

Big Data Visualization

Learn effective tools and techniques to separate big data into
manageable and logical components for efficient data
visualization

James D. Miller

BIRMINGHAM - MUMBAI

Big Data Visualization

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2017

Production reference: 1230217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78528-194-5

www.packtpub.com

http://www.packtpub.com

Credits

Author

James D. Miller

Copy Editor

Laxmi Subramanian

Reviewers

Dave Wentzel

Project Coordinator

Shweta H Birwatkar

Commissioning Editor

Veena Pagare

Proofreader

Safis Editing

Acquisition Editor

Tushar Gupta

Indexer

Aishwarya Gangawane

Content Development Editor

Sumeet Sawant

Graphics

Tania Dutta

Technical Editor

Sneha Hanchate

Production Coordinator

Arvindkumar Gupta

About the Author
James D. Miller is an IBM certified expert, creative innovator, and accomplished Director,
Sr. Project Leader, and Application/System Architect with more than 35 years of extensive
applications, system design, and development experience across multiple platforms and
technologies.

His experiences and specialties include introducing customers to new and sometimes
disruptive technologies and platforms, integrating with IBM Watson Analytics, cloud
migrations, Cognos BI, TM1 and web architecture design, systems analysis, GUI design and
testing, data and database modeling and systems analysis, design, and the development of
OLAP, Client/Server, Web and Mainframe applications and systems utilizing IBM Watson
Analytics, IBM Cognos BI and TM1 (TM1 rules, TI, TM1Web and Planning Manager),
Cognos Framework Manager, dynaSight/ArcPlan, ASP, DHTML, XML, IIS, MS Visual Basic
and VBA, Visual Studio, Perl, Splunk, WebSuite, MS SQL server, ORACLE, SYBASE Server,
and more.

His responsibilities have also included all aspects of Windows and SQL solution
development and design, including analysis; GUI (and Web site) design; data modeling;
table, screen/form and script development; SQL (and remote stored procedures and
triggers) development/testing; test preparation; and the management and training of
programming staff. His other experience includes the development of ETL infrastructure
such as data transfer automation between mainframe (DB2, Lawson, Great Plains, and so
on) systems and client/server SQL server and web-based applications and integration of
enterprise applications and data sources.

Mr. James D. Miller has acted as an Internet Applications Development manager
responsible for the design, development, QA, and delivery of multiple websites, including
online trading applications, warehouse process control, scheduling systems, and
administrative and control applications. He was also responsible for the design,
development, and administration of a web-based financial reporting system for a 450-
million-dollar organization, reporting directly to the CFO and his executive team.

Mr. Miller has also been responsible for managing and directing multiple resources in
various management roles, including project and team leader, lead developer, and
applications development director.

Mr. Miller has authored Cognos TM1 Developers Certification Guide, Mastering Splunk,
Learning IBM Watson Analytics, and a number of whitepapers on best practices such as
Establishing a Center of Excellence, and continues to post blogs on a number of relevant
topics based upon personal experiences and industry best practices. Jim is a perpetual
learner who continues to pursue experiences and certifications, and currently holds the
following current technical certifications:

IBM Certified Business Analyst - Cognos TM1
IBM Cognos TM1 Master 385 Certification (perfect score of 100% on exam)
IBM Certified Advanced Solution Expert - Cognos TM1
IBM Cognos TM1 10.1 Administrator Certification C2020-703 (perfect score of
100% on exam)
IBM OpenPages Developer Fundamentals C2020-001-ENU (98% on exam)
IBM Cognos 10 BI Administrator C2020-622 (98% on exam)
IBM Cognos 10 BI Professional C2020-180

His specialties include the evaluation and introduction of innovative and disruptive
technologies, cloud migration, big data, IBM Watson Analytics, Cognos BI and TM1
application Design and Development, OLAP, Visual Basic, SQL Server, Forecasting and
Planning, International Application Development, Business Intelligence, Project
Development and Delivery, and process improvement.

About the Reviewer
Dave Wentzel is a Data Solutions Architect for Microsoft. He helps customers with their
Azure Digital Transformation focused on data science, big data, and SQL Server. After
working with customers, he provides feedback and learnings to the product groups at
Microsoft to make better solutions. Dave has been working with SQL Server for many years,
and with MDX and SSAS since they were in their infancy. Dave shares his experiences at h t

t p ://d a v e w e n t z e l . c o m . He’s always looking for new customers. Would you like to
engage?

http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com
http://davewentzel.com

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thank you for purchasing this Packt book. We take our commitment to improving our
content and products to meet your needs seriously—that's why your feedback is so
valuable. Whatever your feelings about your purchase, please consider leaving a review on
this book's Amazon page. Not only will this help us, more importantly, it will also help
others in the community to make an informed decision about the resources that they invest
in to learn.

You can also review for us on a regular basis by joining our reviewers' club. If you're
interested in joining, or would like to learn more about the benefits we offer, please
contact us: customerreviews@packtpub.com.

Table of Contents
Preface 1

Chapter 1: Introduction to Big Data Visualization 6

An explanation of data visualization 7
Conventional data visualization concepts 9
Training options 10

Challenges of big data visualization 10
Big data 11
Using Excel to gauge your data 11
Pushing big data higher 12
The 3Vs 12

Volume 13
Velocity 13
Variety 14

Categorization 14
Such are the 3Vs 15
Data quality 15
Dealing with outliers 17
Meaningful displays 18
Adding a fourth V 19

Visualization philosophies 20
More on variety 21
Velocity 21
Volume 21
All is not lost 22

Approaches to big data visualization 23
Access, speed, and storage 23
Entering Hadoop 24
Context 25
Quality 26

Displaying results 28
Not a new concept 29
Instant gratifications 29
Data-driven documents 29
Dashboards 30
Outliers 31
Investigation and adjudication 32
Operational intelligence 33

Summary 35

[ii]

Chapter 2: Access, Speed, and Storage with Hadoop 36

About Hadoop 37
What else but Hadoop? 39
IBM too! 39

Log files and Excel 41
An R scripting example 42
Points to consider 45

Hadoop and big data 45
Entering Hadoop 45
AWS for Hadoop projects 46

Example 1 47
Defining the environment 47
Getting started 47
Uploading the data 53
Manipulating the data 56

A specific example 57
Conclusion 65

Example 2 65
Sorting 67
Parsing the IP 69

Summary 71

Chapter 3: Understanding Your Data Using R 72

Definitions and explanations 75
Comparisons 75
Contrasts 75
Tendencies 76
Dispersion 76

Adding context 77
About R 78

R and big data 78
Example 1 79
Digging in with R 81
Example 2 94

Definitions and explanations 94
No looping 95
Comparisons 96
Contrasts 98
Tendencies 100
Dispersion 102

Summary 105

[iii]

Chapter 4: Addressing Big Data Quality 106

Data quality categorized 106
DataManager 109
DataManager and big data 110
Some examples 110

Some reformatting 110
A little setup 111
Selecting nodes 112
Connecting the nodes 113
The work node 115
Adding the script code 116
Executing the scene 120
Other data quality exercises 121
What else is missing? 127
Status and relevance 128
Naming your nodes 132

More examples 133
Consistency 133
Reliability 133
Appropriateness 136
Accessibility 138
Other Output nodes 140

Summary 141

Chapter 5: Displaying Results Using D3 142

About D3 142
D3 and big data 144
Some basic examples 145

Getting started with D3 146
A little down time 155
Visual transitions 159
Multiple donuts 164

More examples 168
Another twist on bar chart visualizations 168
One more example 172
Adopting the sample 173

Summary 176

Chapter 6: Dashboards for Big Data - Tableau 177

About Tableau 177
Tableau and big data 178
Example 1 – Sales transactions 179

[iv]

Adding more context 180
Wrangling the data 181
Moving on 194
A Tableau dashboard 195
Saving the workbook 204
Presenting our work 205
More tools 207

Example 2 210
What's the goal? – purpose and audience 210
Sales and spend 212
Sales v Spend and Spend as % of Sales Trend 214
Tables and indicators 217
All together now 220

Summary 221

Chapter 7: Dealing with Outliers Using Python 222

About Python 222
Python and big data 223
Outliers 224

Options for outliers 224
Delete 224
Transform 225

Outliers identified 225
Some basic examples 226

Testing slot machines for profitability 226
Into the outliers 227
Handling excessive values 228
Establishing the value 229
Big data note 232
Setting outliers 232
Removing Specific Records 233
Redundancy and risk 234
Another point 234

If Type 234
Reused 235

Changing specific values 235
Setting the Age 236
Another note 237

Dropping fields entirely 238
More to drop 240

More examples 240
A themed population 241
A focused philosophy 242

[v]

Summary 243

Chapter 8: Big Data Operational Intelligence with Splunk 244

About Splunk 244
Splunk and big data 245

Splunk visualization – real-time log analysis 246
IBM Cognos 247
Pointing Splunk 249
Setting rows and columns 260
Finishing with errors 266
Splunk and processing errors 266

Splunk visualization – deeper into the logs 268
New fields 269
Editing the dashboard 277
More about dashboards 280

Summary 280

Index 281

Preface
The concepts and models necessary to efficiently and effectively visualize big data can be
daunting but are not unobtainable. Unfortunately, when it comes to big data, many of the
available data visualization tools, with their rudimentary functions and features, are
somewhat ineffective.

Using basic analytical concepts (reviewed in this book), you’ll learn to use some of the most
popular open source tools (and others) to meet these challenges and approach the task of
big data visualization to support better decision making.

What this book covers
Chapter 1, Introduction to Big Data Visualization, – starts out by providing a simple
explanation of just what data visualization is and then provides a quick overview of various
generally accepted data visualization concepts.

Chapter 2, Access, Speed, and Storage with Hadoop, aims to target the challenge of storing and
accessing large volumes and varieties (structured or unstructured) of data offering working
examples demonstrating solutions for effectively addressing these issues.

Chapter 3, Understanding Your Data Using R, explores the idea of adding context to the big
data you are working on with R.

Chapter 4, Addressing Big Data Quality, talks about categorized data quality and the
challenges big data brings to them. In addition, examples demonstrating concepts for
effectively addressing these areas are covered.

Chapter 5, Displaying Results Using D3, explores the process of visualizing data using a web
browser and Data-Driven Documents (D3) to present results from your big data analysis
projects.

Chapter 6, Dashboards for Big Data - Tableau, introduces Tableau as a data visualization tool
that can be used to construct dashboards and provides working examples demonstrating
solutions for effectively presenting results from your big data analysis in a real-time
dashboard format.

Preface

[2]

Chapter 7, Dealing with Outliers Using Python, focuses on the topic of dealing with outliers
and other anomalies as they relate to big data visualization, and introduces the Python
language with working examples of effectively dealing with data.

Chapter 8, Big Data Operational Intelligence with Splunk, offers working examples
demonstrating solutions for valuing big data by gaining operational intelligence (using
Splunk).

What you need for this book
Most of the tools and technologies used in this book are open source and available for no
charge. All of the others offer free trials for evaluation. With this book, and some basic
exposure to data analysis (or basic programming concepts) the reader will be able to gain
valuable insights to the world of big data visualization!

Who this book is for
The target audience of this book are data analysts and those with at least a basic knowledge
of big data analysis who now want to learn interesting approaches to big data visualization
in order to make their analysis more valuable. Readers who possess adequate knowledge of
big data platform tools such as Hadoop or have exposure to programming languages such
as R can use this book to learn additional approaches (using various technologies) for
addressing the inherent challenges of visualizing big data.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The next
lines of code reads the link and assigns it to the to the BeautifulSoup function."

A block of code is set as follows:

for row in reader:
 if (row['Denomination']) == 'Penny':
 if int(row['Coin-in'])<2000:
 x += int(row['Coin-in'])
 row_count += 1

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

row_count = 0
 aver_coin_in = 0.0
 x = 0.0
 y = 999
 z = 0.0

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

http://www.packtpub.com/authors

Preface

[4]

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /B i g - D a t a - V i s u a l i z a t i o n . We also have other code bundles from our rich catalog
of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from
https://www.packtpub.com/sites/default/files/downloads/BigDataVisualization_Col

orImages.pdf.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/Big-Data-Visualization
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/BigDataVisualization_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BigDataVisualization_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BigDataVisualization_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BigDataVisualization_ColorImages.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Introduction to Big Data

Visualization
Since this is the first chapter, it may be considered prudent to start out by providing a
simple explanation of just what data visualization is and then a quick overview of various
generally accepted data visualization concepts.

From there, we will proceed by pointing out the specific challenges that big data brings–to
the practice of visualizing data–and then finally we will tee up a number of approaches for
successfully creating valuable visualizations using big data sources.

After completing this chapter, the reader will be ready to start with the practical big data
visualization examples covered in this book's subsequent chapters; each of which will focus
on a specific big data visualization topic, using a specific trending tool or technology
thought to be well fitted (note that other tools or technologies may be available) to address
that particular topic or challenge.

We'll break down this first chapter into:

An explanation of data visualization
Conventional data visualization concepts
Challenges of big data visualization
Approaches to big data visualization

Introduction to Big Data Visualization

[7]

An explanation of data visualization
So what is data visualization? Simply put, one can think of the two words, data meaning
information/numbers and visualization meaning picturing, or picturing the information as
shown in the following figure:

Perhaps a simplistic example that can be used to define data visualization is the practice of
striking lines between stars in the night sky to create an image.

Imagine certain stars as the data points you are interested in (among the billions of other
stars that are visible in the sky) and connecting them in a certain order to create a picture to
help one visualize the constellation.

Voila! Data visualization!

Nowadays, it is reported within the industry that data visualization is regarded by many
disciplines as the modern equivalent of visual communication.

Okay, so then what is the point of or chief objective of visual communication or visualizing
your data?

The main point (although there are other goals and objectives) when leveraging data
visualization is to make something complex appear simple (or in our star example earlier,
perhaps to make a data pattern more visible to a somewhat untrained eye).

Introduction to Big Data Visualization

[8]

Communicating a particular point or simplifying the complexities of mountains of data
does not require the use of data visualization, but in some way today's world might
demand it. That is, the majority of the readers of this book would most likely agree that
scanning numerous worksheets, spreadsheets, or reports is mundane and tedious at best,
while looking at charts and graphs is typically much easier on the eyes. Additionally, the
fact is that we humans are able to process even very large amounts of data much quicker
when the data is presented graphically. Therefore, data visualization is a way to convey
concepts in a universal manner, allowing your audience or target to quickly get your point.

Other motives for using data visualization include:

To explain the data or put the data in context (that is, highlight demographical
statistics)
To solve a specific problem, (for example, identifying problem areas within a
particular business model)
To explore the data to reach a better understanding or add clarity (that is, what
periods of time does this data span?)
To highlight or illustrate otherwise invisible data (such as isolating outliers
residing in the data)
To predict, for example, potential sales volumes (perhaps based upon seasonality
sales statistics)

With computers, technology, and the corporate business landscape changing so rapidly
today (and all indications are that it will continue to change at an even faster pace in the
future), what can be considered the future of the art of data visualization?

As per Data Visualization: The future of data visualization, Towler, 2015:

“Data visualization is entering a new era. Emerging sources of intelligence, theoretical
developments, and advances in multidimensional imaging are reshaping the potential
value that analytics and insights can provide, with visualization playing a key role.”

With big data getting bigger (and bigger!), it is safe to undertake the notion that the use of
data visualization will only continue to grow, to evolve, and to be of outstanding value. In
addition, how one approaches the process and practice of data visualization will need to
grow and evolve as well.

Introduction to Big Data Visualization

[9]

Conventional data visualization concepts
Let's start out this section by clarifying what we mean when we say conventional.

In the context of this book, when I say conventional, I am referring to the ideas and methods
that have been used with some level of success within the industry over time (for data
visualization).

Although it seems that every day, new technologies and practices are being discovered,
developed, and deployed providing new and different options for performing ever more
ingenious real-time (or near real time) data visualization, understanding the basic concepts
for visualizing data is still essential.

To that point, gaining an understanding of just how to go about choosing the correct or
most effective visualization method is essential.

To make that choice, one typically needs to establish:

The size and volume of the data to be visualized.
The data's cardinality and context.
What is it you are trying to communicate? What is the point that you want to
communicate?
Who is your audience? Who will consume this information?
What kind or type of visual might best convey your message to your audience?

We have also been realistic that sometimes the approach taken or method
used is solely based upon your time and budget.

Based on the earlier and perhaps other particulars–and you most likely are already familiar
with these–the most common visualization methods/types include:

Table
Histogram
Scatter plot
Line, bar, pie, area, flow, and bubble charts
Data series or a combination of charts
Time line
Venn diagrams, data flow diagrams, and entity relationship (ER) diagrams

Introduction to Big Data Visualization

[10]

As I've mentioned earlier, as and when needs arise, newer or lesser known options are
becoming more main stream.

These include the following:

Word/Text/Tag clouds
Network diagrams
Parallel coordinates
Tree mapping
Cone trees
Semantic networks

Each of the earlier mentioned data visualization types/methods speak to a particular
scenario or target audience better than others–it all depends. Learning to make the
appropriate choice comes from experience as well as (sometimes) a bit of trial and error.

Training options
Due to the popularity of data visualization, there exist many formal training options,
(classroom and online) and new and unique training curriculums are becoming available
every day.

Coursework includes topics such as:

Channeling an audience
Understanding data
Determining informational hierarchies
Sketching and wire framing
Defining a narrative

Challenges of big data visualization
We're assuming that you have some background with the topic of data visualization and
therefore the earlier deliberations were just enough to refresh your memory and sharpen
your appetite for the real purpose of this book.

Introduction to Big Data Visualization

[11]

Big data
Let's take a pause here to define big data.

A large assemblage of data and datasets that are so large or complex that traditional data
processing applications are inadequate and data about every aspect of our lives has all been
used to define or refer to big data.

In 2001, then Gartner analyst Doug Laney introduced the 3Vs concept (refer to the
following link
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Cont

rolling-Data-Volume-Velocity-and-Variety.pdf). The 3Vs, according to Doug Laney, are
volume, variety, and velocity. The 3Vs make up the dimensionality of big data: volume (or
the measurable amount of data), variety (meaning the number of types of data), and
velocity (referring to the speed of processing or dealing with that data).

With this concept in mind, all aspects of big data become increasingly challenging and as
these dimensions increase or expand they will also encumber the ability to effectively
visualize the data.

Using Excel to gauge your data
Look at the following figure and remember that Excel is not a tool to determine whether
your data qualifies as big data:

http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

Introduction to Big Data Visualization

[12]

If your data is too big for Microsoft Excel, it still really doesn't necessarily qualify as big
data. In fact, gigabytes of data still are manageable with various techniques, enterprise, and
even open source tools, especially with the lower cost of storage today. It is important to be
able to realistically size the data that you will be using in an analytic or visualization project
before selecting an approach or technology (keeping in mind expected data growth rates).

Pushing big data higher
As the following figure illustrates, the aforementioned Volume, Variety, and Velocity have
and will continue to lift Big Data into the future:

The 3Vs
Let's take a moment to further examine the Vs.

Introduction to Big Data Visualization

[13]

Volume
Volume involves determining or calculating how much of something there is, or in the case
of big data, how much of something there will be. Here is a thought provoking example:

How fast does moon dust pile up?

As written by Megan Gannon in 2014,
(http://www.space.com/23694-moon-dust-mystery-apollo-data.html), a revisited trove
of data from NASA's Apollo missions more than 40 years ago is helping scientists answer a
lingering lunar question: how fast does moon dust build up? The answer: it would take
1,000 years for a layer of moon dust about a millimeter (0.04 inches) thick to accumulate (big
data accumulates much quicker than moon dust!).

With every click of a mouse, big data grows to be petabytes (1,024 terabytes) or even
Exabyte's (1,024 petabytes) consisting of billions to trillions of records generated from
millions of people and machines.

Although it's been reported (for example, you can refer to the following link:
http://blog.sqlauthority.com/2013/07/21/sql-server-what-is-the-maximum-relation

al-database-size-supported-by-single-instance/) that structured or relational database
technology could support applications capable of scaling up to 1 petabyte of storage, it
doesn't take a lot of thought to understand with that kind of volume it won't be easy to
handle capably, and the accumulation rate of big data isn't slowing any time soon.

It's the case of big, bigger (and we haven't even approached determining), and biggest yet!

Velocity
Velocity is the rate or pace at which something is occurring. The measured velocity
experience can and usually does change over time. Velocities directly affect outcomes.

Previously, we lived and worked in a batch environment, meaning we formulate a question
(perhaps what is our most popular product?), submit the question (to the information
technology group), and wait–perhaps after the nightly sales are processed (maybe 24 hours
later), and finally, we receive an answer. This is a business model that doesn't hold up now
with the many new sources of data (such as social media or mobile applications), which
record and capture data in real time, all of the time. The answers to the questions asked may
actually change within a 24-hour period (such is the case with trending now information
that you may have observed when you are online).

Given the industry hot topics such as Internet of Things (IoT), it is safe to say that these
pace expectations will only quicken.

http://www.space.com/23694-moon-dust-mystery-apollo-data.html
http://blog.sqlauthority.com/2013/07/21/sql-server-what-is-the-maximum-relational-database-size-supported-by-single-instance/
http://blog.sqlauthority.com/2013/07/21/sql-server-what-is-the-maximum-relational-database-size-supported-by-single-instance/

Introduction to Big Data Visualization

[14]

Variety
Thinking back to our previous mention of relational databases, it is generally accepted that
relational databases are considered to be highly structured, although they may contain text
in VCHAR, CLOB, or BLOB fields.

Data today (and especially when we talk about big data) comes from many kinds of data
sources, and the level in which that data is structured varies greatly from data source to
data source. In fact, the growing trend is for data to continue to lose structure and to
continue to add hundreds (or more?) of new formats and structures (formats that go
beyond pure text, photo, audio, video, web, GPS data, sensor data, relational databases,
documents, SMS, pdf, flash, and so on) all of the time.

Categorization
The process of categorization helps us to gain an understanding of the data source.

The industry commonly categorizes big data this way–into the two groups (structured and
unstructured)–but the categorizing doesn't stop there.

Some simple research reveals some interesting new terms for subcategorizing these two
types of data varieties:

Structured data includes subcategories such as created, provoked, transactional, compiled,
and experimental, while unstructured data includes subcategories such as captured and
submitted (just to name a few of the currently trending terms for categorizing the types of
big data. You may be familiar with or be able to find more).

It's worth taking some time here to speak about these various data formats (varieties) to
help drive the point to the reader of the challenges of dealing with the numerous big data
varieties:

Created data: This is the data being created for a purpose; such as focus group1.
surveys or asking website users to establish an account on the site (rather than
allowing anonymous access).
Provoked data: This is described as data received after some form of provoking,2.
perhaps such as providing someone with the opportunity to express the
individual's personal view on a topic, such as customers filling out product
review forms.

Introduction to Big Data Visualization

[15]

Transactional data: This is data that is described as database transactions, for3.
example, the record of a sales transaction.
Compiled data: This is data described as information collected (or compiled) on a4.
particular topic such as credit scores.
Experimental data: This is described as when someone experiments with data5.
and/or sources of data to explore potential new insights. For example, combining
or relating sales transactions to marketing and promotional information to
determine a (potential) correlation.
Captured data: This is the data created passively due to a person's behavior (like6.
when you enter a search term on Google, perhaps the creepiest data of all!).
User-generated data: This is the data generated every second by individuals,7.
such as from Twitter, Facebook, YouTube, and so on (compared to captured data,
this is data you willingly create or put out there).

To sum up, big data comes with no common or expected format and the time required to
impose a structure on the data has proven to be no longer worth it.

Such are the 3Vs
In addition to what we mentioned earlier, there are additional challenging areas that big
data brings to the table especially to the task of data visualization, for example, the ability to
effectively deal with data quality, outliers, and to display results in a meaningful way, to
name a few.

Again, it's worth quickly visiting each of these topics here now.

Data quality
The value of almost anything and everything is directly proportional to its level of quality
and higher quality is equal to higher value.

Introduction to Big Data Visualization

[16]

Data is no different. Data (any data) can only prove to be a valuable instrument if its quality
is certain.

The general areas of data quality include:

Accuracy
Completeness
Update status
Relevance
Consistency (across sources)
Reliability
Appropriateness
Accessibility

The quality of data can be affected by the way it is entered, stored, and managed and the
process of addressing data quality (referred to most often as quality assurance, data quality
assurance (DQA), requires a routine and regular review and evaluation of the data, and
performing on going processes termed profiling and scrubbing (this is vital even if the data
is stored in multiple disparate systems making these processes difficult).

Introduction to Big Data Visualization

[17]

Effective profiling and scrubbing of data necessitates the use of flexible, efficient techniques
capable of handling complex quality issues hidden deep in the depths of very large and
ever accumulating (big data) datasets.

With the complexities of big data (and its levels of volume, velocity, and variety), it should
be easy for one to recognize how problematic and restrictive the DQA process is and will
continue to become.

Dealing with outliers
The following is a simple figure introducing the concept of an outlier, that is, one lonesome
red dot separated from the group:

As per Sham Mustafa, founder and CEO of data scientist marketplace Correlation One:

“Anyone who is trying to interpret data needs to care about outliers. It doesn't matter if
the data is financial, sociological, medical, or even qualitative. Any analysis of that data or
information must consider the presence and effect of outliers. Outliers (data that is
“distant” from the rest of the data) indicating variabilities or errors – need to be identified
and dealt with.”

For clarification, you might accept the notion that an outlier is an observation point that is
distant or vastly different from other observations (or data points) in a sum of data.

Once identified, regularly accepted methods for dealing with these outliers may be
(simply?) moving them to another file or replacing the outliers with other more reasonable
or appropriate values. This way of outlier processing is perhaps not such a complicated
process, but is one that must be seriously thought out and rethought before introducing any
process to identify and address outliers in a petabyte or more of data.

Introduction to Big Data Visualization

[18]

Another point to consider is, are the outliers you identify in your data an indicator that the
data itself is bad or faulty or are the outliers' random variations caused by new and
interesting points or characteristics within your data?

Either way, the presence of outliers in your data will require a valid and (especially in the
case of big data) a robust method for dealing with them.

Meaningful displays
Rather than words or text, the following diagram clearly demonstrates the power of a
visualization when conveying information:

A picture is worth a thousand words and Seeing is believing are just two adages that elucidate
the powers of data visualization.

Introduction to Big Data Visualization

[19]

As per Millman/Miller Data Visualization: Getting Value from Information 2014:

“The whole point of data visualization is to provide a visual experience.”

Successfully conducting business today requires that organizations tap into all the available
data stores finding and analyzing relevant information very quickly, looking for indications
and insights.

Data visualization is a key technique permitting individuals to perform analysis, identify
key trends or events, and make more confident decisions much more quickly. In fact, data
visualization has been referred to as the visual representation of business intelligence and
industry research analyst Lyndsay Wise said in an article back in 2013:

“Even though there is plenty that users can accomplish now using data visualization, the
reality is that we are just at the tip of the iceberg in terms of how people will be using this
technology in the future.”

Refer to the following link for more information:

https://tdwi.org/articles/2013/04/02/Data-Visualization-Boosts-BI-Value.aspx

Adding a fourth V

The idea of establishing and improving the quality levels of big data might also be classified
as the fourth V: veracity. Data that is disparate, large, multiformatted, and quick to
accumulate and/or change (also known as big data) causes uncertainty and doubt (can I
trust this data?). The uncertainty that comes with big data may cause the perhaps valuable
data to be excluded or over looked.

https://tdwi.org/articles/2013/04/02/Data-Visualization-Boosts-BI-Value.aspx

Introduction to Big Data Visualization

[20]

As we've already mentioned, big data visualization forces a rethinking of the massive
amounts of both structured and unstructured data (at great velocity) and unstructured data
will always contain a certain amount of uncertain and imprecise data. Social media data, for
example, is characteristically uncertain.

