������������������������������������� 135

Updating and Adding Bower Packages������������������������������������������������������������������������������������������������ 136

Bower Execution���������������������������������������������������������������������������������������������������������������������������������� 136

Bundling and Minification��������������������������������������������������������������������������������������������� 137

The BundlerMinifier Project����������������������������������������������������������������������������������������������������������������� 137

Configuring Bundling and Minification������������������������������������������������������������������������������������������������ 137

Visual Studio Integration��������������������������������������������������������������������������������������������������������������������� 139

.NET Core CLI Integration��������������������������������������������������������������������������������������������������������������������� 141

Creating the Web Service Locator��������������������������������������������������������������������������������� 142

Creating the IWebServiceLocator Interface����������������������������������������������������������������������������������������� 142

Creating the WebServiceLocator Class������������������������������������������������������������������������������������������������ 142

Adding the WebServiceLocator Class to the DI Container������������������������������������������������������������������� 143

Creating the WebAPICalls Class to Call the Web API Service����������������������������������������� 143

Creating the IWebApiCalls Interface���������������������������������������������������������������������������������������������������� 143

Creating the Base Class Code�������������������������������������������������������������������������������������������������������������� 144

Creating the WebApiCalls Class����������������������������������������������������������������������������������������������������������� 148

Adding WebApiCalls Class to the DI Container������������������������������������������������������������������������������������ 151

Adding the Fake Authentication������������������������������������������������������������������������������������ 151

Building the Authentication Helper������������������������������������������������������������������������������������������������������ 151

Adding the AuthHelper Class to the DI Container�������������������������������������������������������������������������������� 152

Creating the Action Filter for the Fake Authentication������������������������������������������������������������������������� 152

Adding the Action Filter for All Actions������������������������������������������������������������������������������������������������ 154

Adding the View Models������������������������������������������������������������������������������������������������ 154

Summary����������������������������������������������������������������������������������������������������������������������� 156



﻿■ Contents

xiii

■■Chapter 5: Building the SpyStore Application with ASP.NET Core MVC�������������� 157

Tag Helpers������������������������������������������������������������������������������������������������������������������� 157

Enabling Tag Helpers��������������������������������������������������������������������������������������������������������������������������� 159

The Form Tag Helper���������������������������������������������������������������������������������������������������������������������������� 160

The Anchor Tag Helper������������������������������������������������������������������������������������������������������������������������� 160

The Input Tag Helper���������������������������������������������������������������������������������������������������������������������������� 160

The TextArea Tag Helper���������������������������������������������������������������������������������������������������������������������� 161

The Select Tag Helper�������������������������������������������������������������������������������������������������������������������������� 161

The Validation Tag Helpers������������������������������������������������������������������������������������������������������������������� 162

The Link and Script Tag Helpers���������������������������������������������������������������������������������������������������������� 163

The Image Tag Helper�������������������������������������������������������������������������������������������������������������������������� 163

The Environment Tag Helper���������������������������������������������������������������������������������������������������������������� 163

Custom Tag Helpers����������������������������������������������������������������������������������������������������������������������������� 163

Building the Controllers������������������������������������������������������������������������������������������������� 164

The Products Controller����������������������������������������������������������������������������������������������������������������������� 165

The Orders Controller�������������������������������������������������������������������������������������������������������������������������� 168

The Shopping Cart Controller�������������������������������������������������������������������������������������������������������������� 170

Validation����������������������������������������������������������������������������������������������������������������������� 176

Server Side Validation������������������������������������������������������������������������������������������������������������������������� 176

Client Side Validation��������������������������������������������������������������������������������������������������������������������������� 180

Updating the View Models������������������������������������������������������������������������������������������������������������������� 182

View Components���������������������������������������������������������������������������������������������������������� 183

Building the Server Side Code������������������������������������������������������������������������������������������������������������� 183

Building the Client Side Code�������������������������������������������������������������������������������������������������������������� 186

Invoking View Components����������������������������������������������������������������������������������������������������������������� 186

Invoking View Components as Custom Tag Helpers���������������������������������������������������������������������������� 186

Updating and Adding the Views������������������������������������������������������������������������������������� 187

The ViewImports File��������������������������������������������������������������������������������������������������������������������������� 187

The Shared Views�������������������������������������������������������������������������������������������������������������������������������� 187

The Cart Views������������������������������������������������������������������������������������������������������������������������������������� 195

The Orders Views��������������������������������������������������������������������������������������������������������������������������������� 200

The Products Views����������������������������������������������������������������������������������������������������������������������������� 203



﻿■ Contents

xiv

Running the Application������������������������������������������������������������������������������������������������ 205

Using Visual Studio 2017��������������������������������������������������������������������������������������������������������������������� 205

Using the .NET Command Line Interface (CLI)������������������������������������������������������������������������������������� 206

Using the Combined Solutions������������������������������������������������������������������������������������������������������������� 206

Summary����������������������������������������������������������������������������������������������������������������������� 207

■■Part II: Client-Side Tooling and JavaScript Frameworks����������������� 209

■■Chapter 6: JavaScript Application Tools������������������������������������������������������������� 211

What Tools Are We Covering?���������������������������������������������������������������������������������������� 211

Node.js�������������������������������������������������������������������������������������������������������������������������� 212

Manually Installing Node.js������������������������������������������������������������������������������������������������������������������ 212

Installing Node using the Chocolatey Package Manager��������������������������������������������������������������������� 213

Setting Up Visual Studio to Use the Latest Version of Node���������������������������������������������������������������� 213

Getting Started with Node.js���������������������������������������������������������������������������������������������������������������� 214

Introduction to NPM����������������������������������������������������������������������������������������������������������������������������� 215

Saving Project Dependencies�������������������������������������������������������������������������������������������������������������� 217

Executable Packages��������������������������������������������������������������������������������������������������������������������������� 218

Installing Packages Locally vs. Globally���������������������������������������������������������������������������������������������� 220

Bower���������������������������������������������������������������������������������������������������������������������������� 220

Bower and Visual Studio���������������������������������������������������������������������������������������������������������������������� 222

Installing Bower Prerequisites������������������������������������������������������������������������������������������������������������� 222

Installing Git����������������������������������������������������������������������������������������������������������������������������������������� 222

Installing Bower����������������������������������������������������������������������������������������������������������������������������������� 222

Using Bower���������������������������������������������������������������������������������������������������������������������������������������� 223

Installing Bower Packages������������������������������������������������������������������������������������������������������������������ 223

Installing Bower Packages Using Visual Studio����������������������������������������������������������������������������������� 224

Gulp������������������������������������������������������������������������������������������������������������������������������� 227

Installing Gulp�������������������������������������������������������������������������������������������������������������������������������������� 228

Copying Files Using Gulp �������������������������������������������������������������������������������������������������������������������� 229

Dependencies in Gulp�������������������������������������������������������������������������������������������������������������������������� 230

Task Runner Explorer Within Visual Studio������������������������������������������������������������������������������������������ 231

Gulp Conclusion����������������������������������������������������������������������������������������������������������������������������������� 232



﻿■ Contents

xv

Module Loaders������������������������������������������������������������������������������������������������������������� 233

What Is a Module��������������������������������������������������������������������������������������������������������������������������������� 234

SystemJS��������������������������������������������������������������������������������������������������������������������������������������������� 235

WebPack���������������������������������������������������������������������������������������������������������������������������������������������� 237

Summary����������������������������������������������������������������������������������������������������������������������� 240

■■Chapter 7: Introduction to TypeScript���������������������������������������������������������������� 241

Why TypeScript?������������������������������������������������������������������������������������������������������������ 241

TypeScript Basics���������������������������������������������������������������������������������������������������������� 242

An Overview of TypeScript Syntax������������������������������������������������������������������������������������������������������� 242

Implementing a Basic TypeScript Application�������������������������������������������������������������������������������������� 253

Setting Up a Sample Project���������������������������������������������������������������������������������������������������������������� 254

Working with TypeScript Files������������������������������������������������������������������������������������������������������������� 257

NPM Packages������������������������������������������������������������������������������������������������������������������������������������� 259

Adding TypeScript�������������������������������������������������������������������������������������������������������������������������������� 261

Summary����������������������������������������������������������������������������������������������������������������������� 279

■■Chapter 8: Angular 2������������������������������������������������������������������������������������������ 281

Creating a New Visual Studio Core Project�������������������������������������������������������������������� 281

Project Files����������������������������������������������������������������������������������������������������������������������������������������� 284

Setting Up the Startup Class���������������������������������������������������������������������������������������������������������������� 284

NPM Install������������������������������������������������������������������������������������������������������������������������������������������ 286

Gulp Setup������������������������������������������������������������������������������������������������������������������������������������������� 287

Typescript Setup���������������������������������������������������������������������������������������������������������������������������������� 287

Main SpyStore App Component Setup�������������������������������������������������������������������������� 288

Creating the Root index.html Page������������������������������������������������������������������������������������������������������ 289

Creating the Root App Component������������������������������������������������������������������������������������������������������� 291

Creating the App Module��������������������������������������������������������������������������������������������������������������������� 292

Creating the Angular Bootstrap����������������������������������������������������������������������������������������������������������� 292



﻿■ Contents

xvi

Core Concepts��������������������������������������������������������������������������������������������������������������� 293

Application Initialization���������������������������������������������������������������������������������������������������������������������� 293

Components����������������������������������������������������������������������������������������������������������������������������������������� 294

Services����������������������������������������������������������������������������������������������������������������������������������������������� 295

Templating������������������������������������������������������������������������������������������������������������������������������������������� 297

Routing������������������������������������������������������������������������������������������������������������������������������������������������ 300

Building the SpyStore Angular App������������������������������������������������������������������������������� 303

Adding Routing������������������������������������������������������������������������������������������������������������������������������������ 303

Connecting to Services������������������������������������������������������������������������������������������������������������������������ 306

Route Parameters�������������������������������������������������������������������������������������������������������������������������������� 311

Search Page���������������������������������������������������������������������������������������������������������������������������������������� 313

Product Details Page��������������������������������������������������������������������������������������������������������������������������� 316

Cart Page��������������������������������������������������������������������������������������������������������������������������������������������� 320

Checkout���������������������������������������������������������������������������������������������������������������������������������������������� 326

Summary����������������������������������������������������������������������������������������������������������������������� 328

■■Chapter 9: React������������������������������������������������������������������������������������������������� 329

Solution Overview��������������������������������������������������������������������������������������������������������� 329

Creating a New Visual Studio Core Project�������������������������������������������������������������������� 330

Project Files������������������������������������������������������������������������������������������������������������������� 332

Setting Up the Startup Class����������������������������������������������������������������������������������������� 333

NPM Packages�������������������������������������������������������������������������������������������������������������� 334

TypeScript Setup����������������������������������������������������������������������������������������������������������� 337

Initial Project Folder������������������������������������������������������������������������������������������������������ 338

WebPack����������������������������������������������������������������������������������������������������������������������� 342

Introduction to React����������������������������������������������������������������������������������������������������� 351

Components����������������������������������������������������������������������������������������������������������������������������������������� 351

Application Organization���������������������������������������������������������������������������������������������������������������������� 355

Models������������������������������������������������������������������������������������������������������������������������������������������������� 356

Services����������������������������������������������������������������������������������������������������������������������������������������������� 357

Initial Components������������������������������������������������������������������������������������������������������������������������������� 361



﻿■ Contents

xvii

Routing������������������������������������������������������������������������������������������������������������������������������������������������ 362

App Component����������������������������������������������������������������������������������������������������������������������������������� 365

CategoryLinks Component������������������������������������������������������������������������������������������������������������������� 369

Products Component��������������������������������������������������������������������������������������������������������������������������� 371

ProductDetail Component�������������������������������������������������������������������������������������������������������������������� 376

Cart Component����������������������������������������������������������������������������������������������������������������������������������� 380

CartRecord Component����������������������������������������������������������������������������������������������������������������������� 384

Additional Thoughts������������������������������������������������������������������������������������������������������� 387

Summary����������������������������������������������������������������������������������������������������������������������� 388

Index���������������������������������������������������������������������������������������������������������������������� 389



xix

About the Authors

Philip Japikse is an international speaker, Microsoft MVP, ASPInsider, 
MCSD, CSM, and CSP, and a passionate member of the developer 
community. He has been working with .NET since the first betas, 
developing software for over 30 years, and heavily involved in the Agile 
community since 2005. Phil is co-author of the best selling C# and the  
.NET 4.6 Framework (http://bit.ly/pro_csharp), the Lead Director for 
the Cincinnati .NET User’s Group (http://www.cinnug.org), and the 
Cincinnati Software Architect Group. He also co-hosts the Hallway 
Conversations podcast (http://www.hallwayconversations.com), 
founded the Cincinnati Day of Agile (http://www.dayofagile.org), and 
volunteers for the National Ski Patrol. Phil enjoys learning new 
technologies and is always striving to improve his craft. You can follow Phil 
on Twitter via http://www.twitter.com/skimedic and read his blog at 
http://www.skimedic.com/blog.

Kevin Grossnicklaus was at one point in his career the youngster on most 
development teams. He got his start developing with Visual Studio and 
managed .NET code during the early beta cycles in 2001. In 2009, Kevin 
started his own software product development firm called ArchitectNow 
(www.architectnow.net). At ArchitectNow, Kevin and his team specialize 
in a wide variety of tools while delivering applications across a variety of 
cloud and mobile platforms. Born in rural Nebraska, he has spent the last 
20 years in St. Louis, Missouri where he lives with his wife Lynda and their 
three daughters, Alexis, Emily, and Hanna. He is an avid guitar player, fly 
fisherman, home brewer, and gamer (including everything from retro 
arcade games, to board games, to role playing games). When he’s not 
spending time on any of those hobbies, he waits patiently for a second 
season of Firefly.

http://bit.ly/pro_csharp
http://www.cinnug.org
http://www.hallwayconversations.com
http://www.dayofagile.org
http://www.twitter.com/skimedic
http://www.skimedic.com/blog
http://www.architectnow.net


﻿■ About the Authors

xx

Ben Dewey is a former Microsoft MVP and published author with over 18 
years of experience writing applications. He continually strives to create 
SOLID applications of the highest craftsmanship while paying special 
attention to clean user experiences (UX). Ben is currently leading the User 
Experience team at Tallan, Inc. and consults regularly in New York City 
and around the country on web- and cloud-based technologies. He has 
also worked to deploy numerous high-quality, engaging apps to the 
Windows Store. When he’s not consulting, Ben is busy training, mentoring, 
blogging, and speaking at various conferences and community events 
around the country. Outside of work, Ben spends most of his time playing 
with his three young kids, working around the house, or, if it’s windy, kite 
surfing. You can find Ben online on Twitter (@bendewey), StackOverflow, 
GitHub, or on his blog at http://bendewey.com/.

http://bendewey.com/


xxi

About the Technical Reviewer

Eric Potter is a Software Architect for Aptera Software and a Microsoft 
MVP for Visual Studio and Development Technologies. He works primarily 
in the .NET web platform, but loves opportunities to try out other stacks. 
He has been developing high-quality custom software solutions since 
2001. At Aptera, he has successfully delivered solutions for clients in a wide 
variety of industries. He loves to dabble in new and exciting technologies. 
In his spare time, he loves to tinker with Arduino projects. He fondly 
remembers what it was like to develop software for the Palm OS. He has an 
amazing wife and five wonderful children. He blogs at http://
humbletoolsmith.com/ and you can follow him on Twitter as @potteric.

http://humbletoolsmith.com/
http://humbletoolsmith.com/


xxiii

Acknowledgments

Philip Japikse: This book could not have happened without the very talented (and patient) team at Apress. 
The idea for this book started when .NET Core was still called ASP.NET 5, and the ride from ASP.NET 5 to 
Visual Studio 2017 has been an interesting one, to say the least. This book also couldn’t have happened 
without my loving wife Amy and all of the time she spent copy editing for me (for free) to keep my words 
from being a jumbled mess. I also want to thank my co-authors for all of their hard work. The goal of this 
book is to cover multiple technologies, and without their dedication to the cause, this book would have died 
a long time ago. Finally, I have to thank my children for their patience and understanding. Now that we are 
done, we can get out on the slopes and make a few turns!

Kevin Grossnicklaus: First, I’d like to express my extreme gratitude to Phil and Ben for the opportunity to 
be a part of this book at all. It has been a lot of fun and something I am honored to be a part of. An equally 
large thank you goes out to the team at Apress for being patient and helping pull everything together. Writing 
about technologies during their beta cycle is always challenging and getting three authors (including a 
chronically slow one like myself) to the finish line deserves some type of medal. Next, a shout out to my team 
at ArchitectNow for pushing me to keep on top of technology just as much now as I did early in my career. 
I am constantly amazed at all the cool technologies and products we get to use on a daily basis. That said, 
who knew we would be writing this much JavaScript in 2017? Finally, to my awesome wife Lynda and my 
three beautiful daughters, Alexis, Emily, and Hanna: Thanks for putting up with all the time I spend working, 
writing, or with all my other random hobbies. I love you all very much!

Ben Dewey: I’d like to thank a number of people who made this book happen. When Phil came to me with 
the dream to create a book for .NET developers and architects that would help navigate the real-world 
challenges and decisions that teams need to make, I was all in. His vision and direction helped shape the 
complete story that we delivered in this book. I’d also like to the thank Apress and their wonderful team 
for their help and guidance while we chased the changes and releases of the Visual Studio 2017, through 
multiple RCs. My employer, Tallan (http://www.tallan.com), has continued to enable me to grow and reach 
communities around the country. They have allowed me to attend and speak at conferences throughout the 
year and have worked with me to foster an environment that respects knowledge and great software. Most 
importantly, thanks to my family, who put up with me and my long hours to deliver this book and supports 
me and my passions.

http://www.tallan.com/


xxv

Introduction

This idea for this book came out of a discussion among conference speakers about the problem with keeping 
up with technology. Not only the rapid fire and revolutionary changes in the .NET ecosystem, but also the 
proliferation of JavaScript frameworks. I stated to the group:

“There needs to be a book designed to get someone up to speed on ASP.NET 5 and help them make 
informed decisions about which JavaScript framework (if any) to use. The problem is that the material on the 
popular JavaScript frameworks is too comprehensive. We need to have a book that gives enough information 
to enable informed decisions without having to invest weeks learning a framework that might not be a fit. 
Following the fail fast mantra from lean.”

A silence fell over the group. They all looked at me and said, “Great idea! When are you going to write it?”
Thus, this book was born, at least in concept. I knew that it was more than I could tackle on my own, so  

I reached out to two of my long-time friends, Ben and Kevin, and asked them if they would be interested.  
I knew they are deeply immersed in many of the JavaScript frameworks and would be a great match to round 
out the writing team.

The Goals of This Book
After much discussion, we settled on two main goals for this book. The first goal is to bring the .NET 
developer up to speed with Visual Studio 2017 and .NET Core, including Entity Framework Core, Core MVC 
Services (formerly Web API), and Core MVC Web Applications. The second goal is to cover a three different 
JavaScript frameworks (Angular2, Aurelia, and React) as well as client-side build tools and TypeScript. Each 
of the web applications will consist of the same UI and functionality, and all will use the same RESTful 
service and database as the backend.

Introducing the SpyStore Database
To keep the sample applications a reasonable size, we settled on a derivative of the IBuySpy database.  
This database shipped as a sample application in the.Net Framework 1.1 SDK, and I have been using a 
derivative of it as a test model ever since. The database design (rebranded SpyStore for this book) is simple 
enough to use for clear teaching, but complete enough to be a solid, workable base for writing this book. 
Figure 1 shows the ERD of the SpyStore database.



﻿■ Introduction

xxvi

Introducing the SpyStore Web Site
Based on the SpyStore database and the list of features we wanted to show for each framework, the UI was 
completely reimagined and created by Ben Dewey, one of our co-authors. The site is very simple, consisting 
of the following site map.

The Home Page
The home page is also the Product list page, showing the Featured Products. Products can also be displayed 
for each Category by selecting one of the dynamically created menu items at the top of the page. The top 
right has links for the Shopping Cart and Order History pages, as well as the Search box. Figure 2 shows the 
home page listing the featured products.

Figure 1.  The SpyStore database



﻿■ Introduction

xxvii

The site is also responsive, and it will alter its UI based on the view port. Figure 3 shows the home page 
as viewed on a mobile device.

Figure 2.  The home page with featured products



﻿■ Introduction

xxviii

Figure 3.  The home page on a mobile device

The Details/Add to Cart Page
The Product Details page doubles as the Add to Cart page. It’s shown in standard view in Figure 4 and on a 
mobile device in Figure 5.



﻿■ Introduction

xxix

Figure 4.  The Product Details/Add to Cart page

Figure 5.  The Product Details/Add to Cart page on a mobile device



﻿■ Introduction

xxx

The Order History Page
The Order History page shows all of the top line details for a Customer’s orders. The full-screen version is 
shown in Figure 7 and the mobile device version is shown in Figure 8.

The Cart Page
The Cart page demonstrates the bulk of the work in the application, with methods to add, delete, and update 
Shopping Cart records. The Cart page is shown in standard view in Figure 6. The mobile view isn’t any 
different, it’s just smaller.

Figure 6.  The Cart page

Figure 7.  The Order History page



Figure 8.  The Order History page on a mobile device

The Order Details Page
The Order Details page shows all of the details for an order, and it is shown in standard view in Figure 9  
and on a mobile device in Figure 10.

Figure 9.  The Order Details page



﻿■ Introduction

xxxii

How This Book Is Organized
This book is organized in two parts, which are aligned with the goals of the book. The first part focuses on 
Visual Studio 2017 and .NET Core, building the data access layer with Entity Framework Core, the RESTful 
service with Core MVC Services (formerly called Web API), and finally, the SpyStore web site with ASP.NET 
Core MVC.

The second part covers client-side build utilities (like Gulp, NPM, and Web Pack), TypeScript, and 
then builds the SpyStore site using Angular2, Aurelia, and React. The sites use the SpyStore.Service RESTful 
service built in Part I as the service endpoint.

Part I: Visual Studio 2017 and .NET Core
Part I covers building an end-to-end .NET Core application with Visual Studio 2017.

Chapter 1, “Introducing Entity Framework Core,” begins with installing Visual Studio 2017 and .NET 
Core SDK and creating the solutions and projects. Then it introduces Entity Framework Core, CRUD 
operations, and migrations. It then creates a complete data access layer for one table, complete with a 
repository and unit tests.

Figure 10.  The Order Details page on a mobile device

http://dx.doi.org/10.1007/978-1-4842-2478-6_1


﻿■ Introduction

xxxiii

Chapter 2, “Building the Data Access Layer with Entity Framework Core,” covers the remaining Entity 
Framework concepts needed for this application. The rest of the tables from the SpyStore database are 
added into the data access layer, complete with repositories, migrations, and view models. The final section 
builds custom NuGet packages from the data access layer.

Chapter 3, “Building the RESTful Service with ASP.NET Core MVC Services,” introduces Core MVC in 
the context of building RESTful services, then builds the RESTful service for the SpyStore database. The 
service built in this chapter serves as the service endpoint for all of the web applications built in the rest of 
the book.

Chapter 4, “Introducing ASP.NET Core MVC Web Applications,” completes the Core MVC story by 
adding Actions and Views, package management, and bundling and minification. The last sections build 
core infrastructure for the application.

Chapter 5, “Building the SpyStore Application with ASP.NET Core MVC,” covers two new features in 
Core MVC—Tag Helpers and View Components. Server-side and client-side validation (including custom 
validation) are covered, and then the Views, Controllers, and Actions are built to finish the Core MVC Web 
Application. The final section covers the different ways to run the applications.

This completes the .NET portion of the book.

Part II: Client-Side Tooling and JavaScript Frameworks
Part II expands on the information learned in Part 1 and introduces architecture patterns needed to build 
modern JavaScript applications.

Chapter 6, “JavaScript Application Tools,” sets the groundwork for the JavaScript framework chapters 
and helps you understand the commonalities that exist between the future chapters. There is a core set of 
knowledge required regardless of which framework your team chooses. This chapter covers Node.js, NPM, 
Bower, Gulp, SystemJS, and WebPack.

Chapter 7, ”Introduction to TypeScript,” introduces you to the core aspects of the TypeScript language. 
TypeScript will be the language used in later chapters to build the SpyStore interface in Angular and React.

Chapter 8, “Angular 2,” provides a step-by-step walkthrough of building the SpyStore application using 
Angular 2 and Visual Studio 2017. After guiding the reader through setting up a basic Angular 2 app in Visual 
Studio, the chapter describes the core architectural components of Angular. After that, the remainder of the 
chapter focuses on taking the core concepts and applying them to the relevant aspects of the application.

Chapter 9, “React,” walks through implementing the SpyStore application using React and Visual Studio 
2017. The development workflow put in place will be built around WebPack and the core structure of the 
React application will be similar in many regards to that of the Angular solution built in Chapter 8. This will 
allow developers to compare both frameworks while seeing how they differ in the implementation of the 
same interface.

The Source Code
All of the source code for the examples is in this book is available for download from the Apress site.

http://dx.doi.org/10.1007/978-1-4842-2478-6_2
http://dx.doi.org/10.1007/978-1-4842-2478-6_3
http://dx.doi.org/10.1007/978-1-4842-2478-6_4
http://dx.doi.org/10.1007/978-1-4842-2478-6_5
http://dx.doi.org/10.1007/978-1-4842-2478-6_6
http://dx.doi.org/10.1007/978-1-4842-2478-6_7
http://dx.doi.org/10.1007/978-1-4842-2478-6_8
http://dx.doi.org/10.1007/978-1-4842-2478-6_9
http://dx.doi.org/10.1007/978-1-4842-2478-6_8


PART I

Visual Studio 2017 and  
.NET Core



3© Philip Japikse, Kevin Grossnicklaus and Ben Dewey 2017 
P. Japikse et al., Building Web Applications with Visual Studio 2017, DOI 10.1007/978-1-4842-2478-6_1

CHAPTER 1

Introducing Entity Framework Core

ADO.NET contains everything a .NET developer needs to create data access layers for their applications, 
but very little (if anything) is done for the developer. For example, ADO.NET requires the developer to first 
create connections, SQL statements, commands, and data readers, and then translate the data from the 
database into the application’s .NET classes that model the domain. When the user is done making changes 
to the data, the developer then needs to essentially reverse the process to persist any additions, deletions, or 
changes to the data.

Writing ADO.NET data access code takes time, and it is largely the same code from application to 
application, just swapping out the SQL statements (or stored procedures) and the model classes. Instead of 
spending time on data access plumbing, developers should be adding features and differentiators from the 
competition’s applications. Those features could mean the difference between a booming business and a 
failed startup.

The availability of Object Relational Mapping frameworks (commonly referred to as ORMs) in .NET 
greatly enhanced the data access story by managing the bulk of those data access tasks. The developer 
creates a mapping between the domain models and the database, and the vast majority of the Create, Read, 
Update, and Delete (CRUD) operations are handled by the ORM. This leaves the developer free to focus on 
the business needs of the application.

■■ Note   If that sounds too good to be true, it is. ORMs are not magical unicorns riding in on rainbows. Every 
decision involves tradeoffs. ORMs reduce the amount of work for developers creating data access layers, but 
can also introduce performance and scaling issues if used improperly. As with any decision, make sure you 
understand the pros and cons of a framework before unilaterally adding it to your development stack. I have 
found that both Entity Framework 6.x and Entity Framework Core are extremely valuable tools in my toolkit.  
I also only use EF for CRUD operations, and use T-SQL for server-side set operations.

Microsoft’s entry into the ORM landscape is Entity Framework (or simply, EF). Introduced in .NET 3.5 
Service Pack 1, the initial versions were much maligned, including a (now) infamous “vote of no confidence” 
regarding EF version 1.0. The EF team at Microsoft has been hard at work releasing new versions, and since 
the first version, EF has seen evolutionary as well as revolutionary changes. The current version for the full 
.NET Framework is EF 6.1.3 and is being used widely throughout the .NET developer community.

Entity Framework Core (commonly referred to as EF Core) is a complete rewrite of Entity Framework 
based on .NET Core as an open source project on GitHub (https://github.com/aspnet). This new version 
of EF is designed to run on multiple platforms in addition to Windows, such as MacOS and Linux. In 
addition to enabling different platforms, the rewrite enables additional features that couldn’t be reasonably 
added into previous versions of EF. This includes supporting non-relational data stores and in-memory 
databases (very helpful for unit testing), deploying to phones and tablets, and reducing the EF footprint of 
the install by modularization of the framework.

https://github.com/aspnet


Chapter 1 ■ Introducing Entity Framework Core

4

A big change from prior versions of EF (for some of you) is that support for the Entity Designer is not 
going to be added—EF Core only supports the Code First development paradigm, either from an existing 
database or by creating new one. If you are currently using Code First, you can safely ignore the previous 
sentence.

When .NET Core and the related frameworks (including ASP.NET Core and EF Core) went RTM in 
June 2016, EF received a fair amount of criticism for the list of missing features in the product (compared 
to EF 6.x). The features that were released were solid and performed significantly faster than their EF 6.x 
counterparts, but if your application needed any of the missing features, EF 6.x was the only choice. Version 
1.1 for EF Core was released November 14, 2016, and significantly narrowed the gap between EF 6.x and EF 
Core. EF Core 1.1 is the version used in this book.

■■ Note   The full comparison of EF 6 and the current production version of EF is available here: https://
docs.microsoft.com/en-us/ef/efcore-and-ef6/features, and the roadmap for EF Core is available on 
GitHub here: https://github.com/aspnet/EntityFramework/wiki/Roadmap.

Two chapters isn’t nearly enough to cover all of Entity Framework Core, and this isn’t meant to be an 
extensive reference for EF Core. But it covers enough for most (if not all) line of business applications, and 
includes what you need to know to effectively use EF Core in your projects.

■■ Note   If you didn’t read the intro, the tl;dr version is this: This book covers building a fake e-commerce site 
we are calling SpyStore. It is loosely based on the IBuySpy database that shipped as a sample app with the .NET 
1.1 SDK. The first two chapters build the data access layer and the next chapter builds a RESTful service that 
exposes the data access layer, and then the next two build the user interface in Core MVC. The rest of the book 
focuses on frontend technologies, including build tools, TypeScript, and then different JavaScript frameworks, 
including Angular 2, React, and Aurelia.

The SpyStore Database
In this chapter, you begin to build the data access library for the SpyStore database. The database is 
extremely simple: six related tables, two computed columns, one stored procedure, one user defined 
function, Identity columns for primary keys, and timestamps for concurrency checking. Figure 1-1 shows 
the Entity Relationship Diagrams (ERD) for the SpyStore database.

https://docs.microsoft.com/en-us/ef/efcore-and-ef6/features
https://docs.microsoft.com/en-us/ef/efcore-and-ef6/features
https://github.com/aspnet/EntityFramework/wiki/Roadmap


Chapter 1 ■ Introducing Entity Framework Core

5

You will build this database using the Code First pattern. For reference, the complete database creation 
script SpyStoreDatabase.sql is included in the downloadable code for this chapter.

■■ Note   The database and web sites created in this book are not full featured e-commerce sites, but simply 
demo code useful for showing the techniques and concepts of the frameworks and languages covered. As 
such, we have ignored important subjects like security, authentication, authorization, and to a large extent, error 
handling. If it seems like a simplistic design that has gaps, that is intentional!

Installing Visual Studio 2017 and .NET Core
.NET Core and its related frameworks currently ship out of band from Visual Studio, so you need to install 
Visual Studio and .NET Core separately. The experience will be significantly improved when the tooling is 
fully baked.

Installing Visual Studio
If you haven’t already installed Visual Studio 2017, you can get the free community edition at  
https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx. All of the .NET samples  
in this book will work with the free community edition as well the paid versions. The install experience for 
VS2017 is very different than previous versions. Features are broken into workloads. Make sure you select 
the “ASP.NET and web development” and the “.NET Core cross platform development” workloads to include 
.NET Core, ASP.NET Core, and Entity Framework Core, as shown in Figure 1-2.

Figure 1-1.  The SpyStore database

https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx


Chapter 1 ■ Introducing Entity Framework Core

6

■■ Note   This book is written using January 28, 2017 Release Candidate of Visual Studio 2017 (release notes 
and downloads are available here: https://www.visualstudio.com/en-us/news/releasenotes/vs2017-
relnotes) and Preview 4 of the .NET Core tooling (installed with Visual Studio 2017). The most recent .NET 
Core SDK (both x86 and x64) are available here: https://github.com/dotnet/core/blob/master/release-
notes/rc3-download.md. Historically, the RC tag is applied when a product is ready to be fully released except 
for bug fixes and security fixes. However, this isn’t guaranteed, and it’s possible that if you are using the fully 
released versions, your images and workflow might be slightly different in regards to Visual Studio and Visual 
Studio .NET Core tooling.

Visual Studio Code is a new tool (also free) that runs on Linux and Mac and works with .NET Core. 
Additionally, there is an early version of Visual Studio 2017 for the Mac. While it’s not used to build the .NET 
Core apps in this book, all of the work in this book can be developed with either Visual Studio Code or Visual 
Studio 2017 for the Mac.

Installing the .NET Core SDKs
Microsoft set up a home page for everything .NET at http://www.dot.net. From here all released versions 
of .NET (including .NET Core) are accessible. This book is using .NET Core Version 1.1, which at the time of 
this writing is the current release.

■■ Note   With .NET Core, Microsoft is using a different approach to release. The Long Term Support (LTS) 
version is supported for at least one year after the next LTS release and are distinguished as Major Versions 
(e.g. 1.0, 2.0). They will only be updated with critical fixes. Version 1.0.3 is the LTS release in production.  
The current version is the latest released Minor Version (e.g. 1.1, 2.1), and will be supported for three months 
after the next Minor Version release. The complete story on the support lifecycle can be found here:  
https://www.microsoft.com/net/core/support.

Figure 1-2.  Installing Visual Studio 2017

https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes
https://github.com/dotnet/core/blob/master/release-notes/rc3-download.md
https://github.com/dotnet/core/blob/master/release-notes/rc3-download.md
http://www.dot.net/
https://www.microsoft.com/net/core/support


Chapter 1 ■ Introducing Entity Framework Core

7

To install the .NET SDKs (both x86 and x64 versions need to be installed), download them from here: 
https://github.com/dotnet/core/blob/master/release-notes/rc3-download.md. After installing them, 
to confirm the version that is currently installed, enter the following commands in a command prompt:

dotnet
dotnet --info

The dotnet command shows the version of .NET Core on your machine (your output may be different 
based on the version installed):

C:\Users\skime>dotnet

Microsoft .NET Core Shared Framework Host

  Version  : 1.1.0
  Build    : 928f77c4bc3f49d892459992fb6e1d5542cb5e86

Usage: dotnet [common-options] [[options] path-to-application]

Common Options:
  --help                    Display .NET Core Shared Framework Host help.
  --version                 Display .NET Core Shared Framework Host version.

Options:
  �--fx-version <version>   Version of the installed Shared Framework to use to run the 
application.

  --additionalprobingpath <path>   Path containing probing policy and assemblies to probe for.

Path to Application:
  The path to a .NET Core managed application, dll or exe file to execute.

If you are debugging the Shared Framework Host, set 'COREHOST_TRACE' to '1' in your 
environment.

To get started on developing applications for .NET Core, install the SDK from:
  http://go.microsoft.com/fwlink/?LinkID=798306&clcid=0x409

The dotnet –info command shows the version of the .NET Core tooling on your machine (your output 
may be different based on the version installed):

C:\Users\skime>dotnet --info
.NET Command Line Tools (1.0.0-rc3-004530)

Product Information:
 Version:            1.0.0-rc3-004530
 Commit SHA-1 hash:  0de3338607

Runtime Environment:
 OS Name:     Windows
 OS Version:  10.0.14986

https://github.com/dotnet/core/blob/master/release-notes/rc3-download.md


Chapter 1 ■ Introducing Entity Framework Core

8

 OS Platform: Windows
 RID:         win10-x64
 Base Path:   C:\Program Files\dotnet\sdk\1.0.0-rc3-004530

At the time of this writing, the current version of the .NET Core framework is 1.1.0, and the version of 
the tooling for .NET Core is version 1.0.0-rc3-004530.

The .NET Core Command Line Interface (CLI)
The commands just used are part of the .NET Core Command Line Interface, or CLI. .NET Core places an 
emphasis on command line support, and in many places, the command line tooling is better than the GUI 
tooling in Visual Studio. The commands all start with the invoker dotnet, followed by a specific command. 
Each framework in the .NET Core ecosystem has its own commands, including EF Core. You will use the 
Core CLI throughout the .NET chapters in this book.

Creating and Configuring the Solution and Projects
Separation of Concerns (SoC) is a design principle in software development where applications are 
partitioned based on distinct responsibilities. This leads to more maintainable code and cleaner 
implementations. In this book, the data access layer, RESTful service, and each UI will be developed 
following this principle.

The data access layer will be developed in its own solution following a repository pattern. The 
repositories shield the calling code from having to understand specifics about how the data access works. 
The solution consists of two projects, one to hold the application models and the other to hold all of the EF 
Core code. This further separation enables Core MVC applications to reference the strongly typed models 
without needing all of the EF Core code as well, as additional projects are added to the solution for testing.

Creating the Solution and Projects
Start by creating a new solution and Console Application project. Typically, a data access layer is built using 
just class libraries, but due to an issue in the current version of .NET Core, migrations only work on console 
application projects. From the Start Screen in Visual Studio, click on More Project Templates… under New 
Project, as shown in Figure 1-3.



Chapter 1 ■ Introducing Entity Framework Core

9

In the New Project dialog box, select the Console App (.NET Core) template located in Installed ➤ Visual 
C# ➤ .NET Core. Name the project SpyStore.DAL, as shown in Figure 1-4. Click OK to create the project.

Figure 1-3.  Creating the SpyStore.DAL project and solution

Figure 1-4.  Creating the SpyStore.DAL project and solution



Chapter 1 ■ Introducing Entity Framework Core

10

Open Program.cs and delete the following line from the Main method:

Console.WriteLine("Hello World!");

The file should contain the following after the editing:

using System;
class Program
{
  static void Main(string[] args)
  {
  }
}

■■ Note   Previous versions of .NET allowed for data access libraries to be Class Library projects. Core is 
different. If you can’t execute dotnet run against a project, you also can’t execute dotnet ef. This is because 
.NET Core doesn’t have a globally installed framework, but is installed on a per project basis. Due to this, in 
order to run migrations for the data access library, the project type must be a Console Application.

Next, add a class library to the solution to hold the models. Right-click on the solution name and select 
Add ➤ New Project…, as shown in Figure 1-5.

Figure 1-5.  Adding a new project

Select the Class Library (.NET Standard) template and name the project SpyStore.Models, as 
shown in Figure 1-6. As with prior versions of Visual Studio, the new project is automatically added into the 
solution. Click OK to create the new project and close the wizard.



Chapter 1 ■ Introducing Entity Framework Core

11

Finally, add the unit test project. Even though there are two different templates for unit test projects, you 
are going to build one from scratch. Right-click on the solution and select Add ➤ New Project…, then select 
the Console App (.NET Core) template and name the project SpyStore.DAL.Tests. Click OK to create the 
new project and close the wizard.

Changes to the Project Files
If you’ve been tracking the .NET Core story, there have been a myriad of changes. What started as ASP.NET5 
had grown to .NET Core, ASP.NET Core, and EF Core. The command line tools changed from DNX and DNU 
to DOTNET. The project files started as project.json and *.xproj and then (with VS2017) reverted back to 
*.csproj. The good news is that the drastic changes are winding down with the release of VS2017, and the 
landscape is beginning to stabilize. The removal of project.json brings .NET Core projects back to being 
MSBuild compatible and aligns them with the rest of the .NET family in regards to tooling.

The Visual Studio 2017 <projectname>.csproj file has some nice updates over previous versions 
of Visual Studio. One of the biggest changes is the replacement of individual file listings with project 
directories, also referred to as file globbing. This carries forward one of the major benefits of the project.
json file and the folder structure scoping of .NET Core projects. Also, all of the NuGet package information 
for the project is contained in this file (instead of a separate packages file), and finally, additional nodes were 
added for the .NET Core command line tooling (replacing the “tools” node in project.json).

VS2017 enables editing the project file directly through Visual Studio. This is a much-improved workflow 
over the previous method of editing the file in an external text editor and then reloading the project.

Updating the Target Framework
The default templates in Visual Studio target the LTS version of .NET Core, which is currently 1.0.3. The 
projects all need to be updated to 1.1. Right-click on the SpyStore.DAL project and select Properties. On the 
Application tab, change the Target Framework to NETCoreApp 1.1, as shown in Figure 1-7. Do this for the 
SpyStore.DAL.Tests project as well.

Figure 1-6.  Adding the SpyStore.Models project



Chapter 1 ■ Introducing Entity Framework Core

12

Next, right-click on the SpyStore.Models project and select Properties. For this project, update the 
target framework to NETStandard 1.6, as shown in Figure 1-8.

Figure 1-7.  Updating the target framework to NETCoreApp 1.1

Figure 1-8.  Updating the target framework to NETStandard 1.6



Chapter 1 ■ Introducing Entity Framework Core

13

Working with NuGet Packages
EF Core and the other .NET Core frameworks are distributed as NuGet packages. When a new project is 
created using Visual Studio, the actual NuGet packages aren’t included, just a reference to those packages, so 
the packages need to be restored. Most source code control systems also don’t include the package files, so 
a restore needs to happen when projects are loaded from source code control. This is a good thing, since it 
saves considerable space in the template files and source code control systems. It also means that you must 
have Internet access to work with .NET Core projects.

Visual Studio executes a package restore when a new project is created. A message to this effect is 
displayed in the Solution Explorer window briefly when the new project wizard finished. Visual Studio 
also executes a restore when a change is detected in the project file. Packages can also be restored on 
demand.

■■ Note   NuGet is updated at a fairly rapid cadence. If you receive errors while restoring, updating, or adding 
packages, try updating your version of NuGet Package Manager by downloading the latest version from 
https://www.nuget.org/.

Manually Restoring Packages
Packages can be restored manually from Package Manager Console, from the command prompt, or through 
Visual Studio using the NuGet Package Manager GUI.

Restoring Packages from the CLI
You can restore the NuGet packages in your solution (or project) using the .NET Core CLI by entering dotnet 
restore in a standard command prompt. The command restores the packages for every *.csproj file that 
it finds in the directory tree at and below where the command was executed. In other words, if you enter the 
command at the solution level, the packages in all of the projects in your solution will be restored (if they are 
in the same directory tree, of course). If you enter it at a project level, only the packages for that project are 
restored.

Restoring with Package Manager Console
You can also force a package refresh through Package Manager Console (PMC) in Visual Studio. To restore 
packages using PMC, first open it by selecting View ➤ Other Windows ➤ Package Manager Console. The 
console window will load in the bottom of the Visual Studio workspace by default.

Enter the same command (dotnet restore) at the prompt. The same rules apply—every project 
in the directories below where the command is executed will be updated. The default project setting 
in PMC doesn’t matter in this case—it’s the current directory being used by the PMC. You can check 
the current directory by typing dir at a PMC prompt and changing the current directory using the cd 
command.

https://www.nuget.org/


Chapter 1 ■ Introducing Entity Framework Core

14

Adding the Project References
The SpyStore.DAL project needs to reference the SpyStore.Models project. Add the reference by right-
clicking the SpyStore.DAL project in Solution Explorer, select Add ➤ Reference, and then click on Projects in 
the left side of the Reference Manager. Check the box next to SpyStore.Models, as shown in Figure 1-9. Click 
OK to add the reference.

Figure 1-9.  Adding the project reference

The SpyStore.DAL.Tests project needs to reference the SpyStore.DAL and SpyStore.Models projects. 
Add the references by right-clicking the SpyStore.DAL.Tests project in Solution Explorer, selecting  
Add ➤ Reference, and then selecting the SpyStore.Models and SpyStore.DAL projects in the References 
Manager dialog. Click OK after selecting the projects to finish adding the references.

Adding Entity Framework Core
The required EF Core packages can be added to a project by manually updating the *.csproj file, using 
PMC, or using the NuGet Package Manager. The simplest way is to use NuGet Package Manager.

Adding EF Packages to the SpyStore.DAL Project
Adding packages with NuGet Package Manager is just as easy as updating the package versions just 
completed. Open NuGet Package Manager by right-clicking on the SpyStore.DAL project and selecting 
Manage NuGet Packages. Make sure the Include Prerelease box is checked, then click on Browse in the 
top-left corner and enter Microsoft.EntityFrameworkCore into the search box. Install all of the Microsoft.
EntityFrameworkCore packages shown in Table 1-1. Change the search to System.Linq.Queryable and add 
the final package from the table.



Chapter 1 ■ Introducing Entity Framework Core

15

This package needs to be installed by hand:

Microsoft.EntityFrameworkCore.Tools.DotNet (see note) .NET Core SDK 
command line tools for EF Core

1.0.0-msbuild3-final

■■ Note   At the time of this writing, the Microsoft.EntityFrameworkCore.Tools.DotNet package can’t be 
properly installed properly through the NuGet package manager. The package must be installed by manually 
updating the project file, as you will do next. Depending on when you are reading this book, the versions 
will most likely be updated from Table 1-1. When selecting packages, pay close attention in NuGet Package 
Manager to make sure that you are picking the correct versions, especially when working with pre-release 
packages.

Table 1-1.  Entity FrameworkCore Packages

Package Version

Microsoft.EntityFrameworkCore The core package of the framework 1.1.0

Microsoft.EntityFrameworkCore.Design The shared design time components  
of EF Core tools

1.1.0

Microsoft.EntityFrameworkCore.Relational Shared components for relational 
database providers

1.1.0

Microsoft.EntityFrameworkCore.Relational.Design Shared design time 
components for relational database providers

1.1.0

Microsoft.EntityFrameworkCore.SqlServer Microsoft SQL Server database 
provider for EF Core

1.1.0

Microsoft.EntityFrameworkCore.SqlServer.Design Design time EF Core 
functionality for MS SQL Server

1.1.0

Microsoft.EntityFrameworkCore.Tools Visual Studio Commands for EF Core 1.0.0-msbuild3-final



Chapter 1 ■ Introducing Entity Framework Core

16

Installing/Updating Packages Using the SpyStore.DAL.csproj File
You can also update and install NuGet packages directly in the SpyStore.DAL.csproj file. Right-click on the 
SpyStore.DAL project and select Edit SpyStore.DAL.csproj, as shown in Figure 1-10.

Tooling references are placed in their own item group. .NET Core CLI tools are added with a 
DotNetCliToolReference tag. Add a new ItemGroup and then add the following markup. This enables the 
dotnet ef command line functions that will be utilized later.

<ItemGroup>
  <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet">
    <Version>1.0.0-msbuild3-final</Version>
  </DotNetCliToolReference>
</ItemGroup>

Future releases of VS2017 will probably provide a user interface to do this, but for now, manually 
entering these values is part of the joy of working with pre-release software!

Adding EF Packages to the SpyStore.Models Project
The SpyStore.Models project only needs two packages added:

•	 Microsoft.EntityFrameworkCore (v1.1.0)

•	 Microsoft.EntityFrameworkCore.SqlServer (v1.1.0)

To add them, open NuGet Package Manager and repeat the previous steps to add the two packages.

Figure 1-10.  Editing the project file



Chapter 1 ■ Introducing Entity Framework Core

17

Adding Packages to the SpyStore.DAL.Tests Project
The SpyStore.DAL.Tests project needs the following packages added:

•	 xUnit (at least 2.2.0-beta5-build3474)

•	 xunit.runner.visualstudio (at least 2.2.0-beta5-build1225

•	 Microsoft.NET.Test.Sdk (v15.0.0-preview-20170125-04))

•	 Microsoft.EntityFrameworkCore (v1.1.0)

•	 Microsoft.EntityFrameworkCore.Design (v1.1.0)

•	 Microsoft.EntityFrameworkCore.Relational (v1.1.0)

•	 Microsoft.EntityFrameworkCore.SqlServer (v1.1.0)

To add them, open NuGet Package Manager and repeat the previous steps to add the required packages.

Building the Foundation
The process that will be followed to create the data access layer is fairly standard, and one that I’ve mastered 
since my adoption of ORMs.

	 1.	 Create the context class.

	 2.	 Create a base entity class.

	 3.	 Create and configure model class(es).

	 4.	 Add the model to the context as a DbSet<T>.

	 5.	 Create a migration and run it to update the database.

	 6.	 Add a strongly typed repository for the model.

Creating a base entity class is optional, but commonly done to hold common properties across all 
entities. Adding a custom repository implementation is also optional, and largely dependent on the 
architecture of the project. The DbContext provides some Unit of Work and Repository implementation 
details, so technically, including any repository functionality beyond that is unnecessary. However, it is 
common for developers to add their own repository implementation to enable tighter control of the CRUD 
process and increase code reuse.

Understanding the DbContext Class
The MSDN Library defines the DbContext instance as a combination of the Unit of Work and Repository 
patterns. It provides access to the model collections in your data model (populating the collections from 
the data store when needed), exposes CRUD functionality on your collections (in addition to the functions 
exposed through the DbSet<T> specialized collection classes), and groups changes into a single call as a unit 
of work. Table 1-2 and 1-3 list some of the properties and methods of the DbContext used in this book.



Chapter 1 ■ Introducing Entity Framework Core

18

Table 1-2.  Some of the Properties Exposed by DbContext

DbContext Property Definition

Database Provides access database related information and functionality, including 
execution of SQL statements.

Model The metadata about the shape of entities, the relationships between them, and 
how they map to the database.

ChangeTracker Provides access to information and operations for entity instances this context is 
tracking.

Table 1-3.  Some of the Methods Exposed by DbContext

DbContext Method Definition

AddAdd<TEntity> Begins tracking the entity. Will be inserted in the data store when 
SaveChanges is called. If type isn’t specified, the DbContext will 
determine which DbSet the entity should be added into. Async versions 
are also available. Note: The DbSet<T> versions are typically used.

AddRange Adds a list of entities to the change tracker instead of just one at a time. 
Entities do not have to all be of the same type. An async version is also 
available. Note: The DbSet<T> version is typically used.

Find<TEntity> Searches the change tracker for an entity of the given by primary key. If 
it is not found, the data store is queried for the entity. An async version 
is also available. Note: The DbSet<T> version is typically used.

RemoveRemove<TEntity> Prepares an entity for deletion from the data store. Will be deleted from 
the data store when SaveChanges is called. If type isn’t specified, the 
DbContext will determine which DbSet the entity should be removed 
from. Async versions are also available. Note: The DbSet<T> versions 
are typically used.

RemoveRange Prepares a list of entities to be deleted from the data store instead of just 
one at a time. Entities do not have to all be of the same type. An async 
version is also available. Note: The DbSet<T> version is typically used.

UpdateUpdate<TEntity> Prepares an entry to be updated in the data store. Will be updated when 
SaveChanges is called. If the type isn’t specified, the DSbContext will 
determine which DbSet the entity belongs to. Async versions are also 
available. Note: The DbSet<T> versions are typically used.

SaveChangesSaveChangesAsync Saves all entity changes to the database and returns the number of 
records affected.

Entry(T entity) Provides access to change tracking information and operations (such as 
changing the EntityState) for the entity.

OnConfiguring A builder used to create or modify options for this context. Executes 
each time a DbContext instance is created.

OnModelCreating Called when a model has been initialized, but before it’s finalized. 
Methods from the Fluent API are placed in this method to finalize the 
shape of the model.



Chapter 1 ■ Introducing Entity Framework Core

19

EF Core data access layers need a custom class that derives from the DbContext base class. The next 
section covers building the StoreContext class.

Creating the StoreContext Class
To get started, create a new folder in the SpyStore.DAL project named EF. In this folder, add a new class 
named StoreContext.cs. Add the following namespaces to the class:

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using SpyStore.Models.Entities;

Inherit from DbContext and add the following two constructors, as shown here:

namespace SpyStore.DAL.EF
{
  public class StoreContext : DbContext
  {
    public StoreContext()
    {
    }
    public StoreContext(DbContextOptions options) : base(options)
    {
    }
  }
}

The second constructor takes an instance of the DbContextOptions class. The options that can be 
passed in include settings for the database provider, connection resiliency, and any other options specific to 
your application. The options are typically passed in through a dependency injection (DI) framework, such 
as is used in ASP.NET Core. This allows automated tests to inject a different instance for testing purposes 
(such as the InMemory provider) as well as configure EF Core to use development or production servers 
without changing any of the data access code.

EF Core has a fallback mechanism in case the parameterless constructor is used to create the 
StoreContext class, the OnConfiguring event handler.

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{
}

The event fires after a new context class is constructed but before any methods can be called on the 
class. The DbContextOptionsBuilder class has a property called IsConfigured that’s set to true if the context 
was configured in the constructor, and false if not. By checking this property value in the OnConfiguring 
event handler, the developer can ensure that the context is configured. While dependency injection is 
the preferable way to create a new instance of a DbContext class, the OnConfiguring handler is useful for 
situations such as unit testing. It is also used in determining the default database type and connection 



Chapter 1 ■ Introducing Entity Framework Core

20

string to target when creating and applying migrations. Add the following code to the StoreContext class 
(updating the connection string to match your machine’s configuration):

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{
  if (!optionsBuilder.IsConfigured)
  {
    optionsBuilder.UseSqlServer(
@"Server=(localdb)\mssqllocaldb;Database=SpyStore;Trusted_Connection=True;MultipleActive 
ResultSets=true;");
  }
}

Unlike prior versions of EF, the modularity of EF Core requires an application to add the database 
providers and configure them for use. In this example, the context is configured to use the SQL Server 
database provider, using the LocalDB instance and the database SpyStore.

Understanding the DbSet<T> Collection Type
Each model collection is represented by a DbSet<T> specialized collection property in the DbContext class. 
Each DbSet<T> property contains all of the like entities (e.g., Category records) tracked in the context. 
Table 1-4 lists the methods available on DbSet<T> that are used in this data access layer.

Table 1-4.  Some of the Methods Exposed by DbSet<T>

DbSet<T> Method Definition

Add/AddRange Begins tracking the entity/entities in the Added state. Item(s) will be added when 
SaveChanges is called. Async versions are available as well.

Find Searches for the entity in the ChangeTracker by primary key. If not found, the 
data store is queried for the object. An async version is available as well.

Update/Update Begins tracking the entity/entities in the Modified state. Item(s) will be updated 
when SaveChanges is called. Async versions are available as well.

Remove/Remove Begins tracking the entity/entities in the Deleted state. Item(s) will be removed 
when SaveChanges is called. Async versions are available as well.

Attach/AttachRange Begins tracking the entity/entities in the Unchanged state. No operation will 
execute when SaveChanges is called. Async versions are available as well.

■■ Note   This book is only presenting the synchronous versions of the EF methods, and leaves it to the reader 
to determine if they should call the asynchronous versions of the DbSet<T> and DbContext methods. Using the 
asynchronous methods is a minor syntactical change. Just make sure that you thoroughly test everything.



Chapter 1 ■ Introducing Entity Framework Core

21

Connection Resiliency
When dealing with any database, but especially with cloud-based databases (such as SQL Azure), 
applications benefit from a retry strategy in case of a connectivity hiccup. These hiccups are usually referred 
to as transient errors. EF Core Version 1.1 added the ability to define a connection strategy, long available in 
EF 6. A connection strategy defines a set of errors that should invoke a retry operation, the number of retries, 
and the amount of time to wait between the retries.

The SQL Server provider for EF Core provides a SqlServerRetryExecutionStrategy class. The 
class defaults the retry count to 5 with a delay between retries of 30 seconds. This connection strategy 
uses the SqlServerTransientExceptionDetector to determine if the action should be retried. The 
EnableRetryOnFailure method is a handy shortcut to configure the retry limit and retry wait time to the 
default values, as well as the ability to add errors to the retry list.

Update the OnConfiguring to the following:

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{
  if (!optionsBuilder.IsConfigured)
  {
    optionsBuilder.UseSqlServer(
@"Server=(localdb)\mssqllocaldb;Database=SpyStore;Trusted_Connection=True;MultipleActive 
ResultSets=true;", options => options.EnableRetryOnFailure());
  }
}

Custom Connection Strategies

A custom connection strategy can also be created. Create a new class in the EF directory of the SpyStore.DAL 
project named MyConnectionStragey.cs. Add a using for Microsoft.EntityFrameworkCore.Storage and 
derive the class from ExecutionStrategy. Add the following code:

using System;
using Microsoft.EntityFrameworkCore.Storage;

namespace SpyStore.DAL.EF
{
  public class MyExecutionStrategy : ExecutionStrategy
  {
    public MyExecutionStrategy(ExecutionStrategyContext context) :
      base(context, ExecutionStrategy.DefaultMaxRetryCount,
           ExecutionStrategy.DefaultMaxDelay)
    {
    }

    public MyExecutionStrategy(
      ExecutionStrategyContext context,
      int maxRetryCount,
      TimeSpan maxRetryDelay) : base(context, maxRetryCount, maxRetryDelay)
    {
    }



Chapter 1 ■ Introducing Entity Framework Core

22

    protected override bool ShouldRetryOn(Exception exception)
    {
      return true;
    }
  }
}

Both constructors require an ExecutionStrategyContext (which comes from the 
DbContextOptionsBuilder). The first constructor defaults the retry count and retry delay to 5 and the 30 
seconds, respectively, just like the default SqlServerRetryExecutionStrategy. The ShouldRetryOn method 
returns true if EF should retry the operation, and false if it should not. In this example, it always returns true, 
so as long as there are retry counts left, it will always retry. Not a good implementation for production, but 
useful for testing error handling.

Adding the custom strategy to a context is as simple as replacing the EnableRetryOnFailure with the 
following code:

contextOptionsBuilder.UseSqlServer(connectionString,
  options => options.ExecutionStrategy(c=> new MyExecutionStrategy(c)));

Building the Base Entity Class
All of the tables in the database have a primary key named Id and a Timestamp field named TimeStamp. Since 
all models have these properties, they will be placed in a base class. EF Core pulls properties in base classes 
and derived classes together when shaping the database tables.

■■ Note   At the time of this writing, complex types are not yet supported in EF Core. This is a feature of EF 6.x 
where a class is used as a property on a model and pulled into the database appropriately. This is a technique 
used frequently in domain driven design. This feature is on the roadmap for EF Core, but nothing has been 
announced as to when it will be delivered. For now, EF Core supports inheritance, but not complex types.

In the SpyStore.Models project, delete the Class1.cs file that was auto-generated by the template. Add 
a new folder in the project named Entities by right-clicking on the SpyStore.Models project and selecting 
Add ➤ New Folder. Create a new folder under the Entities folder named Base. In the Base folder, add a new 
class named EntityBase.cs by right-clicking on the folder and selecting Add ➤ Class. Add the following 
namespaces to the class:

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;



Chapter 1 ■ Introducing Entity Framework Core

23

Make the class abstract (since it will only ever be inherited from) and add two properties—Id (int) and 
TypeStamp (byte[])—as follows:

namespace SpyStore.Models.Entities.Base
{
    public abstract class EntityBase
    {
        public int Id { get; set; }
        public byte[] TimeStamp { get; set; }
    }
}

If this looks simple, it is! EF model classes are just Plain Old CLR Objects (POCOs). Shaping of 
the database tables and fields and mapping the classes to the database is done through the EF built-in 
conventions, data annotations (from System.ComponentModel), and the EF Fluent API. Each of these will be 
covered as needed in this book.

■■ Note   There isn’t enough space in this book to cover EF conventions, data annotations, and Fluent API 
in their entirety. To explore all of the options available in shaping entities and the backing database, the full 
documentation is at the following URL: https://docs.microsoft.com/en-us/ef/core/modeling/.

Entity Framework Conventions
There are many conventions built into EF, and if you understand them, they are very beneficial in reducing 
the amount of manual configuration needed to properly shape the database. However, there is a lot to know, 
and that can cause problems. For example, the primary key convention creates a primary key for a table 
when EF finds a field named Id or <typename>Id (such as CustomerId on a class named Customer). For SQL 
Server, if the datatype of the property is int or GUID, the values will be generated by the server when a new 
record is added. Any other datatype will need to be configured by the developer. Each database provider has 
its own variations of this convention as well.

If the application relied only on EF conventions to shape the database, each developer would need to 
know and understand that convention. And that’s just one convention! The more “secret sauce” a project 
has, the greater the opportunity for developer confusion and errors. Instead of relying solely on conventions, 
a common practice (and one used in this book) is to be explicit as possible when defining entities by using 
data annotations and/or the Fluent API. For the base class, the explicit definition will be done through data 
annotations, covered in the next section.

Data Annotations Support in EF Core
Data annotations are applied as .NET attributes and are a key mechanism for shaping the database. Unlike 
the EF conventions, data annotations are explicit and are much more developer friendly. Table 1-5 lists some 
of the more common data annotations that are available in EF Core (and used in this book).

https://docs.microsoft.com/en-us/ef/core/modeling/


Chapter 1 ■ Introducing Entity Framework Core

24

Adding Data Annotations to the EntityBase Class
For primary key fields, the Key and DatabaseGenerated attributes replace the EF conventions. They don’t 
add any functionality, but are explicit and obvious to another developer. As detailed in the previous table, 
the Key attribute identifies the property as the primary key. The DatabaseGenerated attribute with the 
DatabaseGeneratedOption of Identity instructs SQL Server to generate the value when new records are 
added. Update the Id property by adding the following code:

[Key, DatabaseGenerated(DatabaseGeneratedOption.Identity)]
public int Id { get; set; }

The next data annotation to add is the Timestamp attribute. In SQL Server, rowversion fields get 
updated by the server every time a record is added or saved. The CLR datatype that represents a rowversion 
is a byte array of length 8. Update the Timestamp property to the following, and the base class is complete:

[Timestamp]
public byte[] TimeStamp { get; set; }

Adding the Category Model Class
Each of the tables listed in the Figure 1-1 will be represented by a .NET class (the simplest modeling 
mechanism for EF project), starting with the Category table.

Table 1-5.  Some of the Data Annotations Supported by EF Core

Data Annotation Definition

Table Defines the table name for the model class. Allows specification of the schema as 
well (as long as the data store supports schemas).

Column Defines the column name for the model property.

Key Defines the primary key for the model. Not necessary if the key property is named 
Id or combines the class name with Id, such as OrderId. Key fields are implicitly 
also [Required].

Required Declares the property as not nullable.

ForeignKey Declares a property that is used as the foreign key for a navigation property.

InverseProperty Declares the navigation property on the other end of a relationship.

MaxLength Specifies the max length for a string property.

TimeStamp Declares a type as a rowversion in SQL Server and adds concurrency checks to 
database operations.

DatabaseGenerated Specifies if the field is database generated or not. Takes a 
DatabaseGeneratedOption value of Computed, Identity, or None.

NotMapped Specifies that EF needs to ignore this property in regards to database fields.

DataType Provides for a more specific definition of a field than the intrinsic datatype.



Chapter 1 ■ Introducing Entity Framework Core

25

■■ Note   This chapter focuses on the Category table and works through the entire process of building the 
DbContext, creating and running EF migrations, unit testing, and creating a repository. In the next chapter, the 
final EF Core concepts are covered, and the remaining tables and repositories are added, completing the data 
access layer.

In the Entities folder, add a new class and name it Category.cs. Add the following namespaces to the 
class:

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using SpyStore.Models.Entities.Base;

Update the class to inherit from EntityBase and add a string property called CategoryName, as shown in 
the following code:

namespace SpyStore.Models.Entities
{
  public class Category : EntityBase
  {
    public string CategoryName { get; set; }
  }
}

Just like the EntityBase class, data annotations will be used to shape the table that gets created by EF 
from the Category class. For the CategoryName field, add the DataType and MaxLength annotations. The 
DataType annotation refines the type beyond the high-level string datatype, and the MaxLength annotation 
sets the size of the text field in SQL Server. The MaxLength attribute is also used in Core MVC validations, 
covered later in this book. Update the code in the Category.cs class to the following:

public class Category : EntityBase
{
    [DataType(DataType.Text), MaxLength(50)]
    public string CategoryName { get; set; }
}

The convention in EF Core for table names is based on the name of the DbSet<T> property in the 
DbContext class (covered in the next section). This can be changed (including specifying a database schema) 
by using the Table attribute. Update the code in the Category.cs class to the following:

[Table("Categories", Schema = "Store")]
public class Category : EntityBase
{
    [DataType(DataType.Text), MaxLength(50)]
    public string CategoryName { get; set; }
}

This completes the Category class for now. When the additional tables are added to the model, the 
navigation property for the Product class will be added to Category class.



Chapter 1 ■ Introducing Entity Framework Core

26

Adding the Categories DbSet
The DbContext is the core of using EF Core as a data access library. Each model class needs to be added as a 
DbSet<T> property in the context. Add the following to the end of the StoreContext.cs class:

public DbSet<Category> Categories { get; set; }

Any instances of the Category class contained in the DbSet<Category> collection property can be acted 
on by the StoreContext and EF for CRUD operations.

■■ Note   Technically, any class that is reachable from a class contained in a DbContext’s DbSet<T> is 
reachable by EF. This EF convention can cause confusion and code issues, so all of the classes in this data 
access library are added directory into the StoreContext class as DbSet<T> properties.

Now that the Category class, its base class, and the StoreContext are done, it’s time to update the 
database by creating and executing the first migration.

Migrations
When application models are added, deleted, or changed, the physical data store needs to be updated 
to match the shape of the application data model. Entity Framework migrations provide a convenient 
mechanism to do just that. In true code-first scenarios (where the database is created from the .NET classes), 
the process is very straightforward.

	 1.	 Create, delete, or update the model classes and/or the context class.

	 2.	 Create a new migration.

	 3.	 Apply that migration to the database.

or

	 4.	 Create the script file for the migration for execution elsewhere (such as SQL 
Server Management Studio).

■■ Note   Although not covered in this book, you can also use EF Core with existing databases. While still called 
“code first” (probably not the best name), code first from an existing database works in reverse of the code first 
steps shown here. Changes are made to an existing database, and then the DbContext and model classes are 
scaffolded from that database. This is a great way to learn the data annotations and EF Fluent API available in 
EF Core—you build a database in SQL Server Management Studio, and then reverse engineer it into EF code. It 
is also invaluable if you are in a situation where someone else controls the database your application is using. 
To find out more, enter dotnet ef dbcontext scaffold -h at the command prompt (as shown later in this 
section) to get help on scaffolding your database.

Each migration builds from the previous migration, and a project can have as many migrations as 
needed. The more migrations created, the more granular the approach. It is not uncommon to have a series 
of migrations for each context class, and each team will settle on its preferred workflow.



Chapter 1 ■ Introducing Entity Framework Core

27

When a migration is created, EF examines model classes (and their data annotations) that can be 
reached from the context through the DbSet<T> properties, any related classes (and their data annotations), 
and any Fluent API commands (covered later in this chapter). From all of this information, EF constructs 
the current shape of the data model. EF then compares this shape with the existing database and creates the 
necessary change set to migrate the database to the current code-based model. This change set is saved in a 
migration file that is named using a timestamp and the friendly name provided by the developer. Executing 
the change set updates the database. This is all detailed in the following sections.

Executing EF .NET CLI Commands
Creating and executing a migration are .NET Core CLI commands added by the EF tooling. The commands 
can be executed from the Package Manager Console or from the command line. In either case, the command 
must be run from the directory that contains the .csproj file for the project containing the context class and 
the Microsoft.EntityFrameworkCore.Tools.DotNet DotNetCliToolReference.

Open Package Manager Console and check the current directory by entering the dir command at the 
prompt. When PMC opens, the default directory is the solution directory. Navigate to the SpyStore.DAL 
directory by entering cd SpyStore.DAL at the command prompt.

Once the proper directory is set, run any of the EF commands by typing dotnet ef at the prompt 
followed by the specific command (migrations, for example), including any necessary arguments and 
options. Help is available for all of the commands by adding -h (or --help) after the command. For example, 
to get the list of available top-level EF commands, type:

dotnet ef -h

The help shows three available commands:

Commands:
  database    Commands to manage your database
  dbcontext   Commands to manage your DbContext types
  migrations  Commands to manage your migrations

Each successive command also provides help. To get help for adding a migration, enter:

dotnet ef migrations add -h

Creating the First Migration
When migrations are created, they default to a directory named Migrations. To change that, use the -o 
parameter. It’s generally a good idea to specify the context as well with the -c parameter and the fully 
qualified name of the context. If one isn’t specified, the default context (or the only context EF can find in the 
current project directory) will be used. In this example project, there is only one context, but real business 
applications frequently have more than one, and getting in the habit of specifying the context will potentially 
be required in those larger projects.

To create the migration for the StoreContext, enter the following command at the command prompt:

dotnet ef migrations add Initial -o EF\Migrations -c SpyStore.DAL.EF.StoreContext



Chapter 1 ■ Introducing Entity Framework Core

28

Executing the first migration creates the EF\Migrations directory (if it doesn’t already exist) and adds 
three files to the directory:

•	 20161113015453_Initial.cs (your timestamp value will be different)

•	 20161113015453_Initial.Designer.cs (your timestamp value will be different)

•	 StoreContextModelSnapshot.cs (updated if already exists)

The files describing the changes needed are the two with names containing a timestamp and the 
migration name. This naming convention enables EF to replay all migrations in the correct order, as each 
subsequent migration will have another, later timestamp as the first part of the name.

Open the 20161113015453_Initial.cs class. This class has two methods, named Up and Down. The Up 
method is for applying the changes to the database, and the Down method is to roll back the changes. The file 
should look like this (notice the class name does not contain the timestamp value):

public partial class Initial : Migration
{
  protected override void Up(MigrationBuilder migrationBuilder)
  {
    migrationBuilder.EnsureSchema(name: "Store");

    migrationBuilder.CreateTable(
      name: "Categories",
      schema: "Store",
      columns: table => new
      {
        Id = table.Column<int>(nullable: false)
          .Annotation("SqlServer:ValueGenerationStrategy",
             SqlServerValueGenerationStrategy.IdentityColumn),
             CategoryName = table.Column<string>(maxLength: 50, nullable: true),
             TimeStamp = table.Column<byte[]>(rowVersion: true, nullable: true)
      },
      constraints: table =>
      {
        table.PrimaryKey("PK_Categories", x => x.Id);
      });
  }

  protected override void Down(MigrationBuilder migrationBuilder)
  {
    migrationBuilder.DropTable(
      name: "Categories",
      schema: "Store");
  }
}

The 20161113015453_Initial.Designer.cs class is the cumulative shape of the database, including 
this migration and all previous migrations.

The StoreContextModelSnapshot.cs class is the current shape of the database according to all of the 
migrations.



Chapter 1 ■ Introducing Entity Framework Core

29

■■ Note   Previous versions of EF created a hash of the database and stored it in the __MigrationHistory 
table. Conflicts in database shape were usually discovered the hard way with developers stepping on each 
other. The new approach greatly enhances the team development workflow, since the full database definition is 
stored as a text file in the project instead of a hash in the database. This enables change detection and merge 
capabilities using modern version control software.

Removing a Migration
In previous versions of EF, you could remove any specific migration (even it if was in the middle of the 
migration chain). This option is no longer available. The dotnet ef migrations remove command removes 
the last migration only, so if you need to remove the third out of five total, you need to execute the remove 
command three times. This makes sense, since the ModelSnapshot is updated when a migration is removed. 
Removing a migration in the middle would leave the ModelSnapshot in an inconsistent state.

Applying the Migration
By default, migrations are not automatically applied (auto applying migrations is covered later). The 
dotnet ef database update command is used to promote the changes to the data store. If the name of 
a migration is entered with the command, EF will apply all pending migrations up to and including the 
named migration. If no name is entered, all pending migrations will be applied. If a 0 is entered instead 
of a name, all migrations will be rolled back. The context to use can be specified the same way as when 
creating migrations, and if one isn’t specified, the default context (or the only context EF can find in the 
current project directory) will be used. To apply the Initial migration you just created, enter the following 
command into Package Manager Console:

dotnet ef database update Initial -c SpyStore.DAL.EF.StoreContext

The update command first checks to see if the database exists based on the connection string contained 
in the context’s DbContextOptions. If the database doesn’t exist, EF will create it. EF then checks for a table 
named __EFMigrationsHistory. If it doesn’t exist, it will also be created. This table stores the migration 
name and EF version for all applied migrations. EF next checks the list of applied migrations against the list 
of pending migrations included in the command entered and then applies them, in order. When the process 
is complete, any migrations that were applied are entered into the __EFMigrationsHistory table.

After executing the command, you will see all of the SQL commands executed in the PMC (or command 
window). If the migration was successfully applied, you will see a single word:

Done.

Somewhat anticlimactic considering all of the work that was completed!

Viewing the Database
To view the created database, open Server Explorer (if it’s not visible, select it under the View menu in 
VS2017). Create a new database connection using the values from your connection string (similar to 
Figure 1-11).



Chapter 1 ■ Introducing Entity Framework Core

30

Once the connection is created, you can view the Customers table in Server Explorer to confirm that the 
table was created successfully.

Creating Migration SQL Scripts
If you are in an environment where database updates cannot be applied directly by developers, EF Core 
has a process for creating SQL scripts for migrations. This is also valuable if you want to check what the 
migration will do before actually applying it to your database. The start and end migrations can be specified 
to limit the scope of the script. If neither is specified, the script will start at the first migration and run to the 
last migration.

Figure 1-11.  Creating the connection for the SpyStore database



Chapter 1 ■ Introducing Entity Framework Core

31

To create a SQL script for the Initial migration, enter the following command:

dotnet ef migrations script 0 Initial -o migration.sql -c SpyStore.DAL.EF.StoreContext

The output is a SQL script that can be run against your database to reflect the changes in your model. 
Note that the script creates the __EFMigrationHistory table if it doesn’t exist, but not the database.

Understanding CRUD Operations Using Entity Framework
Now that the framework is in place and the migration has been applied, it’s time to put it all together and 
understand how CRUD operations are executed using Entity Framework. The DbSet<Category> property of 
the StoreContext is the gateway into and out of the Category table in the database. You will see all of this in 
action later in this chapter.

Creating Records
Creating a new category record in the database through EF is a three-step process:

	 1.	 Create a new instance of the Category class and set the properties accordingly.

	 2.	 Add it to the Categories DbSet<Category> collection property of the 
StoreContext.

or

Add it to the StoreContext.

	 3.	 Call SaveChanges() on the StoreContext.

When creating a new instance of the Category class, the Id and Timestamp properties should not be 
populated since they are set by SQL Server.

When a new instance of a class is added to the appropriate DbSet<T>, two main things happen. The 
class is added to the context’s ChangeTracker and the EntityState of the instance is set to EntityState.
Added. The ChangeTracker (as the name suggests) tracks all entities that are added, updated, or set for 
deletion in the context. You can also add an instance to the context directly. If this method is used, the 
context determines the type of the instance and adds it to the correct DbSet<T>.

The final step is to call SaveChanges on the context. When this is called, the context gets all of the 
changed entities from the ChangeTracker, determines the actions needed (based on the entity state), and 
executes each of the changes against the database in a single transaction. If any of the changes fail, all 
of them fail as a unit. It they all succeed, the EntityState of each instance is changed to EntityState.
Unchanged, and the Id and Timestamp properties (as well as any other database generated properties in your 
model) are populated with the values from the database.

Reading Records
Reading records from the database involves executing a LINQ statement against the DbSet<T>. The data read 
from the database is used to create new instances of the classes (in this case Category instances) and adds 
them to the DbSet<T> and, by default, tracks them using the ChangeTracker.



Chapter 1 ■ Introducing Entity Framework Core

32

No-Tracking Queries
Records can be read for read-only use. This can be more performance, as the ChangeTracker doesn’t 
monitor the records. To read records as untracked, add AsNotTracking() to the LINQ statement as in the 
following:

context.Categories.AsNoTracking().ToList();

For all queries on a context instance to be no-tracking, change the QueryTrackingBehavior property of 
the ChangeTracker as follows:

context.ChangeTracker.QueryTrackingBehavior=QueryTrackingBehavior.NoTracking;

Updating Records
There are two methods to update records in the database. The first is to work with a tracked entity, and the 
steps are as follows:

	 1.	 Read the record to be changed from the database and make any desired edits.

	 2.	 Call Update on the Categories DbSet<Category>.

or

Call Update on the StoreContext.

	 3.	 Call SaveChanges() on the StoreContext.

Without concurrency checking, if the CategoryName has been updated, a query similar to the following 
is executed to update the record:

UPDATE Store.Categories SET CategoryName = "Foo" WHERE Id = 5

Concurrency Checking
When there is a Timestamp attribute on a property in the class, the where clauses on Updates and Deletes are 
updated to include this field. In this case, it’s the Timestamp field. For example, the update statement from 
before is updated to this:

UPDATE Store.Categories SET [CategoryName] = 'Communications'
 WHERE Id = 5 and Timestamp = 0x0000000000017076

The Timestamp property in SQL Server is updated every time a record is added or updated. If the record 
referenced by the ChangeTracker was changed in the database by another user or process, the Timestamp 
value in the tracked entity won’t match the value in the database. The where clause can’t locate the record, 
and the record is left unchanged. This doesn’t cause an exception in SQL Server, it just doesn’t affect any 
records. This causes a difference between the number of expected changes in the ChangeTracker and the 
actual number of changes executed.

When the number of expected changes doesn’t match the number of actual changes, EF throws a 
DbUpdateConcurrencyException, and the entire transaction is rolled back. The entities that were not 
updated or deleted are contained in the Entries property of the DbUpdateConcurrencyException.



Chapter 1 ■ Introducing Entity Framework Core

33

Updating Using Entity State
The second method involves setting the EntityState on a model instance directly. The steps are as follows:

	 1.	 Make sure the entity is not already being tracked in the context.

	 2.	 Create a new instance of the Category class.

	 3.	 Set all of the fields to the correct values. Ensure that the Id and Timestamp fields 
match the values of the record to be updated.

	 4.	 Set the EntityState to EntityState.Modified.

	 5.	 Call SaveChanges() on the StoreContext.

The advantage of this is that if the entity isn’t already being tracked, it doesn’t have to be read from the 
database just to be updated. This method is best used for stateless scenarios where all of the properties are 
available. Note: If the entity is being tracked, this method doesn’t work.

Deleting Records
There are two main methods for deleting records from the database. The first method tracks very closely 
with updating records.

	 1.	 Read the record to be changed from the database.

	 2.	 Call Remove on the Categories DbSet<Category>.

or

Call Remove on the StoreContext.

	 3.	 Call SaveChanges() on the StoreContext.

Similar to when it’s updating, EF generates a query similar to the following (and will throw a 
DbUpdateConcurencyException if nothing is deleted):

DELETE FROM Store.Categories WHERE Id = 5 and timestamp = 0x0000000000017076

Deleting Using Entity State
The second method involves setting the EntityState on a model instance directly. The steps are as follows:

	 1.	 Make sure the entity is not already being tracked in the context.

	 2.	 Create a new instance of the Category class.

	 3.	 Set the Id and Timestamp fields to the values of the record to be deleted.

	 4.	 Set the EntityState to EntityState.Deleted.

	 5.	 Call SaveChanges() on the StoreContext.

Similar to updating using EntityState, the advantage of this is that if the entity isn’t already being 
tracked, it doesn’t have to be read from the database just to be deleted. This method is commonly used in 
stateless web scenarios. Note: If the entity is being tracked, this method doesn’t work.



Chapter 1 ■ Introducing Entity Framework Core

34

Unit Testing EF Core
It’s time to add unit tests to ensure that all of the work you have done so far actually does what is expected. 
There are many unit testing frameworks available for .NET developers, and the choice depends largely on 
personal preference. My favorite unit testing framework is xUnit (http://xunit.github.io), which also 
supports .NET Core.

The tests that follow are designed to test that the StoreContext can perform CRUD operations for the 
Categories table in the database. From an academic point of view, that means they aren’t actually unit 
tests, but integration tests. While technically correct, I will simply refer to them as unit tests (or just tests) 
throughout this book. One can also argue that there isn’t a need to add unit (or integrations) tests just to 
test that EF does what it is supposed to do. That is correct as well. But what these tests are really doing is 
validating our understanding and implementation of EF, not necessarily testing EF itself. In short, there are a 
wide range of opinions on testing, and being different doesn’t mean being wrong.

■■ Note   Automated testing is an extremely important part of development. Due to space limitations (in an 
already long set of chapters on EF Core), there are only a few tests for EF covered in print. There are many more 
tests in the downloadable code, and following the samples shown in this section, I leave the rest of the testing 
for you, the reader, to implement.

Creating the CategoryTests Class
For the unit tests, I am following the Constructor and Dispose pattern in xUnit as documented here:  
http://xunit.github.io/docs/shared-context.html#constructor, which requires each test class to 
implement IDisposable. This pattern is useful if you need to run code before and/or after every test—code 
in the class constructor is run before every test, and code in the Dispose method is run after every test.

Add a new folder named ContextTests to the root of the SpyStore.DAL.Tests project, and add a new 
class into that folder named CategoryTests.cs. Add (or update) the using statements to include all of the 
following:

using System;
using SpyStore.DAL.EF;
using SpyStore.Models.Entities;
using Xunit;
using Microsoft.EntityFrameworkCore;
using System.Linq;

Next, implement IDisposable and create a constructor.

public class CategoryTests : IDisposable
{
  public CategoryTests()
  {
  }
  public void Dispose()
  {
  }
}

http://xunit.github.io/
http://xunit.github.io/docs/shared-context.html#constructor


Chapter 1 ■ Introducing Entity Framework Core

35

The default for xUnit is to run all tests in a class in serial and to test across classes in parallel. Since all 
of the tests in this project are testing against the same database, running them serially keeps them isolated 
from all other tests. To accomplish this, add the class level Collection attribute and add the text "SpyStore.
DAL" into the attribute’s constructor. All classes that share the Collection attribute and the same key have 
their tests run in serial. Add the constructor like this:

[Collection("SpyStore.DAL")]
public class CategoryTests : IDisposable
{
  //omitted for brevity
}

Add a private read-only variable to hold an instance of the StoreContext and instantiate it in the 
constructor. Dispose of it in the Dispose method. This causes every test to get a newly instantiated 
StoreContext, and after each test, the StoreContext is disposed. Update the code to match the following 
(note the new using statement):

using SpyStore.DAL.EF;
public class CategoryTests : IDisposable
{
    private readonly StoreContext _db;
    public CategoryTests()
    {
        _db = new StoreContext();
    }
    public void Dispose()
    {
        _db.Dispose();
    }
}

■■ Note   Creating a new instance of a store context before each use should be done with caution and critical 
thought. There is a cost associated with creating a new instance of a DbContext. For testing purposes, however, 
it’s best to have a clean context for every test, so creating a new one is the best approach.

The final setup code is to make sure any records that were added to the database are cleared out and 
sequences reseeded. Add the following using statement to the top of the file:

using Microsoft.EntityFrameworkCore;

Next, create a method called CleanDatabase as follows:

private void CleanDatabase()
{
  _db.Database.ExecuteSqlCommand("Delete from Store.Categories");
  _db.Database.ExecuteSqlCommand($"DBCC CHECKIDENT (\"Store.Categories\", RESEED, -1);");
}



Chapter 1 ■ Introducing Entity Framework Core

36

Add a call to this method in the constructor and the Dispose method. Calling in the Dispose executes 
after each test. The method is added into the constructor in case another test fails and leaves the database in 
an inconsistent state, as follows:

public CategoryTests()
{
  _db = new StoreContext();
  CleanDatabase();
}
public void Dispose()
{
  CleanDatabase();
  _db.Dispose();
}

Creating and Running the First Test
xUnit uses the [Fact] attribute to mark tests. This is analogous to the [Test] attribute used in other test 
frameworks (there is also a [Theory] attribute for data driven tests, but that isn’t covered in this chapter). 
The first test will simply demonstrate xUnit and running tests in Visual Studio. Add the following code to the 
CategoryTests.cs class:

[Fact]
public void FirstTest()
{
    Assert.True(true);
}

To execute the test, open the Test Explorer window by selecting Test ➤ Windows ➤ Test Explorer. When 
you rebuild the solution, unit tests in your solution will show up in the Test Explorer window, as shown in 
Figure 1-12.

Figure 1-12.  The Test Explorer window

To run the tests, click on Run All or right-click the test name and select Run Selected Tests. If all goes 
well, the test will go green. If not, you can double-click on the test name, and Visual Studio will take you 
directly to the test code.



Chapter 1 ■ Introducing Entity Framework Core

37

Testing EF CRUD Operations
The next step is to add tests to demonstrate the CRUD functionality of EF. The following sections put into 
action the concepts discussed in the previous section. Start by adding the following using statement to the 
CategoryTests.cs file:

using SpyStore.Models.Entities;

Test Adding a Category Record
This test covers adding a new record into the database using the DbSet<T> property on the StoreContext. 
Add the following code to the CategoryTests.cs class:

[Fact]
public void ShouldAddACategoryWithDbSet()
{
    var category = new Category { CategoryName = "Foo" };
    _db.Categories.Add(category);
    Assert.Equal(EntityState.Added, _db.Entry(category).State);
    Assert.True(category.Id < 0);
    Assert.Null(category.TimeStamp);
    _db.SaveChanges();
    Assert.Equal(EntityState.Unchanged, _db.Entry(category).State);
    Assert.Equal(0, category.Id);
    Assert.NotNull(category.TimeStamp);
    Assert.Equal(1, _db.Categories.Count());
}

The first part of the test creates a new Category instance and then adds it to the DbSet<Category> 
collection through the Add() method. The next line confirms that the EntityState is set to EntityState.
Added. The Id gets a temporary value (less than zero) since it is assigned from the database. The temporary 
value for the Id depends on how many have been added and not yet persisted (each entity gets a unique 
negative value). The Timestamp property is null since it hasn’t been populated.

As discussed earlier, calling SaveChanges() on the StoreContext executes the add SQL statement(s), 
and if successful, sets the EntityState for all processed records to EntityState.Unchanged, and the 
database generated fields are populated. The next three asserts verify this. The final assert verifies that 
there is one record in the Categories table.

■■ Note   The avid tester will probably notice that I am not following one of the core philosophies in unit testing 
in that I essentially have two actions (Add and SaveChanges) mixed in with a series of asserts. This is typically 
not a good idea, but the purpose of the tests covered in this chapter are for teaching EF Core, not for production 
development.



Chapter 1 ■ Introducing Entity Framework Core

38

For the next test, instead of adding the new record through the DbSet<Category> property, add the new 
record directly through the StoreContext class. That is literally the only change. Copy the last test into a new 
one named ShouldAddCategoryWithContext and change the second line to the following:

_db.Add(category);

The entire test is shown here:

[Fact]
public void ShouldAddACategoryWithContext()
{
    var category = new Category { CategoryName = "Foo" };
    _db.Add(category);
    Assert.Equal(EntityState.Added, _db.Entry(category).State);
    Assert.True(category.Id < 0);
    Assert.Null(category.TimeStamp);
    _db.SaveChanges();
    Assert.Equal(EntityState.Unchanged, _db.Entry(category).State);
    Assert.Equal(0, category.Id);
    Assert.NotNull(category.TimeStamp);
    Assert.Equal(1, _db.Categories.Count());
}

Run the test and verify that it works as well. For the rest of the tests, you will only be using the DbSet<T> 
property and not replicating tests just to show how to call the CRUD methods on the context class.

Test Retrieving All Category Records
This test is a simple example showing the equivalent of this SQL statement:

SELECT * FROM STORE.Categories Order By CategoryName

Add a new Fact with the following code:

[Fact]
public void ShouldGetAllCategoriesOrderedByName()
{
    _db.Categories.Add(new Category { CategoryName = "Foo" });
    _db.Categories.Add(new Category { CategoryName = "Bar" });
    _db.SaveChanges();
    var categories = _db.Categories.OrderBy(c=>c.CategoryName).ToList();
    Assert.Equal(2, _db.Categories.Count());
    Assert.Equal("Bar", categories[0].CategoryName);
    Assert.Equal("Foo", categories[1].CategoryName);
}

The Fact starts off by adding two Category records into the database. LINQ statements in EF start from 
the DbSet<T>, and in this example, there isn’t a where clause but there is an OrderBy. The actual query isn’t 
executed until the list is iterated over or ToList is called. In this test, when ToList is called, the query is 
executed and the data is retrieved. The asserts check to make sure that the Category records were indeed 
retrieved and in the correct order.



Chapter 1 ■ Introducing Entity Framework Core

39

Test Updating a Category Record
This test demonstrates modifying a record in the database. Add the following code into your test class:

[Fact]
public void ShouldUpdateACategory()
{
    var category = new Category { CategoryName = "Foo" };
    _db.Categories.Add(category);
    _db.SaveChanges();
    category.CategoryName = "Bar";
    _db.Categories.Update(category);
    Assert.Equal(EntityState.Modified, _db.Entry(category).State);
    _db.SaveChanges();
    Assert.Equal(EntityState.Unchanged, _db.Entry(category).State);
    StoreContext context;
    using (context = new StoreContext())
    {
        Assert.Equal("Bar", context.Categories.First().CategoryName);
    }
}

After creating and saving a new Category record, the instance is updated. The test confirms that the 
EntityState is set to EntityState.Modified. After SaveChanges is called, the test confirms that the state 
is returned to EntityState.Unchanged. The final part of the test creates a new StoreContext instance (to 
avoid any side effects due to caching) and confirms that the CategoryName was changed. The assert uses 
the First LINQ method, which is equivalent to adding Top 1 to a SQL query. The First LIN method also 
executes the query immediately, so there isn’t a need to iterate over the results or call ToList. This makes 
total sense, since there isn’t a list!

It’s important to note that Update() only works for persisted records that have been changed. If you try 
to call Update() on an entity that is new, EF will throw an InvalidOperationException. To show this, add 
another Fact that contains the following code:

[Fact]
public void ShouldNotUpdateANonAttachedCategory()
{
    var category = new Category { CategoryName = "Foo" };
    _db.Categories.Add(category);
    category.CategoryName = "Bar";
    Assert.Throws<InvalidOperationException>(() => _db.Categories.Update(category));
}

This uses the xUnit Assert that confirms an exception of the specified type was thrown. If the exception 
is thrown, the test passes. If it doesn’t get thrown, the test fails.



Chapter 1 ■ Introducing Entity Framework Core

40

Test Deleting a Category Record Using Remove
Create a new Fact in your test class and enter the following code:

[Fact]
public void ShouldDeleteACategory()
{
    var category = new Category { CategoryName = "Foo" };
    _db.Categories.Add(category);
    _db.SaveChanges();
    Assert.Equal(1, _db.Categories.Count());
    _db.Categories.Remove(category);
    Assert.Equal(EntityState.Deleted, _db.Entry(category).State);
    _db.SaveChanges();
    Assert.Equal(EntityState.Detached, _db.Entry(category).State);
    Assert.Equal(0, _db.Categories.Count());
}

This test adds a record to the Categories table and asserts that is was saved. Next, Remove is called 
on the DbSet<T>, and then the deletion is executed by calling SaveChanges. Note: Remove only works on 
tracked entities. If the instance was not being tracked, it would have to be loaded from the database into the 
ChangeTracker to be deleted, or you can delete it using EntityState (shown in the next section). The final 
asserts verify that the record was deleted.

Test Deleting a Record Using EntityState
To show how to use EntityState to delete a record, create a new Fact and enter the following code:

[Fact]
public void ShouldDeleteACategoryWithTimestampData()
{
    var category = new Category { CategoryName = "Foo" };
    _db.Categories.Add(category);
    _db.SaveChanges();
    var context = new StoreContext();
    var catToDelete = new Category { Id = category.Id, TimeStamp = category.TimeStamp };
    context.Entry(catToDelete).State = EntityState.Deleted;
    var affected = context.SaveChanges();
    Assert.Equal(1, affected);
}

The test begins by saving a new Category record to the database. The test then creates a new 
StoreContext to avoid any caching issues, creates a new instance of a Category, and assigns the Id and 
Timestamp values from the saved record. The entity has the EntityState set to EntityState.Deleted and 
SaveChanges is called to persist the change. The final assert verifies that there was one affected record.



Chapter 1 ■ Introducing Entity Framework Core

41

Testing Concurrency Checking
To show how EF uses the TimeStamp, create a new Fact and enter the following code:

[Fact]
public void ShouldNotDeleteACategoryWithoutTimestampData()
{
    var category = new Category { CategoryName = "Foo" };
    _db.Categories.Add(category);
    _db.SaveChanges();
    var context = new StoreContext();
    var catToDelete = new Category { Id = category.Id };
    context.Categories.Remove(catToDelete);
    var ex = Assert.Throws<DbUpdateConcurrencyException>(() => context.SaveChanges());
    Assert.Equal(1, ex.Entries.Count);
    Assert.Equal(category.Id, ((Category)ex.Entries[0].Entity).Id);
}

The test is almost exactly the same as the previous test, except that the TimeStamp value isn’t assigned 
to the new Category instance. When SaveChanges is called, EF throws a DbUpdateConcurrencyException. 
The exception exposes the entities in error through the Entries property, allowing for properly handling 
concurrency issues based on application needs.

Adding the Core Repository Interface and Base Class
A common data access design pattern is the repository pattern. As described by Martin Fowler (http://
www.martinfowler.com/eaaCatalog/repository.html), the core of this pattern is to mediate between the 
domain and data mapping layers. This helps to eliminate duplication of code. Having specific repositories 
and interfaces will also become useful when you implement ASP.NET Core MVC in Chapters 3 and 5.

■■ Note   The code shown in this section is not meant to be a model for the official implementation of the 
pattern. It is my interpretation of the pattern mixed with years of using EF in production.

Adding the IRepo Interface
My version of the repository pattern starts with a core repository for the common methods that will be used 
on all derived repositories. This core interface (called IRepo) will be supported by an abstract class that 
encapsulates the DBSet<T> and DbContext methods, plus some additional convenience methods.

To create the IRepo interface, start by adding a new folder to the SpyStore.DAL project named Repos, 
then add a new folder named Base under the new Repos folder. Right-click on the Base folder and select  
Add ➤ New Item. Select the Interface template, as shown in Figure 1-13.

http://www.martinfowler.com/eaaCatalog/repository.html
http://www.martinfowler.com/eaaCatalog/repository.html
http://dx.doi.org/10.1007/978-1-4842-2478-6_3
http://dx.doi.org/10.1007/978-1-4842-2478-6_5


Chapter 1 ■ Introducing Entity Framework Core

42

In the new interface file, add the following namespaces:

using System.Collections.Generic;
using SpyStore.Models.Entities.Base;

Update the IRepo.cs interface to a generic interface, limiting the type of the parameter to classes 
derived from EntityBase, like this:

public interface IRepo<T> where T : EntityBase

The following methods should (mostly) look familiar from Tables 1-3 and 1-4. Update the IRepo.cs 
interface to the following code:

public interface IRepo<T> where T : EntityBase
{
  int Count { get; }
  bool HasChanges { get; }
  T Find(int? id);
  T GetFirst();
  IEnumerable<T> GetAll();
  IEnumerable<T> GetRange(int skip,int take);
  int Add(T entity, bool persist = true);
  int AddRange(IEnumerable<T> entities, bool persist = true);
  int Update(T entity, bool persist = true);
  int UpdateRange(IEnumerable<T> entities, bool persist = true);
  int Delete(T entity, bool persist = true);
  int DeleteRange(IEnumerable<T> entities, bool persist = true);
  int Delete(int id, byte[] timeStamp, bool persist = true);
  int SaveChanges();
}

All of the interfaces methods will be detailed when they are implemented in the base repository class.

Figure 1-13.  Adding the IRepo interface



Chapter 1 ■ Introducing Entity Framework Core

43

Adding the Base Repository
Next, add a class to the Repos\Base directory named RepoBase. This class will implement the common 
functionality defined in the interface. Update the using statements in the RepoBase class to the following:

using System;
using System.Collections.Generic;
using Microsoft.EntityFrameworkCore;
using SpyStore.DAL.EF;
using SpyStore.Models.Entities.Base;
using System.Linq;
using Microsoft.EntityFrameworkCore.ChangeTracking;
using Microsoft.EntityFrameworkCore.Storage;

The base repo needs to implement IDisposable and IRepo<T>, again limiting the type of T to 
EntityBase.

public abstract class RepoBase<T> : IDisposable, IRepo<T> where T : EntityBase, new()

Create a protected variable for the StoreContext, instantiate it in the constructors, and dispose of it in 
the Dispose method. Update the code to the following:

public abstract class RepoBase<T> : IDisposable, IRepo<T> where T : EntityBase, new()
{
  protected readonly StoreContext Db;
  protected RepoBase()
  {
    Db = new StoreContext();
    Table = Db.Set<T>();
  }
  protected RepoBase(DbContextOptions<StoreContext> options)
  {
    Db = new StoreContext(options);
    Table = Db.Set<T>();
  }
  bool _disposed = false;
  public void Dispose()
  {
    Dispose(true);
    GC.SuppressFinalize(this);
  }
  protected virtual void Dispose(bool disposing)
  {
    if (_disposed) return;
    if (disposing)
    {
      // Free any other managed objects here.
      //
    }
  Db.Dispose();
  _disposed = true;
  }
}



Chapter 1 ■ Introducing Entity Framework Core

44

The second constructor takes a DbContextOptions instance to support dependency injection. This will 
be used by ASP.NET Core MVC in Chapter 3. Next, add a property to hold the strongly typed DbSet<T> and 
another to expose the StoreContext to outside classes. The Table property is a convenience property to 
clean up the code needing the specific DbSet<T> property on the StoreContext. Add the following code:

protected DbSet<T> Table;
public StoreContext Context => Db;

With the StoreContext set, use the Set<T> function to assign the correct DbSet<T> to the Table variable. 
Update both constructors to the following code:

protected RepoBase()
{
  Db = new StoreContext();
  Table = Db.Set<T>();
}
protected RepoBase(DbContextOptions<StoreContext> options)
{
  Db = new StoreContext(options);
  Table = Db.Set<T>();
}

A significant advantage to encapsulating the DbSet<T> and DbContext operations in a repository class 
is wrapping the call to SaveChanges. This enables centralized error handling of calls to make changes to the 
database. Add the following code to the RepoBase class:

public int SaveChanges()
{
  try
  {
    return Db.SaveChanges();
  }
  catch (DbUpdateConcurrencyException ex)
  {
    //A concurrency error occurred
    //Should handle intelligently
    Console.WriteLine(ex);
    throw;
  }
  catch (RetryLimitExceededException ex)
  {
    //DbResiliency retry limit exceeded
    //Should handle intelligently
    Console.WriteLine(ex);
    throw;
  }
  catch (Exception ex)
  {
    //Should handle intelligently
    Console.WriteLine(ex);
    throw;
  }
}

http://dx.doi.org/10.1007/978-1-4842-2478-6_3


Chapter 1 ■ Introducing Entity Framework Core

45

As discussed previously, a DbUpdateConcurrencyException is thrown when the number of records 
updated in the database doesn’t match the number of records the ChangeTracker expects to be updated. 
The RetryLimitExceededException is thrown when the max retries in the ConnectionStrategy is exceeded. 
The final exception handler is a generic catch-all exception handler. Note that none of the handlers actually 
do any error handling. They are just here to demonstrate catching specific errors.

The next block of code to be added wraps the matching Create, Update, and Delete calls on the specific 
DbSet<T> property. The default implementation immediately calls SaveChanges, but there is an option to not 
call SaveChanges immediately in order to batch the updates to the database in a single transaction. All of the 
methods are marked virtual to allow for downstream overriding. Add the following code:

public virtual int Add(T entity, bool persist = true)
{
  Table.Add(entity);
  return persist ? SaveChanges() : 0;
}
public virtual int AddRange(IEnumerable<T> entities, bool persist = true)
{
  Table.AddRange(entities);
  return persist ? SaveChanges() : 0;
}
public virtual int Update(T entity, bool persist = true)
{
  Table.Update(entity);
  return persist ? SaveChanges() : 0;
}
public virtual int UpdateRange(IEnumerable<T> entities, bool persist = true)
{
  Table.UpdateRange(entities);
  return persist ? SaveChanges() : 0;
}
public virtual int Delete(T entity, bool persist = true)
{
  Table.Remove(entity);
  return persist ? SaveChanges() : 0;
}
public virtual int DeleteRange(IEnumerable<T> entities, bool persist = true)
{
  Table.RemoveRange(entities);
  return persist ? SaveChanges() : 0;
}

As explained earlier, this code is deleting a record using the Id and Timestamp properties for an entity 
that is tracked by the ChangeTracker. Add the following method to find if the entity to be deleted is being 
tracked, and if so, return it:

internal T GetEntryFromChangeTracker(int? id)
{
  return Db.ChangeTracker.Entries<T>().Select((EntityEntry e) => (T)e.Entity)
    .FirstOrDefault(x => x.Id == id);
}



Chapter 1 ■ Introducing Entity Framework Core

46

The Delete method first uses that method to check if the entity is being tracked. If it is, and the 
TimeStamps match, the entity is removed. If the entity is being tracked and the TimeStamps don’t match, 
an exception is thrown. If the entity isn’t being tracked, a new entity is created and tracked with the 
EntityState of Deleted.

public int Delete(int id, byte[] timeStamp, bool persist = true)
{
  var entry = GetEntryFromChangeTracker(id);
  if (entry != null)
  {
    if (entry.TimeStamp == timeStamp)
    {
      return Delete(entry, persist);
    }
    throw new Exception("Unable to delete due to concurrency violation.");
  }
  Db.Entry(new T { Id = id, TimeStamp = timeStamp }).State = EntityState.Deleted;
  return persist ? SaveChanges() : 0;
}

The next series of methods return records using LINQ statements. The Find method searches the 
ChangeTracker first. If the entity being sought is found, that instance gets returned. If not, the record is 
retrieved from the database.

public T Find(int? id) => Table.Find(id);

The GetFirst and GetAll methods are very straightforward. Both use the default sort order for the table 
and are listed here:

public T GetFirst() => Table.FirstOrDefault();
public virtual IEnumerable<T> GetAll() => Table;

The GetRange method is used for chunking. The base public implementation uses the default sort order. 
The internal method takes an IQueryable<T> to allow downstream implementations to change the sort 
order or filters prior to the chunking. This will be demonstrated in the next section.

internal IEnumerable<T> GetRange(IQueryable<T> query, int skip, int take)
  => query.Skip(skip).Take(take);
public virtual IEnumerable<T> GetRange(int skip, int take)
  => GetRange(Table,skip, take);

The following two properties are added as a developer convenience:

public bool HasChanges => Db.ChangeTracker.HasChanges();
public int Count => Table.Count();

Adding the Category Repository
The next step is to add the Category specific implementation of RepoBase. Add a new class to the Repos 
directory and name it CategoryRepo.cs. Inherit BaseRepo<Category> and make sure the using statements 
match the following:



Chapter 1 ■ Introducing Entity Framework Core

47

using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using SpyStore.DAL.EF;
using SpyStore.DAL.Repos.Base;
using SpyStore.Models.Entities;

Add the two constructors to match the base constructors, as follows:

namespace SpyStore.DAL.Repos
{
  public class CategoryRepo : RepoBase<Category>
  {
    public CategoryRepo(DbContextOptions<StoreContext> options)
      : base(options)
    {
    }
    public CategoryRepo()
    {
    }
  }
}

The GetAll() and GetRange() methods override the base method to sort by CategoryName.

public override IEnumerable<Category> GetAll()
  => Table.OrderBy(x => x.CategoryName);
public override IEnumerable<Category> GetRange(int skip, int take)
  => GetRange(Table.OrderBy(x => x.CategoryName),skip,take);

This repository is essentially done, except for a small bit of additional functionality involving the 
Product class that will be added in the next class. The class is very small, and adding repositories will be as 
trivial as creating the CategoryRepo, since most of the heavy lifting is being done by the RepoBase<T> class. 
This code reuse demonstrates another advantage of using repositories.

■■ Source Code  The SpyStore.DAL solution with additional unit tests can be found in the Chapter 01 
subdirectory of the download files.

Summary
In this chapter, you learned about Entity Framework (EF) and Object Relational Mappers, and how they can 
help the development of an application. You learned about .NET Core and Entity Framework Core (EF Core), 
the new cross-platform versions of the popular .NET and EF frameworks. The opening section was closed 
out with a review of the database used by the data access layer.

The next section began with installing Visual Studio 2017 and .NET Core, then created the solution and 
projects. Next, you used NuGet to update the default packages and add the additional packages, both for EF 
Core and xUnit.



Chapter 1 ■ Introducing Entity Framework Core

48

After getting the tooling installed and the projects created, the chapter walked you through 
implementing everything needed to use the Category model in your project. This included adding 
the EntityBase and Category model classes, configuring them with data annotations, and adding the 
StoreContext instance of the DbContext. Finally, you created a migration and executed it to create the 
database and the database tables.

The next section discussed the theory behind EF Core and CRUD operations. Then, unit tests were 
added to confirm not only that everything works as expected, but also that our understanding of EF Core is 
accurate.

The final section built the base repository, encapsulating a significant portion of the CRUD code and 
wrapping SaveChanges for centralized error handling. Finally, the CategoryRepo was added, overriding the 
GetAll and GetRange methods to retrieve the records ordered by the CategoryName field.

The next chapter will complete the entire object model, add the other repositories, and create the 
tooling to seed the data with sample data for testing.



49© Philip Japikse, Kevin Grossnicklaus and Ben Dewey 2017 
P. Japikse et al., Building Web Applications with Visual Studio 2017, DOI 10.1007/978-1-4842-2478-6_2

CHAPTER 2

Building the Data Access Layer 
with Entity Framework Core

The previous chapter introduced Entity Framework Core and Visual Studio 2017 and built an end-to-end 
data access layer for the Categories table. This chapter completes the data access layer and covers the the 
final EF concepts used in this book—navigation properties, stored procedures, and user defined functions.

The SpyStore Database
As a refresher, the full SpyStore database is shown in Figure 2-1.

Figure 2-1.  The SpyStore database



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

50

Navigation Properties and Foreign Keys
As the name suggests, navigation properties represent how model classes relate to each other and allow 
traversing the object model. On the database side, navigation properties are translated into foreign key 
relationships between tables. The most common navigation properties represent one-to-many relationships. 
On the one side, a class adds a List<T> of the child. On the many side, the class adds a property of the 
parent type. For example, the Blogs table has a one-to-many relationship to the Posts table. This would be 
represented in the Blog class as follows:

public class Blog
{
  //omitted for brevity
  public int BlogId {get; set;}
  public List<Post> Posts {get; set;}
}

public class Post
{
  //omitted for brevity
  public int BlogId {get;set;}
  public Blog Blog {get; set;}
}

By convention, the EF will look for a property on the child class (Post) with a name matching the 
<NavigationPropertyName>Id (plus some other formats—see the following note). EF also looks for the primary 
key on the parent class (Blog) that matches the name. If everything lines up, the property on the child becomes 
the foreign key to the parent class. If the foreign key property is not a nullable type, the relationship is set to delete 
the child when the parent is deleted (cascade delete). If it is a nullable (int? for example), the child will not be 
deleted when the parent is deleted. EF sets up the Blog table as the parent, due to the List<Post> property.

■■ Note   For more information on build relationships (including one-one and many-many), and the full details of 
the conventions, refer to the help documentation located at the following URL: https://docs.microsoft.com/ 
en-us/ef/core/modeling/relationships.

Relationships can be defined explicitly with data annotations as well as EF’s Fluent API. The ForeignKey 
annotation identifies the property on the child that is the foreign key for the navigation property to the 
parent. The InverseProperty annotation identifies the property on the child that navigates back to the 
parent. In the Blog and Post classes, neither of these annotations are required, as the EF conventions 
already define the relationships. One advantage to using them is that the names can be arbitrary—for 
example, the foreign key in the Post table could be named FooId. They also become required when the 
conventions fall down in complex cases.

This book explicitly uses these attributes on every table for clarity, just as the Key annotation was used 
on the EntityBase class. Refactoring the Blog and Post tables with the annotations would look like this 
(note the use of the nameof function to avoid magic strings):

public class Blog
{
  //omitted for brevity
  public int BlogId {get; set;}

https://docs.microsoft.com/en-us/ef/core/modeling/relationships
https://docs.microsoft.com/en-us/ef/core/modeling/relationships


Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

51

  [InverseProperty(nameof(Post.Blog))]
  public List<Post> Posts {get; set;}
}

public class Post
{
  //omitted for brevity
  public int BlogId {get;set;}
  [ForeignKey(nameof(BlogId))]
  public Blog Blog {get; set;}
}

Handling Display Names
Although not used by EF, the Display attribute is used by ASP.NET Core MVC in display templates to set 
friendly names for fields. For example, the CategoryName property could be set to have the friendly name of 
“Category”. There are several differing camps on where they should be applied. One way is to set them on 
the base models themselves. This has the advantage of being defined once throughout the entire system. 
Detractors feel that this is mixing concerns between the data layer and the user interface layer. Supporters 
feel that is centralizes all of the information about the model. The other option is to create view models for 
the UI and apply the attributes there. I leave it to the reader to determine the best option for your project. In 
this sample code, the display names will be set in the data access layer.

For example, to set the display name for the CategoryName property, update the property like this:

[Display(Name = "Category")]
public string CategoryName {get; set; }

Mixing EF with Stored Procedures and Functions
The purchase process for a customer’s cart involves adding a new record into the Orders table, moving 
records from the ShoppingCartRecords table into the OrderDetails table, and wrapping it all up into a 
transaction to make sure all of the changes succeed or fail as a unit.

Additionally, the Orders table should have a computed column that sums up the total for all of the 
OrderDetail records. Computed columns in SQL Server can be based on a user defined function to do just 
this. Unfortunately, there isn’t any way with data annotation or the Fluent API to do this.

Set operations like these are not the best use of EF. Code can be written to create the inserts and 
deletions for the order process, and LINQ statements can be created to sum up the total cost of an order, but 
EF was designed and optimized for CRUD operations. There are many application scenarios that are better 
served by using stored procedures and user defined functions, and these are just two examples.

SQL Server Management Studio is a great tool for coding stored procedures and user defined functions, 
but how does that code get incorporated into the existing .NET Core projects? A manual workflow needs to 
be executed so all developers on the team get the T-SQL code installed. This can cause friction, and should 
be an automatic process, not only for getting the original code, but also for getting any updates. Fortunately, 
custom T-SQL statements can be executed in a migration the same way that EF created DDL. You will add 
the stored procedure and function later in this chapter.



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

52

Finishing the Model Classes
The vast majority of the remaining tables and fields follow the same pattern as the Category class in the 
last chapter, so there shouldn’t be any surprises, just a fair amount of code. Where there is a variation it will 
be explained, but for the most part the next sections just show all of the code necessary to finish the data 
models. Because they all interact through navigation properties, the project won’t compile until all of the 
classes have been entered.

Updating the Category Model
The earlier Category example was very simplistic for teaching purposes. Now it’s time to add the Product 
navigation property into the class. Update the Category.cs class to the following code:

using System.Collections.Generic;
using SpyStore.Models.Entities.Base;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace SpyStore.Models.Entities
{
  [Table("Categories", Schema = "Store")]
  public class Category : EntityBase
  {
    [DataType(DataType.Text), MaxLength(50)]
    public string CategoryName { get; set; }
    [InverseProperty(nameof(Product.Category))]
    public List<Product> Products { get; set; } = new List<Product>();
    }
}

Adding the Product Model
Create a new class in the SpyStore.Models project in the Entities folder named Product.cs. Update the 
code to the following:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using SpyStore.Models.Entities.Base;

namespace SpyStore.Models.Entities
{
  [Table("Products", Schema = "Store")]
  public class Product : EntityBase
  {
    [MaxLength(3800)]
    public string Description { get; set; }
    [MaxLength(50)]
    public string ModelName { get; set; }



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

53

    public bool IsFeatured { get; set; }
    [MaxLength(50)]
    public string ModelNumber { get; set; }
    [MaxLength(150)]
    public string ProductImage { get; set; }
    [MaxLength(150)]
    public string ProductImageLarge { get; set; }
    [MaxLength(150)]
    public string ProductImageThumb { get; set; }
    [DataType(DataType.Currency)]
    public decimal UnitCost { get; set; }
    [DataType(DataType.Currency)]
    public decimal CurrentPrice { get; set; }
    public int UnitsInStock { get; set; }
    [Required]
    public int CategoryId { get; set; }
    [ForeignKey(nameof(CategoryId))]
    public Category Category { get; set; }
    [InverseProperty(nameof(ShoppingCartRecord.Product))]
    public List<ShoppingCartRecord> ShoppingCartRecords { get; set; }
      = new List<ShoppingCartRecord>();
    [InverseProperty(nameof(OrderDetail.Product))]
    public List<OrderDetail> OrderDetails { get; set; } = new List<OrderDetail>();
    }
}

Adding the Shopping Cart Record Model
Create a new class in the SpyStore.Models project in the Entities folder named ShoppingCartRecord.cs. 
Update the code to the following:

using System;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using SpyStore.Models.Entities.Base;

namespace SpyStore.Models.Entities
{
  [Table("ShoppingCartRecords", Schema = "Store")]
  public class ShoppingCartRecord : EntityBase
  {
    [DataType(DataType.Date)]
    public DateTime? DateCreated { get; set; }
    public int CustomerId { get; set; }
    [ForeignKey(nameof(CustomerId))]
    public Customer Customer { get; set; }
    public int Quantity { get; set; }
    [NotMapped, DataType(DataType.Currency)]
    public decimal LineItemTotal { get; set; }
    public int ProductId { get; set; }



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

54

    [ForeignKey(nameof(ProductId))]
    public Product Product { get; set; }
  }
}

Adding the Order Model
Create a new class in the SpyStore.Models project in the Entities folder named Order.cs. Update the code 
to the following:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using SpyStore.Models.Entities.Base;

namespace SpyStore.Models.Entities
{
  [Table("Orders", Schema = "Store")]
  public class Order : EntityBase
  {
    public int CustomerId { get; set; }
    [DataType(DataType.Date)]
    [Display(Name = "Date Ordered")]
    public DateTime OrderDate { get; set; }
    [DataType(DataType.Date)]
    [Display(Name = "Date Shipped")]
    public DateTime ShipDate { get; set; }
    [ForeignKey("CustomerId")]
    public Customer Customer { get; set; }
    [InverseProperty("Order")]
    public List<OrderDetail> OrderDetails { get; set; } = new List<OrderDetail>();
  }
}

An additional calculated field will be added for the OrderTotal later in this chapter.

Adding the Order Detail Model
Create a new class in the SpyStore.Models project in the Entities folder named OrderDetail.cs. Update 
the code to the following:

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using SpyStore.Models.Entities.Base;

namespace SpyStore.Models.Entities
{
  [Table("OrderDetails", Schema = "Store")]
  public class OrderDetail : EntityBase



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

55

  {
    [Required]
    public int OrderId { get; set; }
    [Required]
    public int ProductId { get; set; }
    [Required]
    public int Quantity { get; set; }
    [Required, DataType(DataType.Currency), Display(Name = "Unit Cost")]
    public decimal UnitCost { get; set; }
    [Display(Name = "Total")]
    public decimal? LineItemTotal { get; set; }
    [ForeignKey(nameof(OrderId))]
    public Order Order { get; set; }
    [ForeignKey(nameof(ProductId))]
    public Product Product { get; set; }
  }
}

The LineItemTotal field will be created as a calculated field using the Fluent API (discussed later in this 
chapter). The DatabaseGenerated(DatabaseGeneratedOption.Computed) attribute could have been added 
to indicate to EF that the field is computed by the database, but the Fluent API will take care of this.

Adding the Customer Model
Create a new class in the SpyStore.Models project in the Entities folder named Customer.cs. Update the 
code to the following:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using SpyStore.Models.Entities.Base;

namespace SpyStore.Models.Entities
{
  [Table("Customers", Schema = "Store")]
  public class Customer : EntityBase
  {
    [DataType(DataType.Text), MaxLength(50), Display(Name = "Full Name")]
    public string FullName { get; set; }
    [Required]
    [EmailAddress]
    [DataType(DataType.EmailAddress), MaxLength(50), Display(Name = "Email Address")]
    public string EmailAddress { get; set; }
    [Required]
    [DataType(DataType.Password), MaxLength(50)]
    public string Password { get; set; }
    [InverseProperty(nameof(Order.Customer))]
    public List<Order> Orders { get; set; }= new List<Order>();



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

56

    [InverseProperty(nameof(ShoppingCartRecord.Customer))]
    public virtual List<ShoppingCartRecord> ShoppingCartRecords { get; set; }
      = new List<ShoppingCartRecord>();
  }
}

The EmailAddress attribute is used for validation by ASP.NET Core MVC and ignored by SQL Server.

Updating the StoreContext
There are two steps left before the data model is completed. The first is to add the new model classes as 
DbSet<T> properties in the StoreContext. The second is to finish design of the models using the Fluent API.

Adding the DbSet<T> Properties for the Models
Open StoreContext.cs in the SpyStore.DAL project and add a DbSet<T> for each of the models, as follows 
(including the existing line for the Categories DbSet<Category>):

public DbSet<Category> Categories { get; set; }
public DbSet<Customer> Customers { get; set; }
public DbSet<OrderDetail> OrderDetails { get; set; }
public DbSet<Order> Orders { get; set; }
public DbSet<Product> Products { get; set; }
public DbSet<ShoppingCartRecord> ShoppingCartRecords { get; set; }

Finishing the Model with the Fluent API
The Fluent API is another mechanism to shape your database. Fluent API code is placed in the override 
of the OnModelCreating() method in your DbContext class. To get started, open StoreContext.cs in the 
SpyStore.DAL project and add the following code:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
}

In this method, the ModelBuilder parameter exposes the Fluent API to further define the models and 
the resulting database.

Creating the Unique Index for Email Addresses on the Customer Table

The application requirements specify that each email address in the Customer table be unique. To create a 
unique index on the EmailAddress field, enter the following code in the OnModelCreating() method:

modelBuilder.Entity<Customer>(entity =>
{
  entity.HasIndex(e => e.EmailAddress).HasName("IX_Customers").IsUnique();
});



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

57

Setting Default Values on the Order Table

In the Order model, the application requirements specify that both the OrderDate and ShipDate fields have 
default values of the current date. Add the following code to the OnModelBuilding method:

modelBuilder.Entity<Order>(entity =>
{
  entity.Property(e => e.OrderDate)
    .HasColumnType("datetime")
    .HasDefaultValueSql("getdate()");
  entity.Property(e => e.ShipDate)
    .HasColumnType("datetime")
    .HasDefaultValueSql("getdate()");
});

Creating the Computed Column for Order Details

Each record in the OrderDetail model has a quantity and a unit cost, and as mentioned, the LineItemTotal 
field needs to be calculated by the database by multiplying the Quantity and UnitCost fields. Both the 
UnitCost and LineItemTotal fields should be set to the SQL Server money type. Add the following code to 
the OnModelCreating method:

modelBuilder.Entity<OrderDetail>(entity =>
{
  entity.Property(e => e.LineItemTotal)
    .HasColumnType("money")
    .HasComputedColumnSql("[Quantity]*[UnitCost]");
  entity.Property(e => e.UnitCost).HasColumnType("money");
});

Specifying the SQL Server Money Type for the Product Table

The only changes to the Product model is setting the UnitCost and CurrentPrice fields to SQL Server 
money type. Add the following code to the OnModelCreating method:

modelBuilder.Entity<Product>(entity =>
{
  entity.Property(e => e.UnitCost).HasColumnType("money");
  entity.Property(e => e.CurrentPrice).HasColumnType("money");
});

Updating the Shopping Cart Record Model

There are three updates to the ShoppingCartRecord model to satisfy the application requirements. 
First, create a unique index based on the records Id, CustomerId, and ProductId properties. This also 
demonstrates how to create an index based on multiple properties. Next, set the default value for the 



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

58

DateCreated value to the current date, and finally, set the default value for the Quantity field to 1. To do this, 
add the following code to the OnModelCreating method:

modelBuilder.Entity<ShoppingCartRecord>(entity =>
{
  entity.HasIndex(e => new {ShoppingCartRecordId = e.Id, e.ProductId, e.CustomerId })
       .HasName("IX_ShoppingCart")
       .IsUnique();
  entity.Property(e => e.DateCreated)
    .HasColumnType("datetime")
    .HasDefaultValueSql("getdate()");
  entity.Property(e => e.Quantity).HasDefaultValue(1);
});

Updating the Database to Match the Model
The next step is to publish all of the changes into the database.

Creating the Migration
To create the migration, open Package Manager Console, change the working directory to SpyStore.DAL, 
and run the following command:

dotnet ef migrations add RemainingTables -o EF\Migrations -c SpyStore.DAL.EF.StoreContext

This adds another migration class into the EF\Migrations directory in the SpyStore.DAL project. Just 
like the first migration you created earlier in this chapter, the Up() method contains the code to update the 
database to match the current models. The Down() method will revert the status to the previous migration.

Deploying the Migration
The final step is to execute the migration. Enter the following at the command prompt in the Package 
Manager Console:

dotnet ef database update RemainingTables -c SpyStore.DAL.EF.StoreContext

This updates your database to match the model and adds a new record into the  
__EFMigrationHistory table.

Adding the Stored Procedure and User Defined Function
Now that the database is mostly completed, it’s time to add the stored procedure and user defined function 
(referred to earlier in the chapter) by creating a new migration, manually updating the code, and deploying 
the changes to the database.



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

59

Adding a New Migration
Migrations can be created at any time, even though nothing has changed in the model. If nothing has 
changed, the Up and Down methods will be empty, but all of the infrastructure needed to add custom T-SQL 
is contained in the migration file. Open Package Manager Console (PMC), change to the SpyStore.DAL 
directory, and create a new migration. Use the following commands to do this (if PCM is already in the 
SpyStore.DAL directory, skip the first command):

cd .\SpyStore.DAL
dotnet ef migrations add TSQL -o EF\Migrations -c SpyStore.DAL.EF.StoreContext

Implementing the Up() Method
In the Up() method, use the Sql() method of the MigrationBuilder object to execute the SQL necessary to 
build your stored procedure. Add the following to the Up() method:

protected override void Up(MigrationBuilder migrationBuilder)
{
  string sql = "CREATE FUNCTION Store.GetOrderTotal ( @OrderId INT ) " +
    "RETURNS MONEY WITH SCHEMABINDING " +
    "BEGIN " +
    "DECLARE @Result MONEY; " +
    "SELECT @Result = SUM([Quantity]*[UnitCost]) FROM Store.OrderDetails " +
    " WHERE OrderId = @OrderId; RETURN @Result END";
  migrationBuilder.Sql(sql);

  sql = "CREATE PROCEDURE [Store].[PurchaseItemsInCart] " +
    " (@customerId INT = 0, @orderId INT OUTPUT) AS BEGIN " +
    " SET NOCOUNT ON; " +
    " INSERT INTO Store.Orders (CustomerId, OrderDate, ShipDate) " +
    "    VALUES(@customerId, GETDATE(), GETDATE()); " +
    " SET @orderId = SCOPE_IDENTITY(); " +
    " DECLARE @TranName VARCHAR(20);SELECT @TranName = 'CommitOrder'; " +
    "   BEGIN TRANSACTION @TranName; " +
    "   BEGIN TRY " +
    "       INSERT INTO Store.OrderDetails (OrderId, ProductId, Quantity, UnitCost) " +
    "       SELECT @orderId, ProductId, Quantity, p.CurrentPrice " +
    "       FROM Store.ShoppingCartRecords scr " +
    "          INNER JOIN Store.Products p ON p.Id = scr.ProductId " +
    "       WHERE CustomerId = @customerId; " +
    "       DELETE FROM Store.ShoppingCartRecords WHERE CustomerId = @customerId; " +
    "       COMMIT TRANSACTION @TranName; " +
    "   END TRY " +
    "   BEGIN CATCH " +
    "       ROLLBACK TRANSACTION @TranName; " +
    "       SET @orderId = -1; " +
    "   END CATCH; " +
    "END;";
  migrationBuilder.Sql(sql);
}



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

60

The preceding code first creates a user defined function for calculating the order total based on an 
OrderId. The next block creates the stored procedure to process an order.

Implementing the Down() Method
Update the Down method to remove the function and stored procedure and return the database to the state it 
was in before the migration:

protected override void Down(MigrationBuilder migrationBuilder)
{
  migrationBuilder.Sql("DROP FUNCTION [Store].[GetOrderTotal]");
  migrationBuilder.Sql("DROP PROCEDURE [Store].[PurchaseItemsInCart]");
}

Updating the Database
The final step is to execute the migration. Enter the following at the command prompt in Package Manager 
Console (or the command line):

dotnet ef database update

Adding the OrderTotal Calculated Field
Now that the user defined function is in place, the OrderTotal field can be added to the Order class. This 
order has to be followed, since SQL Server will not allow an existing field to be created as a computed 
column. It has to be set on creation of the column.

Updating the Order Class
Open the Order.cs class and add the following property definition:

[Display(Name = "Total")]
public decimal? OrderTotal { get; set; }

Making OrderTotal a Computed Column
The final change is changing the column definition using the Fluent API. Open the StoreContext.cs class 
and update the Order definition block to the following:

modelBuilder.Entity<Order>(entity =>
{
  entity.Property(e => e.OrderDate)
    .HasColumnType("datetime")
    .HasDefaultValueSql("getdate()");

  entity.Property(e => e.ShipDate)
    .HasColumnType("datetime")
    .HasDefaultValueSql("getdate()");



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

61

  entity.Property(e => e.OrderTotal)
    .HasColumnType("money")
    .HasComputedColumnSql("Store.GetOrderTotal([Id])");
});

Adding a New Migration and Update the Database
Open Package Manager Console (PMC), change to the SpyStore.DAL directory, and create a new migration. 
Use the following commands to do this:

dotnet ef migrations add Final -o EF\Migrations -c SpyStore.DAL.EF.StoreContext

Update the database with the following command:

dotnet ef database update

This completes the SpyStore database.

Automating the Migrations
This project won’t have any more migrations, so it’s time to automate the execution of the migrations for 
other developers on your team. The Database.Migrate function first makes sure the database exists (and 
creates it if not), then runs any pending migrations for the context.

Open the StoreContext.cs file and add the try...catch block and the Database.Migrate command 
into the second constructor. This is the constructor that ASP.NET MVC uses through dependency injection. 
The first constructor doesn’t need it since the data initializer (developed later in this chapter) calls 
Database.Migrate. Your updated code will look like this:

public StoreContext()
{
}
public StoreContext(DbContextOptions options) : base(options)
{
  try
  {
    Database.Migrate();
  }
  catch (Exception)
  {
    //Should do something intelligent here
  }
}

■■ Note   There is also a Database.EnsureCreated function. This function ensures the database exists, and 
then creates the tables and fields based on the ModelSnapshot, but does not run any migrations. Therefore, in 
this project, the stored procedure and user defined function would not get created.



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

62

Adding the View Models
View models are used to shape the data into a form that is more useful for presenting the data. They are 
typically created by combining parts of two or more existing models into one class. The view models will be 
used by ASP.NET Core MVC in later chapters.

The Product with Category View Model
This view model combines the Product and Category data into one class. It also doubles as a base class for 
the other view models that need Product and Category information together. This is used on the home page 
and the search results pages. Create a new folder in the SpyStore.Models project named ViewModels. In this 
folder, create a new folder named Base, add a new class named ProductAndCategoryBase.cs, and update 
the code to the following:

using System.ComponentModel.DataAnnotations;
using SpyStore.Models.Entities.Base;

namespace SpyStore.Models.ViewModels.Base
{
  public class ProductAndCategoryBase : EntityBase
  {
    public int CategoryId { get; set; }
    [Display(Name = "Category")]
    public string CategoryName { get; set; }
    public int ProductId { get; set; }
    [MaxLength(3800)]
    public string Description { get; set; }
    [MaxLength(50)]
    [Display(Name = "Model")]
    public string ModelName { get; set; }
    [Display(Name="Is Featured Product")]
    public bool IsFeatured { get; set; }
    [MaxLength(50)]
    [Display(Name = "Model Number")]
    public string ModelNumber { get; set; }
    [MaxLength(150)]
    public string ProductImage { get; set; }
    [MaxLength(150)]
    public string ProductImageLarge { get; set; }
    [MaxLength(150)]
    public string ProductImageThumb { get; set; }
    [DataType(DataType.Currency), Display(Name = "Cost")]
    public decimal UnitCost { get; set; }
    [DataType(DataType.Currency), Display(Name = "Price")]
    public decimal CurrentPrice { get; set; }
    [Display(Name="In Stock")]
    public int UnitsInStock { get; set; }
  }
}



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

63

The Order Detail with Product Info View Model
The order detail screen shows product information as well, so the next view model is the Order Detail 
records combined with the product information. Add a new file to the ViewModels folder named 
OrderDetailWithProductInfo.cs and update the code to match this:

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using SpyStore.Models.Entities.Base;
using SpyStore.Models.ViewModels.Base;

namespace SpyStore.Models.ViewModels
{
  public class OrderDetailWithProductInfo : ProductAndCategoryBase
  {
    public int OrderId { get; set; }
    [Required]
    public int Quantity { get; set; }
    [DataType(DataType.Currency), Display(Name = "Total")]
    public decimal? LineItemTotal { get; set; }
  }
}

The Order with OrderDetails View Model
When viewing an order online, the order details contain product and category information as well. Add a 
new class to the ViewModels folder named OrderWithDetailsAndProductInfo.cs and update the code to 
the following:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using SpyStore.Models.Entities.Base;

namespace SpyStore.Models.ViewModels
{
  public class OrderWithDetailsAndProductInfo : EntityBase
  {
    public int CustomerId { get; set; }
    [DataType(DataType.Currency), Display(Name = "Total")]
    public decimal? OrderTotal { get; set; }
    [DataType(DataType.Date)]
    [Display(Name = "Date Ordered")]
    public DateTime OrderDate { get; set; }
    [DataType(DataType.Date)]
    [Display(Name = "Date Shipped")]
    public DateTime ShipDate { get; set; }
    public IList<OrderDetailWithProductInfo> OrderDetails { get; set; }
  }
}



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

64

The Cart Record with Product Infor View Model
The final view model combines the ShoppingCartRecord, Product, and Category tables. Add a new class to 
the ViewModels folder named CartRecordWithProductInfo.cs and update the code to the following:

using System;
using System.ComponentModel.DataAnnotations;
using SpyStore.Models.Entities.Base;
using SpyStore.Models.ViewModels.Base;

namespace SpyStore.Models.ViewModels
{
  public class CartRecordWithProductInfo : ProductAndCategoryBase
  {
    [DataType(DataType.Date), Display(Name = "Date Created")]
    public DateTime? DateCreated { get; set; }
    public int? CustomerId { get; set; }
    public int Quantity { get; set; }
    [DataType(DataType.Currency), Display(Name = "Line Total")]
    public decimal LineItemTotal { get; set; }
  }
}

Completing the Repositories
Now that the database and the view models are in place, it’s time to complete the repositories.

Extending the Interfaces
ASP.NET Core MVC has built-in support for Dependency Injection (DI). Instead of passing instances of the 
repositories to the controllers, everything is referenced as an interface. Each individual repository will need 
its API represented as an interface, building on the IRepo<T> interface. To get started, add a new directory in 
the Repos directory named Interfaces.

Adding the ICategoryRepo Interface
Add a new file in the Interfaces directory named ICategoryRepo.cs. Update the code to match the following:

using System.Collections.Generic;
using SpyStore.DAL.Repos.Base;
using SpyStore.Models.Entities;

namespace SpyStore.DAL.Repos.Interfaces
{
  public interface ICategoryRepo : IRepo<Category>
  {
    IEnumerable<Category> GetAllWithProducts();
    Category GetOneWithProducts(int? id);
  }
}



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

65

Adding the IProductRepo Interface
Add a new file to the Interfaces directory named IProductRepo.cs. Update the code to match the 
following:

using System.Collections.Generic;
using SpyStore.DAL.Repos.Base;
using SpyStore.Models.Entities;
using SpyStore.Models.ViewModels.Base;

namespace SpyStore.DAL.Repos.Interfaces
{
  public interface IProductRepo : IRepo<Product>
  {
    IEnumerable<ProductAndCategoryBase> Search(string searchString);
    IEnumerable<ProductAndCategoryBase> GetAllWithCategoryName();
    IEnumerable<ProductAndCategoryBase> GetProductsForCategory(int id);
    IEnumerable<ProductAndCategoryBase> GetFeaturedWithCategoryName();
    ProductAndCategoryBase GetOneWithCategoryName(int id);
  }
}

Adding the ICustomerRepo Interface
There aren’t any additional methods for the Customer class, but a custom interface is going to be added 
anyway for consistency. Add a new file in the Interfaces directory named ICustomerRepo.cs. Update the 
code to match the following:

using SpyStore.DAL.Repos.Base;
using SpyStore.Models.Entities;

namespace SpyStore.DAL.Repos.Interfaces
{
  public interface ICustomerRepo :IRepo<Customer>
  {
  }
}

Adding the IOrderRepo Interface
Add a new file in the Interfaces directory named IOrderRepo.cs. Update the code to match the following:

using System.Collections.Generic;
using SpyStore.DAL.Repos.Base;
using SpyStore.Models.Entities;
using SpyStore.Models.ViewModels;



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

66

namespace SpyStore.DAL.Repos.Interfaces
{
  public interface IOrderRepo :IRepo<Order>
  {
    IEnumerable<Order> GetOrderHistory(int customerId);
    OrderWithDetailsAndProductInfo GetOneWithDetails(int customerId, int orderId);
  }
}

Adding the IOrderDetailRepo Interface
Add a new file in the Interfaces directory named IOrderDetailRepo.cs. Update the code to match the 
following:

using System.Collections.Generic;
using SpyStore.DAL.Repos.Base;
using SpyStore.Models.Entities;
using SpyStore.Models.ViewModels;

namespace SpyStore.DAL.Repos.Interfaces
{
  public interface IOrderDetailRepo :IRepo<OrderDetail>
  {
    IEnumerable<OrderDetailWithProductInfo> GetCustomersOrdersWithDetails(int customerId);
    IEnumerable<OrderDetailWithProductInfo> GetSingleOrderWithDetails(int orderId);
  }
}

Adding the IShoppingCartRepo Interface
Add a new file in the Interfaces directory named IShoppingCartRepo.cs. Update the code to match the 
following:

using System.Collections.Generic;
using SpyStore.DAL.Repos.Base;
using SpyStore.Models.Entities;
using SpyStore.Models.ViewModels;

namespace SpyStore.DAL.Repos.Interfaces
{
  public interface IShoppingCartRepo :IRepo<ShoppingCartRecord>
  {
    CartRecordWithProductInfo GetShoppingCartRecord(int customerId, int productId);
    IEnumerable<CartRecordWithProductInfo> GetShoppingCartRecords(int customerId);
    int Purchase(int customerId);
    ShoppingCartRecord Find(int customerId, int productId);
    int Update(ShoppingCartRecord entity, int? quantityInStock, bool persist = true);
    int Add(ShoppingCartRecord entity, int? quantityInStock, bool persist = true);
  }
}



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

67

Adding/Updating the Repositories
Each of the repositories derives from RepoBase<T> to gain access to the base functionality. They also need to 
implement their model specific interface that you just added to the project. Each repository is discussed in 
detail in the next sections.

Updating the Category Repository
Open the CategoryRepo.cs file in the Repos directory. Add the following using statement to the top of the file:

using SpyStore.DAL.Repos.Interfaces;

Add the ICategoryRepo interface to the class definition and add the following two methods to 
implement the ICategoryRepo interface:

public Category GetOneWithProducts(int? id) =>
  Table.Include(x => x.Products).SingleOrDefault(x => x.Id == id);

public IEnumerable<Category> GetAllWithProducts() =>
  Table.Include(x => x.Products).ToList();

Both of these methods use the Include extension method to eagerly fetch the related Product records 
for the Category(s) being retrieved. EF initiates a JOIN operation and runs a query similar to the following 
SQL query (as gathered by SQL Server Profiler):

exec sp_executesql N'SELECT [p].[Id], [p].[CategoryId], [p].[CurrentPrice], [p].
[Description], [p].[IsFeatured], [p].[ModelName], [p].[ModelNumber], [p].[ProductImage], 
[p].[ProductImageLarge], [p].[ProductImageThumb], [p].[TimeStamp], [p].[UnitCost], [p].
[UnitsInStock]
FROM [Store].[Products] AS [p]
INNER JOIN (
    SELECT DISTINCT TOP(2) [x].[Id]
    FROM [Store].[Categories] AS [x]
    WHERE [x].[Id] = @__id_0
) AS [x] ON [p].[CategoryId] = [x].[Id]
ORDER BY [x].[Id]',N'@__id_0 int',@__id_0=1

Adding the Product Repository
Start by adding a new file into the Repos directory named ProductRepo.cs. Next, update the code to the following:

using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using SpyStore.DAL.EF;
using SpyStore.DAL.Repos.Base;
using SpyStore.DAL.Repos.Interfaces;
using SpyStore.Models.Entities;
using SpyStore.Models.ViewModels.Base;



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

68

namespace SpyStore.DAL.Repos
{
  public class ProductRepo : RepoBase<Product>, IProductRepo
  {
    public ProductRepo(DbContextOptions<StoreContext> options) : base(options)
    {
      Table = Context.Products;
    }
    public ProductRepo() : base()
    {
      Table = Context.Products;
    }
    public override IEnumerable<Product> GetAll() => Table.OrderBy(x => x.ModelName);

    internal ProductAndCategoryBase GetRecord(Product p, Category c)
      => new ProductAndCategoryBase()
        {
          CategoryName = c.CategoryName,
          CategoryId = p.CategoryId,
          CurrentPrice = p.CurrentPrice,
          Description = p.Description,
          IsFeatured = p.IsFeatured,
          Id = p.Id,
          ModelName = p.ModelName,
          ModelNumber = p.ModelNumber,
          ProductImage = p.ProductImage,
          ProductImageLarge = p.ProductImageLarge,
          ProductImageThumb = p.ProductImageThumb,
          TimeStamp = p.TimeStamp,
          UnitCost = p.UnitCost,
          UnitsInStock = p.UnitsInStock
        };

    public IEnumerable<ProductAndCategoryBase> GetProductsForCategory(int id)
      => Table
        .Where(p => p.CategoryId == id)
        .Include(p => p.Category)
        .Select(item => GetRecord(item, item.Category))
        .OrderBy(x => x.ModelName);
    public IEnumerable<ProductAndCategoryBase> GetAllWithCategoryName()
      => Table
        .Include(p => p.Category)
        .Select(item => GetRecord(item, item.Category))
        .OrderBy(x => x.ModelName);
    public IEnumerable<ProductAndCategoryBase> GetFeaturedWithCategoryName()
      => Table
        .Where(p => p.IsFeatured)
        .Include(p => p.Category)
        .Select(item => GetRecord(item, item.Category))
        .OrderBy(x => x.ModelName);
    public ProductAndCategoryBase GetOneWithCategoryName(int id)



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

69

      => Table
        .Where(p => p.Id == id)
        .Include(p => p.Category)
        .Select(item => GetRecord(item, item.Category))
        .SingleOrDefault();
    public IEnumerable<ProductAndCategoryBase> Search(string searchString)
      => Table
        .Where(p =>p.Description.ToLower().Contains(searchString.ToLower())
            || p.ModelName.ToLower().Contains(searchString.ToLower()))
        .Include(p => p.Category)
        .Select(item => GetRecord(item, item.Category))
        .OrderBy(x => x.ModelName);
  }
}

The GetAll() method overrides the base GetAll() method to return the Product records in order of 
the ModelName property. The GetProductsForCategory() method returns all of the Product records for a 
specific Category Id, ordered by ModelName.

The internal GetRecord method is used to project the LINQ results in the following methods 
(GetAllWithCategoryName(), GetFeaturedWithCategoryName(), GetOneWithCategoryName(), and 
Search()) to create the ProductAndCategoryBase view model.

Adding the Customer Repository
The CustomerRepo provides the core features of the BaseRepo class and implements the ICustomerRepo 
interface. Add a new class in the Repos directory named CustomerRepo.cs and update the code to the 
following:

using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using SpyStore.DAL.EF;
using SpyStore.DAL.Repos.Base;
using SpyStore.DAL.Repos.Interfaces;
using SpyStore.Models.Entities;

namespace SpyStore.DAL.Repos
{
  public class CustomerRepo : RepoBase<Customer>, ICustomerRepo
  {
    public CustomerRepo(DbContextOptions<StoreContext> options) : base(options)
    {
    }
    public CustomerRepo() : base()
    {
    }
    public override IEnumerable<Customer> GetAll() => Table.OrderBy(x => x.FullName);
    public override IEnumerable<Customer> GetRange(int skip, int take)
      => GetRange(Table.OrderBy(x => x.FullName), skip, take);
  }
}



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

70

Adding the OrderDetail Repository
The OrderDetail repository adds a new LINQ extension into your toolbox: ThenInclude. This method 
(introduced in EF Core) can simplify long LINQ queries as the queries walk the domain model. Add a new 
class in the Repos directory named OrderDetailRepo.cs and update the code to the following:

using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using SpyStore.DAL.EF;
using SpyStore.DAL.Repos.Base;
using SpyStore.Models.Entities;
using SpyStore.Models.ViewModels;
using SpyStore.DAL.Repos.Interfaces;

namespace SpyStore.DAL.Repos
{
  public class OrderDetailRepo : RepoBase<OrderDetail>, IOrderDetailRepo
  {
    public OrderDetailRepo(DbContextOptions<StoreContext> options) : base(options)
    {
    }
    public OrderDetailRepo()
    {
    }
    public override IEnumerable<OrderDetail> GetAll()=> Table.OrderBy(x => x.Id);
    public override IEnumerable<OrderDetail> GetRange(int skip, int take)
       => GetRange(Table.OrderBy(x => x.Id), skip, take);

    internal IEnumerable<OrderDetailWithProductInfo> GetRecords(IQueryable<OrderDetail> query)
      => query.Include(x => x.Product).ThenInclude(p => p.Category)
              .Select(x => new OrderDetailWithProductInfo
                  {
                    OrderId = x.OrderId,
                    ProductId = x.ProductId,
                    Quantity = x.Quantity,
                    UnitCost = x.UnitCost,
                    LineItemTotal = x.LineItemTotal,
                    Description = x.Product.Description,
                    ModelName = x.Product.ModelName,
                    ProductImage = x.Product.ProductImage,
                    ProductImageLarge = x.Product.ProductImageLarge,
                    ProductImageThumb = x.Product.ProductImageThumb,
                    ModelNumber = x.Product.ModelNumber,
                    CategoryName = x.Product.Category.CategoryName
                  })
              .OrderBy(x => x.ModelName);

    public IEnumerable<OrderDetailWithProductInfo> GetCustomersOrdersWithDetails(
      int customerId)
        => GetRecords(Table.Where(x => x.Order.CustomerId == customerId));



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

71

    public IEnumerable<OrderDetailWithProductInfo> GetSingleOrderWithDetails(int orderId)
        => GetRecords(Table.Where(x => x.Order.Id == orderId));
  }
}

The internal GetRecords method starts with an IQueryable<OrderDetail> and then uses a 
projection to populate a list of OrderDetailWithProductInfo. The GetCustomersOrdersWithDetails 
and GetSingleOrderWithDetails methods create the initial query (searching by CustomerId or OrderId, 
respectively).

Adding the Order Repository
The OrderRepo class leverages the OrderDetailRepo class to get the OrderDetail records into the view 
model. Add a new class in the Repos directory named OrderRepo.cs and update the code to the following:

using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using SpyStore.DAL.EF;
using SpyStore.DAL.Repos.Base;
using SpyStore.DAL.Repos.Interfaces;
using SpyStore.Models.Entities;
using SpyStore.Models.ViewModels;

namespace SpyStore.DAL.Repos
{
  public class OrderRepo : RepoBase<Order>, IOrderRepo
  {
    private readonly IOrderDetailRepo _orderDetailRepo;
    public OrderRepo(DbContextOptions<StoreContext> options, IOrderDetailRepo 
orderDetailRepo)
      : base(options)
    {
      _orderDetailRepo = orderDetailRepo;
    }
    public OrderRepo(IOrderDetailRepo orderDetailRepo)
    {
      _orderDetailRepo = orderDetailRepo;
    }
    public override IEnumerable<Order> GetAll()=> Table.OrderByDescending(x => x.OrderDate);
    public override IEnumerable<Order> GetRange(int skip, int take)
      => GetRange(Table.OrderByDescending(x => x.OrderDate), skip, take);
    public IEnumerable<Order> GetOrderHistory(int customerId)
      => Table.Where(x => x.CustomerId == customerId)
              .Select(x => new Order
              {
                Id = x.Id,
                TimeStamp = x.TimeStamp,
                CustomerId = customerId,
                OrderDate = x.OrderDate,



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

72

                OrderTotal = x.OrderTotal,
                ShipDate = x.ShipDate,
              });
    public OrderWithDetailsAndProductInfo GetOneWithDetails(int customerId, int orderId)
      => Table
          .Include(x => x.OrderDetails)
          .Where(x => x.CustomerId == customerId && x.Id == orderId)
          .Select(x => new OrderWithDetailsAndProductInfo
              {
                Id = x.Id,
                CustomerId = customerId,
                OrderDate = x.OrderDate,
                OrderTotal = x.OrderTotal,
                ShipDate = x.ShipDate,
                OrderDetails = _orderDetailRepo.GetSingleOrderWithDetails(orderId).ToList()
              })
          .FirstOrDefault();
  }
}

The constructors also take IOrderDetailRepo as a parameter. This will be instantiated by the DI 
Framework in ASP.NET Core (or manually in unit test classes). The GetOrderHistory gets all of the orders 
for a customer, removing the navigation properties from the result set. The GetOneWithDetails() method 
uses OrderDetailRepo to retrieve the OrderDetails with Product and Category information, which is then 
added to the view model.

Adding the InvalidQuantityException
The ShoppingCartRepo will throw a custom exception when trying to add more items to the cart than 
are available in inventory. Add a new directory named Exceptions in the SpyStore.DAL project. In this 
directory, add a new class named InvalidQuantityException.cs. Make the class public and derive from 
the System.Exception type. Then stub out the three main constructors, as follows:

public class InvalidQuantityException : Exception
{
  public InvalidQuantityException() {}
  public InvalidQuantityException(string message) : base(message) {}
  public InvalidQuantityException(string message, Exception innerException)
    : base(message, innerException) { }
}

Adding the ShoppingCartRecords Repository
Add a new class in the Repos directory named ShoppingCartRepo.cs and update the code to the following:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.SqlClient;
using System.Linq;



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

73

using Microsoft.EntityFrameworkCore;
using SpyStore.DAL.EF;
using SpyStore.DAL.Exceptions;
using SpyStore.DAL.Repos.Base;
using SpyStore.DAL.Repos.Interfaces;
using SpyStore.Models.Entities;
using SpyStore.Models.ViewModels;

namespace SpyStore.DAL.Repos
{
  public class ShoppingCartRepo : RepoBase<ShoppingCartRecord>, IShoppingCartRepo
  {
    private readonly IProductRepo _productRepo;
    public ShoppingCartRepo(DbContextOptions<StoreContext> options,
      IProductRepo productRepo) : base(options)
    {
      _productRepo = productRepo;
    }
    public ShoppingCartRepo(IProductRepo productRepo) : base()
    {
      _productRepo = productRepo;
    }
    public override IEnumerable<ShoppingCartRecord> GetAll()
      => Table.OrderByDescending(x => x.DateCreated);
    public override IEnumerable<ShoppingCartRecord> GetRange(int skip, int take)
      => GetRange(Table.OrderByDescending(x => x.DateCreated), skip, take);
    public ShoppingCartRecord Find(int customerId, int productId)
    {
      return Table.FirstOrDefault(
        x => x.CustomerId == customerId && x.ProductId == productId);
    }
    public override int Update(ShoppingCartRecord entity,bool persist = true)
    {
      return Update(entity, _productRepo.Find(entity.ProductId)?.UnitsInStock,persist);
    }
    public int Update(ShoppingCartRecord entity, int? quantityInStock, bool persist = true)
    {
      if (entity.Quantity <= 0)
      {
        return Delete(entity, persist);
      }
      if (entity.Quantity > quantityInStock)
      {
        throw new InvalidQuantityException("Can't add more product than available in stock");
      }
      return base.Update(entity,persist);
    }
    public override int Add(ShoppingCartRecord entity, bool persist = true)
    {
      return Add(entity, _productRepo.Find(entity.ProductId)?.UnitsInStock, persist);
    }



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

74

    public int Add(ShoppingCartRecord entity, int? quantityInStock, bool persist = true)
    {
      var item = Find(entity.CustomerId, entity.ProductId);
      if (item == null)
      {
        if (quantityInStock != null && entity.Quantity > quantityInStock.Value)
        {
          throw new InvalidQuantityException("Can't add more product than available in stock");
        }
        return base.Add(entity, persist);
      }
      item.Quantity += entity.Quantity;
      return item.Quantity <= 0 ? Delete(item,persist) : Update(item,quantityInStock,persist);
    }

    internal CartRecordWithProductInfo GetRecord(
      int customerId, ShoppingCartRecord scr, Product p, Category c)
      => new CartRecordWithProductInfo
         {
           Id = scr.Id,
           DateCreated = scr.DateCreated,
           CustomerId = customerId,
           Quantity = scr.Quantity,
           ProductId = scr.ProductId,
           Description = p.Description,
           ModelName = p.ModelName,
           ModelNumber = p.ModelNumber,
           ProductImage = p.ProductImage,
           ProductImageLarge = p.ProductImageLarge,
           ProductImageThumb = p.ProductImageThumb,
           CurrentPrice = p.CurrentPrice,
           UnitsInStock = p.UnitsInStock,
           CategoryName = c.CategoryName,
           LineItemTotal = scr.Quantity * p.CurrentPrice,
           TimeStamp = scr.TimeStamp
          };
    public CartRecordWithProductInfo GetShoppingCartRecord(int customerId, int productId)
      => Table
            .Where(x => x.CustomerId == customerId && x.ProductId == productId)
            .Include(x => x.Product)
            .ThenInclude(p => p.Category)
            .Select(x => GetRecord(customerId, x, x.Product, x.Product.Category))
            .FirstOrDefault();
    public IEnumerable<CartRecordWithProductInfo> GetShoppingCartRecords(int customerId)
      => Table
            .Where(x => x.CustomerId == customerId)
            .Include(x => x.Product)
            .ThenInclude(p => p.Category)
            .Select(x => GetRecord(customerId, x, x.Product, x.Product.Category))
            .OrderBy(x => x.ModelName);
    public int Purchase(int customerId)



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

75

    {
      var customerIdParam = new SqlParameter("@customerId", SqlDbType.Int)
      {
        Direction = ParameterDirection.Input,
        Value = customerId
      };
      var orderIdParam = new SqlParameter("@orderId", SqlDbType.Int)
      {
        Direction = ParameterDirection.Output
      };
      try
      {
        Context.Database.ExecuteSqlCommand(
          "EXEC [Store].[PurchaseItemsInCart] @customerId, @orderid out",
          customerIdParam, orderIdParam);
      }
      catch (Exception ex)
      {
        Console.WriteLine(ex);
        return -1;
      }
      return (int)orderIdParam.Value;
    }
  }
}

The additional Find method uses the Id of the Customer and the Id of a Product to find a specific 
record. The Add method checks to see if there are any of the same products already in the cart. If there 
are, the quantity is updated (instead of adding a new record). If there aren’t any, the product is added 
to the cart. When the cart is updated, if the new quantity is less than or equal to zero, the item is deleted 
from the cart. Otherwise, the quantity is simply updated. Both the Add and Update methods check the 
available inventory, and if the user is attempting to add more records into the cart than are available, an 
InvalidQuantityException is thrown.

The GetRecord method simplifies the projections in the GetShoppingCartRecord and 
GetShoppingCartRecords methods.

The Purchase() method executes the stored procedure built earlier in the chapter.

■■ Note   The data access layer for the SpyStore data access layer is now complete. The remainder of the 
chapter covers seeding the database with data.

Initializing the Database with Data
A powerful feature of EF 6.x was the ability to initialize the database with data using the built-in DropCreateD
atabaseIfModelChanges<TContext> and DropCreateDatabaseAlways<TContext> classes. These classes are 
not replicated in EF Core, so the process to initialize data needs to be built by hand.



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

76

■■ Note   The code shown in this section is a small subset of the full code available in the downloadable 
chapter files. The examples have been shortened to save space in this chapter.

Two files will be created, one to create sample data, and the other to handle loading and cleaning the 
database. Start by creating a folder named Initializers in the SpyStore.DAL project.

Creating Sample Data
Add a new file named StoreSampleData.cs to the Initializers folder. Add or update the using statements 
to the following:

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using SpyStore.Models.Entities;
using SpyStore.DAL.EF;

The file consists of a series of static functions that create sample data.

namespace SpyStore.DAL.Initializers
{
  public static class StoreSampleData
  {
    public static IEnumerable<Category> GetCategories() => new List<Category>
    {
      new Category {CategoryName = "Communications"},
      new Category {CategoryName = "Deception"},
      new Category {CategoryName = "Travel"},
    };
    public static IList<Product> GetProducts(IList<Category> categories)
    {
      var products = new List<Product>();
      foreach (var category in categories)
      {
        switch (category.CategoryName)
        {
          case "Communications":
            products.AddRange(new List<Product>
            {
              new Product
              {
                Category = category,
                CategoryId = category.Id,
                ProductImage = "product-image.png",
                ProductImageLarge = "product-image-lg.png",
                ProductImageThumb = "product-thumb.png",
                ModelNumber = "RED1",
                ModelName = "Communications Device",



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

77

                UnitCost = 49.99M,
                CurrentPrice = 49.99M,
                Description = "Lorem  ipsum",
                UnitsInStock = 2,
                IsFeatured = true
              },
            });
            break;
          default:
            break;
        }
      }
      return products;
    }
    public static IEnumerable<Customer> GetAllCustomerRecords(StoreContext context)
      => new List<Customer>
         {
           new Customer() { EmailAddress = "spy@secrets.com",Password = "Foo",
             FullName = "Super Spy",
           }
         };
    public static List<Order> GetOrders(Customer customer, StoreContext context)
      => new List<Order>
    {
      new Order()
      {
        Customer = customer,
        OrderDate = DateTime.Now.Subtract(new TimeSpan(20, 0, 0, 0)),
        ShipDate = DateTime.Now.Subtract(new TimeSpan(5, 0, 0, 0)),
        OrderDetails = GetOrderDetails(context)
      }
    };
    public static IList<OrderDetail> GetOrderDetails(
            Order order, StoreContext context)
    {
      var prod1 = context.Categories.Include(c => c.Products).FirstOrDefault()?
        .Products.FirstOrDefault();
      var prod2 = context.Categories.Skip(1).Include(c => c.Products).FirstOrDefault()?
        .Products.FirstOrDefault();
      var prod3 = context.Categories.Skip(2).Include(c => c.Products).FirstOrDefault()?
        .Products.FirstOrDefault();
      return new List<OrderDetail>
      {
        new OrderDetail() {Order = order, Product = prod1, Quantity = 3,
            UnitCost = prod1.CurrentPrice},
        new OrderDetail() {Order = order, Product = prod2, Quantity = 2,
            UnitCost = prod2.CurrentPrice},
        new OrderDetail() {Order = order, Product = prod3, Quantity = 5,
            UnitCost = prod3.CurrentPrice},
      };
    }



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

78

    public static IList<ShoppingCartRecord> GetCart(Customer customer, StoreContext context)
    {
      var prod1 = context.Categories.Skip(1)
        .Include(c => c.Products).FirstOrDefault()?
        .Products. FirstOrDefault();
      return new List<ShoppingCartRecord>
      {
        new ShoppingCartRecord {
          Customer = customer, DateCreated = DateTime.Now,
          Product = prod1, Quantity = 1}
        };
      }
    }
}

There isn’t much to discuss in the previous code listing. Each method creates sample records to use for 
seeding the database.

Using the Sample Data
The next step is to create the methods that add the sample data to the database as well as remove them. 
Create a new class named StoreDataInitializer.cs in the Initializers directory. Add or update the 
using statements to the file:

using System;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using SpyStore.DAL.EF;

Update the code listing to match the following:

namespace SpyStore.DAL.Initializers
{
  public static class SampleData
  {
    public static void InitializeData(IServiceProvider serviceProvider)
    {
      var context = serviceProvider.GetService<StoreContext>();
      InitializeData(context);
    }
    public static void InitializeData(StoreContext context)
    {
      context.Database.Migrate();
      ClearData(context);
      SeedData(context);
    }



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

79

    public static void ClearData(StoreContext context)
    {
      ExecuteDeleteSQL(context, "Categories");
      ExecuteDeleteSQL(context, "Customers");
      ResetIdentity(context);
    }
    public static void ExecuteDeleteSQL(StoreContext context, string tableName)
    {
      context.Database.ExecuteSqlCommand($"Delete from Store.{tableName}");
    }
    public static void ResetIdentity(StoreContext context)
    {
      var tables = new[] {"Categories","Customers",
        "OrderDetails","Orders","Products","ShoppingCartRecords"};
      foreach (var itm in tables)
      {
        context.Database.ExecuteSqlCommand($"DBCC CHECKIDENT (\"Store.{itm}\", RESEED, -1);");
      }
    }
    public static void SeedData(StoreContext context)
    {
      try
      {
        if (!context.Categories.Any())
        {
          context.Categories.AddRange(StoreSampleData.GetCategories());
          context.SaveChanges();
        }
        if (!context.Products.Any())
        {
          context.Products.AddRange(StoreSampleData.GetProducts(context.Categories.ToList()));
          context.SaveChanges();
        }
        if (!context.Customers.Any())
        {
          context.Customers.AddRange(StoreSampleData.GetAllCustomerRecords(context));
          context.SaveChanges();
        }
        var customer = context.Customers.FirstOrDefault();
        if (!context.Orders.Any())
        {
          context.Orders.AddRange(StoreSampleData.GetOrders(customer, context));
          context.SaveChanges();
        }
        if (!context.ShoppingCartRecords.Any())
        {
          context.ShoppingCartRecords.AddRange(
          StoreSampleData.GetCart(customer, context));
          context.SaveChanges();
        }
      }



Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

80

      catch (Exception ex)
      {
        Console.WriteLine(ex);
      }
    }
  }
}

There are two static methods named InitializeData(). The first one takes an IServiceProvider, 
which is a component of the ASP.NET Core Dependency Injection framework, and is used in later chapters. 
The second one takes an instance of a StoreContext and is used by the tests in the downloadable code.

The ClearData method deletes all of the records in the database, then resets the identity for all of 
the primary keys. The SeedData method calls the methods in the StoreSampleData class to populate the 
database.

Using the Initializer in Tests
Each test needs to start with the database in a predictable and repeatable state. Before each test is run, code 
needs to ensure that the database is first reset to a clean state, then add the sample data. After each test, the 
database then needs to be reset back to the initial state. Recall from the “Unit Testing” section in Chapter 1 
that the constructor runs before each test, and the Dispose method runs after each test.

The following is a sample from the downloadable unit tests. The constructor clears the database first, in 
case another test failed to execute the cleanup process, then seeds the data. The Dispose method cleans up 
the data before disposing of the repository.

public class OrderRepoTests : IDisposable
{
  private readonly OrderRepo _repo;
  public OrderRepoTests()
  {
    _repo = new OrderRepo(new OrderDetailRepo());
    StoreDataInitializer.ClearData(_repo.Context);
    StoreDataInitializer.InitializeData(_repo.Context);
  }
  public void Dispose()
  {
    StoreDataInitializer.ClearData(_repo.Context);
    _repo.Dispose();
  }
}

Using the initializer code is straightforward. The following is an example from the ProductRepoTests.
cs constructor (available in the SpyStore.DAL.Tests project from the downloadable code). It first creates 
a ProductRepo class (this also created a new StoreContext instance), then calls the ClearData and 
IntializeData static methods of the StoreDataInitializer class:

_repo = new ProductRepo();
StoreDataInitializer.ClearData(_repo.Context);
StoreDataInitializer.InitializeData(_repo.Context);

http://dx.doi.org/10.1007/978-1-4842-2478-6_1


Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

81

■■ Source Code T he completed SpyStore.DAL solution with unit tests can be found in the Chapter 02 
subdirectory of the download files.

Creating NuGet Packages for the Data Access Library
One of the best ways to distribute code between teams is by using private NuGet packages due to the ease of 
creation and management within other solutions. The dotnet pack .NET Core CLI command creates NuGet 
packages from your projects.

Setting the NuGet Properties
If no version is specified in the project file, projects are built using the assembly version as the version prefix. 
To set the value in the project file, add the Version tag to the PropertyGroup. The following code block 
shows this and additional properties that can be set for NuGet packages:

<PropertyGroup>
  <TargetFramework>netstandard1.6</TargetFramework>
  <Version>1.0.0</Version>
  <PackageProjectUrl>http://www.apress.com</PackageProjectUrl>
  <Authors>Phil Japikse</Authors>
  <Description>Models for the SpyStore Data Access Library</Description>
  <PackageReleaseNotes>Initial Release</PackageReleaseNotes>
  <Copyright>Copyright 2016 (c) Phil Japikse. All rights reserved.</Copyright>
  <PackageTags>SpyStore Models DAL</PackageTags>
</PropertyGroup>

For more information on the properties that can be set for NuGet packages, see the documentation 
here: https://docs.nuget.org/ndocs/schema/msbuild-targets#pack-target.

Creating the NuGet Packages
The packages will be created in the bin\debug directory by default. To change this, add the -o parameter 
to the pack command. The -version-suffix parameter adds values after the first three number groups 
(1.0.0 in this example). If the values added are letters, the package is considered pre-release by NuGet. 
The following command will create the packages version identifier of 1.0.0 in the nugetpackages directory 
of the solution. Be sure to execute the command in the same directory as the project files for both the 
SpyStore.Models and SpyStore.DAL projects.

dotnet pack -o ..\nugetpackages

These packages will be used in the next chapter.

https://docs.nuget.org/ndocs/schema/msbuild-targets#pack-target


Chapter 2 ■ Building the Data Access Layer with Entity Framework Core

82

Summary
This chapter completed the data access layer for the remaining chapters. The chapter began discussing 
navigation properties and their role in EF model classes. That was followed with a brief discussion of 
handling display names, stored procedures, and user defined functions. With a firm understanding of 
navigation properties, the rest of the model classes were created and fine-tuned using data annotations and 
the Fluent API. Then the database was updated using an EF migration.

The next section demonstrated adding a stored procedure and user defined function to the database 
using an EF migration. After the objects were created in the database, a computed column, based on the 
function, was added to the Orders table using a property on the Order class and the Fluent API.

The final classes added to the object model were the view models that combine different model classes 
into one for convenience (these will be used in later chapters). With the entire model and view models 
in place, the data access layer was completed by updating the CategoryRepo class and adding all of the 
remaining repository classes. The last section showed an example of seeding the data for purposes of testing.

You now know what you need to know to use Entity Framework Core in a vast majority of line of 
business applications. However, even as long as these two chapters are, they really just scratch the surface of 
everything that EF Core offers.



83© Philip Japikse, Kevin Grossnicklaus and Ben Dewey 2017 
P. Japikse et al., Building Web Applications with Visual Studio 2017, DOI 10.1007/978-1-4842-2478-6_3

CHAPTER 3

Building the RESTful Service with 
ASP.NET Core MVC Services

Now that you have completed the data access layer for the SpyStore e-commerce site, it’s time to create 
the RESTful service that exposes the data operations. The service will serve as the backend for all of the UI 
frameworks used in the rest of this book, and is built using ASP.NET Core MVC. Before building the service 
layer, it’s important to briefly introduce the Model View Controller (MVC) pattern.

Introducing the MVC Pattern
The Model-View-Controller (MVC) pattern has been around since the 1970s, originally created as a pattern 
for use in Smalltalk. The pattern has made a resurgence recently, with implementations in many different 
and varied languages, including Java (Spring Framework), Ruby (Ruby on Rails), and .NET (ASP.NET MVC). 
The pattern is very simple, composed of the three pieces that compose the name.

The Model
The model is the data of your application. The data is typically represented by Plain Old CLR Objects 
(POCOs), as used in the data access library created in the previous two chapters. View models are composed 
of one or more models and shaped specifically for the view that uses them. Think of models and view models 
as database tables and database views.

Academically, models should be extremely clean and not contain validation or any other business rules. 
Pragmatically, whether or not models contain validation logic or other business rules entirely depends on 
the language and frameworks used, as well as specific application needs. For example, EF Core contains 
many data annotations that double as a mechanism for shaping the database tables and a means for 
validation in Core MVC. In this book, the examples focus on reducing duplication of code, which places data 
annotations and validations where they make the most sense.

The View
The View is the UI of the application. Views accept commands and render the results of those commands to 
the user. The view should be as lightweight as possible, and not actually process any of the work, but hand 
off all work to the controller.



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

84

The Controller
The controller is the brains of the operation. Controllers take commands/requests from the user (via the 
View), marshal them to the appropriate service, and then send the application data to the view. Controllers 
should also be lightweight and leverage other components to maintain Separation of Concerns (SoC).

Introducing ASP.NET Core MVC Web API
Microsoft released ASP.NET MVC in 2007 to great success. Building on that success (and sharing a lot of the 
MVC framework code), the ASP.NET Web API framework was first released alongside MVC 4 with Visual 
Studio 2012. The framework started gaining traction almost immediately, and Microsoft released ASP.NET 
Web API 2 with Visual Studio 2013, and then updated the framework to version 2.2 with Visual Studio 2013 
Update 1.

ASP.NET Web API from the beginning was designed to be a service based framework for building 
RESTful (Representational State Transfer) services. It is essentially the MVC framework minus the “V” (view) 
with optimizations for creating headless services. These services can be called by any technology, not just 
those under the Microsoft umbrella. Calls to a Web API service are based on the core HTTP verbs (Get, Put, 
Post, Delete) through a URI (Uniform Resource Identifier) such as the following:

http://www.mysite.com:33826/api/category

If this looks like a URL (Uniform Resource Locator), it’s because it is! A URL is simply a URI that points 
to physical resource on a network.

Calls to Web API use the HTTP (Hypertext Transfer Protocol) scheme on a particular host (in this 
example www.mysite.com), on a specific port (33816), followed by the path (api/category) and optional 
query and fragment (not shown in this example). Note that the port for HTTP calls defaults to 80 if one isn’t 
specified. Web API calls can also include text in the body of the message, as you will see later in this chapter.

ASP.NET Core MVC (formally called ASP.NET 5) unified the Web API and MVC into one framework, 
named ASP.NET Core MVC. The framework formerly known as the Web API is now just included in Core 
MVC and not a separate framework. However, the Visual Studio template for creating RESTful services with 
Core MVC Services is still named “Web API”. Therefore, in this book I refer to the service capabilities within 
Core MVC as the either Core MVC Services or just simply Web API.

ASP.NET Core and .NET Core
Just as Entity Framework Core is a complete rewrite of Entity Framework 6, ASP.NET Core is a rewrite of the 
popular ASP.NET framework. Rewriting ASP.NET was no small task, but necessary in order to remove the 
dependency on System.Web. Removing the dependency on System.Web enables ASP.NET applications to 
run on operating systems other than Windows, and other web servers besides Internet Information Services 
(IIS). If the ability to run ASP.NET applications on other operating systems isn’t enough motivation to use 
ASP.NET Core, the rewrite brings many other benefits, including a significant performance boost.

Moving away from System.Web and IIS opened the door for ASP.NET Core applications to use a cross-
platform, light-weight, and open source web server called Kestrel. Kestrel presents a uniform development 
experience across all platforms. Windows developers, have no fear! ASP.NET Core applications fully support 
Windows deployments, and when using Visual Studio to develop ASP.NET Core applications, IIS Express is 
one of the options for debugging.

Like EF Core, ASP.NET Core is being developed on GitHub as a completely open source project 
(https://github.com/aspnet). It is also designed as a modular system of NuGet packages. Developers 
only install the features that are needed for a particular application, minimizing the application footprint, 
reducing the overhead, and decreasing security risks. Additional improvements include a simplified startup, 
built-in dependency injection, a cleaner configuration system, and pluggable middleware.

http://www.mysite.com:33826/api/category
http://www.mysite.com/
https://github.com/aspnet


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

85

■■ Note   One chapter isn’t nearly enough space to completely cover ASP.NET Core MVC services. I am only 
going to cover the features needed to implement the service layer for the SpyStore sample sites.

Dependency Injection
Dependency Injection (DI) is a mechanism to support loose coupling between objects, instead of directly 
creating dependent objects or passing specific implementations into methods, classes, and methods 
program to interfaces. That way any implementation of the interface can be passed into methods and 
classes, dramatically increasing the flexibility of the application.

DI support is one of the main tenets in the rewrite ASP.NET Core. Not only does the Startup class 
(covered later in this chapter) accept all of the configuration and middleware services through dependency 
injection, your custom classes can (and should) be added to the service container to be injected into other 
parts of the application.

The ASP.NET Core DI container is typically configured in the ConfigureServices method of the 
Startup class using the instance of IServiceCollection that itself is injected in. When an item is configured 
into the DI container, there are four lifetime options, as shown in Table 3-1.

Table 3-1.  Lifetime Options for Services

Lifetime Option Functionality Provided

Transient Created each time they are needed.

Scoped Created once for each request. Recommended for Entity Framework DbContext objects.

Singleton Created once on first request and then reused for the lifetime of the object. This is the 
recommended approach vs. implementing your class as a Singleton.

Instance Similar to Singleton, but created when Instance is called vs. on first request.

More information on DI and ASP.NET Core can be found in the documentation here:

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection

Determining the Runtime Environment
Another improvement in .NET Core is the new environment checking capability. ASP.NET Core looks for 
an environment variable named ASPNETCORE_ENVIRONMENT to determine the current running environment. 
The environment variable value is usually read from a settings file, the development tooling (if running in 
debug mode), or through the environment variables of the machine executing the code. The names can be 
anything, but convention usually defines the states as Development, Staging, and Production.

Once the environment is set, there are many convenience methods available to developers to take 
advantage of the setting. For example, the following code enables logging for the development environment, 
but not for the staging or production environments:

if (env.IsDevelopment())
{
  loggerFactory.AddConsole(Configuration.GetSection("Logging"));
  loggerFactory.AddDebug();
}

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

86

For more information on ASP.NET environments, reference the help at https://docs.microsoft.com/
en-us/aspnet/core/fundamentals/environments.

Routing
Routing is how Core MVC matches URL requests to controllers and actions in your application, instead of 
the old Web Forms process of matching URLs to the project file structure. It also provides a mechanism for 
creating URLs based on Controllers and Actions, instead of hard coding them into your application.

URL Templates
Routes are URL patterns comprised of literals, tokens, and variable placeholders. Tokens are one of [area], 
[controller], and [action] values. These correspond to Core MVC areas, controller classes, and controller 
methods. Controllers and actions are covered in the next section. Areas are sub sites within an MVC site, and 
are beyond the scope of this book.

Variable placeholders are listed in braces, such as {id}. Adding a question mark (such as {id?}) 
indicates the parameter is optional. Take the example route:

api/[controller]/[action]/{id?}

In the aforementioned route, api is a literal value. The next two values in the path are looking for a 
named controller and action. The final parameter is optional, and if it’s found in the URL, it’s passed into 
the action method as a parameter of the same name. For example, both of the following URLs map to the 
ValuesController (the Controller suffix is dropped) and Get action method. The second URL passes the 
value of 5 to the parameter named id on the action method:

http://www.mysite.com/api/values/get
http://www.mysite.com/api/values/get/5

Attribute Routing

In Core MVC, attribute routing is the preferred method for defining routes. Prior versions of MVC used 
a Route Table (and Core MVC UI projects still do for the default route), which could become difficult to 
troubleshoot as the site grows more complicated. Attribute routing places the route information in the 
controller and action methods, which enhances the clarity of the site. Attribute routing without a configured 
route table also increases the amount of configuration that needs to be done, since every controller and 
action need to have routing information specified.

For example, the default ValuesController has the Route attribute that defines a literal value and a token.

[Route("api/[controller]")]
public class ValuesController : Controller
{
  //omitted for brevity
}

One could argue that using attribute routing leads to duplication of code, since each of the controllers 
would need to have the same route defined, instead of placing the core route into the Route Table. While that 
is true, the benefits of having the routes defined right next to the code that executes them is of value as well. 
I’ll leave it to the reader to decide the best course of action. When you build the Core MVC UI, you will see 
the Route Table in action.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
http://www.mysite.com/api/values/get
http://www.mysite.com/api/values/get/5


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

87

Named Routes

Routes can also be assigned a name. This creates a shorthand method for redirecting to a particular route 
just by using the name. For example, the following route attribute has the name of GetOrderDetails:

[HttpGet("{orderId}", Name = "GetOrderDetails")]

To refer to this route in code, the following code can be used:

return CreatedAtRoute("GetOrderDetails", routeValues: new { controller = "Orders", 
customerId = customerId, orderId = orderId }, value: orderId);

Responding to the Type of HTTP Request
Routing is just part of the story regarding which action method to call. Core MVC Web API analyzes the verb 
used in the request (one of HttpGet, HttpPost, HttpPut, and HttpDelete) to determine the final leg of the 
route. The HTTP verb handled by a particular action method is indicated with a .NET attribute, which can 
also contain route information. For example, the following action responds to a HTTP Get request and adds 
a parameter (id) to the request:

[HttpGet("{id}")]
public string Get(int id)
{
  return "value";
}

In Core MVC, any action without an HTTP attribute (such as HttpPost) will be executed as a Get operation.

■■ Note   Previous versions of the Web API included a shortcut for verb assignment. If the prefix of the action 
method name matched Put, Create, or Delete, the routing would respond to the corresponding HTTP verbs. 
Fortunately, this convention was removed in the Core MVC, as it was just too much secret sauce. Just like many 
of the EF conventions discussed in Chapters 1 and 2, I believe it’s better to be explicit than to rely on “magic” 
when writing code.

Creating the Solution and the Core MVC Project
Create a new Visual Studio solution. Select the ASP.NET Core Web Application (.NET Core) template 
available under Installed ➤ Templates ➤ Visual C# ➤ .NET Core. Name the project and solution  
SpyStore.Service and click OK, as shown in Figure 3-1.

http://dx.doi.org/10.1007/978-1-4842-2478-6_1
http://dx.doi.org/10.1007/978-1-4842-2478-6_2


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

88

■■ Note   If you have not already installed Visual Studio 2017 and .NET Core, follow the steps outlined in Chapter 1.

The new screen shows the Long Term Support (LTS) templates (ASP.NET Core Templates 1.0) 
and the current templates (ASP.NET Core Templates 1.1). Select the Web API template under ASP.NET 
Core Templates 1.1, leave the Enable Container (Docker) Support check box unchecked, and leave the 
Authentication set to No Authentication, as shown in Figure 3-2.

Figure 3-1.  Adding a new ASP.NET web application

Figure 3-2.  Selecting the Web API project template

http://dx.doi.org/10.1007/978-1-4842-2478-6_1


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

89

■■ Note   Docker is a containerization technology that is beyond the scope of this book. More information can 
be found here: https://docs.microsoft.com/en-us/azure/vs-azure-tools-docker-hosting-web-apps-
in-docker. Security is a very large topic, and there isn’t room in this chapter (or book) to cover it properly. We 
(the author team) decided to ignore it completely. We feel very strongly about security and didn’t want to do 
an injustice by only partially covering the topic. You need to assess the security needs of your application and 
implement the appropriate level. Information on ASP.NET Core security is available in the official documentation: 
https://docs.microsoft.com/en-us/aspnet/core/.