A method for dealing with big data veracity is by assigning a veracity grade or veracity
score for specific datasets to evade making decisions based on analysis of uncertain and
imprecise big data.

Although big data may well offer businesses exponentially more opportunities for
visualizing their data into actionable insights, it also increases the required effort and
expertise to do so (successfully and effectively).

Again, the same challenges are presented; such as accessing the level of detail needed from
perhaps unimaginable volumes of levels of data, in an ever-growing variety of different
formats–all at a very high speed–is noticeably difficult.

Visualization philosophies
A meaningful display requires you to pay attention to various proven practice philosophies;
these concepts include (but are not limited to):

The proper arrangement of related information
Appropriately using color(s)
Correctly defining decimal placements
Limiting the use of 3D effects or ornate gauge designs

The reader should take note that this book is not intending to cover all of the fundamental
data visualization techniques, but is focusing on the challenges of big data visualization
practices and it is assumed that the reader has general knowledge of and experience with
the process of data visualization. However, one who may be interested in the topic should
perhaps take some time to review the idea of the Data-Ink Ratio introduced by Edward Tufte.
Tufte does an excellent job in introducing and explaining this concept in the best-selling
book The Visual Display of Quantitative Information, Edward R. Tufte, January 2001.

Introduction to Big Data Visualization

[21]

More on variety
Without context, data is meaningless and the same applies to visual displays (or
visualizations) of that data.

For example, data sourced from social media may present entirely different insights
depending on user demographics (that is, age group, sex, or income bracket), platform (that
is, Facebook or Twitter), or audience (those who intend to consume the visualizations).

Acquiring a proper understanding (establishing a context) of the data takes significant
domain expertise as well as the ability to properly analyze the data; big data certainty
complicates these practices with its seemingly endless number of formats and varieties of
both structured and unstructured data.

Velocity
Even if you are able to assign the appropriate context to your data, the usability or value of
the data will be (at least) reduced if the data is not timely. The effort and expense required
to source, understand, and visualize data is squandered if the results are stale, obsolete, or
potentially invalid by the time the data is available to the intended consumers. For example,
when a state government agency is preparing a budget request for the governor, the most
up-to-date consensus figures are vital; without accuracy, here, the funds may fall short of
the actual needs.

The challenge of speedily crunching numbers exists within any data analysis, but when
considering the varieties and volumes of data involved in big data projects, it becomes even
more evident.

Volume
It may (or may not) be evident to the reader that too much information displayed in one
place can cause the viewer to have what is referred to as sensory overload and that simple
restrictions such as real estate (the available viewing space on a web page or monitor) can
(and most likely will) be detrimental to the value of a visualization trying to depict too
many data points or metrics.

In addition, complicated or intricate visuals or those that attempt to aggregate or otherwise
source a large number of data sources most likely will be hindered by the experience of
slow performance. In other words, the more data you need to process to create or refresh
your visualization, the longer wait time there will most likely be, which will increase
audience frustration levels and usability and value of the visualization.

Introduction to Big Data Visualization

[22]

Beyond the earlier mentioned pitfalls, when dealing with big data, even creating a simple
bar graph visualization can be overwhelmingly difficult since attempting to plot points for
analysis with extremely large amounts of information or a large variety of categories of
information simply won't work.

Visualizations of data should be used to uncover trends and spot outliers much quicker
than using worksheets or reports containing columns and rows of numbers and text, but
these opportunities will be lost if care is not taken to address the mentioned challenges.

Users can leverage visualizations such as a column chart, for example, to see where sales
may be headed or to identify topics that need attention at a glance or glimpse. But imagine
trying to churn through and chart twenty billion records of data! Even if the data could be
processed into a visualization, anyone trying to view that number of plots within a single
visualization will have a very difficult time just viewing so many data points.

All is not lost
Thankfully, there are various approaches (or strategies) that have come to exist and can be
used for preparing effective big data visualizations as well as addressing the hindrances
we've mentioned (variety, velocity, volume, and veracity).

Some of the examples include:

You can change the type of the visualization, for example, switching from a
column graph to a line chart can allow you to handle more data points within the
visualization.
You can use higher-level clustering. In other words, you can create larger,
broader stroke groupings of the data to be represented in the visualization (with
perhaps linked subcharts or popups allowing a selected grouping to be broken
out into subgroupings) rather than trying to visualize an excessive number of
groups.
You can remove outliers from the visualization. Outliers typically represent less
than 5 percent of a data source, but when you're working with massive amounts
of data, viewing that 5 percent of the data is challenging. Outliers can be removed
and if appropriate, be presented in a separate data visualization.
You can consider capping, which means setting a threshold for the data you will
allow into your visualization. This cuts down on the range or data making for a
smaller, more focused image.

These strategies (and others) help, but aren't really sufficient when it comes to working with
big data.

Introduction to Big Data Visualization

[23]

The remaining chapters of this book are outlined later in this chapter and I will provide
practical approaches and solutions (with examples) to consider for successful big data
visualization.

Approaches to big data visualization
When it comes to the topic of big data, simple data visualization tools with their basic
features become somewhat inadequate. The concepts and models necessary to efficiently
and effectively visualize big data can be daunting, but are not unobtainable.

Using workable approaches (studied in the following chapters of this book) the reader will
review some of the most popular (or currently trending) tools, such as:

Hadoop
R
Data Manager
D3
Tableau
Python
Splunk

This is done in an effort to meet the challenges of big data visualization and support better
decision making.

It is expected that our reading audience would be data analysts or those having at least
basic knowledge of data analysis and visualization and now are interested in learning about
the various alternatives for big data visualization in order to make their analysis more
useful, more valuable, and hopefully have some fun doing it!

Readers holding some knowledge of big data platform tools (such as Hadoop) and having
exposure to programming languages (such as perhaps R or Python) will make the most of
the remaining chapters, but all should benefit.

Access, speed, and storage
We've already touched on the 3Vs (plus veracity), which include the challenges of both the
storing of the large and ever-growing amounts (volumes) of data as well as being able to
rapidly (with velocity) access, manipulate, and manage that data.

Introduction to Big Data Visualization

[24]

Chapter 2, Access, Speed, and Storage with Hadoop, of this book will expound on this topic
and introduce Hadoop as the game changing technology to use for this purpose.

Dealing with expanding data sizes may lead to perpetually expanding a machines
resources, to cover the expanding size of the data. Typically, this is a short-lived solution.

When dealing with data too large to handle with a single machine's memory (that is, big
data) a common approach is to sample the data, meaning that basically you try to construct
a smaller dataset from the full dataset that you feel is reasonably representative (of the full
dataset). Using Hadoop, you have the ability to run many exploratory data analysis tasks
on full datasets, without sampling, with the results efficiently returned to your machine or
laptop.

Entering Hadoop
Hadoop removes the restrictions and limitations that hardware levies on the storage of big
data by providing the ability to streamline data (from every touch point in any
organizational data source, whether the data is structured or unstructured) for your needs
across clusters of computers (which means this solution is basically infinitely scalable) using
simple programming models.

The Hadoop online product documentation points out:

“Data which was previously too expensive to store, can now be stored and made available
for analysis to improve business insights at 1/10 to 1/50 the cost on a per terabyte basis.”

Refer to the following link for more information
www.mapr.com/why-hadoop/game-changer2016.

We'll cover working examples to demonstrate solutions for effectively storing and accessing
big data, but the reader should take note that Hadoop also works well with smaller
amounts of data (as well as the infinity large amounts) so you can be sure that any example
used in this book will not have to be reworked based upon the actual size (or actual
volume) of data you may be using in your future analysis projects.

In an effort to paint a complete picture here (and we'll do this throughout all of the
chapters), we will also take some time and consider the how and why of non-Hadoop (or
alternate) solutions to the examples given–and considering how well they may compare to a
Hadoop solution.

Introduction to Big Data Visualization

[25]

Context
When it comes to performing data analytics, facts can be stupid and stubborn things. They
can provide us with the business intelligence metrics we long for, but without predictive
analytics based on contextual interpretation, we may find ourselves using skewed
quantitative analysis that produces less-than-desirable results.

The appropriate use of context in analytics makes all the difference toward
achieving optimal results, a Business@American staff article, which is available
at
https://onlinebusiness.american.edu/how-do-we-use-data-for-good-

add-context/.

In Chapter 3, Context – Understanding Your Data Using R, of this book, the importance of
gaining an understanding of the data you are working with and specifically, the challenges
of establishing or adding context to big data will be covered with working examples
demonstrating solutions for effectively addressing the issues that are presented.

Adding context to data requires manipulation of that data to review and perhaps reformat,
adding calculations, aggregations, or additional columns or re-ordering, and so on.

In Chapter 3, Context – Understanding Your Data Using R, we will introduce the R
programming tool as the choice for performing this type of processing and manipulating
your data.

R is a language and environment very focused on statistical computing.

R provides a wide variety of statistical (linear and nonlinear modeling, classical statistical
tests, time-series analysis, classification, clustering, and so on) and graphical techniques,
and it is highly extensible. You can refer to more information on this at
www.r-project.org/about.html.

Beyond the perhaps more sophisticated modeling techniques such as performing a time-
series analysis, R also supports the need for performing simple tasks such as creating a
summary table, which can be used to determine data groupings.

One thing to keep in mind is that R preserves everything in machine memory.

This can become a problem if you are working with big data (even with the introduction of
the low resource costs of today).

With R, sampling is a popular method for dealing with big data. In Chapter 3, Context –
Understanding Your Data Using R, our focus is on gaining context of data, so sampling is
acceptable.

https://onlinebusiness.american.edu/how-do-we-use-data-for-good-add-context/
https://onlinebusiness.american.edu/how-do-we-use-data-for-good-add-context/
http://www.r-project.org/about.html

Introduction to Big Data Visualization

[26]

R is great for manipulating and cleaning data, producing probability statistics, as well as
actually creating visualizations with data, so it's a good choice for establishing a context for
your data.

Quality
It has been said that beauty is in the eyes of the beholder, and the same can be said when
trying to define data quality. What this means is if the data meets your level of expectations
or, at least the minimal of requirements of a particular project, then it has some form or
level of quality.

Data can have acceptable quality even if there are known complications with it. These
complications can be overcome with processes we'll discuss later or, if appropriate, simply
overlooked.

Even though your data may contain acceptable complications, the reader should be sure to
make no mistake such that any data visualization created based upon this data will only
prove to be a valuable tool if the quality of that data is assured to be at the level required.
However, when using large volumes of data, it can become extremely difficult to address
the quality of the data.

There are many examples of the effects of poor data quality, such as the following, which
was written in an article by Sean Jackson
(http://www.actian.com/about-us/blog/never-underestimate-importance-good-data-q
uality/):

“A business professional could not understand why response rates to campaigns and
activities were so low. Nor why they couldn't really use analytics to get any competitive
advantage. A quick investigation of their data and systems soon showed that a large section
of the data they were using was either out-of-date, badly formatted, or just erroneous.”

Data quality solutions must enable you to clean, manage, and make reliable data available
across your organization.

Chapter 4, Addressing Big Data Quality, of this book offers working examples demonstrating
solutions for effectively assessing and improving the level of quality of big data sources.

Typically, the first step in determining the quality of your data is performing a process
referred to as profiling the data (mentioned earlier in this chapter). This is sort of an overall
auditing process that helps you examine and determine whether your existing data sources
meet the quality expectations or perhaps standards of your intended use or purpose.

http://www.actian.com/about-us/blog/never-underestimate-importance-good-data-quality/
http://www.actian.com/about-us/blog/never-underestimate-importance-good-data-quality/

Introduction to Big Data Visualization

[27]

Profiling is vitally important in that it can help you identify concerns that may exist within
the data that attending to up front (before going on and actually creating a data
visualization) will save valuable time (rather than having to process and reprocess the poor
qualities of the data later). In fact, more importantly, it can save you from creating and
presenting a visualization that contains an inaccurate view of the data.

Data profiling becomes even more critical when working with perhaps unstructured raw
data sources (or data that is a mix of structured and unstructured data) that do not have
referential integrity or any other quality controls. In addition, single source (data sourced
from only a single place) and multisource data (a dataset that is sourced from more than
one place) will most likely have additional opportunities for data concerns.

Concerns found in single sources are typically intensified when multiple sources need to be
integrated into one dataset for a project. Each source may contain data concerns, but in
addition, the same data in different data sources may be represented differently, overlap, or
contradict.

Typical profiling tasks include the following:

Identifying fields/columns within the data
Listing field/column attributes and statistics such as column lengths and value
distribution percentages
Reviewing field/column value distributions
Null ratios
Reporting of value statistics such as minimum, maximum, average, and standard
deviation for numeric columns, and minimum and maximum for date and time
columns
Identifying all the distinct values in the data
Identifying patterns and pattern distributions within the data

The goal of these tasks (and others) is to (as the name implies) establish your data's profile
by determining its characteristics, relationships, and patterns within the data and,
hopefully, produce a clearer view of the content and quality of your data, that is, the data
profile.

After profiling, one would most likely proceed with performing some form of scrubbing
(also sometimes referred to as cleansing or in some cases preparing) of the data (to improve
its quality, also mentioned earlier in this chapter).

Introduction to Big Data Visualization

[28]

The processes of cleansing data may be somewhat or even entirely different, depending
upon the data's intended use. Because of this, the task of defining what is to be determined
an error is the critical first step to be performed before any processing of the data. Even
what is done to resolve the defined errors may differ, again based upon the data's intended
use.

During the process of cleansing or scrubbing your data, you would perform tasks such as
perhaps reformatting fields or adding missing values, and so on.

Generally, scrubbing is made up of the following efforts:

Defining and determining errors within the data–what do you consider an error?
Searching and identifying error instances–once an error is defined, where do they
exist in your data?
Correction of the errors–remove them or update them to acceptable values.
Error instance and document error types–or labeling (how was the error
determined and what was done to resolve it).
Updating the entry mechanism to avoid future errors–create a process to make
sure future occurrences of this type are dealt with.

In Chapter 4, Addressing Big Data Quality, we've elected to continue (from the previous
chapter) to leverage the R programming language to accomplish some of the profiling work
and also introduce and use the open source data manager utility for manipulating our data
and addressing the quality.

Data manager is an excellent utility available as a library of Java code that is aimed at data
synchronization work for moving data between different locations and different databases.

Displaying results
Data visualization is when you manually or otherwise organize and display data in a
pictorial or graphic format in an attempt to enable your audience to:

See the results of your analysis efforts more clearly
Simplify the complexities within the data you are using
Understand and grasp a point that you are using the data to make

Introduction to Big Data Visualization

[29]

Not a new concept
This concept of using pictures–typography, color, contrast, and shape–to communicate or
understand data is not new and has been around for literally centuries, from the manual
creation of maps and graphs in the 17th century to the invention of the pie chart in the early
1800s.

Today, computers can be used to process large amounts of data lightning fast to make
visualizations tremendously more valuable. Going forward, we can expect the data
visualization process to continue to evolve, perhaps as more of a mixture of art and science
rather than a numbers crunching technology.

Instant gratifications
An exciting example of the data visualization evolutionary process is how the industry has
moved data visualizations past the process of generating and publishing charts and graphs
for an audience to review and deliberate on to now having set up an expectation for
interactive visualizations.

With interactive visualization, we can take the concept of data visualization much, much
further by using technology to allow the audience to interact with the data; giving the user
the self-service ability to drill down into the generated pictures, charts, and graphs (to
access more or specific details), interactively in real time (or near real time) to change what
data is displayed (perhaps a different time frame or event) and how it's processed and/or
presented (maybe select a bar graph rather than a pie chart).

This allows visualizations to be much more effective and personalized.

In Chapter 5, Displaying Results with D3, we will go through the topic of displaying the
results of analysis on big data using a typical web browser using Data Driven Documents
(D3) in a variety of examples. D3 allows the ability to apply prebuilt data visualizations to
datasets.

Data-driven documents
Data Driven Documents is referred within the open community as D3.

D3 is an open source library written in JavaScript. The objective is to allow for easily
manipulating documents based upon data using standard web browsing technologies (such
as HTML or CSS). Its value-add is to provide you with full capabilities without having to
build your own or strapping yourself to some proprietary framework.

Introduction to Big Data Visualization

[30]

These library components give you excellent tools for big data visualization and a data-
driven approach to DOM manipulation. D3's functional style allows the reuse of library
code modules that you've already built (or others have already built) adding pretty much
any particular features you need or want (or don't want) to. This creates a means that can
become as powerful as you want it (or have the time to make it) to be, to give a unique style
to your data visualizations, manipulate and make it all interactive–exactly how you want or
need it to be.

Dashboards
As discussed earlier in this chapter, big data is collecting and accumulating daily, in fact;
minute-by-minute and there is a realization that organizations rely on this information for a
variety of reasons.

Various types of reporting formats are utilized on this data, including data dashboards.

As with everything, there are various apprehensions as to the most accurate definition of
what a data dashboard is.

For example, A. Chiang writes:

“A dashboard is a visual display of the most important information needed to achieve one
or more objectives; consolidated and arranged on a single screen so the information can be
monitored at a glance.”

Refer to the following link for more information:
http://www.dashboardinsight.com/articles/digital-dashboards/fundamentals/what-i

s-a-dashboard.aspx.

Whatever the definition, any dashboard has the capacity for supplying timely, important
information for its audience to use in decision making, if it is well designed and
constructed.

It is critical that dashboards present data in a relevant, concise, and well-thought-out
manner (not just a collection of visual representations in a workbook or spreadsheet) and in
addition, dashboards have to have a supporting infrastructure capable of refreshing the
dashboard in a well-timed manner as well as including some form of DQA. Making
decisions based upon a dashboard with incorrectly presented, stale, or even incorrect data
can lead to disaster.

http://www.dashboardinsight.com/articles/digital-dashboards/fundamentals/what-is-a-dashboard.aspx
http://www.dashboardinsight.com/articles/digital-dashboards/fundamentals/what-is-a-dashboard.aspx

Introduction to Big Data Visualization

[31]

Chapter 6, Dashboard for Big Data – Tableau, of this book offers examination of the topic of
effective dashboarding and includes working examples demonstrating solutions for
effectively presenting results based upon your big data analysis in a real-time dashboard
format using Tableau.

Tableau is categorized as business intelligence software designed to help people see and
understand data; more than just a code library, Tableau is considered to be a suite or a
family of interactive data visualization products.

Tableau's structure allows us the ability to combine multiple views of data from multiple
sources into a single, highly effective dashboard that can provide the data consumers with
much richer insights. Tableau also works with a variety of formats of (both structured and
unstructured) data and can handle the volumes of big data, literally, petabytes or terabytes,
millions or billions of rows, turning that big data into valuable visualizations for targeted
audiences.

To address the velocity of today's big data world, you can use Tableau to connect directly to
local and cloud data sources, or just import your data for fast in-memory (more on in-
memory later in this book) performance.

Another goal of Tableau is self-service analytics (which we mentioned earlier in this chapter
and will talk more about later on), where a user can have a dialog with selected data to ask
questions (in real time, not in a batch mode) using easy point-and-click analytics to mine big
data intuitively and effectively discovering understandings and opportunities that may
exist within the dataset or datasets.

Some of the more exciting abilities Tableau offers include:

Real-time drag-and-drop cluster analysis
Cross data source joining
Powerful data connectors
Mobile enabled
Real-time territory or region data exploration

Outliers
In Chapter 7, Dealing with Outliers Using Python, we will dive into Outliers.

As was defined earlier in this chapter, an outlier is an observation point that is distant or
vastly different from the other observed data points within the data.

Introduction to Big Data Visualization

[32]

Although outliers typically represent (only) about 1 to 5 percent of your data, when you're
working with big data, investigating, or even just viewing, 1 to 5 percent of that data is
rather difficult.

Investigation and adjudication
Outliers, you see, can be determined to be noninfluential or very influential to the point you
are trying to make with your data visualization.

The act or process of making this determination is critically important to your analysis, but
it is also very problematic when dealing with the larger volumes, many varieties, and
velocities of big data. For example, a fundamental step to help make this determination is
called the sizing of your samples, which is the main mathematical process of calculating the
percentage of outliers to the size of the data sample, which is not so simple a task when the
data is in petabytes or terabytes!

Identifying and removing outliers can be tremendously complicated and there are many
differences in opinions as to how to go about determining the percentage of outliers that
exist in your dataset as well as determining their effect on the data and deciding what to do
with them. It is, however, generally accepted that an automated process can be created that
can facilitate at least the identification of outliers, possibly even through the use of
visualization.

Carrying on, all the approaches for the investigation and adjudication of outliers such as
sorting, capping, graphing, and so on require manipulating and processing of the data
using a tool that is feature–rich and robust.

This chapter offers working examples demonstrating solutions for effectively and efficiently
identifying and dealing with big data outliers (as well as some other dataset anomalies)
using Python.

Python is a scripting language that is extremely easy to learn and incredibly readable, since
its coding syntax so closely resembles the English language.

According to the article, The 9 most in-demand programming languages of 2016, by Bouwkamp,
available at
http://www.codingdojo.com/blog/9-most-in-demand-programming-languages-of-2016,
Python is listed in the top most in-demand programming languages (at the time of writing).

Born as far back as 1989 and created by Guido van Rossum, Python is actually very simple in
nature, but it is also considered by the industry to be extremely powerful, fast, and it can be
run in almost any environment.

http://www.codingdojo.com/blog/9-most-in-demand-programming-languages-of-2016

Introduction to Big Data Visualization

[33]

As per www.python.org:

“Open sourced (and free!), Python is part of the winning formula for productivity,
software quality, and maintainability at many companies and institutions around the
world.”

There is a growing interest within the industry to utilize the Python language for data
analysis and even for big data analysis and it is the exceptional choice for the data scientist
to perform typical day to day activities as it provides libraries, in fact a standard library
(even some focusing specifically on big data, such as Pydoop and SciPy) to accomplish
almost anything you need or want to do with the data you have or are accumulating,
including:

Automations
Building websites and web pages
Accessing and manipulating data
Calculating statistics
Creating visualizations
Reporting
Building predictive and explanatory models
Evaluating models on additional data
Integrating models into production systems

As a final note here, Python's standard library is very extensive, offering a wide range of
built-in modules that provide access to system functionalities, as well as standardized
solutions to solve many problems that occur in everyday programming making this an
obvious choice to explore for dealing with big data outliers and related processing.

Operational intelligence
In Chapter 8, Big Data Operational Intelligence with Splunk, of this book, we concentrate on
big data Operational Intelligence.

Operational intelligence (OI) is a type of analytics that attempts to deliver visibility and
insight from (usually machine generated) operational or event data, running queries against
streaming data feeds in real time, producing analytic results as operational instructions,
which can be immediately acted upon by an organization, through manual or automated
actions (a clear example of turning datasets into value!).

http://www.python.org

Introduction to Big Data Visualization

[34]

Sophisticated OI systems also provide the ability to associate metadata with certain metrics,
process steps, channels, and so on, found within data. With this ability, it becomes easy to
acquire additional related information, for example, machine-generated operational data is
typically full of unique identifiers and result or status codes. These codes or identifiers may
be efficient for processing and storage, but are not always easily interpreted by human
beings. To make this data more readable (and therefore more valuable) we can associate
additional information that is more user friendly with the data results–possibly in the form
of a status or event description or perhaps a product name or machine name.

Once there is an understanding of the challenges of applying basic analytics and
visualization techniques to operational big data, the value of that data can be better or more
quickly realized. In this chapter, we offer working examples demonstrating solutions for the
valuing of operational or event big data with operational intelligence using Splunk.

So, what is Splunk? H. Klein says:

“Splunk started out as a kind of “Google for Log files”. It does a lot more… It stores all your
logs and provides very fast search capabilities roughly in the same way Google does for the
internet…” — https://helgeklein.com/blog/2014/09/splunk-work/

Splunk software is a great tool to help unlock hidden value in machine generated,
operational data (as well as other types of data). With Splunk, you can collect, index, search,
analyze, and visualize all your data in one place, providing an integrated method to
organize and extract real-time insights from massive amounts of (big data) machine data
from virtually anywhere.

Splunk stores data in flat files, assigning indexes to the files. Splunk doesn't require any
database software running in the background to make this happen. Splunk calls these files
indexers. Splunk can index any type of time-series data (data with timestamps), making it
an optimal choice for big data OI solutions. During data indexing, Splunk breaks data into
events based on the timestamps it identifies.

Although using simple search terms will work, (for example, a machine ID) Splunk also
offers its own Search Processing Language (SPL). Splunk SPL (think of it as kind of like
SQL) is an extremely powerful tool for searching enormous amounts of big data and
performing statistical operations on what is relevant within a specific context.

There are multiple versions of Splunk, including a free version that is pretty much fully
functional.

Introduction to Big Data Visualization

[35]

Summary
In this chapter, we were offered an explanation of just what the term data visualization
means and discussed the industry accepted conventional visualization concepts.

In addition, we introduced the challenges of working with big data and outlined the topics
and technologies that the rest of this book will present.

In the next chapter, we address volume, speed, and velocity using Hadoop.

2
Access, Speed, and Storage

with Hadoop
This chapter aims to target the challenge of storing and accessing large volumes and
varieties (structured or unstructured) of data offering working examples demonstrating
solutions for effectively addressing these issues.

Since it is expected that you are somewhat familiar with Hadoop, this chapter starts with a
brief overview of the technology, but doesn't intend to cover all of the details as the goal is
to provide a demonstration using Hadoop as a technology to address the challenge of
storing and accessing big data.

In addition, in an effort towards completeness, we'll touch on the possible alternatives to
using Hadoop, such as Apache Spark and even a simple scripting solution.

By the end of this chapter, the reader should have an idea of what Hadoop is and how it
works, should have acquired an appreciation for the reasoning for leveraging Hadoop to
store, and should have accessed big data and also have worked through example solutions
using Hadoop.

We'll break down this chapter like this:

About Hadoop
Log files and Excel
Hadoop and big data
Example 1
Example 2

Access, Speed, and Storage with Hadoop

[37]

About Hadoop
Let's start out with an explanation of Hadoop that is generally circulated.

As per Apache Hadoop wikipedia.org, 2016:

“Hadoop is an open-source software “framework” for distributed storage and distributed
processing (of very large datasets) on computer clusters built from commodity hardware.”

The following is a visualization that may help understand the master-to-slave architecture
used by Hadoop:

Hadoop uses an architecture called MapReduce. This is a design that designates a processor
(in a cluster of processors) as the master, which controls distributing or mapping tasks to
other slave processors to process your data, thus reducing the processing performed by the
cluster of processors to a single output result. So, you can now see that the name mapped
reduction or MapReduce (of processing tasks) makes sense.

Access, Speed, and Storage with Hadoop

[38]

Hadoop is able to take your data and split it up (or distribute it) over a number of
computers that have space or resources available.

These computers need not be high-end, overcapable devices (that is, they can be easily
available, average machines that are therefore called commodities), they just need to be
named as part of a group or cluster available to the Hadoop framework. That's the first part
of the magic, the other side of Hadoop is that it keeps track of where every file was placed
and is able to make it all available (seemingly as one coherent database) with minimal
response time. It is important to note that simply scattering files of data about isn't all that
clever; what is clever is that Hadoop is capable of knowing which computers are closest to
the data it wants to access at any time. This vastly cuts down on network traffic that would
be caused by searching for specific data when needed (that is, now where did I put that
file?).

Hadoop FAQs (Hadoop, WhatIs.com Rouse 2015) include:

Hadoop is free
Hadoop is Java-based
Hadoop was initially released in 2011
Hadoop is part of the Apache project sponsored by the Apache Software
Foundation (ASF)
Hadoop was inspired by Google's MapReduce, a software framework in which
an application is broken down into numerous small parts
Hadoop was named after its creator's (Doug Cutting) child's stuffed toy elephant
Hadoop consists of the Hadoop kernel, MapReduce, the Hadoop Distributed
File System (HDFS), and a number of related projects such as Apache Hive,
HBase, and Zookeeper
The Hadoop framework is used by major players, including Google, Yahoo, and
IBM, largely for applications involving search engines and advertising
The preferred operating systems are Windows and Linux, but Hadoop can also
work with BSD and OS X

Certainly, there are many more interesting Hadoop FAQs, but I'm sure that you get the
picture, so let's move on.

http://WhatIs.com

Access, Speed, and Storage with Hadoop

[39]

What else but Hadoop?
Is Hadoop the only choice for storing and processing your big data?

You'll perhaps find that Hadoop is the tool that is most known for handling big data. In
fact, there are misconceptions with some that when talking about big data, you're talking
about Hadoop or, if discussing Hadoop, you're discussing big data.

Obviously, that notion is incorrect.

In fact, there are a number of alternatives to using Hadoop and some are gaining popularity
every day. There are (as with any technology choice) both pros and cons with choosing to
implement Hadoop and those (among other reasons) are driving the interest in other
options.

Two popular alternatives to Hadoop are Apache Spark and Cluster MapReduce.

Apache Spark is open source (like Hadoop), runs in-memory, and promises faster speed
than Hadoop and offers unique application programming interface (API). Cluster
MapReduce was developed on top of the Hadoop MapReduce framework concepts by an
online ad company that was using Hadoop but wanted more. Compared to Hadoop,
Cluster MapReduce supposedly offers a more efficient solution that:

Uses more straightforward creation of data queries
Has a lighter footprint
Has greater ability to be customized
Has more resilience to failures

IBM too!
It would be prudent to take a moment here to consider IBM's enterprise version of Hadoop.

IBM has taken the Hadoop concepts and created their own version of a Hadoop-like
platform (IBM Open Platform) for big data projects using the most current Apache Hadoop
open source content. This is offered as a free download and (as one would expect) there is
also a paid support offering, should you be interested (perhaps in an effort to instill
confidence in an organization considering developing with an open source tool?).

Access, Speed, and Storage with Hadoop

[40]

In addition, IBM offers the IBM BigInsights Quick Start edition, which combines their open
platform with what they are calling enterprise-grade features for data visualization (and
advanced analytics) projects.

You can review this at:
www.ibm.com/analytics/us/en/technology/hadoop.

So, there really are other options (rather than using Hadoop) and more will come.

Hadoop is, without question, extremely powerful, but it uses complex methods for moving
data and isn't all that efficient when dealing with unstructured data (a data type
increasingly prevalent today). Given the new options, the aforementioned automatic
association of big data and Hadoop is becoming less observed.

In this book, we are using Hadoop, but those who deal with big data or unstructured data
would be judicious to scope out all the available options (including simple scripting
alternatives) when considering their own needs.

Part of any project decision making process is getting intimate with the detailed
requirements. On the topic of data visualization, it is imperative to know your data
intimately. One big decision to make first is, does your data really qualify as big data?

In an article named The Big Data Conundrum: How to Define it? by Stuart Ward, he writes:

“Some organizations point out that large datasets are not always complex and small
datasets are not always simple. Their point is that the complexity of a dataset is an
important factor in deciding whether it is “big.”

An interesting point here is data that is overly complex in nature can be considered big data
and require the big data mindset (even though you may not be dealing with large volumes
of data).

Before getting started with Hadoop and our Hadoop example use cases, let's take a few
moments to consider a simpler solution, such as simple data file processing with a scripting
language.

http://www.ibm.com/analytics/us/en/technology/hadoop

Access, Speed, and Storage with Hadoop

[41]

Log files and Excel
Let's consider a somewhat realistic use case where you have been provided a number of
modified web log files that you want to create some visualizations from.

In Chapter 4, Addressing Big Data Quality, we will discuss data profiling (in regards to data
quality), but for now, we'll assume that we know the following about our data files:

The files are of various sizes and somewhat unstructured.
The data in the files contain information logged by Internet users.
The data includes such things as computer IP addresses, a date, timestamp, and a
web address/URL. There is more information in the files, but for our exercise here
we really just want to create a graphical representation showing the number of
times each web address was hit during each month (there are actually software
packages that provide web statistics, but we'll suppose you don't have access to
any of them).

The following is a sample transaction (record) from one of our files:

221.738.236 - - [15/Oct/2014:6:55:2] GET
/cart.do?action=view&itemId=EST-6&productId=SC-MG-
G10&JSESSIONID=SD5SL9FF2ADFF4958 HTTP 1.12002334
http://www.rpropgramming.com

One's first inclination might be to load up the files into Microsoft Excel, do some pivoting
and filtering, and then prepare some Excel graphs, but these files exceed the capacity of the
tool (refer to the following screenshot):

Your next thought might be: big data and head for Hadoop.

Realistically though, although the files are too big for Excel to handle, we are able to
manipulate them using our standard business issue laptop (although, perhaps, a bit slowly)
and even though there are several files we need our data visualization to source from, it still
is manageable. So, this exercise really doesn't qualify as big data, based upon volume. The
data is a bit unstructured, but (notice the sample transactions) they are not at all
complicated or propose a variety constraint.

Access, Speed, and Storage with Hadoop

[42]

Finally, for this particular exercise, the files to be used are historic (based upon a previous
period of time), so we don't have to worry about velocity. Again, this is not a big data
project (although, later in this section, we see how it will grow into one).

So, a rudimental solution option is to use the power of R to manipulate all of the files and
create some simple visualizations based upon content.

For this example, I won't be explaining the details of the R scripts used, I just want to prove
the point that R can be used to create interesting visualizations with data files too large for
MS Excel. I have included my scripts here for completeness, however, you need to make a
note that the R scripts shown here work, but were created quickly in an ad hoc fashion
using the R console for MS Windows and most likely are not the most efficient in style. We
will take more time to understand R in Chapter 3, Understanding Your Data Using R.

An R scripting example
My first step was to combine (or bind) my log files into a single comma delimited text file.

This is simply done in R using the rbind() function:

complete.dat <- rbind(C:/Big Data Visualization/weblog1.txt,C:/Big Data
Visualization/weblog2.txt)
datafile1 <- read.csv("C:/Big Data Visualization/weblog1.txt", header=T,
sep=",")
datafile2 <- read.csv("C:/Big Data Visualization/weblog2.txt", header=T,
sep=",")
datafile <- rbind(datafile1, datafile2)
write.csv(datafile,"C:/Big Data Visualization/oneWebLog.txt")

Once I had a single (big!) file, I wanted to pull out only the information I want to use for my
visualization, so again I used a simple R script to create another text file that contains only
two columns: the date (actually just the month name) and a web address. You can see that
the data and web address are in columns four and nine, respectively. Note that our weblog
files are separated only by spaces:

tmpRTable<-read.table("C:/Big Data Visualization/oneWebLog.txt")
tmpRTable<-tmpRTable,c(4,9)]
data.df <- data.frame(tmpRTable)
adata.df <- data.frame(nrow(data.df))
for(i in 1: nrow(data.df))
{
adata.df[i,1]<- paste(substr(data.df[i,1],start=5,stop=7), ", ",
data.df[i,2])
}

Access, Speed, and Storage with Hadoop

[43]

write.table(adata.df, file = "C:/Big Data
Visualization/WebsitesByMonth.txt", sep = ",", quote = FALSE, col.names =
FALSE, row.names = FALSE)

When I created my new file, I instructed R to not add row and column headers and to not
wrap my fields with quote characters. This will make it easier for me to process later.

The following are some sample records from my generated file:

Jun, http://www.readingphilles.com
Sep, http://www.hollywood.com
Sep, http://www.dice.com
Jun, http://www.farming.com
Nov, http://www.wkipedia.com
Aug, http://www.r-project.com
Oct, http://www.rpropgramming.com
Feb, http://www.aa.com
Nov, http://www.farming.com

Next, I created (another) simple script to count the number of websites by month.

The basic idea is that there is now, what I call, month transactions in my file (shown
previously); one transaction (or record) per valid website for the month (note that there may
be, and are, multiple records for each month).

So I now have effectively summarized my web log files into a count of hits for each month
using the following script:

tmpTableSpace<-read.table("C:/Big Data Visualization/ WebsitesByMonth.txt
")
data.df <- data.frame(tmpTableSpace)
M01 <-0; M02 <-0; M03 <-0; M04 <-0; M05 <-0; M06 <-0
M07 <-0; M08 <-0; M09 <-0; M10 <-0; M11 <-0; M12 <-0
for(i in 1:nrow(data.df))
{
 if (substr(data.df[i,1],start=1,stop=3) == 'Jan') {M01 <- M01 + 1}
 if (substr(data.df[i,1],start=1,stop=3) == 'Feb') {M02 <- M02 + 1}
 if (substr(data.df[i,1],start=1,stop=3) == 'Mar') {M03 <- M03 + 1}
 if (substr(data.df[i,1],start=1,stop=3) == 'Apr') {M04 <- M04 + 1}
 if (substr(data.df[i,1],start=1,stop=3) == 'May') {M05 <- M05 + 1}
 if (substr(data.df[i,1],start=1,stop=3) == 'Jun') {M06 <- M06 + 1}
 if (substr(data.df[i,1],start=1,stop=3) == 'Jul') {M07 <- M07 + 1}
 if (substr(data.df[i,1],start=1,stop=3) == 'Aug') {M08 <- M08 + 1}
 if (substr(data.df[i,1],start=1,stop=3) == 'Sep') {M09 <- M09 + 1}
 if (substr(data.df[i,1],start=1,stop=3) == 'Oct') {M10 <- M10 + 1}
 if (substr(data.df[i,1],start=1,stop=3) == 'Nov') {M11 <- M11 + 1}
 if (substr(data.df[i,1],start=1,stop=3) == 'Dec') {M12 <- M12 + 1}

Access, Speed, and Storage with Hadoop

[44]

Now, I can visualize my data using a pie chart:

slices <- c(M01, M02, M03, M04, M05, M06, M07, M08, M09, M10, M11, M12)lbls
<- c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct",
"Nov", "Dec")
pie(slices, labels = lbls, main="Pie Chart of Month Hit Counts")

Access, Speed, and Storage with Hadoop

[45]

Points to consider
The preceding exercise was simply meant to make the point to the reader that not all data
visualization projects require going to Hadoop (although some clearly would benefit from
using Hadoop). It is obligatory for the reader to do the appropriate analysis before choosing
one technology over another.

You can now see that large files can be manipulated and visualizations can be created with
simple open source options such as R scripting on a machine with moderate resources. The
reader must keep in mind though that such a solution may work, but may still not be
appropriate as an enterprise solution. For example, processing two or three log files once or
twice as part of discovery is fine, but expecting to use the process on a routine basis on files
growing in number and size can quickly become a burden, inefficient, and ultimately,
almost impossible.

Now, let's move onto Hadoop!

Hadoop and big data
In this section, we'll consider why Hadoop is actually a very good choice for storing and
accessing big data.

Imagine you want to process data, a lot of data. In our previous example, we considered the
scenario where machine generated web logging files are being produced and we want to
leverage information within those files to perform some analytics and produce some
(hopefully) compelling data visualizations.

Using R worked here, but if we extend the scenario with the idea that we will continue to
receive web log files over time and the size of those files will increase, R might not be a
feasible answer.

Entering Hadoop
Hadoop (as the product documentation says) is not your average database. In fact, Hadoop
can store all kinds of data from many servers and websites and corporate vaults–as much as
you might need or want to gather. In addition, Hadoop spreads your work across hundreds
or thousands of processors and storage drives working in parallel all at the same time. Let's
take a look at two practical examples using Hadoop.

Access, Speed, and Storage with Hadoop

[46]

AWS for Hadoop projects
If you are new to Hadoop and that is to say do not have a Hadoop environment already
available, you can begin evaluating the power of Hadoop by downloading and installing
one of the free Hadoop distributions. Good advice is to start any initial evaluation by
running Hadoop in either local standalone or pseudo-distributed mode on a single
machine. However, I strongly recommend to the reader who is new to Hadoop to not waste
time downloading and configuring, but instead consider (temporally perhaps) subscribing
to Hadoop as a service.

There are a variety of viable Software as a Service (SaaS) options of which Amazon is one
of the very best. Amazon Elastic MapReduce (EMR) is a subscription web service that
really does make it easy and cost effective to manipulate your big data projects. Amazon
EMR provides a managed Hadoop framework that makes it easy, fast, and cost effective for
you to distribute and process vast amounts of your data across dynamically scalable
Amazon EC2 instances. Additionally, with Amazon EMR, you get a secure and reliable
environment with log analysis, web indexing, data warehousing, machine learning,
financial analysis, scientific simulation, and bioinformatics.

By deciding to do Hadoop on Amazon EMR, you get the benefits of the cloud:

The ability to provision clusters of virtual servers within minutes
You can scale the number of virtual servers in your cluster to manage your
computation needs, and only pay for what you use
Integration with other Amazon Web Services (AWS)
Open source projects that run on top of the Hadoop architecture can also be run
on Amazon EMR
You can use trending business intelligence tools such as Microsoft Excel,
MicroStrategy, QlikView, and Tableau with Amazon EMR to explore and
visualize your data

In this book, it was easy to leverage Amazon EMR for our Hadoop use case examples.

Access, Speed, and Storage with Hadoop

[47]

Example 1
In our earlier scenario, we have multiple machine generated web log files. Although as we
have seen that the web log files are too large to deal with MS Excel, they individually do not
meet the criteria of big data. However, continuing the scenario, let's suppose we now have
more than the original files as our website is perhaps generating multiple files each day.
Given this presumption, we need a secure repository in which to store and then (hopefully)
easily access our files.

Defining the environment
As I've mentioned, AWS provides us the ability to leverage Hadoop technology without
spending all the time required to create and manage a new environment.

To use this environment, you need to first have an AWS account. Since this chapter is
focused on loading and accessing big data files in a Hadoop enabled environment, we'll
skip over how to create an account (to create an account, the reader can use a web browser
to open: h t t p ://a w s . a m a z o n . c o m , and then click on Create an AWS Account).

Getting started
Getting started with our Amazon Hadoop environment is a four-step process:

Create a storage location (referred to as a bucket) for your data using Amazon1.
Simple Storage Service (S3).
Launch an Amazon cluster (this is what I call the Hadoop instance of a master2.
and slaves). Your data is going to be stored here and this is also where Hadoop
(as well as other big applications) is preloaded and ready for your use.
Upload your data; this is easily accomplished using Windows browse to select3.
your file and click on upload!
Run (Hive) scripts (Hive is an open source, data warehouse type tool and analytic4.
package that runs on top of Hadoop and utilizes HiveQL (its query language)
that abstracts the MapReduce programming model and enables you to avoid the
complexities of writing MapReduce programs in a lower-level computer
language, such as Java. Yeah!).

http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com

Access, Speed, and Storage with Hadoop

[48]

That's really all there is to it. Let's give it a shot!

Open the Amazon S3 console (found at https://console.aws.amazon.com/s3/)1.
and click on Create Bucket:

In the Create a Bucket dialog box, you can enter a bucket name, such as2.
bigdatavizproject:

https://console.aws.amazon.com/s3/

Access, Speed, and Storage with Hadoop

[49]

It's entirely up to you if you want to set up logging at this point.

For our exercise, you can skip that step (or not); read more about logging here:
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-debu

gging.html).

The bucket name should be globally unique. If the name you type is in use
by another bucket, type a different name. Note that because of Hadoop
requirements, Amazon S3 bucket names used with Amazon EMR must
contain only lowercase letters, numbers, periods (.), and hyphens (-). Also,
bucket names cannot end in numbers. For Region, choose a region for
your bucket.

Once your bucket is set up, we need to create and launch a cluster. The easiest way is to
click on the cube icon in the upper left and then click on the EMR icon (shown as follows):

Then, click on the Create cluster button (as shown in the following screenshot):

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-debugging.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-debugging.html

Access, Speed, and Storage with Hadoop

[50]

Once you click on Create cluster, under general configuration, enter a unique cluster name
and leave all the defaults, (under software configuration, hardware configuration, and
under security select all defaults) and, then click on Create cluster once again.

At this point, stuff is going on back at Amazon to provision your cluster based upon your
selections and input. It may take several hours since they will authenticate your request by
contacting you using the contact information you provided when setting up your account.
During that time, if you attempt to use your cluster, you may receive messages similar to
the following screenshots:

Access, Speed, and Storage with Hadoop

[51]

Once provisioned, you can proceed to create a folder structure to organize your cluster.
Folder structures look very similar to folders created on your MS Windows machine using
Windows Explorer.

Going back to the S3 page, you should now see your newly provisioned bucket listed under
All Buckets. Click on the name of your bucket to see a list of folders set up in the bucket,
the list will appear (at first the list will be empty).

From there, you can click on Create Folder:

Once you click on Create Folder, a new folder namespace (as shown in the following
screenshot) will appear allowing you to name the new folder:

Using the same process, that you used to create the first new folder, you can add new
folders until you have three new folders in your bucket:

HiveScripts: This is where you will upload and store your Hive query files
Input: This is where you will store data files
Output: This is where you can write or export data to

Access, Speed, and Storage with Hadoop

[52]

The following screenshot shows the completed folder structure:

Now you are ready to start loading and processing our data files in the (Amazon) Hadoop
environment. So, let's get back to our example using the multiple web log files.

Now, going back to our example, we want to upload and store our three web logging files:

weblog1 - 2016_08_27_01,
weblog1 - 2016_08_27_02 and
weblog1 - 2016_08_27_03:

The files are currently sitting in some folder on our local machine:

Access, Speed, and Storage with Hadoop

[53]

Uploading the data
To upload our files into the Hadoop environment, you can click on the folder name (Input)
within your bucket and then click on Start Upload (as shown in the following screenshot):

On the Upload – Select Files and Folders dialog (shown previously), you can click on Add
Files and use the familiar Windows browse to locate and select each of your files.

Access, Speed, and Storage with Hadoop

[54]

Once you select your file, click on Start Upload to transfer a copy of your file to your
Hadoop environment bucket. The transfer progress is displayed while the file is
transferring (as shown in the following screenshot):

Access, Speed, and Storage with Hadoop

[55]

As you upload files the status of each transfer will remain on the left of
your page. Rather than continuing to clutter your page with these
messages, you can check the Automatically clear finished transfers
checkbox, which will clear the message as soon as each transfer is
completed.

Although our individual web log files are not really that large, the Hadoop environment
will support almost an infinite number of additional files and/or future files that may be
much larger.

In the Amazon AWS environment, the only real limit to storage space is
your budget since you only pay for what you use. Administrators can use
the provided Billing & Cost Management Dashboard to view Month-to-
Spend amounts and particularly the Current month-to-date balance
summary, which includes Forecasted amount due. In addition, for
particularly large files, it is recommended that you leverage a web service
such as AWS Snowball, which is a service intended for transferring large
amounts of data. If you need to transfer less than 10 terabytes of data,
Snowball might not be your most economical choice. The reader can
explore Snowball at
https://docs.aws.amazon.com/AWSImportExport/latest/ug/

whatissnowball.html.

Once the file is uploaded, it will be displayed within your bucket's Input folder (as shown
in the following screenshot):

The same upload procedure that you just used to upload the first web log file can be
repeated to upload the additional files (actually as many files as you want).

https://docs.aws.amazon.com/AWSImportExport/latest/ug/whatissnowball.html
https://docs.aws.amazon.com/AWSImportExport/latest/ug/whatissnowball.html

Access, Speed, and Storage with Hadoop

[56]

Manipulating the data
Once you have your data loaded into the Hadoop environment, you can start using Hive
Query Language (HiveQL) provided by Amazon to manipulate the data.

Hive transparently converts your written queries to MapReduce, Apache Tez, and Spark
language (saving you all that trouble), so they will seamlessly work in the Hadoop
environment. In fact, if you know a bit of structured query language, you can fumble your
way through Hive.

A note from the Hive documentation is as follows:

Internally, a compiler translates HiveQL statements into a directed acyclic graph of
MapReduce, Apache Tez, or Spark jobs, which are submitted to Hadoop for execution. The
storage and querying operations of Hive closely resemble with that of traditional databases.
While Hive works on an SQL dialect, there are a lot of differences in structure and working
of Hive in comparison to relational databases. The differences are mainly because Hive is
built on top of the Hadoop ecosystem and has to comply with the restrictions of Hadoop
and MapReduce.

Currently (at the time of writing), Hive is listed in the Top 15 Data Management / Big Data
Skills Pay in highest demand.

It wouldn't hurt having Hive on your resume. A comprehensive Hive
language reference manual can be reviewed at:
https://cwiki.apache.org/confluence/display/Hive/LanguageManual.

In our previous example, we used R programming scripts to:

Combine (or row-bind) multiple files into one larger file.1.
Read the combined file and create a new single file that contained only the two2.
columns of data we were interested in.
Extract only the month from the first data column (which contained a string of3.
formatted text).
Count the number of websites by month and create an aggregation of the data (so4.
that it could be used to create a simple visualization).

https://cwiki.apache.org/confluence/display/Hive/LanguageManual

Access, Speed, and Storage with Hadoop

[57]

Now that our data is in the Hadoop environment, we can use Hive scripts to accomplish the
same objectives:

Create a single table (this will ultimately become our combined data).1.
Load our files into the single table.2.
Reformat the date column (into just month), parse out the website address.3.
Aggregate the data by month.4.

Notice that each approach is slightly different (for example, with R we use files while with
Hive we use tables), but the end result is very much the same.

All Hive scripts can be saved as text files and uploaded to the folder you created named
HiveScripts (using the same upload procedure used to upload your data files).

Although the file extension .txt works just fine, you'll probably want to
organize your HiveQL files with an informative name and save them with
a .sql extension so that they will stand out, such as
Loadweblogfiles.sql.

A specific example
Let's look at a simple example.

The following Hive script was created and saved using MS Windows Notepad:

Taking a closer look at the code, it works as follows:

CREATE TABLE thebigdatatable (logrecord VARCHAR(550));
LOAD DATA INPATH 's3://bigdatavizproject/Input/weblog1 -2016_08_27_01.txt'
INTO TABLE thebigdatatable;
select substr(ltrim(rtrim(logrecord)), 20, 3) from thebigdatatable;

Line 1 creates a Hive table named thebigdatatable, which will have one
column in it named logrecord.

Access, Speed, and Storage with Hadoop

[58]

Line 2 loads all of the records in our web log file (weblog1
-2016_08_27_01.txt) into the table that we just created in line 1. Each record in
the file becomes a single record in the table.
Line 3 will parse the month from each record.

If we run the script, the following is a portion of the generated output showing the list of
months, record by record:

Access, Speed, and Storage with Hadoop

[59]

Now that you know what a Hive script looks like and how to save it and upload it, we can
proceed with our exercise of running more Hive scripts to duplicate what we did using R
programming earlier in the chapter.

Although you can interactively execute Hive scripts using the Amazon AWS Command
Line Interface (CLI), the easiest way (and I think the most efficient way) to run Hive scripts
is by creating steps within a cluster:

If we go back to the main page (or the AWS console), you can click on the EMR1.
icon (as shown in the following screenshot):

On the page that is displayed next, all of the clusters currently defined will be2.
listed (as shown in the following screenshot):

Access, Speed, and Storage with Hadoop

[60]

Next, click on your cluster name (here our cluster name is3.
bigdatavizprojectcluster) to open the cluster details page, as shown in the
following screenshot:

If you scroll down the page, you will find the Steps section, or you can simply4.
click on the button labeled Add step in the upper leftside of the page:

Once you click on Add step, the Add Step dialog is displayed.5.
There, select Hive program from the Step type drop-down list and then give6.
your step a name (something more interesting than the default Hive program).

The name examples might be createmonthtable or loadlogdata.

Access, Speed, and Storage with Hadoop

[61]

Now you can use the folder icons on Windows to browse the folders you created earlier in
this chapter (HiveScripts, Input, and Output):

Select the Hive script file from the HiveSripts folder
Select the Input folder (where our web log files have been loaded)
Select the Output folder as the Output S3 location

When you have provided the preceding details, click on Add in the lower-right corner of
the dialog.

This will submit your cluster step to be run in batch mode within your cluster.

The progress of your step will be displayed in the steps section of the cluster details page.

Consider the following screenshot as an example:

Access, Speed, and Storage with Hadoop

[62]

Now, let's go ahead and write and run a few more interesting Hive scripts.

Once we've created our table named thebigdatatable (shown earlier), we can use
another Hive script to load each of our files into the table using the same HiveQL command
(OAD DATA):

LOAD DATA INPATH 's3://bigdatavizproject/Input/weblog1 -2016_08_27_01.txt'
INTO TABLE thebigdatatable;
LOAD DATA INPATH 's3://bigdatavizproject/Input/weblog1 -2016_08_27_02.txt'
INTO TABLE thebigdatatable;
LOAD DATA INPATH 's3://bigdatavizproject/Input/weblog1 -2016_08_27_03.txt'
INTO TABLE thebigdatatable;

This will load all of the records from all of the files into the same single table.

Notice that the command simply indicates LOAD DATA with an explicit file location and
name reference as well as INTO TABLE also with an explicit name of a table to be loaded
with the data.

Therefore, we have now created our one big single file (like we did using R). Another key
point is, we've loaded somewhat unstructured web log data into a structured database
table.

Moving on, we can use the following Hive script to create two formatted columns (out of
each table record):

select substr(substr(logrecord, instr(logrecord,'['), 12),5,3),
substr(logrecord, instr(logrecord,'www'), 250) from thebigdatatable;

This script utilizes the substr and instr HiveQL functions to parse the month name and
website address from the record.

Here is the pending Hive step shown that will execute the preceding script:

Access, Speed, and Storage with Hadoop

[63]

The following is a portion of the output generated upon completion of the script, showing
the two columns, the month and the website address:

Next, the following script can be used to create a new formatted column table using a
subquery as input (which we will then be able to use to perform the aggregate of data and
calculate our month counts).

Access, Speed, and Storage with Hadoop

[64]

The columns of this new table (named dabigdatatable) will be mydate and mysite:

CREATE TABLE dabigdatatable (mydate VARCHAR(64), mysite VARCHAR(64));

Next, we can use the following script to load our new table with our formatted records:

insert overwrite table dabigdatatable
select substr (substr (logrecord, instr(logrecord,'['), 12),5,3),
substr(logrecord, instr(logrecord,'www'), 250) from thebigdatatable;

And, finally, the following script will list the total count values by month:

select mydate, count(distinct(mysite)) from dabigdatatable group by mydate

The following is the partial output generated from the previous script:

Access, Speed, and Storage with Hadoop

[65]

Conclusion
In the Hadoop exercise of this chapter, we have pretty much accomplished all of the tasks
we originally completed using R programming. Although the actual HiveQL query
statements may not be written in the most optimal way, (there are many ways to
accomplish the same thing with HiveQL, for example, one could submit all of the queries in
one HiveQL batch file and as a single cluster step) a few of the advantages of using Hadoop
are:

You have more space to easily store more (and larger) files
Using Hive, you can easily manipulate the data in bulk using the Hive QL
The AWS Hadoop environment allowed us to run the Hive scripts in a much
shorter time than it took for us to run our R scripts
You can submit your scripts in batch mode, which is more efficient than running
interactive commands when processing larger files
We easily loaded and manipulated somewhat unstructured data

Example 2
Let's consider a few more examples.