Click OK, and the new solution and project are created. Your solution and projects should look like 
Figure 3-3.

Compared to Web API 2.2 projects, the Core MVC Web API template is very lightweight. ASP.NET Core 
projects have been simplified to the point that they are now console applications that have different services 
added in, such as listening for HTTP traffic.

Figure 3-3.  The generated files and folders for a Core MVC Web API app

https://docs.microsoft.com/en-us/azure/vs-azure-tools-docker-hosting-web-apps-in-docker
https://docs.microsoft.com/en-us/azure/vs-azure-tools-docker-hosting-web-apps-in-docker
https://docs.microsoft.com/en-us/aspnet/core/


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

90

■■ Note   The templates included with VS2017 RC3 do not create the content in the src directory like in prior 
versions. The project structure has been flipping back and forth between using the src directory and not using 
it with practically each VS2017 release. I personally like the organization with the src directory, and the code 
samples are structured using it. The images and text match the templates provided with VS2017 RC3.

Adding the Package Source for the Data Access Layer
The NuGet packages for the SpyStore.DAL and Spystore.Models projects need to be added as package 
references. They were created in a local directory and not published to NuGet.org, so the local directory 
needs to be added as a package source. In Visual Studio, select Tools ➤ Options, and then select NuGet 
Package Manager ➤ Package Sources in the left side of the Options dialog. On the right side, click the green 
plus sign, then add a name and the location of the packages created in Chapter 2, similar to Figure 3-4 (your 
location will most likely be different). Click Update and then OK to add the new package source.

Figure 3-4.  Creating a local package source

Updating and Adding NuGet Packages
Right-click on the SpyStore.Service project and select Manage NuGet Packages. Make sure the Include 
Prerelease check box is checked. Click on Updates at the top of the NuGet Package Manager screen, check 
the Select All Packages check box, and click on the Update button. Unless you checked the Don’t Show This 
Message Again check box, you might get prompted to confirm the installs and accept license agreements. 
Just click OK on the dialogs to install the updated packages.

http://dx.doi.org/10.1007/978-1-4842-2478-6_2


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

91

■■ Note   Depending on when you are reading this and the latest versions of the VS2017 templates, there might 
not be any packages to update. At the time of this writing, there was only one update available, and that was for 
Microsoft.ApplicationInsights.AspNetCore, which has now been promoted to version 2.0.0 from a beta release.

Next, click on Browse, enter SpyStore into the search box, and change the Package Source to All 
(which includes the local package source just created). Install the SpyStore.Models package and then the 
SpyStore.DAL package, in that order. Unfortunately, due to some kinks that still need to be worked out with 
the integration between the .NET Core CLI and NuGet packaging, installing the SpyStore.DAL package first 
fails because the SpyStore.Models project doesn’t get pulled in correctly. Hopefully, by the time you are 
reading this, all of the tooling is fully released and working correctly.

Finally, install the Entity Framework Core packages. Enter Microsoft.EntityFrameworkCore in the 
search box and install the following:

•	 Microsoft.EntityFrameworkCore (v1.1.1)

•	 Microsoft.EntityFrameworkCore.SqlServer (v1.1.1)

The ASP.NET Core “Super” Packages
Readers who have worked with earlier editions of VS 2017 and .NET Core might notice that there are a lot 
fewer packages referenced by the SpyStore.Service project. This is due to the template taking advantage of 
what I am calling the two Core MVC “super” packages that are included in the Core MVC Service template: 
Microsoft.AspNetCore and Microsoft.AspNetCore.Mvc.

The Microsoft.AspNetCore super package brings in the following additional packages:

•	 Microsoft.AspNetCore.Disagnostics (v1.1.1)

•	 Microsoft.AspNetCore.Hosting (v1.1.1)

•	 Microsoft.AspNetCore.Routing (v1.1.1)

•	 Microsoft.AspNetCore.Server.IISIntegration (v1.1.1)

•	 Microsoft.AspNetCore.Server.Kestrel (v1.1.1)

•	 Microsoft.Extensions.Configuration.EnvironmentVariables (v1.1.1)

•	 Microsoft.Extensions.Configuration.FileExtensions (v1.1.1)

•	 Microsoft.Extensions.Configuration.Json (v1.1.1)

•	 Microsoft.Extensions.Logging (v1.1.1)

•	 Microsoft.Extensions.Logging.Console (v1.1.1)

•	 Microsoft.Extensions.Options.ConfigurationExtensions (v1.1.1)

The Microsoft.AspNetCore.MVC super package brings in the following additional packages:

•	 Microsoft.AspNetCore.MVC.ApiExplorer (v1.1.2)

•	 Microsoft.AspNetCore.MVC.Cors (v1.1.2)

•	 Microsoft.AspNetCore.MVC.DataAnnotations (v1.1.2)

•	 Microsoft.AspNetCore.MVC.Formatters.Json (v1.1.2)



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

92

•	 Microsoft.AspNetCore.MVC.Localization (v1.1.2)

•	 Microsoft.AspNetCore.MVC.Razor (v1.1.2)

•	 Microsoft.AspNetCore.MVC.TagHelpers (v1.1.2)

•	 Microsoft.AspNetCore.MVC.ViewFeatures (v1.1.2)

•	 Microsoft.Extensions.Caching.Memory (v1.1.1)

•	 Microsoft.Extensions.DependencyInjection (v1.1.0)

This greatly simplifies the required package list for Core MVC packages.

■■ Note   Super packages is not the official name, but something I made up because it seems more fitting 
than the official name. The official name used by the project team is meta-package, but I think super package is 
more descriptive, so it’s what I’ll be using in this book.

MVC Projects and Files
Web API projects in Core MVC have removed a lot of the cruft from previous versions. The trimmed down 
project basics are explained in the following sections. The new project file format is covered in Chapter 1, so 
I won’t repeat it here.

The Program.cs File
Core MVC applications are simply console applications. The Main method creates a WebHostBuilder that 
sets the application up to listen for (and handle) HTTP requests.

The following is the default Main method created by the Visual Studio Web API template:

public class Program
{
  public static void Main(string[] args)
  {
    var host = new WebHostBuilder()
      .UseKestrel()
      .UseContentRoot(Directory.GetCurrentDirectory())
      .UseIISIntegration()
      .UseStartup<Startup>()
      .UseApplicationInsights
      .Build();
    host.Run();
  }
}

The preceding code demonstrates the modularity of ASP.NET Core and the opt-in nature of its 
services. After creating a new instance of the WebHostBuilder, the code enables just the features that the 
application needs. The Kestrel web server is enabled, as is IIS. The root directory for content is set as the 
project directory. The UseStartup method sets the class that configures the HTTP pipeline and the rest of 
the application to the Startup class (covered next). The next line adds in support for ApplicationInsights. 

http://dx.doi.org/10.1007/978-1-4842-2478-6_1


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

93

ApplicationInsights is a way to instrument and monitor applications. While not covered in this book, you can 
get the full details here: https://azure.microsoft.com/en-us/services/application-insights/.  
The next line builds all of the features into the WebHostBuilder, and the final line runs the web host.

By default, Kestrel listens on port 5000. To change the target port to 40001 (for example), add the 
following line to the WebHostBuilder (after the UseKestrel call):

.UseUrls("http://*:40001/")

This changes the Kestrel configuration for this application to listen on port 40001. Update the code to 
match this:

var host = new WebHostBuilder()
  .UseKestrel()
  .UseUrls("http://*:40001/")
  .UseContentRoot(Directory.GetCurrentDirectory())
  .UseIISIntegration()
  .UseStartup<Startup>()
  .UseApplicationInsights
  .Build();
host.Run();

The appsettings.json File(s)
Previous versions of ASP.NET used the web.config file to configure services and applications, and 
developers accessed the configuration settings through the System.Configuration class. Of course, all 
configuration settings for the site, not just application specific settings, were dumped into the web.config 
file, making it a (potentially) complicated mess.

ASP.NET Core introduces a greatly simplified configuration system. It’s based on simple JSON files that 
hold configuration settings as name/value pairs. The default file for configuration is the appsettings.json file. 
The initial version of appsettings.json file created by the VS2017 template simply contains configuration 
information for the logger (created in the Startup.cs class) and is listed here:

{
  "Logging": {
    "IncludeScopes": false,
    "LogLevel": {
      "Default": "Warning"
    }
  }
}

The Core MVC Web API template also creates an appsettings.Development.json file. As you will see 
shortly, the configuration system uses appsettings.{environmentname}.json files for runtime environment 
specific settings. The default file changes the logging levels if the environment is set to Development. The file 
contents are shown here:

{
  "Logging": {
    "IncludeScopes": false,
    "LogLevel": {
      "Default": "Debug",

https://azure.microsoft.com/en-us/services/application-insights/


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

94

      "System": "Information",
      "Microsoft": "Information"
    }
  }
}

Application settings like connection strings are typically stored in the appsettings.json file. Add your 
machine specific connection string to the appsettings.json file by updating the text to the following (this 
should match the connection string used in Chapters 1 and 2):

{
  "Logging": {
    "IncludeScopes": false,
    "LogLevel": {
      "Default": "Debug",
      "System": "Information",
      "Microsoft": "Information"
    }
  },
  "ConnectionStrings": {
    "SpyStore":
"Server=(localdb)\\MSSQLLocalDB;Database=SpyStore;Trusted_Connection=True;MultipleActiveRes
ultSets=true"
  }
}

This setting is used later in the chapter.

The runtimeconfig.template.json File
If you’ve been following along with the releases of .NET Core, you’ve noticed a significant amount of churn. 
The latest change that came with VS2017 RC3 is the inclusion of the runtimeconfig.template.json file 
into the Core MVC Services template. This file is used for setting runtime properties (as the name suggests). 
The same settings were in the *.csproj file, but have been relocated here to make the MSBuild process 
smoother. Open the file and you will see just one setting enabled by default:

{
  "configProperties": {
    "System.GC.Server": true
  }
}

You don’t need to make any changes to the file for this project.

The Startup.cs File
The Startup class configures how the application will handle HTTP requests and response, initiates the 
configuration system, and sets up the dependency injection container. The class name can be anything, as 
long as it matches the UseStartup<T> line in the configuration of the WebHostBuilder, but the convention is 
to name the class Startup.cs.

http://dx.doi.org/10.1007/978-1-4842-2478-6_1
http://dx.doi.org/10.1007/978-1-4842-2478-6_2


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

95

Available Services for Startup
The startup process needs access to framework and environmental services and values, and these are 
injected into the Startup class. There are five services available to the Startup class for configuring the 
application, listed in Table 3-2. The following sections show these services in action.

Table 3-2.  Available Services in Startup

Service Functionality Provided

IApplicationBuilder Defines a class that provides the mechanisms to configure an 
application's request pipeline.

IApplicationEnvironment Provides access to common application information, such as 
ApplicationName and ApplicationVersion.

IHostingEnvironment Provides information about the web hosting environment an application 
is running in.

ILoggerFactory Used to configure the logging system and create instances of loggers from 
the registered logging providers.

IServiceCollection Specifies the contract for a collection of service descriptors. Part of the 
Dependency Injection framework.

The constructor can take IHostingEnvironment and ILoggerFactory, although typical 
implementations only use the IHostingEnvironment parameter. The Configure method must take 
an instance of IApplicationBuilder, but can also take instances of IHostingEnvironment and/or 
ILoggerFactory. The ConfigureServices method takes an instance of IServiceCollection.

The base Startup class with the services injected in looks like this (parameters in bold are required):

public class Startup
{
  public Startup(IHostingEnvironment env, ILoggerFactory loggerFactory)
  {
  }
  public IConfigurationRoot Configuration { get; }
  // This method gets called by the runtime. Use this method to add services to the 
container.
  public void ConfigureServices(IServiceCollection services)
  {
  }
  // This method gets called by the runtime.
  //Use this method to configure the HTTP request pipeline.
  public void Configure(
    IApplicationBuilder app,
    IHostingEnvironment env,
    ILoggerFactory loggerFactory)
  {
  }
}



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

96

Add a private variable of type IHostingEnvironment to the top of the class. This will be set in the 
constructor so it can be used in the ConfigureServices method. More on this later. For now add the 
following line:

private IHostingEnvironment _env;

The Constructor
The ASP.NET Core configuration system uses the ConfigurationBuilder class in conjunction with JSON 
formatted files. The accepted pattern (and how the default VS2017 template is configured) for ASP.NET 
Core MVC is to create a new ConfigurationBuilder in the constructor of the Startup class and assign the 
resulting IConfigurationRoot to a public property on the class.

To get started, open the Startup.cs class and examine the following code in the constructor (I changed 
the var keyword to IConfigurationBuilder to the type specific variable declaration):

public Startup(IHostingEnvironment env)
{
  IConfigurationBuilder builder = new ConfigurationBuilder()
    .SetBasePath(env.ContentRootPath)
    .AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
    .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
    .AddEnvironmentVariables();
  Configuration = builder.Build();
}

The SetBasePath method sets the location for the JSON files. This environment property was set in the 
Main method with the following line of code:

UseContentRoot(Directory.GetCurrentDirectory())

The AddJsonFile provider takes one parameter—the location and name of the file that holds the JSON 
configuration information. In this example, the file used is the appsettings.json file located in the project 
content root directory, so the path is not necessary. If the file isn’t found, the method does nothing, and the 
project watches the file for changes. If changes are detected, Core MVC reloads the settings from the updated 
file. The second call to AddJsonFile looks for a JSON file with the environment value in the name, such as 
the appsettings.development.json included with the default template. If such a file exists, the settings 
contained in the file are loaded and override any matching properties from the previous file.

The final line adds any environment variables to the configuration. The order of adding providers 
matters. The last setting configured wins if a setting is found in multiple locations. For example, if the 
deployment machine has an environment variable named ASPNETCORE_ENVIRONMENT, the machine setting 
overrides the values from the JSON files.

This makes deploying applications up the environment chain much simpler. Simply change 
environment specific values (such as database connection strings) between appsettings.development.json, 
appsettings.staging.json, and appsettings.production.json files and the project will be automatically 
configured. After the providers have been added to the IConfigurationBuilder, the next line builds the 
configuration and sets the Configuration property of the class.



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

97

Once the configuration is built, settings can be accessed using the traditional Get family of methods 
(GetSection, GetValue, etc.) and default indexer properties (key/value pairs). There is also a shortcut for 
getting application connection strings. You will see this in action in the ConfigureServices method covered 
later in the chapter:

Configuration.GetConnectionString("SpyStore")

The final line to add to the constructor sets the _env variable to the IHostingEnvironment that was 
injected into the constructor, as follows:

_env = env;

The Configure Method
The Configure method is used to set up the application to respond to HTTP requests. The default template 
sets up logging and enables MVC services, shown in the following code:

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory 
loggerFactory)
{
  loggerFactory.AddConsole(Configuration.GetSection("Logging"));
  loggerFactory.AddDebug();
  app.UseMvc();
}

The first two lines set up logging for the app. The enables logging for all environments. To turn off 
logging for non-development environments, update the code to the following:

if (env.IsDevelopment())
{
  loggerFactory.AddConsole(Configuration.GetSection("Logging"));
  loggerFactory.AddDebug();
}

■■ Note   Logging is not covered in this book. The default settings enable logging when running in debug mode 
and outputs the logged information to the console window. For more information, check out the ASP.NET docs, 
available here: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging.

The last line sets up all of the services needed to run an MVC application, including attribute routing.
If the environment is Development, the app should initialize the data in the database using 

the StoreDataInitializer created in the data access library. The next line gets the application’s 
IServiceProvider (configured in the ConfigureServices method, covered next) to pass into the 
InitializeData override. To do this, start by adding a using statement for the data initializer:

using SpyStore.DAL.Initializers;

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

98

Then add the following code just before the app.UseMVC line:

if (env.IsDevelopment())
{
  using (var serviceScope =
    app
      .ApplicationServices
      .GetRequiredService<IServiceScopeFactory>()
      .CreateScope())
  {
    StoreDataInitializer.InitializeData(app.ApplicationServices);
  }
}

The final code to add into the Configure method is Cross-Origin Requests (CORS) support. This is 
needed by JavaScript frameworks used later in the book. For more information on CORS support, refer to the 
document article here: https://docs.microsoft.com/en-us/aspnet/core/security/cors.

Add the following code before the app.UseMvc line:

app.UseCors("AllowAll");  // has to go before UseMvc

The ConfigureServices Method
The ConfigureServices method is used to configure any services needed by the application and insert them 
into the dependency injection container.

Configuring MVC

The default template only has one line, which adds MVC to the services collection:

public void ConfigureServices(IServiceCollection services)
{
  // Add framework services.
  services.AddMvc();
}

There is a streamlined version of the MVC services that only adds the services necessary to create a 
Core MVC Services application. Change the AddMvc line to AddMvcCore, as follows:

public void ConfigureServices(IServiceCollection services)
{
  // Add framework services.
  services.AddMvcCore();
}

https://docs.microsoft.com/en-us/aspnet/core/security/cors


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

99

Configuring JSON Formatting

Prior versions of ASP.NET Web API (and the early versions of Core MVC) returned JSON with initial capital 
letters (called Pascal casing). ASP.NET Core changed the response format to initial small letters (called camel 
casing) when .NET Core and Core MVC went RTM. For example, this is the JSON returned from the RTM 
version of Core MVC:

[{"categoryName":"Communications","products":[],"id":0,"timeStamp":"AAAAAAABaBA="}]

To revert to Pascal casing, a JsonFormatter needs to be configured for the MvcCore services. Add the 
following using statements:

using Newtonsoft.Json;
using Newtonsoft.Json.Serialization;

Next, replace the AddMvcCore code with the following:

services.AddMvcCore()
  .AddJsonFormatters(j =>
  {
    j.ContractResolver = new DefaultContractResolver();
    j.Formatting = Formatting.Indented;
  });

The first formatter reverts the results into Pascal casing. The second adds indented formatting to the 
output. The very same service call returns the following result:

[
  {
    "CategoryName": "Communications",
    "Products": [],
    "Id": 0,
    "TimeStamp": "AAAAAAABaBA="
  }
]

Configuring CORS

The next step is to configure CORS. Add the following code after the AddMvcCore method call:

services.AddCors(options =>
{
  options.AddPolicy("AllowAll", builder =>
  {
    builder.AllowAnyHeader().AllowAnyMethod().AllowAnyOrigin().AllowCredentials();
  });
});



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

100

Configuring EF Core

EF Core is configured using the IServiceCollection as well. Add the following using statements:

using Microsoft.EntityFrameworkCore;
using SpyStore.DAL.EF;

Next, add the following code after the call to AddDbContext:

services.AddDbContext<StoreContext>(
  options => options.UseSqlServer(Configuration.GetConnectionString("SpyStore")));

The AddDbContext call adds the StoreContext to the DI Framework, passing an instance of 
DbContextOptions into the constructor along with the connection string retrieved through the configuration 
framework. Application configuration is covered later in the chapter.

Configuring the Dependency Injection Container

The next block of code will add all of the data access library repositories into the DI container. Add the 
following using statements to the top of the file:

using SpyStore.DAL.Repos;
using SpyStore.DAL.Repos.Interfaces;

Add the following services, scoped at the request level.

services.AddScoped<ICategoryRepo, CategoryRepo>();
services.AddScoped<IProductRepo, ProductRepo>();
services.AddScoped<ICustomerRepo, CustomerRepo>();
services.AddScoped<IShoppingCartRepo, ShoppingCartRepo>();
services.AddScoped<IOrderRepo, OrderRepo>();
services.AddScoped<IOrderDetailRepo, OrderDetailRepo>();

The Controllers Folder
Controllers are classes, and actions are methods contained in controller classes. By convention, controllers 
are located in the Controllers folder, and the default template creates a sample controller named 
ValuesController. Delete the ValuesController file.

Controllers will be covered in detail later in this chapter, but for now, just understand that this  
is where Controller classes are stored, and by convention they are named ending with “Controller”  
(e.g., ValuesController).

The wwwroot Folder
This folder is not used in Core MVC Web API. It plays a vital role in Core MVC UI applications and is covered 
in Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-2478-6_5


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

101

The web.config File
There is a single web.config file, and it is used to add support for debugging in Visual Studio using IIS 
Express. No changes will be necessary in this file.

The launchsettings.json File
The launchsettings.json file (located in the Properties node in Solution Explorer) is the backing store for 
the project properties UI. Any changes to the UI are written to the file, and any changes written to the file 
update the UI. These settings are only used when running the project from within Visual Studio. Running 
from the command line with dotnet run ignores these settings.

The launchsettings.json file is listed here for reference:

{
  "iisSettings": {
    "windowsAuthentication": false,
    "anonymousAuthentication": true,
    "iisExpress": {
      "applicationUrl": "http://localhost:50018/",
      "sslPort": 0
    }
  },
  "profiles": {
    "IIS Express": {
      "commandName": "IISExpress",
      "launchBrowser": true,
      "launchUrl": "api/values",
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development"
      }
    },
    "SpyStore.Service": {
      "commandName": "Project",
      "launchBrowser": true,
      "launchUrl": "api/values",
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development"
      },
      "applicationUrl": "http://localhost:50019"
    }
  }
}

The iisSettings section defines the settings for running the application on IIS Express. The most 
important settings to note are applicationUrl, which defines the port, and the environmentVariables 
block, which defines the runtime environment. The profiles section provides named debugging profiles to 
Visual Studio and determines if a browser is launched with the debugger, the environment, and the initial 
URL. The profiles show in the Run command in Visual Studio, as shown in Figure 3-5.



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

102

In this sample file, pressing F5 with the IIS Express profile opens a browser to the following:

http://localhost:50018/api/values

The SpyStore.Service profile runs using Kestrel. This profile has its own application URL. When this 
profile is selected, the Visual Studio debugger launches a browser with this URL:

http://localhost:50019/api/values

Controllers and Actions
Controllers and actions are the workhorses of a MVC Web API application.

Controllers
A controller is a class that inherits from the abstract Controller class or ends in the name Controller. 
Inheriting from the base Controller class is the most efficient way to develop a controller due to the helper 
methods contained in the base class. As mentioned earlier, convention dictates that MVC controllers are 
located in the Controllers directory of the project. When referring to controller in routes, the Controller 
suffix is dropped. For example, the following URL will route to the ValuesController:

http://www.mysite.com/api/values/get

Actions
Actions are simply methods on controllers. Actions can take parameters, and while they can return anything, 
they typically return an IActionResult (Task<IActionResult> for async operations) or a class that 
implements IActionResult. The most commonly used classes that implement IActionResult are described 
in the following sections.

HTTP Status Code Results
The base Controller class contains helper methods for returning HTTP Status Codes as action results. 
Table 3-3 lists some of the most commonly used helper methods that return HTTP Status Code Results.

Figure 3-5.  The available debugging profiles

http://www.mysite.com/api/values/get


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

103

As an example, the following code returns a 404 HTTP result when the record isn’t found:

 [HttpGet("{id}", Name = "GetCategory")]
public IActionResult GetById(int id)
{
  var item = Repo.Find(id);
  if (item == null)
  {
    return NotFound();
  }
  return Json(item);
}

Formatted Response Results
To return an object (or object collection) formatted as JSON, wrap the object(s) in the Json object (or an 
ObjectResult object), which creates a JsonResult. An example of this is as follows:

[HttpGet]
public IActionResult GetAll()
{
  return Json(Repo.GetAll());
}

Actions that return a type (or a strongly typed collection) do the same as the previous method, thanks to 
the Core MVC framework. An alternative way to write the preceding action is as follows:

[HttpGet]
public IEnumerable<Category> GetAll()
{
  return Repo.GetAll();
}

Table 3-3.  Some of the Helper Methods Provided by the Base Controller Class

Controller Helper Method HTTP Status Code Action Result Raw Code Equivalent

NoContent NoContentResult 204

Ok OkResult 200

NotFound NotFoundResult 404

BadRequest BadRequestResult 400

Created  
CreateAtAction  
CreatedAtRoute

CreatedResult  
CreatedAtActionResult  
CreateAtRouteResult

201

Accepted  
AcceptedAtAction 
AcceptedAtRoute

AcceptedResult  
AcceptedAtActionResult 
AccepterAtRouteResult

202



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

104

Formatted response results can be combined with HTTP Status Codes by wrapping the object result in 
one of the status code action results, as follows:

[HttpGet]
public IActionResult GetAll()
{
  return Ok(Repo.GetAll());
}

Redirect Results
The RedirectActionResult and its siblings (RedirectToAction, RedirectToRoute) redirects the users to 
another route. These are not used in the Web API code in this chapter, but will be used when building the 
Core MVC user interface later in this book.

An Example Controller
If you worked with previous versions of ASP.NET MVC, one of the hallmarks of Visual Studio was the rich 
scaffolding support in Visual Studio. If you worked with .NET Core in Visual Studio 2015, you were probably 
disappointed by the lack of scaffolding support. Fortunately, Visual Studio 2017 has brought scaffolding 
back for .NET Core! One of the available items available for scaffolding is the API controller, This creates a 
template with basic action methods for all four of the HTTP verbs (Get, Post, Put, and Delete).

Right-click on the Controllers folder, select Add ➤ New Item, and then select Installed ➤ Visual  
C# ➤ ASP.NET Core on the left side of the screen and Web API Controller Class on the right. Name the 
new class CategoryController.cs, as shown in Figure 3-6.

Figure 3-6.  Adding the CategoryController class

The scaffolded template is shown here:

[Route("api/[controller]")]
public class CategoryController : Controller
{
  // GET: api/values
  [HttpGet]
  public IEnumerable<string> Get()
  {
    return new string[] { "value1", "value2" };
  }



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

105

  // GET api/values/5
  [HttpGet("{id}")]
  public string Get(int id)
  {
    return "value";
  }
  // POST api/values
  [HttpPost]
  public void Post([FromBody]string value)
  {
  }
  // PUT api/values/5
  [HttpPut("{id}")]
  public void Put(int id, [FromBody]string value)
  {
  }
  // DELETE api/values/5
  [HttpDelete("{id}")]
  public void Delete(int id)
  {
  }

At the top of the class is the route attribute. This defines the route with the literal api followed by 
the controller name. An example URL that would route to this controller is the following (note that the 
comments in the template incorrectly have the routes defined as "api/values"):

http://www.mysite.com/api/category

When the preceding URL is called using a HTTP Get command (for example, from a browser), the first 
Get action executes and returns the following JSON:

[
  "value1",
  "value2"
]

As mentioned before, the HttpGet attribute is optional. The same result would happen if the method 
was coded without the attribute, as follows:

public IEnumerable<string> Get()
{
  return new string[] { "value1", "value2" };
}

The second Get method adds the variable place holder {id} to the route defined at the controller level. 
Routes parameters can be added into the HTTP verb attributes, as demonstrated here:

[HttpGet("{id}")]
public string Get(int id)
{
  return "value";
}

http://www.mysite.com/api/category


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

106

Since HTTP Get is the default, this method could also be written as follows and accomplish the same 
result:

[Route("{id}")]
public string Get(int id)
{
  return "value";
}

The final examples to discuss before moving on to writing the real application code are the Post and Put 
methods. Specifically, the [FromBody] attributes. This attribute indicates that Core MVC should attempt to 
instantiate an instance of the datatype specified (in these simple examples, the string type) using a process 
called model binding.

Model Binding
Model binding is the process where Core MVC takes the name/value pairs available (in the example above 
from the request body) and attempts to reconstitute the specified type using reflection. If one or more 
properties can’t be assigned (e.g., due to datatype conversion issues or validation errors), the binding 
engine sets the ModelState.IsValid = false. If all matched properties are successfully assigned, the 
binding engine sets ModelState.IsValid = true. The ModelState also contains error information for every 
property that failed.

Changing the Visual Studio Launch Settings
The launchSettings.json file controls many aspects of the debugging experience when using Visual Studio. 
As mentioned earlier, these settings can be changed through the project properties screen or by updating the 
file itself. Open the file and update it to match the following:

{
  "iisSettings": {
    "windowsAuthentication": false,
    "anonymousAuthentication": true,
    "iisExpress": {
      "applicationUrl": "http://localhost:8477/",
      "sslPort": 0
    }
  },
  "profiles": {
    "IIS Express": {
      "commandName": "IISExpress",
      "launchBrowser": true,
      "launchUrl": "api/category",
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development"
      }
    },
    "SpyStore.Service": {
      "commandName": "Project",
      "launchBrowser": true,



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

107

      "launchUrl": "api/category",
      "environmentVariables": {
        "ASPNETCORE_ENVIRONMENT": "Development"
      },
      "applicationUrl": "http://localhost:40001"
    }
  }
}

The lines to change are in bold. The launchUrl property under the IIS Express profile must be changed 
to api/category. The applicationUrl for the Kestrel profile needs to be changed to port 40001, the same 
port that was set for Kestrel in the application’s Main method.

Running the Application
Now that the launchSettings.json file has been updated, the application can be run by pressing F5 in 
Visual Studio, just as any other application. If the selector (as shown in Figure 3-4) is set to IIS Express, 
the application is started with IIS Express, and VS 2017 opens a browser to http://localhost:8477/api/
category. If the option is set to SpyStore.Service, the application is started with Kestrel, and VS 2017 opens 
a browser to http://localhost:40001/api/category.

.NET Core also provides full command line support through the .NET CLI (Command Line Interface). 
Open a command prompt and navigate to the SpyStore.Service project (at the same level of the SpyStore.
Service.csproj file). Enter the command:

dotnet run

This launches the application under Kestrel, using the values from the Main method of the Program.cs 
file. The output in the command window should resemble this:

WebAPI\Begin\SpyStore.Service\src\SpyStore.Service>dotnet run
Hosting environment: Production
Content root path: C:\GitHub\SpyStoreService\src\SpyStore.Service
Now listening on: http://*:40001
Application started. Press Ctrl+C to shut down.

Notice that the environment is set to production, so there isn’t a browser window launched for  
the app. This shows that the launchSettings.json file is only used when running the application with 
Visual Studio 2017.

To run it under a different environment, set the value in the command window. This will be scoped to 
your current command window and does not change your machine settings. Press Ctrl+C to stop the Kestrel 
service and your application. Set the environment to development (case doesn’t matter) and then run the 
application by entering the following:

C:\GitHub\SpyStoreService\src\SpyStore.Service>set aspnetcore_environment=development
C:\GitHub\SpyStoreService\src\SpyStore.Service>dotnet run



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

108

The data initializer executes since the environment is development and shows in the console window 
because of the logging configuration. The final lines of the output confirm the environment:

Hosting environment: development
Content root path: C:\GitHub\SpyStoreService\src\SpyStore.Service
Now listening on: http://*:40001
Application started. Press Ctrl+C to shut down.

Press Ctrl+C to shut down the application. For convenience, create a new file in the same directory as 
the SpyStore.Service.csproj file named run_development.cmd and enter the following lines:

set aspnetcore_environment=development
dotnet run

Now, to run your application in Kestrel as development outside of visual studio, just double-click the 
command file in File Explorer.

Exception Filters
When an exception occurs in a Web API application, there isn’t an error page that gets displayed to the user. 
In fact, the user is very seldom a person, but another application (such as an MVC application). Instead of 
just returning an HTTP 500 (server error code), it’s helpful to send additional information in the JSON that’s 
returned, so the calling application can react appropriately. While it would be fairly trivial to wrap all of the 
action methods in try-catch blocks, doing so would lead to a lot of repeated code.

Fortunately, there is a better way. Core MVC allows the creation of filters that can run before or after a 
particular stage of the pipeline, or in the event of an unhandled exception. Filters can be applied globally,  
at the controller level, or at the action level. For this application, you are going to build an exception filter  
to send formatted JSON back (along with the HTTP 500) and include a stack trace if the site is running in 
debug mode.

■■ Note   Filters are an extremely powerful feature of Core MVC. In this chapter, we are only examining 
exception filters, but there are many more that can be created that can save significant time when building 
Core MVC applications. For the full information on filters, refer to the documentation here: https://docs.
microsoft.com/en-us/aspnet/core/mvc/controllers/filters.

Creating the SpyStoreExceptionFilter
Create a new directory in the SpyStore.Service project named Filters by clicking the project name 
and selecting Add ➤ New Folder. Add a new class named SpyStoreExceptionFilter.cs in this folder by 
right-clicking the folder and selecting Add ➤ Class.

Add the following using statements to the top of the class:

using SpyStore.DAL.Exceptions;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.EntityFrameworkCore;

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters


Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

109

Next, change the class to public and implement the IExceptionFilter interface, like so:

public class SpyStoreExceptionFilter : IExceptionFilter
{
  public void OnException(ExceptionContext context)
  {
    throw new NotImplementedException();
  }
}

Unlike most filters in Core MVC that have a before and after event handler, exception filters only 
have one handler—OnException (or OnExceptionAsync). If the environment is Development, the response 
should also include the stack trace. Add a class level variable to hold the development indicator and add a 
constructor as follows:

private readonly bool _isDevelopment;

public SpyStoreExceptionFilter(bool isDevelopment)
{
  _isDevelopment = isDevelopment;
}

When this filter is instantiated, you will use the IHostingEnvironment to determine if this is running in 
a development environment, and if so, include the stack trace in the error message like this:

string stackTrace = (_isDevelopment)?context.Exception.StackTrace:string.Empty;

Finally, add the code for the OnException event handler. The flow is very straightforward: Determine 
the type of exception that occurred, build a dynamic object to contain the values to be sent to the calling 
request, and return an appropriate IActionResult. Each of the BadRequestObjectResult and ObjectResult 
convert the anonymous objects into JSON as part of the HTTP response. The code to do this is shown here:

public void OnException(ExceptionContext context)
{
  var ex = context.Exception;
  string stackTrace = (_isDevelopment)?context.Exception.StackTrace:string.Empty;
  string message = ex.Message;
  string error = string.Empty;
  IActionResult actionResult;
  if (ex is InvalidQuantityException)
  {
    //Returns a 400
    error = "Invalid quantity request.";
    actionResult = new BadRequestObjectResult(
      new { Error = error, Message = message, StackTrace = stackTrace});
  }
  else if (ex is DbUpdateConcurrencyException)
  {
    //Returns a 400
    error = "Concurrency Issue.";



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

110

    actionResult = new BadRequestObjectResult(
      new { Error = error, Message = message, StackTrace = stackTrace });
  }
  else
  {
    error = "General Error.";
    actionResult = new ObjectResult(
        new { Error = error, Message = message, StackTrace = stackTrace })
      {
        StatusCode = 500
      };
  }
  context.Result = actionResult;
}

If you want the exception filter to swallow the exception and set the response to a 200, add the following 
line before setting the Result:

context.ExceptionHandled = true;

Adding the Exception Filter for All Actions
Filters can be set globally, at the class level, or on individual actions. Exception filters are usually set globally, 
and that is what you are going to do next. Open Startup.cs and add the following using statement to the top 
of the file:

using SpyStore.Service.Filters;

Next, navigate to the ConfigureServices method. Change the AddMvcCore line to the following:

services.AddMvcCore(config =>
    config.Filters.Add(new SpyStoreExceptionFilter(_env.IsDevelopment())))
  .AddJsonFormatters(j =>
  {
    j.ContractResolver = new DefaultContractResolver();
    j.Formatting = Formatting.Indented;
  });

This sets the SpyStoreExceptionFilter for all actions in the application.

Building the Controllers
Now that the groundwork has been laid, it’s time to build the controllers that compose the service. The 
majority of the controllers in the SpyStore service provide read-only data through HTTP Get commands. The 
ShoppingCartController contains examples of read-write actions, in addition to providing read-only data 
about the shopping cart.



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

111

The Category Controller
The first controller to program is the CategoryController, which you added previously. Delete the Post, 
Put, and Delete methods, since they are not used in this controller. Add the following using statements to 
the top of the file:

using SpyStore.DAL.Repos.Interfaces;
using SpyStore.Models.ViewModels.Base;

The CategoryController needs instances of the CategoryRepo and ProductRepo classes. These were 
added to the DI container in the ConfigureServices method in the Startup class. All the controller needs is 
parameters of type ICategoryRepo and IProductRepo. The Core MVC DI container does all of the work. Add 
the following properties at the top of the class and the following constructor code:

private ICategoryRepo Repo { get; set; }
private IProductRepo ProductRepo { get; set; }

public CategoryController(ICategoryRepo repo, IProductRepo productRepo)
{
  Repo = repo;
  ProductRepo = productRepo;
}

While not necessary in the RTM version of Core MVC, the [FromServices] attribute can be applied to 
the parameters to indicate that the parameters get populated by the DI container.

The Get methods use the techniques already discussed in this chapter to return the list of Category 
records, or a specific Category by Id. Update the Get methods to the following code:

[HttpGet]
public IActionResult Get()
{
  return Ok(Repo.GetAll());
}

[HttpGet("{id}")]
public IActionResult Get(int id)
{
  var item = Repo.Find(id);
  if (item == null)
  {
    return NotFound();
  }
  return Json(item);
}

The final method retrieves all products for a specific category. Add the following code to the class:

[HttpGet("{categoryId}/products")]
public IEnumerable<ProductAndCategoryBase> GetProductsForCategory(int categoryId)
  => ProductRepo.GetProductsForCategory(categoryId).ToList();



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

112

The route adds a variable and a literal to the controller route and returns all of the products with 
category information for a specific Category Id.

The Customer Controller
The CustomerController provides two API methods, one that returns all customer records, and the other 
that gets a specific Customer by Id. Add a new controller named CustomerController.cs and delete the 
Post, Put, and Delete methods. Add the following using statements to the top of the file:

using SpyStore.Models.Entities;
using SpyStore.DAL.Repos.Interfaces;

Leave the Route attribute as it is, create a constructor that takes an instance of the ICustomerRepo 
interface, and add a private variable to hold the instance, like this:

[Route("api/[controller]")]
public class CustomerController : Controller
{
  private ICustomerRepo Repo { get; set; }
  public CustomerController(ICustomerRepo repo)
  {
    Repo = repo;
  }
  //omitted for brevity
}

Update the Get methods to the following:

[HttpGet]
public IEnumerable<Customer> Get() => Repo.GetAll();

[HttpGet("{id}")]
public IActionResult Get(int id)
{
  var item = Repo.Find(id);
  if (item == null)
  {
    return NotFound();
  }
  return new ObjectResult(item);
}

The Get methods use a different format than the Get methods from the CategoryController, 
demonstrating another way of writing the code to achieve the same results.



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

113

The Search Controller
The SearchController has one action method that uses the IProductRepo to search for products. Instead 
of creating a new controller class, you just add a new class named SearchController.cs. Delete all of the 
contents of the new class and add the following code:

using Microsoft.AspNetCore.Mvc;
using SpyStore.Models.ViewModels.Base;
using SpyStore.DAL.Repos.Interfaces;
using System.Collections.Generic;

namespace SpyStore.Service.Controllers
{
  [Route("api/[controller]")]
  public class SearchController : Controller
  {
    private IProductRepo Repo { get; set; }
    public SearchController(IProductRepo repo)
    {
      Repo = repo;
    }

    [HttpGet("{searchString}", Name = "SearchProducts")]
    public IEnumerable<ProductAndCategoryBase> Search(string searchString)
      => Repo.Search(searchString);
  }
}

The Search uses one of the view models created in the data access method, and it is invoked from the 
route /api/search/{searchString}, like this example search:

http://localhost:8477/api/search/persuade%20anyone

The Orders Controller
The OrdersController only contains two methods, one to get the entire order history for a customer, and 
the other to get an individual order for a Customer. Create a new class named OrdersController.cs, clear 
out the contents, and add the following code:

using Microsoft.AspNetCore.Mvc;
using SpyStore.DAL.Repos.Interfaces;

namespace SpyStore.Service.Controllers
{
  [Route("api/[controller]/{customerId}")]
  public class OrdersController : Controller
  {
    private IOrderRepo Repo { get; set; }
    public OrdersController(IOrderRepo repo)
    {
      Repo = repo;
    }



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

114

    public IActionResult GetOrderHistory(int customerId)
    {
      var orderWithTotals = Repo.GetOrderHistory(customerId);
      return orderWithTotals == null ? (IActionResult)NotFound()
        : new ObjectResult(orderWithTotals);
    }

    [HttpGet("{orderId}", Name = "GetOrderDetails")]
    public IActionResult GetOrderForCustomer(int customerId, int orderId)
    {
      var orderWithDetails = Repo.GetOneWithDetails(customerId, orderId);
      return orderWithDetails == null ? (IActionResult)NotFound()
        : new ObjectResult(orderWithDetails);
    }
  }
}

The base route adds the customerId variable placeholder to the standard api/[controller] route used 
in the other controllers. The controller takes an instance of the IOrderRepo, a pattern that should be familiar 
by now. The two HTTP Get methods return a NotFoundResult if there aren’t any records that match the 
query.

The GetOrderHistory method doesn’t have a routing attribute because it responds to a HTTP  
Get without any modifications to the route. The GetOrderForCustomer action method returns an  
IEnumerable<OrderWithDetailsAndProductInfo>, another one of the data access library view models.  
It also includes a named route, which will come into play with the ShoppingCartController, which will be 
covered soon.

The Product Controller
The ProductController has the (now) standard Get action methods and another action method to get the 
featured products with their category information. All three methods use the ProductAndCategoryBase view 
model from the data access layer. Create a new class named ProductController.cs, clear out the template 
code, and add the following code:

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using SpyStore.Models.ViewModels.Base;
using SpyStore.DAL.Repos.Interfaces;
using System.Linq;

namespace SpyStore.Service.Controllers
{
  [Route("api/[controller]")]
  public class ProductController : Controller
  {
    private IProductRepo Repo { get; set; }
    public ProductController(IProductRepo repo)
    {
      Repo = repo;
    }
    [HttpGet]



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

115

    public IEnumerable<ProductAndCategoryBase> Get()
      => Repo.GetAllWithCategoryName().ToList();
    [HttpGet("{id}")]
    public IActionResult Get(int id)
    {
      var item = Repo.GetOneWithCategoryName(id);
      if (item == null)
      {
        return NotFound();
      }
      return new ObjectResult(item);
    }
    [HttpGet("featured")]
    public IEnumerable<ProductAndCategoryBase> GetFeatured()
      => Repo.GetFeaturedWithCategoryName().ToList();
  }
}

The GetFeatured action method adds a literal to the default controller route.

The Shopping Cart Controller
The final controller to add is the workhorse of the sample application. In addition to returning one or all of 
the shopping cart records for a customer, the rest of the CRUD operations are implemented as well. The final 
method executes the stored procedure to execute a purchase.

Create a new class in the Controllers directory named ShoppingCartController.cs. Clear out the 
existing code and add the following using statements, namespace, class definition, and constructor:

using System;
using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using SpyStore.DAL.Repos.Interfaces;
using SpyStore.Models.Entities;
using SpyStore.Models.ViewModels;

namespace SpyStore.Service.Controllers
{
  [Route("api/[controller]/{customerId}")]
  public class ShoppingCartController : Controller
  {
    private IShoppingCartRepo Repo { get; set; }
    public ShoppingCartController(IShoppingCartRepo repo)
    {
      Repo = repo;
    }
  }
}

The preceding code should be familiar by now. The route extends the standard route with a customerId 
variable. An instance of IShoppingCartRepo is injected into the constructor and assigned to a class level variable.



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

116

The GetShoppingCartRecord action method returns a single record from the cart for a Customer Id and 
Product Id. The GetShoppingCart action method gets all records for a Customer Id, and also has a route 
name assigned to it that will be used later in this controller. Add the following code:

[HttpGet("{productId}")]
public CartRecordWithProductInfo GetShoppingCartRecord(int customerId, int productId)
  => Repo.GetShoppingCartRecord(customerId, productId);
[HttpGet(Name = "GetShoppingCart")]
public IEnumerable<CartRecordWithProductInfo> GetShoppingCart(int customerId)
  => Repo.GetShoppingCartRecords(customerId);

The next action method to add is to create new records in the shopping cart, which in HTTP parlance is 
a post. Add the following code to the ShoppingCartController:

[HttpPost]
public IActionResult Create(int customerId, [FromBody] ShoppingCartRecord item)
{
  if (item == null || !ModelState.IsValid)
  {
    return BadRequest();
  }
  item.DateCreated = DateTime.Now;
  item.CustomerId = customerId;
  Repo.Add(item);
  return CreatedAtRoute("GetShoppingCart",
    new { controller = "ShoppingCart", customerId = customerId });
}

The customer ID is passed in through the route, and the new cart record is sent in through the body 
of the request as JSON. The [FromBody] attribute instructs Core MVC to use model binding to create 
an instance of the ShoppingCartRecord class from the JSON contained in the request body. Unlike the 
FromServices attribute for objects injected into constructors and methods, the FromBody attribute is 
required if the JSON is in the body of the request. If nothing is passed (item == null) or if the JSON contains 
invalid values (!ModelState.IsValid), a new BadRequestResult is returned.

If a new ShoppingCartRecord is successfully created from the JSON in the request message, the 
DateCreated is set to the current date, the CustomerId is set to the customerId from the route values, and the 
item is added to the database.

The final line creates the URL for the route named GetShoppingCart using the supplied values, adds the 
URL to the header of the HTTP response, and returns an HTTP 201 (Created). The created header value will 
resemble this:

Location: http://localhost:8477/api/ShoppingCart/0

The Update action method responds to HTTP Put requests, and then takes the ShoppingCartRecord 
Id as the final of the route value and the ShoppingCartRecord from the JSON contained in the body of the 
request message. Add the following code to the controller:

[HttpPut("{shoppingCartRecordId}")]
public IActionResult Update(int customerId, int shoppingCartRecordId,
    [FromBody] ShoppingCartRecord item)



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

117

{
  if (item == null || item.Id != shoppingCartRecordId || !ModelState.IsValid)
  {
    return BadRequest();
  }
  item.DateCreated = DateTime.Now;
  Repo.Update(item);
  //Location: http://localhost:8477/api/ShoppingCart/0 (201)
  return CreatedAtRoute("GetShoppingCart", new { customerId = customerId });
}

After checking to make sure there is a record and the model binding is valid, the DateCreated property 
is set to the current date and then passed into the Update method on the repo. Once complete, a HTTP 201 is 
returned, and the URL of the shopping cart is added to the header of the response.

The final CRUD operation is the Delete action method. The method adds the shoppingCartRecordId 
and the string version of the TimeStamp property to the route, and only responds to HTTP Delete requests. 
Add the following code to the controller:

[HttpDelete("{shoppingCartRecordId}/{timeStamp}")]
public IActionResult Delete(int customerId, int shoppingCartRecordId, string timeStamp)
{
  if (!timeStamp.StartsWith("\""))
  {
    timeStamp = $"\"{timeStamp}\"";
  }
  var ts = JsonConvert.DeserializeObject<byte[]>(timeStamp);
  Repo.Delete(shoppingCartRecordId, ts);
  return NoContent();
}

The first block of code makes sure that the timeStamp value contains quotes, as they are needed by the 
JsonConvert.DeserializeObject method. Then the string is converted to a byte[] and is passed into the 
Delete method with the ID. If all is successful, a NoContentResult is returned, which equates to an HTTP 204.

The final action method is for purchasing the items in the cart. The Purchase action method takes 
the literal buy at the end of the controller route and responds to HTTP Post requests. As a precaution, the 
customer making the purchase is sent into the method as JSON in the request body. Add the following code 
to the controller:

[HttpPost("buy")]
public IActionResult Purchase(int customerId, [FromBody] Customer customer)
{
  if (customer == null || customer.Id != customerId || !ModelState.IsValid)
  {
    return BadRequest();
  }
  int orderId;
  orderId = Repo.Purchase(customerId);
  //Location: http://localhost:8477/api/Orders/0/1
  return CreatedAtRoute("GetOrderDetails",
    routeValues: new { customerId = customerId, orderId = orderId },
    value: orderId);
  }
}



Chapter 3 ■ Building the RESTful Service with ASP.NET Core MVC Services

118

If all the values check out, the Purchase method on the repo is called. This method returns the new 
OrderId, which is then passed into the CreatedAtRoute method. This version calls a route in a different 
controller (specifically in the OrdersController), passing in the Customer Id and the Order Id.

Using the Combined Solution
The source code for this chapter includes a folder named SpyStore.Service.Combined. It includes the 
projects from Chapter 2 instead of using the NuGet packages.

The Unit Test Solution
Unit testing with xUnit was introduced in Chapter 1. Due to space considerations, testing the service 
couldn’t be covered in the text, but rest assured, there is a full set of unit/integration tests available.

Included in the downloadable source code is another solution named SpyStore.Service.Tests, 
which is a test project for the SpyStore.Service project. It is included as a separate project for debugging 
purposes. If the tests and the service are all in the solution, running the tests and the service gets a little bit 
tricky. It’s much easier to have two separate solutions.

To run the unit tests, make sure the SpyStore.Servce is running (either through the .NET Core CLI or 
Visual Studio), and then execute the tests in the test solution the same way they were executed when testing 
the data access layer. Just make sure the ServiceAddress in the BaseTestClass is correct.

Open the BaseTestClass.cs file (located in TestClasses\Base of the SpyStore.Service.Tests 
project), and check that the following line contains the correct URL for the running service:

protected string ServiceAddress = "http://localhost:40001/";

■■ Source Code T he completed SpyStore.Service and SpyStore.Service.Tests solutions can be found in 
the Chapter 03 subdirectory of the download files.

Summary
This chapter covered the RESTful service that is the backend for the UI frameworks covered in the rest of the 
book. The chapter began by examining the Model View Controller pattern and ASP.NET Core MVC.

The next section explored the key pieces of Core MVC, creating the projects in Core MVC, adding 
the NuGet packages, and examining and updating each of the files in the project for the SpyStore-specific 
requirements.

The next section went into routing, and how requests are directed to your controllers and actions. That 
led into controller and actions, creating an example controller class with actions, and then running under IIS 
and Kestrel.

Next, you created an ExceptionFilter to handle errors in your action methods and wired the filter into 
all action methods in the application. The final section built all of the controllers for the SpyStore service.

http://dx.doi.org/10.1007/978-1-4842-2478-6_2
http://dx.doi.org/10.1007/978-1-4842-2478-6_1


119© Philip Japikse, Kevin Grossnicklaus and Ben Dewey 2017 
P. Japikse et al., Building Web Applications with Visual Studio 2017, DOI 10.1007/978-1-4842-2478-6_4

CHAPTER 4

Introducing ASP.NET Core MVC 
Web Applications

Now that the database, data access layer, and the RESTful service are built, it’s time to create a user interface. 
The next two chapters stay within the ASP.NET .NET Core technology stack, using Core MVC to create the 
SpyStore web application. This chapter builds the foundation for the web application, and then the UI is 
completed in the next chapter.

■■ Note   The two chapters covering Core MVC Web Applications are laid out in a serial, bottom-up manner, 
which is probably different than most developers’ workflow when building web applications. The site 
infrastructure is built first, and then the next chapter builds the Views for UI. I typically build applications in a 
more parallel, top-down manner, working on the UI and building the supporting items as they are needed. The 
first draft of these chapter were documented in that manner, and it was very hard to write (and read) due to the 
necessary bouncing between topics.

Introducing the “V” in ASP.NET Core MVC
The previous chapter covered building the RESTful service layer using Core MVC. When building services, 
only the “M” (Models) and the “C” (Controllers) of Core MVC are used. This chapter (and the next) builds on 
your knowledge by bringing the “V” (Views) into the development process. The merger between ASP.NET 
Web API and ASP.NET Core MVC means all of the tools and code that you used to build Core MVC Services 
apply to Core MVC. The new features in Core MVC explored in Chapter 3—including (but not limited to) 
the streamlined HTTP pipeline configuration, improved configuration system, and native dependency 
injection—are also supported in Core MVC Web Applications.

Core MVC supports everything you are accustomed to in prior versions of MVC, including (but 
not limited to) routing, model binding, validation, view and editor templates, strongly typed views, the 
Razor View Engine, and areas. Two new features in Core MVC—Tag Helpers and View Components—are 
introduced in this chapter. A Tag Helper is server side code, placed in an HTML tag, that helps shape the 
rendering of that tag. View Components are a combination of child actions and partial views. All of these 
features will be used to build the SpyStore.MVC web application.

http://dx.doi.org/10.1007/978-1-4842-2478-6_3


Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

120

Creating the Solution and the Core MVC Project
Create a new solution by clicking on File ➤ New Project and then selecting the ASP.NET Core Web 
Application (.NET Core) template available under Installed ➤ Templates ➤ Visual C# ➤ Web. Name the 
project and solution SpyStore.MVC, as shown in Figure 4-1.

Figure 4-1.  Adding a new ASP.NET web application

■■ Note   If you have not already installed Visual Studio 2017 and .NET Core, follow the steps outlined in 
Chapter 1 to do so.

On the New ASP.NET Core Web Application (.NET Core) screen, select the Web Application template 
under the ASP.NET Core Templates 1.1 section, leave the Enable Docker Support check box unchecked, and 
leave the Authentication set to No Authentication, as shown in Figure 4-2.

http://dx.doi.org/10.1007/978-1-4842-2478-6_1


Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

121

Click OK, and the new solution and project are created. Your solution and projects should look like 
Figure 4-3.

Figure 4-2.  Selecting the Web Application project template



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

122

The project structure should look familiar if you’ve used previous versions of ASP.NET MVC (and from 
the previous chapter). For Core MVC Service applications, the wwwroot directory is empty and there isn’t a 
Views folder. Both of these are covered soon.

Updating and Adding NuGet Packages
Right-click on the SpyStore.MVC project and select Manage NuGet Packages. Make sure the Include 
Prerelease check box is checked. Click on Updates at the top of the NuGet Package Manager screen, check 
the Select All Packages check box, and click on the Update button. Depending on your NuGet settings, you 
might get prompted to confirm the installs and accept license agreements. Just click OK on the dialogs to 
install the updated packages.

Next, click on Browse, enter SpyStore into the search box, and change the Package Source to All (which 
includes the local package source just created). Install the SpyStore.Models package.

Figure 4-3.  The generated files and folders for a Core MVC Web API app



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

123

Finally, install the AutoMapper package by clicking on Browse at the top of the screen and entering 
AutoMapper in the Search box. When the package is located, select it in the left half of the dialog and click on 
the Install button on the right side. AutoMapper is a utility built by Jimmy Bogard that is designed to flatten 
complex models for better JSON serialization (among other uses). It is used later in the application.

■■ Note   The version of ASP.NET Core and Visual Studio 2017 used to write this book is having issues with 
BrowserLink. Since BrowserLink isn’t discussed in this book, you can remove the BrowserLink package from 
the project (either by deleting the line from the SpyStre.MVC.csproj file or by using NuGet Package Manager) 
and comment out the UserBrowserLink line in the Startup.cs file (covered later in this chapter).

Routing Revisited
Routing with attribute routing was covered extensively in Chapter 3. Traditional routing (using the MapRoute 
method to add routes to the route table), used in earlier versions of MVC, is available in Core MVC in 
addition to attribute routing.

■■ Note   All Core MVC projects support both attribute routing and the “traditional” method of defining routes 
in the route table, as well as a combination of the two. Core MVC Web API projects tend to use attribute routing, 
and Core MVC Web Applications tend to use a combination approach, but that isn’t a rule. Decide the approach 
that works best for you.

The Route Table
MVC Web Applications use a centralized route table that holds the routing information for the application 
and is handled by the RouterMiddleware. The route table values are used by the routing middleware to 
decompose incoming URL paths into the correct Controller and Action method as well as any parameters 
that get passed into the Action. Outgoing routes can be created from the route table, eliminating hard coding 
actual URL strings in the application. The MvcRouteHandler (created by the routing middleware) will pick 
the first matching route in the route table, even if it might not be the most “correct” route, so care must be 
used when defining the routes.

URL Templates and Default Values
The same tokens used in attribute routing are valid, although they are delineated with braces ({}) instead 
of brackets ([]). Tokens can also have default values assigned to them when added through the MapRoute 
command. For example, the following route is the standard “default” route in MVC:

{controller=Home}/{action=Index}/{id?}

This is the same format of many of the routes used in Chapter 3 with the addition of the default values, 
which are invoked from left to right. For example, if a request is made to the site without a controller 
specified, this route will map to \Home\Index. If a controller (e.g., ProductsController) is specified, but an 
action is not, the request is routed to \Products\Index. As with attribute routing, the Controller part of the 
name is dropped when building routes.

http://dx.doi.org/10.1007/978-1-4842-2478-6_3
http://dx.doi.org/10.1007/978-1-4842-2478-6_3


Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

124

MVC Web Applications Projects and Files
This section covers the files and folders that are not used in Core MVC Services or have changed from how 
they are used when creating Core MVC Services.

The Program.cs File
The template for web applications creates the same program.cs file and Main method as the Web API 
template does. The only change that is needed is to update the Kestrel configuration for this application to 
use port 40002, as follows:

var host = new WebHostBuilder()
  .UseKestrel()
  .UseUrls("http://*:40002/")
  .UseContentRoot(Directory.GetCurrentDirectory())
  .UseIISIntegration()
  .UseStartup<Startup>()
  .Build();
host.Run();

Specifying the port for Kestrel is optional, since the web application is called from another application, 
but viewed through a browser. I find it a good practice to change the default port to prevent different Core 
MVC applications from colliding on your development machine.

The appsettings.json File
The root URL for the SpyStore.Service MVC Web API application needs to be added to the appsettings.
json file. Add the base URL and port for your service into the appsettings.json file by updating the text to 
the following:

{
  "Logging": {
    "IncludeScopes": false,
    "LogLevel": {
      "Default": "Warning"
    }
  },
  "WebServiceLocator": {
    "ServiceAddress": "http://localhost:40001/"
  }
}

No changes need to be made to the appsettings.development.json file.

The Startup.cs File
Most of the Startup.cs file is the same between MVC Web APIs and MVC Web Applications. The differences 
are covered in the next sections.



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

125

The ConfigureServices Method
To the ConfigureServices method, add the following line:

services.AddSingleton(_ => Configuration);

This adds the Configuration property to the DI container for use in the rest of the application.

The Configure Method
The MVC Web Application template creates the following code in the Configure method:

public void Configure(
    IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
  loggerFactory.AddConsole(Configuration.GetSection("Logging"));
  loggerFactory.AddDebug();

  if (env.IsDevelopment())
  {
    app.UseDeveloperExceptionPage();
    app.UseBrowserLink();
  }
  else
  {
    app.UseExceptionHandler("/Home/Error");
  }

  app.UseStaticFiles();

  app.UseMvc(routes =>
  {
    routes.MapRoute(
      name: "default",
      template: "{controller=Home}/{action=Index}/{id?}");
    });
}

The first two lines set up logging for the app. The if block checks the environment, and if it’s 
development, adds two middleware packages. The first (UseDeveloperExceptionPage) is a diagnostic 
package that will display an enhanced error page geared for debugging. The second adds BrowserLink 
support. Comment out this line if you removed the BrowserLink package from your project. If the 
environment is not development, the error route "/Home/Error" will be launched. The SpyStore.MVC app 
uses the ProductsController (coming later) as the base controller, not the HomeController created with the 
template. Update the UseExceptionHandler method to use the ProductsController, as follows:

app.UseExceptionHandler("/Products/Error");

The next line adds support for static files located in the default wwwroot directory. If this middleware 
isn’t added, the site will not serve up any style sheets or other static content. When UseStaticFiles is 
called without a parameter, the directory from the call to UseContentRoot in the Main method is used. This 
directory can also be changed by passing a new location into the call to UseStaticFiles.



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

126

The final line enables full MVC support. The lambda in the constructor adds a route to the route table. 
The route supplied is the default route, and it is so commonly used that there is a convenience method that 
replaces the UseMvc method and adds the default route:

app.UseMvcWithDefaultRoute();

The only change needed for this app is to change the default route to use the ProductsController 
instead of the HomeController, as follows:

app.UseMvc(routes =>
{
  routes.MapRoute(
    name: "default",
    template: "{controller=Products}/{action=Index}/{id?}");
});

The Controllers Folder
Controllers in Web API and Web Applications are responsible for the same work load. MVC conventions 
dictate that all controllers are located in this directory. Controllers and Actions are covered later in the 
chapter. For now, delete the HomeController.cs file.

The Views Folder
The Views are the user interface component of MVC applications. MVC conventions dictate that all views 
are located in this directory. Views are covered in-depth later in the chapter. For now, delete the Home folder 
under Views.

The wwwroot Folder
This folder contains all of the client side assets (such as style sheets, JavaScript files, and images) that are 
served up by the UseStaticFiles middleware. The Core MVC Web Application template preloads key client 
side files (images, style sheets, JavaScript files, etc.), as shown in Figure 4-4.



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

127

The next sections cover the directories and files contained in the wwwroot directory.

Figure 4-4.  The generated files and folders under wwwroot for a Core MVC Web API app



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

128

The Site CSS, JavaScript, and Images
There are four initial folders under the wwwroot directory. Three of them are designed to contain application 
specific code and content: one for style sheets files, one for JavaScript files, and one for image files. This 
is the template’s default organizational structure and can easily be changed if application needs dictate 
a change from the default structure. Moving content outside of wwwroot is possible as well, as long as the 
UseStaticFiles is updated to specify the new location. This breaks convention and is not covered in this book.

Adding the Site CSS and Image Files

This application’s style sheets and images are contained in the downloadable code for this chapter under 
the WebArtifacts directory. Delete the CSS and images files from the SpyStore.MVC project and add the 
following files from the downloads to the css directory:

•	 site.css

•	 spystore-bootstrap.css

•	 spystore-bootstrap.min.css

•	 spystore-bootstrap.min.css.map

Next, add a folder named fonts under the css directory. Add the following files from the downloads to 
the fonts folder:

•	 glyphicons-halflings-regular.eot

•	 glyphicons-halflings-regular.svg

•	 glyphicons-halflings-regular.ttf

•	 glyphicons-halflings-regular.woff

•	 glyphicons-halflings-regular.woff2

Finally, add the following files from the downloads to the images folder:

•	 bg.jpg

•	 jumbo.png

•	 product-image.png

•	 product-image-lg.png

•	 product-thumb.png

•	 store-logo.png

Adding the JavaScript Files

Create a new directory named validations under the js directory. In this directory, create two empty 
JavaScript files named validators.js and errorFormatting.js by right-clicking on the validations 
directory and selecting Add ➤ New Item. Select ASP.NET Core in the left side of the dialog and JavaScript 
File in the right side. These files are used later in the chapter.



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

129

The lib Folder
This folder is the holding location for Bower packages (covered soon) installed into the application. 
Typically, there is never a need to change this folder or the contents, as they are managed by Bower.

The favicon.ico File
This is the standard image file that all web sites should have. You can add a custom image here or just leave 
the one provided with the template.

Controllers, Actions, and Views
Controller and actions not only work the same way in Core MVC Web Applications as in Core MVC Services, 
they are now exactly the same—no more deciding between Controller and APIController. The biggest 
difference is in the behavior of the action methods. In Core MVC Services, action methods typically accept 
and return JSON formatted values.

In web applications, where users (instead of services) are interacting with the site, the action methods 
are designed to accept data gathered from the user, use that data to interact with the model(s), and then 
return a ViewResult back to the user.

ViewResults
A ViewResult is a type of ActionResult that encapsulates a Razor View. A PartialViewResult is a type 
of ViewResult that is designed to be rendered inside another view. Views and partial views are covered in 
detail shortly.

Controller Helper Methods for Returning ViewResults
Just as the base Controller class has helper methods for returning HTTP result codes and formatted object 
results, it also contains helper methods for creating ViewResult and PartialViewResult instances (named 
View and PartialView, respectively) from *.cshtml files. If the method is executed without any parameters, 
the view of the same name as the action method will be rendered without any model data. For example, the 
following code will render the MyAction.cshtml view:

public ActionResult MyAction()
{
  return View();
}

To change the specific *.cshtml file that is rendered, pass in the name of the file (without a extension). 
The following code will render the CustomViewName.cshtml view.

public ActionResult MyAction()
{
  return View("CustomViewName");
}



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

130

The final two overloads provide for passing in a data object that becomes the model for the view. 
The following examples show this. The first example uses the default view name and the second example 
specifies a different view name.

public ActionResult MyAction()
{
  var myModel = new MyActionViewModel();
  return View(myModel);
}
public ActionResult MyAction()
{
  var myModel = new MyActionViewModel();
  return View("CustomViewName",myModel);
}

Views
Views encapsulate the presentation layer in Core MVC Web Applications. They are written using a 
combination of HTML markup, CSS, JavaScript, and Razor syntax. If you are new to ASP.NET MVC, Razor is 
used to embed server side code into the client side markup of a view.

The Views Folder
The Views folder is where views are stored in an MVC project, as the name suggests. In the root of the Views 
folder there are two files, _ViewStart.cshtml and _ViewImports.cshtml. The _ViewStart.cshtml file specifies 
the default layout to use if one is not specifically assigned for a view. This is discussed in greater detail in the 
Layouts section. The _ViewImports.cshtml file defines the default using statements to be applied to all for all 
views. These files are executed before a view located in any lower level directory is executed.

■■ Note   Why the leading underscore for _ViewStart.html, _ViewImports.cshtml, and _Layout.cshtml? 
The Razor View Engine was originally created for WebMatrix, which would allow any file that did not start with 
an underscore to be rendered, so core files (like layout and configuration) all have names that began with 
an underscore. This is not a convention that MVC cares about, since MVC doesn’t have the same issue as 
WebMatrix, but the underscore legacy lives on anyway.

Each controller gets its own directory under the Views folder where its specific views are stored. The 
names match the name of the controller (minus the word “Controller”). For example, the Views\Account 
directory holds all of the views for the AccountController.

The views are named after the action methods by default, although the names can be changed, as 
shown earlier. For example, the Index method of the AccountController would load Views\Account\
Index.cshtml when a ViewResult is requested.

The Shared Folder

There is special directory under Views named Shared. This directory holds views that are available to all 
controllers and actions. If a requested *.cshtml file can’t be found in the controller-specific directory, the 
shared folder is searched.



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

131

The DisplayTemplates Folder

The DisplayTemplates folder holds custom templates that are rendered using the @Html.Display, @Html.
DisplayFor, or @Html.DisplayForModel helpers. A template name can be specified in each of those calls, 
otherwise Razor will search for a file named the same as the type being rendered (e.g., Customer.cshtml). 
The search path starts in the Views\{CurrentControllerName}\DisplayTemplates folder, and if it’s not 
found, then looks in the Views\Shared\DisplayTemplates folder.

To demonstrate this, create a new folder named DisplayTemplates under the Views\Shared folder. Add 
a new view named Boolean.cshtml by selecting Add ➤ New Item and selecting MVC View Page from the 
Add New Item dialog, as shown in Figure 4-5.

Figure 4-5.  Adding a new MVC Razor view page

Clear out any existing content and add the following Razor code:

@model bool?
@{
    if (!Model.HasValue)
    {
        @:Unknown
    }
    else if (Model.Value)
    {
        @:Yes
    }
    else
    {
        @:No
    }
}



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

132

The template is very simple and works with standard bool properties as well as nullable bool properties. 
If the property is nullable and does not have a value, the template displays the word “Unknown”. Otherwise, 
it displays “Yes” or “No,” as appropriate. The display template will be automatically used for Boolean (and 
nullable Boolean) properties.

The EditorTemplates Folder

The EditorTemplates folder works the same as the DisplayTemplates folder, except the templates are used by 
the @Html.Editor and @Html.EditorFor Razor Helpers and Input Tag Helpers (covered in the next chapter).

Create a new folder named EditorTemplates in the Views\Shared folder. Add a new MVC View Page 
named Boolean.cshtml to that folder. Clear out the templated contents and add the following code:

@model Boolean?
@{
  var value = false;
  var selectionMade = false;
  var list = new List<SelectListItem>();
  if (ViewData.ModelMetadata.IsNullableValueType)
  {
    list.Add(new SelectListItem
    {
      Text = "",
      Value = "",
    });
    if (!Model.HasValue)
    {
      list[0].Selected = true;
      selectionMade = true;
    }
    else
    {
      value = Model.Value;
    }
  }
  else
  {
    value = (bool)Model;
  }
  list.Add(new SelectListItem
  {
    Text = "Yes",
    Value = "true",
    Selected = (!selectionMade && value == true)
  });
  list.Add(new SelectListItem
  {
    Text = "No",
    Value = "false",
    Selected = (!selectionMade && value == false)
  });
}
@Html.DropDownList(string.Empty, list, ViewData["htlmAttributes"])



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

133

The template creates a drop-down for choosing “Yes” or “No” instead of the standard check box control. 
If the type is a nullable bool, there is an additional select option for undecided.

The Razor View Engine
The Razor View Engine was designed as an improvement over the Web Forms View Engine and uses 
Razor as the core language. Razor is server side code that is embedded into a view, is based on C#, and has 
corrected many annoyances with the Web Forms View Engine. The incorporation of Razor into HTML and 
CSS results in code that is much cleaner and easier to read, and therefore easier to support and maintain.

Razor Syntax

The first difference between the Web Forms View Engine and the Razor View Engine is that you add Razor 
code with the @ symbol. There is also intelligence built into Razor that removes a significant number of the 
Web Forms “nuggets” (<% %>). For example, Razor is smart enough to handle the @ sign in e-mail addresses 
correctly.

Statement blocks open with an @ and are enclosed in braces, like this (notice how @ is not used as a 
statement terminator):

@foreach (var item in Model)
{
}

Code blocks can intermix markup and code. Lines that begin with markup are interpreted as HTML, 
while lines that begin with code are interpreted as code, like this:

@foreach (var item in Model)
{
  int x = 0;
  <tr></tr>
}

Lines can also intermix markup and code, like this:

<h1>Hello, @username</h1>

The @ sign in front of a variable is equivalent to Response.Write and, by default, HTML encodes all 
values. If you want to output un-encoded data (i.e. potentially unsafe data), you have to use the @Html.
Raw(username) syntax.

The Final Word on Razor

There just isn’t enough space in this book to detail everything that you can do with Razor. You will see more 
examples of Razor as you work through the rest of this chapter.

Layouts
Similar to Web Forms Master Pages, MVC supports layouts. MVC views can be (and typically are) based on a 
single base layout to give the site a universal look and feel. Navigate to the Views\Shared folder and open the 
_Layout.cshtml file. It looks like a full-fledged HTML file, complete with <head> and <body> tags.



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

134

This file is the foundation that other views are rendered into. This creates a consistent look and feel to 
the site. Additionally, since most of the page (such as navigation and any header and/or footer markup) is 
handled by the layout page, Views Pages are kept small and simple. Scroll down in the file until you see the 
following line of Razor code:

@RenderBody()

That line instructs the Layout page to render the content of the view. Now scroll down to the line just 
before the closing </body> tag. The following line creates a new section for the layout and makes it optional.

@RenderSection("scripts", required: false)

Sections can also be marked as required by passing in true as the second parameter, like this:

@RenderSection("Header",true)

The @section Razor block lets the layout page know that the content in the block should be rendered in 
a particular section. For example, to load the jquery.validate.js file in a view, add the following markup:

@section Scripts {
  @{
    <script src="~/lib/jquery-validation/dist/jquery.validate.js"></script>
  }
 }

Specifying the Default Layout for Views
The default layout page is defined in the _ViewStart.cshtml file. Open this file and examine the contents, 
shown here:

@{
  Layout = "~/Views/Shared/_Layout.cshtml";
}

This file just has one Razor code block that sets the layout to a specific file. If a view does not specify its 
own layout file, the file specified here is used.

Partial Views
Partial views are conceptually similar to a user control in Web Forms. Partial views are useful for 
encapsulating UI, which reduces (or eliminates) repeating code. A partial view (injected into another view 
with the @Html.Partial helper or returned from a controller with the PartialView method) does not use a 
layout, unless one is specified.

Sending Data to Views
MVC views are strongly typed, based on a model (or ViewModel). The model data is passed into the view in 
the action method by passing the object into the base controller’s View method.



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

135

Strongly Type Views and View Models
When a model or ViewModel is passed into the view method, the value gets assigned to the @model property 
of a strongly typed view, as shown here:

@model IEnumerable<Order>

The @model sets the type for the view and can then be accessed by using the @Model Razor command, 
like this:

@foreach (var item in Model)
{
  //Do something interesting here
}

ViewBag, ViewData, and TempData
The ViewBag, ViewData, and TempData objects are mechanisms for sending small amounts of data into 
a View. Table 4-1 lists the three mechanisms to pass data from a controller to a view (besides the Model 
property), or from a view to a view.

Table 4-1.  Ways to Send Data to a View

Data Transport Object Description of Use

TempData This is a short-lived object that works during the current request and next 
request only. Typically used when redirecting to another view.

ViewData A dictionary that allows storing values in name/value pairs (e.g., 
ViewData["Title"] = "Foo").

ViewBag Dynamic wrapper for the ViewData dictionary (e.g., ViewBag.Title = "Foo").

Package Management with Bower
Bower (https://bower.io/) is a powerful client side library manager for web sites, containing thousands of 
packages. Its library is much more extensive than NuGet, and it’s managed by the web community at large. 
Bower is not a replacement for NuGet, but should be considered a supplement. Visual Studio 2017 and .NET 
Core use Bower to manage client side packages.

The .bowerrc file is the configuration file for Bower. It is used to set the relative path for the root 
location where packages are to be installed into the application, and it defaults to the lib directory under 
wwwroot, as follows:

{
  "directory": "wwwroot/lib"
}

Bower packages included in a Core MVC application are managed through the bower.json file. You 
can edit this file directly to add/remove packages, or use VS2017’s Bower Package Manager GUI. The Bower 
Package Manager works just like NuGet Package Manager and is accessed by right-clicking on the project 
name in Solution Explorer and selecting Manage Bower Packages.

https://bower.io/


Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

136

The bower.json files lists all of the packages under the dependencies node. The VS2017 template 
installs four packages, as shown here:

{
  "name": "asp.net",
  "private": true,
  "dependencies": {
    "bootstrap": "3.3.7",
    "jquery": "2.2.0",
    "jquery-validation": "1.14.0",
    "jquery-validation-unobtrusive": "3.2.6"
  }
}

Updating and Adding Bower Packages
Open the Bower Package Manager GUI by right-clicking on the bower.json (or the project name) in Solution 
Explorer and clicking Update Available near the top. You will see a screen similar to the one shown in 
Figure 4-6.

Figure 4-6.  Updating the Bower packages

Select jquery in the left section and then version 2.2.4 in the right side of the GUI. Click Update. Select 
jquery.validation and click Update in the right side of the GUI. There isn’t a need to update Bootstrap 
because of the custom version that Ben (one of my co-authors) created for the web sites. jQuery can’t be 
updated beyond 2.2.4 because of the custom Bootstrap implementation and the version of Bootstrap used.

Next, click Browse near the top and enter jquery-unobtrusive-ajax in the search box. Select the 
package on the left side of the GUI and install the latest version (3.2.4 at the time of this writing). This 
package enables data-ajax- attributes, which is used in the next chapter.

Bower Execution
Visual Studio 2017 watches for the bower.json file to change, and when a change is detected, the packages 
are added or removed (based on the listed packages) into individual subdirectories under wwwroot\lib. You 
can force Visual Studio to update the packages by right-clicking the bower.json file and selecting Restore 



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

137

Packages. The process can also be executed manually from the Package Manager Console. Open Package 
Manager Console, navigate to the directory where the bower.json file is located (e.g., src/SpyStore.MVC), 
and enter the following command:

bower install

Bundling and Minification
Bundling and minification are important tools for increasing your application’s performance. Splitting 
custom JavaScript and CSS files into smaller, focused files increases maintainability, but doing this can 
cause performance issues. Browsers have built-in limits controlling how many files can be simultaneously 
downloaded from the same URL, so too many files (even if they are very small) can lead to slower page 
loads. Bundling is the process of combining smaller files into larger files. This gets around the browser file 
download limitation, but must be done wisely, since gigantic files can cause issues as well.

Minification is the process of reducing a file’s size by removing unnecessary whitespace, and for 
JavaScript files, essentially obfuscating the contents. Variable and function names are renamed to values that 
are much shorter, among size other optimizations. It’s not a secure obfuscation scheme, but it does make the 
file extremely awkward to read.

The BundlerMinifier Project
Bundling and minification for .NET Core projects seemed to be in constant flux during the early versions. 
The team has settled on the BundlerMinifier project created by Mads Kristensen. It runs as both a Visual 
Studio extension and as a NuGet package for the .NET Core CLI. More information can be found here: 
https://github.com/madskristensen/BundlerMinifier.

■■ Note   Gulp, Grunt, WebPack, and many other build tools are still supported by .NET Core and VS2017. 
Microsoft backed off of picking a specific framework as the default due to the longevity of support for templates 
(three years for LTS versions) and the rapid mood swings of the JavaScript community. Chapter 6 covers several 
client side build tools, including Gulp, Grunt, and WebPack.

Configuring Bundling and Minification
The bundleconfig.json file configures the targets and the output files. The default configuration is listed 
here:

// Configure bundling and minification for the project.
// More info at https://go.microsoft.com/fwlink/?LinkId=808241
[
  {
    "outputFileName": "wwwroot/css/site.min.css",
    // An array of relative input file paths. Globbing patterns supported
    "inputFiles": [
      "wwwroot/css/site.css"
    ]
  },

https://github.com/madskristensen/BundlerMinifier
http://dx.doi.org/10.1007/978-1-4842-2478-6_6


Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

138

  {
    "outputFileName": "wwwroot/js/site.min.js",
    "inputFiles": [
      "wwwroot/js/site.js"
    ],
    // Optionally specify minification options
    "minify": {
      "enabled": true,
      "renameLocals": true
    },
    // Optionally generate .map file
    "sourceMap": false
  }
]

Each block of JSON has (at a minimum) definitions for input files (globbing is available) and the name 
and location of the output bundled and/or minified file. For example, the first block in this file listing takes 
the site.css file and creates the minified version named site.min.css. If there was more than one file in 
the inputFiles array (or if wildcards are used), then all of the files listed are bundled into the output file. 
The second block does the same thing for the site.js file and shows the optional minify and sourceMap 
parameters. Both of these parameters are optional. They are shown set to their respective default values for 
illustration purposes. The sourceMap option is for creating source map files from the input JavaScript files.

Adding Files for Bundling and Minification
The Bootstrap files supplied with the downloadable code are already minified, so those don’t need to be 
added to the bundleconfig.json file. The two JavaScript files created earlier (but still empty) do. Add the 
following to the bundleconfig.json file:

{
  "outputFileName": "wwwroot/js/validations/validations.min.js",
  "inputFiles": [
    "wwwroot/js/validations/*.js"
  ],
  "minify": {
    "enabled": true,
    "renameLocals": true
  },
  "sourceMap": false
}

This block configures BundlerMinifier to minify any .js files found in the wwwroot/js/validations 
directory and then bundle them into validations.min.js. This file won’t be created yet, because empty 
(or missing) files are ignored. When the source files contain content, they will be bundled and minified into 
the output file.



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

139

Visual Studio Integration
Check for the version of the BundlerMinifier extension installed in Visual Studio by selecting Tools ➤ 
Extensions and Updates, then selecting Installed in the left side of the dialog. If the extension is not installed, 
select Online ➤ Visual Studio Gallery. It should show up in the first page of the Most Popular extensions, 
but if not, search for it by entering Bundler in the search box, as shown in Figure 4-7. If there is an updated 
version from what is installed on your machine, it will appear in the Updates section. Install or update the 
extension to the latest version, which at the time of this writing is 2.2.307. This might require a restart of 
Visual Studio.

Figure 4-7.  Adding the BundlerMinifier extension

Figure 4-8.  Adding the BundlerMinifier extension

Bundling on Change
To configure bundling and minification to watch for changes, right-click on the project name in Solution 
Explorer and select Bundler & Minifier. Make sure that Produce Output Files is checked, as shown in 
Figure 4-8.



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

140

Checking this option adds a watcher to the files referenced in bundleconfig.json. To test this, navigate 
to the css directory under wwwroot and delete the site.min.css file. Open the site.css file, make an 
inconsequential change to the file (such as adding a space, or typing a character then backspacing over it), 
and save it. The site.min.css file is recreated.

Bundling on Build
There are two ways to enable bundling when VS2017 builds your project. The first is to right-click on 
bundleconfig.json file, select Bundler & Minifier, then check the Enable Bundle on Build… option, as 
shown in Figure 4-9.

Figure 4-10.  Adding support for MSBuild integration

This downloads another NuGet package that hooks the BundlerMinifier to the MSBuild process. You 
will have to confirm the install, as shown in Figure 4-10.

Figure 4-9.  Enabling bundling on build



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

141

Using the Task Runner Explorer
The Task Runner Explorer can also be used to bind the bundling tasks into the build process. The Task 
Runner Explorer is another Visual Studio extension created by Mads Kristensen, but is now part of Visual 
Studio. It enables binding command line calls into the MSBuild process. Open it by selecting Tools ➤ Task 
Runner Explorer. The left side of the explorer shows the available commands, and the right side shows the 
assigned bindings (currently there aren’t any), as shown in Figure 4-11.

Figure 4-11.  Enabling bundling on build

Figure 4-12.  Updating all files after each build

To assign the binding, right-click on the Update All Files command and select Bindings ➤ After Build, as 
shown in Figure 4-12.

For clean output files, assign the Before Build and Clean bindings. This will remove the minified and 
bundled files before a build starts or if a clean command is executed.

.NET Core CLI Integration
In addition to integrating with Visual Studio, the BundlerMinifier also works with the .NET Core CLI by 
using the BundlerMinifier.Core NuGet package. Confirm the version available by opening the NuGet 
Package Manager and searching for BundlerMinifier.Core. At the time of this writing, the current version is 



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

142

2.2.301, slightly behind the VS extension. Open the SpyStoreMVC.csproj file by right-clicking on the project 
name in Solution Explorer and then selecting Edit SpyStoreMVC.csproj. Add the following markup:

<ItemGroup>
  <DotNetCliToolReference Include="BundlerMinifier.Core" Version="2.2.301" />
</ItemGroup>

The Clean and Update processes can also be run from the Package Manager Console. Open the Package 
Manager Console, navigate to the directory containing the project file, and execute the following command:

dotnet bundle

To remove all generated files, enter the clean command, like this:

dotnet bundle clean

Creating the Web Service Locator
Earlier, the URL and the port for the RESTful service were added to the appsettings.json file. Now it’s time 
to leverage the configuration system to create a call that will expose the value to the rest of the application. 
The class will be hooked into the DI framework so it can be injected into any class that needs the URL and 
port information.

Creating the IWebServiceLocator Interface
Create a new directory named Configuration in the SpyStore.MVC project. In this directory, create an 
interface name IWebServiceLocator, clear out the templated code, and add the following:

namespace SpyStore.MVC.Configuration
{
  public interface IWebServiceLocator
  {
    string ServiceAddress { get; }
  }
}

Creating the WebServiceLocator Class
In the Configuration directory, create another class named WebServiceLocator.cs. Clear out the code in 
the class and add the following (including the using statement):

using Microsoft.Extensions.Configuration;

namespace SpyStore.MVC.Configuration
{
    public class WebServiceLocator : IWebServiceLocator
    {



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

143

        public WebServiceLocator(IConfigurationRoot config)
        {
            var customSection = config.GetSection(nameof(WebServiceLocator));
            ServiceAddress = customSection?.GetSection(nameof(ServiceAddress))?.Value;
        }

        public string ServiceAddress { get; }
    }
}

The constructor takes an instance of IConfigurationRoot from the DI container and uses it to get the 
value of the web service’s URL from the appsettings.json file.

Adding the WebServiceLocator Class to the DI Container
The final step is to add the WebServiceLocator to the DI container. Open Startup.cs and add the following 
using statements to the top of the file:

using SpyStore.MVC.Configuration;

Next, navigate to the ConfigureServices method and add the following line before the call to AddMvc:

services.AddSingleton<IWebServiceLocator,WebServiceLocator>();

When code in the application requests a parameter of type IWebServiceLocator, a new instance of the 
WebServiceLocator class is supplied.

Creating the WebAPICalls Class to Call the Web API Service
The WebApiCalls class will encapsulate all of the API calls to the Core MVC Service built in the previous 
chapter. Create a new directory named WebServiceAccess in the SpyStore.MVC project, and in that 
directory, add a subdirectory named Base.

■■ Note   If you used .NET to call Web API services before, the rest of the code in this section is pretty standard 
and not .NET Core or MVC specific. If you feel comfortable calling RESTful services, the completed files are 
located in the WebServiceAccess directory in the downloadable code for this chapter. Copy them into your 
project and skip ahead to “Adding the WebApiCalls Class to the DI Container” section.