As already mentioned, the HiveQL language is very similar to standard SQL, and it's
worthy of the time taken to explore some additional data manipulations using HiveQL.

A key point is that while Hive is intended as a convenience/interface for querying large
amounts of data stored in HDFS, SQL is more intended for online operations requiring
many reads and writes, which is very similar with somewhat different objectives.

The following script can be used to identify the unique websites viewed in a particular
month (the month of June) using the DISTINCT HiveQL function:

select distinct(mysite) from dabigdatatable where mydate = 'Jun'

Access, Speed, and Storage with Hadoop

[66]

This would yield the following (partial) output:

Access, Speed, and Storage with Hadoop

[67]

Sorting
Just like with standard query language, you can sort (or reorder) your output (of unique
websites) using a script similar to the following:

select distinct(mysite) from dabigdatatable where mydate = 'Jun' order by
mysite

This HiveQL script creates an ordered list of the website addresses visited in the month of
June.

The following output is generated and (partially) displayed as shown:

Access, Speed, and Storage with Hadoop

[68]

You might notice that the first website address (www.GQ.com) doesn't seem like it's ordered
within the list correctly. This is because of case-sensitivity. A simple modification to the
HiveQL (adding the ucase function) might make more sense:

select distinct(mysite) from dabigdatatable where mydate = 'Jun' order by
ucase(mysite)

Running this modified HiveQL script now generates the following output (partially
displayed as shown):

http://www.GQ.com

Access, Speed, and Storage with Hadoop

[69]

Earlier in this chapter, we created the table named thebigdatatable. We then used this
table to load our individual files and combine them into one large data source (one single
table). Later, we used HiveQL scripts to do some aggregations to count the number of
distinct website addresses for each month.

This time, let's go back and look at individual IP addresses found in the log files.

Parsing the IP
The IP addresses can be parsed from the log records with the instr and substr functions,
similar to how we found the month name and the web addresses:

count(substr(logrecord, 1, (instr(logrecord,'-')-2)))

The month can be again found within the record using the same functions:

substr(substr(logrecord, instr(logrecord,'['), 12),5,3)

Earlier we used HiveQL to create and load a formatted column table, which we then ran
aggregation scripts against. This time, let's do it in a single HiveQL script (not bothering
with creating a new table).

The following script can be used:

select substr(substr(logrecord, instr(logrecord,'['), 12),5,3),
count(substr(logrecord, 1, (instr(logrecord,'-')-2)))
from thebigdatatable group by substr(substr(logrecord,
instr(logrecord,'['), 12),5,3);

This gives us the desired output (as shown in the following screenshot):

Access, Speed, and Storage with Hadoop

[70]

Although the actual number counts of the IP addresses for each month are quite large, the
preceding output can be visualized as a simple bar chart using the barplot R function:

counts <-
c(74878,92368,88219,90984,83731,91826,86173,102551,80837,85283,84281,87445)
barplot(counts, main="IP Counts By Month",
 xlab="Number of Distinct IPs")

This produces the following graph:

Access, Speed, and Storage with Hadoop

[71]

Although, in this chapter, we have just scratched the surface of the power and features
(which are still growing) of using Amazon AWS, the reader should be able to see its
potential for big data projects and is encouraged to continue to explore its capabilities.

One excellent source I found is the Amazon Big Data Blog, whose moniker is Helping you
collect, store, clean, process, and visualize big data, and it can be reviewed at
http://blogs.aws.amazon.com/bigdata.

Summary
In this chapter, we provided the reader with a high-level definition of Hadoop, including
some fun Hadoop FAQs. We mentioned that simply reaching MS Excel limitations doesn't
mean that you are actually dealing with big data and used simple examples of R
programming scripts to actually manipulate and visualize that same data that would not
load in Excel to prove that point.

We then introduced the Amazon AWS environment as a simple, affordable, yet robust
solution for leveraging the technology and power of Hadoop. We stepped through the
process configuring that environment for our use, uploading our multiple web log files to it,
and then used Hive and its query language (HiveQL) to access and manipulate that data to
accomplish the same objectives as we did with our R programming scripts.

Finally, we offered some alternative HiveQL working examples using the same uploaded
web log data.

In the next chapter, we will discuss the importance of understanding the data you are
working with, the challenges of adding context to big data, and offer working examples
using more complex R programming demonstrating solutions for effectively addressing
these issues.

http://blogs.aws.amazon.com/bigdata

3
Understanding Your Data Using

R
In this chapter, we will explore the idea of adding context to the data you are working with.

Specifically, we'll discuss the importance of establishing data context, as well as the practice
of profiling your data for context discovery and how big data affects this effort.

At some point, you will perhaps discover that although the big data sources you have
access to have the potential to positively impact your marketing efforts, profitability,
decision making, or even your life, there also exists the risk of drawing incorrect
conclusions from that same data. In fact, one could argue that the bigger the data, the bigger
the risk. Thankfully, by properly profiling your data, you can see the big picture that your
data provides a bit more clearly (that is, putting your data in context).

Understanding Your Data Using R

[73]

This chapter is organized into the following main sections:

Adding context
About R
R and big data
Example 1
Example 2

In Chapter 2, Access, Speed, and Storage with Hadoop, we explored a scenario where multiple
(web logging) files were loaded into a Hadoop environment where they could be accessed
and queried as a single data source or a single file.

In that example, all of our files came from the same source (and were in the same format).
Realistically, those individual data files may be sourced from a variety of places which,
potentially, could influence the data's potential meaning or value.

Generally speaking, similar-looking data can actually mean very different things. For
example, an average heart rate carries a significantly different connotation if the median age
of patients within a pool or group of data is 18-25 versus the same average for patients older
than 65.

Understanding Your Data Using R

[74]

When writing a book, authors leave context clues for their readers. A context clue is a
source of information that helps readers understand written content that may be difficult or
unique. This information offers insight into the content being read or consumed (an
example might be, “It was an idyllic day: sunny, warm, and perfect…”).

With data, context clues should be developed through a process referred to as profiling
(we'll discuss profiling in more detail later in this chapter) so that the data consumer can
better understand the data when visualized. Additionally, having context and perspective
on the data you are working with is a vital step in determining what kind of data
visualization should be created.

Context or profiling examples might be calculating the average age of patients or subjects
within the data or segmenting the data into time periods (years or months, usually).

Another motive for adding context to data might be to gain a new perspective on the data.
An example of this might be recognizing and examining a comparison present in the data.
For example, body fat percentages of urban high school seniors could be compared to those
of rural high school seniors.

Adding context to your data before creating visualizations can certainly make it (the data
visualization) more relevant, but context still can't serve as a substitute for value. Before you
consider any factors such as time of day, or geographic location, or average age, first and
foremost, your data visualization needs to benefit those who are going to consume it, so
establishing appropriate context requirements will be critical.

For data profiling (adding context), the rule is: before context, think of a
value.

Generally speaking, there are several contextual visualization categories, which can be used
to augment or increase the value and understanding of data for visualization.

These include the following:

Definitions and explanations
Comparisons
Contrasts
Tendencies
Dispersion

Understanding Your Data Using R

[75]

Definitions and explanations
This is providing additional information or attributes about a data point.

Comparisons
This is adding a comparable value to a particular data point. For example, you might
compute and add a national ranking to each total by state:

Contrasts
This is almost like adding an opposite to a data point to see if it perhaps determines a
different perspective. An example might be reviewing average body weights for patients
who consume alcoholic beverages versus those who do not consume alcoholic beverages:

Understanding Your Data Using R

[76]

Tendencies
These are the typical mathematical calculations (or summaries) on the data as a whole or by
other categories within the data, such as mean, median, and mode. For example, you might
add a Median Heart Rate for Age Group that each patient in the data is a member of:

Dispersion
Again, these are mathematical calculations (or summaries), such as range, variance, and
standard deviation, but they describe the average of a dataset (or group within the data).
For example, you may want to add the range to a selected value, such as the minimum and
a maximum number of hospital stays found in the data for each patient age group:

The art of profiling data to add context and identify new and interesting perspectives for
visualization is still and ever evolving; no doubt there are additional contextual categories
existing today that can be investigated as you continue your work with big data
visualization projects.

Understanding Your Data Using R

[77]

Adding context
So, how do we add context to data? Is it merely select Insert, then Data Context?

No, it's not that easy (but it's not impossible either).

Once you have identified (or pulled together) your big data source (or at least a significant
amount of data), how do you go from mountains of raw big data to summarizations that
can be used as input to create valuable data visualizations, helping you to further analyze
that data and support your conclusions?

The answer is through data profiling.

Data profiling involves logically getting to know the data you think you may want to
visualize through query, experimentation, and review.

Following the profiling process, you can then use the information you have collected to add
context (and/or apply new perspectives) to the data. Adding context to data requires the
manipulation of data to perhaps reformat, adding calculations, aggregations, or additional
columns or re-ordering, and so on.

Finally, you will be ready to visualize (or picture) your data.

The complete profiling process is as follows:

Pull together the data or enough of the data.1.
Profile the data through query, experimentation, and review.2.

Understanding Your Data Using R

[78]

Add Perspective(s) or context.2.
Picture (visualize) the data.3.

About R
We've dabbled a little bit in Chapter 2, Access, Speed, and Storage with Hadoop, with R
programming, but in this chapter, we now formally introduce R as the tool to perform our
data profiling exercises as well as adding perspectives (establish context) for data to be used
in visualizations.

R is a language and environment easy to learn, very flexible in nature, and also very
focused on statistical computing thus making it great for manipulating, cleaning,
summarizing, producing probability statistics, and so on (as well as actually creating
visualizations with your data), so it's a great choice for the exercises required for profiling,
establishing context, and identifying additional perspectives.

In addition, here are a few more reasons to use R when profiling your big data:

R is used by a large number of academic statisticians, so it's a tool that is not
going away.
R is pretty much platform independent, what you develop will run almost
anywhere.
R has awesome help resources–just Google it; you'll see!

R and big data
Although R is free (open sourced), super flexible, and feature rich, you must keep in mind
that R preserves everything in your machine's memory and this can become problematic
when you are working with big data (even with the introduction of the low resource costs
of today).

Understanding Your Data Using R

[79]

Thankfully, though, there are various options and strategies to work with this limitation,
such as imploring a sort of pseudo-sampling technique, which we will expound on later in
this chapter (as part of some of the examples provided).

Additionally, R libraries have been developed and introduced that can leverage hard drive
space (as sort of a virtual extension of your machine's memory), again exposed in this
chapter's examples.

Example 1
In this chapter's first example, we'll use data collected from a theoretical hospital where
upon admission, information about a patient's medical history is collected through an
online survey. Information is also added to a patient's file as treatment is provided.

The file includes many fields, including basic descriptive data for the patient, such as:

sex

DOBMonth, DOBDay, DOBYear
height

weight

Bloodtype

Vital statistics, such as:

blood_pressure

heartrate

Medical history, such as:

no_hospital_visits

Surgeries
Major illnesses or conditions
Whether currently under a doctor's care

Demographical statistics, such as:

Occupation
Home state
Educational background

Understanding Your Data Using R

[80]

Some additional information is also collected in the file in an attempt to develop patient
characters and habits such as the number of times the patient included beef, pork, and fowl
in their weekly diet, or whether they typically use a butter replacement product, and so on.

Periodically, the data is dumped to text files, are comma-delimited, and contain the
following fields (in this order):

Patientid, recorddate_month, recorddate_day, recorddate_year, sex, age,
weight, height, no_hospital_visits, heartrate, state, relationship,
Insured, Bloodtype, blood_pressure, Education, DOBMonth, DOBDay, DOBYear,
current_smoker,
current_drinker, currently_on_medications, known_allergies,
currently_under_doctors_care, ever_operated_on, occupation, Heart_attack,
Rheumatic_Fever Heart_murmur, Diseases_of_the_arteries, Varicose_veins,
Arthritis, abnormal_bloodsugar, Phlebitis, Dizziness_fainting,
Epilepsy_seizures, Stroke, Diphtheria, Scarlet_Fever,
Infectious_mononucleosis, Nervous_emotional_problems, Anemia,
hyroid_problems, Pneumonia, Bronchitis, Asthma, Abnormal_chest_Xray,
lung_disease, Injuries_back_arms_legs_joints_Broken_bones,
Jaundice_gallbladder_problems, Father_alive, Father_current_age,
Fathers_general_health, Fathers_reason_poor_health,
Fathersdeceased_age_death, mother_alive, Mother_current_age,
Mother_general_health, Mothers_reason_poor_health,
Mothers_deceased_age_death, No_of_brothers, No_of_sisters,
age_range, siblings_health_problems, Heart_attacks_under_50,
Strokes_under_50, High_blood_pressure, Elevated_cholesterol,
Diabetes, Asthma_hayfever, Congenital_heart_disease,
Heart_operations, Glaucoma, ever_smoked_cigs, cigars_or_pipes,
no_cigs_day, no_cigars_day, no_pipefuls_day,
if_stopped_smoking_when_was_it,
if_still_smoke_how_long_ago_start,target_weight,
most_ever_weighed, 1_year_ago_weight, age_21_weight,
No_of_meals_eatten_per_day, No_of_times_per_week_eat_beef,
No_of_times_per_week_eat_pork, No_of_times_per_week_eat_fish,
No_of_times_per_week_eat_fowl, No_of_times_per_week_eat_desserts,
No_of_times_per_week_eat_fried_foods,
No_servings_per_week_wholemilk,
No_servings_per_week_2%_milk,
No_servings_per_week_tea,
No_servings_per_week_buttermilk,
No_servings_per_week_1%_milk,
No_servings_per_week_regular_or_diet_soda,
No_servings_per_week_skim_milk, No_servings_per_week_coffee
No_servings_per_week_water, beer_intake, wine_intake, liquor_intake,
use_butter, use_extra_sugar, use_extra_salt,
different_diet_weekends, activity_level, sexually_active,
vision_problems, wear_glasses

Understanding Your Data Using R

[81]

The following is a screenshot showing a portion of the file (displayed in MS Windows
Notepad):

Assuming we have been given no further information about the data, other than the
provided field name list and the knowledge that the data is captured by hospital personnel
upon patient admission, the next step would be to perform some sort of profiling of the
data investigating to start understanding the data and then to start adding context and
perspectives (so ultimately we can create some visualizations).

Initially, we start out by looking through the field or column names in our file and some
ideas start to come to mind. For example, what is the data time frame we are dealing with?
Using the field record date, can we establish a period of time (or time frame) for the data?
(In other words, over what period of time was this data captured).

Can we start grouping the data using fields such as sex, age, and state?

Eventually, what we should be asking is, what can we learn from visualizing the data?
Perhaps:

What is the breakdown of those currently smoking by age group?
What is the ratio of those currently smoking to the number of hospital visits?
Do the patients currently under a doctor's care, on an average, have better BMI
ratios?

Digging in with R
Using the power of R programming, we can run various queries on the data; noting that the
results of these queries may spawn additional questions and queries and eventually, yield
data ready for visualizing.

Understanding Your Data Using R

[82]

Let's start with a few simple profile queries. I always start my data profiling by time boxing
the data.

The following R scripts (although as mentioned earlier, there are many ways to accomplish
the same objective) work well for this:

--- read our file into a temporary R table
tmpRTable4TimeBox<-read.table(file="C:/Big Data Visualization/Chapter
3/sampleHCSurvey02.txt", sep=",")

--- convert to an R data frame and filter it to just include # --- the
2nd column or field of data
data.df <- data.frame(tmpRTable4TimeBox)
data.df <- data.df[,2]

--- provides a sorted list of the years in the file
YearsInData = substr(substr(data.df[],(regexpr('/',data.df[])+1),11),(
regexpr('/',substr(data.df[],(regexpr('/',data.df[])+1),11))+1),11)
-- write a new file named ListofYears
write.csv(sort(unique(YearsInData)),file="C:/Big Data Visualization
/Chapter 3/ListofYears.txt",quote = FALSE, row.names = FALSE)

The preceding simple R script provides a sorted list file (ListofYears.txt shown in the
following screenshot) containing the years found in the data we are profiling:

Understanding Your Data Using R

[83]

Now we can see that our patient survey data covers patient survey data collected during
the years 1999 through 2016 and with this information we start to add context (or allow us
to gain a perspective) on our data.

We could further time-box the data by perhaps breaking the years into months (we will do
this later on in this chapter), but let's move on now to some basic grouping profiling.

Assuming that each record in our data represents a unique hospital visit, how can we
determine the number of hospital visits (the number of records) by sex, age, and state?

Here I will point out that it may be worthwhile establishing the size (number of rows or
records (we already know the number of columns or fields) of the file you are working
with. This is important since the size of the data file will dictate the programming or
scripting approach that you will need to use during your profiling.

Simple R functions that are valuable to know are nrow and head. These simple commands
can be used to count the total rows in a file:

nrow:mydata

To view the first n number of rows of data, use the following code:

head(mydata, nrow=10)

So, using R, one could write a script to load the data into a table, convert it to a data frame,
and then read through all the records in the file and count up or tally the number of
hospital visits (the number of records) for males and females.

Such logic is a snap to write:

--- assuming tmpRTable holds the data already
datas.df<-data.frame(tmpRTable)

--- initialize 2 counter variables
NumberMaleVisits <-0;NumberFemaleVisits <-0

--- read through the data
for(i in 1:nrow(datas.df))
{
 if (datas.df[i,3] == 'Male')
 {
 NumberMaleVisits <- NumberMaleVisits + 1
 }
 if (datas.df[i,3] == 'Female')
 {
 NumberFemaleVisits <- NumberFemaleVisits + 1
 }

Understanding Your Data Using R

[84]

}

--- show me the totals
NumberMaleVisits
NumberFemaleVisits

The preceding script works, but in a big data scenario, there is a more efficient way, since
reading or looping through and counting each record will take far too long. Thankfully, R
provides the table function, which can be used similar to the SQL group by command.

The following script assumes that our data is already in an R data frame (named
datas.df), so using the sequence number of the field in the file, if we want to see the
number of hospital visits for males and the number of hospital visits for females, we can
write the following:

--- using R table function as "group by" field number
--- patient sex is the 3rd field in the file

table(datas.df[,3])

The following is the output generated from running the preceding script. Notice that R
shows sex with a count of 1 since the script included the files header record of the file as a
unique value:

Understanding Your Data Using R

[85]

We can also establish the number of hospital visits by state (state is the ninth field in the
file):

table(datas.df[,9])

Age (or the fourth field in the file) can also be studied using the R functions Sort and
table:

sort(table(datas.df[,4]))

Since there are quite a few more values for age within the file, I've sorted
the output using the R sort function:

Understanding Your Data Using R

[86]

Moving on now, let's see if there is a difference between the number of hospital visits for
patients who are current smokers (field name current_smoker and is field number 16 in
the file) and those indicating that they are noncurrent smokers.

We can use the same R scripting logic:

sort(table(datas.df[16]))

Surprisingly, (one might think) it appears from our profiling that those patients who
currently do not smoke have had more hospital visits (113,681) than those who currently are
smokers (12,561):

Understanding Your Data Using R

[87]

Another interesting R script to continue profiling our data might be:

table(datas.df[,3],datas.df[,16])

The preceding script again uses the R table function to group data, but shows how we can
group within a group, in other words, using this script we can get totals for current and
noncurrent smokers, grouped by sex.

In the following screenshot, we see that the difference between female smokers and male
smokers might be considered to be marginal:

So we see that using the preceding simple R script examples, we've been able to add some
context to our healthcare survey data. By reviewing the list of fields provided in the file, we
can come up with the R profiling queries shown (and many others) without much effort.
We will continue with some more complex profiling in the next section, but for now, let's
use R to create a few data visualizations based upon what we've learned so far through our
profiling.

Going back to the number of hospital visits by sex, we can use the R function barplot to
create a visualization of visits by sex. But first, let's look at a couple of helpful hints for
creating the script.

First, rather than using the table function, you can use the ftable function, which creates a
flat version of the original function's output. This makes it easier to exclude the header
record count of one that comes back from the table function.

Understanding Your Data Using R

[88]

Next, we can leverage some additional arguments of the barplot function, such as col,
border, names.arg, and title to make the visualization a little nicer to look at.

The following is the script:

-- use ftable function to drop out the header record
forChart<- ftable(datas.df[,3])
--- create bar names
barnames<-c("Female","Male")
-- use barplot to draw bar visual
barplot(forChart[2:3], col = "brown1", border = TRUE, names.arg = barnames)

--- add a title
title(main = list("Hospital Visits by Sex", font = 4))

The script's output (our visualization) is as follows:

Understanding Your Data Using R

[89]

We could follow the same logic for creating a similar visualization of hospital visits by state:

st<-ftable(datas.df[,9])
barplot(st)
title(main = list("Hospital Visits by State", font = 2))

But the visualization generated isn't very clear:

One can always experiment a bit more with this data to make the visualization a little more
interesting. Using the R functions substr and regexpr, we can create an R data frame that
contains a record for each Hospital Visits by State within each year in the file. Then
we can use the function plot (rather than the barplot function) to generate the
visualization.

The following is the R script:

--- create a data frame from our original table file
datas.df <- data.frame(tmpRTable)

--- create a filtered data frame of records from the file
--- using the record year and state fields from the file
dats.df<-
data.frame(substr(substr(datas.df[,2],(regexpr('/',datas.df[,2])+1),11),(

Understanding Your Data Using R

[90]

regexpr('/',substr(datas.df[,2],(regexpr('/',datas.df[,2])+1),11))+1),11),d
atas.df[,9])

--- plot to show a visualization
plot(sort(table(dats.df[2]),decreasing = TRUE),type="o", col="blue")
title(main = list("Hospital Visits by State (Highest to Lowest)", font =
2))

Here is the different (perhaps more interesting) version of the visualization generated by
the preceding script:

Another earlier perspective on the data was concerning Age. We grouped the hospital visits
by the age of the patients (using the R table function). Since there are many different
patient ages, a common practice is to establish age ranges, such as the following:

21 and under
22 to 34
35 to 44

Understanding Your Data Using R

[91]

45 to 54
55 to 64
65 and over

To implement the preceding age ranges, we need to organize the data and could use the
following R script:

--- initialize age range counters
a1 <-0;a2 <-0;a3 <-0;a4 <-0;a5 <-0;a6 <-0

--- read and count visits by age range
for(i in 2:nrow(datas.df))
{
 if (as.numeric(datas.df[i,4]) < 22) {a1 <- a1 + 1}
 if (as.numeric(datas.df[i,4]) > 21 & as.numeric(datas.df[i,4]) < 35)
 {
 a2 <- a2 + 1
 }
 if (as.numeric(datas.df[i,4]) > 34 & as.numeric(datas.df[i,4]) < 45)
 {
 a3 <- a3 + 1
 }
 if (as.numeric(datas.df[i,4]) > 44 & as.numeric(datas.df[i,4]) <
 55)
 {
 a4 <- a4 + 1
 }
 if (as.numeric(datas.df[i,4]) > 54 & as.numeric(datas.df[i,4]) < 65)
 {
 a5 <- a5 + 1
 }
 if (as.numeric(datas.df[i,4]) > 64) {a6 <- a6 + 1}
}

Looping or reading through each of the records in our file isn't very practical if there are a
trillion records. Later in this chapter, we'll use a much better approach, but for now we will
assume a smaller file size for convenience.

Once the preceding script is run, we can use the R pie function and the following code to
create our pie chart visualization:

--- create Pie Chart

slices <- c(a1, a2, a3, a4, a5, a6)
lbls <- c("under 21", "22-34","35-44","45-54","55-64", "65 & over")
pie(slices, labels = lbls, main="Hospital Visits by Age Range")

Understanding Your Data Using R

[92]

The following is the generated visualization:

Finally, earlier in this section, we looked at the values in field 16 of our file–which indicates
whether the survey patient was a current smoker. We could build a simple visual showing
the totals, but (again) the visualization isn't very interesting or all that informative.

With some simple R scripts, we can proceed to create a visualization showing the number of
hospital visits, year-over-year by those patients that are current smokers.

First, we can reformat the data in our R data frame (named datas.df) to store only the year
(of the record date) using the R function substr. This makes it a little easier to aggregate
the data by year shown in the next steps.

The R script using the substr function is as follows:

--- redefine the record date field to hold just the record
--- year value
datas.df[,2]<-
substr(substr(datas.df[,2],(regexpr('/',datas.df[,2])+1),11),(
regexpr('/',substr(datas.df[,2],(regexpr('/',datas.df[,2])+1),11))+1),11)

Next, we can create an R table named c to hold the record date year and totals (of non and
current smokers) for each year.

Understanding Your Data Using R

[93]

The following is the R script that is used:

--- create a table holding record year and total count for
--- smokers and not smoking
c<-table(datas.df[,2],datas.df[,16])

Finally, we can use the R barplot function to create our visualization.

Again, there is more than likely a cleverer way to set up the objects bars and lbls, but for
now, I simply handcoded the year's data I wanted to see in my visualization:

--- set up the values to chart and the labels for each bar
--- in the chart
bars<-c(c[2,3], c[3,3],
c[4,3],c[5,3],c[6,3],c[7,3],c[8,3],c[9,3],c[10,3],c[11,3],c[12,3],c[13,3])
lbls<-c("99","00","01","02","03","04","05","06","07","08","09","10")

Now the R script to actually produce the bar chart visualization is as follows:

--- create the bar chart
barplot(bars, names.arg=lbls, col="red")
title(main = list("Smoking Patients Year to Year", font = 2))

The following is the generated visualization:

Understanding Your Data Using R

[94]

Example 2
In the preceding examples, we've presented some pretty basic and straightforward data
profiling exercises. Typically, once you've become somewhat familiar with your data,
having added some context (though some basic profiling), one would extend the profiling
process trying to look at the data in additional ways using techniques such as the ones
mentioned in the beginning of this chapter.

Defining new data points based upon the existing data, performing comparisons, looking at
contrasts (between data points), identifying tendencies, and using dispersions to establish
the variability of the data.

Let's now review some of these options for extended profiling using simple examples as
well as the same source data that was used in the previous section examples.

Definitions and explanations
One method of extending your data profiling is to add to the existing data by creating
additional definition or explanatory attributes (in other words, add new fields to the file).
This means that you use existing data points found in the data to create (hopefully new and
interesting) perspectives on the data.

In the data used in this chapter, a thought-provoking example might be to use the existing
patient information (such as the patient's weight and height) to calculate a new point of
data: Body Mass Index (BMI) information.

A generally accepted formula for calculating a patient's body mass index is:

BMI = (Weight (lbs.) / (Height (in))2) x 703

Consider this example: (165 lbs.) / (702) x 703 = 23.67 BMI.

Using the preceding formula, we can use the following R script (assuming we've already
loaded the R object named tmpRTable with our file data) to generate a new file of BMI
percentages and state names:

j=1
for(i in 2:nrow(tmpRTable))
{
 W<-as.numeric(as.character(tmpRTable[i,5]))
 H<-as.numeric(as.character(tmpRTable[i,6]))
 P<-(W/(H^2)*703)
 datas2.df[j,1]<-format(P,digits=3)

Understanding Your Data Using R

[95]

 datas2.df[j,2]<-tmpRTable[i,9]
 j=j+1
}
write.csv(datas2.df[1:j-1,1:2],file="C:/Big Data Visualization/Chapter
3/BMI.txt", quote = FALSE, row.names = FALSE)

The following is a portion of the generated file:

Now we have a new file of BMI percentages by state (one BMI record for each hospital visit
in each state).