Creating the IWebApiCalls Interface
Add a new interface named IWebApiCalls.cs into the Base directory just created. Open the IWebApiCalls.
cs interface file and update the code to the following:

using System.Collections.Generic;
using System.Threading.Tasks;
using SpyStore.Models.Entities;
using SpyStore.Models.ViewModels;
using SpyStore.Models.ViewModels.Base;



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

144

namespace SpyStore.MVC.WebServiceAccess.Base
{
  public interface IWebApiCalls
  {
    Task<IList<Category>> GetCategoriesAsync();
    Task<Category> GetCategoryAsync(int id);
    Task<IList<ProductAndCategoryBase>> GetProductsForACategoryAsync(int categoryId);
    Task<IList<Customer>> GetCustomersAsync();
    Task<Customer> GetCustomerAsync(int id);
    Task<IList<Order>> GetOrdersAsync(int customerId);
    Task<OrderWithDetailsAndProductInfo> GetOrderDetailsAsync(int customerId, int orderId);
    Task<ProductAndCategoryBase> GetOneProductAsync(int productId);
    Task<IList<ProductAndCategoryBase>> GetFeaturedProductsAsync();
    Task<IList<ProductAndCategoryBase>> SearchAsync(string searchTerm);
    Task<IList<CartRecordWithProductInfo>> GetCartAsync(int customerId);
    Task<CartRecordWithProductInfo> GetCartRecordAsync(int customerId, int productId);
    Task<string> AddToCartAsync(int customerId, int productId, int quantity);
    Task<string> UpdateCartItemAsync(ShoppingCartRecord item);
    Task RemoveCartItemAsync(int customerId, int shoppingCartRecordId, byte[] timeStamp);
    Task<int> PurchaseCartAsync(Customer customer);
  }
}

Creating the Base Class Code
In the Base directory, add a class named WebApiCallsBase.cs. This class will hold all of the core code to 
execute HTTP Get, Put, Post, and Delete commands. Update the namespaces to match the following:

using System;
using System.Collections.Generic;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;
using Newtonsoft.Json;
using SpyStore.MVC.Configuration;

Make the class public and abstract, then add class level variables to hold the URI for the web service 
and the core URIs for the service controllers. The code should look like this:

namespace SpyStore.MVC.WebServiceAccess.Base
{
  public abstract class WebApiCallsBase
  {
    protected readonly string ServiceAddress;
    protected readonly string CartBaseUri;
    protected readonly string CategoryBaseUri;
    protected readonly string CustomerBaseUri;
    protected readonly string ProductBaseUri;
    protected readonly string OrdersBaseUri;
  }
}



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

145

The WebServiceLocator is used to get the base URL of the web service, and the best way for this class to 
get an instance of the WebServiceLocator is through dependency injection. Create a protected constructor 
that accepts an instance of IWebServiceLocator and uses it to get the base URI. Next, the constructor builds 
the controller URIs, as follows:

protected WebApiCallsBase(IWebServiceLocator settings)
{
  ServiceAddress = settings.ServiceAddress;
  CartBaseUri = $"{ServiceAddress}api/ShoppingCart/";
  CategoryBaseUri = $"{ServiceAddress}api/category/";
  CustomerBaseUri = $"{ServiceAddress}api/customer/";
  ProductBaseUri = $"{ServiceAddress}api/product/";
  OrdersBaseUri = $"{ServiceAddress}api/orders/";
}

Implementing the Base HTTP Get Calls
The first set of methods are for Get calls. The GetJsonFromGetResponseAsync method handles executing 
the call to the service and returning the contents of the response message as JSON. The GetItemAsync and 
GetItemListAsync call the GetJsonFromGetResponseAsync method to return a single item or a list of items, 
respectively. Both methods use the GetAsync helper method from the System.Net.HTTP namespace. This 
helper method and its three siblings (PostAsync, PutAsync, and DeleteAsync) are shortcuts to creating an 
HttpRequestMessage from scratch and executing a Send on the HttpClient. Here are all three methods to be 
added to the base class:

internal async Task<string> GetJsonFromGetResponseAsync(string uri)
{
  try
  {
    using (var client = new HttpClient())
    {
      var response = await client.GetAsync(uri);
      if (!response.IsSuccessStatusCode)
      {
        throw new Exception($"The Call to {uri} failed.  Status code: {response.
StatusCode}");
      }
      return await response.Content.ReadAsStringAsync();
    }
  }
  catch (Exception ex)
  {
    //Do something intelligent here
    Console.WriteLine(ex);
    throw;
  }
}



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

146

internal async Task<T> GetItemAsync<T>(string uri) where T : class, new()
{
  try
  {
    var json = await GetJsonFromGetResponseAsync(uri);
    return JsonConvert.DeserializeObject<T>(json);
  }
  catch (Exception ex)
  {
    //Do something intelligent here
    Console.WriteLine(ex);
    throw;
  }
}
internal async Task<IList<T>> GetItemListAsync<T>(string uri) where T : class, new()
{
  try
  {
    return JsonConvert.DeserializeObject<IList<T>>(await GetJsonFromGetResponseAsync(uri));
  }
  catch (Exception ex)
  {
    //Do something intelligent here
    Console.WriteLine(ex);
    throw;
  }
}

Implementing the Base HTTP Post and Put Calls
The next method to create is used to handle response messages from Post and Put calls. In both cases, 
a request is executed, the response is checked for success, and then the content of the message body is 
returned. The ExecuteRequestAndProcessResponse code is listed here:

protected static async Task<string> ExecuteRequestAndProcessResponse(
  string uri, Task<HttpResponseMessage> task)
{
  try
  {
    var response = await task;
    if (!response.IsSuccessStatusCode)
    {
      throw new Exception($"The Call to {uri} failed.  Status code: {response.StatusCode}");
    }
    return await response.Content.ReadAsStringAsync();
  }
  catch (Exception ex)
  {



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

147

    //Do something intelligent here
    Console.WriteLine(ex);
    throw;
  }
}

The next helper method creates an instance of the StringContent class that is used to format the 
payload for request messages:

protected StringContent CreateStringContent(string json)
{
  return new StringContent(json, Encoding.UTF8, "application/json");
}

SubmitPostRequestAsync and SubmitPutRequestAsync use the PostAsync and PutAsync helpers (along 
with the CreateStringContent helper) to create their respective tasks. Those tasks are then sent into the 
ExecuteRequestAndProcessResponse method for processing. Here are the methods:

protected async Task<string> SubmitPostRequestAsync(string uri, string json)
{
  using (var client = new HttpClient())
  {
    var task = client.PostAsync(uri, CreateStringContent(json));
    return await ExecuteRequestAndProcessResponse (uri, task);
  }
}

protected async Task<string> SubmitPutRequestAsync(string uri, string json)
{
  using (var client = new HttpClient())
  {
    Task<HttpResponseMessage> task = client.PutAsync(uri, CreateStringContent(json));
    return await ExecuteRequestAndProcessResponse (uri, task);
  }
}

Implementing the Base HTTP Delete Call
The final base method to add is for executing an HTTP Delete. This method is pretty straightforward as a 
Delete request doesn’t have a body and doesn’t return any content. Add the following code to the base class:

protected async Task SubmitDeleteRequestAsync(string uri)
{
  try
  {
    using (var client = new HttpClient())
    {
      Task<HttpResponseMessage> deleteAsync = client.DeleteAsync(uri);
      var response = await deleteAsync;



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

148

      if (!response.IsSuccessStatusCode)
      {
        throw new Exception(response.StatusCode.ToString());
      }
    }
  }
  catch (Exception ex)
  {
    //Do something intelligent here
    Console.WriteLine(ex);
    throw;
  }
}

Creating the WebApiCalls Class
Next, create a class named WebApiCalls.cs in the WebServiceAccess directory. Add the following using 
statements to the top of the file:

using System.Collections.Generic;
using System.Threading.Tasks;
using Newtonsoft.Json;
using SpyStore.MVC.Configuration;
using SpyStore.Models.Entities;
using SpyStore.Models.ViewModels;
using SpyStore.Models.ViewModels.Base;
using SpyStore.MVC.WebServiceAccess.Base;

Inherit from WebApiCallsBase and implement the IWebApiCalls interface. Have the public 
constructor accept an IWebServiceLocator instance and pass it to the base class constructor. The code 
should look like this:

public class WebApiCalls : WebApiCallsBase, IWebApiCalls
{
  public WebApiCalls(IWebServiceLocator settings) : base(settings)
  {
  }
}

The methods in this class call the base methods using specific values passed from the controllers. Each 
method in the following listing starts with a comment describing the actual call to the Web API service, and 
then the actual code to make the call. Enter the following code (or copy it from the downloadable files):

public async Task<IList<CartRecordWithProductInfo>> GetCartAsync(int customerId)
{
  // http://localhost:40001/api/ShoppingCart/0
  return await GetItemListAsync<CartRecordWithProductInfo>($"{CartBaseUri}{customerId}");
}
public async Task<CartRecordWithProductInfo> GetCartRecordAsync(int customerId, int 
productId)



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

149

{
  // http://localhost:40001/api/ShoppingCart/0/0
  return await GetItemAsync<CartRecordWithProductInfo>(
    $"{CartBaseUri}{customerId}/{productId}");
}
public async Task<string> AddToCartAsync(int customerId, int productId, int quantity)
{
  //http://localhost:40001/api/shoppingcart/{customerId} HTTPPost
  //Note: ProductId and Quantity in the body
  //http://localhost:40001/api/shoppingcart/0 {"ProductId":22,"Quantity":2}
  //            Content-Type:application/json
  string uri = $"{CartBaseUri}{customerId}";
  string json = $"{{\"ProductId\":{productId},\"Quantity\":{quantity}}}";
  return await SubmitPostRequestAsync(uri, json);
}
public async Task<int> PurchaseCartAsync(Customer customer)
{
  //Purchase: http://localhost:40001/api/shoppingcart/{customerId}/buy HTTPPost
  //Note: Customer in the body
  //{ "Id":1,"FullName":"Super Spy","EmailAddress":"spy@secrets.com"}
  //  http://localhost:40001/api/shoppingcart/0/buy
  var json = JsonConvert.SerializeObject(customer);
  var uri = $"{CartBaseUri}{customer.Id}/buy";
  return int.Parse(await SubmitPostRequestAsync(uri, json));
}
public async Task<string> UpdateCartItemAsync(ShoppingCartRecord item)
{
  // Change Cart Item(Qty): http://localhost:40001/api/shoppingcart/{customerId}/{id} 
HTTPPut
  //   Note: Id, CustomerId, ProductId, TimeStamp, DateCreated, and Quantity in the body
  //{"Id":0,"CustomerId":0,"ProductId":32,"Quantity":2,
  //   "TimeStamp":"AAAAAAAA86s=","DateCreated":"1/20/2016"}
  //http://localhost:40001/api/shoppingcart/0/AAAAAAAA86s=
  string uri = $"{CartBaseUri}{item.CustomerId}/{item.Id}";
  var json = JsonConvert.SerializeObject(item);
  return await SubmitPutRequestAsync(uri, json);
}
public async Task RemoveCartItemAsync(
  int customerId, int shoppingCartRecordId, byte[] timeStamp)
{
  //Remove Cart Item:
  //  http://localhost:40001/api/shoppingcart/{customerId}/{id}/{TimeStamp} HTTPDelete
  //  http://localhost:40001/api/shoppingcart/0/0/AAAAAAAA1Uc=
  var timeStampString = JsonConvert.SerializeObject(timeStamp);
  var uri = $"{CartBaseUri}{customerId}/{shoppingCartRecordId}/{timeStampString}";
  await SubmitDeleteRequestAsync(uri);
}
public async Task<IList<Category>> GetCategoriesAsync()
{
  //http://localhost:40001/api/category
  return await GetItemListAsync<Category>(CategoryBaseUri);
}



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

150

public async Task<Category> GetCategoryAsync(int id)
{
  //http://localhost:40001/api/category/{id}
  return await GetItemAsync<Category>($"{CategoryBaseUri}{id}");
}
public async Task<IList<ProductAndCategoryBase>> GetProductsForACategoryAsync(int 
categoryId)
{
  // http://localhost:40001/api/category/{categoryId}/products
  var uri = $"{CategoryBaseUri}{categoryId}/products";
  return await GetItemListAsync<ProductAndCategoryBase>(uri);
}
public async Task<IList<Customer>> GetCustomersAsync()
{
  //Get All Customers: http://localhost:40001/api/customer
  return await GetItemListAsync<Customer>($"{CustomerBaseUri}");
}
public async Task<Customer> GetCustomerAsync(int id)
{
  //Get One customer: http://localhost:40001/api/customer/{id}
  //http://localhost:40001/api/customer/1
  return await GetItemAsync<Customer>($"{CustomerBaseUri}{id}");
}
public async Task<IList<ProductAndCategoryBase>> GetFeaturedProductsAsync()
{
  // http://localhost:40001/api/product/featured
  return await GetItemListAsync<ProductAndCategoryBase>($"{ProductBaseUri}featured");
}
public async Task<ProductAndCategoryBase> GetOneProductAsync(int productId)
{
  // http://localhost:40001/api/product/{id}
  return await GetItemAsync<ProductAndCategoryBase>($"{ProductBaseUri}{productId}");
}
public async Task<IList<Order>> GetOrdersAsync(int customerId)
{
  //Get Order History: http://localhost:40001/api/orders/{customerId}
  return await GetItemListAsync<Order>($"{OrdersBaseUri}{customerId}");
}
public async Task<OrderWithDetailsAndProductInfo> GetOrderDetailsAsync(
  int customerId, int orderId)
{
  //Get Order Details: http://localhost:40001/api/orders/{customerId}/{orderId}
  var url = $"{OrdersBaseUri}{customerId}/{orderId}";
  return await GetItemAsync<OrderWithDetailsAndProductInfo>(url);
}
public async Task<IList<ProductAndCategoryBase>> SearchAsync(string searchTerm)
{
  var uri = $"{ServiceAddress}api/search/{searchTerm}";
  return await GetItemListAsync<ProductAndCategoryBase>(uri);
}



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

151

Adding WebApiCalls Class to the DI Container
The final step is to add the WebApiCalls to the DI container. Open Startup.cs and add the following using 
statements to the top of the file:

using SpyStore.MVC.WebServiceAccess;
using SpyStore.MVC.WebServiceAccess.Base;

Next, navigate to the ConfigureServices method and add the following line (after the line adding the 
WebServiceLocator class):

services.AddSingleton<IWebApiCalls, WebApiCalls>();

Adding the Fake Authentication
The SpyStore.MVC application uses a fake security mechanism that automatically “logs in” the single user 
contained in the sample data in the database. The fake authentication system is very simplistic—a class 
to call the web service to get customer information, and an action filter to set ViewBag properties for the 
customer ID and name.

■■ Note   If you are new to ASP.NET MVC, the ViewBag is a dynamic wrapper around the ViewData object that 
allows for passing data from a controller to a view. It is a one-way trip for the data, so the footprint is very small 
and short lived.

Building the Authentication Helper
Create a new directory named Authentication in the SpyStore.MVC project, and in this directory add an 
interface named IAuthHelper.cs. Clear out the existing code and replace it with the following:

using Microsoft.AspNetCore.Http;
using SpyStore.Models.Entities;

namespace SpyStore.MVC.Authentication
{
    public interface IAuthHelper
    {
        Customer GetCustomerInfo();
    }
}

Next, add a class named AuthHelper.cs to the directory. Clear out the existing code and replace it with 
this:

using System;
using System.Linq;
using Microsoft.AspNetCore.Http;
using SpyStore.MVC.WebServiceAccess.Base;
using SpyStore.Models.Entities;



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

152

namespace SpyStore.MVC.Authentication
{
  public class AuthHelper : IAuthHelper
  {
    private readonly IWebApiCalls _webApiCalls;
    public AuthHelper(IWebApiCalls webApiCalls)
    {
      _webApiCalls = webApiCalls;
    }
    public Customer GetCustomerInfo()
    {
      return _webApiCalls.GetCustomersAsync().Result.FirstOrDefault();
    }
  }
}

The class implements the IAuthHelper interface, which enables it to be loaded from the DI container. 
The constructor takes an instance of the IWebApiCalls interface (which is also loaded from the DI 
container), and then assigns it to a class level variable. The GetCustomerInfo returns the first customer 
record it finds.

Adding the AuthHelper Class to the DI Container
Add the AuthHelper class to the DI container by opening the Startup.cs file and adding the following using 
statement to the top of the file:

using SpyStore.MVC.Authentication;

Next, navigate to the ConfigureServices method and add the following line (after the line adding the 
WebApiCalls class):

services.AddSingleton<IAuthHelper, AuthHelper>();

The entire method should look like this:

public void ConfigureServices(IServiceCollection services)
{
  // Add framework services.
  services.AddSingleton(_ => Configuration);
  services.AddSingleton<IWebServiceLocator,WebServiceLocator>();
  services.AddSingleton<IWebApiCalls, WebApiCalls>();
  services.AddSingleton<IAuthHelper, AuthHelper>();
  services.AddMvc();
}

Creating the Action Filter for the Fake Authentication
In Chapter 3, you built an exception filter to catch any unhandled exceptions in action methods. Action 
filters are very similar. Instead of catching exceptions, they have two event handlers—one fires just before an 
action method executes and the other fires right after it executes. Like exception filters, action filters can be 
applied to a single action, controller, or across an entire application.

http://dx.doi.org/10.1007/978-1-4842-2478-6_3


Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

153

Create a new directory named Filters in the SpyStore.MVC project and add a new class named 
AuthActionFilter.cs. Add the following using statements to the top of the class:

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using SpyStore.MVC.Authentication;

Next, change the class to public and implement the IActionFilter interface, like this:

public class AuthActionFilter : IActionFilter
{
  public void OnActionExecuting(ActionExecutingContext context)
  {
    // do something before the action executes
  }

  public void OnActionExecuted(ActionExecutedContext context)
  {
    // do something after the action executes
  }
}

The filter needs an instance of the IAuthHelper injected in. Create a constructor that takes an 
IAuthHelper as the parameter. In the constructor, assign the injected instance to a class level variable, like 
this:

private IAuthHelper _authHelper;
public AuthActionFilter(IAuthHelper authHelper)
{
  _authHelper = authHelper;
}

The ActionExecutingContext grants access to the current HTTPContext, which then grants access to the 
current HTTPRequest (if needed) and the MVC ViewBag. The goal of the method is to get the Id and FullName 
values from the Customer record and place them into the ViewBag. The entire method is shown here:

public void OnActionExecuting(ActionExecutingContext context)
{
  var viewBag = ((Controller)context.Controller).ViewBag;
  var customer = _authHelper.GetCustomerInfo();
  viewBag.CustomerId = customer.Id;
  viewBag.CustomerName = customer.FullName;
}

An alternative to injecting the service into the filter is to use the RequestServices method, which 
provides access to all of the services in the DI container, as shown in the following line:

(IAuthHelper)context.HttpContext.RequestServices.GetService(typeof(IAuthHelper));



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

154

Adding the Action Filter for All Actions
Open Startup.cs and add the following using statement to the top of the file:

using SpyStore.MVC.Filters;

Next, navigate to the ConfigureServices method. Change the services.AddMvc line to the following:

services.AddMvc(config => {
  config.Filters.Add(
    new AuthActionFilter(services.BuildServiceProvider().GetService<IAuthHelper>()));
  });

This sets the AuthActionFilter for all actions in the application.

Adding the View Models
As discussed when creating the data access layer, view models combine different base models into one entity 
class as a convenience when passing data between layers. In addition to the view models already created, a 
few more are needed for the UI.

Create a new directory named ViewModels in the root of the SpyStore.MVC project. Create a 
subdirectory named Base in the ViewModels directory and add a new class named CartViewModelBase.cs. 
Add the following using statements to the top of the class:

using System.ComponentModel.DataAnnotations;
using Newtonsoft.Json;
using SpyStore.Models.ViewModels.Base;

Make this class public and inherit from ProductAndCategoryBase. Add the following properties and 
attributes so the class looks like this:

public class CartViewModelBase : ProductAndCategoryBase
{
  public int? CustomerId { get; set; }
  [DataType(DataType.Currency), Display(Name = "Total")]
  public decimal LineItemTotal { get; set; }
  public string TimeStampString =>
    �TimeStamp != null ? JsonConvert.SerializeObject(TimeStamp).Replace("\"",""):string.

Empty;
}

The TimeStampString property serializes the TimeStamp byte array into a string value to make it easier 
to work with in views.

Next, in the ViewModels directory, add a new class named AddToCartViewModel.cs. Add the following 
using statement:

using SpyStore.MVC.ViewModels.Base;



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

155

Make the class public, inherit from CartViewModelBase, and add a single property:

public class AddToCartViewModel :CartViewModelBase
{
  public int Quantity { get; set; }
}

Add another class named CartRecordViewModel.cs and update the code as follows:

using SpyStore.MVC.ViewModels.Base;

namespace SpyStore.MVC.ViewModels
{
    public class CartRecordViewModel : CartViewModelBase
    {
        public int Quantity { get; set; }
    }
}

You might be wondering why there are two classes with the exact same properties but different names. 
The reason is that the business rules for the uses of the classes are slightly different. This will all become 
clear in the next chapter when validation is added to the application.

Add one more class, named CartViewModel, and update the using statements and properties to match 
the following:

using SpyStore.Models.Entities;
using System.Collections.Generic;

namespace SpyStore.MVC.ViewModels
{
    public class CartViewModel
    {
        public Customer Customer { get; set; }
        public IList<CartRecordViewModel> CartRecords { get; set; }
    }
}

■■ Source Code  This chapter’s portion of the SpyStore.MVC solution can be found in the Chapter 04 
subdirectory of the download files.



Chapter 4 ■ Introducing ASP.NET Core MVC Web Applications

156

Summary
This chapter introduced Core MVC Web Applications and covered some of the differences between the 
project structure for Core MVC RESTful services and Core MVC Web Applications. The project structure was 
detailed and updated as appropriate for the SpyStore MVC application. Routing was revisited, discussing the 
differences between attribute routing and adding routes directly to the routing table. Controllers and actions 
were revisited to cover the additional features of MVC Web Applications, and views were introduced, as were 
Display Templates and Editor Templates.

The next two sections covered the infrastructure items of using Bower to manage client side packages 
and BundlerMinifier to handle bundling and minification of JavaScript and CSS file.

The configuration service was utilized to build the Web Service Locator. All of the API calls to the 
RESTful service were created in the WebAPICalls class and base class. Next, these were leveraged to create 
the fake authentication handler and the action filter. Finally, the applications view models were created.

In the next chapter, all of this groundwork will be used to create the SpyStore MVC Web Application.



157© Philip Japikse, Kevin Grossnicklaus and Ben Dewey 2017 
P. Japikse et al., Building Web Applications with Visual Studio 2017, DOI 10.1007/978-1-4842-2478-6_5

CHAPTER 5

Building the SpyStore Application 
with ASP.NET Core MVC

The previous chapter built the Core MVC Web Application project and the infrastructure necessary for the 
SpyStore MVC application and covered many of the Core MVC concepts. This chapter is almost entirely code 
based, but also covers the two newest features in Core MVC—Tag Helpers and View Components.

■■ Note   This chapter picks up where the last chapter ended. There is a folder named Start in the 
downloadable code that has the completed code from Chapter 4.

Tag Helpers
Tag Helpers are a new feature in Core MVC that greatly improve the development experience and readability 
of MVC Views. Unlike HTML Helpers, which are invoked as Razor methods, Tag Helpers are attributes added 
to HTML elements. Tag Helpers encapsulate server side code that shapes the attached element. If you are 
developing with Visual Studio, then there is an added benefit of IntelliSense for the built-in Tag Helpers.

For example, the following HTML Helper creates a label for the customer’s FullName:

@Html.Label("FullName","Full Name:",new {@class="customer"})

This generates the following HTML:

<label class="customer" for="FullName">Full Name:</label>

For the C# developer who has been working with ASP.NET MVC and Razor, the HTML helper syntax is 
understood. But it’s not intuitive. Especially for someone who works in HTML/CSS/JavaScript, and not C#.

The corresponding Tag Helper would be written into the view like this:

<label class="customer" asp-for="FullName">Full Name:</label>

This produces the same output. And, if the FullName property contained the Display attribute (which it 
does), then the following markup will use the Name property on the attribute to produce the same output:

<label class="customer" asp-for="FullName"/>

http://dx.doi.org/10.1007/978-1-4842-2478-6_4


Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

158

Table 5-1.  Built-in Tag Helpers

Tag Helper HTML Helper Available Attributes

Form Html.BeginForm  
Html.BeginRouteForm Html.
AntiForgeryToken

asp-route – for named routes (can’t be used with 
controller or action attributes)  
asp-antiforgery – if the antiforgery should be added 
asp-area – the name of the area  
asp-controller – defines the controller  
asp-action – defines the action  
asp-route-<ParameterName> - adds the parameter to the 
route, e.g., asp-route-id="1"  
asp-all-route-data- dictionary for additional route 
values Automatically adds the antiforgery token

Anchor Html.ActionLink asp-route – for named routes (can’t be used with 
controller or action attributes)  
asp-area – the name of the area  
asp-controller – defines the controller  
asp-action – defines the action  
asp-protocol – http or https  
asp-fragment – URL fragment  
asp-host – the host name  
asp-route-<ParameterName> - adds the parameter to the 
route, e.g., asp-route-id="1"  
asp-all-route-data- dictionary for additional route values

Input Html.TextBox/TextBoxFor  
Html.Editor/EditorFor

asp-for – a model property. Can navigate the model 
(Customer.Address.AddressLine1) and use expressions 
(asp-for="@localVariable")  
The id and name attributes are auto-generated  
Any HTML5 data-val attributes are auto-generated

TextArea Html.TextAreaFor asp-for – a model property. Can navigate the model 
(Customer.Address.Description) and use expressions 
(asp-for="@localVariable")  
The id and name attributes are auto-generated  
Any HTML5 data-val attributes are auto-generated

Label Html.LabelFor asp-for – a model property. Can navigate the model 
(Customer.Address.AddressLine1) and use expressions 
(asp-for="@localVariable")

Select Html.DropDownListFor 
Html.ListBoxFor

asp-for – a model property. Can navigate the model  
(Customer.Address.AddressLine1) and use expressions  
(asp-for="@localVariable")  
asp-items – specifies the options elements Auto-generates 
the selected="selected" attribute  
The id and name attributes are auto-generated  
Any HTML5 data-val attributes are auto-generated

(continued)

There are many built-in Tag Helpers, and they are designed to be used instead of their respective 
HTML Helpers. However, not all HTML Helpers have an associated Tag Helper. Table 5-1 lists the available 
Tag Helpers, their corresponding HTML Helper, and the available attributes. Each is explained in the next 
sections, except for the Label Tag Helper, which was already discussed.



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

159

Tag Helper HTML Helper Available Attributes

Validation 
Message 
(Span)

Html.ValidationMessageFor asp-validation-for – a model property. Can navigate 
the model (Customer.Address.AddressLine1) and use 
expressions (asp-for="@localVariable")  
Adds the data-valmsg-for attribute to the span

Validation 
Summary (Div)

Html.ValidationSummaryFor asp-validation-summary – select one of All, 
ModelOnly, or None  
Adds the data-valmsg-summry attribute to the div

Link N/A asp-append-version – appends version to filename 
asp-fallback-href – fallback file to use if primary is not 
available; usually used with CDN sources  
asp-fallback-href-include – globbed file list of files to 
include on fallback  
asp-fallback-href-exclude – globbed file list of files to 
exclude on fallback  
asp-fallback-test-* – properties to use on fallback test. 
Included are class, property, and value  
asp-href-include – globbed file pattern of files to include  
asp-href-exclude – globbed file pattern of files to 
exclude

Script N/A asp-append-version – appends version to file name 
asp-fallback-src – fallback file to use if primary is not 
available; usually used with CDN sources  
asp-fallback-src-include – globbed file list of files to 
include on fallback  
asp-fallback-src-exclude – globbed file list of files to 
exclude on fallback  
asp-fallback-test – the script method to use  
in fallback test.  
asp-src-include – globbed file pattern of files to include  
asp-src-exclude – globbed file pattern of files to exclude

Image N/A asp-append-version – appends version to filename

Environment N/A name –one of Development, Staging, or Production

Table 5-1.  (continued)

In addition to the pre-supplied tag helpers, custom tag helpers can be created as well.

Enabling Tag Helpers
Tag Helpers, like any other code, must be made visible to any code that wants to use them.  
The _ViewImports.html file contains the following line:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

This makes all Tag Helpers in the Microsoft.AspNetCore.Mvc.TagHelpers assembly (which contains 
all of the built-in Tag Helpers) available to all of the Views.



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

160

The Form Tag Helper
The Form Tag Helper replaces the Html.BeginForm and Html.BeginRouteForm HTML Helpers. For example, 
to create a form that submits to the HTTP Post version of the AddToCart action on the CartController with 
two parameters, CustomerId and ProductId, use the following code:

<form method="post"
  asp-controller="Cart"
  asp-action="AddToCart"
  asp-route-customerId="@Model.CustomerId"
  asp-route-productId="@Model.Id">
<!-- Omitted for brevity -->
</form>

If the Form tag was rendered in a view by the HTTP Get version of the AddToCart action of the 
CartController, the asp-controller and asp-action attributes are optional. As mentioned in Table 5-1, 
the antiforgery token is by default automatically rendered by the Form Tag Helper.

The Anchor Tag Helper
The Anchor Tag Helper replaces the Html.ActionLink HTML Helper. For example, to create a link for the site 
menu, use the following code:

<a asp-controller="Products" asp-action="ProductList" asp-route-id="@item.Id">
  @item.CategoryName
</a>

The Tag Helper creates the URL from the route table, using the ProductsController, ProductList 
Action method, and the current value for the Id. The CategoryName property becomes the anchor tag text. 
The resulting URL looks like this:

<a href="/Products/ProductList/0">Communications</a>

The Input Tag Helper
The Input Tag Helper is the most versatile of the Tag Helpers. In addition to auto-generating the HTML 
id and name attributes, as well as any HTML5 data-val validation attributes, the Tag Helper builds the 
appropriate HTML markup based on the datatype of the target property. Table 5-2 lists the HTML type that is 
created based on the .NET type of the property.

Table 5-2.  HTML Types Generated from .NET Types Using the Input Tag Helper

.NET Type Generated HTML Type

Bool type="checkbox"

String type="text"

DateTime type="datetime"

Byte, Int, Single, Double type="number"



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

161

Additionally, the Input Tag Helper will add HTML5 type attributes based on data annotations. Table 5-3 
lists some of the most common annotations and the generated HTML5 type attributes.

Table 5-3.  HTML5 Types Attributes Generated from .NET Data Annotations

.NET Data Annotation Generated HTML5 Type Attribute

EmailAddress type="email"

Url type="url"

HiddenInput type="hidden"

Phone type="tel"

DataType(DataType.Password) type="password"

DataType(DataType.Date) type="date"

DataType(DataType.Time) type="time"

For example, to display a text box for editing the Quantity value on a model, enter the following:

<input asp-for="Quantity" class="cart-quantity" />

Presuming the value of the Quantity field is 3, the following HTML gets generated:

<input name="Quantity" class="cart-quantity" id="Quantity" type="number" value="3" data-val-
required="The Quantity field is required." data-val="true" data-val-notgreaterthan-prefix=" 
" data-val-notgreaterthan-otherpropertyname="UnitsInStock" data-val-notgreaterthan="Quantity 
must not be greater than In Stock">

The id, name, value, and validation attributes are all added automatically.

The TextArea Tag Helper
The TextArea Tag Helper adds the id and name attributes automatically and any HTML5 validation tags 
defined for the property. For example, the following line creates a textarea tag for the Description property:

<textarea asp-for="Description"></textarea>

The resulting markup is this:

<textarea name="Description" id="Description" data-val="true" data-val-maxlength-max="3800" 
data-val-maxlength="The field Description must be a string or array type with a maximum 
length of '3800'.">Disguised as typewriter correction fluid (rest omitted for brevity) 
</textarea>

The Select Tag Helper
The Select Tag Helper builds input select tags from a model property and a collection. As with the other 
input Tag Helpers, the id and name are added to the markup, as well as any HTML5 data-val attributes.  
If the model property value matches one of the select list item’s values, that option gets the selected attribute 
added to the markup.



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

162

For example, take a model that has a property named Country and a SelectList named Countries, 
with the list defined as follows:

public List<SelectListItem> Countries { get; } = new List<SelectListItem>
{
  new SelectListItem { Value = "MX", Text = "Mexico" },
  new SelectListItem { Value = "CA", Text = "Canada" },
  new SelectListItem { Value = "US", Text = "USA"  },
};

The following markup will render the select tag with the appropriate options:

<select asp-for="Country" asp-items="Model.Countries"></select>

If the value of the Country property is set to CA, the following full markup will be output to the view:

<select id="Country" name="Country">
  <option value="MX">Mexico</option>
  <option selected="selected" value="CA">Canada</option>
  <option value="US">USA</option>
</select>

This just scratches the surface of the Select Tag Helper. For more information, refer to the 
documentation located here: https://docs.microsoft.com/en-us/aspnet/core/mvc/views/working-
with-forms#the-select-tag-helper.

The Validation Tag Helpers
The Validation Message and Validation Summary Tag Helpers closely mirror the Html.
ValidationMessageFor and Html.ValidationSummaryFor HTML Helpers. The first is applied to a span 
HTML tag for a specific property on the model, and the latter is applied to a div tag, and represents the 
entire model. The Validation Summary has the option of All errors, ModelOnly (excluding errors on model 
properties), or None.

The following code adds a Validation Summary for model-level errors and a Validation Message for the 
Quantity property of the model:

<div asp-validation-summary="ModelOnly" class="text-danger"></div>
<span asp-validation-for="Quantity" class="text-danger"></span>

If there was a model-level error and an error on the Quantity property, the output would resemble this:

<div class="text-danger validation-summary-errors">
  <ul>
    <li>There was an error adding the item to the cart.</li>
  </ul>
</div>
<span class="text-danger field-validation-error" data-valmsg-replace="true" data-valmsg-
for="Quantity">Quantity must not be greater than In Stock</span>

Validation and model binding are covered in detail later in the chapter.

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/working-with-forms#the-select-tag-helper
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/working-with-forms#the-select-tag-helper


Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

163

The Link and Script Tag Helpers
The most commonly used attributes of the Link and Script Tag Helpers are the asp-append-version and 
asp-fallback-* attributes. The asp-append-version attribute adds the hash of the file to the name so the 
cache is invalidated when the file changes and the file is reloaded. The following is an example of the asp-
append-version attribute:

<link rel="stylesheet" href="~/css/site.css" asp-append-version="true"/>

The rendered code is as follows:

<link href="/css/site.css?v=v9cmzjNgxPHiyLIrNom5fw3tZj3TNT2QD7a0hBrSa4U" rel="stylesheet">

The asp-fallback-* attributes are typically used with CDN file sources. For example, the following 
code attempts to load jquery from the Microsoft CDN. If it fails, it loads the local version:

<script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-3.1.1.min.js"
  asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
  asp-fallback-test="window.jQuery">

The Image Tag Helper
The Image Tag Helper provides the asp-append-version attribute, which works the same as described in the 
Link and Script Tag Helpers.

The Environment Tag Helper
The Environment Tag Helper is typically used to conditionally load files based on current environment 
that the site is running under. The following code will load the un-minified files if the site is running in 
Development, and the minified versions if the site is running in Staging or Production:

<environment names="Development">
  <link rel="stylesheet" href="~/css/site.css" asp-append-version="true"/>
  <link rel="stylesheet" href="~/css/spystore-bootstrap.css" asp-append-version="true"/>
</environment>
<environment names="Staging,Production">
  <link rel="stylesheet" href="~/css/site.min.css" />
  <link rel="stylesheet" href="~/css/spystore-bootstrap.min.css" asp-append-version="true" />
</environment>

Custom Tag Helpers
Custom Tag Helpers can also be created. Custom Tag Helpers can help eliminate repeated code, such as 
creating mailto: links. Create a new folder named TagHelpers in the root of the SpyStore.MVC project. In 
this folder, create a new class named EmailTagHelper.cs and inherit from TagHelper, as follows:

public class EmailTagHelper : TagHelper
{
}



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

164

Add the following using statement to the top of the file:

using Microsoft.AspNetCore.Razor.TagHelpers;

Add two properties to hold the EmailName and the EmailDomain, as follows:

public string EmailName { get; set; }
public string EmailDomain { get; set; }

Public properties are accessed as attributes of the tag helper, converted to lower-kebab-case. For the 
EmailTagHelper, they have values passed in like this:

<email email-name="blog" email-domain="skimedic.com"></email>

When a Tag Helper is invoked, the Process method is called. The Process method takes two 
parameters, a TagHelperContext and a TagHelperOutput. The TagHelperContext is used to get any other 
attributes on the tag and a dictionary of objects used to communicate with other tag helpers targeting child 
elements. The TagHelperOutput is used to create the rendered output.

Add the following method to the EmailTagHelper class:

public override void Process(TagHelperContext context, TagHelperOutput output)
{
  output.TagName = "a";    // Replaces <email> with <a> tag
  var address = EmailName + "@" + EmailDomain;
  output.Attributes.SetAttribute("href", "mailto:" + address);
  output.Content.SetContent(address);
}

Making Custom Tag Helpers Visible
To make custom Tag Helpers visible, the @addTagHelper command must be executed for any views that 
use the Tag Helpers. To apply this to all views, add the command to the _ViewImports.cshtml file. Open 
the _ViewImports.cshtml file in the root of the Views folder and add the following line to make the 
EmailTagHelper visible to the views in the application:

@addTagHelper *, SpyStore.MVC

Building the Controllers
The application consists of three controllers, one each for Products, Orders, and the ShoppingCart. The 
Products and Orders controllers are both very straight forward, as they are used to build display only pages. 
The ShoppingCartController is the workhorse of this sample application and is covered last.

Delete the HomeController file if you haven’t already, as it’s not used by this application.



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

165

The Products Controller
Create a new file named ProductsController.cs in the Controllers directory. Update the using 
statements to match the following:

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using SpyStore.Models.ViewModels.Base;
using SpyStore.MVC.Models;
using SpyStore.MVC.WebServiceAccess.Base;

Change the class to public and inherit from Controller, as follows:

public class ProductsController : Controller

The Constructor
The ProductsController needs an instance of the IWebApiCalls class to call into the service to get product 
data. Add the following property to the top of the class and the following constructor code:

private readonly IWebApiCalls _webApiCalls;
public ProductsController(IWebApiCalls webApiCalls)
{
  _webApiCalls = webApiCalls;
}

The Error Action
The Error action is invoked when there is an unhandled error in the application and the application is not 
running in Development. This was configured in the Startup.cs class Configure method, as shown here:

if (env.IsDevelopment())
{
  app.UseDeveloperExceptionPage();
  app.UseBrowserLink();
}
else
{
  app.UseExceptionHandler("/Products/Error");
}

The action simply returns a ViewResult that renders the Error.cshtml view:

[HttpGet]
public ActionResult Error()
{
  return View();
}



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

166

The Details Action
The Details action redirects to the AddToCart action of the CartController using the RedirectToAction 
method. The RedirectToAction method has several overloads, and in this instance, all are in use. The first 
parameter is the action method name and the second is the controller name, both passed in as strings. 
The C# nameof method is used to get the string names from the C# objects to help prevent typos and 
runtime errors in case of a name change. MVC strips off the Controller suffix of a controller name when 
creating routes, so the Replace function is used to remove the string “Controller” from the result of the 
nameof function. The final parameter is an anonymous object that contains route values. The first two 
values (customerId and productId) are used to create the route. Additional values can be passed in to an 
action method as simple parameters, and a bool is used to indicate that the source of the request is the 
ProductController Details action method.

public ActionResult Details(int id)
{
  return RedirectToAction(
   nameof(CartController.AddToCart),
   nameof(CartController).Replace("Controller", ""),
   new { customerId = ViewBag.CustomerId, productId = id, cameFromProducts = true });
}

■■ Note   This code won’t compile until the CartController is added, which further illustrates the benefit to 
using the nameof function.

The GetListOfProducts Helper Method
The home page of the SpyStore site shows a list of featured Products. The use has the option to select one 
of the Category values to show all of the products in that Category as well as searching for products that 
contain the search phrase. All of them require a List of ProductAndCategoryBase records and pass that list 
to the ProductList.cshtml view. Create an internal method that uses the WebApiCalls utility to get the 
appropriate list (based on the parameters passed in from the calling method) and return the ProductList 
view with the list as the view’s model. If no products are found, a NotFound IActionResult is returned.

internal async Task<IActionResult> GetListOfProducts(
  int id = -1, bool featured = false, string searchString = "")
{
  IList<ProductAndCategoryBase> prods;
  if (featured)
  {
    prods = await _webApiCalls.GetFeaturedProductsAsync();
  }
  else if (!string.IsNullOrEmpty(searchString))
  {
    prods = await _webApiCalls.SearchAsync(searchString);
  }
  else
  {
    prods = await _webApiCalls.GetProductsForACategoryAsync(id);
  }



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

167

  if (prods == null)
  {
    return NotFound();
  }
  return View("ProductList", prods);
}

The Index, Featured, and Search Actions
The previous helper method simplifies the Featured, ProductList, and Search action methods.

The Index and Featured Actions

For the Index and Featured actions, all that needs to be done is to set the correct ViewBag properties and 
then call the GetListOfProducts helper method. The Featured and ProductList methods are shown here:

[HttpGet]
public async Task<IActionResult> Featured()
{
  ViewBag.Title = "Featured Products";
  ViewBag.Header = "Featured Products";
  ViewBag.ShowCategory = true;
  ViewBag.Featured = true;
  return await GetListOfProducts(featured:true);
}

[HttpGet]
public async Task<IActionResult> ProductList(int id)
{
  var cat = await _webApiCalls.GetCategoryAsync(id);
  ViewBag.Title = cat?.CategoryName;
  ViewBag.Header = cat?.CategoryName;
  ViewBag.ShowCategory = false;
  ViewBag.Featured = false;
  return await GetListOfProducts(id);
}

The Search Action

The Search action method code is very similar to the previous two methods. There are two main differences. 
The first is adding the search string to the route, and the second is setting the method up to respond to HTTP 
Post requests instead of HTTP Get requests.

As you saw in Chapter 3, route values can be placed in the constructor of HttpPost and HttpGet 
attributes. The caveat is that blending RouteTable and attribute routing doesn’t work. So a Route attribute 
must be used to define the base route. Add the following code to the ProductsController:

[Route("[controller]/[action]")]
[HttpPost("{searchString}")]
public async Task<IActionResult> Search(string searchString)
{

http://dx.doi.org/10.1007/978-1-4842-2478-6_3


Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

168

  ViewBag.Title = "Search Results";
  ViewBag.Header = "Search Results";
  ViewBag.ShowCategory = true;
  ViewBag.Featured = false;
  return await GetListOfProducts(searchString:searchString);
}

The {searchString} route value could have also been placed in the Route attribute itself. The HttpPost 
attribute would then be blank, like this:

[Route("[controller]/[action]/{searchString}")]
[HttpPost]

Which way to code the route is personal preference. I prefer to have my final route controlled by the 
HttpGet or HttpPost attribute.

The Orders Controller
Create a new file named OrdersController.cs in the Controllers directory. Update the using statements 
to match the following:

using System.Collections.Generic;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using SpyStore.Models.Entities;
using SpyStore.Models.ViewModels;
using SpyStore.MVC.WebServiceAccess.Base;

Change the class to public and inherit from Controller, as follows:

public class OrdersController : Controller

The Route
The OrdersController route is a little different than the default route. Instead of having an optional integer 
value named id, the OrdersController needs an integer value named customerId as a required value. Add 
the following Route attribute to the top of the class, like this:

[Route("[controller]/[action]/{customerId}")]
public class OrdersController : Controller
{
  //omitted for brevity
}



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

169

The Constructor
The OrdersController needs an instance of the IWebApiCalls class to call into the service to get product 
data (see the pattern that is forming?). Add the following property to the top of the class and the following 
constructor code:

private readonly IWebApiCalls _webApiCalls;
public OrdersController(IWebApiCalls webApiCalls)
{
  _webApiCalls = webApiCalls;
}

The Index Action
The Index action lists all of the orders for a particular customer. Add the following code for the Index  
action method:

[HttpGet]
public async Task<IActionResult> Index(int customerId)
{
  ViewBag.Title = "Order History";
  ViewBag.Header = "Order History";
  IList<Order> orders = await _webApiCalls.GetOrdersAsync(customerId);
  if (orders == null) return NotFound();
  return View(orders);
}

The Details Action
The Details action method returns all of the details for a single order. The orderId is added to the route 
using the HttpGet attribute. Add the following code to finish off the OrdersController:

[HttpGet("{orderId}")]
public async Task<IActionResult> Details(int customerId, int orderId)
{
  ViewBag.Title = "Order Details";
  ViewBag.Header = "Order Details";
  OrderWithDetailsAndProductInfo orderDetails =
    await _webApiCalls.GetOrderDetailsAsync(customerId, orderId);
  if (orderDetails == null) return NotFound();
  return View(orderDetails);
}



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

170

The Shopping Cart Controller
Create a new file named CartController.cs in the Controllers directory. Update the using statements to 
match the following:

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using AutoMapper;
using Microsoft.AspNetCore.Mvc;
using SpyStore.Models.Entities;
using SpyStore.Models.ViewModels;
using SpyStore.MVC.WebServiceAccess.Base;
using SpyStore.MVC.ViewModels;
using SpyStore.Models.ViewModels.Base;
using Newtonsoft.Json;

Change the class to public and inherit from Controller, as follows:

public class CartController : Controller

The Route
The final controller to add is the workhorse of the sample application. In addition to returning one or all of 
the shopping cart records for a customer, the Add, Update, and Delete methods are implemented as well. 
The final method executes the stored procedure to execute a purchase. The CartController route is the 
same as the OrdersController route. Update the class declaration and route as follows:

[Route("[controller]/[action]/{customerId}")]
public class CartController : Controller
{
  //omitted for brevity
}

The Constructor
The ProductsController needs an instance of the IWebApiCalls class to call into the service to get product 
data. Add the following property and the constructor code:

private readonly IWebApiCalls _webApiCalls;
public CartController(IWebApiCalls webApiCalls)
{
  _webApiCalls = webApiCalls;
}



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

171

Creating the AutoMapper Configuration
AutoMapper (created and maintained by Jimmy Bogard) quickly and easily converts one object to another 
using reflection. Before types can be converted, the type mappings must be configured. Create a class-level 
variable to hold the configuration and then update the constructor to the following:

readonly MapperConfiguration _config;
public CartController(IWebApiCalls webApiCalls)
{
  _webApiCalls = webApiCalls;
  _config = new MapperConfiguration(cfg =>
    {
      cfg.CreateMap<CartRecordViewModel, ShoppingCartRecord>();
      cfg.CreateMap<CartRecordWithProductInfo, CartRecordViewModel>();
      cfg.CreateMap<ProductAndCategoryBase, AddToCartViewModel>();
    });
}

The syntax is simple—the CreateMap command creates a mapping from the first type to the second in 
the call. For example, this command allows conversion of a CartRecordViewModel to a ShoppingCartRecord:

cfg.CreateMap<CartRecordViewModel, ShoppingCartRecord>();

The Index Action
The two Index action methods return the list of items in the cart. It needs to get the Cart and Customer 
information and convert the CartRecordWithProductInfo records into CartRecordViewModel records. 
The Customer and CartRecordViewModel records are then added to a CartViewModel. It finally returns the 
Index.cshtml view, using the CartRecordViewModel as the data source for the view. Add the following code:

[HttpGet]
public async Task<IActionResult> Index(int customerId)
{
  ViewBag.Title = "Cart";
  ViewBag.Header = "Cart";
  var cartItems = await _webApiCalls.GetCartAsync(customerId);
  var customer = await _webApiCalls.GetCustomerAsync(customerId);
  var mapper = _config.CreateMapper();
  var viewModel = new CartViewModel
  {
    Customer = customer,
    CartRecords = mapper.Map<IList<CartRecordViewModel>>(cartItems)
  };
  return View(viewModel);
}

Model Binding
Before moving on to the AddToCart, Update, and Delete methods, model binding needs to be explained 
further. Model binding was briefly mentioned in Chapter 3. As a refresher, model binding is the process 
of creating an instance of a specific type from submitted name/value. A new instance of the target type is 

http://dx.doi.org/10.1007/978-1-4842-2478-6_3


Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

172

created, and then the list of properties on the target type (acquired through reflection) is compared to the 
list of names in the submitted name value pairs. For every match between a property name and a submitted 
name, the submitted value is assigned to the property on the new instance. Errors in type conversion are 
tracked through the ModelState object, discussed shortly. Any name/value pairs that don’t have a match in 
the target type are just ignored.

There is implicit model binding and explicit model binding. Implicit model binding happens when a 
datatype is a parameter for an action method, like this:

[ActionName("AddToCart"),HttpPost("{productId}"),ValidateAntiForgeryToken]
public async Task<IActionResult> AddToCartPost(
    int customerId, int productId, AddToCartViewModel item)
{
  //omitted for brevity
}

Explicit model binding occurs when the developer asks for it through code and not through a method 
parameter. The following code shows how to accomplish the same results as the previous code block, but 
uses explicit model binding:

[ActionName("AddToCart"),HttpPost("{productId}"),ValidateAntiForgeryToken]
public async Task<IActionResult> AddToCartPost(int customerId, int productId)
  AddToCartViewModel vm = null;
  var success = await TryUpdateModelAsync(vm);
  //omitted for brevity
}

Results of binding attempts are stored in a special object called ModelState. This object has an IsValid 
property that is set based on the success or failure of the binding. If all matched properties are successfully 
assigned, ModelState.IsValid = true. If any of the values can’t be assigned to their respective properties 
for any reason, the ModelState.IsValid property is set to false.

Typical reasons for failed value assignments are datatype conversion issues and/or validation errors. 
Datatype conversion issues can occur because submitted values come across as strings. For example, if 
a user enters "Sept 31, 2017" for a date value in the user interface, the model binder will not be able to 
assign that value to a property of type DateTime. The binding engine does not throw an exception, but leaves 
the value unassigned and sets the model property IsValid=false.

In addition to the IsValid property, the string indexer for ModelState is a ModelStateDictionary. 
This dictionary contains any error information for every property that failed as well as any model level error 
information. Errors for properties are accessed using the property name. For example, the following code 
gets error(s) for the failure of a property named Foo:

var errorReason = ModelState[nameof(Foo)];

Error messages can manually be added into the ModelState like this:

ModelState.AddModelError("Name","Name is required");

If you want to add an error for the entire model, use string.Empty for the property name, like this:

ModelState.AddModelError(string.Empty, $"Unable to create record: {ex.Message}");

Server side error handling for ModelState is covered in the “Building the Controllers” section (next) and 
client side display of any errors is covered in the “Views” section.



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

173

The AddToCart Actions
Adds, deletes, and updates are typically conducted using two action methods. The first responds to an HTTP 
Get request and sets up the view for gathering data from the user. The second responds to an HTTP Post 
request and executes the data change. If the change is successful, the user is redirected to another HTTP Get 
action. This prevents the double post problem. If the change fails, the view reloads with the user input and 
any validation messages.

The Details action (from ProductController) and the AddToCart actions render the same view file. 
There is a slight difference in what is shown in the UI based on how the user arrived at this method. If it’s 
from one of the Product list pages or the ShoppingCart, then there is a Back link added to the screen. If the 
user clicked on the Add to Cart link on one of the product list pages, the Back link is not rendered.

The HTTP Get Action

The route for this action needs the Product Id added so the correct Product is displayed in the UI and 
potentially added to the ShoppingCart. The action also needs a parameter for the cameFromProducts bool, 
which is not part of the route, but sent in the RedirectToRoute ActionResult from the Details action of the 
ProductController. Here are the route values from the Details action:

new { customerId = ViewBag.CustomerId, productId = id, cameFromProducts = true });

The method sets up the ViewBag, then gets an instance of the ProductAndCategoryBase from the 
service. If a Product isn’t found using the ProductId passed into the method, the method returns a 
NotFoundResult. If it is found, the instance is mapped to an AddToCartViewModel, the Quantity defaults to 
1, and the AddToCart.cshtml view is returned with the AddToCartViewModel as the data. Add the following 
code to the class:

[HttpGet("{productId}")]
public async Task<IActionResult> AddToCart(
    int customerId, int productId, bool cameFromProducts = false)
{
  ViewBag.CameFromProducts = cameFromProducts;
  ViewBag.Title = "Add to Cart";
  ViewBag.Header = "Add to Cart";
  ViewBag.ShowCategory = true;
  var prod = await _webApiCalls.GetOneProductAsync(productId);
  if (prod == null) return NotFound();
  var mapper = _config.CreateMapper();
  var cartRecord = mapper.Map<AddToCartViewModel>(prod);
  cartRecord.Quantity = 1;
  return View(cartRecord);
}

The HTTP Post Action

When the user submits the data from the AddToCart HTTP Get method, the browser submits an HTTP Post 
request. The method must have the HttpPost attribute with the {productid} route parameter. MVC views 
also use antiforgery tokens, so the method needs the ValidateAntiForgeryToken attribute. In addition to 
the customerId and productId parameters, the method takes an AddToCartViewModel parameter that gets 



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

174

populated with implicit model binding. If the name of the method doesn’t exactly match the expected route, 
the ActionName parameter is added. Add the method signature as follows:

[HttpPost("{productId}"),ValidateAntiForgeryToken, ActionName("AddToCart")]
public async Task<IActionResult> AddToCartPost(
    int customerId, int productId, AddToCartViewModel item)
{
}

The body of the method first checks the ModelState. If it’s not valid, then the AddToCart.cshtml view 
is returned, with the current values of the AddToCartViewModel (including the ModelState errors) as the 
data. If the ModelState is valid, the AddToCartAsync method is executed to add the product to the cart. If this 
is successful, the user is redirected back to the Index view. If there is an error adding the item to the cart, a 
model-level error is added to the ModelState and the AddToCart.cshtml view is returned so the user can try 
again. The full method is listed here:

[ActionName("AddToCart"),HttpPost("{productId}"),ValidateAntiForgeryToken]
public async Task<IActionResult> AddToCartPost(
    int customerId, int productId, AddToCartViewModel item)
{
  if (!ModelState.IsValid) return View(item);
  try
  {
    await _webApiCalls.AddToCartAsync(customerId, productId, item.Quantity);
  }
  catch (Exception ex)
  {
    ModelState.AddModelError(string.Empty, "There was an error adding the item to the 
cart.");
    return View(item);
  }
  return RedirectToAction(nameof(CartController.Index), new { customerId });
}

The Update HTTP Post Action
The Update action only has an HTTP Post implementation. This action method is called as an AJAX request 
from the Cart List (Index.cshtml view), which provides the HTTP Get display of the cart records. The Route 
needs the ID of the ShoppingCartRecord in the HttpPost attribute and needs the ValidateAntiForgeryToken 
attribute, as do all MVC HTTP Post methods. In addition to the customerId and id parameters, the method 
takes a timeStampString parameter that will be passed in as a form value and a CartRecordViewModel 
parameter that will be populated using implicit model binding. Add the following signature:

[HttpPost("{id}"),ValidateAntiForgeryToken]
public async Task<IActionResult> Update(int customerId, int id,
    string timeStampString, CartRecordViewModel item)
{
}



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

175

The method starts by de-serializing the timeStampString parameter back into a byte[] and assigns it 
to the CartRecordViewModel instance. This is done to work around an issue with AJAX calls caching values 
between calls, and while there are other ways to solve this (such as manually invalidating the cache), this 
was the quickest and easiest. Then the ModelState is checked, and if it’s not valid, the Update.cshtml partial 
view is returned as the AJAX results.

If the ModelState is valid, the view model is converted back into a ShoppingCartRecord for update. If 
the update succeeds, the updated item is mapped back into a CartRecordViewModel, and the Update.cshtml 
partial view is returned. If the update doesn’t succeed, a model level ModelState error is added and the 
original item is returned with the Update.cshtml partial view so the user can try again. Update the action 
method to the following code:

[HttpPost("{id}"),ValidateAntiForgeryToken]
public async Task<IActionResult> Update(int customerId, int id,
    string timeStampString, CartRecordViewModel item)
{
  item.TimeStamp = JsonConvert.DeserializeObject<byte[]>($"\"{timeStampString}\"");
  if (!ModelState.IsValid) return PartialView(item);
  var mapper = _config.CreateMapper();
  var newItem = mapper.Map<ShoppingCartRecord>(item);
  try
  {
    await _webApiCalls.UpdateCartItemAsync(newItem);
    var updatedItem = await _webApiCalls.GetCartRecordAsync(customerId, item.ProductId);
    var newViewModel = mapper.Map<CartRecordViewModel>(updatedItem);
    return PartialView(newViewModel);
  }
  catch (Exception ex)
  {
    ModelState.AddModelError(string.Empty,
      "An error occurred updating the cart. Please reload the page and try again.");
    return PartialView(item);
  }
}

The Delete HTTP Post Action
Similar to the Update action, the Delete action only needs an HTTP Post implementation. Unlike the Update 
action, this action isn’t called using AJAX, so at the end of the method, the user is redirected to the Index 
action. Add the following code:

[HttpPost("{id}"),ValidateAntiForgeryToken]
public async Task<IActionResult> Delete(int customerId, int id, ShoppingCartRecord item)
{
  await _webApiCalls.RemoveCartItemAsync(customerId, id, item.TimeStamp);
  return RedirectToAction(nameof(Index), new { customerId });
}

■■ Note   This method could be improved using AJAX as well, but was kept simple to show redirecting the user 
back to the Index view.



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

176

The Buy HTTP Post Action
This method uses (now) familiar techniques to call the PurchaseCartAsync method. A production version 
should add error handling as you have seen in the earlier code samples. Add the following code:

[HttpPost,ValidateAntiForgeryToken]
public async Task<IActionResult> Buy(int customerId, Customer customer)
{
  int orderId = await _webApiCalls.PurchaseCartAsync(customer);
  return RedirectToAction(
    nameof(OrdersController.Details),
    nameof(OrdersController).Replace("Controller",""),
    new { customerId, orderId });
}

■■ Note   The examples in this section demonstrate many, but certainly not all, of the features available  
when developing Core MVC controllers. For more information, refer to the official documentation here:  
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/actions.

Validation
Validation in Core MVC applications should be conducted client side and server side. Client side validation 
is conducted using JavaScript and is immediately responsive to the user. However, if users have JavaScript 
turned off in their browsers, then the validation doesn’t execute, and potentially harmful data (or scripting 
attacks) can be sent to the server.

Many of the built-in data annotations already used in the data access layer, such as MaxLength and 
Required, also participate in validations (both server side and client side). For example, the following 
FullName property is limited to 50 characters in length:

[DataType(DataType.Text), MaxLength(50), Display(Name = "Full Name")]
public string FullName { get; set; }

If a value longer than 50 characters is submitted, the client side validation will prevent the value 
from being sent to the server and will display the error message in the Validation Tag Helpers. Client side 
validation is covered in detail shortly.

Server Side Validation
If client side validation is disabled for any reason, when the data is sent to the server, the model binding 
engine will fail the FullName property, set ModelState.IsValid = false, and add the following error to the 
ModelState instance:

The field Full Name must be a string or array type with a maximum length of '50'.

The value Full Name comes from the Display attribute. If this attribute isn’t supplied, then the field 
name (FullName in this example) is used in the message. The errors collection for a field (or the model) in 

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/actions
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/actions


Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

177

the ModelStateDictionary provides access to the specific ErrorMessage and Exception (if one exists). For 
example, the following code gets the error message of the first error for the FullName property:

var message = ModelState[nameof(Customer.FullName)].Errors[0].ErrorMessage

Most attributes can be assigned custom messages in their constructor. Custom messages override the 
automatic message that gets created by the built-in attributes. To add a custom message for the MaxLength 
validation attribute on the FullName property, use the following:

[DataType(DataType.Text), MaxLength(50,ErrorMessage="Please make it shorter"), Display(Name 
= "Full Name")]

Custom Server Side Validation
Custom validation attributes can be created by inheriting from ValidationAttribute. The SpyStore.MVC 
application uses two custom validation attributes, one to verify if a number is greater than zero, and another 
to verify that a property is not greater than another property.

Greater Than Zero Attribute

Create a new directory named Validations in the SpyStore.MVC project. Add a new class named 
MustBeGreaterThanZeroAttribute, add the necessary using statements, make the class public, and inherit 
from ValidationAttribute, as shown here:

using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding.Validation;
public class MustBeGreaterThanZeroAttribute : ValidationAttribute
{
}

The base class takes an error message in its constructor. Create two constructors for the class. The first 
has no parameters and is used to create a default error message for the validation and pass it to the second 
constructor. The second accepts an error message from the attribute (or the default constructor) and passes 
it to the base. The constructors are as follows:

public MustBeGreaterThanZeroAttribute(): this("{0} must be greater than 0") { }
public MustBeGreaterThanZeroAttribute(string errorMessage): base(errorMessage) { }

Override the FormatErrorMessage method to format the error message at runtime. This is typically 
used to add the property name to the message, which is the single parameter of the method. If a 
DisplayNameAttribute is present on the property, that value is passed in as the parameter. Otherwise, the 
actual property name is used. Override the method and implement it as follows:

public override string FormatErrorMessage(string name)
{
  return string.Format(ErrorMessageString, name);
}

The final method to override is the IsValid method. This method takes the submitted string value 
and an instance of the ValidationContext. The validation context provides access to the property being 
validated (including its DisplayName) as well as the rest of the class instance it belongs to.



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

178

This method checks if the value passed in can be converted to an integer and if so, validates that the 
converted value is greater than zero. If both of these conditions are true, return ValidationResult.Success. 
Otherwise, use the ValidationResult helper method to return an instance of the ValidationResult class 
with the formatted error message. When anything other than ValidationResult.Success is returned, the 
ModelState IsValid property is set to false, and an entry into the ModelStateDictionary for the property 
is added. The code is listed here:

protected override ValidationResult IsValid(object value, ValidationContext 
validationContext)
{
  if (!int.TryParse(value.ToString(), out int result))
  {
    return new ValidationResult(FormatErrorMessage(validationContext.DisplayName));
  }
  if (result > 0)
  {
    return ValidationResult.Success;
  };
  return new ValidationResult(FormatErrorMessage(validationContext.DisplayName));
}

Must Not Be Greater Than Attribute

Add a new class named MustNotBeGreaterThanAttribute into the Validations directory. Add the following 
using statements:

using System;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Reflection;
using Microsoft.AspNetCore.Mvc.ModelBinding.Validation;

This attribute checks to see if the target property is less than or equal to another property on the class. 
This check might be necessary against more than one other property, so the attribute must be set up to allow 
multiple uses on the same property. That is accomplished with the AttributeUsage. The class also needs to 
inherit ValidationAttribute. Update the class definition as follows:

[AttributeUsage(AttributeTargets.Property, AllowMultiple = true)]
public class MustNotBeGreaterThanAttribute : ValidationAttribute
{
}

In addition to the error message, the constructors need the name of the property to be compared 
against. The attribute can also work in situations where there is a prefix to the property name, such as when 
displayed in a list. This will need to be passed in as well, defaulting to an empty string. Add the following two 
constructors and class-level variables (to hold the other property’s name and display name), as follows:

readonly string _otherPropertyName;
string _otherPropertyDisplayName;
readonly string _prefix;
public MustNotBeGreaterThanAttribute(string otherPropertyName, string prefix = "")



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

179

  : this(otherPropertyName, "{0} must not be greater than {1}",
    prefix)
{
}
public MustNotBeGreaterThanAttribute(
    string otherPropertyName, string errorMessage, string prefix) : base(errorMessage)
{
  _otherPropertyName = otherPropertyName;
  _otherPropertyDisplayName = otherPropertyName;
  _prefix = prefix;
}

Next, override the FormatErrorMessage, as follows:

public override string FormatErrorMessage(string name)
{
  return string.Format(ErrorMessageString, name, _otherPropertyDisplayName);
}

Add a new internal method named SetOtherProperrtyName that will get the display name of the other 
property based on the PropertyInfo. The code is shown here:

internal void SetOtherPropertyName(PropertyInfo otherPropertyInfo)
{
  var displayAttribute = otherPropertyInfo
    .GetCustomAttributes<DisplayAttribute>().FirstOrDefault();
  _otherPropertyDisplayName = displayAttribute?.Name ?? _otherPropertyName;
}

The IsValid method uses the ValidationContext to get the PropertyInfo and value about the other 
property. The method attempts to convert the input value to an integer and compares it with the target value 
(which is assumed to be an integer). If the property’s value is less than or equal to the other property’s value, 
the method returns ValidationResult.Success.

protected override ValidationResult IsValid(object value, ValidationContext 
validationContext)
{
  var otherPropertyInfo = validationContext.ObjectType.GetProperty(_otherPropertyName);
  SetOtherPropertyName(otherPropertyInfo);
  if (!int.TryParse(value.ToString(), out int toValidate))
  {
    return new ValidationResult($"{validationContext.DisplayName} must be numeric.");
  }
  var otherValue = (int)otherPropertyInfo.GetValue(validationContext.ObjectInstance, null);
  return toValidate > otherValue
    ? new ValidationResult(FormatErrorMessage(validationContext.DisplayName))
    : ValidationResult.Success;
}



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

180

Client Side Validation
Server side validation is only half of the story. Client side validation needs to be implemented in addition to 
server side validation to prevent wasted server calls and a degraded user experience. Client side validation 
is done through a combination of JavaScript and HTML5 attributes. By default, Core MVC uses the jQuery.
Validate and jQuery.Validate.Unobtrusive libraries as the core validation frameworks.

The validation frameworks use the data-val HTML5 attributes to indicate that validation is requested 
on the element. For example, the Required attribute adds the following attributes to an element:

data-val-required="The Quantity field is required." data-val="true"

The data-val="true" attribute enables client side validation. This is only added once, even if there are 
multiple validation attributes assigned. The data-val-required="The Quantity field is required." 
attribute indicates that the JavaScript function used for validation is named required and the error message 
is set to "The Quantity field is required.".

For the built-in validation attributes, client side validation is already configured. All that needs to be 
done is to add the proper JavaScript libraries to the page.

Custom Client Side Validation
For custom validations to work client side in addition to server side, the validators must implement 
IClientModelValidator and the AddValidation method. Additionally, custom JavaScript must be written 
and added to the view.

Greater Than Zero Attribute: Attribute Updates

Open the MustBeGreaterThanZeroAttribute.cs class and add the ICIientModelValidator interface and 
AddValidation method, as shown here:

public class MustBeGreaterThanZeroAttribute : ValidationAttribute, IClientModelValidator
{
  //omitted for brevity
  public void AddValidation(ClientModelValidationContext context)
  {
  }
}

The AddValidation method is used to add the required HTML5 attributes to the target element. For this 
validation, the attribute added will be data-val-greaterthanzero and the formatted error message.

The method first uses the ClientModelValidationContext to get the display name (if it exists, or the 
actual property name if it doesn’t) for the property being validated. This is used to build the formatted error 
message and then the formatted HTML5 attribute is added to the element. Update the AddValidation 
method to the following:

public void AddValidation(ClientModelValidationContext context)
{
  string propertyDisplayName =
    context.ModelMetadata.DisplayName ?? context.ModelMetadata.PropertyName;
  string errorMessage = FormatErrorMessage(propertyDisplayName);
  context.Attributes.Add("data-val-greaterthanzero", errorMessage);
}



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

181

Greater Than Zero Attribute: JavaScript

Open the validators.js file under wwwroot\js\validations and enter the following code:

$.validator.addMethod("greaterthanzero", function (value, element, params) {
    return value > 0;
});

$.validator.unobtrusive.adapters.add("greaterthanzero", function (options) {
    options.rules["greaterthanzero"] = true;
    options.messages["greaterthanzero"] = options.message;
});

The first code block defines the greaterthanzero method, which simply compares the values and 
returns a boolean. The second code block registers the validation method with the jQuery validation 
framework. The options.rules value gets passed into the validation function as one of the params. The 
options.rules[“greaterthanzero”] must be set for the adapter to be enabled, even if there aren’t any 
parameters to pass into the function. Finally, the error message is registered with the validation framework. 
Even though this was set in the AddValidation method, it must also be done here.

Must Not Be Greater Than Attribute: Attribute Updates

Open the MustNotBeGreaterThanAttribute.cs class and add the IClientModelValidator interface and the 
AddValidation method, as shown here:

public class MustBeGreaterThanZeroAttribute : ValidationAttribute, IClientModelValidator
{
  //omitted for brevity
  public void AddValidation(ClientModelValidationContext context)
  {
  }
}

The AddValidation method uses the ClientModelValidationContext to get the display name of 
both the property that is the target of the validation and the property it is being compared to, then adds the 
HTML5 attributes to the target property. Update the AddValidation method to the following:

public void AddValidation(ClientModelValidationContext context)
{
  string propertyDisplayName = context.ModelMetadata.GetDisplayName();
  var propertyInfo = context.ModelMetadata.ContainerType.GetProperty(_otherPropertyName);
  SetOtherPropertyName(propertyInfo);
  string errorMessage = FormatErrorMessage(propertyDisplayName);
  context.Attributes.Add("data-val-notgreaterthan", errorMessage);
  context.Attributes.Add("data-val-notgreaterthan-otherpropertyname", _otherPropertyName);
  context.Attributes.Add("data-val-notgreaterthan-prefix", _prefix);
}



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

182

Must Not Be Greater Than Attribute: JavaScript

Open the validators.js file under wwwroot\js\validations and enter the following code:

$.validator.addMethod("notgreaterthan", function (value, element, params) {
  return +value <= +$(params).val();
});
$.validator.unobtrusive.adapters.add("notgreaterthan", ["otherpropertyname", "prefix"], 
function (options) {
  options.rules["notgreaterthan"] =
    "#" + options.params.prefix + options.params.otherpropertyname;
  options.messages["notgreaterthan"] = options.message;
});

This is very similar to the previous validator. The first code block defines the notgreaterthan method. 
The second code block registers the validation method with the validation framework. The  
options.rules value combines the prefix to the other property name, which will be passed into the 
notgreaterthan function as a parameter.

Specifying Formatting for Client Side Validation Errors
The final item for client side validation is to change the display default when an error occurs. Open the 
errorFormatting.js file and enter the following code:

$.validator.setDefaults({
  highlight: function (element, errorClass, validClass) {
    if (element.type === "radio") {
      this.findByName(element.name).addClass(errorClass).removeClass(validClass);
    } else {
      $(element).addClass(errorClass).removeClass(validClass);
      $(element).closest('.form-group').addClass('has-error');
    }
  },
  unhighlight: function (element, errorClass, validClass) {
    if (element.type === "radio") {
      this.findByName(element.name).removeClass(errorClass).addClass(validClass);
    } else {
      $(element).removeClass(errorClass).addClass(validClass);
      $(element).closest('.form-group').removeClass('has-error');
    }
  }
});

The preceding code ties into the highlight and unhighlight events of the validation framework to set 
specific styles that are defined in the spystore-bootstrap.css style sheet.

Updating the View Models
The final step in the validation chain is to update the AddToCartViewModel and the CartRecordViewModel. 
Neither should allow the user to update the Quantity to anything greater than the available Inventory, and 
additionally, the AddToCartViewModel should now allow the quantity of zero.



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

183

Open the AddToCartViewModel class, add a using for the SpyStore.MVC.Validation namespace, and 
update the Quantity property to the following:

using SpyStore.MVC.Validation;
public class AddToCartViewModel :CartViewModelBase
{
  [MustNotBeGreaterThan(nameof(UnitsInStock)), MustBeGreaterThanZero]
  public int Quantity { get; set; }
}

Next, open the CartRecordViewModel class, add a using for the SpyStore.MVC.Validation namespace, 
and update the Quantity to the following:

using SpyStore.MVC.Validation;
public class CartRecordViewModel : CartViewModelBase
{
  [MustNotBeGreaterThan(nameof(UnitsInStock))]
  public int Quantity { get; set; }
}

View Components
View Components are another new feature in Core MVC. They combine the benefits of partial views with 
child actions to render parts of the UI. Like partial views, they are called from another view, but unlike 
partial views by themselves, View Components also have a server side component. This combination makes 
them a great fit for functions like creating dynamic menus (as shown shortly), login panels, sidebar content, 
or anything that needs to run server side code but doesn’t qualify to be a standalone view.

Building the Server Side Code
The main page of the site contains a menu across the top that is generated from the Category names in the 
database. Based on the size of the view port, the menu is either laid out horizontally across the top or hidden 
behind the responsive “cheeseburger” icon provided by the Bootstrap responsive menu system, as shown in 
Figure 5-1.



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

184

The same code in more than one place should be encapsulated for reuse, but a partial view won’t 
work here because of the server side code that needs to be executed. This is a perfect user case for View 
Components.

Create a new folder named ViewComponents in the root directory of the SpyStore.MVC project. Add 
a new class file named Menu.cs into this folder. Convention dictates that the View Components should 
be named like controller, i.e. MenuViewComponent, instead of just Menu. However, I like to keep my View 
Component names cleaner. I feel this adds readability when they are called from the view. This will be 
demonstrated shortly. Add the following using statements to the top of the file:

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using SpyStore.MVC.WebServiceAccess.Base;

Change the class to public and inherit from ViewComponent. View Components don’t have to inherit 
from the ViewComponent base class, but like the Controller base class, there are methods in the base class 
that are very useful. Update the class to this:

public class Menu : ViewComponent
{
}

This View Component needs to call the GetCategoriesAsync method on the WebApiCalls class, and 
fortunately, View Components can leverage the DI container built into Core MVC. Create a class-level 
variable to hold an instance of the IWebApiCalls interface and create a constructor that receives an instance 
of the interface, as shown here:

public class Menu : ViewComponent
{
  private readonly IWebApiCalls _webApiCalls;
  public Menu(IWebApiCalls webApiCalls)

Figure 5-1.  The standard menu layout and the responsive version



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

185

  {
    _webApiCalls = webApiCalls;
  }
}

When a View Component is rendered from a View, the public method InvokeAsync is invoked. This 
method returns an IViewComponentResult, which is conceptually similar to a PartialViewResult, but much 
more streamlined. In the InvokeAsync methods, get the list of Categories from the service, and if successful, 
return a ViewComponentResult using the returned list as the view model. If the call to get the Categories 
fails, return a ContentViewComponentResult with an error message. Add the following code to the Menu class.

public async Task<IViewComponentResult> InvokeAsync()
{
  var cats = await _webApiCalls.GetCategoriesAsync();
  if (cats == null)
  {
    return new ContentViewComponentResult("There was an error getting the categories");
  }
  return View("MenuView", cats);
}

The View helper method from the base ViewComponent class works just like the base Controller class 
helper method of the same name, except for a couple of key differences. The first difference is that the 
default view file name is Default.cshtml instead of the name of the Action method. The second difference 
is that the location of the view must be one of these two directories:

Views/<parent_controller_name_calling_view >/Components/<view_component_name>/<view_name>
Views/Shared/Components/<view_component_name>/<view_name>

The C# class can live anywhere (even in another assembly), but the <viewname>.cshtml must be in one 
of the directories listed above.

The complete class is listed here:

public class Menu : ViewComponent
{
  private readonly IWebApiCalls _webApiCalls;
  public Menu(IWebApiCalls webApiCalls)
  {
    _webApiCalls = webApiCalls;
  }
  public async Task<IViewComponentResult> InvokeAsync()
  {
    var cats = await _webApiCalls.GetCategoriesAsync();
    if (cats == null)
    {
      return new ContentViewComponentResult("There was an error getting the categories");
    }
    return View("MenuView", cats);
  }
}



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

186

Building the Client Side Code
The View rendered by the Menu View Component will iterate through the Category records, adding  
each as a list item to be displayed in the Bootstrap menu. The Featured menu item is added first as a  
hard-coded value.

Create a new folder named Components under the Views\Shared folder. In this new folder, create 
another new folder named Menu. This folder name must match the name of the View Component class 
created above. In this folder, create a partial view named MenuView.cshtml by selecting Add ➤ New Item 
and selecting the MVC View Page from the Add New Item dialog.

Clear out the existing code and add the following markup:

@model IEnumerable<Category>
<li><a asp-controller="Products" asp-action="Featured">Featured</a></li>
@foreach (var item in Model)
{
  <li><a asp-controller="Products" asp-action="ProductList" asp-route-id="@item.Id">
      @item.CategoryName</a>
  </li>
}

Invoking View Components
View Components are typically rendered from a view (although they can be rendered from a Controller 
Action method as well). The syntax is very straightforward: Component.Invoke(<string name of the view 
component>). Just like with controllers, the ViewComponent suffix must be removed when invoking a View 
Component. This is why I don’t use the suffix for my View Components. Leaving it off enables me to write 
the following code (without using the Replace string function as demonstrated in the Controllers section):

@await Component.InvokeAsync(nameof(Menu))

Invoking View Components as Custom Tag Helpers
New in ASP.NET 1.1, View Components can be called as Tag Helpers. Instead of using Component.InvokeAsync, 
simply call the View Component like this:

<vc:menu></vc:menu>

In order to use this method of calling View Components, they must be added as Tag Helpers using the  
@addTagHelper command. This was already added to the _ViewImports.cshtml file earlier in this chapter to 
enable the custom Email Tag Helper. As a refresher, here is the line that was added:

@addTagHelper *, SpyStore.MVC



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

187

Updating and Adding the Views
It’s finally time to add (or update) the views for the application. To save you typing (or copying and pasting), 
all of the views are located in the Views folder in the downloadable code.

■■ Note   As mentioned earlier, the two chapters on Core MVC Web Applications are laid out in a serial, bottom-
up manner. I am not suggesting that is how you should develop Core MVC applications, it just turns out to be the 
clearest way for me to teach the concepts instead of jumping from topic to topic.

The ViewImports File
As a refresher, the _ViewImports.cshtml file executes before any view (in the directory structure below the 
location of the _ViewStart.cshtml file) is rendered. The file has already been updated to add the custom Tag 
Helper and View Component to the file. The final step is to add the common using statements into the file so 
they don’t have to be added into each view. Update the file to the following:

@using SpyStore.MVC
@using SpyStore.MVC.WebServiceAccess
@using SpyStore.MVC.WebServiceAccess.Base
@using SpyStore.MVC.ViewModels
@using SpyStore.Models.Entities
@using SpyStore.Models.ViewModels
@using SpyStore.Models.ViewModels.Base
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, SpyStore.MVC

The Shared Views
The Shared folder contains the views that are accessible to all of the controllers and actions in the 
application. The Error.cshtml that was supplied by the VS2017 template is sufficient for this application, 
and doesn’t need to be updated.

The Login Partial View
The Login Partial View encapsulates the top right of the menu bar and is shown in Figure 5-2 (with the 
Search box expanded).

Figure 5-2.  The Login View section of the base layout page



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

188

Create a new MVC View Page named LoginView.cshtml in the Shared directory. Clear out the existing 
content and add the following markup:

<li class="navbar-text">Hello <em>@ViewBag.CustomerName!</em></li>
<li><a asp-controller="Cart" asp-action="Index" asp-route-customerId="@ViewBag.CustomerId" 
title="Shopping Cart"><span class="glyphicon glyphicon-shopping-cart"></span> Cart</a></li>
<li><a asp-controller="Orders" asp-action="Index" asp-route-customerId="@ViewBag.CustomerId" 
title="Order History"><span class="glyphicon glyphicon-tag"></span> Orders</a></li>
<li class="dropdown">
  <a href="#" class="dropdown-toggle" data-toggle="dropdown"><span class="glyphicon 
glyphicon-search"></span> SEARCH</a>
  <div class="dropdown-menu search-dropdown-menu">
    <form asp-controller="Products" asp-action="Search" class="navbar-form navbar-left" 
role="search">
      <div class="input-group">
        <label class="sr-only" for="searchString">Search</label>
        <input type="text" id="searchString" name="searchString" class="form-control" 
placeholder="SEARCH">
        <span class="input-group-btn">
          <button class="btn btn-default" type="submit"><span class="glyphicon glyphicon-
search"></span></button>
        </span>
      </div>
    </form>
  </div>
</li>

The view uses Anchor Tag Helpers at the top of the file to create links to the Index Action method of 
the CartController and OrdersController. The view then uses the Form Tag Helper to build the Search 
Form and standard HTML controls within the form.

The Layout View
The _Layout.cshtml view is the base layout for all of the views in this application. The title of the page is set 
from the ViewData, which is supplied by the contained view. The head uses the Environment Tag Helper to 
select which version of the CSS files to load, minified or un-minified. The CSS files are loaded using the Link 
Tag Helper to work around caching issues:

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  <style>
    body {
      padding-bottom: 60px;
    }
  </style>



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

189

  <title>@ViewData["Title"] - SpyStore.MVC</title>
  <environment names="Development">
    <link rel="stylesheet" href="~/css/site.css" asp-append-version="true"/>
    <link rel="stylesheet" href="~/css/spystore-bootstrap.css" asp-append-version="true"/>
  </environment>
  <environment names="Staging,Production">
    <link rel="stylesheet" href="~/css/site.min.css" />
    <link rel="stylesheet" href="~/css/spystore-bootstrap.min.css" asp-append-version="true"/>
  </environment>
</head>

The body starts with the header, which builds the Bootstrap navigation system. The View Component 
is used inside the Bootstrap navbar, loaded as a Tag Helper (with the traditional invoke call commented 
out). This part of the navbar creates the “cheeseburger” in smaller view ports. The header also loads the 
LoginView.cshtml as a partial view.

<body>
  <header class="navbar navbar-default navbar-fixed-top">
    <div class="container">
      <div class="navbar-header">
        <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".
navbar-collapse">
          <span class="sr-only">Toggle navigation</span>
          <span class="icon-bar"></span>
          <span class="icon-bar"></span>
          <span class="icon-bar"></span>
        </button>
        <a asp-area="" asp-controller="Products" asp-action="Index" class="navbar-
brand">SpyStore.MVC</a>
      </div>
      <nav class="navbar-collapse collapse header-collapse">
        <ul class="nav navbar-nav navbar-right">
          <li class="dropdown">
            <a href="#" class="dropdown-toggle hidden-md hidden-lg" data-
toggle="dropdown">CATEGORIES <span class="caret"></span></a>
            <ul class="dropdown-menu">

              @*@await Component.InvokeAsync(nameof(Menu))*@
            </ul>
          </li>
          @Html.Partial("LoginView")
        </ul>
      </nav>
    </div>
  </header>

The next section of the layout creates the page container that all views will be rendered into using 
Bootstrap styles to manage the layout. The section uses an Anchor Tag Helper around the site logo and 
the Menu View Component to render the standard menu bar. The RenderBody Razor method loads the 
requested view into the layout at that location.



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

190

<div class="page container">
  <div class="panel panel-default">
    <nav class="panel-heading hidden-xs">
      <div class="store-logo">
        <a asp-controller="Products" asp-action="Index">
            <img style="z-index: 2000" src="~/images/store-logo.png" alt="Spy Store" /></a>
      </div>
      <ul class="nav nav-pills hidden-sm">
        <vc:menu></vc:menu>
      </ul>
    </nav>
    <div class="panel-body">
      @RenderBody()
    </div>
  </div>
</div>

The footer section uses the Email Tag Helper to render an e-mail link:

<footer>
  <hr />
  <div class="container">
    <small class="text-muted">
      &copy; 2016 - SpyStore.MVC PBK Productions
      <email email-name="blog" email-domain="skimedic.com"></email>
    </small>
  </div>
</footer>

After the footer, the Environment Tag Helper is used to load the site’s JavaScript files. If the site is running 
under Development mode, the raw files are loaded. If the site is running under Staging or Product, the 
minified and bundled files are loaded for local content, and the Microsoft CDN is used for framework files.

<environment names="Development">
  <script src="~/lib/jquery/dist/jquery.js" asp-append-version="true"></script>
  <script src="~/lib/bootstrap/dist/js/bootstrap.js" asp-append-version="true"></script>
  <script src="~/js/site.js" asp-append-version="true"></script>
</environment>
<environment names="Staging,Production">
  <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-3.1.1.min.js"
    asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
    asp-fallback-test="window.jQuery">
  </script>
  <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.6/bootstrap.min.js"
    asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
    asp-fallback-test="window.jQuery && window.jQuery.fn && window.jQuery.fn.modal">
  </script>
  <script src="~/js/site.min.js" asp-append-version="true"></script>
</environment>



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

191

The final code created the optional scripts section (after all of the framework files have been loaded) 
and closes out the body and html tags:

  @RenderSection("scripts", required: false)
</body>
</html>

The Validation Scripts Partial View
A common mechanism to load related JavaScript files is to place them into a view to be loaded as a partial 
view. Create a new MVC View Page named _ValidationScriptsPartial.cshtml in the Shared directory. 
Clear out the existing code and replace it with this use of the Environment Tag Helper:

<environment names="Development">
  <script src="~/lib/jquery-validation/dist/jquery.validate.js"></script>
  <script src="~/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"></script>
  <script src="~/lib/jquery-ajax-unobtrusive/jquery.unobtrusive-ajax.js"></script>
  <script src="~/js/validations/validators.js" asp-append-version="true"></script>
  <script src="~/js/validations/errorFormatting.js" asp-append-version="true"></script>
</environment>
<environment names="Staging,Production">
  <script src="https://ajax.aspnetcdn.com/ajax/jquery.validate/1.16.0/jquery.validate.min.js"
    asp-fallback-src="~/lib/jquery-validation/dist/jquery.validate.min.js"
    asp-fallback-test="window.jQuery && window.jQuery.validator">
  </script>
  <script src="https://ajax.aspnetcdn.com/ajax/mvc/5.2.3/jquery.validate.unobtrusive.min.js"
    asp-fallback-src="~/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.min.js"
    �asp-fallback-test="window.jQuery && window.jQuery.validator && window.jQuery.validator.

unobtrusive">
    </script>
    <script src="~/lib/jquery-ajax-unobtrusive /jquery.unobtrusive-ajax.min.js"></script>
    <script src="~/js/validations/validations.min.js"></script>
</environment>

Now, any view that needs to add the validation scripts only needs to add the following into the markup:

@section Scripts {
  @{
    await Html.RenderPartialAsync("_ValidationScriptsPartial");
  }
}



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

192

The Add to Cart View
The Add to Cart view doubles as the Product Details view, as discussed in the “Building the Controllers” 
section. The view is shown in Figure 5-3.

Figure 5-3.  The Add to Cart view

To create the view, add a new MVC Razor Page named AddToCart.cshtml. Clear out the templated code 
and add the following markup:

@model AddToCartViewModel
@{
    ViewData["Title"] = @ViewBag.Title;
}
<h3>@ViewBag.Header</h3>
<form method="post" asp-controller="Cart" asp-action="AddToCart"
  asp-route-customerId="@ViewBag.CustomerId" asp-route-productId="@Model.Id">
    @Html.EditorForModel()
</form>
@{
  if (ViewBag.CameFromProducts != null && ViewBag.CameFromProducts)
  {
    <div>
      <a onclick="window.history.go(-1); return false;">Back to List</a>
    </div>
  }
}
@section Scripts {
    @{
        await Html.RenderPartialAsync("_ValidationScriptsPartial");
    }
}

The code starts by strongly typing the view to the AddToCartViewModel class. After setting the Title and 
adding a header for the page, the view uses the Form Tag Helper to build the input form used for adding 



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

193

the Product into the shopping cart. Inside the form, the Html.EditorForModel Razor Helper renders the 
AddToCartViewModel.cshtml template (shown shortly). This is a shortcut for the following line:

@Html.EditorFor(model=>model)

If the user came from the Product or the Cart page, the ViewBag.CameFromProducts value is true, and 
the Back to List link is provided. Otherwise, it is hidden. The final code block adds in the validation scripts.

The Display Templates
The Boolean.cshtml display template was added earlier. The sight uses one more shared display template 
for displaying properly formatted dates.

The DateTime Display Template

Create a new file named DateTime.cshtml in the Views\Shared\DisplayTemplates folder. Clear out any 
code in the template and add the following markup:

@using System.Threading.Tasks
@model DateTime?
@if (Model == null)
{
    @:Unknown
}
else
{
    if (ViewData.ModelMetadata.IsNullableValueType)
    {
        @:@(Model.Value.ToString("d"))
    }
    else
    {
        @:@(((DateTime)Model).ToString("d"))
    }
}

The template displays “Unknown” if the property is nullable and does not have a value. Otherwise, it 
makes sure the value is formatted as a short date.

The Editor Templates
In addition to the Boolean editor template, the site has one more shared editor template, the 
AddToCartViewModel template. This template is used by the Add to Cart view, as shown previously in 
Figure 5-3.



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

194

The AddToCartViewModel Editor Template

Add a new file named AddToCartViewModel.cshtml to the Views\Shared\EditorTemplates folder. Clear out 
the templated code and add the following markup:

@model AddToCartViewModel
@if (Model.Quantity == 0)
{
  Model.Quantity = 1;
}
<h1 class="visible-xs">@Html.DisplayFor(x => x.ModelName)</h1>
<div class="row product-details-container">
  <div class="col-sm-6 product-images">
    <img src="@Url.Content($"~/images/{Model.ProductImageLarge}")" />
    <div class="key-label">PRODUCT IMAGES</div>
  </div>
  <div class="col-sm-6">
    <h1 class="hidden-xs">@Html.DisplayFor(x => x.ModelName)</h1>
    <div class="price-label">Price:</div><div class="price">
      @Html.DisplayFor(x => x.CurrentPrice)</div>
    <div class="units">Only @Html.DisplayFor(x => x.UnitsInStock) left.</div>
    <div class="units"></div>
    <div class="product-description">@Html.DisplayFor(x => x.Description)</div>
    <ul class="product-details">
      <li><div class="key-label">MODEL NUMBER:</div> @Html.DisplayFor(x => x.ModelNumber)</li>
      <li>
        <div class="key-label">CATEGORY:</div>
          <a asp-controller="Products" asp-action="ProductList"
            �asp-route-id="@Model.CategoryId"  

class="Category">@Model.CategoryName</a>
      </li>
    </ul>
    <input type="hidden" asp-for="Id" />
    <input type="hidden" asp-for="CustomerId" />
    <input type="hidden" asp-for="CategoryName" />
    <input type="hidden" asp-for="Description" />
    <input type="hidden" asp-for="UnitsInStock" />
    <input type="hidden" asp-for="UnitCost" />
    <input type="hidden" asp-for="ModelName" />
    <input type="hidden" asp-for="ModelNumber" />
    <input type="hidden" asp-for="TimeStamp" />
    <input type="hidden" asp-for="ProductId" />
    <input type="hidden" asp-for="LineItemTotal" />
    <input type="hidden" asp-for="CurrentPrice" />
    <input type="hidden" asp-for="ProductImage" />
    <input type="hidden" asp-for="ProductImageLarge" />
    <input type="hidden" asp-for="ProductImageThumb" />
    <div class="row cart-group">
      <label>QUANTITY:</label>
      <input asp-for="Quantity" class="cart-quantity form-control" />
      <input type="submit" value="Add to Cart" class="btn btn-primary" />
    </div>



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

195

    <div asp-validation-summary="ModelOnly" class="text-danger"></div>
    <span asp-validation-for="Quantity" class="text-danger"></span>
  </div>
</div>

The Cart Views
Create a new folder named Cart under the Views folder. This folder will hold the views for the 
CartController Action methods. The view is shown in Figure 5-4.

Figure 5-4.  The Cart index page

The Index View
The Index view lists all of the Orders for the currently logged in Customer. Add a new MVC View Page to the 
Cart folder, clear out the existing code, and add the following markup:

@model CartViewModel
@{
  ViewData["Title"] = "Index";
  var cartTotal = 0M;
}
<h3>@ViewBag.Header</h3>
<div>
  <div id="foo" name="foo"></div>
  <table class="table table-bordered product-table">
    <thead>
      <tr>
        <th style="width: 70%;">Product</th>



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

196

        <th class="text-right">Price</th>
        <th class="text-right">Quantity</th>
        <th class="text-right">Available</th>
        <th class="text-right">Total</th>
      </tr>
    </thead>
    @for (var x = 0; x < Model.CartRecords.Count; x++)
    {
      var item = Model.CartRecords[x];
      cartTotal += item.LineItemTotal;
      @Html.Partial("Update", item)
    }
    <tfoot>
      <tr>
        <th>&nbsp;</th>
        <th>&nbsp;</th>
        <th>&nbsp;</th>
        <th>&nbsp;</th>
        <th><span id="CartTotal">@Html.FormatValue(cartTotal, "{0:C2}")</span></th>
      </tr>
    </tfoot>
  </table>
  <form asp-controller="Cart" asp-action="Buy" asp-route-customerId="@ViewBag.CustomerId">
    <input type="hidden" asp-for="@Model.Customer.Id" />
    <input type="hidden" asp-for="@Model.Customer.FullName" />
    <input type="hidden" asp-for="@Model.Customer.EmailAddress" />
    <input type="hidden" asp-for="@Model.Customer.Password" value="FillerData" />
    <input type="hidden" asp-for="@Model.Customer.TimeStamp" />
    <div class="pull-right">
      <button class="btn btn-primary">Checkout</button>
    </div>
  </form>
</div>

The Razor block at the top creates a variable to hold the total price of the cart and sets the page Title. 
After standard layout markup, the next Razor block iterates through CartRecords in the CartViewModel. 
For each record, the cartTotal variable is updated with the LineItemTotal, and then the CartRecord 
is rendered using the Update.cshtml partial view. After rendering all of the records, the cartTotal is 
displayed. The final block of markup uses the Form Tag Helper to render the form to execute the Buy action 
on the CartController.

After the closing div tag, add the following Razor and JavaScript to the Scripts section:

@section Scripts
{
  @{
    await Html.RenderPartialAsync("_ValidationScriptsPartial");
  }
  <script language="javascript" type="text/javascript">
    function success(data, textStatus, jqXHR) {
      "use strict";
      updateCartPrice();
    }



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

197

    function error(jqXhr, textStatus, errorThrown) {
      "use strict";
      alert('An error occurred: Please reload the page and try again.');
    }
    function complete(jqXhr, textStatus) {
      "use strict";
      //Executes after the AJAX call is complete, regardless of success or failure
    }
    function getSum(total, num) {
      "use strict";
      return total + Math.round(num.innerText * 100)/100;
    }
    function updateCartPrice() {
      "use strict";
      var list = $('span[id^="rawTotal"]');
      var total = $.makeArray(list).reduce(getSum, 0);
      $('#CartTotal')[0].innerText = '$' + parseFloat(total).toFixed(2).toString().replace(/
(\d)(?=(\d\d\d)+(?!\d))/g, "$1,");
    }
  </script>
}

The first Razor block loads the validation scripts. The next block of JavaScript sets up the event handlers 
for the Ajax function (covered in the CartRecordViewModel.cshtml editor template). If the call succeeds, the 
total cost is updated. If the call fails, the error function instructs the user to reload the page. The complete 
method is for illustration purposes only—it doesn’t do anything in this example. The method will execute 
after the Ajax call is completed, regardless of success or failure.

The getSum method is a reduce function that iterates through the array and returns the sum total 
of all elements. The Math.Round function (along with multiplying by 100 and then dividing by 100) is 
recommended when working with currency in JavaScript to prevent the well documented rounding issues. 
The final method gets all of the line item total elements, converts the list of elements to a true array, and then 
executes the reduce function using the getSum method. The last line utilizes a JavaScript trick to properly 
format a number into U.S. currency.

The Update Partial View
The Update partial view renders each individual cart record on the Index view. Add a new MVC View Page 
named Update.cshtml, clear out the content, and add the following markup:

@model CartRecordViewModel
<tr id="row_@Model.Id">
  <td>
    <div class="product-cell-detail">
      <img src="@Url.Content($"~/images/{Model.ProductImageThumb}")" class="pull-left" />
      <a class="h5" asp-controller="Products" asp-action="Details"
        asp-route-id="@Model.ProductId">@Html.DisplayFor(model => model.ModelName)
      </a>
      <div class="small">@Html.DisplayFor(model => model.CategoryName)</div>
      <div class="small text-muted">@Html.DisplayFor(model => model.Description)</div>
    </div>
  </td>



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

198

  <td class="text-right">
    @Html.DisplayFor(model => model.CurrentPrice)
  </td>
  <td class="text-right cart-quantity-row">
    @Html.EditorForModel()
  </td>
  <td class="text-right">
    @Html.DisplayFor(model => model.UnitsInStock)
  </td>
  <td class="text-right cart-quantity-row">
    <span id="rawTotal_@Model.ProductId" class="hidden">@Model.LineItemTotal</span>
    <span id="total_@Model.ProductId">@Html.DisplayFor(model => model.LineItemTotal)</span>
  </td>
</tr>

Each tr is given a unique name based on the Id of the CartRecordViewModel so the Ajax function 
knows exactly what to replace. The CartRecord is rendered by the CartRecordViewModel.cshtml editor 
template.

The Editor Templates
The CartController has a single editor template, used to display the Quantity and the Update and Remove 
commands.

The CartRecordViewModel Editor Template

Create a new folder named EditorTemplates in the Views\Cart folder. Add a new MVC View Page named 
CartRecordViewModel.cshtml into this folder. Clear out the existing markup and add the following:

@model CartRecordViewModel
<form asp-controller="Cart" asp-action="Update" id="updateCartForm" method="post"
    asp-route-customerId="@Model.CustomerId" asp-route-id="@Model.Id"
    data-ajax="true" data-ajax-mode="REPLACE-WITH" data-ajax-update="#row_@Model.Id"
    data-ajax-method="POST" data-ajax-success="success" data-ajax-failure="error"
    data-ajax-complete="complete">
  <div asp-validation-summary="ModelOnly" class="text-danger"></div>
  <span asp-validation-for="Quantity" class="text-danger"></span>
  <input type="hidden" asp-for="Id" />
  <input type="hidden" asp-for="CustomerId" />
  <input type="hidden" asp-for="CategoryName" />
  <input type="hidden" asp-for="Description" />
  <input type="hidden" asp-for="UnitsInStock" />
  <input type="hidden" asp-for="ModelName" />
  <input type="hidden" asp-for="ModelNumber" />
  <input type="hidden" asp-for="ProductId" />
  <input type="hidden" asp-for="LineItemTotal" />
  <input type="hidden" name="@nameof(Model.TimeStampString)"
      id="@nameof(Model.TimeStampString)" value="@Model.TimeStampString" />
  <input type="hidden" name="@nameof(Model.LineItemTotal)"
      id="@nameof(Model.LineItemTotal)" value="@Model.LineItemTotal" />



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

199

  <input type="hidden" asp-for="CurrentPrice" />
  <input type="hidden" asp-for="ProductImage" />
  <input type="hidden" asp-for="ProductImageLarge" />
  <input type="hidden" asp-for="ProductImageThumb" />
  <input asp-for="Quantity" class="cart-quantity" />
  <button class="btn btn-link btn-sm">Update</button>
</form>
<form asp-controller="Cart" asp-action="Delete" asp-route-customerId="@Model.CustomerId"
    asp-route-id="@Model.Id" id="deleteCartForm" method="post">
  <input type="hidden" asp-for="Id" />
  <input type="hidden" asp-for="TimeStamp" />
  <button class="btn btn-link btn-sm">Remove</button>
</form>

The view uses Form Tag Helpers to create two different forms. The first for updating the Quantity and 
the second for removing a CartRecord completely. The following two hidden input elements don’t use 
Input Tag Helpers, but use the old Razor syntax for their names and properties. This is to get around an Ajax 
caching issue with input Tag Helpers:

<input type="hidden" name="@nameof(Model.TimeStampString)"
      id="@nameof(Model.TimeStampString)" value="@Model.TimeStampString" />
<input type="hidden" name="@nameof(Model.LineItemTotal)"
      id="@nameof(Model.LineItemTotal)" value="@Model.LineItemTotal" />

In the Update form, there are tags that haven’t been discussed before. The data-ajax tags are supplied 
by the jQuery-ajax-unobtrusive JavaScript library. If you used the Ajax Form Helpers in previous versions 
of ASP.NET MVC, this is the new and improved method for implementing an Ajax form.

Table 5-4 lists the data-ajax attributes introduced by the jQuery-ajax-unobtrusive.js library.

Table 5-4.  Ajax Tags Supplied by the jQuery-ajax-unobtrusive JavaScript Library

HTML5 data-ajax Tag Mapping to JavaScript Ajax Calls

data-ajax True or False, enabling or disabling AJAX on the Form submission.

data-ajax-mode How the AJAX call should affect the data-ajax-update element. One of 
Before, After, or REPLACE-WITH.

data-ajax-update HTML element to update on the Ajax return call.

data-ajax-method POST or GET

data-ajax-success JavaScript method to call after a successful Ajax call.

data-ajax-failure JavaScript method to call after a failed Ajax call. Maps to error method.

Data-ajax-complete JavaScript method to call after the Ajax call completes.



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

200

The Orders Views
The OrdersController views are responsible for displaying the Orders and OrderDetails for the currently 
logged in Customer. Create a new folder named Orders under the Views folder.

The Index View
The Index view lists the top-level information for the Orders, as shown in Figure 5-5.

Figure 5-5.  The Order History view

Add a new MVC View Page named Index.cshtml to the Views\Orders folder. Clear out the templated 
code and replace it with the following:

@model IList<Order>
<h3>@ViewBag.Header</h3>
@for(int x=0;x<Model.Count;x++)
{
  var item = Model[x];
  <div class="order-card">
    <div class="order-card-heading">
      <div class="row">
        <div class="col-sm-2">
          <label>Order Number</label>
          <a asp-action="Details" asp-route-customerId="@item.CustomerId"
              asp-route-orderId="@item.Id">@Html.DisplayFor(model => item.Id)
          </a>
        </div>
        <div class="col-sm-2">
          <label asp-for="@item.OrderDate"></label> @Html.DisplayFor(model => item.OrderDate)
        </div>
        <div class="col-sm-3">
          <label asp-for="@item.ShipDate"></label> @Html.DisplayFor(model => item.ShipDate)
        </div>
        <div class="col-sm-3">
          <label asp-for="@item.OrderTotal"></label> @Html.DisplayFor(model => item.OrderTotal)
        </div>
        <div class="col-sm-2 order-actions">
          <a asp-action="Details" asp-route-customerId="@item.CustomerId"
              asp-route-orderId="@item.Id" class="btn btn-primary">Order Details</a>
        </div>
      </div>
    </div>
  </div>
}



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

201

The view uses the Bootstrap grid system for the layout and a mix of Tag Helpers and Razor Helpers to 
display the data.

The Details View
The Details view shows the individual items in an order, as shown in Figure 5-6.

Figure 5-6.  The Order Details view

Add a new MVC View Page named Details.cshtml to the Views\Orders folder. Clear out the existing 
code and replace it with the following:

@model OrderWithDetailsAndProductInfo
@{
  ViewData["Title"] = "Details";
}
<h3>@ViewBag.Header</h3>
<div class="row top-row">
  <div class="col-sm-6">
    <label asp-for="OrderDate"></label>
    <strong>@Html.DisplayFor(model => model.OrderDate)</strong>
  </div>
  <div class="col-sm-6">
    <label asp-for="ShipDate"></label>
    <strong>@Html.DisplayFor(model => model.ShipDate)</strong>
  </div>
</div>
<div class="row">
  <div class="col-sm-6">
    <label>Billing Address:</label>
    <address>
      <strong>John Doe</strong><br>



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

202

      123 State Street<br>Whatever, UT 55555<br>
      <abbr title="Phone">P:</abbr> (123) 456-7890
    </address>
  </div>
  <div class="col-sm-6">
    <label>Shipping Address:</label>
    <address>
      <strong>John Doe</strong><br>
      123 State Street<br> Whatever, UT 55555<br>
      <abbr title="Phone">P:</abbr> (123) 456-7890
    </address>
  </div>
</div>
<div class="table-responsive">
  <table class="table table-bordered product-table">
    <thead>
      <tr>
        <th style="width: 70%;">Product</th>
        <th class="text-right">Price</th>
        <th class="text-right">Quantity</th>
        <th class="text-right">Total</th>
      </tr>
    </thead>
    <tbody>
    @for (int x=0;x<Model.OrderDetails.Count;x++)
    {
      var item = Model.OrderDetails[x];
      <tr>
        <td>
          <div class="product-cell-detail">
          <img src="@Url.Content($"~/images/{item.ProductImageThumb}")" class="pull-left" />
          <a asp-controller="Products" asp-action="Details"
              asp-route-id="@item.ProductId" class="h5">
            @Html.DisplayFor(model => item.ModelName)
          </a>
          <div class="small text-muted hidden-xs">
            @Html.DisplayFor(model => item.Description)
          </div>
        </div>
      </td>
      <td class="text-right">
        @Html.DisplayFor(model => item.UnitCost)
      </td>
      <td class="text-right">
        @Html.DisplayFor(model => item.Quantity)
      </td>
      <td class="text-right">
        @Html.DisplayFor(model => item.LineItemTotal)
      </td>
    </tr>
    }



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

203

    </tbody>
    <tfoot>
      <tr>
        <th>&nbsp;</th>
        <th>&nbsp;</th>
        <th>&nbsp;</th>
        <th class="text-right">
          @Html.DisplayFor(model => model.OrderTotal)
        </th>
      </tr>
    </tfoot>
  </table>
</div>
<div class="pull-right">
  <a asp-action="Index" asp-route-customerid="@Model.CustomerId" class="btn btn-
primary">Back to Order History</a>
</div>

The Products Views
The ProductsList view is responsible for displaying the product list pages as well as displaying the results of 
the Search Action method. The Communications Category product list is shown in Figure 5-7.

Figure 5-7.  The product list featuring the Communications category



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

204

The ProductList View
Create a new folder named Products under the Views folder, then add a new MVC View Page named 
ProductList.cshtml to the View\Products folder. Clear out the existing content and replace it with this:

@model IEnumerable<ProductAndCategoryBase>
@{
  ViewData["Title"] = ViewBag.Title;
}
<div class="jumbotron">
@if (ViewBag.Featured != true)
{
  <a asp-controller="Products" asp-action="Featured" class="btn btn-info btn-lg">
     View Featured Products &raquo;</a>
}
</div>
<h3>@ViewBag.Header</h3>
<div class="row">
  @for (int x=0;x<Model.Count;x++)
  {
    var item = Model[x];
    @Html.DisplayFor(model => item)
  }
</div>

The view renders the View Featured Products link (as a button using Bootstrap styling) if the Action 
method is returning any data except the list of featured product. The View then loops through the records, 
using the ProductAndCategoryBase display template.

The Display Template
Create a new folder named DisplayTemplates in the Views\Products folder.

The ProductAndCategoryBase DisplayTemplate

Create a new file named ProductAndCategoryBase.cshtml in the Views\Shared\DisplayTemplates folder. 
Clear out any code in the template and add the following markup:

@model ProductAndCategoryBase
<div class="col-xs-6 col-sm-4 col-md-3">
  <div class="product">
    <img src="@Url.Content($"~/images/{Model.ProductImage}")" />
    <div class="price">@Html.DisplayFor(x => x.CurrentPrice)</div>
    <div class="title-container">
      <h5><a asp-controller="Products" asp-action="Details" asp-route-id="@Model.Id">
               @Html.DisplayFor(x => x.ModelName)
          </a>
      </h5>
    </div>



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

205

    <div class="model-number">
      <span class="text-muted">Model Number:</span> @Html.DisplayFor(x => x.ModelNumber)
    </div>
    @if (ViewBag.ShowCategory)
    {
      �<a asp-controller="Products" asp-action="ProductList" asp-route-id="@Model.

CategoryId">@Model.CategoryName</a>
    }
    �<a asp-controller="Cart" asp-action="AddToCart" asp-route-customerId="@ViewBag.

CustomerId"
         asp-route-productId="@Model.Id" class="btn btn-primary btn-cart">
      <span class="glyphicon glyphicon-shopping-cart"></span>Add To Cart
    </a>
  </div>
</div>

This completes the Core MVC Web Application. The next (and final section) discusses how to run the 
application in conjunction with the Core MVC RESTful service.

Running the Application
Now that all of the .NET code is complete, it’s time to run the application and see the results of all of your 
hard work. If you were to just press F5 at this point, the application would fail to run with a long list of errors 
because the entirety of the work is split into three different solutions. While this is a better architectural 
choice than having everything in one (and enables the JavaScript frontends to reuse the EF and Core MVC 
RESTful projects as is), this means that there is a little setup needed to debug the site in Visual Studio. The 
Core MVC service (built in Chapter 3) must be running for the Core Web Application to work. There are two 
choices to run the Core MVC service in development—you can run it from Visual Studio or by using the 
.NET CLI. Of course, you could fully deploy the service app, but that is beyond the scope of this book.

Using Visual Studio 2017
Running from Visual Studio is by far the easiest, but it also consumes the most memory. If you have a beefy 
development machine, this isn’t an issue. Load up the SpyStore.Service solution and press F5. This will 
launch the service app in Development mode running on port 8477 (if you changed the port in Chapter 3). 
Confirm the port by opening the launchSettings.json file and checking this block of JSON:

"iisSettings": {
  "windowsAuthentication": false,
  "anonymousAuthentication": true,
  "iisExpress": {
    "applicationUrl": "http://localhost:8477/",
    "sslPort": 0
  }
},

http://dx.doi.org/10.1007/978-1-4842-2478-6_3
http://dx.doi.org/10.1007/978-1-4842-2478-6_3


Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

206

Next, open the appsetting.json file in the SpyStore.MVC application and update the following JSON to 
match the port number from above:

"WebServiceLocator": {
  "ServiceAddress": "http://localhost:8477/"
}

Using the .NET Command Line Interface (CLI)
The .NET Core CLI can be used to run a Core MVC application (either as a service or a web application) as 
long as the current directory is the same as the location of the SpyStore.Service.csproj file. The caveat is 
that in order for the sample data to load, the environment must be set to Development.

Open a command prompt and navigate to the directory where the SpyStore.Service.csproj file is 
located. Enter the following commands to set the environment and then run the app:

set aspnetcore_environment=development
dotnet restore
dotnet build
dotnet run

The first line sets the development environment to Development. The rest of the lines should be 
familiar to you now. The NuGet packages are restored, the code is compiled, and the app is run. In the 
downloads for this chapter, there is a command file named run_development.cmd that does just this.

If you followed along with the book, the port for the service app is 40001. This can be checked by 
opening the Program.cs file and checking the code in the Main method:

public static void Main(string[] args)
{
  var host = new WebHostBuilder()
    .UseKestrel()
    .UseUrls("http://*:40001/")
    .UseContentRoot(Directory.GetCurrentDirectory())
    .UseIISIntegration()
    .UseStartup<Startup>()
    .Build();

  host.Run();
}

Confirm that the SpyStore.MVC app is using port 40001 in the appsetting.json file:

"WebServiceLocator": {
  "ServiceAddress": "http://localhost:40001/"
}

Using the Combined Solutions
I realize there are a lot of moving parts in this application, including three solutions, custom NuGet 
packages, and other configuration details. In the downloadable code for the chapter are two folders 
containing the applications by direct referencing projects instead of using local NuGet folders.  



Chapter 5 ■ Building the SpyStore Application with ASP.NET Core MVC

207

The folder SpyStore.Service.Combined contains the Core MVC RESTful service. The second is SpyStore.
MVCComplete, which contains the Core MVC Web Application.

The port configurations need to checked (as discussed in the previous sections) to make sure the Core 
MVC Web Application can find the RESTful service.

■■ Source Code  The complete SpyStore.MVCComplete solution can be found in the Chapter 05 subdirectory 
of the download files.

Summary
This chapter completes the coverage of .NET in this book by finishing the SpyStore.MVC Web Application. 
Tag Helpers, one of the two big new features in Core MVC, are introduced right from the top. Next, all of the 
controllers are built, including a deeper discussion on model binding.

The next section discussed server side and client side binding, creating two custom validation attributes 
and the client side JavaScript.

Next, View Components, the other big new feature in Core MVC, are introduced, and a custom View 
Component is added to the project.

The next big section covers all of the views in the application, and this section completed the  
SpyStore.MVC Web Application. The final section demonstrates how to run the application.



PART II

Client-Side Tooling and 
JavaScript Frameworks



211© Philip Japikse, Kevin Grossnicklaus and Ben Dewey 2017 
P. Japikse et al., Building Web Applications with Visual Studio 2017, DOI 10.1007/978-1-4842-2478-6_6

CHAPTER 6

JavaScript Application Tools

Since the beginning of the Internet, web sites have been based on two components, the server and the client. 
While the server-side is, and has been, managed by numerous frameworks and languages, the client side 
has predominately been dominated by JavaScript. In 2009, Node.js (http://nodejs.org) was written as a 
framework for creating I/O optimized applications, such as web servers, using JavaScript and executed by 
Google’s V8 JavaScript engine. The release of Node.js and its accompanying package manager (the Node 
Package Manager—NPM) created a mechanism to use JavaScript on the desktop and server and boosted 
popularity of the command line tools within the web development space, while also offering a much needed 
outlet for Open Source Software (OSS) developers to distribute their code to the community. This chapter 
focuses on the basic usage techniques of some these tools and is meant to help readers get acquainted with 
the tools that will be used throughout the remainder of the book.

What Tools Are We Covering?
As noted, there are a number of tools that have been created for web development. It would be frivolous to 
cover all of them. For the purposes of this chapter, only the tools used henceforth will be covered. That is 
not intended to discredit any of the tools not mentioned. There are many great tools and further research is 
recommended whenever making large decisions about choosing frameworks and tools for your project. The 
remainder of this chapter focuses on the following tools.

•	 Node.JS (http://nodejs.org): A cross-platform runtime environment for executing 
server-side JavaScript.

•	 Bower (http://bower.io): A package manager optimized for client-side frameworks. 
Built on Node.js and Git.

•	 Gulp (http://gulpjs.com): A streaming build system that runs tasks on code files 
and is built on Node.js.

•	 SystemJS (https://github.com/systemjs/systemjs): A module loader that 
provides a shim in the browser to rewrite and enable module loading functionality.

•	 WebPack (https://webpack.github.io/): A build-time module loader that bundles 
JavaScript files into physical bundles.

http://nodejs.org/
http://nodejs.org/
http://bower.ion/
http://gulpjs.com/
https://github.com/systemjs/systemjs
https://webpack.github.io/


Chapter 6 ■ JavaScript Application Tools

212

Node.js
Node.js is the core of this chapter; the other tools discussed all rely on it. Node.js is a cross-platform runtime 
environment that executes JavaScript code on a server or desktop machine using the power of Chrome V8 
JavaScript interpreter. Since its release, tools such as web servers, service hosts, automated test runners, 
and numerous web development tools have been created using it. Additionally, the package manager, 
NPM, which comes bundled with Node.js, has created a way for developers to distribute and consume code 
modules and increase their development productivity tremendously.

This book covers the following two ways to install Node.js.

•	 Install manually using the downloadable installer file

•	 Install using command line driven Chocolaty package manager for Windows

If Node.js v4.0 or greater is already installed, you can skip this section. Otherwise, use one of these 
mechanisms to get Node.js working. Feel free to jump around to the appropriate section and continue to 
the “Getting Started with Node.js” section once your machine is set up. Given the Visual Studio focus of this 
book, installation using a Mac is not covered. Many of the instructions that follow are similar for the Mac, but 
it is recommended to check the online documentation if you are using a Mac as your primary machine.

Manually Installing Node.js
There are a number of ways to install Node.js. The primary mechanism for installing Node.js is to follow 
the instructions on the Downloads page, shown in Figure 6-1, of the Node.js site (https://nodejs.org/
en/download). From there you can download and run the installer, which will walk you through the steps of 
installation.

Figure 6-1.  Node.js Downloads page

https://nodejs.org/en/download/ and
https://nodejs.org/en/download/ and


Chapter 6 ■ JavaScript Application Tools

213

After installation is complete, you should have the node command on your machine. To test this, open 
a command prompt and type node -v. If the command returns the version number, you can proceed to 
the “Getting Started with Node.js” section. Otherwise, verify your installation by checking your Program 
Files directory or your PATH variable. Restarting your computer or the command window process can often 
resolve the problem.

Installing Node using the Chocolatey Package Manager
In addition to the downloadable installer, users can also install Node.js via a command line driven package 
manager. This is common on other platforms, but some Windows users may not know that this is available 
using a tool called Chocolatey, which is available at http://chocolatey.org/.

In order to use this technique to install Node, you first need to install Chocolatey. The instructions from 
the web site are very simple; you just paste the following command into an administrator command prompt 
and Chocolatey will be available.

@powershell -NoProfile -ExecutionPolicy Bypass -Command "iex ((new-object net.webclient).
DownloadString('https://chocolatey.org/install.ps1'))" && SET PATH=%PATH%;%ALLUSERSPROFILE%\
chocolatey\bin

After Chocolatey is installed, enter the following command. It should install Node.js and make it 
immediately available on the command line. Once Chocolatey completes installing Node.js, you can 
proceed to the “Getting Started with Node.js” section.

choco install nodejs

Setting Up Visual Studio to Use the Latest Version of Node
Since the release of Visual Studio 2015, the product has come bundled with its own version of Node.js 
and other command line based web tools. This is useful for users who want to install Visual Studio and 
automatically take advantage of these tools. Unfortunately, the version of Node.js installed with Visual 
Studio may not be the latest version. This can cause some issues specifically in the case where code uses 
features dependent on ECMAScript 6, which wasn’t supported until Node.js v4 (at the time of publishing 
Visual Studio ships with Node.js v0.10.31, and yes, the versions of Node.js jumped from v0.XX to v4).

To determine the version of Node.js that is shipping with Visual Studio, open a command prompt to the 
following location.

C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\Web\External

From there, execute the command node -v on the command line. This should tell you the node version 
that Visual Studio is currently using.

■■ Note   During the writing of the book, the gulp script in the Task Runner of Visual Studio was throwing the 
error ReferenceError: Promise is not defined. Promises are defined as part of ES6, which only works 
with Node.js v4 or greater. Projects using these ES6 features will have to make sure Visual Studio is using the 
latest version of Node.js.

http://chocolatey.org/


Chapter 6 ■ JavaScript Application Tools

214

Mads Kristensen has a blog post1 that describes this issue in depth. The easiest way to make Visual 
Studio use the latest version of Node.js is to install Node.js on your machine using one of the previously 
described mechanisms. This should include a reference to the node command as part of the PATH 
environment variable. Then in Visual Studio, under Tools ➤ Options ➤ Projects and Solutions ➤ Web 
Package Management ➤ External Web Tools, you can arrange the priority of the paths so that the global PATH 
reference has higher precedence than the path where the bundled version of node exists. Figure 6-2 shows 
the correct setting for these paths to ensure the Visual Studio and your command line are using the same 
version of node.

Figure 6-2.  Visual Studio option for external web tools (NPM, Bower, Gulp, etc.)

Getting Started with Node.js
Now that Node.js is installed, you are free to run JavaScript code on your desktop. On par with any getting 
started tutorial is an exercise in creating a basic Hello World application. To begin, create a new directory. In 
this new directory, create a new file called app.js. In this file, enter the following code:

console.log("Hello World");

This code should look very familiar to code you would write in the browser to log something. That’s 
because it’s just JavaScript code. Once the app.js file with this code is saved, open a command prompt to 
the new directory and run node app.js. You should see the same output pictured in Figure 6-3.

1https://blogs.msdn.microsoft.com/webdev/2015/03/19/customize-external-web-tools-in-visual- 
studio-2015/

https://blogs.msdn.microsoft.com/webdev/2015/03/19/customize-external-web-tools-in-visual-studio-2015/
https://blogs.msdn.microsoft.com/webdev/2015/03/19/customize-external-web-tools-in-visual-studio-2015/


Chapter 6 ■ JavaScript Application Tools

215

■■ Note   Visual Studio Code offers an excellent cross-platform development and debugging experience for 
Node.js. While this book focuses on Visual Studio 2017, if you have Visual Studio Code installed, you can open 
the previous example and run it with great results. Simply open the folder and, after it has loaded, click F5 to 
run the application. The first time you run the project you will be prompted to configure your launch settings. 
Select Node.js for the debugging environment, then click OK to confirm.

What’s great about Node.js is that any JavaScript syntax will also work here. You can try other code in 
this app.js file. You can also experiment directly with Node by just typing node on command line to enter 
the REPL, or Read, Eval, Print, Loop. As it states, REPL reads the code on the prompt, runs the JavaScript 
eval command on that code, prints the output to the output window, and then loops, or repeats.

Introduction to NPM
While JavaScript itself is very powerful, much of the power of Node.js comes from modules that you can 
include with your project. To manage these modules in your application, Node.js uses a companion tool 
called the Node Package Manager, or NPM for short. NPM is installed as part of Node.js, so if you already 
have Node.js installed you should be good to go.

In this next example, NPM will be used to bring in a module called request, which can read the 
contents of a web request. This module will then be used in our code to read the results from a web server. 
To start, return to the command prompt and navigate to the project directory. Within this directory, enter the 
following command:

npm install request

This command goes out to the npm registry and searches for the module request. If it finds the module, 
it installs it to the node_modules folder, reads the package descriptor, and then proceeds to install all of its 
dependencies. This process repeats until all packages and all dependencies are resolved.

NPM installs modules, by default, to the node_modules folder. This folder contains a hierarchy of 
module dependencies. Figure 6-4 shows the folder after installing request.

Figure 6-3.  Node.js result for Hello World sample project



Chapter 6 ■ JavaScript Application Tools

216

■■ Note   NPM and Node.js were originally intended for server-side use and the dependencies can get pretty 
large. This is not particularly suited for frontend web application libraries. Bower, which is a different package 
management solution, attempts to resolve this and is covered in more depth later in this chapter.

Once the request module has been added, it can be used in your code using the require(‘request’) 
function. The require command is used to load modules and is covered later in this chapter. Open the app.
js file and replace your Hello World code with the following code. Then save the file.

var request = require('request');
request('http://www.npmjs.com', function (error, response, body) {
  if (!error && response.statusCode == 200) {
    console.log(body)
  }
})

Back on the command prompt in the project directory, enter the command node app.js again. This 
will go out to the http://www.npmjs.com site and download the HTML. Then in the callback function, the 
code checks the response and writes out the HTML to the command window.

Figure 6-4.  Node modules folder with hierarchy of packages noted on left side folder tree

http://www.npmjs.com/


Chapter 6 ■ JavaScript Application Tools

217

Saving Project Dependencies
While the previous example works fine on the current machine, it is not set up to run on other machines yet. For 
many reasons, including file size and licensing, it is not recommended to store and transmit the actual node_
modules folder. In the previous example, the dependency for request was installed in the node_modules folder, 
but no record of that installation was stored. So, if the project were opened on another machine, it would receive 
an error attempting to load the required module. Users expect to restore packages when they download a project 
but the dependencies have to be stored in the package manifest in order for NPM to know what to install.

■■ Note   When creating a project on GitHub, the default .gitignore file for JavaScript projects ignores 
the node_modules folder. This means that if you download a JavaScript project from online or someone else 
downloads your code, one of the first steps is to restore all of the node_modules, or dependencies, needed by 
the project using the npm install command.

This is where the package.json file comes into play. Package.json is the application manifest for 
any Node.js application. This file includes many important details about the project, including what 
dependencies exist. The package.json file is nothing more than a text file and can be created by hand, but 
it’s often easier to open a command prompt in the directory and call the following command.

npm init

This command will take you through a wizard asking questions on how to populate the package.json 
file. To select the defaults just keep pressing enter until there are no more questions. After running npm init 
on the project folder, npm creates a package.json file that looks something like Figure 6-5.

Figure 6-5.  Default package.json after npm init



Chapter 6 ■ JavaScript Application Tools

218

Now that the package.json file is set up, it can be used to track the dependencies for the project. 
Dependencies can either be added manually to the package.json or they can be added by npm via installing 
or linking. Now that the package.json file exists, reinstall the request package, except this time install it 
using the --save flag.

npm install request –save

Running this command will update your package.json and add something similar to the following.

"dependencies": {
    "request": "^2.72.0"
  },

By default, npm stores the dependency version number as the current package version or anything 
compatible. This is denoted by the ^ sign on the version number for the package. The version numbers 
are managed in a semver format, which stands for semantic versioning. A full list of formats is available at 
https://github.com/npm/node-semver.

Once the dependencies for the project have been configured, you are free to distribute your source 
code without the extra bloat of the package dependency files. When the project is downloaded or the node_
modules folder is deleted, the code will not work and the packages will need to be restored. To restore the 
packages for the project, you just need to run the following command.

npm install

This npm install command without any package name argument reads the package.json and installs 
all the packages that are listed as dependencies.

Executable Packages
In addition to packages that can be used by your projects, NPM can also be used to install packaged 
executables. The executables get installed to the node_modules directory just like the other packages. In 
addition to the module, a .cmd script is created under the node_modules\.bin directory.

To see this in action let’s install a great package that turns any directory into a web server. Like other 
packages, it first needs to be installed. To install the package, open a command line to the project directory 
and enter the following command.

npm install http-server

Now that this package is installed, take a look at the node_modules directory in Figure 6-6. Notice that a 
.bin directory is created and inside that directory there is an http-service.cmd script.

https://github.com/npm/node-semver


Chapter 6 ■ JavaScript Application Tools

219

To run that command, enter the following in your command line for the project directory.

.\node_modules\.bin\http-server -o

This will host a server in the project directory under port 8080. By providing the -o argument it will 
automatically open the site in your browser (Figure 6-7), but if not, you can just open your browser to 
http://localhost:8080.

Figure 6-6.  node_modules directory with executable packages included

Figure 6-7.  The NodeHelloWorld project folder running in a browser using the http-server package



Chapter 6 ■ JavaScript Application Tools

220

Installing Packages Locally vs. Globally
Having executable packages in your project facilitates many tasks for development, but in some cases you 
might want to have the package accessible everywhere, not just in your project folder. Luckily, NPM has an 
option to install packages globally. This is how Bower, Gulp, and WebPack are installed. Essentially, what 
installing globally does is install the package to %UserProfile%\AppData\Roaming\npm, a path that was 
added to the PATH environment variable when Node.js was installed.

To install the package globally from the previous example, use the following command. The -g, or 
--global, tells npm to install the package globally on the machine.

npm install http-server -g

The purpose of this section is to give you an understanding of what Node.js is and what it’s like to 
manage and use different packages, both locally to a project and globally on your system. While you can 
write some powerful code with Node.js this book focuses on other frameworks and the knowledge of Node.js 
and its tools are all that’s required.

Node.js and NPM are extremely powerful and, with new packages being released daily, their power is 
expanding. The remainder of this chapter focuses on the other tools that will be used throughout this book.

Bower
While Node.js was originally intended for the server, its popularity in the JavaScript community and its 
package management capabilities made it quite alluring for client-side developers and frameworks as well. 
Unfortunately, due to some core package storage strategies, npm is not ideal for use in the browser. There are 
numerous techniques to circumvent these issues. As an alternative to NPM, specifically designed for client-
side frameworks that are ultimately deployed to the web, Bower http://bower.io was released.

To fully understand the implications of using NPM v2 or earlier rather than the client-side framework 
optimized Bower, it’s best to look at it in terms of an example. Take two packages that both have a 
dependency on jQuery, jquery-daterangepicker and jquery-file-upload. When installing these two 
packages with NPM, the resulting folder structure for the modules would look something like Figure 6-8.

http://bower.io/


Chapter 6 ■ JavaScript Application Tools

221

Installing the same two packages via Bower would result in the folder structure shown in Figure 6-9.

Figure 6-8.  The node_modules folder with duplicate jQuery dependencies nested within each project

Figure 6-9.  The bower_components folder showing how dependencies are flattened

■■ Note   NPM version 3 has made some improvements to its dependency resolution strategy, https://docs.
npmjs.com/how-npm-works/npm3. These features challenge much of Bower’s value proposition, but it still 
remains popular. There are also options within npm, such as browserify and dedupe, which will force npm to 
work better with frontend packages.

Notice the way jQuery is stored in both of the previous structures; the difference between them centers 
on nested dependencies. In NPM, nested dependencies are connected and versioned as part of their parent. 
This works fine for the desktop and server components. With Bower, on the other hand, all dependencies 
are resolved globally and stored in a flat structure. This cuts down on the duplication and surfaces conflict 
resolution to package install time.

https://docs.npmjs.com/how-npm-works/npm3
https://docs.npmjs.com/how-npm-works/npm3


Chapter 6 ■ JavaScript Application Tools

222

Cutting down on duplication is extremely important for performance on web applications. It also cuts 
down on the potential bugs and the number of files that need to be deployed to webserver.

Bower and Visual Studio
Like Node.js, a version of Bower and its components are bundled with Visual Studio. If you plan on using the 
Bower package management tools built-in to Visual Studio and described later in this chapter, there is no 
need to install Bower using the following instructions. If, in addition to Visual Studio, you want Bower to be 
accessible from the command line, it is recommended that you follow these installation instructions.

Installing Bower Prerequisites
Installing Bower is so simple that the instructions are literally four lines long. While installing Bower is easy, 
it does require a few prerequisites in order to work properly. The first prerequisite is Node.js, which was 
covered previously in this chapter. The second prerequisite to use Bower is Git. If Git is already installed, just 
verify that it is in your PATH environment variable and accessible from the command line. If the command 
works, then proceed to the Installing Bower section.

Installing Git
There are a number of options for installing Git. For the latest instructions, it is best to view the official 
instructions on the Git web site at https://git-scm.com/book/en/v2/Getting-Started-Installing-Git. 
In the case of Windows, you can download an executable from the Git web site and install it manually. This 
installer will prompt a few installation questions about file type handling and line ending characters. The 
screens provide detailed instructions, so pick the best option for you and your team and continue through 
the installation.

Alternatively, Chocolatey can be used to install Git, similarly to the node example from before. After 
Chocolatey is installed, open a command prompt with administrator access. In that prompt, enter the 
following command.

choco install git

This will kick off the Chocolatey installer, which will download the tools and install them on your 
machine. After the installation completes, enter the command git on the command line. This should 
provide the Git help documentation if it’s installed properly. If you get a message stating that the command 
wasn’t recognized, try closing all instances of the command prompt and restarting them. If you still have 
issues beyond that, you may need to make sure the path where Git is located is in the PATH environment 
variable. By default, Git is installed under C:\Program Files\Git\cmd.

Installing Bower
After all the prerequisites are installed, you can install Bower. Official instructions can be found online at 
http://bower.io. In keeping with the simplicity of their instructions, here is the one line command needed 
to install Bower.

npm install -g bower

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://bower.io/


Chapter 6 ■ JavaScript Application Tools

223

Using Bower
Now that Bower is installed, the command should be accessible from the command prompt. Using Bower is 
comparable to using npm. Many of the commands should be familiar.

As you do with NPM, you can install packages straight into a new folder by using the bower install 
command. Although, if you are building a project that will ever be used by other developers, you should 
initialize the directory and save references to the packages needed. To do this, open a command prompt to a 
new folder for the project and run the following command.

bower init

This command will prompt some basic questions to describe your project. To accept the defaults, just 
press Enter until you have returned to the command prompt. After answering the questions, there will be 
a bower.json file (Figure 6-10) in the project directory. This file contains configuration information about 
your project and its dependencies. Like the package.json file, this file will also be used in the event that the 
project is published.

Figure 6-10.  The bower.json configuration file for a sample project

Installing Bower Packages
Many of the frontend JavaScript frameworks are available from Bower. To see a full list of packages and to 
search for different options, go to the Bower web site at http://bower.io (Figure 6-11).

http://bower.io/


Chapter 6 ■ JavaScript Application Tools

224

After locating the package in the registry, open a command prompt to the project root directory. From 
there, enter the command bower install <pkgname> --save where <pkgname> is the name of the package 
to be installed. The following is an example of the command that would be used to install bootstrap in 
the selected project. Similarly to NPM, using the --save flag when installing will record the package as a 
dependency entry in the bower.json file.

bower install bootstrap --save

■■ Note   The Visual Studio team has included a number of features with Visual Studio to simplify the use of 
these tools in the IDE. For example, if there are packages, either npm, Bower, or NuGet packages, installed in a 
project, the packages will automatically be restored when the project is opened.

Installing Bower Packages Using Visual Studio
In addition to using Bower on the command line, Visual Studio 2015 has included a package management 
experience in the IDE that works in a similar way to the NuGet tools. In order to see this in action, you need a 
new ASP.NET Core project as a starting point.

Start by opening Visual Studio and selecting ASP.NET Core Web Application (ASP.NET Core) from 
New Project section of the Start page or select More Project Templates and find it in the list. Enter a name 
to match your sample project then click OK. The New ASP.NET Project dialog will appear. From the dialog, 
select the Empty ASP.NET template on the top left of the screen, as shown in Figure 6-12, and click OK.

Figure 6-11.  The search packages page of the Bower web site



Chapter 6 ■ JavaScript Application Tools

225

Once a new project has been created, right-click on the project in Solution Explorer and select Manage 
Bower Packages. This will launch the Visual Studio Bower Package Manager UI shown in Figure 6-13.

Figure 6-12.  New ASP.NET project dialog



Chapter 6 ■ JavaScript Application Tools

226

■■ Note   Examples here show the Manage Bower Package UI for ASP.NET Core projects. Managing Bower 
packages in Visual Studio is available to both ASP.NET and ASP.NET Core project types.

Within the Manage Bower Packages UI there are three tabs—Browse, Installed, and Update Available. 
The Browse tab provides a way to search the registry and install packages from online. The Installed tab shows 
a list of packages that are already installed with your project. The packages don’t have to actually be installed 
as part of your bower.json file. The bower packages are just read from the bower_components folder. The final 
tab, one that makes using Visual Studio so powerful, is the Update Available tab. This tab shows any particular 
package where a newer version exists on the server and provides an easy one-click mechanism to upgrade the 
package. This is a feature that is not easily achievable from the command line tools.

■■ Note   At the time of publishing, Visual Studio does not provide a package management solution for NPM 
packages similar to the Bower package manager. Visual Studio does provide a list of Bower and NPM packages 
as dependencies in Solution Explorer of ASP.NET Core projects, but nothing to edit or view NPM packages.

Deciding when to use Bower and NPM can be tricky. Many packages are published in both places and 
there are numerous articles online that give conflicting advice. Generally speaking though, Bower is for 
client side frameworks and NPM is for all other packages. To make this decision even more confusing, there 
is a newcomer to space named JSPM (http://jspm.io), for JavaScript Package Manager. They have goals of 
resolving the concerns with NPM and Bower by creating what they call a frictionless package management 

Figure 6-13.  Manage Bower Package UI in Visual Studio

http://jspm.io/


Chapter 6 ■ JavaScript Application Tools

227

solution that is designed to work with module loaders that will be discussed later. At the time of publishing, 
many frameworks hadn’t fully adopted JSPM over NPM and Bower, but given the speed of change in the 
JavaScript ecosystem, it wouldn’t be surprising to see shifts in popularity over time. For the most part 
though, these tools have overlapping functionality and web developers can be successful with any of them.

Gulp
Unlike .NET, and other managed languages, JavaScript does not have a compiler. There is no step that forces 
you to create an executable to run your site. That being said, many frameworks and tools have been created 
to check and verify JavaScript code. The frameworks and tools need to execute on top of the project code 
and manipulate it in some way so it is ready for production use. These tasks are typically handled by a task 
runner, which defines tasks that need to occur on the code as part of a build step.

Gulp (http://gulpjs.com) is a popular task runner for building web applications. Gulp is a code-based, 
rather than configuration-based, framework that leverages the built-in Node Stream functionality. Their web 
site touts four core benefits:

•	 Gulp is easy to use, because it uses JavaScript code over custom configuration files.

•	 Gulp is efficient, because it uses streams with no intermediate I/O writes.

•	 Gulp is high quality, because it enforces standards on plugins.

•	 Gulp is easy to learn, because of its simplicity.

Gulp can be used for a number of different tasks. Here is a list of possible tasks you might encounter that 
would benefit from the automation of a task runner such as Gulp.

•	 Copying files from one location to another.

•	 Concatenating multiple JavaScript files into one.

•	 Verifying JavaScript syntax is correct and meets coding guidelines.

•	 Adding version and header information to code files.

•	 Injecting code or HTML-based on files in a directory.

•	 Transpiling JavaScript or TypeScript code.

•	 Preparing packages for deployment to package management registries.

•	 Compiling LESS/SASS code in to CSS files.

•	 Minifying JavaScript and CSS code to shrink file size for quicker downloads.

•	 Performing framework specific functions, such as wrapping HTML template code in 
angular template directives.

For a complete list of plugins for Gulp, see the Gulp site. It contains a list of available plugins  
(http://gulpjs.com/plugins). You can also search the NPM gallery for packages that start with gulp-. 
The next few sections of this chapter provide examples of using Gulp in the context of the apps that are 
created for the book. Before running the first example, Gulp needs to be installed. The next section describes 
installing Gulp using NPM.

http://gulpjs.com/
http://gulpjs.com/plugins


Chapter 6 ■ JavaScript Application Tools

228

Installing Gulp
Installing Gulp, and all the Gulp plugins for that matter, is very easy once NPM is installed. Using NPM you 
can globally install the gulp-cli, or the Gulp command line interface, which makes the command available 
on your system. Open the command prompt to any directory and run the following command to install 
Gulp.

npm install -g gulp-cli

This command adds the gulp command to the PATH variable on the current system. If you run the gulp 
command in a directory, at this point, you will get an error message informing you that Gulp is not installed 
locally, as seen in Figure 6-14. From there you need to navigate to a new project directory, called HelloGulp, 
and install Gulp with your project using the following commands.

npm init
npm install gulp --save

Figure 6-14.  Gulp install error when Gulp isn’t installed locally

Now that the project directory is initialized and Gulp is installed, you should be able to run Gulp again. 
This time a new message should appear stating No gulpfile found, as seen in Figure 6-15.

Figure 6-15.  Gulp error when no gulpfile exists in the current directory.

This message means that Gulp is installed and working properly. This segues into the next section on 
creating your first gulp tasks in the gulpfile.



Chapter 6 ■ JavaScript Application Tools

229

Copying Files Using Gulp
One of the first and most basic commands to do with Gulp is copy files. Whether you are moving files from 
your node_modules or bower_components folder to your wwwroot folder or copying files to some output 
directory, the command is the same.

To get started, navigate to your HelloGulp folder and create a new text file called hello.txt. This file 
can contain any text; it’ll just be used to demonstrate copying. Next you’ll need to create a gulpfile.js, 
which will act as the definition file for your tasks. Into this new gulpfile.js, paste the following code.

var gulp = require('gulp');

gulp.task('copy', function() {
        return gulp.src('hello.txt')
                .pipe(gulp.dest('./output/'));
});

The first line of the code specifies that the code requires Gulp to run. After that, it calls a function that 
defines the task to be executed. A task has a name, logic, and optional dependent or child tasks, which will 
be discussed in later sections. In the previous example, the task is named copy. The next argument is a 
function that is executed when the task is run. The return type of the function is intended to be a Node.js 
Stream object. A stream is ideally suited for this task because it doesn’t require writing any intermediate files 
to disk and it simply provides a definition, or pipeline, of activities to be completed. The actual execution is 
handled by the task runner after the function has returned. Each activity in the pipeline handles inputs and 
returns outputs, which get used as inputs in the next activity. In the case of the previous example, the initial 
stream is defined by the gulp.src("hello.txt") call. This tells Gulp that the input for the pipeline is the 
hello.txt file. This file then is passed through to the next activity in the pipeline via the pipe command. 
In this simple task the only other activity in the pipeline is to write the file to a new location, as specified by 
the gulp.dest('./output/') command. Figure 6-16 shows an example of this task running. If you run this 
command, you will notice that the hello.txt file is copied to a new directory called output.

Figure 6-16.  The result of running the first Gulp copy example

■■ Note   Grunt (http://gruntjs.com) is another popular task runner that is based on configuration syntax. 
Due to the speed of Gulp, the recent popularity in the community, and the preferences of the authors, this book 
has chosen to focus on Gulp for its examples. Readers are encouraged to evaluate both Gulp and Grunt to best 
understand the pros and cons of each.

http://gruntjs.com/


Chapter 6 ■ JavaScript Application Tools

230

Dependencies in Gulp
Oftentimes during a build process, you might need to perform a sequence of tasks with some certainty that a 
previous step was completed successfully. An example i the need to compile some SASS code into CSS prior 
to copying it to an output directory or copying dependent files to a reference location prior to building a 
project. Fortunately, this is built into Gulp using the second parameter of a provided overload.

To demonstrate this, the copy task is going to be extended to clean up, or delete, the contents of the 
output directory, before running its copy logic. The cleanup task requires an additional module, del, which 
needs to be installed via NPM before it can be used. To add this module, run the following command on the 
command line.

npm install del --save

Now that the required del module has been installed, open the gulpfile and modify it to include the 
following code.

var gulp = require('gulp');
var del = require('del');

gulp.task('clean', function() {
        return del('./output/');
});

gulp.task('copy', ['clean'], function() {
        return gulp.src('hello.txt')
                .pipe(gulp.dest('./output/'));
});

What’s different about this task than the previous example is the second parameter. Instead of an 
anonymous function like before, the copy task contains an array of string representing dependent tasks as its 
second parameter and the task function is supplied in the third parameter. This means that when the copy 
task is called, it will call clean. To see this example in action, open the command line and run the following 
command.

gulp copy

Figure 6-17 shows the output of running this command. Even though the copy task was the only task 
requested, the clean task was completed prior to executing the copy task as it was defined as a dependency.

Figure 6-17.  The result of running the first Gulp copy example with the dependency task defined



Chapter 6 ■ JavaScript Application Tools

231

This is a very basic usage of dependent tasks, but dependencies can very easily get complex in their 
definition. Gulp is very smart in the way it handles its dependencies. Take the hierarchy of dependencies 
outlined here.

•	 gulp.task(‘default’, [‘Task1’, ‘Task2’]);

•	 gulp.task(‘Task1’, [“TaskA”, ‘Task2’]);

•	 gulp.task(‘Task2’, [“TaskA”, ‘TaskB’]);

•	 gulp.task(‘TaskA’, …);

•	 gulp.task(‘TaskB’, …);

While the default task requires Task1 and Task2, Gulp actually parses all the children tasks down into 
TaskA and TaskB and determines that TaskA and TaskB plus Task2 all need to be run prior to running Task1. 
Figure 6-18 shows the actual result from this example and shows the order of execution for the tasks.

Figure 6-18.  The result of running the Gulp example with nested tasks

■■ Note   Another common example for using Gulp is concatenation, which is the process of combining 
multiple JavaScript or CSS files into one file. With the HTTP2 specification starting to be adopted by 
browsers and web servers, this task is losing relevancy. For this reason, the code in this book does not cover 
concatenation. For more information, see the HTTP2 documents at https://http2.github.io/

Task Runner Explorer Within Visual Studio
Another new tool that has been added to Visual Studio is called the Task Runner Explorer. It is available 
under View ➤ Other Windows ➤ Task Runner Explorer. This tool reads the tasks from Gulp or Grunt files 
and provides a way in Visual Studio to double-click and execute a task. Figure 6-19 shows an example of the 
Task Runner Explorer for a sample web application.

https://http2.github.io/


Chapter 6 ■ JavaScript Application Tools

232

On the left side of the Task Runner Explorer are the tasks from the gulpfile.js. Double-clicking on 
them opens a new tab on the right side and displays the output from the task in that new window.

The Task Runner Explorer provides a feature that allows developers to bind the gulp tasks to build 
operations on the project. Right-clicking on the task on the left side displays options for bindings. Under 
the Binding drop-down are options to select and deselect a binding association with the selected task. The 
available options for binding are Before Build, After Build, Clean, and Project Open.

Gulp Conclusion
There are numerous possibilities for Gulp tasks. Fortunately, the Gulp documentation provides examples of 
many of these tasks in a format they call recipes. These recipes, shown in Figure 6-20, can be found online at 
https://github.com/gulpjs/gulp/tree/master/docs/recipes.

Figure 6-19.  The Task Runner Explorer from Visual Studio

https://github.com/gulpjs/gulp/tree/master/docs/recipes


Chapter 6 ■ JavaScript Application Tools

233

For traditional .NET developers, there is definitely a learning curve for these tools such as NPM, Bower, 
and Gulp. The trend seems to be around creating a command line tool to execute some logic, then creating 
UIs and extensions on top of these command line tools to improve the experience. The Visual Studio team is 
continuing to add features at a rapid cadence and these features expose more and more of these command 
line tools in a user friendly way. For now, it’s important for developers to understand both worlds, the 
command line and the frontend UIs.

Module Loaders
Modularity is a core concept in JavaScript and it allows us to build larger and more complex applications. 
The latest versions of JavaScript support modules natively as part of the loader specification  
(https://github.com/whatwg/loader/). Unfortunately, at the time of publishing, modern browsers do not 
support modules. Therefore, if you want to use modules, you have to use a third-party module loader.

In terms of module loaders, there are two options that will be covered—SystemJS, which is an online 
module loader for the browser, and WebPack, which is a build time pre-bundling tool that combines the 
modules ahead of time into a single file that can be loaded from the file system. This section will cover both 
module loaders.

Figure 6-20.  The documentation on Gulp includes recipes for starting ideas

https://github.com/whatwg/loader/


Chapter 6 ■ JavaScript Application Tools

234

■■ Note   ASP.NET has long had a feature called ASP.NET Bundling. These features remain in ASP.NET 
Core as part of the visual studio gallery item called Bundler & Minifier, available at https://marketplace.
visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier. While this feature is available and 
can have similar results, if you manually include all the files in the bundle, it lacks the support for reading the 
JavaScript and determining its required imports based on the code.

What Is a Module
A module in JavaScript is a way to represent a small unit of reusable code. They are critical to 
maintainability, when building large applications in JavaScript. In fact, many of the single page app 
frameworks covered in this book are based on modules. Module have also been used previously in the 
chapter even if it wasn’t apparent. Any time the require command was used previously, that was a module.

In order to understand this concept, let’s take a simple calculator. This calculator, as seen in the 
following code and saved as calculator.js, represents the reusable calculator code that will be used by the 
module loader.

module.exports = (function() {
    function Calculator() {}
    Calculator.prototype.add = function(left, right) {
        return left + right;    
    };

    return Calculator;
})();

This code represents an ES5 version of the class in JavaScript that has methods. In this case, there is an 
add method that will be used by our application to add two numbers. On the first line of this code, it sets the 
module.exports value equal to the Calculator. This command defines the calculator as a reusable module 
for other code and allows the calculator to be imported into other parts of the application.

The following code represents a simple application that uses the calculator. For the purposes of this 
example, assume that this code is in a file called app.js.

var Calculator = require('./calculator.js');

var calculator = new Calculator();

var addButton = document.getElementById("addButton");
addButton.addEventListener('click', function() {
    var var1Field = document.getElementById('var1');
    var var2Field = document.getElementById('var2');
    var resultField = document.getElementById('result');

    var var1 = var1Field.value;
    var var2 = var2Field.value;
    var result = calculator.add(+var1, +var2);
    resultField.value = result;
});

https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.BundlerMinifier


Chapter 6 ■ JavaScript Application Tools

235

Notice that the app class uses the calculator from the previous code via its module. To do this it loads 
the calculator using the require statement. This sets the resulting variable, in this case Calculator, to the 
module.exports from the previous example. From there that Calculator class reference can be used to create 
a new instance of the Calculator class called calculator, which can then be used to call the add method.

The final component to this simple JavaScript calculator application is the HTML. The following code 
represents the HTML needed for the application.

<!doctype html>

<html lang="en">
<head>
  <meta charset="utf-8">

  <title>Calculator Example with SystemJS</title>
</head>
<body>
  <div class='container'>
        <h1>Calculator Example with SystemJS</h1>

        <input id="var1" />
        <label>+</label>
        <input id="var2" />

        <button id="addButton">=</button>

        <input id="result" />

    <!—Script to load modules and app.js -->
  </div>
</body>
</html>

The HTML for the application is very simple. There are essentially three text fields—two for input and 
one for output—and a button. They are all linked by IDs that are used by the app.js file.

Unfortunately, if script tags to the previous two snippets of code—calculator.js and app.js—were 
added, the browser would throw an error. This is because it doesn’t know what the require statement 
means. The latest browsers, at the time of publishing this book, do not support module loading. This is 
where module loaders come into play. For both the SystemJS and WebPack module loader examples, this 
calculator code will be used.

SystemJS
SystemJS is a configuration based module loader. SystemJS provides a shim for the browser that modifies the 
JavaScript files that are imported and provides a mechanism to enable exporting and requiring of modules.

In order to enable SystemJS for this application, the SystemJS library has to be added to the project. 
This code can be found in the SystemJS folder of the example code for this chapter. In the case of the 
example code, the SystemJS library is added via NPM. To do this open a new directory and include the three 
files—app.js, calculator.js, and index.html—to it. From there, open the command prompt and run the 
following command.

npm install systemjs



Chapter 6 ■ JavaScript Application Tools

236

This will download the systemjs library into the node_modules folder where it can be used. Once the 
library has been downloaded, include the following script tag in the bottom of the HTML file where the 
comment states.

<script src="node_modules/systemjs/dist/system.src.js"></script>

The minimal configuration needed in this case is to tell SystemJS what the root file is for the application. 
In this case, code is added to tell SystemJS to load the app.js file. From there, SystemJS will investigate the 
app.js file and find all the dependencies and ensure they are loaded. The following code instructs SystemJS 
to load the app.js file.

<script>
  System.import('app.js').catch(console.error.bind(console));
</script>

With these two script tags, the entire application will be loaded. In larger applications, this can be 
extremely powerful, by loading numerous application and third-party scripts without any additional code. In 
addition, this code sets some basic error handling to ensure errors are written out to the console.

Now that the index.html file has been modified to load the application using SystemJS, the folder can 
be hosted and launched via the http-server package discussed earlier in this chapter. If you’re using the 
example code, the http-server call has been included in the scripts section of the package.json file, as 
shown in the following code.

"scripts": {
        "serve": "http-server -o"
},

In order to execute this command, use the npm run command for the serve task as shown in the 
following code.

npm run serve

To understand what SystemJS is doing, open the developer tools in your browser and inspect the results 
of the app.js and calculator.js files that are loaded. Looking at the calculator.js file, you’ll see that the 
original file has been modified and has some additional code wrapped around it. The following code shows 
the changes that SystemJS has made.

(function(System, SystemJS) {(function(require, exports, module, __filename, __dirname, 
global, GLOBAL) {
  // Original Calculator.js code removed for brevity.
}).apply(__cjsWrapper.exports, __cjsWrapper.args);
})(System, System);

Not only has SystemJS inspected the app.js and determined that it needed to load the calculator.js file, 
but it has provided implementations for the code that would have previously thrown errors, such as module.
exports and require. These alternate implementations, or shims, are provided in the __cjsWrapper.args 
parameter.

This code provides a nice alternative to manually including multiple script tags for everything 
your application needs. In addition, it allows developers to takes steps in the right direction in terms 
of maintainability and modularity of code within JavaScript applications. This example is intended to 
demonstrate the concepts of module loading with SystemJS. There are additional configuration options 
and numerous ways to structure your application. For additional information on SystemJS, review the 
documentation online at https://github.com/systemjs/systemjs.

https://github.com/systemjs/systemjs


Chapter 6 ■ JavaScript Application Tools

237

WebPack
In the previous example, SystemJS was used to provide an in-browser shim to load modules. While this 
accomplished the goals, it can cause some strain on the browser as it needs to load multiple files. Depending 
on the size of the application, including its dependencies, there can be hundreds of scripts that need to be 
loaded. WebPack has gained popularity in recent time and offers module-loading capabilities at build time. 
It concatenates the numerous files that the application needs into a concise bundle or set of bundled files.

Unlike SystemJS, WebPack is a command line build tool that works on the developer’s machine or a 
build machine. To get started with WebPack, use the following command to install WebPack globally on your 
system.

npm install webpack –g

WebPack also needs to be installed in the project directory. To do this, create a new directory and 
include the three calculator files from the prior section—app.js, calculator.js, and index.html. The 
example code for this chapter also contains a WebPackCalculator folder, which contains the completed code 
for this sample. After the directory is created, navigate to the directory from the command line and execute 
the following command to install WebPack locally to the project.

npm install webpack

Now that WebPack is installed, it needs to be configured. Unlike SystemJS, which used the index.html 
file to configure the module loader, WebPack runs on the developer’s machine so it needs to be configured 
separately. To configure WebPack, create a new file called webpack.config.js and include the following 
code.

module.exports = {
    entry: "./app.js",
    output: {
        path: __dirname + "/dist",
        filename: "bundle.js"
    }
};

There are two configuration options in the WebPack config. First is the entry point, app.js. WebPack 
scans for any required files starting with the entry point, just like SystemJS did in the previous example. 
The second configuration option is the output. This tells WebPack where it should write the contents of the 
application after it has combined them. In this case, all the JavaScript in the application will be writing out to 
a file called dist/bundle.js. There are a number of different configuration options, including using different 
types of loader. Information about additional configuration options can be found online on the WebPack 
web site at https://webpack.github.io/.

Now that WebPack is installed and configured, it can be executed using the webpack command. To 
execute WebPack and generate the bundle.js file from the application code, run the following command.

webpack

Figure 6-21 shows the output message that is displayed when calling the webpack command.

https://webpack.github.io/


Chapter 6 ■ JavaScript Application Tools

238

The last step needed is to include a script tag for this newly generated bundle.js file. The following 
code shows the line that needs to be included in the bottom of the index.html file.

<script type="text/javascript" src="dist/bundle.js" charset="utf-8"></script>  

At this point the application can be run using http-server like the previous example. If you are using 
the example code, there is a built-in script included as part of the package.json, which allows you to run 
the command via NPM. The following command will run the application and launch the browser to the 
calculator app.

npm run serve

It’s great to see the module loader working with just a single file and minimal configuration, but how 
does this work? The following code shows the bundle.js file that was generated for the calculator projects.

/******/ (function(modules) { // webpackBootstrap
/******/        // The module cache
/******/        var installedModules = {};

/******/        // The require function
/******/        function __webpack_require__(moduleId) {

/******/                // Check if module is in cache
/******/                if(installedModules[moduleId])
/******/                        return installedModules[moduleId].exports;

/******/                // Create a new module (and put it into the cache)
/******/                var module = installedModules[moduleId] = {
/******/                        exports: {},
/******/                        id: moduleId,
/******/                        loaded: false
/******/                };

/******/                // Execute the module function
/******/                �modules[moduleId].call(module.exports, module, module.exports, __

webpack_require__);

Figure 6-21.  The output message when running the webpack command on the calculator project



Chapter 6 ■ JavaScript Application Tools

239

/******/                // Flag the module as loaded
/******/                module.loaded = true;

/******/                // Return the exports of the module
/******/                return module.exports;
/******/        }

/******/        // expose the modules object (__webpack_modules__)
/******/        __webpack_require__.m = modules;

/******/        // expose the module cache
/******/        __webpack_require__.c = installedModules;

/******/        // __webpack_public_path__
/******/        __webpack_require__.p = "";

/******/        // Load entry module and return exports
/******/        return __webpack_require__(0);
/******/ })
/************************************************************************/
/******/ ([
/* 0 */
/***/ function(module, exports, __webpack_require__) {

        var Calculator = __webpack_require__(1);

        var calculator = new Calculator();

        var addButton = document.getElementById("addButton");
        addButton.addEventListener('click', function() {
            var var1Field = document.getElementById('var1');
            var var2Field = document.getElementById('var2');
            var resultField = document.getElementById('result');

            var var1 = var1Field.value;
            var var2 = var2Field.value;
            var result = calculator.add(+var1, +var2);
            resultField.value = result;
        });

/***/ },
/* 1 */
/***/ function(module, exports) {

        module.exports = (function() {
            function Calculator() {}
            Calculator.prototype.add = function(left, right) {
                return left + right;    
            };

            return Calculator;
        })();

/***/ }
/******/ ]);



Chapter 6 ■ JavaScript Application Tools

240

The first thing to notice at the top of the file are a bunch of lines that start with /******/. This is the 
WebPack code and contains similar shim code as the SystemJS project. In addition, the contents of the app.js  
and calculator.js have been included as part of this file, as denoted by the 0 and 1 comments in the code. 
Instead of wrapping these calls with hooks, WebPack modifies the files, as you scan down the example 
code notice that require('./calculator.js') from the app.js file has been replaced with __webpack_
require__(1).

Comparing this code, and the architecture of WebPack, to SystemJS, you’ll notice that WebPack 
combines all the code into this single file. This means that all the work of looking up the module 
dependencies is completed when the command is run and written out to this file as opposed to by the 
client in the browser. There are some benefits to that from a performance perspective, but what might 
not be obvious are the caching benefits that might be received from having third-party modules loaded 
in a consistent versioned state. By combining all the code into a single file, any change, even insignificant 
changes, can invalidate the cache of the entire application. There are ways around this, in fact the angular-cli,  
which is not covered in this book, but uses WebPack under the covers and creates separate bundles for 
third-party scripts and for application scripts.

Despite their differences, SystemJS and WebPack provide similar functionality. These sections have 
just scratched the surface on what is possible with these tools. They can also be used to load more than 
just JavaScript, such as style sheets and images. For more information, see the documentation online at 
https://webpack.github.io/.

■■ Source Code T his chapter’s source code can be found under the Chapter 06 subdirectory of the download 
files.

Summary
Hopefully, this chapter has provided a basic introduction to the tools used for web development so they 
aren’t completely foreign when they come up in later chapters. There is much more to explore on these 
topics by visiting the respective web sites and navigating their tutorials.

https://webpack.github.io/


241© Philip Japikse, Kevin Grossnicklaus and Ben Dewey 2017 
P. Japikse et al., Building Web Applications with Visual Studio 2017, DOI 10.1007/978-1-4842-2478-6_7

CHAPTER 7

Introduction to TypeScript

TypeScript is a relatively new language designed and built “on top” of JavaScript. The syntax of TypeScript is 
the same as JavaScript and any valid JavaScript can also be considered TypeScript. As a language, TypeScript 
contains several powerful features not included in native JavaScript, including strong typing, object 
oriented capabilities via classes and interfaces, generics, and access to the newest ECMAScript features. 
Many of these new features will make TypeScript feel much more comfortable to C# developers than native 
JavaScript. At its lowest level, TypeScript is a JavaScript transpiler. A transpiler is a source to source compiler. 
Transpilers take a language and add some keywords and functionality to it. Then, at build time, those extra 
keywords and functionality are compiled back to the original language. To sum up, TypeScript adds features 
to JavaScript and then compiles those features back to pure JavaScript for deployment. Since the output is 
standard JavaScript, it runs on any platform without any changes or special requirements.

The concept of writing your JavaScript in a (slightly) higher level language like TypeScript and then 
transpiling it into JavaScript prior to deployment has a huge number of advantages. The act of transpiling 
your TypeScript code to JavaScript also provides the point where the compiler can notify the developer of 
any errors or warnings in the code. This simple concept of “breaking” the build through something as simple 
as an incorrect variable name is something that is worth its weight in gold to developers new to JavaScript.

Years ago, developers attempted to limit the amount of JavaScript they utilized in their applications as 
it lacked many of the key features they had learned to rely on in other, seemingly more robust, platforms. 
JavaScript was un-typed, didn’t support standard object oriented capabilities, and, due to the lack of robust 
tooling and IDEs, was difficult to write and maintain. Over time, and due to JavaScript’s wide availability 
and growing adoption, many of these hurdles have been overcome by innovative developers and companies 
rushing to fill this void. Today, JavaScript enjoys some of the most robust tooling support of any language 
and, thanks to transpilers like TypeScript, many of the other perceived limitations have been addressed as 
well. Now, building large and complex applications in JavaScript is not only exponentially easier than at any 
time in the past but is rapidly becoming the norm.

Why TypeScript?
Maybe the real question is: Why not TypeScript? Using TypeScript does not limit the types of devices or 
browsers in which your code runs as the resulting output is plain JavaScript. Thus, you get all the advantages 
of a more robust set of language features without any limitation to the reach of your application. You can 
easily integrate your favorite third-party JavaScript libraries with TypeScript.

■■ Note   TypeScript is a great way for C# developers to learn JavaScript. If you do not have much experience 
writing large-scale JavaScript, learning JavaScript by starting with TypeScript is a great way to leverage many 
of the concepts you already know.



Chapter 7 ■ Introduction to TypeScript

242

One of the challenges with JavaScript development is structuring the code once the application grows. 
Adding small client side tweaks to an application is easy with straight JavaScript. However, once you try to 
move everything to the client, which is typical with single page applications (SPAs), things get challenging 
in a hurry. TypeScript helps by adding keywords and features that promote SOLID development practices 
on the client. Things like type safety, inheritance, and modules/namespaces make large complex client side 
code easier to structure, develop, and maintain.

The keywords and features added by TypeScript help the developer provide intent. Meaning the 
developer can tell the TypeScript compiler that a variable is intended to be a number or a string. This helps 
IDEs provide IntelliSense and call out design time compilation errors. For example, if you try to assign a 
string into a variable defined as a number, the compiler will give you an error. IDEs like Visual Studio, which 
is compiling in the background, will give you instant feedback.

TypeScript allows developers to take advantage of new ECMAScript features that modern browsers 
do not yet support. Compiler support for new features happens faster than browser support for these same 
features. Similarly, TypeScript is also very helpful to projects that must support old browser versions. It 
allows you to select the ECMAScript version you need to support and will compile to the optimal code to 
support that version.

Finally, TypeScript enjoys a large ecosystem and support network. TypeScript was initially designed  
and developed at Microsoft by a team ran by Anders Hejlsberg (who also invented the C# language).  
The TypeScript language design and transpilers are all open source. Although initially developed at 
Microsoft, the TypeScript community has grown significantly outside the walls of Microsoft. Microsoft’s 
own development tools such as Visual Studio and Visual Studio Code both provide very robust TypeScript 
integration. In addition, many other tool vendors have built TypeScript integration deeply into their products. 
Browsers such as Google’s Chrome provide native TypeScript debugging within their dev tools. Alternative 
IDEs, such as JetBrain’s WebStorm, provide powerful support for TypeScript development and debugging.

TypeScript Basics
An Overview of TypeScript Syntax
Before we begin to write some of our own TypeScript, let’s review some of the basics of the TypeScript 
syntax. In doing so we will compare how it enhances standard JavaScript and differs from languages 
such as C#. Describing the full extent of the TypeScript language is beyond the scope of this introductory 
chapter, but it is very easy to demonstrate some of the key concepts you will find most useful in adopting the 
language in your own projects.

Datatypes
One of the first obvious differences between TypeScript and standard JavaScript is the support for specifying 
datatypes for variables, method parameters, and method return types. TypeScript supports a relatively small 
number of native datatypes, but ability to define your own classes or interfaces allow you to constrain any 
variable or parameter to whatever type you like.

The most common native datatypes supported by TypeScript are:

•	 boolean

•	 number

•	 string

This list of native datatypes may seem short compared to other languages you may be familiar with 
(and there are a few other keywords that can be utilized as datatypes, which we’ll discuss later). Since all 
TypeScript must compile to native JavaScript, there wasn’t a large advantage in supporting a more granular 



Chapter 7 ■ Introduction to TypeScript

243

breakout of native datatypes. The object oriented and modular capabilities of the TypeScript language 
allowed others to provide customized types as needed for things like dates, powerful collections, etc. 
TypeScript also natively supports arrays, nullable variables, generics, and many other features you may find 
familiar in defining the correct datatypes for your applications.

At its core, the typing system in TypeScript works and behaves very much like a developer would expect 
based on experiences from strongly typed languages such as C#. Once a variable or parameter is declared, its 
usage and assignments are enforced to be correct. Like C#, TypeScript also supports the ability to instantiate 
a variable on the same line as its declaration and to infer the datatype from its instantiation.

TypeScript variables are declared the same as in JavaScript (via let or var) but a type can be specified 
after the declaration by decorating the variable with a datatype. A colon (:) character is used to separate the 
variable name from the datatype.

Let’s review the following lines of code, which demonstrate some of the most basic means of declaring 
typed variables in the TypeScript syntax:

let x: number;       // declare variable x as a number

var y: string;       // declare variable y as a string

x = 12;              // valid assignment

x = "Hello";         // will cause a compile error

�let a: number = 10;  // specifying the type of number is redundant, it will be inferred from 
the assignment

var b = "Hello";     // b is inferred to be a string

As you can see from the previous code, the general syntax for specifying a “type” for a variable in 
TypeScript is relatively straightforward. If no type is specified for a variable it is assumed to be a special type 
called any. The any keyword is also valid in TypeScript anywhere you do not want a specific type and would 
prefer a variable be allowed to be assigned to anything. The following code demonstrates the use of the any 
keyword in TypeScript:

var x: any;

x = 123;            // initial assignment to a number

x = "Hello";        // assigned same variable to a string

var y;              // with no specific datatype specified y is inferred to be any

y = "World";

In the previous code, the declaration of variable y with no specific datatype tells the TypeScript compiler 
to infer its datatype as any. Since this is how all native JavaScript variables are defined, the use of any when a 
datatype is not specified is what allows existing JavaScript code to function within TypeScript files.

Just as TypeScript supports declaring types on basic variables, the same syntax is utilized for specifying 
types on method parameters and return types. See the following simple method declaration as an example:

calculateArea(length: number, width: number): number {
    return length * width;
}



Chapter 7 ■ Introduction to TypeScript

244

In this method example, the function accepts two parameters and both are declared to have the 
datatype of number. The return type of the function is also declared to be a number. In the TypeScript syntax, 
the return type comes at the end of the method declaration.

As with variable declarations, method parameters can specify a default value. Parameters specifying a 
default value and coming after all required parameters are essentially treated as optional to the caller of the 
method.

TypeScript also supports declaring parameters as optional by using the ? symbol. Optional method 
parameters specified with the ? symbol must come after all required parameters. See the following 
implementation of the searchPeople method:

function searchPeople(searchFilter: string, maxResults?: number): string[] {
    if (maxResults == undefined)
    {
        maxResults = 10;
    }
    return null;
}

In this function implementation, the maxResults parameter is specified as optional with the ? symbol 
after its name. In this scenario, no default value is given. When optional parameters are specified in this 
manner and no value is passed from the caller, the variable is assigned a value of undefined. This can be 
checked for by using the undefined keyword in TypeScript, as seen in the previous code.

In TypeScript, the undefined datatype is one of two special datatypes along with null. Both serve 
specific purposes in the language and are treated differently. The null datatype is likely familiar from its 
usage in languages such as C#. In earlier versions of TypeScript, variables of any datatype could be assigned 
as null. As of the release of TypeScript 2.0, an optional compiler setting called strictNullChecks allows this 
behavior to be flipped and no variable be assigned to null unless otherwise specified.

One final feature worth discussing when talking about datatypes within the TypeScript language is the 
ability to utilize “union” types. Let’s look at the following code:

var m: string | number;

m = "Go";

m = 123;

m = null;                      // error, cannot assign to null

In the same lines of code, the variable m is declared to have a union datatype, which specified it can 
either be assigned to a string or a number. Assignment to any other datatype will produce an error. Assuming 
the compiler is set to enforce strictNullChecks, then an assignment of the variable m to type null would 
also produce an error.

To achieve the ability to specify null values when appropriate, we can use the union datatype concept 
and specify null as one of the types a variable can support. This can be seen in the following code:

var o: string | null;

o = "Huskers";

o = null;                     // valid, o can be assigned to null



Chapter 7 ■ Introduction to TypeScript

245

Union datatypes can be specified anywhere a regular datatype is specified: variables, method 
parameters, method return types, etc. When accessing variables declared as a union datatype, you will only 
be able to access members that are common among each datatype in the union.

TypeScript also provides some useful type guards capabilities that are especially useful when dealing 
with union datatypes. These include the use of the typeof and instanceof operators from JavaScript. The 
TypeScript compiler will note that a particular usage of a variable exists within a block of code using typeof 
or instanceof to ensure the variable is of a specific datatype. Then, within this block, access to type-specific 
functionality will be available and safe. The following example demonstrates this with the use of the typeof 
operator.

var data: string | number | null;

data = 12;

if (typeof data === "number")
{
    // TypeScript treats 'data' as a number in this block
    var asCurrency = data.toFixed(2);
}

data = "Kevin";

if (typeof data === "string")
{
    // TypeScript treats 'data' as a string in this block
    var isValid: boolean = data.startsWith("K");
}

Another very useful feature of the TypeScript language is the ability to specify datatypes as 
enumerations. The following code demonstrates a simple enumeration:

enum Status {
    Active,
    Inactive,
    Unknown
}

var _s = Status.Active;

While this code is simple, enumerations in TypeScript are much more advanced. They support both 
constant and calculated enums, flags, and other powerful features.

One final point worth making regarding specifying datatypes in TypeScript is the fact that the resulting 
JavaScript does not contain any of the type information specified. During the TypeScript compilation 
process, all typing rules are enforced and validated. When the resulting JavaScript is generated, all the typing 
information is stripped out of the code. Since JavaScript does not have the concepts of native datatypes, 
it only makes sense that TypeScript validate and enforce these rules up front and then emit un-typed 
JavaScript.



Chapter 7 ■ Introduction to TypeScript

246

Core Constructs
We won’t spend much time on the core language syntax of TypeScript because, as mentioned, the syntax of 
TypeScript is just JavaScript. This means that the core language constructors for such things as for loops and 
conditional statements are identical to JavaScript.

Classes
Now that we’ve provided a understanding of how the type system of TypeScript works, let’s move on to 
another key and powerful feature of the TypeScript language: object oriented (OO) features such as classes, 
interfaces, and inheritance. Experienced JavaScript developers could simulate these capabilities via 
prototype-based inheritance and ECMAScript 6 will bring classes and inheritance to JavaScript but. With 
TypeScript, developers can take advantage of these features today.

■■ Note   Classes and these related keywords are not available in ECMAScript 5. They have been added to the 
ECMAScript 6 standard. This means that once modern browsers implement the new standard you will no longer 
need TypeScript to compile these keywords. The nice thing about TypeScript is that you can take advantage of 
these features now and they will run in current browsers.

This section is not intended to go into any of the core principles and patterns of OO but is instead 
intended to provide an overview of the implementation details for utilizing the core OO constructs in 
TypeScript.

To jump right in and begin to see how OO capabilities are provided in TypeScript, look at the following 
class:

class Person {

    constructor() {
    }

    nameFirst: string;
    nameLast: string;

    getDisplayName(): string {
        return this.nameFirst + " " + this.nameLast;
    }
}

In this code snippet, we have declared a simple class named Person and added a few properties and a 
method. The syntax of defining a class begins through use of the TypeScript keyword class and then adding 
the appropriate members to the body of the class.

TypeScript supports the common public, private, and protected modifiers. The public modifier 
is the default. This differs from C# where classes and their members are considered private by default 
and developers must explicitly declare specific members as public. In the Person class, no modifiers were 
specified so the class and all its members have defaulted to public.

The syntax for declaring a constructor in a TypeScript class is through the use of a specially named 
function called constructor(). Constructors can specify any number of parameters as needed.



Chapter 7 ■ Introduction to TypeScript

247

The Person class specifies two fields called nameFirst and nameLast. Consumers of the class can assign 
these fields to any valid string value. The values themselves are utilized in the getDisplayName() function to 
return a properly formatted full name. Note the use of the this keyword in the getDisplayName() function 
to properly access class-level members outside of the function itself. In C#, the this keyword is not always 
required if it can be inferred. TypeScript requires that developers specify this when accessing any other 
class level member.

Utilizing classes in C# should also be familiar to most developers as the new keyword is used, as in the 
following example:

var _person = new Person();

_person.nameFirst = "Michael";
_person.nameLast = "Jordan";

console.debug(_person.getDisplayName());

This code simply instantiates a new instance of the Person class, assigns some values to its fields, and 
then executes a call to the getDisplayName() function to retrieve a formatted name.

TypeScript classes can expose data as fields (as implemented with nameFirst and nameLast in the 
example) or developers can specify their own get and set accessors to control access to data. This is the 
equivalent of exposing the data as a property in C#. The following example demonstrates the syntax for 
providing accessors to a specific class field.

private _description: string;

get description() {
    return this._description;
}

set description(value: string)
{
    this._description = value;
}

While this example of a property does not specify any business logic in either the get or set function, it 
does demonstrate the encapsulation of the data stored in the private _description field.

Inheritance
Now that we have reviewed the basic syntax for a simple TypeScript class, let’s look at how inheritance is 
implemented with the following example:

abstract class BaseModel {

    constructor()
    {
    }

    id: string;



Chapter 7 ■ Introduction to TypeScript

248

    protected logAction()
    {
    }
}

class Person extends BaseModel {

    constructor() {
        super();
    }

    nameFirst: string;
    nameLast: string;

    getDisplayName(): string {
        return this.id + ": " + this.nameFirst + " " + this.nameLast;
    }
}

The previous code implements a simple base class called BaseModel. The declaration of the BaseModel 
class does specify the optional abstract keyword to indicate that we intend for BaseModel to serve as a base 
class for others to derive from and not to ever be instantiated directly. This capability is identical to that 
found in C#. BaseModel provides an empty constructor and a few members.

The Person class then inherits functionality from BaseClass using the extends keyword. The only 
other addition to the Person class itself is the inclusion of a call to a method called super() inside the 
constructor. In TypeScript, if a base class implements a constructor then all derived classes must explicitly 
call their base classes constructor using the specially named super() function. If a derived class does not 
include a call to super() in its own constructor, the compiler will throw an error. If a base classes constructor 
includes parameters, then these parameters must be specified in the call to super() from the derived classes 
constructor.

One nice, yet somewhat confusing to some, feature of the TypeScript language is the ability to 
automatically assign constructor parameters. To demonstrate this concept, let’s look at the following code:

class Person {
    private firstName: string;
    private lastName: string;

    constructor(firstName: string, lastName: string) {
        this.firstName = firstName;
        this.lastName = lastName;
    }
}

Note that in the code, the constructor of the Person class accepts two parameters and then, within the 
body of the constructor, the values of each of these parameters is assigned to a private field within Person 
to maintain the availability of these values through the lifetime of this instance. This pattern is extremely 
common in most languages (including C#) and is something most developers do frequently.

The designers of the TypeScript language decided to simplify this pattern and provide a more elegant 
and succinct syntax for developers to achieve the same goal. In TypeScript, the Person declaration can be 
simplified to the following:



Chapter 7 ■ Introduction to TypeScript

249

class Person {
    constructor(private firstName: string, private lastName: string) {
    }
}

In the shorter version of the Person declaration, the constructor parameters are prefaced with either 
a public, private, or protected modifier. No other change is needed. If the TypeScript compiler detects a 
constructor parameter with one of these modifiers it will automatically generate a similarly modified field 
within the class and assign this field to the value of the parameter passed in. Essentially this makes the code 
generated from the second example look identical to the code generated in the first, but with much less 
work.

This is a subtle, but very useful, feature that at first looks a bit odd to developers new to TypeScript. You 
will see it used very heavily in most TypeScript code bases, especially with frameworks like Angular 2, which 
rely heavily on dependency injection via constructor parameters.

Interfaces
Interfaces are also very easy to utilize in TypeScript. The following code snippet demonstrates a simple 
interface with one member and a class that implements the interface:

interface IModel {
    id: string;
}

class Person implements IModel {
    id: string;
}

TypeScript uses the implements keyword to indicate that a class implements an interface. Like C#  
(and numerous other languages), TypeScript supports a single inheritance model where any class can only 
inherit functionality from a single base class but any class can implement as many interfaces as it wants.

Interfaces in TypeScript may seem very simple and consistent with other languages you may know but, 
since TypeScript ultimately compiles down to pure JavaScript, the concept of interfaces (including when and 
how they are enforced) is implemented slightly differently.

First, TypeScript supports a syntax for specifying interfaces directly as datatypes or method parameters. 
This concept can be seen in this code:

var _o: { nameFirst: string, nameLast: string};
_o = new Person();

Here, we see the declaration of a variable called _o and, for its datatype, we specify a simple interface. 
We essentially tell the compiler that _o can be assigned to any object that has two string properties called 
nameFirst and nameLast. We have not declared the interface prior to this line and its definition is just 
specified inline with the variable declaration. When we instantiate a new Person object and assign it to the 
variable _o the compiler then verifies that the new object meets the interface definition specified when 
_o was declared. This is a much different process than in C#, where interfaces are only considered to be 
implemented if the developer explicitly states they are implemented in the class declaration (or in the 
declaration of a base class). In TypeScript, simply having the same members as an interface is enough. The 
compiler will ensure you implement an interface when you try to assign a variable to a specific interface or 
pass a specific object to a method expecting a parameter with an interface type.



Chapter 7 ■ Introduction to TypeScript

250

The syntax for declaring interfaces inline is available anywhere you can declare a datatype. We see this 
here, when accepting a parameter to a function:

interface IModel {
    id: string;
}
function logData(model: { id: string }) {

}
function logData2(model: IModel) {

}

You can see that the logData() and logData2() methods are essentially identical. Both accept any 
object that has (at least) a single object containing a property of type string and called id. The first method 
specifies this interface requirement in its signature when declaring the model parameter. The second method 
utilizes a specific interface (IModel) declared elsewhere as the datatype for its model parameter. Since these 
interfaces are identical, both method signatures are considered identical by TypeScript. As a developer, you 
are free to choose which interface definition syntax fits any specific scenario in your code.

Generics
The next concept worth reviewing when discussing TypeScript is the ability for developers to utilize generics in 
their TypeScript code. A full discussion of generics is beyond the intended scope of this chapter, but the following 
examples will provide a quick introduction as to the syntax and concepts. Developers familiar with utilizing 
generics in languages like C# should find the implementation of generics in TypeScript to be very familiar.

The following example of a BaseService class demonstrates the simplest use of generics when 
incorporating them into your own classes:

class BaseService<T> {

    searchItems(filter: string): T[] {
        return new Array<T>();
    }

    saveItem(item: T) : T
    {
        return item;
    }
}

The BaseService class specifies a single generic parameter named T. T can then be utilized 
throughout the class as a datatype placeholder, which will be specified at compile-time based on the usage 
when a generic class is instantiated. For example, the following code demonstrates how the generic class 
BaseService can be utilized as a type-specific way through inheritance.

class Person {
    nameFirst: string;
    nameLast: string;
}

class PersonService extends BaseService<Person> {

}



Chapter 7 ■ Introduction to TypeScript

251

The PersonService class inherits from BaseService and specifies the generic type as Person. This 
means that, for developers utilizing PersonService in their code, the methods utilizing the previously 
“generic” type T will now be strongly typed to type Person. In this way, we can build classes that define a 
specific interface but treat their core datatypes interchangeably.