Earlier in this chapter, we touched on the concept of looping or reading through all of the
records in a file or data source and creating counts based on various field or column values.
Such logic works fine for medium or smaller files, but a much better approach (especially
with big data files) would be to use the power of various R commands.

No looping
Although the R script described earlier does work, it requires looping through each record
in our file, which is slow and inefficient, to say the least. So, let's consider a better approach.

Again, assuming we've already loaded the R object named tmpRTable with our data, the
following R script can accomplish the same results (create the same file) in just two lines:

PDQ<-
paste(format((as.numeric(as.character(tmpRTable[,5]))/(as.numeric(as.charac
ter(tmpRTable[,6]))^2)*703),digits=2),',',tmpRTable[,9],sep="")

Understanding Your Data Using R

[96]

write.csv(PDQ,file="C:/Big Data Visualization/Chapter 3/BMI.txt", quote =
FALSE,row.names = FALSE)

We could now use this file (or a similar one) as input to additional profiling exercises or to
create a visualization, but let's move on.

Comparisons
Performing comparisons during data profiling can also add new and different perspectives
to the data. Beyond simple record counts (such as total smoking patients visiting a hospital
versus the total non-smoking patients visiting a hospital) one might ponder to compare the
total number of hospital visits for each state to the average number of hospital visits for a
state. This would require calculating the total number of hospital visits by state as well as
the total number of hospital visits overall (then computing the average).

The following two lines of code use the R functions table and write.csv to create a list (a
file) of the total number of hospital visits found for each state:

--- calculates the number of hospital visits for each
--- state (state ID is in field 9 of the file
StateVisitCount<-table(datas.df[9])

--- write out a csv file of counts by state
write.csv (StateVisitCount, file="C:/Big Data Visualization/Chapter
3/visitsByStateName.txt", quote = FALSE, row.names = FALSE)

The following is a portion of the file that is generated:

Understanding Your Data Using R

[97]

The following R command can be used to calculate the average number of hospitals by
using the nrow function to obtain a count of records in the data source and then divide it by
the number of states:

--- calculate the average
averageVisits<-nrow(datas.df)/50

Going a bit further with this line of thinking, you might consider that the nine states the
U.S. Census Bureau designates as the Northeast region are Connecticut, Maine,
Massachusetts, New Hampshire, New York, New Jersey, Pennsylvania, Rhode
Island, and Vermont. What is the total number of hospital visits recorded in our file for
the northeast region?

R makes it simple with the subset function:

--- use subset function and the "OR" operator to only have
--- northeast region states in our list
NERVisits<-subset(tmpRTable, as.character(V9)=="Connecticut"
| as.character(V9)=="Maine"
| as.character(V9)=="Massachusetts"
| as.character(V9)=="New Hampshire"
| as.character(V9)=="New York"
| as.character(V9)=="New Jersey"
| as.character(V9)=="Pennsylvania"
| as.character(V9)=="Rhode Island"
| as.character(V9)=="Vermont")

Extending our scripting, we can add some additional queries to calculate the average
number of hospital visits for the northeast region and the total country:

AvgNERVisits<-nrow(NERVisits)/9
averageVisits<-nrow(tmpRTable)/50

And let's add a visualization:

-- the c objet is the the data for the barplot function to
--- graph
c<-c(AvgNERVisits, averageVisits)

--- use R barplot
barplot(c, ylim=c(0,3000),
ylab="Average Visits", border="Black",
names.arg = c("Northeast","all"))
title("Northeast Region vs Country")

Understanding Your Data Using R

[98]

The generated visualization is shown in the following screenshot:

Contrasts
The examination of contrasting data is another form of extending data profiling.

For example, using this chapter's data, one could contrast the average body weight of
patients that are under a doctor's care against the average body weight of patients that are
not under a doctor's care (after calculating average body weights for each group).

To accomplish this, we can calculate the average weights for patients that fall into each
category (those currently under a doctor's care and those not currently under a doctor's
care) as well as for all patients, using the following R script:

--- read in our entire file
tmpRTable<-read.table(file="C:/Big Data Visualization/Chapter
3/sampleHCSurvey02.txt",sep=",")

Understanding Your Data Using R

[99]

--- use the subset functionto create the 2 groups we are
--- interested in
UCare.sub<-subset(tmpRTable, V20=="Yes")
NUCare.sub<-subset(tmpRTable, V20=="No")
--- use the mean function to get the average body weight of all pateints
in the file as well as for each of our separate groups
average_undercare<-mean(as.numeric(as.character(UCare.sub[,5])))
average_notundercare<-mean(as.numeric(as.character(NUCare.sub[,5])))
averageoverall<-
mean(as.numeric(as.character(tmpRTable[2:nrow(tmpRTable),5])))
average_undercare;average_notundercare;averageoverall

In short order, we can use R's ability to create subsets (using the subset function) of the
data based upon values in a certain field (or column) and then use the mean function to
calculate the average patient weight for the group.

The results from running the script (the calculated average weights) are shown in the
following screenshot:

We can use the calculated results to create a simple visualization as follows:

--- use R barplot to create the bar graph of
--- average patient weight
barplot(c, ylim=c(0,200), ylab="Patient Weight", border="Black", names.arg
= c("under care","not under care", "all"), legend.text=
c(format(c[1],digits=5),format(c[2],digits=5),format(c[3],digits=5)))>
title("Average Patient Weight")

Understanding Your Data Using R

[100]

Tendencies
Identifying tendencies present within your data is also an interesting way of extending data
profiling. For example, using this chapter's sample data, you might determine what the
number of servings of water that was consumed per week by each patient age group.

Earlier in this section, we created a simple R script to count visits by age groups; it worked,
but in a big data scenario, this may not work. A better approach would be to categorize the
data into the age groups (age is the fourth field or column in the file) using the following
script:

--- build subsets of each age group
agegroup1<-subset(tmpRTable, as.numeric(V4)<22)
agegroup2<-subset(tmpRTable, as.numeric(V4)>21 & as.numeric(V4)<35)
agegroup3<-subset(tmpRTable, as.numeric(V4)>34 & as.numeric(V4)<45)
agegroup4<-subset(tmpRTable, as.numeric(V4)>44 & as.numeric(V4)<55)
agegroup5<-subset(tmpRTable, as.numeric(V4)>54 & as.numeric(V4)<66)
agegroup6<-subset(tmpRTable, as.numeric(V4)>64)

Understanding Your Data Using R

[101]

After we have our grouped data, we can calculate water consumption. For example, to
count the total weekly servings of water (which is in field or column 96) for age group 1, we
can use:

--- field 96 in the file is the number of servings of water
--- below line counts the total number of water servings for
--- age group 1
sum(as.numeric(agegroup1[,96]))

Alternatively, to calculate the average number of servings of water for the same age group,
we can use the following code:

mean(as.numeric(agegroup1[,96]))

R requires the explicit conversion of the value of field 96 (even though it
comes in the file as a number) to a number using the as.numeric R
function.

Now, let's create the visualization of this perspective of our data. The following is the R
script used to generate the visualization:

--- group the data into age groups
agegroup1<-subset(tmpRTable, as.numeric(V4)<22)
agegroup2<-subset(tmpRTable, as.numeric(V4)>21 & as.numeric(V4)<35)
agegroup3<-subset(tmpRTable, as.numeric(V4)>34 & as.numeric(V4)<45)
agegroup4<-subset(tmpRTable, as.numeric(V4)>44 & as.numeric(V4)<55)
agegroup5<-subset(tmpRTable, as.numeric(V4)>54 & as.numeric(V4)<66)
agegroup6<-subset(tmpRTable, as.numeric(V4)>64)

--- calculate the averages by group
g1<-mean(as.numeric(agegroup1[,96]))
g2<-mean(as.numeric(agegroup2[,96]))
g3<-mean(as.numeric(agegroup3[,96]))
g4<-mean(as.numeric(agegroup4[,96]))
g5<-mean(as.numeric(agegroup5[,96]))
g6<-mean(as.numeric(agegroup6[,96]))

--- create the visualization
barplot(c(g1,g2,g3,g4,g5,g6),
+ axisnames=TRUE, names.arg = c("<21", "22-34", "35-44", "45-54", "55-64",
">65"))
> title("Glasses of Water by Age Group")

Understanding Your Data Using R

[102]

The generated visualization is shown in the following screenshot:

Dispersion
Finally, dispersion is still another method of extended data profiling.

Dispersion measures how various elements selected behave with regards to some sort of
central tendency, usually the mean. For example, we might look at the total number of
hospital visits for each age group, per calendar month in regards to the average number of
hospital visits per month.

For this example, we can use the R function subset in the R scripts (to define our age
groups and then group the hospital records by those age groups) like we did in our last
example. The following is the script showing the calculation for each group:

agegroup1<-subset(tmpRTable, as.numeric(V4) <22)
agegroup2<-subset(tmpRTable, as.numeric(V4)>21 & as.numeric(V4)<35)
agegroup3<-subset(tmpRTable, as.numeric(V4)>34 & as.numeric(V4)<45)
agegroup4<-subset(tmpRTable, as.numeric(V4)>44 & as.numeric(V4)<55)
agegroup5<-subset(tmpRTable, as.numeric(V4)>54 & as.numeric(V4)<66)
agegroup6<-subset(tmpRTable, as.numeric(V4)>64)

Understanding Your Data Using R

[103]

Remember that the preceding scripts create subsets of the entire file (which we loaded into
the tmpRTable object) and they contain all of the fields of the entire file.

The agegroup1 group is partially displayed in the following screenshot:

Once we have our data categorized by age group (agegroup1 through agegroup6), we can
then go on and calculate a count of hospital stays by month for each group (shown in the
following R commands). Note that the substr function is used to look at the month code
(the first three characters of the record date) in the file since we (for now) don't care about
the year.

The table function can then be used to create an array of counts by month:

az1<-table(substr(agegroup1[,2],1,3))
az2<-table(substr(agegroup2[,2],1,3))
az3<-table(substr(agegroup3[,2],1,3))
az4<-table(substr(agegroup4[,2],1,3))
az5<-table(substr(agegroup5[,2],1,3))
az6<-table(substr(agegroup6[,2],1,3))

Understanding Your Data Using R

[104]

Using the preceding month totals, we can then calculate an average number of hospital
visits for each month using the mean R function . This will be the mean of the total for the
month for ALL age groups:

JanAvg<-mean(az1["Jan"], az2["Jan"], az3["Jan"], az4["Jan"], az5["Jan"],
az6["Jan"])

The preceding code example can be used to calculate an average for each
month.

Next we can calculate the totals for each month, for each age group:

Janag1<-az1["Jan"];Febag1<-az1["Feb"];Marag1<-az1["Mar"];Aprag1<-
az1["Apr"];Mayag1<-az1["May"];Junag1<-az1["Jun"]
Julag1<-az1["Jul"];Augag1<-az1["Aug"];Sepag1<-az1["Sep"];Octag1<-
az1["Oct"];Novag1<-az1["Nov"];Decag1<-az1["Dec"]

The following code stacks the totals so we can more easily visualize it later (we would have
one line for each age group (that is, Group1Visits, Group2Visits, and so on):

Monthly_Visits<-c(JanAvg, FebAvg, MarAvg, AprAvg, MayAvg, JunAvg, JulAvg,
AugAvg, SepAvg, OctAvg, NovAvg, DecAvg)
Group1Visits<-
c(Janag1,Febag1,Marag1,Aprag1,Mayag1,Junag1,Julag1,Augag1,Sepag1,Octag1,Nov
ag1,Decag1)
Group2Visits<-
c(Janag2,Febag2,Marag2,Aprag2,Mayag2,Junag2,Julag2,Augag2,Sepag2,Octag2,Nov
ag2,Decag2)

Finally, we can now create the visualization:

plot(Monthly_Visits, ylim=c(1000,4000))
lines(Group1Visits, type="b", col="red")
lines(Group2Visits, type="b", col="purple")
lines(Group3Visits, type="b", col="green")
lines(Group4Visits, type="b", col="yellow")
lines(Group5Visits, type="b", col="pink")
lines(Group6Visits, type="b", col="blue")
title("Hosptial Visits", sub = "Month to Month",
cex.main = 2, font.main= 4, col.main= "blue", cex.sub = 0.75,
font.sub = 3, col.sub = "red")

Understanding Your Data Using R

[105]

Now enjoy the generated output:

Summary
In this chapter, we went over the idea and importance of establishing context and perhaps
identifying perspectives to big data, using the data profiling with R.

Additionally, we introduced and explored the R programming language as an effective
means to profiling big data and used R in numerous illustrative examples.

Once again, R is an extremely flexible and powerful tool that works well for data profiling
and the reader would be well served researching and experimenting with the languages
and vast libraries available today, as we have only scratched the surface of the features
currently available.

In the next chapter, we will dive into big data quality, using Data Manager.

4
Addressing Big Data Quality

In this chapter, we will talk about the categories of categorized data quality and the
challenges big data brings to them. In addition, we will offer examples demonstrating
concepts for effectively addressing these areas.

The chapter is organized into the following main sections:

Data quality categorized
DataManager
DataManager and big data
Some examples
More examples

To make programming a bit easier, programming languages categorize data into types or a
datatype. These categories of data are a defined kind or a set of possible values allowed by
the type and allow progress to be made or, specifically, solutions to be crafted.

The same concept may be applied to the challenge of data quality. By understanding the
categories of data quality, it makes it easier (while using an appropriate tool choice) to
identify and address issues with the quality of your big data.

Data quality categorized
In early computing, the term Garbage In Garbage Out (GIGO) was popular and well
known. It was meant to remind us that computers process all data without judgment. In
other words, the quality of data processed by computers (or used to create data
visualizations) is not guaranteed. If your data is wrong, your results will be wrong.

Addressing Big Data Quality

[107]

While what we just mentioned might be obvious, it may not be obvious that a data
visualization you are reviewing was generated using data with poor quality and therefore is
presenting an incorrect picture. Remember the visualization of the big dipper from Chapter
1, Introduction to Big Data Visualization? Imagine what it might look like when using
incorrect data points:

Data visualizations will only show the value if the data used to create the visualizations has
had its quality assured to the appropriate level through routine and regular review and
evaluation, practices that, when using large volumes of data, can become extremely
demanding.

Frankly, data quality is relative as the level of accurateness or completeness is relative to or
relates closely to the intended use of the data.

For example, based upon intended use, consider the following. When considering the level
of data quality, one might agree that pollsters routinely determine what level of statistical
confidence is required. In other words, they determine the number of people in an entire
group and how accurate they want their results to be (accuracy), which then dictates the
sampling technique they may use.

In Chapter 3, Understanding Your Data Using R, we came across a file of patient survey
information, which contained over 105 fields or columns. In all of the various examples
given, none required using all of these columns. When evaluating the level of data quality,
keep in mind that it is not always necessary for all columns in a file to have values in them
(completeness).

Time-varying datasets can be tricky. They contain information that is altered over time, due
to continuously executed, time-dependent update processes or events during a time span.
You might argue that you'd always want the most current data (update status), but is it as
important to have up-to-the minute data when visualizing real-estate market values? How
about extreme weather tracking?

And soon, hopefully, you get the picture.

Addressing Big Data Quality

[108]

From Chapter 1, Introduction to Big Data Visualization:

“The level of data quality can be affected by the way it is entered, stored, and managed and
the process of addressing data quality requires a routine and regular review and evaluation
of the data…”.

Being successful with addressing data quality demands an understanding of both your data
(which is what we just learned from Chapter 3, Understanding Your Data Using R, as well as
the ability to identify and resolve the issues with your data.

In Chapter 1, Introduction to Big Data Visualization, we recognized the most general
categories of data quality; how do you address them? The first step is to have an
understanding of each of them:

Accuracy: There are many varieties of data inaccuracies and the most common
examples include: poor math, out of range, invalid values, duplication, and more.
Completeness: Data sources may be missing values from particular columns,
missing entire columns, or even complete transactions.
Update status: As part of your quality assurance, you need to establish the
cadence of data refresh or updating as well as have the ability to determine when
the data was last saved or updated. This is also referred to as latency.
Relevance: This involves identification and elimination of information that you
don't need or care about, given your objectives. An example would be removing
sales transactions for pickles if you are intending on studying personal grooming
products.
Consistency: It's common to have to cross-reference or translate information
across data sources. For example, recorded responses to a patient survey may
require translation to a single consistent indicator to make later processing or
visualizing easier.
Reliability: Reliability is chiefly concerned with making sure the method of data
gathering leads to consistent results. A common data assurance process involves
establishing baselines and ranges and then routinely verifying that data results
fall within established expectations. For example, districts that typically have a
mix of both registered Democrat and Republican voters would warrant an
investigation if data suddenly was 100% single partied.
Appropriateness: Data is considered appropriate if it is suitable for the intended
purpose; this can be subjective. For example, it's considered a fact that holiday
traffic affects purchasing habits (that is, an increase in US flags in memorial day
week does not indicate an average or expected weekly behavior).

Addressing Big Data Quality

[109]

Accessibility: Data of interest may be watered down in a sea of data you are not
interested in, thereby reducing the quality of the interesting data since it is mostly
inaccessible. This is particularly common in big data projects. Additionally,
security may play a role in the quality of your data. For example, particular
computers might be excluded from captured logging files or certain health-
related information may be hidden and not part of a shared patient data.

DataManager
There are numerous options to choose from when it comes to open source, easily obtainable
and quick-start tools capable of addressing big data quality.

In this chapter, we will use DataManager. This is a program that allows you to process and
manipulate data in an easy and logical manner through a flexible graphical interface.

At the time of writing, the DataManager tool used in these exercises can be
obtained from datamanager.com.au.

DataManager reads from and writes to delimitated files (comma separated or CSV files) but
also supports reading from various Open Database Connectivity (ODBC) data sources for
greater flexibility.

It allows you to construct scenes of conceptual designs using simple mouse clicks. These
scenes describe how your data will be processed and transformed (and all of the scenes you
create can be saved and reused). As you'll see in the examples, DataManager makes use of
the concept of functional nodes. With these nodes, you form a design by adding various
nodes and linking them, such that the links form the flow of your data processing. All of
this is done using a graphical work area (it's very much like IBM SPSS with perhaps less
functionality, but it's free).

Each DataManager node performs a single function (which you can customize) on your
data and once it completes that function, it passes your data to the node it is linked to
(continuing until it encounters an output node).

https://datamanager.com.au/

Addressing Big Data Quality

[110]

You can use DataManager to create very straightforward designs or very complicated
designs (using hundreds of nodes and multiple Inputs and Output nodes). Node
functionalities available in DataManager include appending, deriving, distinction, fill, filter,
merge, sample, select, and sort. Output options include distribution, histogram, database
(DB), ODBC, quality, statistics, table, and XY plotting. In addition, you can execute external
commands and leverage the power of Visual Basic Script (VBScript).

DataManager and big data
Although DataManager can handle very large datasets or files, it is comparable to most
tools of its type, in that, when it comes to big data, it has essentially constrained your
machine resources–processor speed, memory, and storage space. However, that is not to
say it is not a very useable and effective tool for addressing big data quality (as well as
accomplishing other objectives as well).

As with most big data scenarios, some of the big data challenges can be addressed outside
of the tool but you can also be successful through leveraging features and functionalities
within DataManager. In addition, using the appropriate strategies, you can overcome any
limitations a machine may apply.

The examples in the upcoming sections of this chapter aim to properly illustrate some of
those big data strategies as well as addressing the outlined data quality categories.

Some examples
To get started, let's assume that our data provider from Chapter 3, Understanding Your Data
Using R, has supplied additional files to us containing patient survey information, but it has
been communicated that the data quality of these files is suspect. In the following examples,
we'll see what can be done to address specific concerns and improve the quality of the data.

Some reformatting
A profiling exercise from Chapter 3, Understanding Your Data Using R, was to time box the
data to establish a time frame in which the hospital visits were recorded. Using R, we
scanned the data looking at the field or column named recorddate and generated a list of
four character years found in the file. By looking at the list we were able to establish that the
data in the file ranged from 1999 through 2016.

Addressing Big Data Quality

[111]

This time, let's assume we've again scanned our data and observed that the recorddate field
contains both four-character and two-character length years (as shown in the following
screenshot):

To make it a bit easier to work with the data during the process of creating data
visualizations, it is always better for data to be consistent in format. Although in this
example both values 01 and 2001 are valid years, to our R script, they show up as distinct
values making it prone to misinterpretation. Using DataManager, we can quickly and easily
reformat any two-character length record date years to the desired four-character length
years (or we could convert all four-character years to two).

Let's walk-through that exercise.

A little setup
First, DataManager uses nodes to process data. There are three types of nodes
defined: Input Nodes, Work Nodes, and Output Nodes. You define scenes connecting the
nodes as logic processing streams.

Addressing Big Data Quality

[112]

Selecting nodes
Scrolling through the Node menu (which is always visible on the left side of DataManager),
you can click on Input Nodes and then click on the icon named InputFile Node. Once you
click on the node, your mouse pointer will change to the cross-hair pointer and your next
mouse click (anywhere on the main work area) will drop the node you selected into the
scene.

Next, repeat the same process:

Click on Work Nodes and select and add a VBScript node.1.
Click on Output Nodes and select and add a Table node.2.

Now that you have these three nodes on the main work area of DataManager, you need to
connect them. The following is the screenshot of the main work area of DataManager
showing a scene created with the three nodes that are selected:

Addressing Big Data Quality

[113]

Connecting the nodes
To connect the nodes, simply right-click on the node and select Connect Node (shown in
the following screenshot):

Next, click on the node you wish to connect the node to. DataManager will show the nodes
connected:

You can repeat the process to connect the VBScript node to the output Table node. Once
you have all the three nodes (Input Nodes, Work Nodes, and Output Nodes), you can then
customize the processing of the DataManager scene.

Addressing Big Data Quality

[114]

Clicking on the first node (Input Nodes) displays the InputFile dialog (shown in the
following screenshot), where you can use the Browse button to select the file you want to
process:

Addressing Big Data Quality

[115]

You can select Comma as the File Delimitor, and then check Has Header since our file
includes a header row as the first record in the file. We'll explore some of the other options
later in this chapter, so let's jump down and click on Analyse. Clicking on this button will
display the fields/columns from the first record in the file. DataManager is now set up to
read the entire file, record by record during scene processing. The last step in customizing
these Input Nodes is to click on the button labeled Dismiss.

The work node
We've selected the VBScript node as our work node for this scene (shown in the following
screenshot). Once again, you click on Analyse and the node will read in the file's header
record and display the names of the fields/columns:

Addressing Big Data Quality

[116]

The next step in customizing the work node is to enter a name of a new field (which will
hold our formatted year). Once you enter the name (I used AFormattedField), to the right
of the new field name, you need to select the field Type. DataManager allows CON for
continuous (numeric) and DIS for discrete (text). I selected DIS, since I plan to hold a four-
character string value for my formatted record date year. Finally, click on the button labeled
Add (to actually add the new field). You should now notice the new field under Output
Data Columns.

Adding the script code
Here is the fun part, where we can do some light script programming. Click on the button
labeled Edit Visual Basic Script Code. DataManager displays the VBScriptCode dialog as
shown in the following screenshot:

Addressing Big Data Quality

[117]

Rather than beginning to type VBScript (why waste time?), click on the button labelled
Create Default Code and DataManager will provide a template of the script that is needed
to process the data in the node (our file) to which we can add some customized logic (this is
shown in the following screenshot).

The template code is explained pretty well with comments embedded in the script, so we
won't go into details here, but basically the script processes our file, one record at a time.
This makes it super easy for us to focus on the custom code we want and not have to recode
the processing script each time we use a VBScript node.

Scrolling down through the template's provided code, you will find a comment line that
says Add Your Code Here. Under that line, I've added my code using the VBScript
functions FormatDataTime and right to reformat the record date field into a four-character
year value and then to pass back that value to the output record:

Addressing Big Data Quality

[118]

A nice feature is the Test Code button. Click on this and DataManager will check the syntax
of the VBScriptCode within the VBScript node. If it is correct, you should receive the
following message:

If errors exist, you'll need to correct them before proceeding. Once you receive the No
Errors message, you can click on the button labeled Dismiss to dismiss and save the
VBScript and then Dismiss (again) to close the VBScript node.

Addressing Big Data Quality

[119]

Lastly, we need to customize the output node. Clicking on the Output Node, DataManager
displays the following:

From here, you can click on the button labeled Analyse (similar to the previous nodes) and
DataManager will list the field we added (to hold the formatted year). For this example, we
can just click on Dismiss to close this node.

Addressing Big Data Quality

[120]

Executing the scene
Now that we have our scene (of three nodes) developed, we can execute it. To do that, we
go back to the Node menu on the left of the DataManager workspace and click on Execute.
This displays three icons, Validate Run, Execute Run, and Stop (shown in the following
screenshot):

If you are unsure whether you've created the scene correctly, you can click on Validate Run
and DataManager will validate each node and provide you with a success or failure
message. Let's move on and click on Execute Run.

Addressing Big Data Quality

[121]

While DataManager executes your scene, you will get a visual indication of the process–the
nodes will change colors as they individually execute and the DataManager status bar will
display messages. Upon completion of our scene, we see the generated table of our single
re-formatted field showing our years, all in YYYY format:

Other data quality exercises
Now that we're somewhat familiar with the basics of how DataManager works, let's look at
solving some additional data quality issues.

To illustrate a few more features of DataManager, let's assume that an additional problem
has been identified with our patient survey file. We have come to know that the
no_hospital_visits field contains some records with no value (no response from the
patient?). This is an example of when data completeness affects the quality level of the data.

Addressing Big Data Quality

[122]

It is our objective to create a data visualization showing the average number of hospital
visits by a state. Using DataManager, we will use Work Nodes to not only identify and fill
in records with missing values (for the field we are interested in) but also filter the records
so that we are only working with two fields: state and no_hospital_visits.

To get started, we are assuming that we started with a new blank DataManager scene; we
have added our Input Nodes (just like the previous example), and have customized it to
read our file. In addition, rather than using the VBScript work node, we've added two new
Work Nodes to the scene, the Filter node and the Filler node, and finally the same output
mode. Again, like the previous example, we connected the nodes: Input | Filter | Filler |
Output.

Now, let's look at each of the nodes' specifics. The InputFile dialog (shown in the following
screenshot) shows that we have customized it exactly like we had in the first example:

Addressing Big Data Quality

[123]

Once you have selected the fields (shown in the preceding screenshot), click on the button
labeled Remove Selected. DataManager then removes all of the selected fields (shown in
the following screenshot):

Addressing Big Data Quality

[124]

Now, click on the button labeled Dismiss to save our node. The Filter node is handy and
pretty straightforward in its setup. The Filler node is just as handy (and easy to set up). This
node allows you to fill in the missing data in all of the records in a selected column in a file.
With a few clicks, you can set up the node to identify all the missing values in a column
with one of the following options:

The minimum (Min) value found in the column
The maximum (Max) value found in the column
The average (Average) value found in the column
A user (User) supplied value found in the column

Addressing Big Data Quality

[125]

Click on the Filler node Again you can click on the button labeled Analyse, so
DataManager lists the fields in the file that it will process with this node (in this case, the
fields we set up in the previous Filter node: no_hospital_visits and state). This is
shown in the following screenshot:

At the bottom of the Filter dialog, notice that I've selected User and then provided the value
that DataManager will use to replace any missing values that are found (in the selected
field).