As with C#, TypeScript classes can specify multiple generic parameters at a class or method level. These 
parameters are separated by a comma. There are scenarios where a generic type cannot be 100% generic 
and some type of constraints need to be applied. This is achieved in TypeScript through another use of the 
extends keyword, as demonstrated in the following class declaration:

class BaseService<T extends BaseModel> {

}

In the implementation of BaseService, the generic parameter T can be assigned to any class that 
derives from BaseModel. This provides a large amount of flexibility to developers building generic 
implementations of core services, as they can now depend on the fact that the types they are provided have 
specific capabilities.

Like the implementation of generics in C#, there is more to the syntax and implementation than we can 
cover in this introductory chapter. It is important to note that TypeScript fully supports generics and most  
of the concepts and syntax you may be familiar with from C# have been brought into the TypeScript  
eco-system.

Compiler Settings
Like any other advanced language there are a significant number of configuration options you may want to 
tweak when developing a TypeScript application. The TypeScript compiler itself (a tool called TSC.exe) can 
accept these settings as parameters passed directly via the command line or, more commonly, development 
teams include a specially formatted JSON file called tsconfig.json in their TypeScript projects.

The tsconfig.json file has a very specific JSON structure and a defined set of options and 
configuration settings. The following JSON provides an example of a basic setup for a tsconfig.json file:

{
  "compilerOptions": {
    "noImplicitAny": false,
    "strictNullChecks": true,
    "noEmitOnError": true,
    "removeComments": false,
    "sourceMap": true,
    "target": "es5",
    "module": "commonjs",
    "outDir": "../output"
  },
  "compileOnSave": true,
  "exclude": [
    "node_modules",
    "wwwroot"
  ]
}



Chapter 7 ■ Introduction to TypeScript

252

Some of the major options frequently configured for a TypeScript project include:

•	 The JavaScript platform to target with all generated code. This is set to ECMAScript 5 
or es5 in the previous example.

•	 The directory in which to output all generated JavaScript code. The sample sets this 
to a relative path pointing at a directory called output. If this setting is not specified, 
all generated code will appear directly beside the input TypeScript files.

•	 Directories to explicitly include or exclude. The example does not specify any files 
to specifically include, so the assumption is to include every *.ts file in the same 
directory or lower than the tsconfig file itself. We do specify specific folders to 
exclude including the NPM packages folder (node_modules) and a folder called 
wwwroot.

•	 The module system to use when referencing components from one file in another 
file. Using modules with TypeScript is discussed in the next section.

A full list of compiler options available in the tsconfig file can be found on Microsoft’s site: https://
www.typescriptlang.org/docs/handbook/compiler-options.html.

Projects typically have a single tsconfig.json file at the root of the folder or project containing their 
TypeScript code. It is possible to have multiple tsconfig files and inherit specific settings from a root 
project.

Modules
Structuring a large TypeScript (or JavaScript) application can be tricky and there are a lot of different factors 
to consider. To follow industry best practices and take advantage of the OO concepts we described, it is 
highly recommended that development teams break their code into individual files per type or interface 
and, when code in one file depends on classes or other structures in another file, the dependency must be 
specified accordingly so that the compiler knows to include the other file.

Complex JavaScript projects have begun to depend heavily on external “module” loaders to help 
simplify these dependencies and to include required code efficiently and on demand. Two of the most 
popular JavaScript module loaders are SystemJS and CommonJS. As briefly discussed, the TypeScript 
compiler can be configured to easily output code to target either of these systems (in addition to several 
others).

TypeScript provides two primary keywords to support its integration with module loaders: export and 
import. Let’s look at a brief scenario and discuss how these keywords simplify your usage of modules. First, 
imagine a project with a class called Person that is implemented in a file called Person.ts as the following:

export class Person {
    id: string;
    nameFirst: string;
    nameLast: string;
}

Note in this implementation of the Person class we have added the export keyword onto the class 
definition. This keyword tells TypeScript that we want this class exposed to the module system, as we want to 
use it from other files.

https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://www.typescriptlang.org/docs/handbook/compiler-options.html


Chapter 7 ■ Introduction to TypeScript

253

Given this Person implementation, we may decide to create a wrapper around a remote API to simplify 
our interaction with the server with regards to Person objects. This may turn into a class called ApiService 
that is implemented in its own file (ApiService.ts) that looks like this:

import { Person } from "./Person";

export class ApiService {
    getPeople(filter: string): Person[] {
        return new Array<Person>();
    }
}

In the ApiService class, we start with a line of code using the import keyword to indicate we are 
planning on using the previously exported class Person. There are multiple ways to form an import 
statement in TypeScript and the one specified here indicates we want to import a single class (i.e., Person) 
from the file ./Person. Note that the filename is a relative path and does not specify an extension. The 
module loader will search for a file with either a JS or a TS extension. If we had not previously included the 
export keyword on the Person class, the compiler would give us an error explaining that the file we specified 
was not a module as it didn’t export what we were looking for.

If we had not included the import line at the beginning of the ApiService class, the compiler would not 
recognize the Person class in our implementation of ApiService and we would get several errors.

Exporting classes appropriately and including the necessary import statements at the top of any 
TypeScript classes is simple enough and one of the most common steps in creating a new TypeScript class. 
The concept of explicitly stating our dependencies via import allows the TypeScript compiler and the 
specified module system with the information it needs to efficiently load files when requested and to keep 
track of everything accordingly.

There are also several other great features of the TypeScript module integration. First, if a relative path 
is not specified as an import the module loader will look for the module as a package loaded via NPM into 
the node_modules folder. This makes it very easy to load external packages via NPM and integrate them into 
your code with a simple import. Next, since every TypeScript file explicitly declares its dependencies via one 
or more import statements, module bundlers such as WebPack can be given one or more “entry points” into 
your application and can then intelligently determine every dependency for your application and package 
everything into an efficient set of files or bundles for deployment.

In the upcoming chapters of this book, you will see this concept implemented frequently as we use the 
concept of TypeScript exports and imports to build applications using multiple frameworks (Angular 2 and 
React), all while using TypeScript and module loaders to integrate the components we need and to specify 
the relationships between our own components/files.

Implementing a Basic TypeScript Application
The best way to get familiar with the TypeScript language is to dive in and see how easy it is to add 
TypeScript and debug the resulting code. The example we use in this chapter is very simple and does not 
take advantage of a rich client side framework such as Angular, as we want to focus solely on TypeScript. The 
remaining chapters of this book will use TypeScript in much more advanced scenarios.

If you are using Visual Studio 2017 for your development you already have everything you need to 
incorporate TypeScript into your applications. If you are utilizing an older IDE such as Visual Studio 2015, 
you may have to install TypeScript separately. With Visual Studio this is done via the Tools > Extensions 
menu. Many build processes utilize a package manager such as NPM to install a specific version of 
TypeScript and then perform all compilation as part of a build process using tools such as Gulp or WebPack. 
Some of these concepts are discussed in Chapter 6.

http://dx.doi.org/10.1007/978-1-4842-2478-6_6


Chapter 7 ■ Introduction to TypeScript

254

Setting Up a Sample Project
Now let’s create a blank web project to play around with TypeScript. Start by launching Visual Studio and 
selecting File ➤ New ➤ Project. In the left rail, select Web under Visual C#, select ASP.NET Core Web 
Application, and change the Name to TypeScriptSample, as shown in Figure 7-1. Click OK.

Figure 7-1.  Creating a new project

On the next screen, select Empty under ASP.NET Core Templates and click on OK, as shown in 
Figure 7-2.



Chapter 7 ■ Introduction to TypeScript

255

Now you will have an empty ASP.NET Core project. This chapter will not dive into ASP.NET Core or the 
empty project structure right now. Those details are discussed in the WebAPI and MVC chapters earlier in 
the book. The project will need to be configured to display static files so it can run the TypeScript samples.

To configure the project to display static files, we need to add some middleware to the Startup.cs file. 
To open this file, expand the src ➤ TypeScriptSample area in the Solution Explorer. Now double-click on the 
Startup.cs file. By default, it will look like this.

    public class Startup
    {
public void ConfigureServices(IServiceCollection services)
        {
        }

�public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory 
loggerFactory)
{
            loggerFactory.AddConsole();

            if (env.IsDevelopment())
            {
                app.UseDeveloperExceptionPage();
            }

            app.Run(async (context) =>
            {
                await context.Response.WriteAsync("Hello World!");
            });
    }
}

Figure 7-2.  Template selection



Chapter 7 ■ Introduction to TypeScript

256

Notice this code just writes "Hello World!" to the page. Not very useful. In order to use static 
HTML files, we will need to install the Microsoft.AspNet.StaticFiles NuGet package. Right-click on the 
TypeScriptSample project in the Solution Explorer and click Manage NuGet Packages… Next select Browse 
and type AspNet.StaticFiles in the search box, as shown in Figure 7-3.

Figure 7-3.  The NuGet Package Manager

Select Microsoft.AspNet.Static files and install them (accepting any dialogs that pop up). Now 
modify the code in Startup.cs to use default and static files. Remove the Hello World code and replace it 
with app.UseDefaultFiles and app.UseStaticFiles, as shown in bold:

�public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory 
loggerFactory)
{
    loggerFactory.AddConsole();

    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
    }

    app.UseStaticFiles();
    app.UseDefaultFiles();

}

Now we will set up the structure of the project in the wwwroot folder. First, we add a static HTML file 
to project by right-clicking on the wwwroot folder and clicking Add ➤ New Item. In the left rail, select Web 
under ASP.NET Core, select HTML Page, and change the name to Index, as shown in Figure 7-4.



Chapter 7 ■ Introduction to TypeScript

257

Now create a folder to put the JavaScript that is output from the TypeScript files. Add that by  
right-clicking on the wwwroot folder and selecting Add ➤ New Folder. Name the new folder js. We will 
configure our TypeScript compiler to generate all JavaScript into this folder.

Working with TypeScript Files
Since TypeScript files are compiled to JavaScript files, they are not typically deployed with the site. Instead 
the JavaScript that is output from compiling (or, more accurately, transpiling) the .ts files will be deployed 
with the site. When debugging locally, source mapping is generated that map the .js files back to the .ts 
files. This allows modern browsers such as Google Chrome to properly debug TypeScript.

In the sample project’s case, we will maintain all our TypeScript files outside of the wwwroot folder in a 
folder called src that is in the root of the project. To create this folder, right-click on the TypeScriptSample 
project and select Add ➤ New Folder. Name the folder src. Make sure this folder is not in the wwwroot folder 
and will not be deployed with the site.

The src folder is where all the TypeScript files will be added. The wwwroot\js folder is where the 
compiled JavaScript files will be located. So how does the compiler know where the TypeScript files are and 
what folder to compile the JavaScript to? As described, we will specify this in the tsconfig.json file. Add this 
file to the project by right-clicking on the src folder and clicking Add ➤ New Item. In the left rail, select Web 
under ASP.NET Core, select TypeScript JSON Configuration File, and leave the name as tsconfig.json, as 
shown in Figure 7-5.

Figure 7-4.  Adding a new HTML page



Chapter 7 ■ Introduction to TypeScript

258

This JSON file contains the compiler options for TypeScript. The basics of this file were discussed 
early and there are many options not covered in this chapter. For a complete list of options, browse to 
http://www.typescriptlang.org/docs/handbook/tsconfig.json.html. Here is what the file looks like 
by default:

{
  "compilerOptions": {
    "noImplicitAny": false,
    "noEmitOnError": true,
    "removeComments": false,
    "sourceMap": true,
    "target": "es5"
  },
  "exclude": [
    "node_modules",
    "wwwroot"
  ]
}

Most of these defaults are all valid for the sample project. It does need a couple more options. Table 7-1 
lists some of the options that we need to configure for this sample.

Figure 7-5.  Adding a new tsconfig.json file

http://www.typescriptlang.org/docs/handbook/tsconfig.json.html


Chapter 7 ■ Introduction to TypeScript

259

For purposes of this example, let’s replace the default tsconfig.json file with the settings configured in 
this sample:

{
  "compileOnSave": true,
  "compilerOptions": {
    "noImplicitAny": false,
    "noEmitOnError": true,
    "removeComments": false,
    "inlineSourceMap": true,
    "inlineSources": true,
    "module": "system",
    "moduleResolution": "Node",
    "target": "es5",
    "outDir": "../wwwroot/js"
  },
"exclude": [
    "node_modules",
    "wwwroot"
  ]
}

Notice it is not listing all the TypeScript files or providing the directory of the TypeScript files. By default, 
the directory containing the tsconfig.json file is considered the root directory for our TypeScript files. 
Since we added the tsconfig.josn file to our src directory, that is considered the root directory.

Finally, for purposes of this example we specify that the TypeScript compiler should utilize the SystemJS 
module loader. We will see how this can be used for simple applications when we add our bootstrap code to 
the Index.html file.

NPM Packages
To demonstrate a common step in any modern web development project, we are going to utilize Node’s 
Package Manager (NPM) to install some items into our project. This concept will be used heavily in later 
chapters to bring in our client side frameworks. For this example, we will use NPM to install the current 
TypeScript compiler and some TypeScript “typings” for iQuery, which we will use in our examples. The 
concept behind “typings” will be discussed when we take advantage of them and start utilizing jQuery.

Table 7-1.  TypeScript Compiler Options

Option Meaning

compileOnSave Tells the IDE to generate the JavaScript file when a TypeScript file is saved.

inlineSourceMap Include the TypeScript source map with the JavaScript files. For debugging only.

inlineSources Create one JavaScript file with both the TypeScript and the JavaScript. For 
debugging only.

outDir The directory where the compiled JavaScript files are saved.

module The module loading system to expect when generating JavaScript. For our example, 
we will use “system” to specify SystemJS.



Chapter 7 ■ Introduction to TypeScript

260

Visual Studio 2017 has native support for NPM and we can begin to use NPM in our project by right-
clicking on the project and selecting Add ➤ New Item. In the left rail, select Web under ASP.NET Core, select 
NPM Configuration File, and leave the name as package.json, as shown in Figure 7-6.

Figure 7-6.  Adding a new NPM configuration file

Once the package.json has been added to the root of your project, you can use Visual Studio’s editor to 
modify the default file contents to include two devDependencies by adding the lines highlighted in bold:

{
  "version": "1.0.0",
  "name": "asp.net",
  "private": true,
  "dependencies": {

  },
  "devDependencies": {
    "typescript": "2.1.4",
    "@types/jquery": "1.10.31"
  }
}

As mentioned, the full power of NPM will be described and demonstrated in other chapters in this book 
but, for now, we are simply utilizing it to ensure that TypeScript and typings for jQuery are added to our 
project.

Once we have modified the file to include these lines (and saved), Visual Studio will automatically 
detect the changes and execute NPM behind the scenes to ensure the specified packages are installed in 
your project. If you are new to NPM, you will find all installed packages in the root of your project in a folder 



Chapter 7 ■ Introduction to TypeScript

261

called node_modules. This folder is automatically hidden in your Visual Studio solution explorer so, to see it, 
you must navigate into your project folder via Windows Explorer. Visual Studio does provide a nice extension 
to its Solution Explorer to let developers know visually what packages are currently installed. This can be 
seen under the Dependencies node, as shown in Figure 7-7.

Figure 7-7.  Solution Explorer Dependencies node

Note that the Dependencies node in Solution Explorer is used to show dependencies installed via NPM 
and those installed via NuGet.

Adding TypeScript
At this point we have an empty project set up with some plumbing in place in preparation of our TypeScript 
demonstration. At this point, these samples are going to keep it simple to demonstrate the syntax of 
TypeScript without needing a ton of explanation of the problem that is being solved. They will not connect 
to any APIs or save data to a data source. Later chapters in this book demonstrate the usage of the TypeScript 
language in more advanced scenarios as we evaluate the more robust client side frameworks.

The premise of the following samples is to provide a list of products and prices. The prices are 
determined by what type of customer is logged in. The customer types are Anonymous, Bronze, Silver, and 
Gold. This simple structure will be used to explain the benefits of TypeScript.

To begin to see TypeScript in action, right-click on the src folder in the TypeScriptSample project and 
click Add ➤ New Item. In the left rail, select Web under Web, select TypeScript File, and name it ICustomer.
ts, as shown in Figure 7-8.



Chapter 7 ■ Introduction to TypeScript

262

Within the new file, we will create our first TypeScript interface with the following code:

export interface ICustomer {
    name: string;
    numberOfYearsCustomer: number;
    discountPercent(): number;
}

Note the use of the export keyword in the ICustomer implementation. This indicates that we will be 
using this interface in other files and that the module loader should prepare it accordingly.

The ICustomer interface declares two variables and one method. One string variable, one number 
variable, and one method that returns a number. As mentioned, when discussing datatypes, simply adding 
“: string” to the name variable tells the compiler that it is a string. Now if we try to assign a number to the 
name variable, we will get a compilation error. There will be an example of that in the next section.

What does the JavaScript look for this file once it is compiled? Well, remember that TypeScript defines a 
developer’s intent. JavaScript does not provide the concept of an interface. So, once you save this file you will 
see a ICustomer.js file in the TypeScriptSample\wwwroot\js folder. If you open this file, you will see that it 
is empty. TypeScript will use the ICustomer interface for compiling other parts of the TypeScript, but there is 
no JavaScript to send to the client.

Classes and Inheritance
Now that the ICustomer interface is complete, there needs to be one or more classes to implement it. For 
our example, we are going to create a BaseCustomer class and then four concrete implementations of the 
ICustomer interface that inherit base functionality from BaseCustomer.

Figure 7-8.  Adding a TypeScript file



Chapter 7 ■ Introduction to TypeScript

263

To do this, right-click on the src folder in the TypeScriptSample project and click Add ➤ New Item. In 
the left rail, select Web under ASP.NET Core, select TypeScript File, and name it CustomerBase.ts.

Add the following abstract class to the CustomerBase.ts.

import { ICustomer } from "./ICustomer";

export abstract class CustomerBase implements ICustomer {
    name = "Customer Base";
    numberOfYearsCustomer = 0;
    discountPercent() {
        return .01 * this.numberOfYearsCustomer;
    }
}

This class implements the ICustomer Interface. It also uses the abstract keyword to indicate that it 
cannot be instantiated directly. It is again important to note that this is only defining the coder’s intent. The 
JavaScript that is output from the compiler will not be abstract at runtime. It is for compilation purposes only.

Another key piece of the CustomerBase class is the use of the import keyword to indicate that it requires 
use of the ICustomer interface defined in another file.

Once this file is saved, there is some JavaScript to look at (finally!). Open the TypeScriptSample\
wwwroot\js\CustomerBase.js file. It should look like this:

"use strict";
var CustomerBase = (function () {
    function CustomerBase() {
        this.name = "Customer Base";
        this.numberOfYearsCustomer = 0;
    }
    CustomerBase.prototype.discountPercent = function () {
        return .01 * this.numberOfYearsCustomer;
    };
    return CustomerBase;
}());

This code might look foreign to you if you are not familiar with JavaScript. It is using the constructor, 
prototype, module and revealing module JavaScript patterns. This code is readable and can be followed, but 
the TypeScript code is much easier for a most developers to read and write. TypeScript hides some of the 
complexities that are involved in writing good, maintainable JavaScript.

■■ Note   Do not modify this JavaScript code directly. Like all code generation\compilation tools, it will 
overwrite this file once the TypeScript file is saved again. Any changes made to the JavaScript file will be lost.

When taking a closer look at this code, you can see that it does not contain any of the type annotations 
nor references to the ICustomer interface. In fact, it is also not validating or enforcing those types. This 
proves that many of the features of TypeScript are only important for compilation.

Now there is a customer base class, we will continue by building four concrete customer 
implementations. Right-click on the src folder in the TypeScriptSample project and click Add ➤ New Item. 
In the left rail, select Web under ASP.NET Core, select TypeScript File, and name it CustomerAnonymous.ts, 
as shown in Figure 7-9.



Chapter 7 ■ Introduction to TypeScript

264

Add the following abstract class to CustomerAnonymous.ts.

import { CustomerBase } from "./CustomerBase";

export class CustomerAnonymous extends CustomerBase {
    name = "Valued Customer";
}

This class simply extends the customer base class and changes the name value. If the sample was 
retrieving a customer from an API call, it might instantiate an object of this class and set the name based 
on the customer it retrieved. There is now a customer interface, customer base class, and an anonymous 
customer class. The sample project will also need to include CustomerBronze.ts, CustomerSilver.
ts, and CustomerGold.ts files. Create these files in the src directory the same way you created the 
CustomerAnonymous.ts file earlier. The contents of each file are shown here:

CustomerBronze.ts

import { CustomerBase } from "./CustomerBase";

export class CustomerBronze extends CustomerBase {
    name = "Bronze Customer";
    numberOfYearsCustomer = 5;
}

Figure 7-9.  Adding a new CustomerAnonymous.ts file



Chapter 7 ■ Introduction to TypeScript

265

CustomerSilver.ts

import { CustomerBase } from "./CustomerBase";

export class CustomerSilver extends CustomerBase {
    name = "Silver Customer";
    numberOfYearsCustomer = 10;
}

CustomerGold.ts

import { CustomerBase } from "./CustomerBase";

export class CustomerGold extends CustomerBase {
    name = "Gold Customer";
    numberOfYearsCustomer = 15;
    discountPercent() {
        return .20;
    }
}

The bronze and silver customers are simply extending the base customer and resetting some of the base 
properties. Nothing ground shattering. The gold customer is resetting the properties, but it is also overriding 
the discountPercent method. The base customer class calculates the discount percentage based on the 
number of years the customer has been a customer. Here is what that function looks like:

discountPercent() {
        return .01 * this.numberOfYearsCustomer;
    }

Gold customers will get a 20 percent discount no matter how long they have been a customer. This is 
very common among object oriented coding patterns and provides for the concept of polymorphism. The 
behavior of the customer gold class is different from all the other customers.

Note that each of the concrete customer types (Anonymous, Bronze, Silver, and Gold) import the 
base class (CustomerBase) and inherit its core functionality. Each of them also implements the ICustomer 
interface through this base class, although they do not specify it explicitly.

The sample project should now look something like Figure 7-10.



Chapter 7 ■ Introduction to TypeScript

266

Adding a Product List
The next step in hooking up our TypeScript sample is to add a few classes related to managing a list of 
products and then to hook everything up via a View Model class. Once we have all the TypeScript in place we 
will add code to our Index.html file to bootstrap everything and then debug through the process of getting 
everything running.

Let’s start by adding a TypeScript file that will represent our “View Model” or the core code to be utilized 
to manage our user interface. To do this, right-click on the src folder in the TypeScriptSample project and 
click Add ➤ New Item. In the left rail, select Web under ASP.NET Core, select TypeScript File, and name it 
IndexVM.ts, as shown in Figure 7-11.

Figure 7-10.  Current solution



Chapter 7 ■ Introduction to TypeScript

267

Now, create the indexVM class inside of the src folder. In this file, we need to instantiate a global 
variable of it so we can access it from the page:

export class IndexVm {

}

 export let indexVmInstance = new IndexVm();

The IndexVM.ts file will need to run some logic to instantiate the customer classes when the page loads. 
It will also need to access some of the HTML elements on the page and set their values. What better way 
to do that than to use jQuery? jQuery has fallen out of favor somewhat but it is still a great way to do some 
simple manipulation of the page. jQuery is a highly adopted third-party JavaScript library that has no direct 
relationship to the TypeScript language. However, like all JavaScript files, it can be added to the page via a 
script tag. This will make it available to all subsequent JavaScript code. So how do we use it, or any  
third-party JavaScript framework, with TypeScript and not get compilation errors? There are several ways 
this can be accomplished and, if you have been paying attention, we’ve already laid some of the groundwork 
for the use of jQuery in our project.

First, to use a third-party library like jQuery we can simply load the library from either a local or a 
remote (i.e. CDN) source and we can use it directly from our TypeScript. With jQuery, we know that the $ 
symbol serves as the root of all functionality. To allow us to use the jQuery $ without causing TypeScript 
compile errors, we need to include what is called an ambient declaration. If we add the following line of code 
to the top of our file (or somewhere else that is always loaded with our project):

declare var $: any;

Figure 7-11.  Adding a new IndexVM.ts file



Chapter 7 ■ Introduction to TypeScript

268

Using the TypeScript declare keyword we essentially tell the TypeScript compiler that we want to use 
the $ symbol and that it should be typed as any. This allows us to use the $ and forces the TypeScript compiler 
to skip any type checking when we access properties or functions on this symbol. We do not get any IDE 
IntelliSense or compile-time validation on our usage of the $ using this pattern. If we accidentally have a typo 
or otherwise use it incorrectly we will not know until the code executes and the browser logs an error.

Using the declare keyword we can globally declare any keyword to be available and safe for us to use. 
This is a quick and easy way to use third-party JavaScript libraries when we know the name of their global 
classes.

What do we do if we want to use a library like jQuery and enjoy the type safety and IntelliSense provided 
by TypeScript? For this we need to either find a TypeScript “typing” file or write our own. In the ambient 
declaration line, we specified that $ should be treated as type any. If we had a TypeScript interface (or set 
of interfaces) that defined all the datatypes and method signatures for the $ (as implemented in jQuery’s 
own JavaScript file), we could have used that and the TypeScript compiler would ensure that we use the $ 
correctly and that all calls are passed on to the actual jQuery implementation. This would be the best of all 
worlds. In the TypeScript world, this solution is achieved using “typing” files or libraries. To demonstrate this 
concept let’s look at what we have already set up for jQuery.

First, when we configured NPM to load packages into our project, one of the two packages we specified 
in the package.json was the following:

"@types/jquery": "1.10.31"

This package contains a library of community-built TypeScript interfaces to match the signatures of the 
jQuery library. The file loaded in this package are automatically downloaded into the project in the node_
modules/@types/jquery folder. TypeScript (and most IDEs) automatically reference type definitions found 
under the node_modules/@types folder. Using the tsconfig.json file, you can adjust this setting to explicitly 
call out typings to include or to exclude. In our sample, we do not change any settings and we accept the 
default behavior of including everything.

The standard naming convention for TypeScript “typing” files is to use a *.d.ts extension. This helps 
differentiate files that contain no more than type interfaces for third-party JavaScript libraries from those 
containing actual app code. If you were to use Windows Explorer to browse to the node_modules/@types/
jquery folder, you would find all jQuery interfaces included in a single file called jquery.d.ts.

Now that we have ensured our package.json includes the jQuery types, we can check out the benefits 
of having these files. If you open the IndexVM.ts file and enter a $ near the end of the file, you will see a very 
robust IntelliSense implementation that dictates what capabilities are included with jQuery. This can be 
seen in Figure 7-12.

Figure 7-12.  IntelliSense with jQuery typings



Chapter 7 ■ Introduction to TypeScript

269

If you would like to see the sheer number of TypeScript typing files for third-party JavaScript libraries, 
you can check them out at the site http://definitelytyped.org/. The community has started a public 
GitHub repo that currently provides typing definitions for over 1,700 JavaScript libraries. This makes it very 
easy to include them in your TypeScript projects and enjoy all the type safety and information they provide.

It is now time to begin building a simple UI to execute the TypeScript. Open the Index.html page 
located in the wwwroot folder of the TypeScriptSample project. The default content for this file contains some 
basic HTML like the following:

<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <title></title>
</head>
<body>

</body>
</html>

First, we need to reference the jQuery since it will be used by the sample application. We will reference 
this using a Content Delivery Network (CDN). The CDN takes the place of downloading and providing the 
jQuery files inside of the sample project. It is best practice to reference scripts at the bottom of the body tag 
for performance reasons. Add a reference to the jQuery CDN to the body tag, shown in the following bolded 
code snippet.

<body>

         <script src="https://code.jquery.com/jquery-2.2.2.min.js" integrity="sha256-36cp2Co
+/62rEAAYHLmRCPIych47CvdM+uTBJwSzWjI=" crossorigin="anonymous"></script>

</body>

Generally, you would also reference each of the individual JavaScript files you have in your own project 
to this same area of the HTML. In our sample, we are going to focus on the SystemJS module loader and 
how we can use it to simplify loading complex TypeScript projects. For this we need to include a reference 
to the system.js library itself and we will again use a CDN. This can be achieved by adding the script tag 
highlighted in bold:

<body>

    �<script src="https://cdnjs.cloudflare.com/ajax/libs/systemjs/0.19.41/system.js"> 
</script>

    <script src="https://code.jquery.com/jquery-2.2.2.min.js"
            integrity="sha256-36cp2Co+/62rEAAYHLmRCPIych47CvdM+uTBJwSzWjI="
            crossorigin="anonymous"></script>

</body>

http://definitelytyped.org/


Chapter 7 ■ Introduction to TypeScript

270

■■ Note   The order of these script tags is important. JavaScript is an interpreted language and will be load 
sequentially. When a .js file references a class, variable, or function it must already be defined by a previous 
.js file.

Next we need to add a few lines of code to configure SystemJS and to tell it to open the “entry point” of 
our application. The entry point for our sample will be the IndexVM file. The setup for SystemJS is specified 
in this code snippet:

<body>

    �<script src="https://cdnjs.cloudflare.com/ajax/libs/systemjs/0.19.41/system.js"> 
</script>

    <script src="https://code.jquery.com/jquery-2.2.2.min.js"
            integrity="sha256-36cp2Co+/62rEAAYHLmRCPIych47CvdM+uTBJwSzWjI="
            crossorigin="anonymous"></script>
    <script type="text/javascript">
        System.config({
           defaultJSExtensions: true
        });
        System.import('./js/indexvm.js');
    </script>
</body>

The System class is the root of SystemJS and, on the first line we configure the module loader to look for 
modules with the extension of *.js. Remember our TypeScript is compiled at compile time and saved to the 
wwwroot/js folder. Each file generated by the TypeScript transpiler will have the same name as the source 
TypeScript file but with a JS extension. This line ensures that our modules are found accordingly (since the 
import statements in our TypeScript files do not specify an extension).

The next line of code calls System.import and specifies the file that will be the entry point to the 
application: indexvm.js. As discussed earlier, each TypeScript file we have written will ultimately declare 
its own dependencies via the import statements (usually at the top of the file). SystemJS can use these 
dependency declarations to load any required files on-demand. For this reason, we are not required to add 
script tags for any of our individual TypeScript/JavaScript files (including the IndexVM) and instead we tell 
SystemJS to start with our entry point and let everything else load on demand. In more robust systems and 
build processes such as those that use WebPack, we will have different module and bundling considerations 
but, for this sample, we just kick off indexVM.js and everything else gets loaded accordingly. As more files 
are added and our complexity grows, we may never need to modify the initial scripts that bootstrap/load our 
application.

Now that our script tags are set up correctly and our SystemJS configuration has been added, we 
can add a few more tags to the index.html file. Add some HTML elements to the page that will hold the 
customer’s name, shown in the following bolded code snippet, some buttons to change the customer type, 
and a placeholder we will use to display a list of products. These elements are shown here in bold:

<body>
    <div>
        <button id="loginBronze">Login as Bronze</button>
        <button id="loginSilver">Login as Silver</button>
        <button id="loginGold">Login as Gold</button>
    </div>



Chapter 7 ■ Introduction to TypeScript

271

    <h2>Product List</h2>
    <h4 id="customerName">Welcome</h4>

    <table id="productsTable"></table>

    �<script src="https://cdnjs.cloudflare.com/ajax/libs/systemjs/0.19.41/system.js"> 
</script>

    �<script src="https://code.jquery.com/jquery-2.2.2.min.js" integrity="sha256-36cp2Co+/62r
EAAYHLmRCPIych47CvdM+uTBJwSzWjI=" crossorigin="anonymous"></script>

    <script type="text/javascript">
        System.config({
            defaultJSExtensions: true
        });
        System.import('./js/indexvm.js');
    </script>

</body>

With the addition of the base Index.html implementation, we can now start adding code to our  
src/IndexVM.ts file and begin to see the results of the sample project thus far.

The first step in adding code to our IndexVM file will be to include the necessary import statements that 
will allow us to use the classes and interfaces we have already implemented in other files. You can do this by 
adding the following code to the top of the IndexVM.ts file:

import { CustomerBase } from "./CustomerBase";
import { ICustomer } from "./ICustomer";
import { CustomerBronze } from "./CustomerBronze";
import { CustomerGold } from "./CustomerGold"
import { CustomerSilver } from "./CustomerSilver";
import { CustomerAnonymous } from "./CustomerAnonymous";

Having these imports at the top of the file tells the TypeScript compiler where to find the 
implementation details for any of the specified classes or interfaces we may use in this file. They also tell 
SystemJS that code in this file depends on exported capabilities in those other files so that SystemJS knows to 
load them.

Let’s continue by adding some code to our IndexVM to store a private instance of the current user and a 
method to use jQuery to display the current user information on the screen.

export class IndexVm {

   private currentCustomer: ICustomer = new CustomerAnonymous();

    setWelcomeMsg() {
        var msg = `Welcome ${this.currentCustomer.name}`;
        $("#customerName")[0].innerText = msg;
    }
}

Notice that the type for the currentCustomer variable is ICustomer. This allows the application to set 
this variable to any of the customers that implement this interface. Later the sample will use that to switch 
between the anonymous, bronze, silver, and gold customers.



Chapter 7 ■ Introduction to TypeScript

272

The final step is call the setWelcomeMsg method when the page is loaded, shown in the bolded code. 
This code should be at the end of the current IndexVM file (but not inside the IndexVM class).

export let indexVmInstance = new IndexVm();

$(document).ready(() => {
    indexVmInstance.setWelcomeMsg();
});

Now we are ready to run the application and see a basic version of the code running. Press F5 to run the 
application. It should look like Figure 7-13.

Figure 7-13.  Initial test of the application

Pretty exciting! The application is displaying the name of the anonymous customer. That is the default 
value of the currentCustomer variable in the IndexVm class.

Debugging TypeScript
Debugging TypeScript can be done using any of the developer tools provided by modern browsers. 
Remember earlier in the chapter we set up the tsconfig.json file to include the source maps with the .js 
files. TypeScript debugging is possible because of these source maps. This section will use the Chrome 
browser to demonstrate debugging. You can use whichever browser you prefer if it has developer tools that 
support TypeScript debugging.

First, press F5 inside of Visual Studio to run the application. Once the application opens in the browser, 
press F12 to launch the developer tools. Next click the Sources tab in the top menu of the developer tools. 
Notice that both the js and the src folders are present, shown in Figure 7-14.



Chapter 7 ■ Introduction to TypeScript

273

Click the IndexVM.ts file under the src folder to open it. This file looks just like the TypeScript file in the 
solution. Add a breakpoint to the msg variable declaration of the setWelcomeMsg function on line 8, shown in 
Figure 7-15.

Figure 7-14.  TypeScript sources

Figure 7-15.  Breakpoint set



Chapter 7 ■ Introduction to TypeScript

274

Refresh the page and you will see that your breakpoint in TypeScript is hit. If you hover on the 
currentCustomer variable being returned, you will see the values in that variable, shown in Figure 7-16.

Figure 7-16.  Breakpoint hit

Displaying the name of the anonymous customer is a good start. Now the sample will add the 
functionality of switching between the different customers and displaying a product list with prices for each.

We will continue with adding the ability to switch between customers. The sample is designed to show 
how TypeScript works not to provide an elaborate login and security system. Thus, it will simply add a 
button to the page that simulates a login for each customer type. We have already added the HTML for the 
necessary buttons when we made our last changes to the index.html file. Now we will continue by hooking 
these buttons up and letting the user change customer types in the IndexVM class.

Open the IndexVm.ts file in the src folder under the TypeScriptSample project. Add a method for each 
customer type that reflects the login logic for that customer, as shown in the following bolded code snippet.

export class IndexVm {
        private currentCustomer: ICustomer = new CustomerAnonymous();

        loginBronze() {
            this.currentCustomer = new CustomerBronze();
            this.setWelcomeMsg();
        }

        loginSilver() {
            this.currentCustomer = new CustomerSilver();
            this.setWelcomeMsg();
        }

        loginGold() {
            this.currentCustomer = new CustomerGold();
            this.setWelcomeMsg();
        }



Chapter 7 ■ Introduction to TypeScript

275

        setWelcomeMsg() {
            var msg = `Welcome ${this.currentCustomer.name}`;
            $("#customerName")[0].innerText = msg;
        }
    }

To enable users to click the buttons defined in the HTML, we will use jQuery to react to user interaction. 
Later in the book we will demonstrate how various UI frameworks like Angular and React can simplify this 
type of interaction but jQuery will serve our purposes for now. The code for handling the button click events 
is highlighted in bold:

export let indexVmInstance = new IndexVm();

$(document).ready(() => {
    indexVmInstance.setWelcomeMsg();
});

$('#loginBronze').click(function () {
    indexVmInstance.loginBronze();
});

$('#loginSilver').click(function () {
    indexVmInstance.loginSilver();
});

$('#loginGold').click(function () {
    indexVmInstance.loginGold();
});

Press F5 inside of Visual Studio to run the application. Click the login button for each customer type. 
Notice the welcome message changes for each customer type. The setWelcomeMsg method provides different 
results depending on what the currentCustomer is set to. This is possible because of the ICustomer interface 
that each customer type implements through the CustomerBase class. Figure 7-17 shows the results after 
clicking the Login as Silver button.

Figure 7-17.  Silver customer type logged in

What would happen if we try to set the currentCustomer variable in the IndexVM.ts file to a string?  
It produces a compilation error because the currentCustomer variable has a type of ICustomer. In straight 
JavaScript, you would not know of this bug until you ran the application and clicked the button. It is much 
nicer to catch these types of mistakes at compile time instead of at runtime.



Chapter 7 ■ Introduction to TypeScript

276

This is an example of type safety in TypeScript. By telling the TypeScript compiler that the 
currentCustomer variable is of type ICustomer, we could detect errors before runtime. This becomes 
very handy once the application grows and you have hundreds of lines of code being shared across many 
TypeScript files.

Finishing the Application by Adding a Product List
By now the sample application has demonstrated many key features of TypeScript. Finish it off by taking 
advantage of more of these features to display some products and their prices. To do this we will need to 
add two more TypeScript files to our project under the src folder. These files will be called IProduct.ts and 
Product.ts and the code for each of these files follows:

IProduct.ts

import { ICustomer } from "./ICustomer";

export interface IProduct {
    name: string;
    currentPrice(customer: ICustomer);
}

Product.ts

import { IProduct } from "./IProduct";
import { ICustomer } from "./ICustomer";

export class Product implements IProduct {

    name = "";
    private basePrice = 0.0;

    constructor(nameValue: string, basePriceValue: number) {
        this.name = nameValue;
        this.basePrice = basePriceValue;
    }

    currentPrice(customer: ICustomer) {
        let discount = this.basePrice * customer.discountPercent();
        return this.basePrice - discount;
    }
}

This product class implements the IProduct interface. The initial state of a Product instance 
is configured in the class constructor. It has a private variable basePrice that can only be set by the 
constructor. The currentPrice method uses the discount from the customer variable and the private 
basePrice variable to calculate and return a price.

The product interface and class are now complete. Next, we need to modify the Index.html and 
IndexVM.ts files to load some products. To achieve this, we will again use jQuery to modify an HTML 
element, which we have already added to the Index.html files. The list of products for a particular customer 
will be displayed in the <table> element in bold.



Chapter 7 ■ Introduction to TypeScript

277

<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8" />
    <title>TypeScript Sample</title>
</head>
<body>
    <div>
        <button id="loginBronze">Login as Bronze</button>
        <button id="loginSilver">Login as Silver</button>
        <button id="loginGold">Login as Gold</button>
    </div>

    <h2>Product List</h2>
    <h4 id="customerName">Welcome</h4>

    <table id="productsTable"></table>

    �<script src="https://cdnjs.cloudflare.com/ajax/libs/systemjs/0.19.41/system.js"> 
</script>

    �<script src="https://code.jquery.com/jquery-2.2.2.min.js" integrity="sha256-36cp2Co+ 
/62rEAAYHLmRCPIych47CvdM+uTBJwSzWjI=" crossorigin="anonymous"></script>

    <script type="text/javascript">
        System.config({
            defaultJSExtensions: true
        });
        System.import('./js/indexvm.js');
    </script>

</body>
</html>

To build and display the table, open the IndexVM.ts file located in the src folder of the 
TypeScriptSample project. This code will create a list of products and load them on the page. Inside the 
IndexVm class, add the appropriate import statements to the top of the file. Next, create a private array 
variable to hold a list of products. Also, create a private method to load products and a public method to 
display that list. Finally, call the method to display the list when the page loads and when a new customer 
type is logged on. These additions are shown in the following bolded code snippet.

import { IProduct } from "./IProduct"
import { Product } from "./Product"

export class IndexVm {

    private currentCustomer: ICustomer = new CustomerAnonymous();

    private productList: Array<IProduct> = new Array(0);

    loginBronze() {
        this.currentCustomer = new CustomerBronze();
        this.setWelcomeMsg();
        this.displayProducts();
    }



Chapter 7 ■ Introduction to TypeScript

278

    loginSilver() {
        this.currentCustomer = new CustomerSilver();
        this.setWelcomeMsg();
        this.displayProducts();
    }

    loginGold() {
        this.currentCustomer = new CustomerGold();
        this.setWelcomeMsg();
        this.displayProducts();
    }

    displayProducts() {
        this.loadProducts();

        let htmlToDisplay: string = "<th>Product Name</th><th>Price</th>";

        this.productList.forEach(product => {
            htmlToDisplay += `<tr><td>${product.name}</td><td>${product.currentPrice(this.
currentCustomer)}</td></tr>`;
        });

        $("#productsTable")[0].innerHTML = htmlToDisplay;
    }

    private loadProducts() {
        this.productList.length = 0;

        this.productList.push(new Product("Product 1", 100.00));
        this.productList.push(new Product("Product 2", 200.00));
        this.productList.push(new Product("Product 3", 300.00));
        this.productList.push(new Product("Product 4", 400.00));
        this.productList.push(new Product("Product 5", 500.00));
        this.productList.push(new Product("Product 6", 600.00));
        this.productList.push(new Product("Product 7", 700.00));
        this.productList.push(new Product("Product 8", 800.00));
        this.productList.push(new Product("Product 9", 900.00));
        this.productList.push(new Product("Product 10", 1000.00));
    }

    setWelcomeMsg() {
        var msg = `Welcome ${this.currentCustomer.name}`;
        $("#customerName")[0].innerText = msg;
    }

}

For this sample, the loadProducts method is simply loading a list with some hardcoded products. In 
the real world, these products could be loaded from an API call or from a local resource. The purpose of the 
sample is to show the constructor for these products being used to create and add them to an array. The 
displayProducts method uses a foreach loop to run through the list of products and generate the row and 



Chapter 7 ■ Introduction to TypeScript

279

columns needed to the display the products. Then it uses jQuery to get the table element from the page 
and add in the HTML. The rest of the changes are simple calls to the display products method to load the 
products with the appropriate prices.

Press F5 inside of Visual Studio to run the application. Notice that, by default, the anonymous customer 
gets a list of products that have no discount. Click the login button for each customer type. Notice the price 
changes for each type. Again, this is a demonstration of polymorphism. The currentPrice method of the 
Product class provides different results depending on what customer is provided. Remember earlier in the 
chapter we changed the behavior for gold customers to hard code their discount to 20 percent. Figure 7-18 
shows the results after clicking the Login as Gold button.

Figure 7-18.  Gold customer type logged in

■■ Source Code  The TypeScriptSample solution can be found in the Chapter 07 subdirectory of the 
download files.

Summary
This chapter was an introduction to the basic syntax and setup of TypeScript. While TypeScript is one of 
many JavaScript transpilers it has enjoyed a massive rise in popularity in a very short time. TypeScript adds 
many robust features to the core JavaScript language and allows developers to take advantage of these 



Chapter 7 ■ Introduction to TypeScript

280

features while still being able to deploy raw JavaScript to environments that do not have modern browsers. 
It is key to remember that TypeScript “adds features” to JavaScript. The TypeScript syntax builds on top of 
the JavaScript syntax and all code is ultimately transpiled down to raw JavaScript, targeting whatever version 
of JavaScript you would like. This also makes it easy to use TypeScript while still incorporating third-party 
JavaScript libraries.

There are many more capabilities that the TypeScript language provides than were discussed in this 
brief introductory chapter. Microsoft’s online documentation and tutorials are a great place to learn more 
and to broaden your knowledge of the TypeScript languages. These can be found here: https://www.
typescriptlang.org/docs/. TypeScript is already evolving and, at the time of this writing, on version 2.1.4. 
The ecosystem surrounding TypeScript is very active and new products and libraries are constantly being 
released to allow developers to better take advantage of this language.

The remaining chapters of this book utilize TypeScript to demonstrate several client side UI 
frameworks. Within these chapters you will learn even more about TypeScript by “seeing it in action” in the 
implementation of user interfaces much more advanced than the one utilized here.

https://www.typescriptlang.org/docs/
https://www.typescriptlang.org/docs/


281© Philip Japikse, Kevin Grossnicklaus and Ben Dewey 2017 
P. Japikse et al., Building Web Applications with Visual Studio 2017, DOI 10.1007/978-1-4842-2478-6_8

CHAPTER 8

Angular 2

There are a number of different resources, including the extensive documentation by the Angular 2 team, 
that can be used to guide you through creating an Angular 2 application. The purpose of this chapter is not 
to be a comprehensive guide to Angular 2, but to focus on the ASP.NET Core and common comparable 
differences with Angular 2 and other Single Page App frameworks covered in the later chapters.

In order to do this, this chapter will take you through the process of creating the SpyStore application 
that has been used previously, using Angular 2. This chapter will highlight core components of Angular 
2 throughout the process of creating the SpyStore application. It will try to point out other features with 
Angular 2 that may not be covered in an effort to point the reader to areas of potential future research. 
Throughout this chapter Angular 2 may be shortened to just Angular, if Angular 1 is intended, then it will be 
explicitly stated as such. In addition, Angular 2 is an open source product that is subject to change. All the 
information is based on the product as it stands at the time of publishing.

Creating a New Visual Studio Core Project
There are a number of ways to create an Angular 2 application. Given the ASP.NET Core and Visual Studio 
focus of this book, this chapter will focus specifically on creating a new Angular 2 application using  
Visual Studio. To get started, open Visual Studio and create a new project. In the New Project dialog,  
shown in Figure 8-1, select a new ASP.NET Core Web Application (.NET Core), change the name to 
SpyStore.Angular2, and click OK.



Chapter 8 ■ Angular 2

282

After confirming your selection, the New ASP.NET Core Web Application dialog will appear, as shown 
in Figure 8-2. From this dialog, select an Empty project, which should be the default selection, and click OK. 
This will create a new project and automatically kick off the package restoration process. From here, you 
have a plain ASP.NET Core application, which you can launch, but nothing specific to Angular 2 has been 
added to the project yet.

Figure 8-1.  Dialog for creating a new project



Chapter 8 ■ Angular 2

283

■■ Note   There are a number of ways to get up and running with Angular 2. With the release of Angular 2, 
the team created a new Angular 2 command line interface (CLI) tool. This tool can be used to create the initial 
project as well as many of the common components, directives, and services used by Angular 2. For more 
information on the Angular 2 CLI, see the documentation online at https://cli.angular.io/.

Figure 8-2.  Second page of the dialog for creating a new project

https://cli.angular.io/


Chapter 8 ■ Angular 2

284

Project Files
When the project is initially created, there are two project files and a web.config. Given that Angular 2 is 
a single page application framework and uses its own internal routing, there are a few tweaks that need 
to be made to these base files in order to get started. These tweaks revolve around setting up the ASP.NET 
Core middleware to act as a static file server. As with all middleware components in ASP.NET Core, first 
you need to add the associated package as a NuGet reference; in this case add the Microsoft.AspNetCore.
StaticFiles package. Figure 8-3 shows adding the NuGet package to your project for static files, which 
allows for serving static HTML files for the app.

After adding the NuGet package, the dependency will be added to the project for use in the next step.

Setting Up the Startup Class
Now that the StaticFiles dependency has been added to the project, it can be used by the application, 
before that can happen it has to be added to the ASP.NET Core pipeline, which is set up in the Startup.cs 
file. Inside the Startup.cs file, locate the configure method. In the configure method, you will find the 
following code.

app.Run(async (context) =>
{
            await context.Response.WriteAsync("Hello World!");
});

Figure 8-3.  Adding the StaticFiles NuGet package



Chapter 8 ■ Angular 2

285

Replace this code with the middleware code for serving static files.

app.UseStaticFiles();

In the same file there should also be some code, which may currently be commented out, for using 
default files. This enables default index.html files to be served when a directory is requested. Either 
uncomment out that code or add the following line to the Startup class.

app.UseDefaultFiles();

Adding this middleware alone allows for the files, such as dependent JavaScript, application JavaScript, 
and HTML views to be served up. Unfortunately, this doesn't address the routing concerns. Given that 
Angular 2 uses HTML5 based URL routing, as opposed to hash (#) routing from previous incarnations, the 
server needs to be set up to ignore those route parameters in the URL, serve up the root index.html file, 
allow Angular to parse the route, and direct the user to the appropriate page. A simple way to resolve this is 
to create a custom middleware function that checks for missing files with missing file extensions and route 
them all to the root page. The following code shows the custom middleware function to achieve this. The 
function can be useful for any type of single page application written in ASP.NET.

// include using System.IO; at the top of the file.
//
// Route all unknown requests to app root
app.Use(async (context, next) =>
{
    await next();

     // If there's no available file and the request doesn't contain an
     // extension, then rewrite request to use app root
      if (context.Response.StatusCode == 404 && !Path.HasExtension(context.Request.Path.Value))
      {
         context.Request.Path = "/index.html";
         await next();
      }
});

Now that the web site has been customized to support Angular 2 and can serve static files, we can start 
adding the necessary Angular 2 dependencies. NPM will be used to do this in the next section.



Chapter 8 ■ Angular 2

286

NPM Install
For this project, we need to install a number of different project dependencies using NPM. Table 8-1 lists the 
dependencies that are needed for the application.

As covered previously in the NPM chapter, before you can install these NPM packages, you need to 
initialize the project by running the NPM initializer from the command line. To do this, open the command 
line to the project directory and run the following command.

npm init

For each of the dependencies listed in Table 8-1, install them using the npm install command.

npm install <package> [--save|--save-dev]

Once all the node packages are installed, you can proceed to getting the application set up to use those 
packages.

Table 8-1.  NPM Packages Needed for the SpyStore Angular 2 Application

Package Save Mode

core-js --save

ng2-bootstrap --save

reflect-metadata --save

Rxjs --save

systemjs --save

zone.js --save

@angular/core --save

@angular/common --save

@angular/compiler --save

@angular/platform-browser --save

@angular/platform-browser-dynamic --save

@angular/http --save

@angular/router --save

@angular/forms --save

gulp --save-dev



Chapter 8 ■ Angular 2

287

Gulp Setup
The use of Gulp for the purposes of this application are only used for copying files. The needs of other 
applications may vary. Given the styling and images are located in a specific bootstrap theme project and 
the fact that the node_modules are by default stored outside of the wwwroot folder, the Gulp script for this 
application focuses on copying files to the appropriate locations in the wwwroot folder. The Gulp script for 
the Angular 2 application can be found in the example code for the project and consists of one root copy task 
and one subtask copy:node.

var gulp = require('gulp');

gulp.task('copy', ['copy:node']);

gulp.task('copy:node', function () {
    return gulp.src([
        'node_modules/@angular/**/bundles/*',
        'node_modules/core-js/client/shim.min.js',
        'node_modules/zone.js/dist/zone.js',
        'node_modules/reflect-metadata/Reflect.js',
        'node_modules/systemjs/dist/system.src.js',
        'node_modules/rx*/**',
        'node_modules/core-js*/**',
        'node_modules/ng2-*/dropdown/**/*.ts',
        'node_modules/ng2-*/dropdown/**/*.js',
    ]).pipe(gulp.dest('./wwwroot/lib/'));
});

After adding the gulpfile.js file to your project, you can run the following command on the command line.

gulp copy

After running the copy task, all of the Angular files and styling code will be present in the wwwroot folder 
of your application and available for the next section, where you create the application components and the 
index.html file.

■■ Note   If you look at the at the Angular 2 documentation at https://angular.io/docs/ts/latest/
quickstart.html, it will use Node for running and building the TypeScript files. Due to the ASP.NET Core and 
Visual Studio focus of this book, this project will run through Visual Studio and will use Visual Studio to build the 
TypeScript files.

Typescript Setup
At this point, the ASP.NET Core application to serve the files has been set up and the third-party dependency 
files for the site have been loaded. The last thing that needs to be done before writing the Angular 2 code is to 
set up the project to enable TypeScript, which will be used for this application.

https://angular.io/docs/ts/latest/quickstart.html
https://angular.io/docs/ts/latest/quickstart.html


Chapter 8 ■ Angular 2

288

To set up TypeScript, create a new folder on the root of your project called scripts, which is where 
the TypeScript files will be placed. After that, create a new file on the scripts folder of the project called 
tsconfig.json and add the following code.

{
  "compilerOptions": {
    "target": "es6",
    "module": "commonjs",
    "moduleResolution": "node",
    "sourceMap": true,
    "emitDecoratorMetadata": true,
    "experimentalDecorators": true,
    "noEmitOnError": true,
    "noImplicitAny": false,
    "outDir": "../wwwroot/js/app/",
    "removeComments": false
  },
  "exclude": [
    "../node_modules",
    "../wwwroot"
  ]
}

■■ Note   Angular 2 is built with TypeScript and therefore it is common to build applications using TypeScript as 
well. There is documentation on the Angular site about building applications with other languages. The SpyStore 
application will use TypeScript and the remainder of this chapter will focus on TypeScript for the examples. 
Refer back to the previous chapter on TypeScript as needed.

With this file added, Visual Studio will automatically recognize the TypeScript file and build it as part of 
the project build process. This concludes the Visual Studio setup for the Angular 2 project. The next section 
reviews setting up the basic Angular 2 files and module loaders to get the scripts on the page.

Main SpyStore App Component Setup
Now that the basics of the project are set up, it is time to start building the SpyStore Angular 2 application. 
The following list outlines the steps needed to get a basic project set up.

•	 Create a root page

•	 Create app module and root app component

•	 Create root app view

The following section walks through the steps to create a basic Angular 2 application that will be 
expanded upon to create the SpyStore application.



Chapter 8 ■ Angular 2

289

Creating the Root index.html Page
Angular 2 applications start as a basic HTML page with a root component. In Visual Studio, right-click on the 
wwwroot folder and create a new index.html file, as shown in Figure 8-4.

This creates a very basic HTML file. In order to be used as an Angular 2 application, the following 
modification need to be made.

First, locate the end head tag (</head>). On the line directly before that, add <base href="/" />. This tells 
the HTML parser that no matter what the current page is, it should use the root '/' directory for all relative links.

Secondly, in the main body of the application, create a new root component element called <spystore-
app>Loading...</spystore-app>. Notice the contents of this element include the word Loading. This 
displays on the screen before the Angular 2 application is loaded and can be anything you want. It will be 
overridden when the application loads.

The final step to getting the Angular 2 application up and running is to add the third-party tools script 
tag references. Simply adding the <script /> tags manually would do the trick, but recently module loaders 
have become popular for this task and they eliminate the need for maintaining the script tags with every 
new file. Module loaders were covered in more depth in the previous chapter. This version of the SpyStore 
app uses SystemJS as its module loader of choice. To set up SystemJS, add the following tags to the bottom of 
your page just before the end body tag.

<!-- 1. Load libraries -->
<script src="/lib/shim.min.js"></script>
<script src="/lib/zone.js"></script>
<script src="/lib/Reflect.js"></script>
<script src="/lib/system.src.js"></script>

Figure 8-4.  Dialog for creating a new index.html file



Chapter 8 ■ Angular 2

290

<!-- 2. Configure SystemJS -->
<script>
    /**
    * System configuration for Angular 2 samples
    * Adjust as necessary for your application needs.
    */
    (function (global) {
        System.config({
            paths: {
                // paths serve as alias
                'npm:': 'node_modules/'
            },
            // map tells the System loader where to look for things
            map: {
                // our app is within the app folder
                app: '/js/app',
                // angular bundles
                '@angular/core': '/lib/core/bundles/core.umd.js',
                '@angular/common': '/lib/common/bundles/common.umd.js',
                '@angular/compiler': '/lib/compiler/bundles/compiler.umd.js',
                �'@angular/platform-browser': '/lib/platform-browser/bundles/ 

platform-browser.umd.js',
                �'@angular/platform-browser-dynamic': '/lib/platform-browser-dynamic/ 

bundles/platform-browser-dynamic.umd.js',
                '@angular/http': '/lib/http/bundles/http.umd.js',
                '@angular/router': '/lib/router/bundles/router.umd.js',
                '@angular/forms': '/lib/forms/bundles/forms.umd.js',
                // other libraries
                'rxjs': '/lib/rxjs',
                'ng2-bootstrap/dropdown': '/lib/ng2-bootstrap/dropdown/index.js',
                'ng2-bootstrap': '/lib/ng2-bootstrap'            },
            �// packages tells the System loader how to load when no filename and/or no extension
            packages: {
                js: {
                    defaultExtension: 'js'
                },
                app: {
                    //boot: './boot.js',
                    defaultExtension: 'js'
                },
                rxjs: {
                    defaultExtension: 'js'
                },
                'ng2-bootstrap': {
                    defaultExtension: 'js'
                },



Chapter 8 ■ Angular 2

291

                'angular2-in-memory-web-api': {
                    main: './index.js',
                    defaultExtension: 'js'
                }
            }
        });
    })(this);
    System.import('js/app/boot').catch(function (err) { console.error(err); });
</script>

In addition to the Angular 2 setup code, this is a good time to add any style sheets that exist for the 
application. For the SpyStore application, there is a single CSS file that is copied over as part of the Gulp task. 
In order to add this, create a new <link /> in the <head> of the page.

<link href="/css/spystore-bootstrap.css" rel="stylesheet" />

Running the application now would result in a basic application showing a loading message using the 
style for the SpyStore application. The next step is to create the app module and root component.

Creating the Root App Component
The <spystore-app> element that was added to the index.html page represents the root component. To 
create the implementation for the root component, you need to declare the root component in TypeScript. 
To do this, create a new file in the scripts folder called app.component.ts. In this file, include the following 
code.

import { Component } from "@angular/core";

@Component({
    selector: "spystore-app",
    templateUrl: "/app/app.html",
})
export class AppComponent {

    constructor() {
    }
}

This code includes a basic AppComponent class; the key to making this work is the @Component decorator, 
which defines two important details about the component. The first is the selector, which is a standard 
CSS selector notation. In this case, the spystore-app represents any tag with that name. The second is the 
templateUrl for the file, which represents the HTML for the view.

The app.html template for the root component is included as part of the example code and can be 
found under End-Part1/app/app.html. Include this file in your project in the location specified for the 
templateUrl for the component.



Chapter 8 ■ Angular 2

292

Creating the App Module
The application root component is now set up. Unfortunately, it doesn't actually run anything yet because it 
hasn't been wired up as an actual Angular module. To do this, create a new file in the scripts folder called 
app.module.ts. Inside that file, include the following code.

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

@NgModule({
    imports: [
        BrowserModule
    ],
    declarations: [
        AppComponent
    ],
    providers: [],
    bootstrap: [AppComponent]
})
export class AppModule {
}

The AppModule class is completely empty. The important part again is the decorator. This @NgModule 
decorator includes a number of options, as stated at https://angular.io/docs/ts/latest/guide/
ngmodule.html. The basic options include imports, which declare the BrowserModule an enable the 
Angular application to run in a browser with HTML, declarations, which tell the app what is required for 
the application to function, and a bootstrap property, which tells the app which component is the root 
component.

Creating the Angular Bootstrap
Now that there is a root component and a module defined for the app, the last thing is to bootstrap the app. 
To do this, create a new boot.ts file in the scripts directory. This file includes the following code, which 
bootstraps the application.

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { AppModule } from './app.module';

const platform = platformBrowserDynamic();
platform.bootstrapModule(AppModule);

At this point running the app will launch a basic Angular 2 application with a root component. In order 
to proceed it is best to review some core concepts of Angular 2. The next section highlights the concepts that 
are used throughout the remainder of the setup of this application.

■■ Note   This book focuses on the concepts of Angular 2 that are relevant to the creation of the SpyStore 
application. For a complete tutorial of Angular 2, see the documentation at http://angular.io.

https://angular.io/docs/ts/latest/guide/ngmodule.html
https://angular.io/docs/ts/latest/guide/ngmodule.html
http://angular.io/


Chapter 8 ■ Angular 2

293

Core Concepts
Angular as a single page app framework has a number of core concepts that need to be understood before 
building out an application. Table 8-2 provides an overview of the concepts that are covered in this section 
and are used throughout the remainder of this chapter to build out the SpyStore Angular 2 application.

Application Initialization
Application initialization, as seen when the app was first set up, is based on two core functions—declaring a 
module and bootstrapping the application. First, let's take a look at declaring a module.

Modules are the building blocks of angular applications. They allow developers to combine services, 
directives, and components into logical groups and define them as a hierarchy where all the imports and 
dependencies roll up to a parent module. In order to define a module in Angular 2 using TypeScript, export 
an empty class and add the @NgModule decorator to that class, as shown here.

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

@NgModule({
    imports: [ BrowserModule ],
    declarations: [ AppComponent  ],
    bootstrap: [ AppComponent  ]
})
export class AppModule {
}

Table 8-2.  Core Concepts for Angular 2 Development

Core Concept Concept Overview

Application Initialization Also known as bootstrapping, initializes the application by starting up the 
main module that is provided to the bootstrapper. This process also manages 
the dependency injection container.

Components Components are a new part of Angular and are made up of a view and view 
logic similar to directives in previous versions of Angular.

Services Services are a mechanism for abstracting and sharing code among multiple 
components. In the SpyStore application services are used primarily 
to access the SpyStore API. The lifetime of a service is managed by the 
dependency injection container.

Templates Templating is the feature in Angular 2 that allows for displaying data and 
manipulating the HTML based on component logic. Angular 2 has a brand 
new templating syntax compared to Angular 1. There are mechanisms in 
place for handling inbound and outbound binding of objects and events to 
components.

Routing Routing allows multiple pages to be loaded within an application. In the case 
of the SpyStore application, the main root component contains an outlet for 
which all other components can be loaded, thus creating typical navigation 
that you would see in traditional applications.



Chapter 8 ■ Angular 2

294

The NgModule decorator accepts a single argument, which is the configuration for the module. The basic 
configuration for a new browser based application requires imports, which tell the module to include the 
BrowserModule, declarations, which tell the module that it is using the AppComponent component, and finally 
a bootstrap component, which in this case is the AppComponent as well.

Table 8-3 shows a list of all the options available for application initialization using the NgModule 
decorator.

For more information on application initialization, see the Angular documentation at  
https://angular.io/docs/ts/latest/guide/appmodule.html and, for additional information on the 
NgModule options, see https://angular.io/docs/ts/latest/api/core/index/NgModule-interface.html.

Components
Components are one of the core building blocks of any application in Angular. Components are made of two 
parts, a view and view logic. In the case of the SpyStore application, there is a root component, a component 
for each page, and a component for the shopping card record.

In addition, components can interact with other objects, such as service via dependency injection into 
the component class and via directives, which can be used by the view to interact with the DOM.

The following code is an example taken from the product details page where the view, or HTML, can 
bind itself to objects and properties on the view logic, or component class. The following is the component 
class for the product details page.

import {Component, OnInit} from "@angular/core";
import {ActivatedRoute, Params } from '@angular/router';
import {ProductService}   from '../product.service';

@Component({
    templateUrl: "app/components/productDetail.html"
})
export class ProductDetailComponent implements OnInit {
    product: any;

Table 8-3.  Options of the ngModel Decorator

Option Description

providers An array of injectable objects or services that can be included as part of the 
dependency injection container.

declarations An array of directives, components, or pipes that will be used in the application.

imports An array of modules whose exported declarations will be used in the application.

exports An array of objects that can be used when this module is imported into other 
modules.

entryComponents An array of components that should be compiled when the modules are declared.

bootstrap An array of components that should be bootstrapped when the application loads.

schemas An array of elements, or properties, that are not angular components and should 
be declared with the module.

id The ID used for the module when loading from getModuleFactory.

https://angular.io/docs/ts/latest/guide/appmodule.html
https://angular.io/docs/ts/latest/api/core/index/NgModule-interface.html


Chapter 8 ■ Angular 2

295

    constructor(
        private _route: ActivatedRoute,
        private _productService: ProductService) {
        this.product = {};
    }

    ngOnInit() {
        let id: number;
        this._route.params.forEach((params: Params) => {
            id = +params['id'];
        });
        this.project = this._productService.getProduct(id);
    }
}

This component class defines a public property called product, which is mapped to the value returned 
from the product service. Then in the view, content and DOM elements can be bound to the values in that 
object. More on templating and binding will be discussed later in the “Templating” section. The following 
code highlights the view that corresponds to the product details component.

<h1 class="visible-xs">{{product.ModelName}}</h1>
<div class="row product-details-container">
    <div class="col-sm-6 product-images">
        <img [src]="'images/' + product.ProductImageLarge" />
        <div class="key-label">PRODUCT IMAGES</div>
    </div>
    <div class="col-sm-6">
        <h1 class="hidden-xs">{{product.ModelName}}</h1>
        <div class="price-label">PRICE:</div>
        <div class="price">{{product.CurrentPrice | currency:'USD':true:'1.2-2'}}</div>
    </div>
</div>

The component class and view combine to make a component. This concept repeats itself numerous 
times with an Angular application. Applications will typically map using a treeview of the components to 
establish what is called a component tree.

In the component class, there is a lifecycle event called ngOnInit(). This event is called by the 
framework when the component is initialized as part of the component lifecycle. For more information 
about lifecycle events, see https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html.

Services
Services provide a nice way to abstract your code out of a single component and allow it to be reused across 
different components. Services are most commonly used for data access, but can be used for all types of 
shared logic or as a layer to keep code maintainable and more testable.

When using TypeScript in Angular, services are nothing more than classes. The class can have 
properties and methods just like any other class. The real benefit for services is that they can be injected, 
using a technique called dependency injection (DI), into other services or components. All the dependent 
services are controlled and maintained by the dependency injection framework, which looks at the module's 
providers, builds them up, and provides them to the components and services when needed.

https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html


Chapter 8 ■ Angular 2

296

export class MyDataService {
    getData(): any[] {
        return someArrayOfData;
    }
}

In order to make this service available to other components, it has to be registered in the module. To do 
this, just add the type to the list of providers shown here.

import { MyDataService } from './mydataservice';

@NgModule({
    imports: [ /*...*/ ],
    declarations: [ /*...*/ ],
    providers: [ MyDataService ],
    bootstrap: [ /*...*/ ]
})
export class AppModule {
}

As the services in an application expand, services may be dependent on other services, and therefore, 
services may have dependencies that need to be injected into their constructors as well. In Angular, if 
the class includes an injectable decorator, then it will be available for injection of its dependencies when 
created. For the purposes of future proofing your code and for consistency, it is recommended that 
developers include the @Injectable decorator in all their services, even if they don’t have any dependencies. 
The following code shows an example of how to include the @Injectable decorator.

import {Injectable} from '@angular/core';

@Injectable()
export class MyDataService {
        /*...*/
}

By specifying the providers in the application module as defined here, the dependencies can be shared 
among all the services and components in that module. This can be very beneficial for sharing data and 
keeping the application performant, as data is not reloaded with every component. While this is often 
correct, there are some cases where you wouldn’t want a common instance across all components and the 
application should define new instances of the service with each component. Angular accomplishes this by 
defining a providers property at the component level. If a service is defined as a provider at the component 
level instead of the module level, it will be created and destroyed as part of the component. The following 
code shows how to specify a service as a provider at the component level.

import { Component } from "@angular/core";
import { MyDataService } from './mydataservice';

@Component({
    providers: [ MyDataService ],
    templateUrl: "/app/components/products.html"
})
export class ProductsComponent {
    constructor() { }
}



Chapter 8 ■ Angular 2

297

For more information on Angular's dependency injection framework, see the documentation online at 
https://angular.io/docs/ts/latest/guide/dependency-injection.html.

Templating
Components were discussed earlier and are made up of two parts—the component logic and the view. 
In the case of our example the view is made up of HTML, which defines what will be rendered when the 
component is displayed. While plain HTML is great, it doesn't provide any real functionality or interact with 
the component logic in a meaningful way. This is where templating comes in for Angular.

A good place to start with templating is to understand the syntax while discussing the details of each 
one along the way.

Interpolation
The most basic way to interact with your component logic is to render a value from the component onto the 
view. A common way to do this is to use a feature called interpolation. For this example, assume that you 
have the following component class.

import {Component } from "@angular/core";

@Component( /* ... */)
export class ProductDetailComponent {
    productName: string = 'Escape Vehicle';
}

The corresponding view to display the product name for the component using interpolation would look 
like this code.

<h1>{{productName}}</h1>

Notice the double curly braces. This is the syntax for interpolation. Interpolation can work in a number 
of different ways as long as the template expression is a valid non-manipulative expression. In addition to 
rendering a simple property, some examples of valid template expressions include executing a method on a 
component and rendering their return value or calculating values together, such as {{price * taxRate}} to 
render the tax amount.

One might naturally think that Angular is executing these commands and rendering them, but it is 
actually converting these into property binding statements under the covers.

Property Binding
Property binding is available in two forms either using attributes or using a new syntax from Angular to 
trigger property binding. Here are examples of the same binding, but using property binding instead of 
interpolation.

<!-- Attribute Binding -->
<h1 bind-textContent="productName"></h1>

<!-- Property Binding in Angular -->
<h1 [textContent]="productName"></h1>

https://angular.io/docs/ts/latest/guide/dependency-injection.html


Chapter 8 ■ Angular 2

298

Event Binding
Property binding and interpolation are great for displaying data, but often times an application needs 
to accept user input in the form of event handlers. Angular handles events in a completely different way 
than typical JavaScript, where one would register event handlers. Angular uses a binding syntax similar to 
property binding shown previously, called event binding. In order to demonstrate this technique, assume the 
following component logic.

@Component( /* ... */)
export class ProductDetailComponent {
   addToCart() {
      // logic to add to cart
   }
}

The associated view to interact with this component logic using event binding would look like the 
following.

<button (click)="addToCart()">Add To Cart</button>

Notice that inside the button click event there is a call to the function from the component logic called 
addToCart(). Despite its similarities, this doesn't function like typical JavaScript where the button click event 
calls the addToCart function when the button is clicked. In reality the (click) syntax, with the parentheses, on 
the view is parsed by Angular and a one-way binding contract is established between the view target and the 
component logic.

This syntax is convenient and very readable for the developer. Similarly to property binding, this 
technique also works by using attribute binding. The attribute binding syntax that is equivalent to the event 
binding syntax would look like the following.

<button on-click="addToCart()">Add To Cart</button>

Two-Way Binding
The final binding syntax that applications typically encounter is a form of two-way data binding. This syntax 
involves combining the two techniques previously described. In order to demonstrate this, assume the 
component logic shown here.

@Component( /* ... */)
export class ProductDetailComponent {
    quantity: number = 1;
}

On the view there is a corresponding text input that is bound to this quantity field and looks like the 
following code.

<input [(ngModel)]="quantity" />



Chapter 8 ■ Angular 2

299

Notice the syntax for this quantity field is bound to a special ngModel property for Angular, but more 
importantly it is bound using a combination of the two binding syntax statements previously discussed 
and includes both the square brackets and the parentheses. The angular team in the documentation calls 
this binding a “banana in a box” syntax to help developers remember the order of the square brackets and 
parentheses.

This syntax tells Angular to bind the view to the value of the field as defined in the component logic, but 
also to automatically update the component field whenever the user changes the contents of the text input.

Not unlike the other binding examples discussed previously, two-way binding can also use attribute 
binding. The following code represents the attribute binding syntax for two-way binding.

<input bindon-ngmodel="quantity" />

■■ Note  While Angular doesn’t actually have two-way binding, this shorthand syntax can do a lot to provide 
a similar experience. For more information on the internals of this syntax, and how to write a component 
or directive that supports this syntax, see the following blog post at http://blog.thoughtram.io/
angular/2016/10/13/two-way-data-binding-in-angular-2.html.

Structural Binding
The last form of binding is used by a few built-in Angular directives and involves structural binding, which 
converts view elements into nested templates. Two examples of these structural binding examples are ngIf 
and ngFor. To demonstrate these, assume the following component logic for the application.

@Component( /* ... */)
export class ProductComponent {
    products: any[];
}

The product view that corresponds to this component logic displays a repeated list of products based on 
the array backed by the products field.

<div *ngFor="let product of products">
        <h5>{{product.productName}}</h5>
        <!-- Other product information -->
</div>

Notice this form of binding includes an * as part of its syntax. This syntax is unique to these structural 
directives. In reality, the code is a shorthand for the following template.

<template ngFor let-product [ngForOf]="products">
   <div>
        <h5>{{product.productName}}</h5>
        <!-- Other product information -->
   </div>
</template>

http://blog.thoughtram.io/angular/2016/10/13/two-way-data-binding-in-angular-2.html
http://blog.thoughtram.io/angular/2016/10/13/two-way-data-binding-in-angular-2.html


Chapter 8 ■ Angular 2

300

There are a handful of other nuances with Angular templating, and it's best to read through the 
provided documentation to fully understand their impact. For more information on Angular templates, see 
the documentation online at https://angular.io/docs/ts/latest/guide/template-syntax.html.

Routing
Routing is the final critical component of Angular that you need to understand prior to building the SpyStore 
application in Angular. Routing provides a mechanism for navigating between different pages and views 
within Angular.

Figure 8-5 shows a basic diagram of how routing works. In the diagram notice there is a root 
component. Within this component, there is a router-outlet. This is a directive that is part of the router 
module and defines the location where the routed components will be rendered and replaced as the user 
navigates the application.

Since routing is an optional aspect to Angular applications, the Angular team created a separate module 
for routing. The first step to adding routing to an application is to include the routing module and set it up as 
part of the application. If you are using NPM to install the Angular libraries, run the following command to 
install Angular routing.

npm install @angular/router --save

Figure 8-5.  Routing example

https://angular.io/docs/ts/latest/guide/template-syntax.html


Chapter 8 ■ Angular 2

301

This includes the Angular router in node_modules. Once this is included it needs to be loaded as 
part of the application. Include the router bundle as a script tag in the index.html page or follow the 
documentation for the selected module loader.

The final step needed before the module can be used for routing is to add the <base /> tag to the main 
page. This tag needs to be added to the last <head> tag and is typically set to the root address of the site, as 
stated in the following code.

<head>
  <!-- Other head elements -->
  <base href="/" />
</head>

After the module has been added to the application HTML, the needs to be set up in Angular. Assuming 
the application has a basic two-page structure, add the following route and imports to the app module.

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import {Page1Component} from "./components/page1.component";
import {Page2Component} from "./components/page2.component";

const routes: Routes = [
    {
        path: '',
        redirectTo: '/page1',
        pathMatch: 'full'
    },
    { path: 'page1', component: Page1Component},
    { path: 'page2', component: Page2Component}
];

@NgModule({
    imports: [
        /* .. */
       RouterModule.forRoot(routes)
    ],
    declarations: [
        /* .. */
        Page1Component,
        Page2Component
    ],
    bootstrap: [ /* .. */ ]
})
export class AppModule {
}



Chapter 8 ■ Angular 2

302

This code defines the routes and adds the router module all in one import command. The final step to 
get the router to function is to add the <router-outlet> to the root component view. The following code 
shows how to set up the router outlet and defines some basic navigation links to navigate between the 
different pages.

<nav>
        <a routerLink="/page1" routerLinkActive="active">Page 1</a>
        <a routerLink="/page2" routerLinkActive="active">Page 2</a>
</nav>
<div class="body">
    <router-outlet></router-outlet>
</div>

This example is a basic example of routing. Advanced concepts of routing, such as nested routes, are out 
of scope for this book. More information can found online at the Angular documentation site using the link 
provided at the end of this section. The only remaining aspect of Angular routing that needs to be covered 
prior to building the SpyStore application is using route parameters. This example can be expanded to 
include a parameter for page2 by changing the route to the following.

{ path: 'page2/:name', component: Page2Component}

The :name syntax tells the router to expect a parameter named name. In order to send a name to the 
page, the navigation links can be changed to the following.

<a routerLink="['page2', 'Bob']" routerLinkActive="active">Page 2 with Bob</a>
<a routerLink="['page2', 'Jim']" routerLinkActive="active">Page 2 with Jim</a>

By default, the route parameters are set up as observables, which is useful when the component is 
reused and allows the parameter to be changed over time. More information about component reuse can be 
found in the online documentation. A simpler example is to not reuse the component and use the snapshot 
mechanism to access the parameter. Assuming the Page2Component is not being reused, the following code 
could be used to access the parameter.

import {Component, OnInit} from "@angular/core";
import {ActivatedRoute} from '@angular/router';

@Component(/* ... */)
export class Page2Component implements OnInit {
    constructor(private _route: ActivatedRoute) { }

    ngOnInit() {
      let name = this._route.snapshot.params['name'];
    }
}



Chapter 8 ■ Angular 2

303

As noted previously, the new router in Angular 2 is extensive and is too broad to cover in this section. 
For more details on routing, see the Angular documentation at https://angular.io/docs/ts/latest/
guide/router.html and https://angular.io/docs/ts/latest/tutorial/toh-pt5.html.

Building the SpyStore Angular App
Now that the core concepts of Angular have been covered, it is time to get back to building the SpyStore 
application and applying these concepts to a full application. The first step in getting back to the application 
is to add routing and set up the product catalog page to start displaying products.

To begin, locate the sample code provided with the book, open the Start-Part2 code, before 
continuing with the remainder of the chapter. The sample code for Part2 takes what was created from the 
first chapter and adds some additional styling and images in order to prepare the experience of the SpyStore 
application as it’s being built.

■■ Note   When opening a new section of the example code, readers will need to run npm install in the 
command line of the project to download the required modules. In the case of this Start-Part3 project, 
navigate to <book-code-directory>\Chapter09-Angular2\Start-Part3\src\SpyStore.Angular2\ and run 
the npm install command there before proceeding.

Adding Routing
The following steps outline what’s needed in order to add routing to the SpyStore application.

•	 Add a product component

•	 Create the route

•	 Add router and components to the app module

•	 Set up the router outlet in the app component

Adding a Product Component
Before setting up routing, you need a component to route to. Similar to the root component, which was set 
up earlier, you create a products component that will eventually display a list of products from the SpyStore 
API. The products component needs both a component logic class and a view.

■■ Note   The naming convention of products.component.ts is based on the Angular team style 
recommendations. The style guide can be found online at https://angular.io/docs/ts/latest/guide/
style-guide.html.

https://angular.io/docs/ts/latest/guide/router.html
https://angular.io/docs/ts/latest/guide/router.html
https://angular.io/docs/ts/latest/tutorial/toh-pt5.html
https://angular.io/docs/ts/latest/guide/style-guide.html
https://angular.io/docs/ts/latest/guide/style-guide.html


Chapter 8 ■ Angular 2

304

All of the pages for the SpyStore application are going to go in to a new folder. Create the new folder 
under the scripts folder called components. Inside the new components folder, create a new TypeScript file 
called products.component.ts and include the following.

import { Component, OnInit } from "@angular/core";

@Component({
    templateUrl: "/app/components/products.html",
})
export class ProductsComponent implements OnInit {
    products: any[];
    header: string;

    constructor() { }

    ngOnInit() {

            this.header = "Featured Products";
            this.products = [];
    }
}

This class sets up the basic placeholders for the products that will be loaded from the SpyStore API. In 
addition, there is a Component decorator, which specifies the view. Next, create the HTML page for the view 
as noted by the templateUrl in the decorator.

Create a new folder in the wwwroot/app called components. Inside the new components folder, create a 
new HTML file called products.html. Inside the HTML file, include the following code.

<div class="jumbotron">
    <a routerLink="/products" class="btn btn-info btn-lg">View Tech Deals &raquo;</a>
</div>

<h3>{{header}}</h3>

This html uses the routerLink directive of the router and specifies the products page as its destination. 
This is only a link back to itself at this point, but will be used later when the product page loads different 
categories of products and allows searching. With the product component and template set up, the routes 
can be created and then added to the module.

Creating the Route
For the SpyStore app, all the routes are going to be defined in a separate module that will be imported into 
the app. To define the routes, create a new file in the scripts folder called app.routing.ts and include the 
following code.

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import { ProductsComponent } from "./components/products.component";



Chapter 8 ■ Angular 2

305

const routes: Routes = [
    {
        path: '',
        redirectTo: '/products',
        pathMatch: 'full'
    },
    { path: 'products', component: ProductsComponent }
];

@NgModule({
    imports: [RouterModule.forRoot(routes)],
    exports: [RouterModule]
})
export class AppRoutingModule { }

export const routedComponents = [ProductsComponent];

The code contains a single class called the AppRoutingModule. This class has no logic; what it does have 
is an NgModule decorator that specifies the routing imports that are defined. This will eventually be imported 
into our AppModule and the RouterModule. That is part of the exports that will ultimately be imported into 
the root app module.

Inside the module imports is a call to the RouterModule.forRoot method. The only argument to that 
method is a reference to the routes const, which is where all the routing will be configured. The routing 
const is an array of path arguments and their declarations. The first declaration specified matches the root 
URL for the site as denoted by the empty string value for the path. This root path is set up to redirect to 
the products route, which is set up in the next element of the array. The products route defines the path of 
products and maps that to the ProductsComponent that was set up earlier and imported at the top of the file.

The final const in this code is to an export called routedComponents. This is just a convenience, because 
all routes are already imported in this file. It's easy enough to include them here so they can be imported 
into the AppModule file later with ease.

Adding the Router and Components to the App Module
Now that the view and the router have been created, they need to be added to the app module. The app.
module.ts file needs to be updated to include the following code.

import { NgModule }      from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule, routedComponents } from './app.routing';

import { AppComponent } from './app.component';

@NgModule({
    imports: [
        BrowserModule,
        AppRoutingModule
    ],



Chapter 8 ■ Angular 2

306

    declarations: [
        AppComponent,
        routedComponents
    ],
    providers: [  ],
    bootstrap: [AppComponent]
})
export class AppModule {
}

The main change here from the first AppModule is the addition of the AppRoutingModule, both in the 
import at the top of the file and in the NgModule decorator. Also note that the routedComponents array, which 
aggregated all the components, is included as part of the declarations. This is nice because it only has to be 
included with one import rather than including all the components for every page. At this point, there is 
a component to route to, the route has been defined, and the router itself has been included as part of the 
AppModule, making it accessible to the app. If the app were to run at this point, an error would appear stating 
Error: Cannot find primary outlet to load ProductsComponent. This is because there is no router-
outlet defined in the AppComponent. This is covered next in the last step.

Setting Up the Router Outlet in the App Component
When the router module was imported previously, it imported both the configuration for the routes in the 
current app, but also the router components and directives that are a part of the router module. Included in 
that is a directive called router-outlet. This defines the primary outlet, which the error message eluded to 
previously. To add this, open the wwwroot/app/app.html file and locate the panel-body element that states 
-- App Pages Go Here --. Replace the placeholder text with the <router-outlet></router-outlet> 
directive. The new element should look like the following code.

<div class="panel-body">
        <router-outlet></router-outlet>
</div>

At this point, the app can be run and instead of a shell of an application, the content section of the app 
will be replaced with the heading and start of the first page in the SpyStore application. Before building 
out the remaining pages, the next section walks through connecting to the services and retrieving data and 
displaying it within the ProductsComponent that was just created.

Connecting to Services
In this section, the application will be set up to connect to the SpyStore Web API services that were created 
previously in Chapter 3.

■■ Note   For convenience, the final code for the services project is included as part of the this chapter’s 
example code. Throughout the remainder of this chapter, the SpyStore service will need to be running in order 
to get the demos to work. To run the service, open the SpyStore.Service folder from the example code for this 
application in the command line. In the command line, run the run_development command, which launches 
the run_development.cmd script to run the services.

http://dx.doi.org/10.1007/978-1-4842-2478-6_3


Chapter 8 ■ Angular 2

307

Given that the web services will be used by multiple components, the best place to set up the code that 
connects to the web services is by using an Angular service class. In addition, the app module will need to 
have an import added for the HttpModule, which will be needed within our new service class. Before setting 
up the service, open the app.module.ts class and add the HttpModule as listed in the code.

import { NgModule }      from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { HttpModule }    from '@angular/http';
import { AppRoutingModule, routedComponents } from './app.routing';

import { APP_CONFIG, SPYSTORE_CONFIG } from './app.config';

import { AppComponent } from './app.component';

@NgModule({
    imports: [
        BrowserModule,
        HttpModule,
        AppRoutingModule
    ],
    declarations: [
        AppComponent,
        routedComponents
    ],
    providers: [
        { provide: APP_CONFIG, useValue: SPYSTORE_CONFIG }
    ],
    bootstrap: [AppComponent]
})
export class AppModule {
}

Notice the addition of the HttpModule in both the import statement on the top and the imports 
configuration in the NgModule decorator.

There is also the addition of an application configuration, which is used to store the apiEndpoint 
URL. The application config is provided as a non-class dependency using the useValue parameter in the 
providers. The application configuration is made up of three parts, which are required to supply a value-
based provider for dependency injection. More information on value providers can be found online at 
https://angular.io/docs/ts/latest/guide/dependency-injection.html#non-class-dependencies.

The values for the application configuration need to be set up in a new file. To do this, create a new file 
in the scripts folder called app.config.ts. In this file, add the following code.

import { OpaqueToken } from '@angular/core';

export interface AppConfig {
    apiEndpoint: string;
}
export let APP_CONFIG = new OpaqueToken('AppConfig');
export const SPYSTORE_CONFIG: AppConfig = {
    apiEndpoint: 'http://localhost:40001/api/'
};

https://angular.io/docs/ts/latest/guide/dependency-injection.html#non-class-dependencies


Chapter 8 ■ Angular 2

308

The application configuration is made up of three parts. The first part is the interface. This interface 
provides typing constraints when injecting the configuration into future services. Next is an OpaqueToken, 
which defines a declaration for the provider type. This is required because TypeScript interfaces don't 
actually write out anything in JavaScript when it's transpiled. The final const is the value of the actual 
configuration. This is used in the useValue part of the providers section to define a constant value for the 
object whenever it's requested by the service or component.

Now that the app is capable of calling services over HTTP, the service can be set up. To do this based on 
the Angular style guide, create a new file called product.service.ts. In this file, add the following code.

import { Injectable, Inject } from '@angular/core';
import { Http, Response } from '@angular/http';
import { Observable, Observer } from 'rxjs/Rx';
import 'rxjs/Rx';
import 'rxjs/add/operator/map'

import { AppConfig, APP_CONFIG } from './app.config'

@Injectable()
export class ProductService {
    constructor(private http: Http, @Inject(APP_CONFIG) private config: AppConfig) { }

    getFeaturedProducts(): Observable<any> {
        return this.http.get(this.config.apiEndpoint + "product/featured").map(response =>
            response.json());
    }
}

This service class has a single method called getFeaturedProducts. This method uses the HttpModule 
that was imported to call the SpyStore service endpoint for the featured products. This call to the Get method 
returns an observable. The service itself doesn't do anything with that response except set up a pipe to map 
the response when the app calls it. This map code converts the JSON string returned by the service into an 
object. This map function can also be used to convert the response to a strongly typed object.

There are two other points to note about this class. First, the AppConfig, as noted earlier, is just an 
interface in TypeScript. When TypeScript transpiles to code, nothing for the interface is actually written 
out in JavaScript, which means that JavaScript doesn't know what an AppConfig is. In order to support 
dependency injection in this case, the class needs to tell Angular what to inject, by applying an @Inject 
decorator on the parameter and specifying the OpaqueToken declared earlier.

■■ Note   Angular 2 has adopted observables rather than promises as it primary mechanism for asynchronous 
activity. Observables are part of the RxJs Framework, which is based on the initial work of the Reactive 
Extensions Framework in .NET. The primary motivation for the moving to observables over promises was to 
support multiple retry scenarios and cancelation, which were lacking in the promise implementation in previous 
versions. Observable on the HTTP service in conjunction with observables on the routeParameter side also 
offers some unique scenarios that allow for component reuse and can add to performance.



Chapter 8 ■ Angular 2

309

While observables are similar in syntax to promises, there are some key difference. The most common one that 
causes developers issues is the fact that observables do not kick off until an initial subscriber is registered, 
which means you cannot simple call a service method that returns an observable and expect a result. You have 
to subscribe to the result and handle it before any call will be made.

More information on observables can be found online at https://angular.io/docs/ts/latest/tutorial/
toh-pt6.html#!#observables.

Now that the service is set up, the product component can be injected with the service and used to load 
its array of products. The following code shows the updated products component, using the new service.

import { Component, OnInit } from "@angular/core";
import { ProductService } from '../product.service';

@Component({
    templateUrl: "/app/components/products.html",
})
export class ProductsComponent implements OnInit {
    products: any[];
    header: string;

    constructor(private _service: ProductService) { }

    ngOnInit() {
            this.header = "Featured Products";
            this._service.getFeaturedProducts().subscribe(products =>
                this.products = products);
    }
}

Besides the addition to the constructor for dependency injection, the new code calls the service in 
the ngOnInit() function. In order to kick off the observable, the code subscribes to the observable and 
provides a response call in the first parameter. In the response call, the code stores the web service response 
in the products array of the component. Now that the products are populated with actual products from the 
service, the view can be modified to display them. The following code shows the new products view.

<div class="jumbotron">
    <a routerLink="/products" class="btn btn-info btn-lg">View Tech Deals &raquo;</a>
</div>

<h3>{{header}}</h3>

<div class="row">
    <div class="col-xs-6 col-sm-4 col-md-3" *ngFor="let product of products">
        <div class="product">
            <img [src]="'images/' + product.ProductImage" />
            <div class="price">{{product.CurrentPrice | currency:'USD':true:'1.2-2'}}</div>
            <div class="title-container">
                <h5>{{product.ModelName}}</h5>
            </div>

https://angular.io/docs/ts/latest/tutorial/toh-pt6.html#!#observables
https://angular.io/docs/ts/latest/tutorial/toh-pt6.html#!#observables


Chapter 8 ■ Angular 2

310

Figure 8-6.  Product card on the product catalog page after loading from the services

            �<div class="model-number"><span class="text-muted">Model Number:</span> 
{{product.ModelNumber}}</div>

            �<a [routerLink]="['/products', product.CategoryId]" class="category"> 
{{product.CategoryName}}</a>

            �<a [routerLink]="['/product', product.Id]" class="btn btn-primary btn-cart"> 
<span class="glyphicon glyphicon-shopping-cart"></span> Add to Cart</a>

        </div>
    </div>
</div>

This new element, with the class row on the bottom includes a loop of product listing cards, shown in 
Figure 8-6. The looping occurs because of the Angular call to *ngFor, which specifies the array of products 
on the component and the variable let product, which is populated with each element in the array and 
used in the child elements.

Inside the child elements the product’s contents are bound using the interpolation that was described 
earlier and is a shorthand to writing out the contents to the DOM. Under the price section, the interpolation 
call also uses a pipe in Angular to specify that the number in the property CurrentPrice should be formatted 
as currency. More information on pipes can be found at https://angular.io/docs/ts/latest/guide/
pipes.html.

In addition to the interpolation, there is a [routerLink] attribute defined on the links in the bottom, 
which will be used in the next section. This attribute defines router links for the products page and product 
details page, which leverage route parameters. The app can be run now, and assuming the service is 
running, it will display a list of products. Clicking the links at this point will throw an error message stating 
Cannot match any routes.

The next section covers route parameters and how to use them to vary the resulting products displayed 
on the products page.

https://angular.io/docs/ts/latest/guide/pipes.html
https://angular.io/docs/ts/latest/guide/pipes.html


Chapter 8 ■ Angular 2

311

Route Parameters
Before beginning this section, open Start-Part3 in your example code. This code differs from the code 
listed in the previous section and adds a new CategoryLinksComponent, which leverages the product service 
to pull a list of all categories and displays the list of categories along the top, as shown in Figure 8-7. In 
addition, the product service has been expanded to include other calls to the API needed for the application 
for getting products, categories, and product details. Two new API services have been added to support user 
management and shopping cart management with the API. This version also includes a LoggingService 
and AppErrorHandler, which provide simple logging and global error handling as part of the dependency 
injection framework.

In this section, the SpyStore application will be modified to use the route parameters and load products 
for a selected category. The sample code for this part already includes the API calls in the product service 
that are needed by this section. This list highlights the steps needed to update the app.

•	 Add the parameterized route to the router

•	 Update the product component to handle the route parameter

In order to add the parameterized route to the router, open the app.routing.ts file and add the 
following line to the routes const.

{ path: 'products/:categoryId', component: ProductsComponent }

Finally, to update the product component to handle the route parameter, open products.component.ts 
and update it to the following.

import {Component, OnInit} from "@angular/core";
import { ActivatedRoute, Params } from '@angular/router';
import {ProductService}   from '../product.service';
import {LoggingService} from '../logging.service';

@Component({
    templateUrl: "/app/components/products.html",
})
export class ProductsComponent implements OnInit {

Figure 8-7.  Category links across the top of the page loaded from the categories service endpoint



Chapter 8 ■ Angular 2

312

    products: any[];
        header: string;

    constructor(
        private _route: ActivatedRoute,
        private _service: ProductService,
        private _loggingService: LoggingService) { }

    ngOnInit() {
        this._route.params.subscribe(params => {
            if ("categoryId" in params) {
                let categoryId: number = +params["categoryId"];
                this._service.getCategory(categoryId).subscribe(category =>
                    �this.header = category.CategoryName, err => this._loggingService.

logError("Error Loading Category", err));
                this._service.getProductsForACategory(categoryId).subscribe(products =>
                    �this.products = products, err => this._loggingService.logError("Error 

Loading Products", err));
            } else {
                this._service.getFeaturedProducts().subscribe(products => {
                    this.header = "Featured Products";
                    this.products = products
                }, err => this._loggingService.logError("Error Loading Featured Products", err));
            }
        });
    }
}

In this code, the constructor was updated to include the ActivatedRoute service, which will be used in 
the ngOnInit(). The ngOnInit method has been updated as well. When the component initializes, instead of 
calling the product service directly, the code now subscribes to events on the param’s observable. As noted 
in the HTTP section previously, route parameters use observables, which are part of the RxJS framework. 
More information can be found at https://angular.io/docs/ts/latest/guide/router.html#route-
parameters. The subscribe method contains one parameter, which is the callback function that is fired 
whenever the route parameters change. This is helpful, because it allows the route to change without forcing 
the component to reload. This can be seen in action when navigating to different categories and using the 
back button in the browser. In the callback function there is a conditional statement, which checks for the 
presence of a categoryId from the routeParameter, if one is present, then it loads the category name and 
category specific products. Otherwise, it loads the featured products from the previous example.

At this point, running the app and clicking on a category in the menu will change the list of products. 
Clicking the link in the jumbotron, or the SpyStore watch icon, will revert back to the Featured Products list.

https://angular.io/docs/ts/latest/guide/router.html#route-parameters
https://angular.io/docs/ts/latest/guide/router.html#route-parameters


Chapter 8 ■ Angular 2

313

Search Page
The final user experience that needs to be added to complete the product listing is search. The search 
textbox and button are located in the top right of the menu after clicking on the search magnifying glass, as 
shown in Figure 8-8.

Given that the search textbox and button are located in the header, changes to this feature will need 
to be made to the app component and to the products component. The following list details the changes 
needed to implement the search feature.

•	 Add FormsModules to the project

•	 Add model binding to the app component view

•	 Add event handlers for the search event to the app component

•	 Add support for the search queryParam to the products component

One of the core new concepts in this feature that has not been introduced in previous features is two-
way data binding. The search features uses two-way data binding with ngModel on the search textbox. In 
order to use ngModel, the app needs to import the FormsModule. To do this, update the app.module.ts file to 
include the FormsModule and add it to the imports.

import { NgModule, ErrorHandler } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';
// Other imports omitted for brevity

@NgModule({
    imports: [
        BrowserModule,
        FormsModule,
        // other imports omitted
     ],
    // other module config omitted
})
export class AppModule {
}

Figure 8-8.  Clicking on the search button opens the search textbox



Chapter 8 ■ Angular 2

314

Once the FormsModule is added, the app component can be set up to bind the textbox to a property on 
the app component. Before we can bind anything, open the app.component.ts file and add the following 
field to the top of the AppComponent class.

searchText: string;

Now, in the app.html in the wwwroot/app folder, locate the search textbox and change it so it binds the 
field to the textbox, as shown in the following code.

<input type="text" id="searchString" name="searchString" [(ngModel)]="searchText" 
class="form-control" placeholder="SEARCH">

Notice the new attribute in the textbox with the two-way binding, or banana in a box, syntax. While the 
app.html component view is open, add the click event handler to the search button, which will be set up 
next in the app.component.ts file.

<button class="btn btn-default" type="button" (click)="search()">

In this button, the click event is bound to a method on the component called search. Let’s go back 
to the app.component.ts file and implement the search method. The following code shows the new app.
component.ts file after the search method has been added.

import { Component, OnInit } from "@angular/core";
import { Router, NavigationExtras } from "@angular/router";

@Component({
    selector: "spystore-app",
    templateUrl: "/app/app.html"
})
export class AppComponent implements OnInit {
    searchText: string;

    constructor(private _router: Router) {
    }

    ngOnInit() {
    }

    search() {
        let navigationExtras: NavigationExtras = {
            queryParams: { 'searchText': this.searchText }
        };

        this._router.navigate(['/products'], navigationExtras);
    }
}

In order to handle search, the app component injects the Router service and uses the 
NavigationExtras object to tell the router to navigate to the products page with the searchText as a 
querystring parameter, also called searchText. The products page will handle this querystring parameter.



Chapter 8 ■ Angular 2

315

In the products.component.ts file, update the ngOnInit method to the following code.

ngOnInit() {
        this._route.params.subscribe(params => {
                if ("categoryId" in params) {
                        let categoryId: number = +params["categoryId"];
                        this._service.getCategory(categoryId).subscribe(category =>
                                this.header = category.CategoryName,
                                �err => this._loggingService.logError("Error Loading 

Category", err));
                        this._service.getProductsForACategory(categoryId).subscribe(products =>
                                this.products = products,
                                �err => this._loggingService.logError("Error Loading 

Products", err));
                } else if (!("searchText" in this._route.snapshot.queryParams)) {
                        this.getFeaturedProducts();
                }
        });

        this._route.queryParams.subscribe(params => {
                if ("searchText" in params) {
                        let searchText: string = params["searchText"];
                        this.header = "Search for: " + searchText;
                        this._service.getSearchProducts(searchText).subscribe(products =>
                                this.products = products,
                                �err => this._loggingService.logError("Error Loading 

Products", err));
                } else if (!("categoryId" in this._route.snapshot.params)) {
                        this.getFeaturedProducts();
                }
        });
}

getFeaturedProducts() {
        this._service.getFeaturedProducts().subscribe(products => {
                this.header = "Featured Products";
                this.products = products
        }, err => this._loggingService.logError("Error Loading Featured Products", err));
}

Note that this method now includes two subscription methods instead of one. The first one was already 
shown and handles the categoryId route parameter. The second one subscribes to the queryParams 
observable, which, similarly to the route parameters, updates every time the query string is changes on the 
route. The conditional of this method also loads getFeaturedProducts and, in an effort to not duplicate 
code, this logic has been extracted into a reusable method called getFeaturedProducts(). Also note that 
given the route parameters and query parameters by cause race conditions among each other, there is an 
extra conditional check on the else statements that checks for the existence of either the searchText or 
categoryId depending on the case. Since these checks are performed at a point in time rather than against 
the observable, the code checks these parameters using the _route.snapshot property, which offers a 
synchronous snapshot of the parameters at the current moment.



Chapter 8 ■ Angular 2

316

At this point the feature is complete. Run the app and test the products by category and also with 
search. Try searching for products with the word device and the list should display twelve products 
matching that search text. The header should also be updated to reflect searching for device.

Product Details Page
Now that the product catalog has been implemented in all its forms, from featured, to category, and lastly 
search. It is time to move on to the product details page. The product details page contains additional 
information about the product and allows for adding the product to the shopping cart. The product details 
page requires the following changes to be implemented.

•	 Set up the ProductDetails component

•	 Implement the CartService Add to Cart method

•	 Set up the product detail route

Setting Up the ProductDetails Component
The product details component is new to the application. In order to begin, create a new file in the scripts/
components folder called product.component.ts. Inside the product.component.ts file, include the 
following code.

import {Component, OnInit} from "@angular/core";
import {ActivatedRoute, Params, Router, RouterLink} from '@angular/router';
import {ProductService}   from '../product.service';
import {CartService}   from '../cart.service';
import {LoggingService}   from '../logging.service';
import {UserService, User}   from '../user.service';

@Component({
    templateUrl: "app/components/productDetail.html"
})
export class ProductDetailComponent implements OnInit {
    message: string;
    isAuthenticated: Boolean;
    product: any;
    quantity: any = 1;

    constructor(
        private _router: Router,
        private _route: ActivatedRoute,
        private _productService: ProductService,
        private _cartService: CartService,
        private _userService: UserService,
        private _loggingService: LoggingService) {
        this.product = {};
        this.isAuthenticated = this._userService.IsAuthenticated;
    }



Chapter 8 ■ Angular 2

317

    ngOnInit() {
        this.isAuthenticated = this._userService.IsAuthenticated;
        this._userService.ensureAuthenticated().subscribe(_ =>
            this.isAuthenticated = true);

        this._route.params.subscribe((params: Params) => {
            let id: number = +params['id'];

            this._productService.getProduct(id).subscribe(product =>
                �this.product = product, err => this._loggingService.logError 

("Error Loading Product", err));
        });
    }

    addToCart() {
                this._cartService.addToCart({
                        ProductId: this.product.Id,
                        Quantity: this.quantity
                }).subscribe((response) => {
                        if (response.status == 201) {
                                this._router.navigate(['/cart']);
                        }
                        else {
                                this._loggingService.log(response.statusText);
                        }
                }, err => this._loggingService.logError("Error Adding Cart Item", err));
    }
}

The product detail component's main responsibility is to load the specified product from the API. Later, 
when setting up the route, the specified product ID will be provided as part of the route parameters. To 
access the specified product ID, the route params observable will be used.

In addition, the product details component ensures that the user is authenticated, which will be needed 
later in order to add items to the shopping cart.

■■ Note   The authentication in the app is intentionally simplified. Authentication is notoriously complex and in 
an effort to focus on the features of the various single page apps, it has been removed from the scope of this 
chapter. When building authentication in production apps, consider authentication cautiously and verify with the 
appropriate security advisors in your organization.

The other method in addition to the ngOnInit() method is an event handler for the Add to Cart button, 
which is the only button on the page. The cart service POSTs a shopping cart record to the API in order to 
add the item to the shopping cart. In addition to the product ID, the shopping cart record also consists of 
a quantity field, which is provided by the view using the ngModel attribute of the forms module that was 
demonstrated previously.



Chapter 8 ■ Angular 2

318

The product detail component also contains a templateUrl as part of its component decorator. The 
following code shows the associated product detail template.

<h1 class="visible-xs">{{product.ModelName}}</h1>
<div class="row product-details-container">
    <div class="col-sm-6 product-images">
        <img [src]="'images/' + product.ProductImageLarge" />
        <div class="key-label">PRODUCT IMAGES</div>
    </div>
    <div class="col-sm-6">
        <h1 class="hidden-xs">{{product.ModelName}}</h1>
        <div class="price-label">PRICE:</div>
        <div class="price">{{product.CurrentPrice | currency:'USD':true:'1.2-2'}}</div>
        <div class="units">Only {{product.UnitsInStock}} left.</div>
        <div class="product-description" [textContent]="product.Description">
        </div>
        <ul class="product-details">
            <li>
                <div class="key-label">MODEL NUMBER:</div> N100Z1
            </li>
            <li>
                �<div class="key-label">CATEGORY:</div> <a [routerLink]="['/products', 

product.CategoryId]">{{product.CategoryName}}</a>
            </li>
        </ul>

        <div *ngIf="isAuthenticated" class="row cart-group">
            <label for="qty">QUANTITY:</label>
            �<input type="text" name="qty" [(ngModel)]="quantity" class="cart-quantity form-

control" />
            <button (click)="addToCart()" class="btn btn-primary">Add to Cart</button>
        </div>
        <a routerLink="/products">Back to List</a>
    </div>
</div>

The template for the product detail component contains a number of different binding techniques, 
which were all described previously as part of the templating section. At the bottom of the view, there 
is a div element. This element will only display after the user has been authenticated as noted by the 
*ngIf="isAuthenticated" directive. Inside this element, there is a quantity textbox that uses the ngModel 
binding to map to the quantity field on the component. There is also a (click) event on the Add to Cart 
button, which maps to the addToCart() method on the component.

CartService Add To Cart
The addToCart() method on the product detail component calls the addToCart method on the cartService, 
which was provided as part of the code for this section. The following code shows the POST code for the API 
from the cart.service.ts class in the scripts folder.



Chapter 8 ■ Angular 2

319

import {Injectable, Inject} from '@angular/core';
import {Http, Headers, Response} from '@angular/http';
import {Observable, Observer} from 'rxjs/Rx';
import { UserService, User } from './user.service';
import { APP_CONFIG, AppConfig } from './app.config';
import 'rxjs/Rx';
import 'rxjs/add/operator/map'

// code omitted for brevity

export interface ShoppingCartRecord {
    Id?: number;
    CustomerId?: number;
    ProductId: number;
    Quantity: number;
    TimeStamp?: any;
    CurrentPrice?: number;
    LineItemTotal?: number;
}

@Injectable()
export class CartService {

    �constructor(private http: Http, private _userService: UserService, @Inject(APP_CONFIG) 
private config: AppConfig) { }

    addToCart(cartRecord: ShoppingCartRecord): Observable<Response> {
        var headers = new Headers();
        headers.append('Content-Type', 'application/json');
        �return this.http.post(this.config.apiEndpoint + "shoppingcart/" + this._userService.

User.Id, JSON.stringify(cartRecord), { headers: headers });
    }

    // other methods omitted for brevity
}

The addToCart method on the CartService is not that different from the other API calls that have been 
shown previously. The main difference is that the method being called on the http service is called post as 
opposed to get. This sends the HTTP request with the Post method instead of the Get method. In addition, 
since the WebAPI service is a REST service, the data that is posted needs to be in a JSON format. While the 
call to JSON.stringify handles the actual serialization, the ASP.NET WebAPI service does not automatically 
detect that format and instead uses the content-type header of the request to determine the format. In order 
to tell the WebAPI service that the request is coming in as JSON format, the code creates a new Headers 
object and adds the Content-Type header with the value of application/json.



Chapter 8 ■ Angular 2

320

Setting Up the Product Detail Route
The final step in order to get the product detail component working is to add it to the route. Open the app.
router.ts file and add the appropriate imports, routes, and declarations to the routerComponents array.

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import { ProductsComponent } from "./components/products.component";
import { ProductDetailComponent } from "./components/productDetail.component";

const routes: Routes = [
    {
        path: '',
        redirectTo: '/products',
        pathMatch: 'full'
    },
    { path: 'products', component: ProductsComponent },
    { path: 'products/:categoryId', component: ProductsComponent },
    { path: 'product/:id', component: ProductDetailComponent }
];

@NgModule({
    imports: [RouterModule.forRoot(routes)],
    exports: [RouterModule]
})
export class AppRoutingModule { }

export const routedComponents = [ ProductsComponent, ProductDetailComponent ];

The route for the product detail component is defined as /product/:id where :id represents the route 
parameter for the product ID. The router link to access this page was set up previously in the products 
template when the list of products was added.

Running the app at this point will display a list of the products on the home page. After clicking Add to 
Cart for a specific product, the product detail page will load and display the details for the product. At this 
point, the addToCart event on the product detail component is set up and adds the item via the API, but 
there is no route set up. Therefore, an error will appear when trying to navigate to the cart page, which will 
be set up next.

Cart Page
After adding the product to the API, the product details component redirects to the cart page. In this section 
the CartComponent will be set up. One of the biggest differences between this component and others is that 
the cart page contains a nested component for each cart record. Figure 8-9 shows a representation of the 
component tree for the cart page.



Chapter 8 ■ Angular 2

321

The following list describes the steps needed to implement the cart page.

•	 Create the Cart component

•	 Create the Cart Record component

•	 Create the Cart route

•	 Add the Cart Record component to the app module

Creating the Cart Component
In order to create the cart component, add a new file to the scripts/components folder called cart.
component.ts. The following code is included in the cart component.

import {Component, OnInit} from "@angular/core";
import {Cart, ShoppingCartRecord, CartService}   from '../cart.service';
import {CartRecordComponent} from './cartRecord.component'

@Component({
    templateUrl: "app/components/cart.html"
})
export class CartComponent implements OnInit {
    cart: Cart;

    constructor(private _cartService: CartService) { }

Figure 8-9.  Annotated cart page with components



Chapter 8 ■ Angular 2

322

    ngOnInit() {
        this._cartService.getCart().subscribe(cart =>
            this.cart = cart);
    }

    onCartRecordRemoved(record: ShoppingCartRecord) {
        var index :number = this.cart.CartRecords.indexOf(record, 0);
        if (index > -1) {
            this.cart.CartRecords.splice(index, 1);
        }
    }
}

Because the cart page is architected to contain much of the update and removal of items as part of 
the nested cart record component, the logic for the cart component is fairly simple. In the ngOnInit() 
method, the cart is loaded from the API. Luckily, this is the only location where the cart is used so 
loading it here directly from the service is acceptable. The only other method in this component is for 
onCartRecordRemoved. This event is emitted from the cart record component and will be used later when we 
implement the cart record component. This method finds the record inside the cart and removes it from the 
CartRecords array using the JavaScript splice method.

Once the cart component is created, it is time to set up the cart view. The following code shows the 
HTML for the cart view.

<h3>Cart</h3>

<div class="table-responsive">
    <table class="table table-bordered product-table">
        <thead>
            <tr>
                <th style="width: 70%;">Product</th>
                <th class="text-right">Price</th>
                <th class="text-right">Quantity</th>
                <th class="text-right">Available</th>
                <th class="text-right">Total</th>
            </tr>
        </thead>
        <tbody>
            �<tr cart-record [record]="record" (onRecordRemoved)="onCartRecordRemoved($event)"  

*ngFor="let record of cart?.CartRecords">
            </tr>
        </tbody>
        <tfoot>
            <tr>
                <th>&nbsp;</th>
                <th>&nbsp;</th>
                <th>&nbsp;</th>
                <th>&nbsp;</th>
                <th>{{cart?.CartTotal | currency:'USD':true:'1.2-2'}}</th>
            </tr>
        </tfoot>
    </table>
</div>



Chapter 8 ■ Angular 2

323

<div class="pull-right">
    <button routerLink="/checkout" class="btn btn-primary">Checkout</button>
</div>

Similar to the cart component class, the HTML is fairly simple. Most of the logic here is handled by the 
cart record component and is included in the tbody where the Angular template is set up to loop over the 
cart records, using *ngFor and load the cart-record component for each shopping cart record in the array. 
The cart record has two elements bound to it that will be shown later—the record is bound to the cart record 
component and the onRecordRemoved event is bound to the onCartRecordRemoved event that was set up 
previously.

Creating the Cart Record Component
If the app were launched at this point, an error would be thrown. In order for this cart view to work, there 
needs to be a cart record component set up. The following code shows the cart record component class.

import {Component, Input, Output, EventEmitter} from "@angular/core";
import {CartService, ShoppingCartRecord}   from '../cart.service';
import {LoggingService} from '../logging.service';

@Component({
    selector: "[cart-record]",
    templateUrl: "app/components/cartRecord.html",
})
export class CartRecordComponent {
    @Input() record: ShoppingCartRecord;
    @Output() onRecordRemoved = new EventEmitter<ShoppingCartRecord>();

    constructor(private _cartService: CartService, private _loggingService: LoggingService) { }

    updateItem() {
        this._cartService.updateCartRecord(this.record).subscribe((response) => {
            if (response.status == 201) {
                this.record.LineItemTotal = this.record.Quantity * this.record.CurrentPrice;
                this.record.TimeStamp = response.json().TimeStamp;
            }
        }, err => this._loggingService.logError("Error Updating Cart Item", err),
        () => console.log('Update Complete'));
    }

    removeItem() {
        this._cartService.removeCartRecord(this.record).subscribe((response) => {
            if (response.status == 204) {
                this.onRecordRemoved.emit(this.record);
            }
        }, err => this._loggingService.logError("Error Deleting Cart Item", err),
        () => console.log('Delete Complete'));
    }
}



Chapter 8 ■ Angular 2

324

Starting with the component decorator, there is a templateUrl, just like the other components. There is 
also a selector component; notice the square brackets around the selector, which is how Angular defines an 
attribute selector. The reason for using the attribute selector is to maintain the integrity of the tr tags and the 
table structure from the DOM perspective.

The next thing to notice in the component class is the fields on the class have Input() and Output() 
decorators on them. Given that every new component has its own isolated scope, the cartRecord 
component cannot directly access the record object on the parent component. In order to display 
information about the record, that object needs to be passed into the nested component. The Input() 
directive on the cart record tells Angular that the parent component can specify, typically via binding, the 
card record as an attribute binding to the cart record component. The Output() decorator on the other hand 
tells Angular that the parent component can specify event handlers for the event specified. The type of the 
field for the onRecordRemoved event is an EventEmitter, which is a built-in type for Angular that provides the 
emit method and allows the nested component to broadcast the event when needed.

In addition to the constructor, which is used for dependency injection, there are two methods on the 
cart record component. These two methods are used to handle actions on the component, which will be 
bound in the template. The first method is for updating the cart. The method calls the updateCart method 
on the CartService, which in turn sends a PUT request to the API for updating the cart. Upon successful 
completion of the call, the callback updates the record so it is current with the backend as opposed to 
reloading the record, or cart, from the API. The second method is similar but it calls the removeCartRecord 
method on the CartService, which in turn sends a DELETE request to the API to remove the cart record. 
Upon successful completion of that method, the callback emits the onRecordRemoved event, which notifies 
the cart component to remove the cart record from the table in the UI.

Since the tr tag is already created as part of the cart component, the contents of the cart component 
template start with the td for the cart record. The following code shows the template for the cart record.

<td>
    <div class="product-cell-detail">
        <img src="images/product-thumb.png" class="pull-left" />
        <a [routerLink]="['/product', record.ProductId]" class="h5">{{record.ModelName}}</a>
        <div class="small text-muted hidden-xs">{{record.Description}}</div>
    </div>
</td>
<td class="text-right">{{record.CurrentPrice | currency:'USD':true:'1.2-2'}}</td>
<td class="text-right cart-quantity-row">
    <input type="number" [(ngModel)]="record.Quantity" class="cart-quantity" />
    <button class="btn btn-link btn-sm" (click)="updateItem()">Update</button>
    <button class="btn btn-link btn-sm" (click)="removeItem()">Remove</button>
</td>
<td class="text-right">{{record.UnitsInStock }}</td>
<td class="text-right">{{record.LineItemTotal | currency:'USD':true:'1.2-2'}}</td>

There is nothing new in this template; it consists of interpolation as well as attribute binding in order 
to interact with the cart record component. From a scoping perspective, it's important to remember that 
the cart record template can access properties and methods only on the cart record component and cannot 
access other properties or methods outside of its scope.



Chapter 8 ■ Angular 2

325

Creating the Cart Route
Now that both of the cart component and the cart record component have been created, the cart route 
can be added to the app.routing.ts file. As shown previously, open the app routing class and add the 
following code.

// other imports omitted for brevity
import { CartComponent } from "./components/cart.component";

const routes: Routes = [
    // other routes omitted for brevity
    { path: 'cart', component: CartComponent }
];
// routing module omitted for brevity
export const routedComponents = [ ProductsComponent, ProductDetailComponent, CartComponent ];

Adding the Cart Record Component to the App Module
While the cart component is imported and defined as part of the routing, the cart record component is 
not. Angular has no way of knowing that the cart record component class should be added to the module. 
To add the cart record component to the module, it needs to be included as part of the declarations in 
the app.module.ts file. The following code shows the cart record added to the declarations of the app 
module class.

// other imports removed for brevity
import { CartRecordComponent } from "./components/cartRecord.component";

@NgModule({
    // other module decorator config removed for brevity
    declarations: [
        AppComponent,
        CategoryLinksComponent,
        CartRecordComponent,
        routedComponents
    ],
})
export class AppModule {
}

Running the application now will result in mostly complete shopping experience including browsing and 
searching products, displaying product details, and manipulating the shopping cart. The final feature that will 
be implemented in this example is checkout. The next section walks through creating the checkout process.



Chapter 8 ■ Angular 2

326

Checkout
The checkout process is intentionally simplified for the SpyStore application. A real e-commerce site 
requires a significant amount of logic, which would be repetitive to demonstrate in this chapter. For the 
purposes of the SpyStore application, the checkout process involves setting up a checkout page that we 
linked the Checkout button to on the cart page, to contain a button which binds to an event on the checkout 
component to complete the order. The following steps outlines what is needed to set up the checkout page.

•	 Create the Checkout component

•	 Add a route for the Checkout component

Creating the Checkout Component
Similarly to other components, implementing the checkout component begins by creating a new checkout.
component.ts file in the scripts/components folder. The following code shows the code for the checkout 
component.

import { Component } from "@angular/core";
import { Router } from '@angular/router';
import { CartService } from '../cart.service';
import { LoggingService } from '../logging.service';

@Component({
    templateUrl: "app/components/checkout.html"
})
export class CheckoutComponent {

    constructor(private _cartService: CartService,
                       private _router: Router,
                       private _loggingService: LoggingService) { }

    checkout() {
        this._cartService.buy().subscribe((response) => {
            if (response.status == 201) {
                this._router.navigate(['/products']);
            }
            else {
                this._loggingService.log(response.statusText);
            }
        }, err => this._loggingService.logError("Error Checking out", err));
    }
}

The checkout component contains a single method called checkout. This method calls the buy() 
method on the cart service, which in turn POSTs to the API and completes the purchase.



Chapter 8 ■ Angular 2

327

The following code shows the template for the checkout component.

<div class="row top-row">
    <div class="col-sm-offset-3 col-sm-6">
        <div class="panel panel-primary checkout-panel">
            <div class="panel-heading">
                <h1 class="panel-title">Checkout</h1>
            </div>
            <div class="panel-body">
                <h3>Checkout automatically as the logged in user</h3>
                �<div class="text-muted">(User typically needs to enter billing and  

shipping info here)</div>
                <button (click)="checkout()" class="btn btn-primary">Auto-Checkout</button>
            </div>
        </div>
    </div>
</div>

Again, given that the checkout process for the SpyStore application is simplified, there is not much to 
this view. The view contains one event binding for the click event of the button. The click event maps to the 
checkout method on the component, which was described earlier.

Adding a Route for the Checkout Component
The final step for the checkout process is to add the checkout component to the route. The following code 
shows the code that is added to the app.routing.ts file to support checkout.

// other imports omitted for brevity
import { CheckoutComponent } from "./components/checkout.component";

const routes: Routes = [
    // other routes omitted for brevity
    { path: 'checkout', component: CheckoutComponent }
];

// routing module omitted for brevity

export const routedComponents = [ProductsComponent, ProductDetailComponent, CartComponent, 
CheckoutComponent ];

At this point, the SpyStore application has the basic functionality that shows a concrete example of 
working with Angular 2. The app can be run along with the services and the SpyStore application should 
work as expected.



Chapter 8 ■ Angular 2

328

Summary
This chapter was an introduction to using Angular 2 to build applications. The remaining chapters cover 
other JavaScript frameworks. Angular has gained an impressive amount of popularity in recent years, and 
the team at Google has leveraged that popularity to create a next generation framework with Angular 2. It 
uses many of the recent and upcoming specifications in the web space and makes developing application 
simple and straightforward. Angular 2 is built with TypeScript in mind, which adds type safety to your code 
and protects against some nasty JavaScript side effects. Overall, Angular 2 is a very prescriptive framework, 
and it helps developers be successful early on by providing a very productive framework to use.

There are more features that were out of the scope of this chapter. Luckily, the Angular team has 
excellent documentation, thanks to the hard work of the team. For more information on Angular see the 
online documentation at https://angular.io. In addition, the community is very strong and leverages 
StackOverflow and GitHub openly to provide feedback to developers as they progress on their journey 
through learning Angular.

https://angular.io/


329© Philip Japikse, Kevin Grossnicklaus and Ben Dewey 2017 
P. Japikse et al., Building Web Applications with Visual Studio 2017, DOI 10.1007/978-1-4842-2478-6_9

CHAPTER 9

React

In this chapter, we demonstrate an implementation of the basic SpyStore application using the React 
framework from Facebook. As with the previous chapter on Angular 2, we focus on highlighting the key 
aspects of React and how they can be utilized to develop powerful web interfaces.

There are numerous books and other resources focused solely on React and, while we hope this chapter 
will serve as a great introduction to this framework, it should not be considered an exhaustive guide to all the 
nuances and capabilities of this robust platform. Our goal is to provide a reference sample of the framework 
that can be compared to the other frameworks used throughout this book. Much of the core architecture 
of the SpyStore implementation in React is very close or the same as that of the previous Angular 
implementation. Both React and Angular are very powerful frontend frameworks for web development 
and, while they take different approaches to achieve this goal, they also work in much the same manner 
and do have many similarities. We will not spend much time directly comparing Angular to React but after 
reviewing the same SpyStore solution from the previously demonstrated Angular implementation and the 
React implementation here, you will be able to see for yourself some of the key ways these frameworks are 
similar and some of the implementation choices that make them different.

Many developers feel passionately that either Angular or React (or straight MVC) is the best choice for 
all their web frontend needs. The reality is that both Angular and React are very powerful; they have huge 
community support and enjoy a widespread adoption by developers working on sites of all sizes. They both 
have their flagship backers and you will find access to training and other resources for both frameworks very 
easy to find.

As with Angular, React is a constantly evolving framework and all code samples and content in this 
chapter are based on the current version at the time of this writing (15.4.2).

Solution Overview
Before we dive into the React implementation of the SpyStore application, it is worth taking a moment to 
discuss some of the key choices we will make in the development of the SpyStore solution in React. Some of 
these choices will make our solution very much like other framework examples in this book (making it easier 
to compare the various implementations), while other aspects of our solution and development workflow 
will be much different than you will see in other chapters.

First, in this chapter, the user interface we are going to be implementing via React is the same SpyStore 
interface previously developed in HTML and Bootstrap. All the core HTML and style assets from previous 
chapters will be utilized here and we will just copy any necessary static assets into our solution as necessary.

Next, when developing our SpyStore React solution, we will again utilize the TypeScript language for 
implementing the SpyStore React frontend, although many React developers still use raw JavaScript or ES6. 
Unlike Angular 2, which was natively developed in the TypeScript language, React has enjoyed huge success 
as a straight JavaScript library (and is not natively written in TypeScript). This fact bears little on our choice 
to use TypeScript as React has some very nice TypeScript type definition files and the tooling for developing 
React solutions with TypeScript makes for a very powerful match between this language and library.



Chapter 9 ■ React

330

We will again be taking advantage of the previously developed SpyStore API solution. All code 
developed in this chapter will assume that the SpyStore API is running and listening on port 40001.

■■ Note   For convenience, the final code for the services project is included as part of this chapter’s example 
code. Throughout the remainder of this chapter, the SpyStore service will need to be running to get the demos 
to work. To run the service, open the SpyStore.Service folder from the example code for this application in the 
command line. In the command line, run the run_development command, which launches the  
run_development.cmd script to run the services.

We will continue to use NPM as our package manager to efficiently gather remote assets into our 
solution. Along with NPM, we will be using a popular module bundling tool called WebPack  
(https://webpack.github.io/). Chapter 06 provides a brief introduction to WebPack and, in this chapter, 
we will build on those concepts to build a richer development process. The previous chapter on Angular 
took advantage of Bower and Gulp to manipulate local assets and code as part of its development workflow. 
For the React solution we are going to demonstrate using WebPack to perform many of these same tasks. 
The choice of WebPack also affects how we develop web frontends and how our code and other assets are 
bundled and deployed, both during development and when preparing to publish to other environments. In 
this chapter, we demonstrate many of these concepts and show how WebPack can be leveraged to quickly 
set up a very efficient development workflow.

Our primary development tool will again be Visual Studio 2017 but the overall development workflow 
and tooling we will put in place will largely exist outside of Visual Studio. As you will see, WebPack will be 
utilized to compile all our client side TypeScript into JavaScript. In previous chapters this was done directly 
in Visual Studio. WebPack will also play a key role in the develop and debug cycles and it will be responsible 
for spinning up a web server and hosting our assets during development. Due to these facts, the React 
implementation of the SpyStore UI will rely less on Visual Studio’s internal capabilities and will use the IDE 
more for its editing features than its full debug stack.

We will also only be utilizing the ASP.NET Core infrastructure to serve up our static content (in addition 
to being the stack responsible for all data access and API development via the solution implemented in 
Chapter 3). This is not necessarily a good or a bad thing and is done simply to demonstrate an alternative 
developer workflow for web interfaces. Many developers choose to do their server side C# development in 
Visual Studio and utilize an alternative editor such as Visual Studio Code or JetBrain’s WebStorm to work with 
their client side assets. The workflow we will be demonstrating in this chapter will show how easy this can be.

Creating a New Visual Studio Core Project
The initial steps in setting up the project for our React solution will be identical to that of the previous 
chapter on Angular. As mentioned, our React project will rely on the ASP.NET Core runtime simply as a 
means of serving up our static files. To get started, open Visual Studio and create a new project. In the New 
Project dialog, shown in Figure 9-1, select a new ASP.NET Core Web Application (.NET Core) and click OK.

https://webpack.github.io/)
http://dx.doi.org/10.1007/978-1-4842-2478-6_6
http://dx.doi.org/10.1007/978-1-4842-2478-6_3


Chapter 9 ■ React

331

After confirming your selection, a New ASP.NET Core Web Application dialog will appear, as shown in 
Figure 9-2. From this dialog, select an Empty project, which should be the default selection, and click OK. 
This will create a new project and automatically kickoff the package restoration process. At this point we 
have a new ASP.NET Core project configured with no functionality. We will use this project to host all of our 
project assets and to set up the React implementation of the SpyStore interface.

Figure 9-1.  Dialog for creating a new project



Chapter 9 ■ React

332

Project Files
As you’ve seen previously in this book, the empty ASP.NET Core project we now have contains very few files. 
One of the primary files and the primary code thus far is contained in the startup.cs file. As with many 
ASP.NET Core projects, one of the first things we need to do is decide which capabilities our application will 
need and to configure our startup.cs class to support the necessary web request pipeline. For our React 
application, we will primarily be using ASP.NET Core to serve up static files. To achieve this, we need to  
add the static files capability via an external NuGet package. As demonstrated in prior solutions, the 
Microsoft.AspNetCore.StaticFiles package will be the one we need. Figure 9-3 shows adding the NuGet 
package to your project for static files, which allows for serving of any static content from our web server.

Figure 9-2.  Second page of the dialog for creating a new project



Chapter 9 ■ React

333

Setting Up the Startup Class
The next step to support the serving of static files within ASP.NET Core is to modify the ASP.NET Core 
pipeline, which is set up in the Startup.cs file. To this file we will add the same basic code that was 
utilized in the previous chapter on Angular. Inside the Startup.cs file, locate the configure method. In the 
configure method, you will find the following code.

app.Run(async (context) =>
{
            await context.Response.WriteAsync("Hello World!");
});

Replace the entire block of code with the single line of middleware code necessary for serving static files.

app.UseStaticFiles();

Also in startup.cs we will need to add some code to indicate we want our server to handle responses 
for default files. This enables default index.html files to be served when a directory is requested. Add the 
following line to the Startup class directly below the line indicating to use static files:

app.UseDefaultFiles();

Figure 9-3.  Adding the StaticFiles NuGet package



Chapter 9 ■ React

334

As you will see later in this chapter, the React framework uses a routing infrastructure that provides a 
similar set of functionality as the routing infrastructure in Angular. To achieve this, it is also common for 
React routes to contain URLs that do not map back directly to files on the server. In these instances, React’s 
routing configuration uses the URL to determine which components to render for a view. If a user refreshes 
his browser, the browser will try to perform an HTTP Get back to the server with the current URL. This will 
cause us problems because, while the client side React code knows what it should be showing for a route, 
the server won’t be able to find any corresponding content and will return a HTTP 404 “Not Found” error. 
To get around this issue, we will need to configure the ASP.NET Core middleware to handle things in a way 
which allows our server to return static content for anything it can find physically on disk and, for anything it 
doesn’t fine, return a fixed file. In our case we want this file to be index.html.

To achieve this goal, add the following code:

using System.IO

...
// Route all unknown requests to app root
app.Use(async (context, next) =>
{
    await next();

     // If there's no available file and the request doesn't contain an
     // extension, then rewrite request to use app root
      if (context.Response.StatusCode == 404 && !Path.HasExtension(context.Request.Path.Value))
      {
         context.Request.Path = "/index.html";
         await next();
      }
});

At this point our ASP.NET Core plumbing has been customized to support static files, which is a 
necessary step for most frameworks, including Angular, React, or Aurelia. It is important to warn you that, 
although we made these changes to the startup.cs file as an initial step in setting up our project to support 
React, the development workflow we will put in place shortly will not take advantage of the ASP.NET Core 
runtime until we ultimately deploy our site to a test or production server. For our day-to-day development 
tasks, we will be taking advantage of WebPack’s built-in development web server to serve up and debug our 
files. This scenario skips our ASP.NET Core server side code (including any customizations to startup.cs).

NPM Packages
The next step in our configuration process is to decide which packages we will need to support our React 
frontend as well as the development workflow we want to use. Previous examples of using NPM have listed 
individual packages and directed readers to install them via the command line using the –save or –save-dev 
flags to tell NPM to add the specified information to the projects package.json file. For our solution we are 
going to add a package.json file directly to our project via Visual Studio’s Add New Item dialog, as shown in 
Figure 9-4.



Chapter 9 ■ React

335

Once this file has been added, we will edit it directly in Visual Studio. In many scenarios, editing this file 
manually to maintain your list of NPM package dependencies is preferable to adding them each from the 
command line. Visual Studio recognizes files called package.json as specifically being NPM configuration 
files and provides developers with powerful editing tools such as full IntelliSense. This makes working with 
NPM much easier. The following link provides a great overview of the NPM integration provided in Visual 
Studio 2017: https://webtooling.visualstudio.com/package-managers/npm/.

For our SpyStore React solution we will require several dependencies for libraries such as React itself 
and for tools to support our development workflow such as WebPack. We will start by adding the following 
content to the package.json file (replacing its default contents):

{
  "version": "1.0.0",
  "name": "SpyStore.React",
  "private": true,
  "dependencies": {
    "jquery": "3.1.1",
    "react": "15.4.2",
    "react-dom": "15.4.2",
    "react-router": "3.0.2"
  },

Figure 9-4.  Adding an NPM configuration file to our project

https://webtooling.visualstudio.com/package-managers/npm/


Chapter 9 ■ React

336

  "devDependencies": {
    "@types/jquery": "1.10.31",
    "@types/react": "0.0.0",
    "@types/react-router": "^2.0.41",
    "typescript": "2.1.6",
    "tslint": "4.4.2",
    "webpack": "2.2.1",
    "webpack-dev-middleware": "1.10.0",
    "webpack-dev-server": "2.3.0",
    "webpack-md5-hash": "0.0.5",
    "webpack-merge": "2.6.1",
    "awesome-typescript-loader": "3.0.4-rc.2",
    "url-loader": "0.5.7",
    "ts-helpers": "1.1.2",
    "ts-loader": "2.0.0",
    "ts-node": "2.1.0",
    "tslint-loader": "3.3.0",
    "open-browser-webpack-plugin": "0.0.3",
    "extract-text-webpack-plugin": "1.0.1",
    "file-loader": "0.10.0",
    "html-loader": "0.4.4",
    "html-webpack-plugin": "2.28.0",
    "compression-webpack-plugin": "0.3.2",
    "copy-webpack-plugin": "4.0.1",
    "source-map-loader": "0.1.6"
  }
}

If you manually enter this JSON into your package.json file, you will notice the IntelliSense in Visual 
Studio 2017 helps validate the names of the packages and will present you with current versions. The 
versions for each package were current as of this writing and have been used in developing the full SpyStore 
React solutions. The source code provided with this chapter also contains this file and some may find it 
easier to copy its contents from there.

In the list of dependencies, there are very few “standard ” dependencies for our solution. These 
are the core React libraries in addition to jQuery (from which we will use the Ajax component to build a 
reusable wrapper around the SpyStore API). The bulk of the dependencies are ultimately going to be used to 
automate our development process and they relate to WebPack and its various plugins and loaders. These 
will be explained in more detail later but it is worth noting their usage now.

Once you have added this content to your package.json file, Visual Studio 2017 should automatically 
begin the process of restoring the packages. Visual Studio will watch for changes to this file and perform an 
NPM restore in the background so many of the packages may have been loaded as you typed (assuming you 
didn’t wait until the end to save your progress). If you don’t think packages are restoring, you can right-click 
on the package.json file in your Solution Explorer and select the Restore Packages option.

As described in previous chapters, installing a “package” into your solution via NPM copies all 
necessary package files and dependencies into the root of your project into a folder called node_modules. 
This folder and its contents are hidden by default in Visual Studio’s Solution Explorer. Visual Studio 2017 
provides the ability to see your currently installed NPM packages under the Dependencies/npm node within 
Solution Explorer. An example of this can be seen in Figure 9-5.



Chapter 9 ■ React

337

TypeScript Setup
The next step in configuring our project to support the development process we want is to add a tsconfig.
json file to the project and use it to specify the options we want the TypeScript compiler to honor as part of 
our workflow.

Figure 9-5.  Installed NPM packages visible in Visual Studio 2017 Solution Explorer



Chapter 9 ■ React

338

You may have noticed in the previous section that our NPM packages file included a package called 
“TypeScript”. As mentioned earlier, we are not going to be using the TypeScript compiler that ships with 
Visual Studio and instead we are going to use NPM to download a specific version of TypeScript (2.1.4). 
We will ultimately use WebPack to use this TypeScript compiler as part of its bundling and development 
process. This compiler is still the official TypeScript compiler but, by using it in our workflow like this, we 
have more control over specifically which version is utilized across all development machines and on our 
build servers.

Even though we use NPM to get the TypeScript compiler, it still depends on a tsconfig.json file to 
read its configuration. We need to add a file with this name to the root of our project and add the following 
content to it:

{
  "compilerOptions": {
    "strictNullChecks": true,
    "noImplicitAny": false,
    "noEmitOnError": true,
    "removeComments": false,
    "sourceMap": true,
    "target": "es5",
    "module": "commonjs",
    "jsx": "react"
  },
  "exclude": [
    "node_modules",
    "wwwroot"
  ],
  "compileOnSave": false
}

The settings included here differ pretty significantly from tsconfig.json files we used earlier in this 
book. We have included a new setting called jsx and provided it with the setting of react. We will discuss 
JSX files in much detail throughout this chapter but it is important to notice that TypeScript does natively 
support them.

The compileOnSave setting has been set to false. This tells Visual Studio not to auto compile our 
TypeScript files as we save and edit them. Instead we will rely on WebPack to watch for changes and rerun 
our development workflow and update our browsers.

Initial Project Folder
Before we dive into setting up our development process with WebPack, we will set up our initial project 
folder structure. The ASP.NET Core project we have created already contains a wwwroot folder where our 
final published files will go. For the React solution we are going to build, we will create a new folder in our 
project called src. This folder serves as the root of all our client side content. Within the src folder you will 
need to create three additional folders: app, images, and css. For purposes of development, all our code 
(i.e., TypeScript) and other assets will be organized into these three folders. We will configure WebPack to 
bundle everything we need and move the necessary files for deployment into the wwwroot folder, where it is 
expected in our test and production environments. We will see how this is accomplished in the next section. 
For now, it is only important to make note of this organization structure and to have the folders created 
within your project as shown in Figure 9-6.



Chapter 9 ■ React

339

As we progress, we will add a few additional folders, but the ones shown in Figure 9-6 will serve as the 
root of most of our content.

Before we move onto setting up our development workflow with WebPack, we will want to add a few 
initial files to our src folder. First, directly within the src folder, add a new file called index.html. This will be 
the only static HTML file in our solution and will be the file served to the user who hosts our React content. 
Modify the contents of the index.html file to match the following:

<!DOCTYPE html>
<html>
<head>
    <meta charset="UTF-8" />
    <title>SpyStore - React</title>
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
</head>
<body>
    <div id="app"></div>
</body>
</html>

This HTML file is about as simple as is possible. We will modify this file slightly later to reference the 
CSS necessary for our SpyStore interface.

Once you have added the index.html file, add another file in the /src/app folder of this project. 
This file will be called index.tsx. As we will discuss heavily throughout the rest of this chapter, the 
*.tsx extension denotes this file as a TypeScript JSX file. JSX is a special extension used by React to allow 
developers to easily intermingle HTML directly into their JavaScript. We will explain more about this later 

Figure 9-6.  Initial folder structure for SpyStore React implementation



Chapter 9 ■ React

340

but, for now, use the Add New File dialog in Visual Studio to add a new index.tsx file to the /src/app folder 
of the project, as shown in Figure 9-7.

Figure 9-7.  Add a new TypeScript JSX file to the project

After the index.tsx file has been added to your project, open it and add the following code (which is 
temporary and will be replaced as we get into the specifics of the React implementation):

import * as React from "react";
import * as ReactDOM from "react-dom";

ReactDOM.render((
    <div>Hello World</div>
), document.getElementById('app'));

You may notice an unusual syntax in this example. We have wrapped the words "Hello World" directly 
in a <div> tag without quotes and directly within a JavaScript file. This is the correct syntax and something 
we’ll discuss heavily later in this chapter. For now, just go with it.

Once the index.tsx file has been added, we will need to gather up the styles and images used in 
the prior SpyStore implementations so that our React solution can mimic the same look and feel. These 
assets will need to be copied into our own project structure and the markup for the individual SpyStore 
components will be developed later as part of our React component tree.



Chapter 9 ■ React

341

The assets we need can be copied from the SpyStore.Angular solution from the previous chapter or 
are found in the SpyStore.React.Initial solution in the source code provided with this book. They include 
images and fonts in addition to the SpyStore-bootstrap.css file, which contains all the necessary CSS 
styles for our interface.

Once these files are added, your solution structure should look like Figure 9-8.

Figure 9-8.  Initial project structure containing core UI files

Note in Figure 9-8 a few JavaScript files in a folder called config. These files relate to the WebPack 
configuration we will discuss next. They will be added to your project as part of that discussion.



Chapter 9 ■ React

342

WebPack
The next step in setting up our project is to go through the process of configuring the WebPack infrastructure 
to perform the tasks we need for a smooth development and deployment process. The use of WebPack is not 
specific to projects built on React. WebPack has been adopted heavily on projects using other frameworks 
such Angular and Aurelia. Any frontend JavaScript framework that declares dependencies via a module 
system such as CommonJS (which we will demonstrate and discuss later) can take advantage of WebPack.

In the previous AngularJS chapter, we used a Gulp script to selectively copy assets from various 
directories into the wwwroot folder where the ASP.NET Core infrastructure serves up the files to the client. 
When developing large JavaScript applications many developers use tools such as Grunt, Gulp, or Bower 
to automate key tasks during development. These tasks range from simply copying files to minification 
of JavaScript files, enforcement of standards, compiling (or transpiling) code, or any other low-level task 
you may need to automate during your JavaScript build or debug cycle. WebPack is another option for 
performing these tasks and offers many benefits not easily achieved using the other tools.

Before we dive too deep into what WebPack is and how we are going to configure it within our current 
project, it’s important to reiterate again that using WebPack versus one of the other tool or tools mentioned 
is a matter of choice. I have worked with teams with very efficient build cycles using Grunt or Gulp who have 
never had a need to consider an alternative like WebPack. I have also seen teams with poorly designed or 
inefficient processes using WebPack. As with comparing the various web frameworks presented in this book, 
you should also evaluate the various options for developing an efficient build cycle for your web assets. 
Toward that end, we will be implementing WebPack in this chapter.

First, a bit about what WebPack is and is not. WebPack is a “module bundler” designed and written 
specifically for the purposes of efficiently managing JavaScript assets through the development pipeline. 
Whereas some of the other tools mentioned are more general purpose “task runners” supported by large 
libraries of plugins, WebPack’s purpose in life is to efficiently scan and bundle JavaScript assets as they 
move through its series of loaders and plugins. Most of these tools can move files, or minimize JavaScript, or 
compile SASS files to CSS. WebPack can perform these tasks as well. But where it truly shines is in optimizing 
your modular JavaScript application into a small set of output bundles that include only the dependencies 
necessary for execution. This capability is just as valuable on a project using React as it is on a project using 
Angular or Aurelia.

WebPack is a development tool that is downloaded into your project via NPM. We saw in an earlier 
section how many of our initial NPM development dependencies were related to WebPack. Once WebPack 
and any additional loaders or plugins are installed via NPM, you can execute WebPack directly from the 
command line. You can perform most WebPack tasks from the command line directly but, for most complex 
uses (including the setup in this chapter), you will want to set up one or more config files for WebPack 
to utilize. WebPack config files are simply JavaScript files that specify the configuration of your WebPack 
pipeline. For our project, we are going to create a new folder in the root of the project called config. Within 
this config folder, we will add two new JavaScript files: webpack.dev.js and webpack.prod.js. This can be 
seen in the screenshot in Figure 9-9.

Figure 9-9.  WebPack configuration files added to our project



Chapter 9 ■ React

343

Note that the names of these files are arbitrary, as we will be passing the specific filenames into the 
WebPack command line tool. Your project may have the need for more than two distinct configurations and 
it is also possible (and easy) to have a third file with any configuration that is common between a prod and 
dev setup. For purposes of this chapter, we will not demonstrate how to share configuration and will just 
copy any common settings between prod and dev.

The first thing to know about a WebPack configuration file is a valid JavaScript file that exports its 
configuration via a JavaScript Node module written in JavaScript. This differs dramatically from how a few 
of the other tools do it but, once you get used to it, you will find it very straightforward and most of your 
WebPack configuration settings will likely just be copies of very similar files moved from project to project. 
It is also important to note that every time you run the WebPack command line and specify a specific config 
file, the code in that config file is executed. This means you can use other utility libraries or log information 
to the console as needed. This is a powerful capability we will utilize in our own config files.

Next, let’s look at the beginning of a very basic WebPack config file. This code will use the path package 
included with Node (which we are using via NPM) to help us cleanly build up relative paths to the various 
key folders of our project. This is done to simplify our remaining code and make it easy to see in the console 
that our locations are correct. The section of our WebPack configs related to building up our relative paths 
contain the following:

const path = require('path');
const webpack = require('webpack');

var paths = {
    root: path.resolve(__dirname, ".."),
    src: path.resolve(__dirname, "..", "src"),
    css: path.resolve(__dirname, "..", "src", "css"),
    images: path.resolve(__dirname, "..", "src", "images"),
    app: path.resolve(__dirname, "..", "src", "app"),
    output: path.resolve(__dirname, "..", "wwwroot"),
    scripts: path.resolve(__dirname, "..", "wwwroot", "scripts")
};

Building up a small utility object containing some path properties will simplify things later. Note that all 
paths generated in this code are relative to the location of the WebPack config file. It is for this reason we are 
using path.resolve to step back up a directory (via ..).

Now that we have the means to easily find the path locations to the content in our project, we will 
begin adding the code to configure WebPack itself. There are many great references on the web and in 
books to provide the full details of how WebPack functions. For purposes of this chapter, we will provide 
two pre-written configuration files and briefly discuss the various sections and their purpose. They can be 
used “as is” but I encourage all readers wanting to do more with WebPack to do the research and add more 
functionality to the basic build process provided. There is a large WebPack community out there and dozens 
of great plugins and tools, which could greatly benefit your project.

Let’s start by looking at the content of our “production” WebPack config file. When we say it is 
“production” we mean its job is to run all the necessary build steps and generate the necessary output files 
and structure in the wwwroot folder of our ASP.NET Core project. These steps would be executed prior to 
a deployment to a remote environment or as part of a continuous integration build. The full code for our 
production WebPack config file follows. This code can be found in the SpyStore.React.Initial project 
under the config folder. Its name is webpack.prod.js.

const path = require('path');
const CopyWebpackPlugin = require('copy-webpack-plugin');
const HtmlWebpackPlugin = require('html-webpack-plugin');
const webpack = require('webpack');



Chapter 9 ■ React

344

var paths = {
    root: path.resolve(__dirname, ".."),
    src: path.resolve(__dirname, "..", "src"),
    css: path.resolve(__dirname, "..", "src", "css"),
    images: path.resolve(__dirname, "..", "src", "images"),
    app: path.resolve(__dirname, "..", "src", "app"),
    output: path.resolve(__dirname, "..", "wwwroot"),
    scripts: path.resolve(__dirname, "..", "wwwroot", "scripts")
};

console.log("Src: " + paths.src);
console.log("Out: " + paths.output);

module.exports = {
    entry: paths.app + "/index.tsx",
    output: {
        filename: "bundle.js",
        path: paths.scripts
    },
    resolve: {
        extensions: [".ts", ".tsx", ".js"]
    },

    module: {
        loaders: [
            �// All files with a '.ts' or '.tsx' extension will be handled by  

'awesome-typescript-loader'.
            { test: /\.tsx?$/, loader: "awesome-typescript-loader" }
        ]
    },
    plugins: [
        new CopyWebpackPlugin([{ from: paths.css, to: path.resolve(paths.output, 'css') }]),
        new CopyWebpackPlugin([{ from: paths.images, to: path.resolve(paths.output, 'images') }]),
        new HtmlWebpackPlugin({
            template: path.resolve(paths.src, 'index.html'),
            output: path.resolve(paths.output, 'index.html')
        }),
        new webpack.NoErrorsPlugin(),
        new webpack.optimize.UglifyJsPlugin(),
    ]
};

Let’s discuss some key aspects of this file. First, the constants declared at the top of the file use the 
require function to resolve contents of additional modules. When we say require('webpack'), the 
resolution of the ‘webpack’ module is smart enough to look inside the node_modules folder and find the 
right resource. The modules that we require at the top of our file are either included with Node (i.e., path) 
or are modules that we previously included in our NPM package configuration and should already have 
been downloaded into our node_modules folder. We simply get access to the ones we need in the WebPack 
configuration by “importing” them into a variable we can access.



Chapter 9 ■ React

345

The next block of code is responsible for generating our paths into a nice structure called paths. This 
will be utilized throughout the rest of the configuration. Note that we output two of the primary paths to the 
console via calls to console.log. When executing this WebPack script, this will allow you to visually confirm 
things are going where they should be.

The next major (and most confusing) section is the WebPack configuration itself. In the WebPack 
configuration you will see several key sections where we will specify settings, paths, or specific items called 
plugins or loaders (these terms are key in the WebPack world).

First, WebPack needs to know where your application “starts”. It calls this the “entry point”. There may be 
one file that kicks things off or there may be many individual files. WebPack can support most configurations 
you can imagine. In our SpyStore implementation, the /src/app/index.tsx file we created earlier will 
be our single “entry point”. All other screens and functionality we will require to run can be figured out by 
looking at that file and figuring out what dependencies it has and then finding the dependencies of those 
files and so on. This is the most key function of WebPack and one we will talk more about and demonstrate 
shortly.

The next important piece of configuration information required by WebPack is where you want the 
“outputs” it generates written. It takes your inputs (i.e., index.tsx for us) and walks all their dependencies, 
runs everything through a defined pipeline to perform tasks, and writes the resulting “bundles” to a location 
or locations we specific. In the production configuration, we specify the folder /scripts/bundle.js as the 
place we want the results written. This is done with the following:

output: {
    filename: "bundle.js",
    path: paths.scripts
},

Note that the output will ultimately be in our wwwroot/scripts/bundle.js folder.
Next, we need to specify what loaders we want to process files as they are found by WebPack. Loaders 

are core piece of the WebPack ecosystem and there are many available to perform various tasks. When using 
WebPack loaders, we must first tell WebPack which file types we expect to be processed by loaders at all. This 
is done in the following code:

resolve: {
    extensions: [".ts", ".tsx", ".js"]
},

The resolve section simply provides a list of file extensions WebPack will use to determine if a 
file should be processed by any loaders. As you will see, individual loaders can specify which files they 
specifically need to process. The resolve section should include extensions for all file types for which you 
have specified at least one loader. With the following code, we specify only a single loader:

module: {
    loaders: [
        �// All files with a '.ts' or '.tsx' extension will be handled by  

'awesome-typescript-loader'.
        { test: /\.tsx?$/, loader: "awesome-typescript-loader" }
    ]
},



Chapter 9 ■ React

346

When adding our loader to the collection, we specify a “test” of the RegEx that runs against every 
resolved file type to see if this loader should handle the file. The single loader in our production config file 
tests for file types of ts or tsx. This specifies that our loader should process any TypeScript files it resolves. It 
will not be used for any other file type. The next parameter we specify for our loader is its name. The loader 
we are using is called awesome-typescript-loader and the name directly relates to one of the previously 
loaded NPM modules. These loader names will be found and resolved via the node_modules folder.

So what does awesome-typescript-loader do? It uses the TypeScript compiler to efficiently compile 
all our TypeScript files (including those with the TSX extension we’ll discuss later). As part of the WebPack 
loading process, the contents of a TypeScript file are passed into this loader and compiled (or transpiled) 
JavaScript is returned out the other end. More information on this plugin can be found here:  
https://github.com/s-panferov/awesome-typescript-loader.

The final section of our current production WebPack configuration is the plugins section. It is here we 
specify any WebPack plugins that we want to run after the loaders have processed all of their files. Our plugin 
section contains the following:

plugins: [
    new CopyWebpackPlugin([{ from: paths.css, to: path.resolve(paths.output, 'css') }]),
    new CopyWebpackPlugin([{ from: paths.images, to: path.resolve(paths.output, 'images') }]),
    new HtmlWebpackPlugin({
        template: path.resolve(paths.src, 'index.html'),
        output: path.resolve(paths.output, 'index.html')
    }),
    new webpack.optimize.UglifyJsPlugin(),
]

Here we instantiate and configure several predefined plugins for various tasks. The first two plugins 
are of type CopyWebpackPlugin (which we resolved near the top of our config file). This plugin is commonly 
used to copy files. We use it here to move all content from our /src/css folder to the /wwwroot/css folder. 
We do the same to move images from /src/images to /wwwroot/images.

The next plugin we specify is called HtmlWebpackPlugin. This plugin is very cool but a bit confusing 
upon first look. This plugin takes the path to our index.html file (currently sitting empty in the /src folder). 
It specifies an output location of /wwwroot/index.html. One might initially think the job of this plugin is to 
copy that file (and it does copy it). What makes this plugin unique is that it not only copies the index.html to 
the output folder but it also injects HTML script tags for all WebPack outputs at the bottom of the <body> tag. 
Using the configuration settings we specified, the following tag is injected into index.html prior to saving it 
to its output directory:

<script type="text/javascript" src="/scripts/bundle.js"></script>

If we had specified multiple output bundles, multiple script tags would be put into our index.html file. 
This step is extremely handy, as we no longer need to manually keep track of all the referenced bundle files 
directly in our own root HTML file. In such a simple example like this, it may be hard to see the benefit of this 
small step, but in larger, more complex projects, it’s a definite advantage.

The final plugin we specify is UglifyJsPlugin. This plugin is packaged with WebPack directly. This 
plugin performs the final step of removing comments and minifying all JavaScript. This is a great step in 
a production release config file but it is likely not a plugin you would use in a WebPack script used during 
development (as it would complicate debugging).

https://github.com/s-panferov/awesome-typescript-loader
https://github.com/s-panferov/awesome-typescript-loader


Chapter 9 ■ React

347

There are many other useful WebPack plugins and loaders we are intentionally not using in this book 
but which you may well want to take advantage of. You can use WebPack plugins and loaders to do things 
such as:

•	 Compile SASS files down to CSS and bundle the CSS into a single file

•	 Run Linters such as TSLint or JSLint to help enforce our coding standards

•	 GZip compress CSS and JavaScript files for faster downloads

•	 Remove arbitrary calls to functions such as log from all the production JavaScript

These are just some examples of the power of the available plugins within the WebPack ecosystem. 
As we move from project to project and find handier WebPack utilities, we evolve our common set of 
configuration settings and improve our development process.

Now that we have briefly discussed the various options specified in the config/webpack.prod.js 
file let’s see it in action. First, make sure the file exists in your project and the contents match what have 
previously specified. If you do not want to go through the headache of so much typing, feel free to grab 
the contents of this file from the code provided with this chapter. The next step is to open a command line 
console to the root of your project. We will use command line consoles frequently in this chapter so it may 
be handy to keep one around. Once you have navigated to the root of your project, execute the following 
command:

webpack --config config\webpack.prod.js --progress --profile

This line of code executes WebPack from the command line and specifies our configuration file. The 
final two parameters simply tell the tool to be a bit more verbose in what it writes out to the console and to 
provide some timings on various steps. These aren’t required but are somewhat interesting if you are new 
the tool.

If any errors occur during the execution of the WebPack config file, you will need to troubleshoot your 
config file accordingly. Errors will be output to the console in bright red so they stand out.

If you were lucky enough to get everything running fine on the first try (i.e., no errors) then you should 
be able to navigate to the wwwroot folder of your ASP.NET Core project and see content that looks something 
like Figure 9-10.

Figure 9-10.  WebPack generated content in the wwwroot folder



Chapter 9 ■ React

348

If you open the index.html file you will see the original contents from the src folder version with the 
addition of the injected <script> tag to reference the /scripts/bundle.js file. If you open the bundle.js  
file you will see a single and long line of JavaScript. This single file contains our code (currently only what 
we put in src/app/index.tsx) and all dependencies. Since the few lines of code we included thus far 
included references to React components (i.e., react and react-dom), those libraries were parsed (from 
node_modules) and included in the output bundle as well. On my system, the bundle.js file is 214KB in size 
and includes everything necessary for my app to run (including React). If I add another TypeScript file to 
my application and reference it from the current entry point (index.tsx) and rerun the WebPack command 
line, the new file will automatically be found and included.

In the current configuration file, we generate a single output file (bundle.js) that will include all our own 
code plus all the referenced code from third-party libraries. This may look unusual to some and this setup isn’t a 
good fit for all applications. We will use it now for simplicity but, in more robust applications, it’s often preferable 
to have a small handful of output bundles. We frequently bundle our own code into one output file and  
third-party libraries like React or Angular into their own bundles. As these libraries change less frequently than 
our own code it allows them to remain cached in client-browsers even when changes to our own code occurs.

Now that we have completed a production WebPack config file, we are going to copy the same configuration 
to our development config file and modify it for a slightly different process. The development config file we 
created as /config/webpack.dev.js. For now, copy the contents of the /config/webpack.prod.js  
file into the /config/webpack.dev.js file.

Next, we will need to add another plugin to the top of the development config file. You can do so by 
adding this line:

const OpenBrowserPlugin = require('open-browser-webpack-plugin');

This is another plugin we have already downloaded via NPM. It will be used later to open a web browser.
Next, we will add some new content to our config specific to using it as part of our development process. 

As mentioned, we will need to remove the line indicating UglifyJsPlugin. We will then need to add two 
new WebPack plugins to the stack, as indicated in the bold lines:

plugins: [
    new CopyWebpackPlugin([{ from: paths.css, to: path.resolve(paths.output, 'css') }]),
    new CopyWebpackPlugin([{ from: paths.images, to: path.resolve(paths.output, 'images') }]),
    new HtmlWebpackPlugin({
        template: path.resolve(paths.src, 'index.html'),
        output: path.resolve(paths.output, 'index.html')
    }),
    new webpack.NoEmitOnErrorsPlugin(),
    new OpenBrowserPlugin({ url: 'http://localhost:3001/' })
],

Next, we need to add a few new sections to the root of our module called devServer. These sections 
should be put at the same level as entry, output, or plugins (just be sure not to nest these sections in 
another). The content for these sections follows:

devtool: "source-map",

devServer: {
    host: '0.0.0.0',
    port: 3001,
    historyApiFallback: true,
    stats: 'minimal'
}



Chapter 9 ■ React

349

The key purpose of the changes to the development config as compared to the production config is that 
we want to take advantage of WebPack’s pipeline while developing. To make this easier, we will be utilizing 
another Node module we have already loaded called webpack-dev-server. Some of the configuration 
options we just added to the development configuration were specifically for this environment. To see this 
process in action, go to the command line in the root of your project and execute the following command:

webpack-dev-server --config config/webpack.dev.js --progress --profile --watch --content-base src/

If all goes as planned, you should see the console output of WebPack bundling your assets and 
executing your plugins (just as you saw with the production configuration). At the end of the process, 
the webpack-dev-server should open a browser and you should see a single page with the words 
"Hello World". There are a lot of moving parts here so, if you don’t see these results or get errors, some 
troubleshooting may be required.

This command tells WebPack to perform the tasks specified in the config file (webpack.dev.js) and, 
due to the recent addition of the devServer config setting to our configuration file, it will launch a Node web 
server in-memory and host all resulting assets in memory at the URL localhost:3001 (as we specified in the 
configuration). The final two parameters we specified in the command line (--watch –content-base src/)  
tell the tool to remain open and watch all the files in our project under the /src folder. If it detects any 
change to any of those files, it will re-execute the entire WebPack development process and refresh the 
browser. This means we can edit our TypeScript code and all other assets found under our /src folder and 
very quickly see all changes reflected in our browser. We can even take full advantage of the full TypeScript 
debugging capabilities of modern browsers like Chrome. If the WebPack process fails for any reason (such as 
errors in our TypeScript code), we will see the errors output in our console (in red) and the current browser 
will not refresh.

Here are a few important things to note about writing and debugging our code using the WebPack 
development web server.

•	 First, no files are written to disk during this process. The entire WebPack process 
occurs in memory and the files are hosted in memory and attached to the Node web 
server to be served as static files. This means you will not be able to physically find 
any of the files on disk. If you use the WebPack command line to execute the  
/config/webpack.prod.js configuration file you will see the physical files generated 
in the /wwwroot folder. The /config/webpack.dev.js file is configured to be 
generated in memory by the development server.

•	 Second, when using browsers such as Chrome to debug your TypeScript code in the 
browser (as discussed in Chapter 7), you will find all bundled TypeScript under a 
webpack node under the Chrome Sources tab, as shown in Figure 9-11.

http://dx.doi.org/10.1007/978-1-4842-2478-6_7


Chapter 9 ■ React

350

Figure 9-11.  Debugging TypeScript in Chrome with WebPack

The settings in our development configuration tell WebPack not to minify any output and to include 
the TypeScript and corresponding JavaScript map files. Expanding the webpack:// node in Chrome 
and navigating to the ./src/app folder allow us to see our single TypeScript file. From here we can set 
breakpoints and debug accordingly. This all works seamlessly with the WebPack build process and editing 
any file under the /src folder in Visual Studio 2017 (or any other editor or IDE) will cause the process to be 
run again and will reattach all assets to your browser. The only requirement is that you keep your command 
line open and have executed the webpack-dev-server command line.

When dealing with complex command line statements necessary for a smooth development process,  
it is often preferable to simplify things as much as possible. For our projects we take advantage of the scripts 
section of an NPM packages.json file. We add a section such as the following to our package.json file:

"scripts": {
  �"dev": "webpack-dev-server --config config/webpack.dev.js --progress --profile --watch 
--content-base src/",

  "pack:dev": "webpack --config config/webpack.dev.js --progress --profile",
  "pack:release": "webpack --config config/webpack.prod.js --progress --profile",
  publish": "npm prune && npm install && npm run pack:release",
  "start": "npm run dev"
},

Once this section has been added, we can execute the scripts via the following commands executed 
from the root of our project:

npm start         // Execute the webpack-dev-server process and open a browser so we can develop

npm run publish  �// Execute the webpack.prod.js configuration file and generate all content 
into the /wwwroot folder

We are very consistent about the scripts section we include in our packages.json folder so that our 
developers know what to expect from project to project. Our automated deployment process executes 
the npm run publish step to generate all assets into the /wwwroot folder prior to using the ASP.NET Core 
infrastructure to package.



Chapter 9 ■ React

351

If you find yourself frequently needing other commands, you can add whatever you like to the  
package.json file. As a command line tool NPM has several parameters. The one we are taking advantage 
of is run. Executing npm run XXX will look in the package.json’s script section for a corresponding XXX 
command. This will be executed accordingly. Thus, we need to specify npm run publish to execute that 
specific command (npm publish is a different command related to publishing packages into the NPM 
registry). The start command is a unique case with NPM and executing the npm start command can be 
done without using the run option. Thus we configure our start option in the package.json file to  
perform an npm run dev command. We can also just type npm run dev from the command line to see the 
same result.

At this point you should have two WebPack config files prepared: one to facilitate a real-time  
build/debug process while you edit code and another to package all assets and bundles and physically copy 
them to your wwwroot folder. You should be able to execute the first configuration file from the command 
line at the root of your project via the npm start command. Once your browser opens and you see the words 
“Hello World,” you can verify this entire process by opening the /src/app/index.tsx file and modifying the 
words “Hello World”. Once you save this change you should see the console refresh with a new WebPack 
compilation process and the browser automatically refresh to display the newest content.

At this point we have spent a significant amount of time setting up our environment for all necessary 
packages, an initial folder structure and some simple content (index.html and index.tsx), and then a set 
of WebPack configuration files to support developing and deploying our site. Just this infrastructure on its 
own is a very powerful development process. It is also important to note that, while we’ve included some 
React packages in preparation for the remainder of this chapter, the WebPack and development setup we 
just performed can be used just as easily with Angular or Aurelia (or any other frontend framework for that 
matter).

Introduction to React
Now that we have a robust development cycle set up, we can move on to learning the core concepts of React 
and implementing the SpyStore interface with React.

First, it is important to note that React is very focused on being a framework for developing user 
interfaces. As such, in many ways, React contains much less than Angular in terms of core services. React 
does not contain any native means of dependency injection, no concept of modules, no core services for 
such things as modules. React primarily focuses on building robust user interfaces by composing a series of 
“components”. It also supports a powerful routing infrastructure. Within the scope of these two areas Reach 
features overlap with Angular features. Beyond component-based interfaces and routing, developers using 
React need to look to external libraries to replace some of the functionality that Angular developers may 
get from core Angular libraries. This need is neither good nor bad and is instead a design decision made 
by the React team at Facebook. They focused on a robust library to do one thing very well and made the 
conscious decision not to include any more than they needed to accomplish these goals. On the other hand, 
the Angular team at Google made the decision to include a more opinionated framework and set of services 
to address a broader range of architectural hurdles and to encourage (and, in some ways, enforce) a more 
defined pattern for implementation.

Components
One of the core concepts in React is the concept of a “component”. Components in React overlay nicely with 
the component infrastructure specified in ES6. The concept of a component in React is analogous to that of a 
component in Angular or other web frameworks.

A component is generally an HTML view or part of an HTML view. It could be an entire screen or 
something as simple as a row in a table. A React application of any size is really a series of components 
containing other components. The “root” level components would be considered your “pages” and a top-level 



Chapter 9 ■ React

352

component may be built from varying smaller components. A well designed React system efficiently makes 
use of components to maximize reuse and isolate functionality specific to an area of the screen into a smaller 
component. Things like headers, navigation menus, and footers are traditionally separated into their own 
components.

To build a component in React is as simple as creating a class that inherits from (or “extends” in 
TypeScript) the base React.Component class. Since we’ve included @types/react in our list of included NPM 
modules, most modern TypeScript development environments will give us full IntelliSense for the native 
React classes. The following example demonstrates a very simple React component called App (presumably 
in an app.tsx file).

import * as React from "react";

export class App extends React.Component<any,any> {

    render() {
        return (
            <div>Hello World</div>
        )
    }
}

Note that the App component inherits from React.Component, which will give us access to some nice 
utility methods and properties. It includes a single method called render(). The render() method accepts 
no parameters and currently has no specified return type (which means any is inferred).

The render method currently has only a single line of code, which is used to return some markup. As 
we mentioned earlier, the markup in this example is directly placed right inside the JavaScript function. We 
are not returning a literal string such as “<div>Hello World</div>” but instead are embedding that markup 
directly inside the JavaScript. React achieves its purpose by dictating that components have a return method 
that returns the elements that a component wants to render. React uses its own “in-memory” representation 
of HTML elements using what is called a “virtual DOM”. The React library contains many utility classes and 
functions for building up its own representation of a DOM hierarchy. The render method could be rewritten 
to manually create its single element like this:

render() {
  return React.createElement('div', null, `Hello World`);
}

This code uses a common utility function of the React library (createElement) to instantiate a new 
instance of a React virtual element. The React rendering engine knows to render this element as a <div> tag 
containing the string 'Hello World'. This is not very complex but, as you can imagine, building complex 
HTML user interfaces by nesting many calls to createElement would be extremely time consuming, error 
prone, and inefficient. For this reason, the React developers came up with a new file type called JSX. JSX 
files are simply regular JavaScript which are ran through a pre-processor that converts any native tags into 
the representative calls to React.createElement. It’s a bit more complex than that, but not much. The TSX 
extension we have used briefly in our development environment setup is simply a TypeScript variation of 
the JSX. This indicates that the same preprocessing of tags will occur and that TypeScript compiler should be 
used to generate the resulting file into JavaScript.



Chapter 9 ■ React

353

Using the previous code examples, with a TSX file containing a render method of a React component 
such as this:

render() {
    return (
        <div>Hello World</div>
    )
}

Once the TSX compiler completes its transformation step, the resulting TypeScript would look like this:

render() {
  return React.createElement('div', null, `Hello World`);
}

It is easy to see the direct correlation on this small example, but imagine a somewhat complex UI such 
as we will be developing as part of the SpyStore implementation. Representing our markup directly in our 
component’s TypeScript is much easier to manage and maintain than a complex set of calls to various React 
methods for creating JavaScript element classes.

The JSX syntax (which we will refer to this as even though we are using the TSX extension due to our use 
of TypeScript) is very powerful but has some quirks that you must be aware of.

First, every render method of a React component must return markup that contains a single root 
component. You can achieve this by wrapping any complex content in a <div> or a <span> tag.

Next, the element names in JSX are case sensitive. The JSX compiler assuming all lowercase elements 
it sees are intended to be HTML elements and it wraps them verbatim in React.createElement calls 
accordingly. This works great for standard HTML markup tags such as <div>, <span>, and others. If the JSX 
processor encounters a tag with a capitalized name, it assumes it to be a variable or a child component.

Let’s look at the following simple React component called Greeting:

import * as React from "react";

export class Greeting extends React.Component<any,any> {

    render() {
        return (
            <div>Hello { this.props.Name}!</div>
        )
    }
}

This component is much like our previous simple example but does have some different syntax  
in the JSX markup. We will discuss this momentarily. Now let’s consider another React component (again) 
called App:

import * as React from "react";
import { Greeting } from "./Greeting";

export class App extends React.Component<any,any> {

    render() {
        return (



Chapter 9 ■ React

354

            <Greeting name="Kevin"></Greeting>
        )
    }
}

In the App component, we see that we included an import statement that references the Greeting 
component. Then, in the render method of the App component we reference the Greeting component by 
including an element tag with the name Greeting (capitalization being important). This powerful concept 
allows a React component to utilize other components simply by importing them and including them as 
tags. Notice that, not only does App use the Greeting element in its markup, it also sets a property on that 
element called name. The Greeting component can access this property through its props object (exposed 
via the base class React.Component). Your one way of doing this in the Greeting component’s render:

render() {
    return (
        <div>Hello { this.props.Name}!</div>
    )
}

In the render method, we use the curly bracket syntax to inject a dynamic value into our markup tree. 
In this case, the output will be "Hello Kevin". Passing properties from one React component to its child 
components is a powerful concept we will discuss in more detail shortly.

The curly bracket syntax used in React is, in some ways, like that used in the Angular template engine 
(while in other ways slightly different). Using this syntax any JavaScript expression can be evaluated as 
part of JSX markup. We will call out many examples of how this syntax is used as we start to put the React 
implementation of SpyStore together.

Another key point worth making about the JSX syntax in React is that it is not 100% HTML. Since the 
design of React is to use JSX to intermingle your markup directly into your JavaScript, certain concessions 
had to be made for keywords that existed in both worlds. One big example is adding CSS class names to 
markup. In raw HTML you could have an element such as <div class=”header”>. Attempting to add the 
same markup to a JSX file would cause issues because the JavaScript language has a keyword called class 
that means something different. Thus, within your JSX, you need to use the attribute className instead of 
class. When the JSX file is parsed into JavaScript and then, ultimately, rendered to raw HTML elements 
as the virtual and physical DOM elements are kept in sync, it knows to replace className attributes with 
class attributes to be compatible with current browsers. There are many DOM elements that cannot be 
represented in markup within TSX/JSX files with the same name as they would be with straight HTML  
(due to naming conflicts with the JavaScript language). A full list of these can be found at this link:  
https://facebook.github.io/react/docs/dom-elements.html.

If an error is found in your JSX markup (or any of your valid TypeScript for that matter) the WebPack 
build process will fail and the details about what is wrong will be output in red in your console window.

The very first step in “bootstrapping” your React application is to include a line of code to render your 
first React component directly into the DOM. This is done via a call to ReactDOM.render. This function takes 
two arguments: the React component you want to render and the DOM element you want it to replace.  
We achieved this early with the following code:

import * as React from "react";
import * as ReactDOM from "react-dom";

ReactDOM.render((
    <div>Hello World</div>
), document.getElementById('app'));

https://facebook.github.io/react/docs/dom-elements.html
https://facebook.github.io/react/docs/dom-elements.html


Chapter 9 ■ React

355

In the call to ReactDOM.render we specified the React component to render directly as JSX markup. 
The document.getElementById looked in the index.html file (the only HTML file in our app and the root of 
our UI) and found the <div id="app"/> element to use as the root of the React project. As simple as that we 
could render our JSX markup into the actual DOM.

For those of you who are familiar with Angular 2 (or have worked through the examples in the 
previous chapter) you may already notice a large difference in how Angular manages UI markup and how 
React manages this markup. In Angular, any advanced markup is usually kept separate from the Angular 
component and the markup and component class (defined by a @component decorator recognized by 
Angular) are “bound” together. This separation of UI and the code is common in most MVVM or MVC 
frameworks and many developers prefer it. In React, the design decision was made to allow developers 
to tightly mix their code and markup for speed and to eliminate the need for many of the other elements 
Angular requires supporting its separation (such as directives). React is much lighter and faster in many 
scenarios because it implements less overhead and just focuses on a blazing fast UI rendering engine. We 
haven’t talked about how React efficiently updates the physical DOM with only the changes it detects in the 
virtual DOM managed by the React components. This is one of React’s strong points and something we’ll 
point out as the SpyStore UI comes together.

There is much more to React and its component structure and we will demonstrate many of these 
concepts as we build the SpyStore UI. For now, the overview of the basics of components and the JSX syntax 
should suffice.

Application Organization
Before we move into learning more about React through implementing the SpyStore UI with React, let 
discuss some early decisions on how we will be organizing our React code. Earlier in this chapter we decided 
that all our custom code and other UI assets would be organized under a /src folder off the root of our 
project. Within that /src folder we created three sub-folders: /app, /css, and /images. All our custom React 
code for the SpyStore application will be placed in the /app folder.

Within the /src/app folder of our project we will be organizing our React code into three separate 
folders: components, services, and models. This structure will suit our smaller application very well but, as 
always, when organizing your own production solutions, it is always beneficial to think through what may 
work best in your environment.

To set the stage for our SpyStore implementation, the three folders we will create under /src/app will 
contain the following:

•	 Components: All our React components will be organized into this folder. If 
necessary, we can further group them into subfolders with associated files such as 
tests or component-specific CSS styles.

•	 Services: This folder will contain any utility classes we need throughout our client 
side application. Within the SpyStore example these will primarily be classes 
responsible for encapsulating interaction with the SpyStore API

•	 Models: This folder will contain TypeScript classes representing the entity models 
we will be utilizing in the rest of the TypeScript application. We will be making API 
calls to the SpyStore service and the results will be mapped to these model types to 
provide us with a level of strong typing.

As we add items to each of the /src/app folders, they will be references (or imported) and used by 
various other components. The WebPack build and development process we put in place earlier in this 
chapter will automatically pick up these new files and bundle them into our output accordingly. We will not 
need to perform any extra configuration steps or modify our development process in any way. Simply add 
files to the appropriate location and utilize those files as needed. If WebPack determines some aspect of our 
application depends on those files then they are automatically included in the next refresh or publish.



Chapter 9 ■ React

356

Before we move into the React component implementation, the next two sections will discuss the setup 
of the various models and services our application will utilize.

Models
As mentioned earlier, one of the great advantages of TypeScript is the ability to write JavaScript applications 
while relying on a type-safe compiler to help enforce coding standards and lower the possibility of errors. It 
is possible to still use TypeScript and rely heavily on un-typed (i.e., any) objects but we would continue to 
be opening ourselves up to a variety of errors and bad coding practices. For this reason, the SpyStore React 
implementation will be utilizing a set of TypeScript classes that match the SpyStore API return types. This 
will allow us to cast our JSON API results to these classes and ensure that the rest of our TypeScript code 
utilizes these models accordingly. If we misspell a property name, the TypeScript compiler will let us  
know immediately. This might take a bit of extra work but I feel it is worth the overhead to enjoy the  
benefits of strongly typed models. In many of our projects we automated this process through a variety of 
tools and IDE plugins that can automatically generate the corresponding TypeScript classes from server  
side C# class files. One such example of this type of utility is a Visual Studio plugin called TypeWriter: 
https://frhagn.github.io/Typewriter/.

For the SpyStore React implementation, all the models will be hand coded. We will not include the 
full source of every one of them here but they can all be found in the code associated with that chapter. It is 
important to note that the TypeScript classes we are implementing to represent our data is not in any way 
related to React. We will be utilizing these models heavily from React components but React does not dictate 
how our data is represented. The choice to convert our API results from JSON to model classes is one we 
have made to streamline our application and not because of a React requirement.

Based on our knowledge of the SpyStore API, we know that every model returned from the API has a few 
common properties. To simplify our TypeScript, we can add a file called baseModel.ts to our /src/app/models 
folder. Within this file we can add the following code:

export abstract class BaseModel {
    Id: number;
    TimeStamp: any;
}

The BaseModel class will serve as the base for the rest of our strongly typed models and keep us from 
having to add an Id or TimeStamp property multiple times. If there were any other common properties or 
functionality that may be beneficial to add at this base level, this is where it would reside.