Addressing Big Data Quality

[126]

If we execute the scene we just created, we'll end up with a list of records each containing
two fields, and with the no_hospital_visits field fully complete (no records with
missing values):

Addressing Big Data Quality

[127]

What else is missing?
On the topic of missing data, DataManager provides a Quality node, which displays the
quality of the data based upon the data found in the columns of the data file read. This can
be a time saver in your data quality efforts; however, there is one catch, missing data is NOT
defined simply as a blank or null value found; DataManager uses the definition of ? =
missing data, which, typically, is the case when dealing with most big data sources.

The Quality node can be added to any DataManager scene and connected to a valid Input
Nodes (as shown in the following screenshot). The customization of the Quality node is
simple and easy; you can click on the button labeled Analyse to set the data file the node
will read and (optionally) provide a Quality Description (which is the name DataManager
will give to the output of the quality node).

Addressing Big Data Quality

[128]

Upon executing the scene, the DataManager Quality node produces the following output:

Again, to make this code work, you will need to preprocess your data, replacing various
values you determine to indicate missing values (such as nulls, empty fields, and, even
perhaps, zeros) with the question mark.

Status and relevance
Some simple examples of addressing the data quality topics of update status and relevance
involve using the DataManager SelectRow and ExecCmd nodes.

Again, assuming a blank scene with the same Input Nodes (and using the same steps to
connect the nodes), we can create the following processing:

Input | SelectRow | Table | OutputFile | ExecCmd

Addressing Big Data Quality

[129]

Since the SelectRow node is first in our scene process, let's start there. The SelectRow node
allows you to select which rows of data you wish to process. This can address the topic or
data relevance. For example, let's suppose that within our file of patient surveys we only
care to review those survey records that occurred in the state of Montana. The
SelectRow node makes this easy. First, we click on the select node and then the button
labeled Analyse. As usual, DataManager lists all of the fields from the file. If we click on the
field (within the fields list) named state, it appears at the bottom of the SelectRow dialog,
where we can then select a logical operator (equal), type in a value to match to (Montana),
and then an expression ender (OUT, which ends the expression).

The custom logic we created here will instruct the SelectRow node to pass on to the next
node in our scene only those records that we say are relevant–the ones where the state field
value is equal to Montana.

Addressing Big Data Quality

[130]

In the previous examples, we used a Table node as our final node in the scene. This node
generates a table of the records produced by your scene. In this example, we've elected to
add the OutputFile node as the final output node. The OutputFile node allows you to write
out a data file, based upon the parameters you set. Again, this node is pretty simple to
customize, in that, you simply:

 Provide a filename (and location) for the file you want DataManager to generate.1.
Indicate the File Delimitor–typically, Comma is selected to indicate a CSV2.
(comma separated file).
Click on Has Header indicating that we want to include the first record as a3.
column header file.
Indicate which fields will be written to our file using the (now) familiar Analyse4.
button.

Addressing Big Data Quality

[131]

Finally, I've added the ExecCmd node as the final step in this scene. This node allows you to
run external applications from within DataManager after an OutputFile node has executed
to further process data or just trigger another application.

In this case, as an example, we will use this node's functionalities to execute a MS Windows
script file of commands (.cmd) that moves our original input file to an archive location and
then copies a (more recent) input file to our input location, using simple MS DOS
commands such as MOVE:

The ExecCmd node is also easily customized. We can follow these steps:

Provide the name and location of the executable file (in our example, it is1.
RefreshSurverys.cmd).
Provide command-line run-time parameters (if any; there are none in our2.
example).
Select/set any of the three options (Run Command Executable via DOS Program,3.
Wait for Command Executable to Finish, and Max Time to Run(Seconds)).

Addressing Big Data Quality

[132]

Run Command Executable via DOS Program: This will execute the external
application in a DOS command like this:

 command.com /c [myexternalapp.exe] [app arguments]

Wait for Command Executable to Finish: This will instruct DataManager to wait
until the external application has finished.
Max Time to Run (Seconds): This will instruct DataManager to wait for the
specified time and then ask the user if they wish to terminate the external
application or continue waiting for another time period. This option is only valid
if the Wait for Command Executable to Finish is also chosen.

Naming your nodes
Now is a good time to mention that by right-clicking on a node you can select Name Node
and enter a descriptive name for the node. This is highly recommended since it will be
much easier to follow the processing logic of a scene when you begin working with data
quality issues more complex than the simple examples given here.

Addressing Big Data Quality

[133]

More examples
More areas where data quality may need be suspect include consistency, reliability,
appropriateness, and accessibility. DataManager offers various means for addressing these
as well.

Consistency
In an earlier example, we looked at the use of the DataManager VBScript node to reformat
the record date field of our data. Another example where data may be valid yet still in
constant include scenarios such as the value of the sex field.

The Male, M, Female, F, 1, or 2 values are all perhaps valid values yet these inconstant
responses make visualization of data challenging. Using the VBScript node can easily
address this example. Again, using the power and flexibility of VBScript, you might use the
code shown in the following screenshot:

As we mentioned earlier in this chapter, it is common to have to cross-reference or translate
information across data sources and the VBScript mode can be used in some cases;
however, if the number of possible values are numerous (as we saw when we introduced
the DataManager Quality node) preprocessing is most likely a better choice as there
currently isn't a convenient method of testing values other than creating if logic to test
each (which can easily become unsupportable).

Reliability
When it comes to reliability, one might institute a maximum (or minimum) valid value for a
data point and ignore any records within a file whose value falls below or above that value.

Addressing Big Data Quality

[134]

For example, let's assume that we agree that in our patient survey data, any patient heart
rate value less than the value of 27 (the lowest ever recorded, according to Guinness World
Records) and higher than 299 (which would be considered pretty dangerous by most
doctors) should be considered erroneous, so we want to ignore that patient survey record
entirely. We could use the VBScript node again, but it might be easier to utilize the
DataManager SelectRow node instead. This node allows you to set up logical expressions
to determine which rows you want to pass through to the next node and which to ignore.

In the following screenshot, I've customized the SelectRow node with a logic statement that
is based upon the heartrate field of our patient survey file:

The first step was to use the button labeled Analyse to read in all of the fields in our file.
The next step was to select (from the list of fields) heartrate, select a logical operator (< less
than), provide our minimum value (27), and finally the statement continuator (AND). I
repeated the process for the maximum value as heartrate < 299 OUT (recall that OUT
terminates the logical statement).

Addressing Big Data Quality

[135]

The SelectRow node can then be connected to another Work Nodes or an Output Nodes to
complete the intended processing.

You may see that using the SelectRow node is quicker than writing the actual logical
statements in VBScript. Additionally, you can pretty much stack many logical statements
within a single SelectRow node, making this node a very powerful step within the
DataManager scene.

Along with this node and in support of working with big data, another node becomes quite
handy, which is the Filter node. This node allows you to filter the input data and pass the
remaining data to the output. The filtering is based on selecting which columns you wish to
pass to the output. The point is if you have many columns of data within your data source,
and for a particular visualization you only need three columns, why handle the unused
columns?

Using the Filter node, you use the Analyse button to view all of the fields in the file and
then select all of the fields you wish to remove (shown in the following screenshot). Finally,
you click on Remove Selected and the node will be customized to only pass on (to the next
node in the DataManager scene) the remaining columns.

Addressing Big Data Quality

[136]

Appropriateness
Earlier in this chapter, we introduced the idea that certain data within your file may be
considered inappropriate to include in a processor visualization. We have also seen how the
use of the Filter and SelectRow nodes can be used to remove unwanted (inappropriate)
data. Relative to the idea of selecting certain slices or subsets of your data (or of a
population) aimed at a particular use is the idea of sampling your data. DataManager helps
us here by providing a Sample node.

The DataManager Sample node allows you to statistically sample input rows and pass
them to the next node (in the DataManager scene). The node even allows you to pass on the
sampled rows as the new dataset or to remove the sampled rows and pass on the remaining
as the new dataset. This node can be extremely valuable when working with big data where
it may be very difficult to process all of the records provided by a data source.

To use the Sample node, you connect it to an Input Nodes and click on the button labeled
Analyse to read into the node all of the fields within your data source, then further
customize the node by:

Selecting a Sample node: Pass on will create a sample from your data and pass1.
only those rows (in the sample) to the next node in the scene while Discard
discards the sample and passes on the remaining rows (to the next node in the
scene).
Selecting a Style: First we will select, at most, the number of rows given in the2.
Style Entry textbox. 1 – in – N will select only the consecutive Nth row (where N
is the number given in the Style Entry textbox). Random will examine a random
percentage of rows (determined by the value in the Style Entry textbox).

Addressing Big Data Quality

[137]

The following is an example of the customized Sample node:

Addressing Big Data Quality

[138]

Accessibility
Finally, the quality of your data may be affected by its accessibility in whole or in part.
Perhaps the specific data you need is buried within millions of rows of nonrelevant data or
exists in other files that may (or may not) be formatted in the same way; in Chapter 3,
Understanding Your Data Using R, we discussed profiling to get to know your data and put
context to it. Once we have identified our data, we can use DataManager to create a high-
quality file of very relevant information.

In addition to the nodes we've already reviewed in this chapter, DataManager offers the
following: Distinct, Append, Merge, and Sort. These Work Nodes can be used to craft a
single dataset that includes exactly the data you need to meet your requirements:

The Distinct node: This node allows you to filter out rows that have common
data values for the chosen columns. The output data from this node will contain
distinct rows.
The Append node: This node allows you to append two input data streams into
one output data stream. The append will combine both input streams such that
the Input 1 rows will be written out followed by the Input 2 rows, given that
both input streams contain matching column types.
The Merge node: This node allows you to merge two input data streams into one
output data stream. The merge is performed on a row-per-row basis or by a key
merge performing a left-outer-join. The method is determined on what input
columns are fed into the merge node.
 The Sort node: This node allows you to sort the input data (row wise) based on
selecting an input column. You also have a choice of sort methods.

Merging files example: Anyone who has had to merge multiple files into a single dataset
will know that it is tedious work at best. With DataManager, it's a straightforward exercise.

First, you'll need an Input node for each of your data files set up in the same way as we did
in the earlier examples in this chapter. If you have more than two files to merge, you'll need
to add additional Merge nodes, as they are limited to merging only two files, and then
merge the outputs of the first Merge nodes.

Addressing Big Data Quality

[139]

The Merge nodes are customized by simply connecting two Input Nodes to the Merge
node and clicking on the button labeled Analyse. Optionally, you can check the Full Left
Outer Join option on the Output tab of the node (shown in the following screenshot). This
option allows you to specify whether the rows from Input 1 are passed to the output when
there is no match found with Input 2 rows:

The Input 1 tab shows what columns are fed into the Merge node from the first connected
Input node and the Input 2 tab shows what columns are fed into the Merge node from the
second connected Input node. The Output tab shows what columns will be fed out of the
node (to the next node in the DataManager scene) and also shows how the merge will be
performed.

Addressing Big Data Quality

[140]

The following screenshot depicts a DataManager scene that uses the Merge node to merge
three files into a single table:

The Merge node can be a memory exhausting process; therefore, especially when working
with big data, it is recommended that Work Nodes are inserted prior to merging with the
objective of reducing the volume of data to be merged.

Other Output nodes
 Some other interesting Output nodes included with DataManager include the Distribution
node, Histogram node, Statistics node, and the XYPlot node. These nodes can be useful for
both data profiling as well as data quality assurance.

Distribution node: This node displays a distribution plot of the discrete data
values contained within the chosen discrete column
Histogram node: This node displays a histogram plot of the continuous data
values contained within the chosen continuous column.
Statistics node: This node displays statistics of the data present for the columns
read by the node
 XYPlot node: This node displays an XYPlot of the chosen continuous columns

Addressing Big Data Quality

[141]

It would well be worth your time to further investigate these DataManager nodes as well as
the other functionalities offered.

Summary
In this chapter, we covered some basic data quality concepts and introduced various
categories for data quality. In addition, the easily obtainable and extremely useable
DataManager tool was presented as a means for addressing these various data quality
issues.

In the next chapter, we will get back to the business of data visualization and some of the
challenges big data brings to visualization, using D3 to effectively present the results from
analyses.

5
Displaying Results Using D3

Data visualization involves displaying information graphically (visually) to present a point
or perspective on specific data. Beyond the simple graphs and charts in Excel, sourcing
from aggregated transaction rows within a spreadsheet, today's businesses expect far more.

In this chapter, we will explore the process of visualizing data using a web browser and
Data Driven Documents (D3) to present results from your big data analysis projects.

This chapter is organized into the following main sections:

About D3
D3 and big data
Some basic examples
More examples

About D3
D3 (or D3.js) is actually an open source JavaScript library (based upon its predecessor, the
Protovis framework), designed with the intention of visualizing data using todays web
standards.

Displaying Results Using D3

[143]

D3 helps put life into your data utilizing Scalable Vector Graphics (SVG), Canvas, and
standard HTML.

D3 combines powerful visualization and interaction techniques with a data-driven
approach to DOM manipulation, giving you the full capabilities of modern browsers and
the freedom to design the right visual interface for your data.

In contrast to many other libraries, D3.js allows inordinate control over the visualization of
your data. Its development was noted in 2011, as version 2.0.0 was released in August 2011.

D3 is embedded within an HTML webpage, and uses prebuilt JavaScript functions to select
elements, create SVG objects, style them, or add transitions, dynamic effects, and so on.

Detailed information, including the D3.js libraries can be accessed at https://D3js.org.

https://D3js.org

Displaying Results Using D3

[144]

D3 and big data
First, let me say that you can easily bind or use your large datasets to common SVG objects
using the functions available in the D3.js libraries.

The data can even be in a variety of formats, most commonly JSON, comma-separated
values (CSV), or geoJSON, but, if required, JavaScript functions can be written to read
other data format.

However, large isn't big in the sense of big data. Realistically, binding a CSV file of 500
records cannot be likened to binding it to a file of 500,000 records.

So, can D3 really help in the context of big data?

Since it is low-level, D3 may seem like a bad fit for big data visualization projects. The
D3.js libraries just won't work with gigabytes of data, but once you perform some
preprocessing on the data, D3 can help make sense of the results.

In fact, in each of the previous chapters of this book, Chapter 2, Access, Speed, and Storage
with Hadoop, (where we loaded data into a Hadoop environment and then used Hive to
manipulate that data into workable summaries), Chapter 3, Understanding Your Data Using
R, (where we used the power of R scripting to profile the data into meaningful summaries
for visualizations), and, Chapter 4, Addressing Big Data Quality (where we utilized
DataManager to address the quality of the data so it could be visualized) we used the
following strategy:

Assembling the data
Profiling the data
Addressing quality concerns
Processing for visualization, that is, summarize or aggregate, and so on
Visualizing!

So, let us now move on–and look at some pretty interesting examples of visualizing big data
using the power offered by opened sourced, D3.

Displaying Results Using D3

[145]

Some basic examples
Just to get us underway, let's take another look at an example we used in this book's
Chapter 3, Context – Understanding Your Data Using R.

In that scenario, we had used some simple R scripting to summarize patient survey
information into a result or summarized a file showing a total for the number of visits for
each state in the United States. Now, using that same data file, perhaps we can get a general
idea of what D3 may be able to do for us in the form of valuable data visualization.

We'll get into the details in the next section, but for now, all we need to do to get started is
to create an HTML page based upon a bubble chart template downloaded from the D3
website (this particular template utilizes the D3 flare class libraries to create a bubble chart
from our data file).

A bubble chart is an interesting way to display data in an efficient, reasonable way since, in
this example, we want to show all 50 states from our data, it can be represented in a clear
fashion.

The following figure shows the resulting bubble visualization generated by the D3 library
and bubble template (viewed with a web browser):

Displaying Results Using D3

[146]

Getting started with D3
As this book does not intend to be a lecture on the interworking's of D3 (rather focusing on
the use of D3 as an option to visualize big data), we will simply point out here a bit of basic
information around the reader's efforts into getting started with using D3:

The website may be found at https://D3js.org
The latest version (at the time of writing) is V4.2.8, and that version can be
downloaded from the following link:

https://github.com/D3/D3/releases/download/v4.2.8/D3.zip

https://D3js.org
https://github.com/D3/D3/releases/download/v4.2.8/D3.zip

Displaying Results Using D3

[147]

You can simply link directly to the latest release libraries by inserting the
following line in your projects:

 <script src="https://D3js.org/D3.v4.min.js"></script>

Based on your environment, or at least while you are experimenting with the D3 examples,
I recommend that you download the actual source files so that you can use a local reference
(shown as follows), as it eliminates the possibility of encountering any problems accessing
the D3 libraries (and, if you are inclined, you can see what the actual code is doing):

<script src="D3.v4.min.js"></script>

You can download the files from: https://github.com/D3/D3.

Finally, there are great instructional tutorials offered at:
https://github.com/D3/D3/wiki/Tutorials.

Now, on to the examples!

When we talk of visualizing big data, what we actually mean (and expect) is visualizing the
aggregated results of an analysis (no, contrary to popular opinion, no one visualizes raw big
data directly). To this point, the following is a key concept to understand and embrace that
the capture and storing, manipulation (profiling, addressing quality, and aggregating), and
visualizing are all separate (and encapsulated) components and can (and most likely
should) each be addressed with different tools or technologies.

This way, each component leverages the tool that is just right for the particular purpose.

In the following example, we are dealing with manufacturing data. Specifically, we have
data captured from a number of machines at a particular plant utilizing a data logging
system. The data logger is a program that gathers production-line data and writes it to a log
file. In this scenario, the data logger is installed on each manufacturing machine. The data
logger collects production data directly from the machine, stores it in memory, and
periodically sends it off to the data repository (a log file). In the event of a network outage,
the onboard data logger can continue to collect production information from the machine
while the network is down and then back-fill the data to the log file when the network
comes back up. This results in millions of machine transaction status records accumulating
daily, a big data scenario for sure.

https://github.com/D3/D3
https://github.com/D3/D3/wiki/Tutorials

Displaying Results Using D3

[148]

The transaction records contain the following information:

Date/Time This is the exact date and time of day that the transaction log record was
captured.

Shift ID The plant runs three shifts, so this would be 1, 2, or 3.

Machine ID The plant has five machines in operation; 001, 002, 003, 004, and 005.

Part count Numeric total of products produced by the machine since the previous polling
cycle.

Machine state The machine state is the current condition of the machine. Typical states are
running, idle, unplanned down, and planned down, changeover/setup, and
offline.

Error code These error codes can be automatically generated by the controller on the
machine or can correspond to a list of downtime reasons that are manually
selected by the machine operator.

The following screenshot shows a sample of the raw data records:

In this example, we'll skip over the process of manipulating the raw data, assuming we
have performed some profiling of the data, addressed any quality issues, and formed an
aggregation of the data that we wish to base our visualization upon (or drive the data from).

Displaying Results Using D3

[149]

What we've come up with is a simple comma-delimited text file (we named it data.csv)
with the total number of products produced for each machine ID, broken out by shift:

Again, one of the already available D3 visualization sample templates can be used to create
a grouped bar chart. Assuming you have already downloaded the D3 libraries, the steps to
adopt the template and create our visualization are as follows:

Download the grouped bar HTML template document.1.
Open the document in any HTML editor (or any programmer's editor).2.
Under the document's <body> tag, enter or modify the following code:3.

 <body>
 <! --- added a simple heading -->
 <h1><center>Total Parts by Shift</cellspacing></h>
 <! --- local include for D3 libraries -->
 <script src="D3.v3.min.js"></script>

What this modification does is to add text (Total Parts by Shift) to be used4.
as our visualization's heading and changes the reference to the D3 libraries (the
src= D3.v3.min.js) to be a local reference.

Displaying Results Using D3

[150]

Next, again assuming our data file is in the same local location as our HTML file,5.
we can find the document's file reference (D3.csv) and verify the filename:

 <!--- here is the data -->
 D3.csv("data.csv", function(error, data) {

Once we've saved the updated HTML document, we can view it using any web browser.

Voila! We've created our first big data visualization using D3:

If you take a few minutes and review the extensive visual gallery available (at least at the
time of writing) at https://github.com/D3/D3/wiki/Gallery, you will be able to see
literally hundreds of D3 template samples showing virtually any kind of visualization you
may want, all available to adopt (download, modify, and use).

Let's look at some more examples, digging deeper into the specifics of D3 use.

https://github.com/D3/D3/wiki/Gallery

Displaying Results Using D3

[151]

Another area of interest at our manufacturing plant is shift performance. Management
wants to determine how the different shifts contribute to overall profitability or perhaps
how each individual shift compares to the others. To do this, there are several key
performance indicators (KPIs) to be scrutinized. One such indicator is total parts delivered
by shift. Again, the process will be to take our big data source of raw plan records and
aggregate them into a usable form.

The following screenshot shows a portion of our raw data:

Since we've already worked with R in this book, we will use it again to manipulate our raw
plant data. The following is the simple R scripting used to aggregate the part counts by shift
ID to a summary file:

--- reads the raw file into a R table named "parts"
parts<-read.table(file="C:/Big Data Visualization/Chapter
5/samplePlanData.txt",sep=",")
data.df <- data.frame(parts)

--- create a subset of the raw data for each shift id
FirstShift<-subset(data.df,data.df[,2]=="First")
SecondShift<-subset(data.df,data.df[,2]=="Second")
ThirdShift<-subset(data.df,data.df[,2]=="Third")

--- aggregate part totals by shift ID
sum(as.numeric(FirstShift[,4]))

Displaying Results Using D3

[152]

sum(as.numeric(SecondShift[,4]))
sum(as.numeric(ThirdShift[,4]))

--- create a summary file for visualization
sink("C:/Big Data Visualization/Chapter 5/data.tsv")
cat("shiftid")
cat("\t")
cat("partcount")
cat("\n")
cat(paste("First Shift", "\t", sum(as.numeric(FirstShift[,4]))),sep = "\t",
collapse = NULL)
cat("\n")
cat(paste("Second Shift", "\t", sum(as.numeric(SecondShift[,4]))),sep =
"\t", collapse = NULL)
cat("\n")
cat(paste("Third Shift", "\t", sum(as.numeric(ThirdShift[,4]))),sep = "\t",
collapse = NULL)
cat("\n")
sink()

Reminder: as we mentioned in Chapter 3, Understanding Your Data Using R, there are many
approaches to using R and the previous script is just one approach. The reader is invited to
use it or improve it.

The following screenshot shows the aggregated or summary file (named data.tsv) that
the R script generates:

Displaying Results Using D3

[153]

This summary file is then the source of our D3 data visualization (shown in the following
figure):

This visualization is generated using the minimalist pie chart D3-shape sample template.

Displaying Results Using D3

[154]

To display the (preceding) visualization, the following HTML document was used (our
changes are highlighted):

<!DOCTYPE html>
<meta charset="utf-8">
<!-add the heading -->
<h1><center>Output by Shift</center></h1>
<canvas width="960" height="500"></canvas>
<!-local reference to D3 libraries --->
<script src="D3.v4.0.0-alpha.4.min.js"></script>
<script>
var canvas = document.querySelector("canvas"),
 context = canvas.getContext("2d");

var width = canvas.width,
 height = canvas.height,
 radius = Math.min(width, height) / 2;

var colors = ["#ff8c00", "#8a89a6", "#d0743c", "#6b486b", "#a05d56",
"#d0743c", "#ff8c00"];

var arc = D3.arc()
 .outerRadius(radius - 10)
 .innerRadius(0)
 .context(context);

var labelArc = D3.arc()
 .outerRadius(radius - 40)
 .innerRadius(radius - 40)
 .context(context);

var pie = D3.pie()
 .sort(null)
 .value(function(d) { return d.partcount; });

context.translate(width / 2, height / 2);

<-- read our summary file-->
D3.requestTsv("data.tsv", function(d)
{
 d.partcount = +d.partcount;
 return d;
}, function(error, data)
{
 if (error) throw error;
 var arcs = pie(data);
 arcs.forEach(function(d, i)
 {

Displaying Results Using D3

[155]

 context.beginPath();
 arc(d);
 context.fillStyle = colors[i];
 context.fill();
 });
 context.beginPath();
 arcs.forEach(arc);
 context.strokeStyle = "#fff";
 context.stroke();
 context.textAlign = "center";
 context.textBaseline = "middle";
 context.fillStyle = "#000";
 arcs.forEach(function(d)
 {
 var c = labelArc.centroid(d);
 context.fillText(d.data.shiftid, c[0], c[1]);
 });
});
</script>

A little down time
Another prospective opportunity for visualization of our raw plant data is around down
time. In our raw data file, there is a field named Machine_State. The machine state is the
current condition of the machine, typically running, idle, unplanned down, planned down,
changeover/setup, and offline.

In this scenario, we want to have a total count of the number of times each machine (001
through 005) recorded or wrote a transaction record where the machine was not in a
running state and we'd like to see these numbers broken down by a quarter.

Searching the D3 site, we find that there is a fine stacked bar sample template that lends
itself nicely to our requirements. This visual also demonstrates the use of runtime
reconfiguration in that it uses a standard HTML radio button that the user can use to switch
or transition the visualization view from a stacked bar to a multiples bar display format.

The template is named Stacked-to-Multiples and it can be found at h t t p ://b l o c k s . o r g /m b

o s t o c k /4679202 (the following figure points out the HTML radio buttons in the upper
right):

http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202
http://blocks.org/mbostock/4679202

Displaying Results Using D3

[156]

Once again, this D3 sample template uses a summarized data file to drive the visualization.
The data file (named data.tsv) contains records with three fields: group, date, and value,
and it is (partially) shown in the following screenshot:

Displaying Results Using D3

[157]

This is a pretty straightforward example that we can adapt for our purposes without much
effort. First, we can pre-process our raw plant data into the preceding file format–but with
one slight difference: rather than using a group field, we'll use that first field (or column) of
data as our machine ID (the other two fields can remain the same).

I have also named our data file as datastacked.tsv, and it is partially shown here:

Once again, the pre-processing of the raw plant data could be accomplished using R scripts
or other tools. Big data sources would typically be (perhaps) chunked or processed in
segments to effectively arrive at the desired aggregated or summarized file, ready for
visualization. As we saw in Chapter 3, Understanding Your Data Using R, offers the ability to
easily aggregate data and then merge the multiple aggregated files into a single file for
visualization.

The next step (in adopting this D3 sample template) is to download the sample template
and save it as an HTML document. From there, we can make a few minor modifications:

As mentioned earlier in this chapter, I have downloaded and saved the D3 library1.
files, so I need to change the src= reference within the HTML document (to make
it a local reference). It should look as follows:

 <script src="D3.v3.min.js"></script>

Displaying Results Using D3

[158]

Since I renamed the data file, locate the line in the HTML document referencing2.
the file name and change it to reflect our data file name:

 D3.tsv("datastacked.tsv", function(error, data) {

Finally, since we've changed the first field name in our data file (from group to3.
machine), we need to change all references to that field within the HTML
document. Hint: a simple global find and replace in a text editor does the trick!
Save the updated HTML file and view it in your web browser!4.

The following figure shows our data visualization showing the stacked view:

Displaying Results Using D3

[159]

If you click on the radio button labeled Multiples, the visualization changes format:

Visual transitions
The procedure of clicking on the HTML radio buttons to change the format of the
visualization is known as transitioning. In the preceding example, we transitioned from
one format to another. We can also use transitioning to change what data the visualization
is driven from. Let us take a look at another example to illustrate this concept.

Going back to our manufacturing plant's raw data, let's suppose that we want to look at the
output (total part count) by machine ID and by shift. We'd like to build a data visualization
that displays each machines part count (its output) broken out by shift. We also want the
ability to change the shift and see the visualization update (transition) appropriately.