One of the primary models used by the SpyStore UI is that of displaying products from the SpyStore 
catalog. The corresponding TypeScript definition for product looks like the following:

import { BaseModel } from "./baseModel";

export class Product extends BaseModel {
    Description: string;
    ModelName: string;
    IsFeatured: boolean;
    ModelNumber: string;
    ProductImage: string;
    ProductImageLarge: string;
    UnitCost: number;
    CurrentPrice: number;
    UnitsInStock: number;
    CategoryId: number;
}

https://frhagn.github.io/Typewriter/


Chapter 9 ■ React

357

Note that the Product class inherits from the BaseModel class and then extends it to add all the 
properties returned from the API as related to Product. We will ultimately be doing a simple cast from an 
anonymous JSON result to a instance of this Product class. This works in our simple scenario as the Product 
class contains only properties and, as long as the JSON properties and our class properties line up, the cast 
will appear to work fine. If we had the need for our Product class to have methods or functions we would 
need to adjust our API service layer to instantiate new instances of Product prior to setting the property 
values rather than performing a simple cast. This is necessary because the TypeScript new keyword would 
be required to configure the JavaScript objects prototype and extend it with the necessary methods or 
functions.

The same pattern for created models has been followed for the following model classes:

•	 Cart

•	 Category

•	 Customer

•	 Order

•	 OrderDetails

The remainder of our SpyStore React implementation will take advantage of these strongly-typed model 
classes as we retrieve data from the server side API or we need to manipulate local data. You can see the final 
implementation of each of the model classes in the provided source code.

Services
Earlier chapters in this book demonstrated the implementation of the common data access code and the 
API wrappers used by the various user interface implementations. The React code in this chapter will 
utilize these same API endpoints to read and write all necessary data. As we progress through this chapter 
and begin to utilize the services described next to read the SpyStore data we will need to ensure that the 
appropriate API services are running and listening on the correct ports.

For the purposes of our React implementation of SpyStore we will be implementing a set of  
TypeScript classes called “services” which will serve as strongly-typed “wrappers” around the SpyStore API. 
Utilizing these service classes in other areas of our application will simplify our usage of the API and will 
ensure that data is serialized to and from the API correctly. All the service classes will be placed in the  
/src/app/services folder of our project and we will provide a service wrapper for each API endpoint 
(which, ultimately, corresponds to each ASP.NET API controller developed in Chapter 3).

Each of our API service classes will inherit from a simple abstract class called BaseService.

export abstract class BaseService {

    getRootUrl() {
        return "http://localhost:40001/api";
    }
}

This simple base class currently provides only one utility function called getRootUrl(). This function 
provides derived classes with the means of getting the base URL to the API service. This configuration data 
could be centralized elsewhere in the application but, for our purposes, putting it within the base class for all 
API services is a convenient way of managing it.

http://dx.doi.org/10.1007/978-1-4842-2478-6_3


Chapter 9 ■ React

358

For making the API calls themselves we will utilize the jQuery Ajax utility. Frameworks such as Angular 
provide their own native classes (HTTP) to perform API calls but React focuses solely on the UI and provides 
no such functionality as part of its library. For that reason, if you choose to use React you need to select 
your own means of interacting with JSON API endpoints from your browser code. As you will see shortly, by 
simply referencing the jQuery library and utilizing the Ajax methods on the jQuery object, you have access to 
a very powerful set of capabilities. There are other libraries available to do the same thing and you may want 
to research which may be the best fit for your codebase.

It is worth noting that we have already added jQuery as a dependent package in our NPM configuration 
file and that the only features of jQuery we will be utilizing in this chapter are for the use of the Ajax calls 
to our API. React will be providing us all the necessary capabilities to render our user interfaces and to 
manipulate HTML. We are using the jQuery library simply for our HTTP calls.

The first “service” we will demonstrate is ProductService. The code for ProductService follows:

import * as $ from "jquery";
import { BaseService } from "./baseService";
import { Product } from "../models/product";
import { Category } from "../models/category";

export class ProductService extends BaseService{

    getProducts(): JQueryPromise<Product[]> {
        return $.getJSON(this.getRootUrl() + "/product");
    }

    getFeaturedProducts(): JQueryPromise<Product[]> {
        return $.getJSON(this.getRootUrl() + "/product/featured");
    }

    getProduct(id: number | string): JQueryPromise<Product> {
        return $.getJSON(this.getRootUrl() + "/product/" + id);
    }

    getProductsForACategory(id: number | string): JQueryPromise<Product[]> {
        return $.getJSON(this.getRootUrl() + "/category/" + id + "/products");
    }

    getCategories(): JQueryPromise<Category[]> {
        return $.getJSON(this.getRootUrl() + "/category");
    }

    getCategory(id: number | string): JQueryPromise<Category> {
        return $.getJSON(this.getRootUrl() + "/category/" + id);

    }

    searchProducts(searchText: string): JQueryPromise<Product[]> {
        return $.getJSON(this.getRootUrl() + "/search/" + encodeURIComponent(searchText));
    }
}



Chapter 9 ■ React

359

Let’s look at the service implementation. First, there are a few import statements that are worth reviewing.

import * as $ from "jquery";
import { BaseService } from "./baseService";
import { Product } from "../models/product";
import { Category } from "../models/category";

The first import statement references the jQuery library and aliases its root module as the $. This will 
provide us strongly-typed access to jQuery with the commonly utilized $. If this class happened to be the first 
class to reference jQuery when scanned by WebPack while bundling our application, WebPack would note 
that jQuery is now a dependency and would include it in all generated bundles (which it does).

The next three import statements are to classes we will need during the implementation of the 
ProductService. As mentioned, the BaseService will provide our root URL to this implementation and 
will be the class we derive from. The Product and Category models are specific data types the Product API 
deals with. When making calls to the Product API the different endpoints either return or accept data of type 
Product or Category. As you may have noted from the ProductService implementation, every call to this 
API is an HTTP GET (or a read) so different calls return one or more Product or Category objects.

Let’s look at a single method of the ProductService class:

getProducts(): JQueryPromise<Product[]> {
    return $.getJSON(this.getRootUrl() + "/product");
}

This method encapsulates a call to get a list of all products from the SpyStore API. The method 
returns a result of JQueryPromise<Product[]>. This return type specifies that the data itself is not returned 
directly but instead a “Promise” is returned. The concept of promises is very common when dealing with 
asynchronous operations such as API calls. We won’t delve heavily into the concepts of promises in this 
chapter but we will make heavy use of them.

Before we do that, let’s continue to look at the getProducts code. The actual body of the method 
contains only a single line of code. The call to the jQuery getJSON method accepts a single parameter: the 
URL for which to perform an HTTP Get. Using the root URL we retrieve from the base class and appending 
on the string '/product' allows us to build a full URL to the endpoint we want. Performing a Get against this 
URL will return a JSON result that contains an array of data representing a list of products. The getJSON call 
itself doesn’t directly return the JSON but instead returns a promise that will, upon completion of the HTTP 
call, return the requested data or raise an error (if something does not happen as expected). The TypeScript 
typing information for jQuery exposes a generic jQuery promise class we can utilize to take advantage of the 
concept of promises as well as maintain strong-typing with the ultimate result.

Let’s look at how a consumer would utilize the previous code with the following example:

var prodService = new ProductService();

prodService.getProducts().then(data => {
    //on success
    this.products = data;
},err => {
    //on error
    console.log(err);
},
() => {
    //finally
});



Chapter 9 ■ React

360

This code demonstrates a simple call to getProducts and how it utilizes promises to provide the 
caller with the means of responding to a successful API call or handling any type of possible error. The 
promise returned from getProducts exposes a method called then, which accepts multiple functions 
as its parameters. The first parameter is a function called upon successful completion of the promise. 
This function has a single parameter of the datatype expected by the ultimate result (in our case an array 
of Product classes). The second function is called when an error occurs and is passed an object with 
information on the error. The final (and optional) function passed to then can be considered a finally block 
of code and is executed upon either success or error. This function accepts no parameters. In the previous 
example, we specified all three functions and demonstrated how to keep the data upon a successful API call 
and how to log the error out to the console if it occurs.

There is much more to the concept of promises but, for purposes of using them with our own API 
service layer, the previous discussion should explain enough for you to understand how we will use them 
throughout the rest of this chapter in our SpyStore implementation.

Looking back at the rest of the ProductService methods, we will find that they are all very simple calls 
to jQuery’s getJSON method. Each API call does need to know specific implementation details about the API 
itself. This includes having inherent knowledge of the URL structure for each call and the structure of the 
data being sent to the API or returned from the API.

The following API wrapper to get all products for a given category demonstrates one means of passing 
data to the API itself:

getProductsForACategory(id: number | string): JQueryPromise<Product[]> {
    return $.getJSON(this.getRootUrl() + "/category/" + id + "/products");
}

In this code the wrapper method accepts a parameter called id (which can be either a number or a 
string). This value is utilized when constructing the necessary URL to get the data.

Not every API call will be an HTTP Get and the jQuery object easily supports all the necessary HTTP 
verbs such as Get, Put, Post, and Delete. The following example demonstrates the use of a Post to send a 
complex object to an API endpoint:

addToCart(userId: number, productId: number, quantity: number): JQueryPromise<string> {
    var cartRecord = new ShoppingCartRecord();

    cartRecord.CustomerId = userId;
    cartRecord.ProductId = productId;
    cartRecord.Quantity = quantity;

    return $.ajax({
        url: this.getRootUrl() + "/shoppingcart/" + userId,
        data: JSON.stringify(cartRecord),
        method: 'post',
        headers: {
            'Content-Type': 'application/json'
        }
    });
}

In the addToCart method, we accept three parameters. These parameters are then used to instantiate 
an object of type ShoppingCartRecord. The jQuery Ajax method is used to perform the HTTP Post.  
In calling this method we pass in an object containing the URL, the data, the HTTP method we want to 
execute (Post), and any headers we want with the post (in this case the content-type dictating to the API we 
are passing JSON).



Chapter 9 ■ React

361

When we specify the data to be posted to the URL, we utilize the JSON.stringify function to convert 
our ShoppingCartRecord to valid JSON.

Using these patterns, we have implemented API wrappers in the /src/app/services for the following:

•	 Cart.Service.ts

•	 Logging.Service.ts

•	 Order.Service.ts

•	 Product.Service.ts

•	 User.Service.ts

Each of these service classes implements wrapper methods for calls to all the necessary endpoints 
for the corresponding ASP.NET API controller methods implemented in Chapter 3. You can find the full 
implementation of each of these services in the final code for this chapter.

Initial Components
Now that our TypeScript models are in place along with our API service layer we will begin putting the 
necessary React components in place to render the SpyStore user interface and to respond to navigation 
requests and other input from the users. As we do so we will evaluate some of the features of React and 
demonstrate various real-world scenarios and how React provides developers with a means of supporting 
these scenarios.

As mentioned earlier in this chapter an application built on the React framework is made up of 
components. We will be coding our React components using TypeScript and the components will utilize 
the TSX extension allowing us to embed our rich HTML directly into the TypeScript files. Our user interface 
will be “composed” of various components whereas every individual screen is made up of a component 
and various individual parts of that screen may also be made of up of one or more individual sub-
components. The concept of composing a UI out of components is not unique to React and the same general 
compositional architecture exists in Angular and other frameworks.

Before we begin to implement individual components, let’s first briefly review the various components 
we will need to implement the SpyStore interface:

•	 App: The App component can be considered our “shell” or “master page”. This is the 
root user interface in which other interface components are hosted. It will contain 
our main navigation and our footer.

•	 Cart: The Cart component represents the main shopping cart page. It will display the 
items currently within a user’s shopping cart.

•	 CartRecord: The CartRecord component represents an individual row within a user’s 
shopping cart. This is a sub-component that will be rendered multiple times from 
the Cart component.

•	 CategoryLinks: This component represents the dynamically rendered links to various 
product categories. This sub-component will be visible on every page and rendered 
via the App component.

http://dx.doi.org/10.1007/978-1-4842-2478-6_3


Chapter 9 ■ React

362

•	 ProductDetail: This component will display information on a single product.

•	 Products: The Products component represents the main list of product cards and 
will be the default page for our SpyStore implementation. It will be used to display 
various product listing such as products by category, search results, or featured 
products.

Each of these React components will be implemented as a file in the /src/app/components folder. Each 
of the components will, as demonstrated previously, be implemented as a TypeScript class that inherits from 
React.Component.

The first step in putting the full SpyStore component structure in place is to create a new TSX file for 
each of the components in the /src/app/components folder. Each TypeScript file should have the name 
of the component and the extension TSX (such as Products.tsx). Within each file, we will simply code a 
very basic React component that returns some basic HTML containing the name of the component. As an 
example, the initial implementation of the Products.tsx file can be seen in the following code:

import * as React from "react";

export class Products extends React.Component<any, any> {
    render() {
        return <h1>Products</h1>;
    }
}

Once you have completed setting up a very basic React component for each of the components named 
in the previous list, we will begin the process of putting a full implementation into each component. Before 
we do this though, we need to introduce the concept of routing within React and demonstrate how React’s 
routing infrastructure affects which components are currently visible to the users.

Routing
We have previously stated that the React framework focuses solely on the user interface and providing 
developers with the means of building a robust and maintainable frontend to their applications. Many of the 
responsibilities that other frameworks embrace, React leaves to others. The concept of “routing” is the ability 
to keep an interface for an application in sync with the URL of the browser. The React routing framework 
uses the current URL of the browser to determine which components should be visible to the user and 
handles the passing of data from one component to another via the browser’s URL. The React routing 
framework provides many powerful capabilities but, for purposes of the React SpyStore implementation, we 
are going to focus on the most commonly used features.

Earlier in this chapter we briefly discussed how React was “bootstrapped” or, how the React framework 
was initially configured and the initial React component could be rendered into the browsers DOM. At 
the time this was done using a class within the React framework called ReactDOM and a call to the render 
method of this class. This can be seen as follows:

import * as React from "react";
import * as ReactDOM from "react-dom";

ReactDOM.render((
    <div>Hello World</div>
), document.getElementById('app'));



Chapter 9 ■ React

363

This code works only if the currently displayed HTML contains an element with the ID of app, as we can 
see in the index.html file we have previously added to our project:

<!DOCTYPE html>
<html>
<head>
    <meta charset="UTF-8" />
    <title>SpyStore - React</title>
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <link href="/css/spystore-bootstrap.css" rel="stylesheet" />
</head>
<body>
    <div id="app"></div>
</body>
</html>

After the call to the ReactDOM.render method, the words "Hello World" would be added to the 
specified div tag. This is a simplistic use of the React bootstrapping infrastructure but it does demonstrate 
the point within our application where we are going to initially configure our React routing.

Our initial routing setup will be done in the index.tsx file located in the /src/app folder of our project. 
Previously we had included within this file a simple call to ReactDOM.render that displayed the words Hello 
World to the user. We are now going to replace the contents of index.tsx with this code:

import * as React from "react";
import * as ReactDOM from "react-dom";
import { render } from 'react-dom'
import { Router, Route, hashHistory, IndexRoute } from 'react-router'
import { App } from "./components/app";
import { Products } from './components/products';
import { OrderDetail } from './components/orderDetail';
import { Cart } from './components/cart';
import { Login } from './components/login';
import { ProductDetail } from './components/productDetail';
import { CheckOut } from './components/checkOut';

ReactDOM.render((
    <Router history={hashHistory}>
        <Route path="/" component={App}>
            <IndexRoute component={Products}/>
            <Route path="/products(/:id)" component={Products} />
            <Route path="/cart" component={Cart} />
            <Route path="/checkout" component={CheckOut} />
            <Route path="/login" component={Login} />
            <Route path="/product/:id" component={ProductDetail} />
            <Route path="/orderdetail" component={OrderDetail} />
        </Route>
    </Router>
), document.getElementById('app'));

This code assumes that we have previously created the base components described in the previous 
section (even if, at this point, they all simply render their own name).



Chapter 9 ■ React

364

The first major point to note in the code is that our routing configuration is rendered via a React 
component called Router that is found in the react-router NPM package, which have previously included 
in package.json. The <Router> element specified in the index.tsx code is capitalized and thus, as we have 
previously discussed, this means the React rendering engine assumes this element to be a React component. 
The specific <Router> component is imported from the react-router library.

The <Router> component is the root of the markup and contains a single configuration parameter that 
specifies that we want to use hashhistory as our mechanism for tracking browser history. This means our 
URLs will contain a pound sign and look something like http://localhost:3001/#/products. The other 
option for tracking history is to set this value to browserhistory and the hash (#) will not be rendered in 
our URL but we will need to ensure our web server doesn’t attempt to resolve all URLs. For purposes of this 
demo, we are going to use the hash in our URLs.

Within the <Router> component is a nested (and sub-nested) group of <Route> components. The 
<Route> component is also found in (and imported from) the react-router package. Each <Route> 
component specifies the URL path it should match and the component that should be rendered if that path 
is matched.

In the previous example, we have a root <Route> path that looks like the following:

<Route path="/" component={App}>
</Route>

This root route contains all the other routes in our configuration. This means that the App component 
(/src/app/components/app.tsx) will serve as the master page and “host” all the other pages. We will 
demonstrate how this is done shortly.

Nested in the root route are the remaining <Route> elements for our apps basic navigation. The first of 
these elements is a new React component called <IndexRoute>. This route is defined as:

<IndexRoute component={Products}/>

The <IndexRoute> essentially defines the default route that will be rendered if a user navigates to 
http://localhost:3001/. In this scenario, the App component would be rendered and, underneath it, the 
Products component. For this nesting of components to work we will need to make a simple change to our 
App.tsx file and replace it with the following code:

import * as React from "react";

export class App extends React.Component<any,any> {
    render() {
        return <div> { this.props.children } </div>;
    }
}

The new implementation of App.tsx is to have the render method return a simple <div> tag that 
contains the results of evaluating this.props.children. We will discuss the use of React components and 
props in more detail in the next few sections but for now, note that the React router assigns sub components 
to this property. The results of a call to the render() method of a child component will be placed here, thus 
nesting the details of the current page within the master page.

The remaining <Route> elements nested under the App route are as specified:

<Route path="/products(/:id)" component={Products} />
<Route path="/cart" component={Cart} />
<Route path="/checkout" component={CheckOut} />



Chapter 9 ■ React

365

<Route path="/login" component={Login} />
<Route path="/product/:id" component={ProductDetail} />
<Route path="/orderdetail" component={OrderDetail} />

Each should be self-explanatory. If a user navigates to http://localhost:3001/Cart then the Cart 
component will be rendered inside the App component and displayed to the user.

There are two <Route> components in the previous list that are worthy of reviewing. The first is the 
configuration for the /product route:

<Route path="/product/:id" component={ProductDetail} />

The route configuration specifies that a user navigating to the /product page will need to specify an 
additional route parameter. In this case, the parameter is the id of the product we want to view the details 
for. Note the use of the semicolon to specify the route parameter. The name of the parameter (in this case id) 
is arbitrary but will be used later when we implement the ProductDetail component and want to retrieve 
this value so that we can display the correct information.

The second <Route> component worth reviewing is that of the /products page. This configuration looks 
like the following:

<Route path="/products(/:id)" component={Products} />

This route configuration also specifies a parameter called id but, in this instance, the parameter is 
surrounded by parentheses, which indicate that the parameter is optional. We will need to account for the 
possibility that it hasn’t been specified when we implement the Products component later in the chapter.

At this point the routing configuration configured directly within the index.tsx file tells React how 
it should handle the various URLs and how these URLs translate into components to be rendered. As 
we implement each of the components we will review some additional features of the React routing 
infrastructure and how they can be used to easily render anchor tags for navigation and how we can look for 
and handle parameters passed into a component from the URL.

App Component
With our routing infrastructure in place we need to implement our main navigation and UI. We will do 
this by fully implementing the App component (/src/app/components/app.tsx). In doing so we will also 
introduce several new React concepts that will appear in most (if not all) of the remaining component 
implementations.

Due to the length of the raw HTML necessary to render the full SpyStore React implementation, much 
of the markup itself will be abbreviated in this text. We will instead focus on key elements of the React 
implementation to demonstrate how React works. To see the full implementation, I encourage you to review 
the source code provided with this chapter.

The first section of the App component looks like the following:

export class App extends React.Component<any, any> {

    componentWillMount() {
        this.setState({ categories: [] });
    }

    componentDidMount() {
        this.loadCategories();
    }



Chapter 9 ■ React

366

    loadCategories()
    {
        var _service = new ProductService();

        _service.getCategories().then((data) => {
            var categories: Category[] = data || [];

            this.setState({ categories: categories });
        });
    }

There are some new concepts to be discussed in the previous code, which, at its core, is responsible 
for using our API wrapper to load a list of categories. We will use this list of categories to render the main 
navigation for the SpyStore site.

First, we see that we have two small methods called componentWillMount() and componentDidMount(). 
These methods are part of the React component lifecycle and it’s very common that you will have the need 
to put certain types of initialization code within methods such as these.

The React component lifecycle is very straightforward and, during this process, the React framework 
calls certain methods on all React components at specific points when creating them and adding them to the 
DOM (a process it calls mounting) and then when it needs them to update their state and potentially their UI 
(a process called updating).

When initializing (or mounting) React components, the following component methods are called by 
React in this very specific order:

•	 constructor()

•	 componentWillMount()

•	 render()

•	 componentDidMount()

When React needs to update the component tree and have all (or specific) components update 
themselves, the following component methods are called. Again, the order of these calls is very specific:

•	 componentWillReceiveProps()

•	 shouldComponentUpdate()

•	 componentWillUpdate()

•	 render()

•	 componentDidUpdate()

There is another lifecycle method worth pointing out and it is used when React needs to remove a 
component from the DOM. This method is called componentWillUnmount().

During our implementation of the SpyStore UI, we will demonstrate common uses of many of these 
lifecycle methods.

The App component initially provides its own implementation of the componentWillMount() method. 
As we have just seen, this method is called prior to a component being “mounted” (or added to the DOM). 
The App implementation of this method looks like the following:

componentWillMount() {
    this.setState({ categories: [] });
}

https://facebook.github.io/react/docs/react-component.html#componentwillreceiveprops
https://facebook.github.io/react/docs/react-component.html#shouldcomponentupdate
https://facebook.github.io/react/docs/react-component.html#componentwillupdate
https://facebook.github.io/react/docs/react-component.html#render
https://facebook.github.io/react/docs/react-component.html#componentdidupdate


Chapter 9 ■ React

367

Every React component can manage its own state through some specific capabilities of the core React.
Component class. Each React component has access to a property of this base class called state. When we 
initially declared the app component itself we specified that we wanted to inherit (or extend) the React.
Component class. This declaration also specified two generic type parameters. In our declaration, we simply 
specified both as type any.

export class App extends React.Component<any, any> {
}

These generic parameters are used to specify the types used for a React components properties and 
state. The concept of both properties and state are key to efficiently using React component and we will 
demonstrate and discuss both heavily when looking at each of the SpyStore React components. Our reason 
for pointing these parameters out now is that, by specifying both as type any, we are essentially telling React 
that, for our App component, we are going to forgo providing a concrete type or interface for either our 
properties or our state. Instead we are going to use them as “un-typed” and set them to whatever we want 
within our component. Some may consider this a bad practice but, for purposes of this book, it will save 
some extra steps in demonstrating these concepts. It is also worth noting that the first generic parameter 
specifies the type of the Properties for the component (which we haven’t addressed yet). The second 
parameter specifies the type of the State.

With regards to a React component’s state, every component has a state property, which can simply be 
accessed directly off the base class (i.e., this.state). Every component also has a function to set the state to 
a new value called setState(). A very important concept within the use of state inside a React component 
is that the state be considered immutable. This means that access to the state property should be considered 
read-only. Any modifications to this state should be done via a call to setState(newState). We won’t go 
into detail about the concepts of immutability here, but it is worth noting that React relies on the state of 
its components to only be changed during a call to setState(). This also includes any properties of state. 
Any changes at all to any piece of a component’s overall state should not be made by directly changing the 
data off the state property itself. Instead, a copy of the state object should be made, the new value(s) set 
accordingly, and then the newly updated copy of the state passed to a call to setState().

Since a React component is just a TypeScript class and is instantiated in memory and kept around if 
the component is visible, it would be fair to ask why we need to use this “state” infrastructure and why data 
should just be tracked as instance-level fields or properties available within our component class. This is 
possible and sometimes even preferred if the data itself has no effect on how a component renders. React 
watches for changes to a components managed state (via calls to setState()) and uses these changes as 
triggers to re-execute a component’s update cycle and potentially re-render any changes to the DOM. So, 
the generally accepted best practices is to track any component data utilized for purposes of rendering a UI 
as state. Any other utility objects or other internal data that doesn’t affect a component’s UI can be stored 
outside the state object but within the component class itself as necessary.

Within the App component’s componentWillMount() method, we simply initialize our component’s 
state to contain an empty array of categories with the following line of code:

this.setState({ categories: [] });

Then, when the component has been fully mounted and added to the DOM, we use our previously 
implemented ProductService API utility to make a call to the SpyStore API for purposes of getting a list of 
categories. Upon successful completion of that call, we again call the setState() method to update our 
component’s state with the resulting data.

componentDidMount() {
    this.loadCategories();
}



Chapter 9 ■ React

368

loadCategories()
{
    var _service = new ProductService();

    _service.getCategories().then((data) => {
        var categories: Category[] = data || [];

        this.setState({ categories: categories });
    });

As we will see in the App component’s render() method, this category data will be passed down to a 
sub-component for actual rendering.

The render() method for the App component is straightforward in that it contains the basic markup for 
our UI “shell”. Per our previous routing configuration, this component is rendered with every page within 
our site and “hosts” other components that provide the specific page interfaces. Near the middle of the App 
components markup you will see the following:

<div className="panel-body">
       {this.props.children}
</div>

It is within this area of the App component markup that child components will be rendered.
Another new concept visible in the render() method of this component is the navigation. Since App is 

meant to be our overall UI “shell,” it makes since that we will find some of our global navigation represented 
within its markup. To make it easy to render the appropriate links, we need to be able to easily integrate with 
our previously configuring routing setup. Fortunately React makes this very easy.

At the top of the App.tsx file we have imported a new component from the react-router package 
called Link, as follows:

import { Link } from 'react-router'

Then, within our markup we can use this new component in places where we would have utilized 
HTML anchor tags. The Link component:

<Link to="cart" ><span className="glyphicon glyphicon-shopping-cart"></span> CART</Link>

The <Link> tag will render a fully functional anchor tag that is aware of the React routing configuration 
and will navigate to the proper route accordingly (as specified by the to property of the Link component). 
When using React’s routing infrastructure, the Link component is the proper way to render anchor tags in 
your markup.

The final piece worth noting within the App component is the use of a sub-component (CategoryLinks) 
to render the individual links to various categories. To use a sub-component our first requirement was to 
specify our dependency on it via an import at the top of our App.tsx file like this:

import { CategoryLinks } from "./categoryLinks";

Once the dependency has been specified with the import we are able to use this component in our 
markup. You will see the App component specify the use of the CategoryLinks sub-component in its markup 
with the following line:

<CategoryLinks categories= { this.state.categories } />



Chapter 9 ■ React

369

Remember that the capitalization of the tag name indicates to React (or, more specifically, the TSX/JSX 
parser) that the tag is a component and not a raw-HTML tag, which should be rendered as is.

The CategoryLinks component is passed a single property called categories. This property is passed 
as a parameter directly in the markup and the actual value of this property is assigned to the value of this.
state.categories. You should recognize this as using our previously loaded categories we stored within 
our component’s state object. Another important thing to note in the markup that assigns the categories 
property is the lack of quotation marks around the { this.state.categories }. Using the curly brackets 
({}) is all that is required and the TSX parser will automatically assign the right object (an array in our case) 
to the properties of the sub-component. There are other scenarios when working with markup in React 
components where quotation marks are required.

CategoryLinks Component
In the App component we discussed previously, we added a reference to the CategoryLinks component 
and declared it within the markup. In doing so we also passed this new component a single property called 
categories. Properties are another key concept to understand when working with React components. 
Whereas state is the concept of a single React component managing its own data (in an immutable way), 
properties are the ability for a component to pass data down to child components. A React component’s 
state may update over time whether due to loading data from an API or user interaction. The properties a 
component receives from its parents can never be changed by the component itself. Any changes to the 
properties received from a parent should be triggered by the parent.

To simplify: A React component’s state can change, so the properties it receives should be treated as 
read-only. Furthermore, both state and properties are only visible within a component itself. Their values 
should be considered encapsulated within the component. There is means of communication between 
components (such as events), which we will discuss later, but it is important to note that just changing your 
component’s state does not make these changes visible to others.

To provide an example of how a React component can access properties passed to it from a parent, let’s 
review the code of the CategoryLinks component:

import * as React from "react";
import { Category } from "../models/category";
import { Link } from "react-router";

export class CategoryLinks extends React.Component<any, undefined> {

    render() {
        var categories: Category[] = this.props.categories;

        var links = categories.map((category,index) => {
            var url = "products/" + category.Id;

            return (<li key={ index }>
                <Link to={ url }>{ category.CategoryName }</Link>
            </li>)

        });

        return (<ul className="nav nav-pills hidden-sm" key="1">
                    { links }
                </ul>)
    }
}



Chapter 9 ■ React

370

One of the first things to note is that our generic type parameters are specified a bit differently than 
was done with the App component. The CategoryLinks component specifies the second parameter (used 
for state) as undefined. This simply means we are not planning on needing state within this component 
and the type checking of the TypeScript compiler will warn us if we try (as we would get compiler errors by 
accessing an undefined value).

export class CategoryLinks extends React.Component<any, undefined> {
}

The next item worth noting in this component is how easy it is for a child component to retrieve 
properties passed down from a parent. This is done through accessing an object called props directly off the 
base class, as shown in this line of code from the render() method:

var categories: Category[] = this.props.categories;

The fact that we have a value on this object called ‘categories’ is due to the choice of name in the  
App component when we declared the CategoryLinks component in markup. Since we are treating the 
‘props’ object of the CategoryLinks component as un-typed (i.e., any) there is no type checking done  
by the TypeScript compiler to ensure these names match so it is up to us as developers to be careful. In a 
real-world environment, it is generally preferable to declare interfaces for both the state and properties of 
your React components. By specifying these interfaces as your generic type parameters when declaring your 
components, the TypeScript compiler will help ensure you always assign and read the values correctly.

Next, let’s review the rest of the CategoryLinks render() method:

var links = categories.map((category,index) => {
    var url = "products/" + category.Id;

    return (<li key={ index }>
        <Link to={ url }>{ category.CategoryName }</Link>
    </li>)

});

return (<ul className="nav nav-pills hidden-sm">
            { links }
        </ul>)

The goal of this code is to render an unordered list (i.e., <ul>) that contains a link for every category. 
The first block declares a locally-scoped variable called “links” and uses the map method of JavaScript 
arrays to iterate over every category in our collection to build up a list of items. Notice that within the map 
method we build up a local URL variable to track the URL for a specific item and then, within the return 
statement for that block, we use that URL when generating the actual link (via the 'react-router' <Link> 
component).

The biggest thing to point out in the generation of the links variable is the fact that the map method 
iterates over all the category objects and returns an array that contains markup. Let’s look at some key 
elements of the lines:

var url = "products/" + category.Id;
return (<li key={ index }>
    <Link to={ url }>{ category.CategoryName }</Link>
</li>)



Chapter 9 ■ React

371

First, we wrap the markup itself with parentheses and the TSX parser will automatically recognize it 
as markup and render an array of the right type because of our map. Second, the key attribute of our <li> 
tag is required by the React DOM parser. When we use React to render HTML the React framework builds 
an in-memory representation of the DOM (or a “virtual” DOM) and compares it in real time to what is 
currently rendered in the browser. If it detects a change it will quickly update what is visible to the browser. 
In some scenarios (mainly lists of items such as our category links) it needs to be able to uniquely identify 
individual items in the list so that it knows if new ones have been added or items have been removed. To do 
this efficiently requires that React force developers to specify a unique key for each item in an array of DOM 
elements. In this code, we simply use the index of the item in the array of Categories as the key. In other 
scenarios, we may use a database generated ID or other unique value for data when rendering a list of DOM 
elements.

Finally, when rendering the actual <Link> element itself we can utilize any in-scope variable to assign 
the right attributes or properties. We demonstrate this by generating our URL prior to the return statement 
and using it to assign the to property of the <Link> element. When the TSX parser evaluates statements 
found in the curly brackets of markup (i.e., { url }), it evaluates any JavaScript expression in the current 
scope. Since the TSX parser will evaluate any JavaScript expressing the return statement could also be 
written as:

return (<li key={ index }>
    <Link to={ "products/" + category.Id }>{ category.CategoryName }</Link>
</li>)

The final line of code in the CategoryLinks component is simply another return statement to wrap the 
list of category links in an HTML <ul> tag, as shown here:

return (<ul className="nav nav-pills hidden-sm" >
            { links }
        </ul>)

The result is that the header of our SpyStore UI now displays a nicely formatted list of category links, as 
seen in Figure 9-12.

Figure 9-12.  Category links

Products Component
Now that the App component, or the user interface “shell,” has been implemented, we will move on to 
our first “screen” component. We will start with the Products component, which will be responsible for 
displaying a list of products retrieved from the API in a card layout. An example of this interface can be seen 
in Figure 9-13.



Chapter 9 ■ React

372

As with all our components, the Products component will be implemented in file called Products.tsx 
in the /src/app/components folder of our solution.

The Products component will utilize ProductsService to interact with the remote API to retrieve the 
appropriate list of products for display. There are three scenarios in which the Products component will be 
used to retrieve data. These are:

•	 Get a list of featured products

•	 Get a list of products specific to a single category

•	 Get a filtered list of products based on the results of a user-initiated search

Each of these scenarios is covered by one of the three methods of the Products component. Each calls 
the appropriate API method it requires via the ProductService we implemented earlier. Upon a successful 
call to the API, each method updates the state of the Product component to have the appropriate list of 
products and a value for the header. We will display this header at the top of the screen accordingly.

loadFeaturedProducts() {
    var service = new ProductService();
    this.categoryID = null;
    service.getFeaturedProducts().then((data) => {
        this.setState({ header: "Featured Products", products: data});
    });
}

Figure 9-13.  Products interface



Chapter 9 ■ React

373

loadCategoryProducts(categoryId: string) {
    var service = new ProductService();
    service.getProductsForACategory(categoryId).then((data) => {
        this.setState({ header: "Category", products: data });
        this.updateCategoryName();
    });
}

searchProducts(searchText: string) {
    var _service = new ProductService();
    _service.searchProducts(searchText).then((data) => {
        this.setState({ header: "Search Results", products: data});
    });
}

To support the appropriate calling of each of these methods for loading data, we will again leverage 
some of React’s built-in component lifecycle methods. These are shown here:

componentWillMount() {
    this.setState({ header: "", products: [] });
}

componentDidMount() {
    this.refreshProducts();
}

componentDidUpdate(prevProps, prevState) {
    if (this.props.params.id != prevProps.params.id) {
        this.refreshProducts();
    }
}

As before, the code in componentWillMount() simply initializes our component state. The 
code in the next two lifecycle methods (componentDidMount() and componentDidUpdate()) make 
calls to refreshProducts(). While we have seen componentDidMount() previously, the method 
componentDidUpdate() is new. It is called when there are changes to a component’s properties as passed 
down from a parent component. It is not called when a component is initially mounted with the initial 
properties. Instead it is only executed on a change to existing properties. For this reason we need to call 
refreshProducts() from both the previous methods. Note that the componentDidUpdate() accepts two 
parameters: prevProps and prevState. This information gives us the data to selectively perform our update 
only if a change to the id parameter has occurred.

The remaining two utility methods we will need within the Product component are the refreshProducts() 
method and a method to update the category name on the header (which is necessary as our URL route only 
contains the ID of a selected category and not the full name). These methods are shown here:

categoryID: number | null = null;

refreshProducts() {
    if (!this.props.params.id) {
        this.loadFeaturedProducts();
    }



Chapter 9 ■ React

374

    else if (this.props.params.id != this.categoryID) {
        this.categoryID = this.props.params.id;

        this.loadCategoryProducts(this.props.params.id);
    }
}

updateCategoryName() {
    if (this.categoryID != null) {
        var service = new ProductService();

        service.getCategory(this.categoryID).then((data) => {
            if (data && data.CategoryName) {
                this.setState({ header: data.CategoryName, products: this.state.products});
            }
        });
    }
}

The refreshProducts() method should be fairly self-explanatory. If we do not find an ID in our route 
parameters (from the URL), we make a call to the loadFeaturedProducts() method to get a default list of 
products. If the ID is found we load products specific to that category. One unique element of this code is 
that the Products component class itself maintains a class-level variable called categoryID, which we use 
to keep track of the currently displayed category. If we attempt to refresh the page with the same category 
information we skip the call to load data from the API and, instead, leave the currently displayed data intact. 
This is a performance optimization to minimize any unnecessary calls to the API.

The updateCategoryName() method takes the currently displayed category ID from the class-level 
variable described previously and uses it to make another API call to get details about the product. If this call 
is successful, the component’s state is updated to reflect this name.

The final key piece of the Products component is the render() method responsible for actually 
displaying our list of products to the user. The full implementation of the Products render() method is 
shown here:

render() {

    var products = this.state.products.map((product) => {
        var imageUrl = '/images/' + product.ProductImage;
        var isCurrentCategory = this.categoryID == product.categoryID;

        return (<div key={product.Id} className="col-xs-6 col-sm-4 col-md-3">
            <div className="product">
                <img src={imageUrl} />
                <div className="price">${ product.CurrentPrice.toFixed(2) }</div>
                <div className="title-container">
                    <h5>{ product.ModelName }</h5>
                </div>
                �<div className="model-number"><span className="text-muted">Model Number:</

span>  {product.ModelNumber }</div>
                {(isCurrentCategory) ? (
                    �<Link to={ 'products/' + product.CategoryId } className="category">{ 

product.CategoryName }</Link> ) :



Chapter 9 ■ React

375

                    ( <div className="category">{ product.CategoryName }</div> )}
                �<Link to={ 'product/' + product.Id } className="btn btn-primary btn-cart"> 

<span className="glyphicon glyphicon-shopping-cart"></span> Add to Cart</Link>
            </div>
        </div>)
    });

    return <div>
        <div className="jumbotron">
            �<Link to="products" className="btn btn-info btn-lg"  

dangerouslySetInnerHTML={{ __html: "View Tech Deals &raquo;" }}></Link>
        </div>

        <h3>{ this.state.header }</h3>

        <div className="row">
            { products }
        </div>
    </div>
}

The first section of the render() method takes the list of products and maps the result back to the 
markup necessary to display the collection of cards. This is like how the map function was used earlier in the 
CategoryLinks component.

A few interesting things to point out about how React handles generating this list. First, each product 
has an image associated with it and we generate the correct URL for a products image in this loop. When we 
want to render the image it can be done with a simple image tag such as the following:

<img src={imageUrl} />

Note the lack of quotation marks around the curly brackets surrounding the imageUrl variable name.
Next, since each product has a price stored as U.S. dollars we use the following code to render the 

display. There are numerous JavaScript libraries to do proper currency display for various cultures. The 
following code simply uses the built-in JavaScript functionality to display a fixed set of decimal places. We 
even go as far as to hardcode the $ character prior to the currency value.

<div className="price">${ product.CurrentPrice.toFixed(2) }</div>

As we are displaying an arbitrary list of product items on this screen, we have the possibility of 
displaying a category link on every product card. This makes sense if the current items are not all from the 
same category (which we store in our Product class). But, if a product being displayed is from a category of 
products other than the current one, it would be nice to allow the user to quickly refilter their results to show 
products from that category.

Inside our map loop, we declare a Boolean variable that tells us if the current product belongs to the 
current category:

var isCurrentCategory = this.categoryID == product.categoryID;



Chapter 9 ■ React

376

Then, within our markup, we use this Boolean to conditionally determine whether to render a link or 
just a label with the category name:

{(isCurrentCategory) ?
(<Link to={ 'products/' + product.CategoryId } className="category">{ product.CategoryName 
}</Link> ) :
(<div className="category">{ product.CategoryName }</div> )}

This snippet of React markup is somewhat unusual at first glance but is a good example of how a 
JavaScript expression (isCurrentCategory) can be evaluated to determine which of two blocks of markup 
should be rendered. Notice the parentheses around each block to specify to the TSX parser where one block 
starts and ends.

The final snippet of the Products component is the main return that displays the core of the interface. 
This code follows:

return <div>
    <div className="jumbotron">
        �<Link to="products" className="btn btn-info btn-lg" dangerouslySetInnerHTML={{ __html: 

"View Tech Deals &raquo;" }}></Link>
    </div>

    <h3>{ this.state.header }</h3>

    <div className="row">
        { products }
    </div>
</div>

It is here that we render the banner at the top of the page, display the header, and then insert our 
previously generated list of product cards.

The only item of note in this markup is the line used to display the button in the middle of our 
jumbotron image.

<Link to="products" className="btn btn-info btn-lg" dangerouslySetInnerHTML={{ __html: "View 
Tech Deals &raquo;" }}></Link>

Generally, the React rendering engine makes it impossible (or at least very difficult) to inject harmful 
HTML or scripts into your pages. When you have the need to render some content that you know to contain 
markup you will need to take a few extra steps to let the framework know of your intent. In this example, 
we use a property called dangerouslySetInnerHTML to specify some markup to display. This is React’s 
alternative to the innerHTML property in HTML. It also requires you pass in an object with an __html 
property (two underscores preceding html). This is their way of forcing you to remember your decision and 
proactively ensure that rendering raw markup is your intent.

ProductDetail Component
The next React component we will discuss in this chapter is the ProductDetail component. This 
component, shown in Figure 9-14, is used to display information on a single product. It is generally reached 
from a link on the Products component page. When reviewing the key code for this component, we will 
demonstrate how React handles events such as clicking a button and how it can access data the user 
provides via fields on a form (i.e., the product quantity).



Chapter 9 ■ React

377

The first thing to note about the ProductDetail component is that its state will consist of three parts: 
the product model being displayed, a quantity value tracking how many of this product a user wants to buy, 
and a reference to a user (or customer).

■■ Note  For purposes of this book and the sample applications we are providing, we are not going to concern 
ourselves with a robust security implementation. This choice was made for brevity within this text and not because 
security would not play a key role in an ecommerce system such as the SpyStore demo we are developing.

The SpyStore API we have demonstrated earlier in the book does support the concept of a customer 
and the API endpoints we will need for this component and the cart components will require we provide this 
data. For that reason, we will call the API to retrieve the first user in the results as the user we will emulate 
through the ordering process.

The initial lifecycle events of the ProductDetail component are as follows:

componentWillMount() {
    this.setState({ product: {}, quantity: 1, user: {}});
}

componentDidMount() {
    var service = new ProductService();

    this.loadUser();

    service.getProduct(this.props.params.id).then((data) => {
        this.setState({ quantity: 1, product: data, user: this.state.user});
    });
}

loadUser() {
    var userService = new UserService();

Figure 9-14.  ProductDetail interface



Chapter 9 ■ React

378

    userService.getUsers().then((data) => {
        if (data && data.length>0)
        {
            �this.setState({ quantity: this.state.quantity, product: this.state.product, 

user: data[0]});
        }
    });
}

This code configures our component’s state and loads the appropriate user and product information 
from the API. The ID for the current product is passed into this component from its parent component, as we 
have seen in other component interaction scenarios.

The render() method of the ProductDetail component contains a single line of code that returns all 
necessary HTML markup to display our product details with the appropriate formatting. Within this markup 
there are a few new React concepts worth pointing out: the ability to accept input from a user via an HTML 
input tag and the ability to respond to user events such as clicking on DOM elements.

First, regarding allowing a user to input the quantity of an item before adding it to their cart, let’s review 
the following input element:

<input type="number" name="qty" value={this.state.quantity} onChange={(e) => this.
quantityUpdated(e)} className="cart-quantity form-control"/>

The previous element binds its value property to the quantity value we have added in our component’s 
state. The other new concept demonstrated in the line is the ability to fire an event upon a user changing a 
value in this input field.

First, the name of DOM events within React is always camel-cased. In this scenario, the event is called 
onChange. Second, instead of passing in a string with the name of the event (as we do in HTML) with React 
we use the TSX syntax to bind the event to the appropriate event. In our example, we use the arrow syntax to 
specify the expression we want to execute when the event fires. The parameter (e) we pass into our method 
represents the SyntheticEvent class and is used by React to provide information on the event and its target. 
This optional parameter is specified by the W3C as a standard and you would use it for such things as getting 
the current value of an input control once it is changed. Let’s look at the code for the quantityUpdated() 
method:

quantityUpdated(event) {
    �this.setState({quantity: event.target.value > 0 ? event.target.value : 0 , product: 

this.state.product, user: this.state.user});
}

This method accepts a single event parameter and simply updates the state of the current component. 
When updating the component’s state, it leaves the product and user properties the same (setting them to 
their current values) but updates the quantity value to reflect what the user has input into the quantity input 
field. This value is retrieved by utilizing the event parameter’s target property. This value is set to the HTML 
element the event was ultimately fired from. Using this element’s value property, we can retrieve (or update) 
the value of the input field as necessary.

A common “gotcha” when dealing with React events is the binding of the this variable within the event 
handler itself. In the previous example, we bound the onChange event to an arrow function ("(e) => this.
quantityUpdated(e)"). This syntax was necessary for us to have access to the current object instance (this) 
within the event handler itself. We used the this reference to call setState() and perform the required 
action within our event handler.



Chapter 9 ■ React

379

To see an alternative syntax for binding an event let’s look at how React allows us to handle the click 
event of the Add to Cart button:

<button className="btn btn-primary" onClick={this.addToCart}>Add to Cart</button>

In the markup, we simply bind the onClick event directly to a method without the arrow syntax. The 
addToCart method we use to handle this click event is as follows:

addToCart() {
    var cartService = new CartService();

    if (this.state.user && this.state.quantity>0) {
        �cartService.addToCart(this.state.user.Id, this.state.product.Id, this.state.

quantity).then((data) => {
            hashHistory.push("/cart");
        }).fail((err) => {
            if (err.responseJSON.Error)
            {
                alert(err.responseJSON.Error);
            }
        })
    }
}

First, we notice that this method does not accept any parameters. The ability to accept the event 
parameter is optional and not always necessary. With the addToCart() function, we do not need to know 
anything specifically about the event so we simply do not use this parameter. Second, within this method we 
use the CartService to call the Cart API and set up information about the product, the user, and the quantity 
of the product we’d like to add. This piece should be self-explanatory. To get the necessary values from our 
component’s state we need to reference the current component via the this keyword. Unfortunately, this 
will not work due the “gotcha” described previously of needing to perform some extra work to use this in 
React event handlers. To solve this problem we must “bind” the addToCart() method to this with an extra 
line of code traditionally added to a component’s constructor. This can be seen in the constructor of the 
ProductDetail component:

constructor() {
        super();
        this.addToCart = this.addToCart.bind(this);
    }

Once this line has been added, our addToCart() method works as expected. Thus, to handle events 
in React they must be bound using the arrow syntax (in which case using this in the handler will work as 
expected) or we must take the extra step of binding the event handler method to this in our constructor (an 
extra step which then simplifies our syntax of binding the method).

Another small quirk worth pointing out regarding the use of events in React is that they do not return 
any value. Other platform’s events sometimes return a Boolean value indicating whether the browser should 
continue to bubble this event up to higher level elements that may be listening. React uses the previously 
mentioned SyntheticEvent parameter to achieve this goal. To stop an event from propagating higher up the 
DOM tree, we would simply use the following line of code in our event:

event.preventDefault();



Chapter 9 ■ React

380

The React event system abstracts many (but not all) of the DOM events and provides a higher-level 
means of reacting to them within your React code. The use of a SyntheticEvent system allows React to 
hide platform specific implementations of events and to provide a consistent syntax and set of properties 
for accessing them. For a full list of the events supported by React (and the properties you can get for 
each one within its handler), see the following link: https://facebook.github.io/react/docs/events.
html#supported-events. Our examples only demonstrated two of the most common React events: onChange 
and onClick.

One final line of code worth mentioning on the ProductDetail page is in the addToCart() method. 
Upon returning a successful value after calling the API to add an item to the current user’s cart, we need to 
navigate the user to the CartComponent UI (which we discuss next). To do this, we use a component called 
hashHistory, which we import from the react-router package with the following line:

import { hashHistory } from "react-router";

Once the hashHistory component has been imported, we can use it to “push” a new route onto the 
stack and the React router will update the UI accordingly. We do that in addToCart() with the following line:

hashHistory.push("/cart");

It is also possible to pass parameters to the next route via the push() method. In the previous scenario, 
we do not need to pass any additional information and, instead, just need to display the Cart component.

Cart Component
The last major React component we will review in the SpyStore.React solution is the component used to 
display the shopping cart information to the user. Most React concepts used in this component have been 
demonstrated previously, although there are some new concepts worth reviewing.

Before we get into the implementation of the Cart component (and its child, the CartRecord 
component), let’s look at the final UI we will be implementing. This can be seen in Figure 9-15.

Figure 9-15.  Cart interface

https://facebook.github.io/react/docs/events.html#supported-events
https://facebook.github.io/react/docs/events.html#supported-events


Chapter 9 ■ React

381

The Cart component will utilize the CartService to read all current records in a user’s shopping 
cart and display them accordingly. Users will be allowed to remove items from their carts or update the 
quantities of items within their carts. The Cart component itself will render the top level of the table and be 
responsible for all the data access. Each individual row in a user’s shopping cart will be rendered via a child 
component called CartRecord. The CartRecord component will handle user import regarding changing an 
item’s quantity and removing an item from the cart. These events will be passed back from an individual 
CartRecord component to the parent Cart component, where the appropriate data access calls will be made 
to the API and the screen refreshed with updated data.

First, let’s look at some of the setup code for the Cart component:

componentWillMount() {
    this.setState({ total: 0, items: {}, user: {}});
}

componentDidMount() {
    this.loadUser();
}

loadUser() {
    var userService = new UserService();
    var loggingService = new LoggingService();

    userService.getUsers().then((data) => {
        if (data && data.length>0)
        {
            �this.setState({ total: this.calculateTotal(this.state.items), items: this.state.

items, user: data[0]});

            this.loadCart();
        }
    }).fail((err) => {
        loggingService.logError(err);
    });
}

loadCart() {
    var _service = new CartService();
    var _loggingService = new LoggingService();

    if (this.state.user) {
        _service.getCart(this.state.user.Id).then((data) => {
            if (data) {
                data.forEach(item => item.OriginalQuantity = item.Quantity);

                �this.setState({total: this.calculateTotal(data), items: data, user: this.
state.user});

            }
        }).fail((err) => {
            _loggingService.logError(err);
        });



Chapter 9 ■ React

382

    }
}

calculateTotal(items: ShoppingCartRecord[] | undefined): number {

    var total = 0;

    if (items && items.length>0)
    {
        items.forEach((row: ShoppingCartRecord) => {
            total += row.LineItemTotal;
        });
    }

    return total;
}

The Cart component’s setup methods dictate that we will have a basic component state: the items in 
our cart, the current user, and a calculated total of the items. The loadUser() method will, again, simply 
load the first user returned from the API as we are not implementing a robust security infrastructure. The 
loadCart() method will use the CartService to load the current users shopping cart records. If they are 
returned successfully, we assign them to the component state and use the calculateTotal() function to get 
the sum of all shopping cart records. In the loadCart() record, we also update each cart record to keep track 
of its original quantity. This is so that we can optimize our client side code to not attempt to update a record’s 
quantity if it hasn’t changed from its original value.

Let’s now look through the render() method of the Cart component. The first section of the render() 
method maps the current shopping cart items to a set of table rows that will ultimately display them. Each 
row is ultimately managed by a child component called CartRecord. This first part of the render() method 
can be seen in the following code:

var cartRows: any[] = [];
var records: ShoppingCartRecord[] = this.state.items;

if (records && records.length > 0) {
    cartRows = records.map((record: ShoppingCartRecord) => {
        var rowKey = record.ProductId + "." + record.Quantity;

        �return <CartRecord key={ rowKey  } item={ record } onRowDeleted={ (record) => this.
rowDeleted(record) }

                           updateQuantity={ (record) => this.updateQuantity(record) }/>;
    });
}

Within the function mapping a shopping cart record to the appropriate markup we initially build 
our own value to be used by the row key. This value is a string represented by the ID of the product and 
its quantity. By using a hybrid of these two values, we can bypass React’s attempt to reuse components 
in a collection in which the key doesn’t change. This optimization is generally good but, in our scenario, 
when we reload data and the quantity has changed we want React to remove the old row and add a new 
one. There are several ways to accommodate this but generating a unique row key serves our purposes. 
Next, we generate a number of CartRecord components and assign a key, the product the row represents 
(“item”) and then assign some handlers to a few custom events the CartRecord will raise: onRowDeleted 
and updateQuantity. These events are not native React events and are instead just events we will define in 
CartRecord and trigger when a user clicks the Update or Remove links on an individual product row.



Chapter 9 ■ React

383

As mentioned, we wanted to centralize all data access within the Cart component. The CartRecord 
component will be simply for display and basic data management. Its implementation will react to user 
input on its individual row and will raise the right events when a call to the API needs to occur.

The assignment of the arrow style methods associates them as properties in the CartRecord 
component. Inside the CartRecord component we can call these assigned functions with code like the 
following (taken from CartRecord):

updateQuantity() {

    if (this.props.updateQuantity) {
        this.props.updateQuantity(this.state.item);
    }
}

removeRow() {
    if (this.props.onRowDeleted) {
        this.props.onRowDeleted(this.state.item);
    }
}

As you can see, the CartRecord code can execute these functions by accessing them as normal properties 
(albeit functions and not data). To be safe and follow a defensive pattern, we first check to ensure that the 
parent component has assigned a function to the property and, if so, we execute it and pass the appropriate 
data as parameters. While this seems simplistic, it is a powerful means of communication between child 
components in React and their parents. This is essentially providing child components with the means of 
raising events to notify parent components when key actions occur or when key data changes. In this scenario, 
each child component (CartRecord) handles the DOM click events on its own Update or Remove link. Rather 
than implementing the necessary code to fully handle these actions, each row simply calls the appropriate 
event (updateQuantity or removeRow) and passes its current product data up to the Cart component.

Another new concept introduced in the render() method of the Cart component is the ability to bind 
an element’s style to an arbitrary object. The markup for the shopping cart table header can be seen here:

<tr>
    <th style={ this.columnStyle }>Product</th>
    <th className="text-right">Price</th>
    <th className="text-right">Quantity</th>
    <th className="text-right">Available</th>
    <th className="text-right">Total</th>
</tr>

In this markup, the first column header (Product) has a style property that is bound to an object called 
columnStyle. Earlier in the Cart component implementation you will find the implementation of a basic 
JavaScript object called columnStyle. Within this object, we can define any number of properties and values. 
These properties and values will be assigned as styles to the Product header element. The properties or the 
values of this object may be calculated as necessary and React will update the component’s UI to reflect 
these changes in real-time. The implementation of columnStyle in our application looks like the following:

columnStyle = {
    width: '70%'
};

The final two key methods of the Cart component are the methods we use to handle the key actions 
triggered by each CartRecord component. These methods are as follows:



Chapter 9 ■ React

384

rowDeleted(row: ShoppingCartRecord) {

    var _service = new CartService();
    var _loggingService = new LoggingService();

    if (this.state.user != null) {

        _service.removeCartRecord(this.state.user.Id, row).then((data) => {
            this.loadCart();
        }).fail((err) => {
            if (err.responseJSON.Error) {
                alert(err.responseJSON.Error);
            }

            _loggingService.logError(err);
        });
    }
}

updateQuantity(row: ShoppingCartRecord) {
    var _service = new CartService();
    var _loggingService = new LoggingService();

    if (this.state.user != null && row.Quantity != row.OriginalQuantity) {

        _service.updateCartRecord(this.state.user.Id, row).then((data) => {
            this.loadCart();

        }).fail((err) => {
            if (err.responseJSON.Error) {
                alert(err.responseJSON.Error);
            }

            _loggingService.logError(err);

        });
    }
}

Both methods are very similar and both simply validate their inputs and then utilize the API wrappers 
to make the appropriate call to the API. Upon a successful API call, each of them triggers a new call to 
loadCart(). Calling loadCart() again triggers another API call to retrieve a full shopping cart from the API. 
This process refreshes the full Cart component and builds a new collection of CartRecord components. 
Upon the completion of this process, React will compare its virtual DOM with what is currently rendered to 
the user in the browser. Any updates will be immediately redrawn. The whole process is very efficient.

CartRecord Component
The final component within SpyStore React that we will look at is the CartRecord component. As mentioned, 
this small component is basically responsible for rendering a single row of the user’s shopping cart. This 
component represents one row, as displayed in Figure 9-15.



Chapter 9 ■ React

385

Since this component is so small we will go ahead and look at it in its entirety:

import * as React from "react";
import {Link} from "react-router";

export class CartRecord extends React.Component<any, any> {

    componentWillMount() {
        this.setState({quantity: -1, item: {}});
    }

    componentDidMount() {
        this.setState({quantity: this.props.item.Quantity, item: this.props.item});
    }

    quantityUpdated(event) {

        var quantity: number = Number(event.target.value);

        if (quantity > this.state.item.UnitsInStock) {
            quantity = this.state.item.UnitsInStock;
        }
        else if (quantity < 1) {
            quantity = 1;
        }
        this.state.item.Quantity = quantity;

        this.setState({quantity: quantity, item: this.state.item});

    }

    updateQuantity() {

        if (this.props.updateQuantity) {
            this.props.updateQuantity(this.state.item);
        }
    }

    removeRow() {
        if (this.props.onRowDeleted) {
            this.props.onRowDeleted(this.state.item);
        }
    }

    render() {
        return <tr>
            <td>
                <div className="product-cell-detail">
                    <img src="images/product-thumb.png" className="pull-left"/>
                    <Link to={'/product/' + this.props.item.ProductId }
                          className="h5">{ this.props.item.ModelName }</Link>



Chapter 9 ■ React

386

                    �<div className="small text-muted hidden-xs">{ this.props.item.
Description }</div>

                </div>
            </td>
            <td className="text-right">${ this.props.item.CurrentPrice.toFixed(2) }</td>
            <td className="text-right cart-quantity-row">
                <input type="number" className="cart-quantity" value={ this.state.quantity }
                       onChange={ (e) => this.quantityUpdated(e) }/>
                �<button className="btn btn-link btn-sm" onClick={ () => this.

updateQuantity() }>Update</button>
                �<button className="btn btn-link btn-sm" onClick={ () => this.removeRow() 

}>Remove</button>
            </td>
            <td className="text-right">{ this.props.item.UnitsInStock }</td>
            <td className="text-right">${ this.props.item.LineItemTotal.toFixed(2) }</td>
        </tr>
    }
}

The component itself has a very basic state representation: the item (product) it represents and the 
current quantity of that item a user has in her cart. The user interface rendered via the render() method 
displays the record and allows a user to input a new quantity. The onChange event of the quantity input calls 
a method called quantityUpdated(). Within this method, we perform some basic validation to ensure the 
value isn’t below 1 or above the available quantity for the current item.

Finally, when a user clicks on the Update or Remove buttons, we raise the appropriate event to the Cart 
component as described earlier.

Overall the CartRecord component’s implementation is very light and, as we’ve previously stated, we 
have intentionally designed it to do little more than provide a visual representation of a single row. All heavy 
logic and functionality related to an individual row (beyond simple validation) is handled by the higher-level 
Cart component.

Additional Thoughts
Reviewing the provided source code for the SpyStore.React implementation should provide you with a 
good understanding of the core concepts of the React library. Its intent is to be a powerful framework for 
building user interfaces. Unlike other frameworks such as Angular, React maintains a narrow focus in only 
providing functionality specific to this goal.

If you were comparing the general architecture of the Angular solution developed in Chapter 8 with 
the React solution developed in this chapter, you should have noticed some major similarities. The overall 
component structure of both SpyStore implementations is very similar. The ability to utilize the TypeScript 
language to build a powerful client side implementation of both frontends is also common. Even the general 
organization of the components and other services looks similar (as was our goal).

When looking at a project and beginning to envision an architecture and frontend solution, the 
concepts and core structure I lean toward is very similar regardless of whether we choose to use Angular or 
React. The trick with either of these frameworks is to begin to envision complex user interfaces as a series of 
interconnected components and how they interact and share data between them. The concept of isolating 
all communication between the frontend interfaces and the server via a robust API layer is very common 
and would be done the exact same way regardless of your UI framework. We also use a very consistent 
development process and pipeline across our projects using tools such as NPM and WebPack. This same 
pipeline would be used for both an Angular or React-based application.

http://dx.doi.org/10.1007/978-1-4842-2478-6_8


Chapter 9 ■ React

387

While we didn’t discuss unit testing in this chapter, the component-based structure of a React 
application greatly simplifies your unit test process. The React framework itself provides several hooks to 
simplify testing and many React teams successfully test their React applications in test runners such as 
Jasmine (https://jasmine.github.io/) or Jest (https://facebook.github.io/jest/).

If your existing applications are not already written with React, your team may still consider adopting 
React for new features or as older features demand enough refactoring that a better UI library may suit 
the need. React’s size and narrow focus on building interfaces makes it relatively easy to incorporate into 
existing web applications as needed. With React you can really pick and choose how you integrate a more 
modular set of UI components into an existing HTML-based structure. My team works on many legacy 
projects that consist of a mix of older technologies and newer, more cutting-edge technologies. We work with 
our customers to find creative and efficient ways to incorporate these new frameworks to take advantage of 
their patterns and capabilities alongside the more legacy code.

With regards to React, the community is very active and there is a vast amount of resources available. 
This is one area where both React and Angular stand out as extremely viable options for development teams. 
Both frameworks enjoy heavy adoption, which leads to readily available training materials, courses, books, 
and very active online communities of developers with real-world experience using these frameworks. In 
addition to training resources, there is also a massive collection of available React components and other 
packages to complement the core framework. If you find yourself in need of a nice DatePicker component 
and you are using React, there is a high likelihood that many options exist and are ready to be imported 
via your existing NPM/WebPack development process and used very quickly. Leveraging a development 
community that builds and maintains these packages in support of other React developers is another reason 
why the framework itself is so popular.

React also enjoys heavy support from the IDE community. Visual Studio 2017 and most other popular 
IDEs and source code editors natively support both the JSX and TSX file extensions. This makes developing 
and debugging React applications much easier than was possible just a few years ago. The overall IDE 
support for the React has grown as the adoption of the framework and today we get to reap the benefits 
through a very streamline development process.

To help you continue your journey of learning React, I will leave you with a few resources you may  
find useful:

•	 Official React site (https://facebook.github.io/react/). Here you will find the 
official documentation and tutorials.

•	 Redux (http://redux.js.org/). A framework for efficiently managing a centralized 
state within JavaScript applications such as those built with Angular or React.

•	 React Native (https://facebook.github.io/react-native/). A platform for using 
React to build native iOS and Android applications.

Summary
In this chapter, we have provided the basic implementation of the SpyStore ecommerce system using 
Facebook’s React framework. In doing so, we continued to leverage the SpyStore API developed in earlier 
chapters.

In implementing the SpyStore.React solution, we started by setting up a robust development 
workflow utilizing Visual Studio 2017, ASP.NET Core, NPM, and WebPack. Once that environment had been 
configured, we copied the static assets necessary for our SpyStore interface.

To set up a clean React implementation of SpyStore, we implemented a strongly-typed set of “wrapper” 
classes to simplify integration between our React UI and the SpyStore API.

Finally, we individually implemented all the key React components necessary to provide users with the 
necessary experience in interacting with the SpyStore interface.

https://jasmine.github.io/
https://facebook.github.io/jest/)
https://facebook.github.io/react/)
http://redux.js.org/)
https://facebook.github.io/react-native/)


389© Philip Japikse, Kevin Grossnicklaus and Ben Dewey 2017 
P. Japikse et al., Building Web Applications with Visual Studio 2017, DOI 10.1007/978-1-4842-2478-6

�       � A
Angular 2

application initialization, 293–294
components, 294–295
core concepts, 293
event binding, 298
interpolation, 297
property binding, 297
routing, 300–302
services, 295–296
structural binding, 299
templating, 297
two-way data binding, 298–299
Visual Studio

Gulp Setup, 287
NPM Packages, 286
project creation, 282–283
project files, 284
Startup class, 284–285
TypeScript setup, 287–288

ASP.NET Core MVC Web API
attribute routing, 86
DI, 85
HTTP request, 87
and .NET Core, 84
NuGet packages

data access layer, 90
updating and adding, 90

project template, 88–89
routing, 86
runtime entity, 85
“super” packages, 91
URL templates, 86
web application, 88

�       � B
Bootstrapping, 354
Bower

command, 223
folder structure, 221

installing Git, 222
NPM, 227
packages, 135–136
prerequisites, 222
search packages page, 224
Visual Studio, 222, 224–226

Bundling and minification
configuration, 137–138
definition, 137
enable bundle on build, 140
JavaScript files, 138
.NET Core CLI, 141–142
produce output files, 139
Task Runner Explorer, 141
Visual Studio integration, 139

�       � C
Classes, 246
Compiler settings, 251–252
Configure method, 97–98
ConfigureServices method, 98–100
Connection strategy, 21–22
Constructor, 96–97
Controllers

and action, 102
category, 111
CategoryController class, 104
customer, 112
debugging profile, 102
Formatted response, 103–104
Get method, 105
HTTP Get command, 105
HTTP status code, 102–103
launchsettings.json file, 101
orders, 113–114, 168–169
products, 114–115

constructor, 165
details action, 166
Error action, 165
GetListOfProducts helper  

method, 166

Index



■ INDEX

390

Index and Featured actions, 167
Search action, 167–168

RedirectActionResult, 104
search, 113
shopping cart, 115–118

AddToCart actions, 173
AutoMapper, 171
constructor, 170
HTTP get action, 173
HTTP post action, 174–175
Index action, 171
model binding, 171–172
route, 170

Core MVC Web applications
Bower packages, 135–136
Bundling (see Bundling and minification)
controller, 129–130
fake authentication, 151–152, 154
files and folders

appsettings.json, 124
Configure method, 125
ConfigureServices method, 125
controllers, 126
JavaScript, 128
lib and favicon.ico, 129
program.cs, 124
Site CSS and image files, 128
Startup.cs, 124
views, 126
wwwroot, 126–127

layouts, 133–134
NuGet Packages, 122–123
project creation, 120, 122
Razor View Engine, 133
routing

table, 123
URL templates and default values, 123

views, 130, 132–135, 154–155
WebApiCalls class (see WebApiCalls class)
web service locator, 142–143

CRUD operations
concurrency checking, 32
creating records, 31
deleting records, 33
EntityState, 33
no-tracking queries, 32
reading records, 31
update records, 32

�       � D
Data access layer

data creation, 76–78
Down() method, 60

foreign keys, 50
initializer, 78–80
migration creation, 58
migration deploy, 58
migrations, 61
model class (see Model classes)
navigation properties, 50
NuGet packages, 81
ordertotal calculated field, 60
repositories

category, 67
customer, 69
ICategoryRepo interface, 64
ICustomerRepo interface, 65
InvalidQuantityException, 72
IOrderDetailRepo interface, 66
IOrderRepo interface, 65
IProductRepo interface, 65
IShoppingCartRepo interface, 66
order, 71–72
OrderDetail, 70–71
product, 67, 69
ShoppingCartRecords, 72, 74–75

Up() method, 59–60
View models (see View models)

Data access layer
NuGet packages, 90

DbContext class, 17–18
DbSet<T> collection type, 20
Dependency injection (DI), 85
Display attribute, 51
Down() method, 60

�       � E
Entity Framework Core

Categories DbSet, 26
category model class, 24–25
connection strategy, 21–22
convention, 23
CRUD operations, 31, 33
data annotations support, 24
DbContext, 18
DbSet<T>, 20
EF 6.x, 4
entitybase class, 22, 23
framework migrations (see Migrations)
NuGet packages, 13
SpyStore.DAL project

adding packages, 14, 16
update and install packages, 16

SpyStore database, 4–5
StoreContext class, 19–20
stored procedures and functions, 51
testing (see Unit testing)

Controllers (cont.)



■ INDEX

391

Exception filters
action, 110
SpyStoreExceptionFilter, 108–109

�       � F
Fake authentication, 151–152, 154
Foreign keys, 50

�       � G, H
Generics, 250
Gulp

benefits, 227
copying files, 229
dependencies, 230–231
installation, 228
nested tasks, 231
Task Runner Explorer, 231

�       � I
Inheritance, 247–248
Interfaces, 249
Interpolation, 297

�       � J, K, L
JavaScript application tools

Bower, 220
command, 223
folder structure, 221
installing Git, 222
NPM, 227
prerequisites, 222
search packages page, 224
Visual Studio, 222, 224–226

Gulp, 227
benefits, 227
copying files, 229
dependencies, 230–231
installation, 228
nested tasks, 231
Task Runner Explorer, 231

Node.js
Chocolatey package  

manager, 213
executable packages, 218–219
locally vs. globally, install, 220
manual installation, 212–213
NPM, 215–216
project creation, 215
saving project dependencies, 217–218
Visual Studio set up, 213–214

SystemJS, 233–236
WebPack, 237–240

�       � M
Migrations

creating and executing, 27–28
removal, 29
SpyStore database, 30
SQL scripts creation, 30
update, 29

Model binding, 106
Model classes

category model, 52
customer model, 55
DbSet<T>, 56
Fluent API, 56–57
order detail model, 54–55
order model, 54
product model, 52–53
shopping cart record model, 53
StoreContext, 56

Model-View-Controller (MVC), 83–84
Modules, 252–253
MVC projects and files

appsettings.json file(s), 93–94
configure method, 97–98
ConfigureServices method, 98–100
constructor, 96–97
controllers, 100–102
program.cs File, 92–93
runtimeconfig.template.json, 94
Startup.cs, 94
Startup services, 95–96

�       � N
Navigation properties, 50
.NET Core Command Line Interface (CLI), 8
NuGet packages

Core MVC Web applications, 122–123
packages restoring

CLI, 13
manually, 13
PMC, 13
project reference, 14

�       � O
Object Relational Mapping (ORM), 3

�       � P, Q
Package Manager Console (PMC), 13



■ INDEX

392

�       � R
Razor View Engine, 133
React

app component, 365–367, 369
application organization, 355
bootstrapping, 354
cart component, 380–383, 384
CartRecord component, 384–386
CategoryLinks component, 369–371
component, 351–354
Initial components, 361–362
models, 356–357
NPM packages, 334–337
ProductDetail component, 376–380
products component, 371, 375–376

built-in methods, 373
interface, 372
loadFeaturedProducts(), 374
ProductService, 372
refreshProducts() method, 373
render(), 374–375

project folder, 338–341
routing, 362–365
services, 357, 359–361
setState() method, 367
solution, 329
Startup class, 333–334
TypeScript setup, 337–338
Visual Studio

project creation, 330–332
project files, 332–333

WebPack, 343–344
configuration, 342–343
loader, 346
NPM, 342
paths, 345
plugins section, 346–349
production, 343–344
resolve section, 345
TypeScript code, 349
wwwroot folder, 347

Repository interface
base repository, 43–46
category repository, 46–47
creation, 41–42

Routing, 300–302
Running application, 107

�       � S
Solution and projects

adding project, 10
adding SpyStore, 11
creation, 8–9

file globbing, 11
target framework, update, 12

SpyStore Angular 2
add routing

app component, 306
and components to app  

module, 305–306
creating route, 304–305
product component, 303–304

addToCart method, 318–319
angular bootstrap, 292
app module, 292
app root components, 321
cart page

app module, 325
cart record component, 323–324
cart route, 325
components, 321, 323

checkout process, 326–327
connecting to service, 306–310
product detail route, 320
product details component, 316–318
product details page, 316
root app component, 291
root page, 289–291
route parameters, 311–312
search page, 313–315

SpyStore database, 4–5, 49
SpyStore MVC application

controller
orders, 168–169
products, 165–168
shopping cart, 170–175

running application, 205–206
validation (see Validation)
View Components (see View Components)

SpyStore.Reactsolution. See React
StoreContext class, 19–20
Stored procedures and functions, 51
“Super” packages, 91
SystemJS, 233–236

�       � T
Tag Helpers, 119

anchor, 160
built-in tag, 158–159
custom, 163–164
environment, 163
form, 160
HTML Helper, 157
image, 163
input, 160–161
link and script, 163
select, 161–162



■ INDEX

393

TextArea, 161
validation, 162

Transpiler, 241
TypeScript

adding files, 261–262
classes, 246, 263
compiler settings, 251–252
currentPrice method, 279
CustomerAnonymous.ts, 264–265
datatypes, 242–243, 245
debugging, 272, 274–275
ECMAScript features, 242
generics, 250
inheritance, 247–248
interfaces, 249
loadProducts method, 278
modules, 252–253
NPM packages, 259, 261
product interface, 276–277
product list, 266–272, 279
project creation

adding HTML page, 257
compiler options, 259
NuGet package manager, 256
template selection, 255
tsconfig.json file, 258

SPAs, 242
transpiler, 241

�       � U
Unit testing, 118

category record
adding, 37–38
delete, 40
retrieve, 38
update, 39

CategoryTests class, 34–36
concurrency checking, 41
creating and running, 36
CRUD operations, 37

Up() method, 59–60

�       � V
Validation

client side, 180, 182–183
server side, 176–179

View Components, 119
Add to Cart, 192–193
Cart, 195
client side code, 186
custom tag helpers, 186

Details view, 201–203
display template, 193, 204–205
editor template, 193, 195, 198–199
Index view, 195–197, 200–201
layout view, 188–190
Login Partial View, 187–188
orders, 200
products view, 203–204
server side code, 183–185
shared folder, 187
Update partial view, 197–198
validation scripts, 191

View models
cart record, 64
order detail, 63
Product and Category, 62

Views
CartViewModelBase, 155
folder, 130–132
partial, 134
ProductAndCategoryBase, 154
Razor View Engine, 133
sending data, 134–135
strongly typed, 135

Visual Studio
CLI, 8
installation, 5–6
launch settings, 106–107
.NET Core SDKs, 6–7

�       � W, X, Y, Z
WebApiCalls class

Base class, 144
Base HTTP delete calls, 147–148
Base HTTP Get calls, 145–146
Base HTTP Post and Put calls,  

146–147
class creation, 148–150
DI container, 151
IWebApiCalls interface, 143

WebPack, 237–240, 343–344
app component, 368
configuration, 342–343
loader, 346
NPM, 342
package.json file, 351
paths, 345
plugins section, 346–349
production, 343–344
resolve section, 345
TypeScript code, 349–350
wwwroot folder, 347


	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Visual Studio 2017 and .NET Core
	Chapter 1: Introducing Entity Framework Core
	The SpyStore Database
	Installing Visual Studio 2017 and .NET Core
	Installing Visual Studio
	Installing the .NET Core SDKs
	The .NET Core Command Line Interface (CLI)

	Creating and Configuring the Solution and Projects
	Creating the Solution and Projects
	Changes to the Project Files
	Updating the Target Framework

	Working with NuGet Packages
	Manually Restoring Packages
	Restoring Packages from the CLI
	Restoring with Package Manager Console

	Adding the Project References

	Adding Entity Framework Core
	Adding EF Packages to the SpyStore.DAL Project
	Installing/Updating Packages Using the SpyStore.DAL.csproj File
	Adding EF Packages to the SpyStore.Models Project
	Adding Packages to the SpyStore.DAL.Tests Project

	Building the Foundation
	Understanding the DbContext Class
	Creating the StoreContext Class
	Understanding the DbSet<T> Collection Type
	Connection Resiliency
	Custom Connection Strategies


	Building the Base Entity Class
	Entity Framework Conventions
	Data Annotations Support in EF Core
	Adding Data Annotations to the EntityBase Class

	Adding the Category Model Class
	Adding the Categories DbSet

	Migrations
	Executing EF .NET CLI Commands
	Creating the First Migration
	Removing a Migration

	Applying the Migration
	Viewing the Database

	Creating Migration SQL Scripts

	Understanding CRUD Operations Using Entity Framework
	Creating Records
	Reading Records
	No-Tracking Queries

	Updating Records
	Concurrency Checking
	Updating Using Entity State

	Deleting Records
	Deleting Using Entity State


	Unit Testing EF Core
	Creating the CategoryTests Class
	Creating and Running the First Test

	Testing EF CRUD Operations
	Test Adding a Category Record
	Test Retrieving All Category Records
	Test Updating a Category Record
	Test Deleting a Category Record Using Remove
	Test Deleting a Record Using EntityState
	Testing Concurrency Checking


	Adding the Core Repository Interface and Base Class
	Adding the IRepo Interface
	Adding the Base Repository
	Adding the Category Repository

	Summary

	Chapter 2: Building the Data Access Layer with Entity Framework Core
	The SpyStore Database
	Navigation Properties and Foreign Keys
	Handling Display Names
	Mixing EF with Stored Procedures and Functions
	Finishing the Model Classes
	Updating the Category Model
	Adding the Product Model
	Adding the Shopping Cart Record Model
	Adding the Order Model
	Adding the Order Detail Model
	Adding the Customer Model
	Updating the StoreContext
	Adding the DbSet<T> Properties for the Models
	Finishing the Model with the Fluent API
	Creating the Unique Index for Email Addresses on the Customer Table
	Setting Default Values on the Order Table
	Creating the Computed Column for Order Details
	Specifying the SQL Server Money Type for the Product Table
	Updating the Shopping Cart Record Model



	Updating the Database to Match the Model
	Creating the Migration
	Deploying the Migration

	Adding the Stored Procedure and User Defined Function
	Adding a New Migration
	Implementing the Up() Method
	Implementing the Down() Method
	Updating the Database

	Adding the OrderTotal Calculated Field
	Updating the Order Class
	Making OrderTotal a Computed Column
	Adding a New Migration and Update the Database

	Automating the Migrations
	Adding the View Models
	The Product with Category View Model
	The Order Detail with Product Info View Model
	The Order with OrderDetails View Model
	The Cart Record with Product Infor View Model

	Completing the Repositories
	Extending the Interfaces
	Adding the ICategoryRepo Interface
	Adding the IProductRepo Interface
	Adding the ICustomerRepo Interface
	Adding the IOrderRepo Interface
	Adding the IOrderDetailRepo Interface
	Adding the IShoppingCartRepo Interface

	Adding/Updating the Repositories
	Updating the Category Repository
	Adding the Product Repository
	Adding the Customer Repository
	Adding the OrderDetail Repository
	Adding the Order Repository
	Adding the InvalidQuantityException
	Adding the ShoppingCartRecords Repository


	Initializing the Database with Data
	Creating Sample Data
	Using the Sample Data
	Using the Initializer in Tests

	Creating NuGet Packages for the Data Access Library
	Setting the NuGet Properties
	Creating the NuGet Packages

	Summary

	Chapter 3: Building the RESTful Service with ASP.NET Core MVC Services
	Introducing the MVC Pattern
	The Model
	The View
	The Controller

	Introducing ASP.NET Core MVC Web API
	ASP.NET Core and .NET Core
	Dependency Injection
	Determining the Runtime Environment
	Routing
	URL Templates
	Attribute Routing
	Named Routes

	Responding to the Type of HTTP Request


	Creating the Solution and the Core MVC Project
	Adding the Package Source for the Data Access Layer
	Updating and Adding NuGet Packages
	The ASP.NET Core “Super” Packages

	MVC Projects and Files
	The Program.cs File
	The appsettings.json File(s)
	The runtimeconfig.template.json File
	The Startup.cs File
	Available Services for Startup
	The Constructor
	The Configure Method
	The ConfigureServices Method
	Configuring MVC
	Configuring JSON Formatting
	Configuring CORS
	Configuring EF Core
	Configuring the Dependency Injection Container


	The Controllers Folder
	The wwwroot Folder
	The web.config File
	The launchsettings.json File

	Controllers and Actions
	Controllers
	Actions
	HTTP Status Code Results
	Formatted Response Results
	Redirect Results

	An Example Controller
	Model Binding
	Changing the Visual Studio Launch Settings
	Running the Application


	Exception Filters
	Creating the SpyStoreExceptionFilter
	Adding the Exception Filter for All Actions

	Building the Controllers
	The Category Controller
	The Customer Controller
	The Search Controller
	The Orders Controller
	The Product Controller
	The Shopping Cart Controller

	Using the Combined Solution
	The Unit Test Solution
	Summary

	Chapter 4: Introducing ASP.NET Core MVC Web Applications
	Introducing the “V” in ASP.NET Core MVC
	Creating the Solution and the Core MVC Project
	Updating and Adding NuGet Packages

	Routing Revisited
	The Route Table
	URL Templates and Default Values

	MVC Web Applications Projects and Files
	The Program.cs File
	The appsettings.json File
	The Startup.cs File
	The ConfigureServices Method
	The Configure Method

	The Controllers Folder
	The Views Folder
	The wwwroot Folder
	The Site CSS, JavaScript, and Images
	Adding the Site CSS and Image Files
	Adding the JavaScript Files

	The lib Folder
	The favicon.ico File


	Controllers, Actions, and Views
	ViewResults
	Controller Helper Methods for Returning ViewResults

	Views
	The Views Folder
	The Shared Folder
	The DisplayTemplates Folder
	The EditorTemplates Folder

	The Razor View Engine
	Razor Syntax
	The Final Word on Razor


	Layouts
	Specifying the Default Layout for Views

	Partial Views
	Sending Data to Views
	Strongly Type Views and View Models
	ViewBag, ViewData, and TempData


	Package Management with Bower
	Updating and Adding Bower Packages
	Bower Execution

	Bundling and Minification
	The BundlerMinifier Project
	Configuring Bundling and Minification
	Adding Files for Bundling and Minification

	Visual Studio Integration
	Bundling on Change
	Bundling on Build
	Using the Task Runner Explorer

	.NET Core CLI Integration

	Creating the Web Service Locator
	Creating the IWebServiceLocator Interface
	Creating the WebServiceLocator Class
	Adding the WebServiceLocator Class to the DI Container

	Creating the WebAPICalls Class to Call the Web API Service
	Creating the IWebApiCalls Interface
	Creating the Base Class Code
	Implementing the Base HTTP Get Calls
	Implementing the Base HTTP Post and Put Calls
	Implementing the Base HTTP Delete Call

	Creating the WebApiCalls Class
	Adding WebApiCalls Class to the DI Container

	Adding the Fake Authentication
	Building the Authentication Helper
	Adding the AuthHelper Class to the DI Container
	Creating the Action Filter for the Fake Authentication
	Adding the Action Filter for All Actions

	Adding the View Models
	Summary

	Chapter 5: Building the SpyStore Application with ASP.NET Core MVC
	Tag Helpers
	Enabling Tag Helpers
	The Form Tag Helper
	The Anchor Tag Helper
	The Input Tag Helper
	The TextArea Tag Helper
	The Select Tag Helper
	The Validation Tag Helpers
	The Link and Script Tag Helpers
	The Image Tag Helper
	The Environment Tag Helper
	Custom Tag Helpers
	Making Custom Tag Helpers Visible


	Building the Controllers
	The Products Controller
	The Constructor
	The Error Action
	The Details Action
	The GetListOfProducts Helper Method
	The Index, Featured, and Search Actions
	The Index and Featured Actions
	The Search Action


	The Orders Controller
	The Route
	The Constructor
	The Index Action
	The Details Action

	The Shopping Cart Controller
	The Route
	The Constructor
	Creating the AutoMapper Configuration
	The Index Action
	Model Binding
	The AddToCart Actions
	The HTTP Get Action
	The HTTP Post Action

	The Update HTTP Post Action
	The Delete HTTP Post Action
	The Buy HTTP Post Action


	Validation
	Server Side Validation
	Custom Server Side Validation
	Greater Than Zero Attribute
	Must Not Be Greater Than Attribute


	Client Side Validation
	Custom Client Side Validation
	Greater Than Zero Attribute: Attribute Updates
	Greater Than Zero Attribute: JavaScript
	Must Not Be Greater Than Attribute: Attribute Updates
	Must Not Be Greater Than Attribute: JavaScript

	Specifying Formatting for Client Side Validation Errors

	Updating the View Models

	View Components
	Building the Server Side Code
	Building the Client Side Code
	Invoking View Components
	Invoking View Components as Custom Tag Helpers

	Updating and Adding the Views
	The ViewImports File
	The Shared Views
	The Login Partial View
	The Layout View
	The Validation Scripts Partial View
	The Add to Cart View
	The Display Templates
	The DateTime Display Template

	The Editor Templates
	The AddToCartViewModel Editor Template


	The Cart Views
	The Index View
	The Update Partial View
	The Editor Templates
	The CartRecordViewModel Editor Template


	The Orders Views
	The Index View
	The Details View

	The Products Views
	The ProductList View
	The Display Template
	The ProductAndCategoryBase DisplayTemplate



	Running the Application
	Using Visual Studio 2017
	Using the .NET Command Line Interface (CLI)
	Using the Combined Solutions

	Summary


	Part II: Client-Side Tooling and JavaScript Frameworks
	Chapter 6: JavaScript Application Tools
	What Tools Are We Covering?
	Node.js
	Manually Installing Node.js
	Installing Node using the Chocolatey Package Manager
	Setting Up Visual Studio to Use the Latest Version of Node
	Getting Started with Node.js
	Introduction to NPM
	Saving Project Dependencies
	Executable Packages
	Installing Packages Locally vs. Globally

	Bower
	Bower and Visual Studio
	Installing Bower Prerequisites
	Installing Git
	Installing Bower
	Using Bower
	Installing Bower Packages
	Installing Bower Packages Using Visual Studio

	Gulp
	Installing Gulp
	Copying Files Using Gulp
	Dependencies in Gulp
	Task Runner Explorer Within Visual Studio
	Gulp Conclusion

	Module Loaders
	What Is a Module
	SystemJS
	WebPack

	Summary

	Chapter 7: Introduction to TypeScript
	Why TypeScript?
	TypeScript Basics
	An Overview of TypeScript Syntax
	Datatypes
	Core Constructs
	Classes
	Inheritance
	Interfaces
	Generics
	Compiler Settings
	Modules

	Implementing a Basic TypeScript Application
	Setting Up a Sample Project
	Working with TypeScript Files
	NPM Packages
	Adding TypeScript
	Classes and Inheritance
	Adding a Product List
	Debugging TypeScript
	Finishing the Application by Adding a Product List


	Summary

	Chapter 8: Angular 2
	Creating a New Visual Studio Core Project
	Project Files
	Setting Up the Startup Class
	NPM Install
	Gulp Setup
	Typescript Setup

	Main SpyStore App Component Setup
	Creating the Root index.html Page
	Creating the Root App Component
	Creating the App Module
	Creating the Angular Bootstrap

	Core Concepts
	Application Initialization
	Components
	Services
	Templating
	Interpolation
	Property Binding
	Event Binding
	Two-Way Binding
	Structural Binding

	Routing

	Building the SpyStore Angular App
	Adding Routing
	Adding a Product Component
	Creating the Route
	Adding the Router and Components to the App Module
	Setting Up the Router Outlet in the App Component

	Connecting to Services
	Route Parameters
	Search Page
	Product Details Page
	Setting Up the ProductDetails Component
	CartService Add To Cart
	Setting Up the Product Detail Route

	Cart Page
	Creating the Cart Component
	Creating the Cart Record Component
	Creating the Cart Route
	Adding the Cart Record Component to the App Module

	Checkout
	Creating the Checkout Component
	Adding a Route for the Checkout Component


	Summary

	Chapter 9: React
	Solution Overview
	Creating a New Visual Studio Core Project
	Project Files
	Setting Up the Startup Class
	NPM Packages
	TypeScript Setup
	Initial Project Folder
	WebPack
	Introduction to React
	Components
	Application Organization
	Models
	Services
	Initial Components
	Routing
	App Component
	CategoryLinks Component
	Products Component
	ProductDetail Component
	Cart Component
	CartRecord Component

	Additional Thoughts
	Summary


	Index