For this example, I elected to use a D3 sample template that builds a donut pie chart (which
you can find at http://blocks.org/mbostock/5681842). This template transitions the
visualization between Apples data and Oranges data:

http://blocks.org/mbostock/5681842

Displaying Results Using D3

[160]

Another thought-provoking feature of this template is that it handles missing data by filling
in the null or missing values with zeros (you could use any default value instead of zeros).
We will examine this feature shortly.

To adopt this sample template for our purposes, we will go about following the usual steps:
download the HTML template, locate and change the D3 library reference, and update the
data.

Let's look at the three specific customizations:

I added a simple heading:1.

 <center><H1>Parts by Shift</H1></center>

I modified the HTML form, changing it from apples and oranges to indicate our2.
three plant shifts. Note that I had to add a third HTML radio button:

 <form>
 <label><input type="radio" name="dataset" value="first"
 checked>First Shift
 </label>
 <label><input type="radio" name="dataset" value="second">Second
 Shift
 </label>

Displaying Results Using D3

[161]

 <label><input type="radio" name="dataset" value="third">Third
 Shift
 </label>
 </form>

I modified the function that handles missing data to validate all three shifts:3.

 function type(d)
 {
 d.first = +d.first || 0;
 d.second = +d.second || 0;
 d.third = +d.third || 0;
 return d;
 }

Again, notice that I simply changed the references from apples and oranges to first and
second, and then added a third reference, for our third shift.

The last step is to pre-process our raw plant data into a summary file that this D3 template
can use. It is a pretty simple file, with just two fields, apples and oranges (shown in the
following screenshot). You will notice that the second field (oranges) is missing values:

For our data, we will have three fields (one for each shift): first, second, and third. After
having summarized our data, we see the following:

Displaying Results Using D3

[162]

Each record in our summary file indicates a summary record for a particular machine ID
with a part count for each of the three shifts. Notice that within our data, machine 004 was
offline or down during the third shift so we are missing a value for that time. This will
prove to be a good test for the function we modified (to handle missing values).

Once we update our HTML document one last time to reflect our summarized file name, we
can open it in our web browser.

Displaying Results Using D3

[163]

Now we see a donut pie split by machines for the first shift, but if we click on the radio
button to Change the shift to Second Shift, we see the following:

Displaying Results Using D3

[164]

The third shift looks as follows:

You will notice that for the third shift, machine 004 is not represented (there are only four
colors shown in the chart), since it was offline and had no part count in the file.

Multiple donuts
Another interesting and perhaps useful available D3 visualization sample template is the
Sized Donut Multiples template. This template can be viewed and downloaded from:
http://blocks.org/mbostock/4c5fad723c87d2fd8273 and it shows multiple donuts that
are sized so that the area of each donut is proportionate to a total number such that the area
of the donut arcs is comparable across all donuts.

http://blocks.org/mbostock/4c5fad723c87d2fd8273

Displaying Results Using D3

[165]

In the template, the example uses a summarized data file of state populations, broken out
by age group. The file is a comma-delimited file. The example uses the first field (state) as
the key to determine the number of donuts to show and the total for each key indicates the
size of the donut.

The example D3 visualization is shown in the following figure:

Displaying Results Using D3

[166]

We can easily modify this template to work for us. Instead of states and population totals by
age group, we will visualize machines and total parts by shift.

I've pre-processed our raw plant data again, this time creating a summary file of four
columns:

Machine
First shift
Second shift
Third shift

The file has five rows of data, one for each machine. Our summary file looks as follows:

Using the same process to adopt the sample template that we have used for all of the
examples throughout this chapter, we:

Download the sample template and save it as an HTML document.1.
Change the src= reference (to a local reference for the D3 libraries).2.
Change the name of the data file.3.
Add a heading.4.

In this example, since the D3 sample template uses the first field in the file by name (and
that name is used as the visualization key), we need to again make a global change of all
references to the word state to the machine.

Displaying Results Using D3

[167]

Once you have completed the preceding changes, we can view our visualization (in a web
browser):

Displaying Results Using D3

[168]

You should notice that this visualization adds a legend to each donut, which shows the
machine ID or name (for example, 0005) and the rounded total number of parts with a suffix
of M for millions or K for thousands). There is also a specific donut for each machine ID and
from the visualization shown, we can see that machine 0005 is the largest contributor of
total parts overall (followed by machines 0003, 0001, 0004, and then 0002).

More examples
Let us now go a bit further into D3 by looking at some additional examples.

Another twist on bar chart visualizations
A bar chart is a pretty common type of data visualization and we've already seen some
examples using the D3 libraries. One more bar-chart D3 template is worth a quick look. This
one is able to handle negative values. Think about it–most bar charts show positive values
so flipping the tic of an axis (as its referred to) requires some special logic.

The D3 example named Bar Chart with Negative Values II handles this kind of scenario nicely
and it can be viewed and downloaded from the following location:
http://blocks.org/mbostock/79a82f4b9bffb69d89ae.

http://blocks.org/mbostock/79a82f4b9bffb69d89ae

Displaying Results Using D3

[169]

This sample template shows both negative and positive values for the letters A through H,
and it is shown in the following figure:

Getting back to our manufacturing plant, a new challenge has been implemented by
management. That is a product output target has been set for each of the plant's machines.
Management wants to monitor each machines ability to hit the target and see any deltas to
the target. In other words, at any given time how does the machines part count compare to
the target number?

Instead of the eight letters, we want to display our five machines and a horizontal bar
showing each machines output compared to the target. So, if we use the previous
visualization, machines may have a value of zero, indicating that the machine has hit the
target (and there is no delta or difference between the machines part count and the target
number), a positive value if that machine has surpassed the targeted total, or even a
negative value if the output is less than the targeted value. Since the initial targeted value
was set low, management is hoping to see all positive values, of course.

Displaying Results Using D3

[170]

Again, adopting the sample D3 template is an easy process. Really, the key to leveraging the
sample D3 templates is to first understand the format of the data that is driving the
particular visualization, and then determining what pre-processing and/or manipulating of
the raw data is required. In this example, the data is again a very simple summary:

To make our plant data work, we can aggregate the data to look something like the
following:

In this particular example, the process to adopt the sample D3 template is even more
straightforward:

Download the template and save it as an HTML document.1.
Modify the src= reference to be a local reference.2.
Add a heading.3.
Change the file name reference.4.

Displaying Results Using D3

[171]

Once we have completed the preceding steps, we can view our version of the visualization
(in a web browser):

You can see from the visualization generated (shown prior) that machine 002 and machine
003 are not hitting the target, while machine 001, machine 004, and machine 005 have
actually surpassed the target value. The machine 005 is actually hitting it out of the park by
surpassing the target value by 2,000 parts!

Displaying Results Using D3

[172]

One more example
In our final example, let us now look at the D3 Stacked Area via Nest template.

This sample template creates a data visualization driven by a summary data file with three
fields:

A key
A numeric value
A date (MM/DD/YY)

The following figure shows the data visualization generated by the sample D3 template:

Displaying Results Using D3

[173]

Adopting the sample
As usual, the initial step in adopting any D3 sample template is examining the data source
and determining what the similarities might be to a visualization we'd like to create.

In this case, we see a file source with only three fields: a key, a numeric value, and a date:

Comparing the data to the generated output, we see three values represented in the
visualization (Group1, Group2, and Group3) across four dates (4/23/12, 4/24/12, 4/25/12, and
4/25/12).

Given that observation, we certainly can imagine a manufacturing plant's need to perhaps
visualize the three shifts (shift 1, shift 2, and shift 3) across perhaps a week's worth of days
(dates). So, continuing, we can then pre-process our raw plant data into a summarized file
of the following fields:

Date/Time
Shift ID
Part count

Displaying Results Using D3

[174]

In this way we can create a new summarized file, such as the following:

We should take a few moments at this time to point out that we followed the following
thought process when reviewing the templates sample data:

The key is grouped and there are three groups. This relates to our three plant1.
shifts.
The (numeric) value relates to our (numeric) machine parts count.2.
The date relates to our date–time stamp.3.

Given these assumptions, we can pre-process or summarize our raw plant data into the
appropriate format:

Displaying Results Using D3

[175]

We can then generate our visualization:

We assume here that by now (after having read through the examples in this chapter) you
know that the process to adopt a selected D3 sample template is:

Identify the template/example that seems to fit the objectives.1.
Download the template and save it as an HTML document.2.
Make any required HTML document changes (such as src= changes, adding a3.
heading, or changing a data file name reference).
Pre-process the raw big data into a summarization file formatted to fit the sample4.
D3 requirements.
View the document in a web browser.5.

For those of us so inclined, if you are unable to find a D3 sample that specifically fits your
needs, you may endeavor to modify or enhance the existing D3 libraries as needed. That
process is beyond the scope of this particular chapter.

In summary, the D3 libraries provide numerous sample templates–freely available for your
adoption (to fit your particular data visualization objectives). What we have covered here in
this chapter is just a very simple introduction to a small number of those samples.

Displaying Results Using D3

[176]

By following a few simple, easy steps, one can leverage the D3 libraries to generate dynamic
visualizations–driven by your big data summations.

The approach has been to adopt and use what is there, but it should be pointed out that
since the D3 libraries are opened sourced, one can, if one is so inclined, customize the code
to fit any conceivable specific need.

Summary
In this chapter, we covered the idea of visualizing the results of your big data analysis using
D3. Simply put, we walked through step by step, the how to of locating and adopting a D3
template to fit the specific needs of your particular big data analysis.

In the next chapter, we will introduce the concept of visual dashboards and how Tableau
can be used to create creative, value-add data dashboards.

6
Dashboards for Big Data -

Tableau
If a picture is worth a thousand words then a dashboard is worth millions.

Visual dashboards that effectively present the results of multiple analysis–sometimes in real
time–are invaluable to businesses of all kinds.

In this chapter, we introduce Tableau as a data visualization tool that can be used to
construct dashboards, providing working examples demonstrating solutions for effectively
presenting results from your big data analysis in a real-time dashboard format.

This chapter is organized into the following main sections:

About Tableau
Tableau and big data
Example 1
Example 2

About Tableau
A little background around Tableau. Tableau is not free although there are versions free to
use (there is a difference) and there is a free use period, after which you must pay for the
software.

Dashboards for Big Data - Tableau

[178]

Tableau offers five main products:

Tableau Desktop
Tableau Server
Tableau Online
Tableau Reader
Tableau Public

Tableau Public and Tableau Reader are free to use, while both Tableau Server and Tableau
Desktop come with a 14-day fully functional free trial period.

Tableau is also not considered to be open source (as R and D3 are, for example), but Tableau
is designed to support how you think, utilizing drag and drop to create visualizations of
your data and leverage your natural ability to spot visual patterns quickly.

The foundation of Tableau combines a Structured Query Language (SQL) for databases
with a descriptive language for rendering graphics, to invent a database visualization
language called Visual Query Language (VizQL), making Tableau a unique tool for
creating data visualizations.

Another interesting point: Tableau reports over 1,00,000 registered authors who utilize
Tableau Public's new Activity feed to keep them up to date by displaying all the recently
published data visualizations from Tableau authors around the world.

If you haven't tried Tableau yet, just visit http://www.tableau.com and click on the button
labeled Try Tableau for Free to get started (and as they say, this is a full-version trial. No
credit card required!).

Tableau and big data
As I have already stated throughout this book, the idea of plotting millions of data points
will never result in a data visualization of much value. In fact, although it is perhaps
technically possible to query raw big data directly, it is rarely practical.

We have discussed and (hopefully) established that effective profiling and preprocessing of
raw big data is an essential (required) step in any big data visualization process.

http://www.tableau.com

Dashboards for Big Data - Tableau

[179]

Tableau can connect directly to local and cloud data sources, as well as import data for fast
in-memory processing and visualization creation. However, just as in the previous chapter,
where we explored the rich capabilities provided by the open sourced D3, the correct
approach to using Tableau with big data scenarios is to preprocess the raw data source into
manageable data files focused on particular objectives.

Although there are many options for data profiling, preprocessing, and manipulation, a tool
that is popular with many Tableau users is a product named Trifacta, which claims that it is
the number-one (data) wrangling solution for Tableau.

The term wrangling is defined loosely as to round up, herd, or otherwise
take charge of, and in this case, the wrangling being performed focuses on
data.

This chapter is focused on visualizing big data using Tableau, (not particularly the data-
preparation step) but based upon Trifacta's popularity within the Tableau community, we'll
take a little time here to present an example that works in Trifacta, using the tool to perform
some data manipulations (or wrangles, as the Trifacta documentation describes).

Trifacta can be downloaded for your personal evaluation from
www.trifacta.com.

Let's get started.

Example 1 – Sales transactions
In this example, consider global sales transactions being logged by thousands of servers, all
day, and every day, twenty-four hours a day. These transaction records contain typical sales
information, such as the date the transaction took place (transaction date), a product
identifier (product name), the price of the product (SKU price), the total charged (price), the
payment type (payment type), and so on.

Dashboards for Big Data - Tableau

[180]

In addition, the transaction also captures some interesting fields, such as when the user's
online account was created, when they last logged on, and so on.

Adding more context
Many times there is a desire to view transactional data within a particular context–a context
that is based on a secondary data source. For example, suppose that there is data available
to us that contains promotional marketing information: a file extracted from a database
containing the sales and marketing efforts for the products in our sales transactional file.

This information may list the following:

Promotion_Name: This is the name the marketing team uses to refer to the effort
Promotion_Start_Date: This is the date and time the particular effort was
launched
Promotion_End_Date: This is the date and time the particular effort was
completed (blank if the campaign is still in progress)
Promotion_Duration (in days): This is the number of days elapsed from the start
of the promotion until completion or, to date
Promotion_Type: This is the type of promotion used, such as social media,
television, radio, Internet, print, and so on
Promotion_Budget: This is the dollar amount budgeted for the promotion
Promotion_Spent: This is the dollar amount spent on the promotion to date

With the preceding data in mind, we'll use Trifacta to accomplish the following.

Let's say that, through profiling, we've discovered that there are some glitches with the
supplied promotion data. Since this information is a manually maintained record of
marketing promotions, we find that there may be duplicate records (the same promotion
listed more than once), missing values (for example, the value for the Promotion_Spent
field is sometimes blank), and finally, the Promotion_Type field contains only numeric
values (a reference number indicating the type of the promotion, rather than its descriptive
name).

Dashboards for Big Data - Tableau

[181]

We should point out that we've skipped over the profiling step here in this
example since we covered data profiling techniques in Chapter 3,
Understanding Your Data Using R, but we could have used Trifacta to
profile our data and identify the aforementioned issues. The reader is
encouraged to investigate Trifacta's profiling features.

Wrangling the data
The first step in using Trifacta to address the issues identified with our promotion data is to
create a project within Trifacta. From the Trifacta workspace (or desktop), which is shown
in the following screenshot, click on the button labeled Create, and then select Create
Project:

Dashboards for Big Data - Tableau

[182]

From there you can add a name for your project and a brief description:

Then, in (about) the center left of the screen, click on the link that says create new dataset.

Next, on the Create Dataset screen, you can click on the icon in the upper left that is labeled
Add File. Trifacta then provides the opportunity to Drag & drop or Windows browse to
(Choose File):

Dashboards for Big Data - Tableau

[183]

Once we've added our promotion file, Trifacta displays some initial statistics (its size) and
allows us to add the file to our project by clicking the bright blue button in the lower right
of the screen (labeled Add to Project):

Back on the project screen we can now click Save Project (saving the change we made to
our Trifacta project, of adding the file). On the main workspace, Trifacta shows us our
project (MyBookSample) and our file (global promotions performance raw duplicate
records):

Dashboards for Big Data - Tableau

[184]

Notice, to the left of our project name, the clock icon. If we click on that icon, the Transform
button is displayed next to our file:

Once you click on Transform, Trifacta reads through and studies the file.

The results of the study are shown on the Transformer page (shown in the following
screenshot), where you can identify any data that you want to transform, and build
transformation scripts to perform the desired transformations.

When you create or change a script, those changes are immediately applied to the data
shown, so that you can preview the results in real time and quickly iterate through the
process of tweaking your script to meet your requirements:

Dashboards for Big Data - Tableau

[185]

In our example, we know that there are 1,027 records in our promotion file and suspect that
the file may contain duplicate records. We'll address that concern first. To do this, Trifacta
makes it super easy with the deduplicate command.

Through the Trifacta Script panel, you can evaluate and modify scripts
that you create. On the Transformer page, the script is represented as a
series of icons on the right-hand side of the screen.

To add the deduplicate command to our script, you can simply click on the Transform
Editor (shown in the following screenshot) at the bottom left of the transformation or
Transformer page:

Dashboards for Big Data - Tableau

[186]

When you click there, Trifacta pops up a list of script commands to select from (you can
also type free form typescript commands here). For our example, we can click on
deduplicate (adding the command to our script):

Dashboards for Big Data - Tableau

[187]

After we add the deduplicate command (to our script) we can click on the script icon
(circled in the following screenshot) and the script will appear.

Notice that there are three rows or lines of the script already present (splitrows, split, and
header). These have been added for us by Trifacta since our file is a CSV formatted file. The
last line of the script shows the deduplicate command that we just added (underlined in
the following screenshot).

Having reviewed the script, we can then click on the Generate Results button located in the
upper right of the Transformer page (see the arrow in the following screenshot):

Dashboards for Big Data - Tableau

[188]

Trifacta then asks us what format to generate the results in CSV, JSON, or TDE (are
supported) and if we want the output compressed:

I left the default selections and clicked Generate Results (again).

After Trifacta executes the script, you are returned to your project results page where the
summary space is shown (the top of the following screenshot). Clicking on the button
labeled Summary shows us the Results Summary details.

Note that the record count (Rows) of our updated file is 1,026. You may recall that
originally, our file record count was 1,027, so Trifacta performed the dedup and removed
one record. It's really that easy!

Dashboards for Big Data - Tableau

[189]

So now we've seen that one can easily and effortlessly identify and drop duplicate records
from a file with the help of Trifacta. Another task Trifacta makes easy work of is performing
lookups, such as replacing a numeric identifier (such as the promotion type ID in our file)
with a more user-friendly description or name.

Dashboards for Big Data - Tableau

[190]

This is done by simply providing Trifacta a conversion file. Here, a two-field file (field one
is the key and field two is the value) is shown in the following screenshot:

Once the file is uploaded to Trifacta, we can add it to our project (following the same steps
we did earlier to add our promotion file) and then configure the lookup logic. To
accomplish this, we will start at the Transformation page, locate the field/column we want
to perform the lookup on (Promotion_Type), click on the down arrow icon (shown in the
following screenshot), and then select Lookup….

Dashboards for Big Data - Tableau

[191]

Once you select Lookup…, the Select Dataset screen is presented (shown in the following
screenshot) where you can select the lookup file and click on the button labeled Select:

Next, we need to select our lookup key and then click on the button labeled Execute
Lookup:

Dashboards for Big Data - Tableau

[192]

Upon clicking this button, Trifacta adds the commands that are necessary to perform the
lookup to the script and then runs the script immediately. The following is the result
showing the addition of a new field, column3, which now holds the converted value (the
Promotion_Type description):

You probably want to use the rename feature to rename the default
column3 to something more descriptive!

The final issue with our data is missing values. From our profiling, we've learned that some
records within our promotion file are missing a value for the Promotion_Budget_Burn
field. Again, you will find that Trifacta makes this problem easy to resolve.

Dashboards for Big Data - Tableau

[193]

Since we already have our file loaded and added to our project, we can go to the
Transformer page and navigate to the Promotion_Budget_Burnt field. Trifacta indicates
that there are missing values by showing a gray colored section in the field heading's
quality bar. If you hover your mouse pointer over the area, Trifacta informs us that there
are two records with missing values (in this field):

To resolve this, you can click on the gray section known as the SUGGESTIONS card.
Trifacta automatically generates a series of suggested transforms that you can apply to the
missing data. These SUGGESTIONS are displayed across the bottom of the page:

By default, Trifacta replaces missing values with a null value, but you can change that by
clicking on the suggestion box of the transform logic that you think best fits your needs
(Keep, Delete, Set, or Derive), and then click on the button labeled Modify:

This opens the TRANSFORM EDITOR where you can change the script presented. I have
selected set (shown in the following screenshot):

Dashboards for Big Data - Tableau

[194]

I have also changed the value (to have the missing values set to):

After you change the script value, Trifacta updates the preview with the results of your
transformation. The replacement values will be highlighted in green. When you are
satisfied with your data transformation, click Add to Script, and then click on Generate
Results to save the updated file.

Moving on
Hopefully, at this point, we have ignited the reader's interest in Trifacta. Although we have
only touched on a very few of the many features offered by the tool, one can see that it has
enormous potential for wrangling your data!

Now let's move on to visualizing our data with Tableau:

Dashboards for Big Data - Tableau

[195]

A Tableau dashboard
Back to our original visualization objective! Remember that we want to be able to create a
visual dashboard showing total sales dollars for each product by period. In addition, we
also want to overlay the promotion information we have been provided with to compare
the effect of various promotional efforts on sales.

We'll again assume here that we've previously completed profiling the data, and so we have
an understanding of its content and have established context. We also know that using the
promotion data, we want to review our sales in a different context (for example, as affected
by our organizations marketing efforts).

To that point, as with the examples throughout this book, our big data (the sales
transactions) needs to be aggregated into a format (or formats) that we can use for
visualization.

Earlier in this chapter, we investigated Trifacta, but again, I'll point out
that you as the data scientist have the ability to select from a large number
of viable technologies. We'll assume that while using your favorite tool
(whatever that is) you have successfully aggregated the data and are ready
to exploit Tableau to create a visual dashboard.

Based upon our initial interest (product sales over time) we've created an aggregated or
summarized file consisting of the product name and a total sales dollar sales figure for each
month.

The file format is a comma separated file (or CSV) partially shown in the following
screenshot:

Dashboards for Big Data - Tableau

[196]

Our second summarized file is the promotion data and it is in a similar format of Promotion
type and a total budget burn figure for each month. That file is also a CSV formatted file
(and partially shown in the following screenshot):

Now that we have our summary files, we can start consuming them with Tableau.

We get started by opening Tableau's start page (by default, Tableau opens to the start page).
The Tableau start page is a central location from which you can Connect (to data), Open
(existing workbooks), and Discover (content created by the Tableau community).

On the start page (shown in the following screenshot), under Connect, click Excel (note: the
Connect pane lists the different types of data you can connect to; our summary files were
saved as CSV files then opened in MS Excel, reviewed, and saved as a worksheet). Next, at
the Open dialog box, we can navigate to our summary files and open them (we'll select the
promotion burn file first):

Dashboards for Big Data - Tableau

[197]

After connecting to the data, the data source page will show whatever worksheets that it
found in your data:

Dashboards for Big Data - Tableau

[198]

Once we drag our sheet to the Tableau canvas (we only have one sheet, Sheet1) you'll see
that you can do the following:

At the top of the data source page, you can select how you want to connect to the1.
data, either Live (directly connected) or Extract an import of the data (or subset of
the data, saved within Tableau).
At the bottom of the data source page, you can preview the data source in the2.
grid. In the grid, you can hide or rename a column in the data, or change the data
type.

Sheet1 is displayed as shown in the following screenshot, on the Tableau canvas:

Dashboards for Big Data - Tableau

[199]

Next, we click the new sheet tab to go to the new worksheet so we can begin experimenting
with the data and build the visualization or the view (of our data) that we want:

First, we'll create a basic view of the month-by-month promotion spend (or burn) then we
can expand that view to include more data, filter the view to drill into the most important
data, and finally, to add color to make the results stand out.

Dashboards for Big Data - Tableau

[200]

On the left-hand side of the worksheet is the Data pane (shown in the following screenshot).
The Tableau Data pane contains a variety of different kinds of fields, including Dimensions
and Measures. The columns from our file are shown here as fields:

You'll notice that dimensions typically hold categorical data (our Promotion type), while
measures hold numeric data (such as our promotion burn dollar totals).

Dashboards for Big Data - Tableau

[201]

When you build a view, you add the desired fields from the Data pane. You can do this in
different ways, but let's drag our fields from the Data pane and drop them onto the
Columns and Rows that are visible across the top of the Tableau worksheet:

I added Promotion type as columns and Measure Values (the monthly promotion burn
total) as rows (note: the Columns and Rows are referred to as the columns shelf and the
rows shelf).

Tableau immediately creates the visualization shown in the following screenshot:

The preceding visualization provides insight on the spend by promotion type.

Dashboards for Big Data - Tableau

[202]

If we switch the columns/rows selections, putting Measure Names (the names of the
months) as the columns and Measure Values (again, the promotion burn or spend) as the
rows, we can see the total spent each month on promotions:

This is more in line with what we have in mind to include in our dashboard.

Dashboards for Big Data - Tableau

[203]

If we repeat the preceding steps (adding our product sales data to Tableau and visualizing
that data) we get the following:

Dashboards for Big Data - Tableau

[204]

So, now we have two (albeit very simple) views of our data and we should save them in a
Tableau workbook. Once we save our views, we can use them to construct a dashboard. In
addition, we could share the individually saved workbooks with other users, either by
sending the file or publishing the workbook to the Web.

Saving the workbook
Standard MS Windows commands work in Tableau; for example, Ctrl + S on your keyboard
will save your work.

You can browse to a file location to save the workbook, or go with the default, letting
Tableau save the workbook in the Workbooks folder in the My Tableau Repository.

As always, it's a good idea to rename any work you do with an appropriate name or
identifier. In this case, just like you would do in MS Excel, you can right-click on each
Tableau worksheet tab and specify a filename for the workbook.

I renamed our sheets as Promotion Spend and Product Sales:

Another bit of information: when you save your work, you can specify a file type. The file
type options are as follows:

Tableau workbook (.twb): Saves all the sheets and their connection information
in a workbook file–but the data is not included
Tableau packaged workbook (.twbx): Saves all the sheets, their connection
information, and any local resources (for example, local file data sources,
background images, custom geocoding, and so on)

Now that we have our views saved in a workbook, we can proceed to build a Tableau
dashboard!

Dashboards for Big Data - Tableau

[205]

Presenting our work
As per Tableau product documentation:

“The ideal visualization combines science with art. With formatting, dashboards, and
stories you can make your data discoveries clearer, more persuasive, and beautiful.”

A dashboard is a collection (of worksheets and supporting information) shown in a single
place, so you can compare and monitor simultaneously rather than having to click through
individual worksheets. Similar to worksheets, dashboards update with the most recent data
from their data source. That means when you modify the worksheet, the dashboard it is
part of is updated and when you modify the view in the dashboard, the worksheet is
updated.

You create a dashboard similar to how we created our worksheet. After you click the New
Dashboard icon (at the bottom of the workbook) you can click the views we built (listed
under Sheets on the left) and drag them onto the dashboard sheet on the right:

Dashboards for Big Data - Tableau

[206]

In addition to adding our views to the dashboard, you can add web pages, images, text,
blank space, and layout containers (more on this later).

The following is our simple dashboard providing a comparison between monthly
Promotional Spend and monthly Product Sales:

Once you have a dashboard, Tableau offers some neat tricks.

For example, if you select a sheet within the dashboard and click the Swap icon (shown in
the following screenshot) or Ctrl – W (the shortcut for swap) you can flip the sheets
visualization from a vertical to a horizontal display (and back):

Dashboards for Big Data - Tableau

[207]

If you move your mouse over the upper left of a sheet, you can click on Go to Sheet, which
loads the sheet view so you can review and refine it. For instance, in our example, using
drag and drop, I placed the month names in calendar order and changed the color of the
Promotion Spend visualization to green (there are various ways to accomplish these
refinement tasks; this is just one method).

More tools
Tableau has numerous tools that can be used to refine and (hopefully) improve your
visualizations, such as: re-coloring, resizing, adding or changing labels, changing the type
of visualization, adding calculation formulas, and so on. Tableau always applies these
changes in real time, so you can observe the effects before saving the change:

Dashboards for Big Data - Tableau

[208]

Another feature Tableau provides is filtering. If you right-click on a visualization's border,
you can select Filters, and then Measure Names:

This offers the user the ability to interact with the data, exploring what data the
visualization is based upon:

Dashboards for Big Data - Tableau

[209]

Yet another useful feature is the ability to add calculations directly to a visualization. If you
click on the menu labeled Analysis, and then Create Calculated Field…, Tableau presents a
dialog where you can write impromptu formulas to add to your visualizations (without
having to add them to the original data file):

The following is our dashboard showing our visualizations a little more refined.

We might note that perhaps our promotional spend isn't really working as expected; in
other words, how do the resulting product sales compare to the Promotion Spend?

Dashboards for Big Data - Tableau

[210]

Let's see if we can further refine our dashboard a bit more and increase its value to the
business.

Example 2
Using the previous business scenario (of Product Sales and Promotion Spend totals) as a
starting point, let's build a dashboard that might be more real world in nature.

What's the goal? – purpose and audience
The very first step in creating any dashboard, using any tool or even manually, is
establishing an objective, or what is the dashboard trying to solve?

Let's consider the idea that the marketing executives of our organization BIGGIG
Enterprises want to monitor how their Promotion Spend might be affecting overall Product
Sales.

Our dashboard requirements might be listed as follows:

Show total product sales dollars for the current year–CY Sales
Show total product sales dollars for the prior year–PY Sales
Show total promotion spend dollars for the current year
Show total product spend dollars for the prior year
Visualize monthly product sales dollars with an average indicator
Visualize monthly promotional spend dollars with an average indicator
Visualize sales versus spend by month
Visualize the trend of promotional spend as a percent of total product sales
Since this dashboard's target audience is to be C-level executives, it needs to
utilize an attractive and useful design

Dashboards for Big Data - Tableau

[211]

The following is our Promotion Spend Effect on Sales executive dashboard:

Let us now walk through the steps that are significant in creating our dashboard using
Tableau.

The easy work first–headings and logos. There are several container objects available to be
added to your dashboard. These include Horizontal and Vertical layout containers, Text,
Image, Web Page, and Blank.

Dashboards for Big Data - Tableau

[212]

To add a heading to our dashboard, you can click on the Text object (in the objects tile
shown in the preceding screenshot) and drag it onto the dashboard. The Edit Text dialog is
then presented. Here you can type the heading and set alignment, font style, size, and color
(shown in the following screenshot):

That's pretty easy. The steps to add a logo are similar–just click and drag the Image object to
the dashboard. This gives you the opportunity to browse to and select an image file to be
used in your dashboard.

Sales and spend
We created the Product Sales and Promotion Spend visualizations (or views) earlier in this
chapter. Since changes to worksheets are immediately applied to any dashboard they are
included in, we can reopen those worksheets, make modifications, and then add them to
our new dashboard.

The only changes made to these views were to remove the axis title and add a reference
line. To remove the Value title from the axis, you can right-click on the axis and select Edit
Access…, and then clear the text from the Titles section of the Edit Axis dialog.

Dashboards for Big Data - Tableau

[213]

To add the Average reference line to these visualizations, you can right-click on the dollar's
axis in the worksheets and then select Add Reference Line. In the Add Reference Line,
Band, or Box dialog box (shown in the following screenshot), select Line:

I've also selected Per Pane (as the scope), Measure Values and Average
(for line), and tweaked the formatting as shown (the reader can review
and experiment with these settings as desired).

Dashboards for Big Data - Tableau

[214]

Sales v Spend and Spend as % of Sales Trend
To make our dashboard more valuable, we've added two additional visualizations (or
views of data).

The Sales v Spend graph utilizes an area graph to map the total promotional spend by
month against the total product sales by month, and Sales as % of Sales Trend, which
utilizes a line graph to connect the total promotional spend dollars by month into a line to
give a sense of how the promotional spend is trending.

As always, it is imperative to define what data is needed (and in what format) for your
visualization and then manipulate the raw data source into an aggregated file suitable for
the tool you are using (Tableau in this case) and the objective (sales dollars' versus spend
dollars, in our dashboard) you are working towards.

The following file is formatted to fit our first need: one record per month, for each measure
(Product Sales and Promotion Spend):

Dashboards for Big Data - Tableau

[215]

Once we add this file as a new data source (from the menu Data, New Data Source, Excel,
and so on), we can create a new worksheet, defining our visualization (the desired view of
the data). In this worksheet, we use the month names as the columns and the dollar
amounts as the rows.

Based upon the format of the data (in this example there are two distinct
measures), Tableau maps them for us (Tableau will map or plot every
distinct measure in the file for us).

The following is our Sales v Spend visualization:

Moving on, the easiest method to visualize the promotion spend dollars as a percentage of
sales dollars was to add a calculated field to our aggregated file (yes, you can add complex,
calculated formal fields within Tableau–which we will see later in this chapter–but for now,
I've decided to add the data to the data source file).

Dashboards for Big Data - Tableau

[216]

As shown in the following screenshot, I've added the new Percent of Sales field (and then
set up the file as a new data source in Tableau):

Once again, we create a new worksheet, select the new file from the Data list, and create the
visualization or view:

Drag the Month dimension, to columns.1.
Drag the Measure Percent of Sales to rows.2.
Select Line as the visualization type.3.
Edit the Title and Axis text.4.
Save the worksheet.5.

Dashboards for Big Data - Tableau

[217]

Tables and indicators
The last puzzle piece of our dashboard is the text table in the upper left of the screen:

In Tableau, you can create text tables (also called cross-tabs or pivot tables) by placing one
dimension on rows and another dimension on columns. You then complete the view by
dragging one or more measures to the Text on the Marks card.

Dashboards for Big Data - Tableau

[218]

The following is yet another aggregation file, containing total dollars for the current year
(CY) and prior year (PY) sales and spend. In addition, we have added a column named
Change, which holds the percentage increase or decrease of the total from the prior year.

In the following screenshot, we see the file after it has been added as a Tableau data source:

Dashboards for Big Data - Tableau

[219]

After we have added our new data source, we can proceed to create a new worksheet
(shown in the following screenshot):

You may notice that we've added yet another new column, a Tableau calculated field
named Indicator. A calculated field is one that you create by using a Tableau formula to
modify the existing fields in your data source. These fields are then saved as part of your
data source:

Dashboards for Big Data - Tableau

[220]

You use the calculation editor (shown in the following screenshot) to create these fields. To
open the Tableau calculation editor, you can click the dropdown to the right of Dimensions
in the Data pane and choose Create Calculated Field:

The preceding screenshot shows the opened calculation editor showing how I have created
a logical calculated field. The formula indicates that if the value of the current cell in the
Change column is positive (greater than zero) then it's Up from the prior year (otherwise it
is Dn from the prior year). The calculation editor automatically checks the formulas syntax
and (in the lower left) displays The calculation is valid. There are many types of calculated
fields; logical is just one example.

All together now
Now that we've constructed each of our dashboards components–in the form of static text
(the dashboard heading), a logo (the image file), and our five individual views, all that is
left is to assemble the actual dashboard:

As discussed earlier in this chapter, creating a new dashboard starts with clicking1.
the New Dashboard icon at the bottom of the Tableau workbook. Our new
dashboard tab will appear on the left and lists the sheets in your workbook.
Once you have created the new dashboard, you can click the views we built2.
(listed under Sheets on the left) and drag them to our dashboard sheet on the
right.
In addition to adding views to your dashboard, you can add objects, including3.
web pages, images, text, blank space, and layout containers. To add our objects,
select an item under Objects on the left and drag it to the dashboard sheet.

Dashboards for Big Data - Tableau

[221]

Layout containers are very useful for fine-tuning how your dashboard
resizes itself when users interact with it. In this example, rather than
leveraging the horizontal or vertical layout container objects, I've elected
to just use the floating approach, and manually move and place my
components in the dashboard.

After you've built a dashboard, Tableau gives you the ability to create layouts to support
specific devices so that people who interact with it experience a dashboard specifically
designed for that device (a phone, tablet, desktop, specific browser, and so on). Using
Tableaus device preview feature, you can open your dashboard and see what it will look
like on the particular selected device.

Summary
In this chapter, we started by introducing Trifacta Wrangler as a means to profile and
manipulate your raw big data into a format that can be easily consumed and visualized. In
addition, we explored the concept of using a secondary data source to provide context to a
primary data source.

Next, we presented Tableau as a tool to consume prepared data and create valuable
visualizations as individual components of interactive dashboards.

In the next chapter, we will cover outliers and provide working example solutions to deal
with outliers and other data anomalies using Python.

7
Dealing with Outliers Using

Python
A certain percentage of all data will consist of what is referred to as outliers–those points or
responses beyond reasonable ranges established for the data, based upon its context.
General responses to found outliers become increasingly challenging within big data
initiatives.

In this chapter, we will focus on the topic of dealing with outliers as they relate to big data
visualization, introduce the Python language, and offer working examples demonstrating
solutions for effectively dealing with data outliers and other anomalies in big data, using
Python.

This chapter is organized into the following main sections:

About Python
Python and big data
Outliers
Some basic examples
More examples

About Python
Python became available sometime during the late 1980s and bargains to be a very easy to
comprehend scripting language. It shines at tasks such as integration, has all sorts of ready-
made tools, and can connect to databases and other systems.

Dealing with Outliers Using Python

[223]

Python is also very popular in web development, though primarily on the backend side,
and since Python runs interactively or in live mode, it is difficult to pack up a Python
solution into a single executable file for distribution.

Furthermore, Python is not a desktop application but it is a scripting language that is
designed by emphasizing code readability, and its syntax allows programmers to (perhaps)
solve problems in fewer lines of code (than in languages such as C++ or Java) and without
all the overhead.

The reader should note that there are various free versions of downloadable Python IDEs
such as Wingware (available at www.wingware.com) that make scripting with Python very
manageable (and even enjoyable!):

The bottom line? Python is very versatile and powerful and it has increased in popularity
over the last several years and it is unquestionably a valid choice for your big data projects.

Python and big data
Python is a very good choice for big data manipulations and, as we'll see in this chapter, for
addressing big data outliers. This is due to the following points:

It's easy to understand and use. You can learn Python relatively quickly and get
on to the true task at hand: manipulating and processing your big data.
Python comes with a wide range of prebuilt libraries focused on data processing,
visualization, and other data manipulations. This saves, even more, Python is
very versatile and powerful and has increased in popularity of thetime by
providing solutions to the most fundamental tasks required to process big data.
Although Python is a general purpose language that runs just about anywhere, it
is flexible and nimble enough to provide the ability to create very custom
solutions to address unique problems associated with big data.

http://www.wingware.com

Dealing with Outliers Using Python

[224]

All the preceding features prove the point for using Python for manipulating and
processing big data to generate quick insights valuable to organizations. Python is a
powerful tool to get this value instantly and remain competitive in the marketplace.

Let's get started.

Outliers
In this chapter, we want to deal with the manipulation of big data sources to address data
outliers. So let's have a quick reminder for the reader:

Outliers can be defined as:

A data point that is way out of keeping with the others
That piece of data that doesn't fit
Either a very high value or a very low value
Unusual observations within the data
An observation point that is distant from all others

Options for outliers
The options that are generally accepted for dealing with found outliers in big data are:

Delete: This includes the outlier values or even the actual variable where the
outliers exist
Transform: This includes the values or the variable itself

Delete
If you have just a few outliers, you may decide to simply delete those outlying values (they
then become blank or missing values, which usually are easier to deal with in a
visualization). Also, if the variable just doesn't make sense, or if there are just too many
outliers in that variable (or maybe you just don't need the variable), you can just delete the
entire variable.

Dealing with Outliers Using Python

[225]

Transform
Other than deleting, you also have the option of transforming. This is a bit more involved;
however, generally, the idea is that you can change the outlier value to the next
highest/lowest (non-outlier) number or change the value to the next highest/lowest (non-
outlier) number plus one unit increment higher/lower or change the value based upon some
other logic reasonable to your objective.

Finally, you can also transform the variable itself. This involves understanding the variables
non-normality and then using appropriate logic and formulas to change the variable. The
simple examples use the mean or sum computations.

Outliers identified
The notion of identifying outliers may be referred to using different names; such as:

Outlier mining
Outlier modeling
Novelty detection
Anomaly detection

This chapter's perspective on outliers is addressing them, not identifying them. A quick
note on the topic:

You can refer to the Challenges of big data visualization section, mentioned in
Chapter 1, Introduction to Big Data Visualization, to complicate the process
of identifying outliers as well.

As we've noted over and over throughout this book, the process of visualizing big data
requires the aggregation or otherwise summarization of the data first (or preprocessing the
data) as otherwise, effective visualization is impractical. The process of analyzing data for
outliers also requires this preprocessing. In fact, the granularity (of big data) needs to be
appropriately high to allow individual points to be differentiated, otherwise, outlier
analysis won't be easy. To combat the difficulty of big data outlier analysis, many
organizations adopt real-time outlier detection (or sometimes referred to as anomaly
detection) on such data. In fact, at the time of writing, various programmable software
solutions are available.

Dealing with Outliers Using Python

[226]

Along with this idea of the aggregation of big data into more manageable chunks is the idea
of focused population definition. This is the concept of being able to reduce the big data
source into much smaller views or slices of data that are focused on a particular objective
(more on this concept later in this chapter).

So now as we do in each of the chapters of this book, let us explore options for addressing
identified outliers in big data through the use of working examples.

Some basic examples
In the world of gaming, slot machines (a gambling machine operated by inserting coins into
a slot and pulling a handle that determines the payoff) are quite popular. Most slot
machines today are electronic and therefore are programmed to continuously track its
activity. This provides an opportunity for our first example.

Testing slot machines for profitability
The owners of the casino want to use this data (as well as various supplementary data) to
drive adjustments to their profitability strategy. In other words, what makes for a profitable
slot machine? Is it the machine's theme or its type? Are newer machines more profitable
(than older ones)? What about the physical location of the machine? Are lower
denomination machines really profitable?

The following information is being collected:

The Location of the slot machine
Denomination in nickel, quarter, dollar, and so on
Month of the year
The Weekday
Machine Type such as 4 Reel, 5 Reel, Progressive, and so on
Theme of the machine (for example, Movies, Entertainment, Horror, and so on)
Age, which is the number of months that the machine has been in service
Promotion if a promotion was in progress such as VIP, Monthly Player, Daily
Special, and so on
Coupons were any coupons redeemed on this machine
The Weather is the local weather on a particular day
Coin-in total includes the total coins played on the machine (less payouts)

Dealing with Outliers Using Python

[227]

A portion of the data collected is shown in the following screenshot:

Into the outliers
Let's say you've done an appropriate amount of data reviewing. In other words, you've
profiled the slot machines data and established context and quality and now let's assume
that several rather simple outlier scenarios have been identified.

These include the following:

Penny slot machines may typically collect (based upon historic averages) one1.
thousand dollars during an eight-hour period; however, some of the collected
slot machine data recorded exceeds twice that amount (Coin-in>1000).
Mixed within the recorded Coin-in data there is data generated by Video-poker2.
machines. The Video-poker machines are a type of gaming machine, but they
are not categorized as a slot machine and therefore should not be included in our
analysis (Type = "Video-poker").
Slot machines are routinely replaced after 20 years of service (usually sooner) yet3.
some of the data shows the machine age well over 20 years (Age>20).
Finally, it was observed that the Coupons data point only shows a single value of4.
None, making this field unuseful (Coupons = "None").

Having a strategy for dealing with established outlier data is important. Using that strategy,
we can use Python to deal with the preceding outlier situations.

Dealing with Outliers Using Python

[228]

Handling excessive values
Our first outlier scenario involves information gathered from slot machines with the Penny
denomination (Penny slots). These machines accept only pennies and typically have smaller
payouts.

Given historical trends, Penny slot machines usually earn a total Coin-in of around 1,000
dollars over a regular period of time. During our data profiling exercise, we observed that
there are penny slot machine records within our data that show Coin-in values over 2,000
dollars.

The following screenshot can be used to clearly illustrate the outliers identified within a
portion of our slot results data:

After some deliberation with the casino owners, it was decided that we should change these
outlier values to the average (non-outlier) amount. In other words, we should establish an
average Coin-in amount for penny slot machines and then identify and set all of our outlier
values (those values for Coin-in over 2,000) to that average value.

Dealing with Outliers Using Python

[229]

We could assume that we already have a reasonable value to use, perhaps 1,000 (the value
we previously mentioned as a penny slot average) or we could do some additional analysis
on the big data source to find or calculate a more reasonable or valid average Coin-in value
to use.

Both tasks (determine what value to use and setting outliers to a determined value) can be
accomplished using Python.

Establishing the value
Practically speaking, the subject of establishing a valid or reasonable value for your outlier
transformation can be pretty sophisticated (or quite simple). But it is safe to say that this
analysis and related processing would be based upon some logic reasonable to a specific
objective or purpose (and could be the topic of an entire chapter if not an entire book by
itself).

In this chapter, we are concentrating more on the application of Python to accomplish the
specific objective of establishing a particular value based upon some logic, rather than the
science of what logic should be used to establish the value, so we will simply assume the
following logic:

We will establish the average coin-in for all of our penny slot machines by adding the
values in the field named Coin-in on all (and only the) penny slot machine
records–excluding those (of course) with Coin-in values of 2,000 or more Then, we can
simply do the math by dividing the accumulated total Coin-in by the number of penny slot
machines (the number of rows of penny slot machines that we've also counted up) in our
data source.

The following Python script establishes that value for us:

--- simply add up the coin-in for penny slots
--- skipping any coin-in total over 1999

import csv

with open('SlotsResults.csv') as csvfile:
 reader = csv.DictReader(csvfile)

 # --- initialize variables for the number of rows and
 # --- average coin-in amount and "x" is the running total
 # --- of coin-in

 row_count = 0

Dealing with Outliers Using Python

[230]

 aver_coin_in = 0.0
 x = 0.0

 for row in reader:
 if (row['Denomination']) == 'Penny':
 if int(row['Coin-in'])<2000:
 x += int(row['Coin-in'])
 row_count += 1
--- compute the average coin-in by dividing the accumulated
--- total of penny slit machine coin-ins by the number of penny # ---
slot machines

 aver_coin_in = x/row_count

--- just print the calculated average coin-in

 print(aver_coin_in)

While we're at it, we could add variables to our script to evaluate the coin-in values (those
under 2,000 for penny slot machines) and identify the MIN and MAX values. If our x variable
is the sum of Coins-in, then y and z can be the MIN and MAX:

--- AVG, MIN and MAX
import csv

with open('SlotsResults.csv') as csvfile:
 reader = csv.DictReader(csvfile)

 # --- initialize variables for the number of rows and
 # --- average coin-in amount and "x" is the running total
 # --- of coin-in, y is MIN and z is MAX

 row_count = 0
 aver_coin_in = 0.0
 x = 0.0
 y = 999
 z = 0.0

 for row in reader:
 if (row['Denomination']) == 'Penny':
 if int(row['Coin-in'])<2000:
 x += int(row['Coin-in'])
 if int(row['Coin-in'])>z:
 z = int(row['Coin-in'])
 if int(row['Coin-in'])<y:
 y = int(row['Coin-in'])

Dealing with Outliers Using Python

[231]

 row_count += 1
--- compute the average coin-in by dividing the accumulated
--- total of penny slit machine coin-ins by the number of penny # ---
slot machines
 aver_coin_in = x/row_count

--- just print the calculated average coin-in

 print("AVG:", aver_coin_in)
 print("MIN:",y)
 print("MAX:",z)

The following screenshot shows the result of executing our Python script within the
desktop IDE Wingware (mentioned at the beginning of this chapter):

Dealing with Outliers Using Python

[232]

Big data note
The preceding script uses a looping approach to calculate the average coin-in value for all
penny slot machines in the data. When working with big data sources you'll find that you
cannot simply read through millions and millions of records expecting a result. As has been
pointed out throughout this book, there is a certain amount of preprocessing of the data
that needs to take place first such as narrowing your data by a time period or in this
example denomination.

Setting outliers
Once we have our average coin-in value, we can then set all of the outlier values (penny slot
machines with coin-in greater than 2,000) found within our data to that value (the average
coin-in for all penny slot machines) using the following simple Python script:

--- creating a new csv file with outlier values set to 930

import csv
with open('SlotsResults_new.csv', 'w') as csvfile_o:
 fieldnames =
['Location','Denomination','Month','Weekday','Type','Theme','Age','Promotio
n','Coupons','Weather','Coin-in']

 with open('SlotsResults_larger.csv') as csvfile:
 reader = csv.DictReader(csvfile)
 writer = csv.DictWriter(csvfile_o, fieldnames=fieldnames)

 writer.writeheader()

 for row in reader:
 if row['Coin-in']>'2000':
 x = '930'
 else:
 x = row['Coin-in']

 writer.writerow({'Location': row['Location'],
 'Denomination': row['Denomination'],
 'Month': row['Month'],
 'Weekday': row['Weekday'],
 'Type': row['Type'],
 'Theme': row['Theme'],
 'Age': row['Age'],
 'Promotion': row['Promotion'],
 'Coupons': row['Coupons'],
 'Weather': row['Weather'],

Dealing with Outliers Using Python

[233]

 'Coin-in': x
 })

Removing Specific Records
Another outlier scenario encountered within our slot results gaming data is the presence of
records collected from a different type of gaming machine, namely, a Video Poker type
machine.

The following is a visualization of the gaming machine data's Type field:

We see that data records from the video poker machines do include all of the same valid
fields as the other slot machine types, such as:

Location
Denomination
Weekday

Dealing with Outliers Using Python

[234]

But these records should not be included in our slot machine big data analytic project since,
theoretically, the profitability of those machines may or may not be influenced by different
events or other means. Also, the results from these machines may alter the perception of the
results of the other types of machines.

You must have noticed Bonus Video type machines within our gaming data. These
machines do qualify as a slot type of gaming machine and should not be confused with the
Video Poker type.

Redundancy and risk
The data from the Video Poker type machines could simply be ignored in our analysis and
visualization efforts, but just ignoring the data is not an effective approach.

Keeping data that is irrelevant to your objective in the project will require us to perform an
explicit exclusion of that data from every logic step, path, statement, or function we
perform. The question to ask yourself is, why perform the same exclusion statements over
and over? More importantly, why take on the risk of forgetting to exclude the data and
mistakenly including that data in your results?

Another point
Since dealing with the volumes of big data is already challenging enough, any opportunity
to slim down or otherwise reduce the volume of big data you are working with should be
seriously considered and will most likely be found to be advantageous.

If Type
We're quite lucky in this case, since all of these unwanted, irrelevant records are clearly and
easily identifiable using the Type field and the conditional statement: Type != "Video
Poker" (I'm aware that I'm using the negative here: Not Equal To, but as an example script;
it is just easier than having to include Equal To in the many other machine type records
found in the data).

With this in mind, the following Python script can be used to drop all of the records found
in our data that are of the slot machine type Video Poker:

--- writing a new CSV file dropping any video poker records

import csv
with open('SlotsResults.csv', 'w') as csvfile_o:

Dealing with Outliers Using Python

[235]

 fieldnames =
['Location','Denomination','Month','Weekday','Type','Theme','Age','Promotio
n','Coupons','Weather','Coin-in']

 with open('SlotsResults_slotonly.csv') as csvfile:

 reader = csv.DictReader(csvfile)
 writer = csv.DictWriter(csvfile_o, fieldnames=fieldnames)

 writer.writeheader()
 for row in reader:

--- use the Type field to identify records to drop

 if row['Type']!='Video Poker':
 writer.writerow({'Location': row['Location'],
 'Denomination': row['Denomination'],
 'Month': row['Month'],
 'Weekday': row['Weekday'],
 'Type': row['Type'],
 'Theme': row['Theme'],
 'Age': row['Age'],
 'Promotion': row['Promotion'],
 'Coupons': row['Coupons'],
 'Weather': row['Weather'],
 'Coin-in': row['Coin-in']
 })

Reused
You may notice that the preceding Python script appears to be practically the same as the
script used in the previous section and in fact it is! We used the same logic to read our
gaming file and create a new file; just altering the condition statement to test the record's
Type field and include (write to a new CSV file) only those records whose Type field is not
equal to 'Video Poker':

--- if Type is not equal to a non-slot machine type then
if row['Type']!='Video Poker':

Changing specific values
In our third outlier scenario, we see that our slot machine data contains a field named Age.
This field holds the value indicating the total number of years that the recording slot
machine has been in service.

Dealing with Outliers Using Python

[236]

Since it is an established policy (in our gaming example) that slot machines have a life
expectancy of only twenty years, all machines have a deliberate replacement before they
reach that age (in fact, all slot machines stop incrementing years of service (its age) once the
twenty years has been reached).

During the data profiling process, a number of slot machine records with an age value
greater than 20 (years) were identified (as shown in the following screenshot):

These age values are considered to be outliers since they represent only an insignificant
number of slot machines that are potentially beyond the standard life expectancy.

Setting the Age
In our gaming example, we want to set all slot machine records Age values (that are greater
than 20 (years)) to 20.

The following Python script can accomplish this objective:

--- creating a new csv file from our original gaming file
--- with age set to 20 if > than 20

import csv
with open('SlotsResults_fixedAge.csv', 'w') as csvfile_o:
 fieldnames =
['Location','Denomination','Month','Weekday','Type','Theme','Age','Promotio

Dealing with Outliers Using Python

[237]

n','Coupons','Weather','Coin-in']

 with open('SlotsResults_larger.csv') as csvfile:
 reader = csv.DictReader(csvfile)
 writer = csv.DictWriter(csvfile_o, fieldnames=fieldnames)
 writer.writeheader()
 for row in reader:

 # --- if the age is greater than 20 make it 20
 # --- the variable x is used to reset the correct
 # --- age value

 if row['Age']>'20':
 x = '20'
 else:
 x = row['Age']

 writer.writerow({'Location': row['Location'],
 'Denomination': row['Denomination'],
 'Month': row['Month'],
 'Weekday': row['Weekday'],
 'Type': row['Type'],
 'Theme': row['Theme'],
 'Age': x,
 'Promotion': row['Promotion'],
 'Coupons': row['Coupons'],
 'Weather': row['Weather'],
 'Coin-in': row['Coin-in']
 })

Another note
Again, we have been expeditious (perhaps maybe lazy?) in our reusing of the same Python
script from earlier in this chapter! We simply changed the script that we used to modify
Coin-in and used it to test and set the value of (slot machine) Age.

Keep in mind that (as I've mentioned throughout this book) there are many ways of writing
Python (or any kind of) scripts and this example demonstrates just one simple approach.
Simple is usually better and some trial and error (using a smaller, subset of data for your
trials) are highly recommended. The readers who have been or are programmers will know
that testing your logic first with a smaller subset of data is always a good practice.

Dealing with Outliers Using Python

[238]

Dropping fields entirely
During a typical data profiling process, each field or data point in a file is examined for its
value(s). For example, as we've seen in the preceding section, the Age field contains a
numeric value from one to twenty (along with a few outlying numbers greater than twenty,
which we appropriately dealt with). We've also observed that in the Coupons field, there is
only one value, None.

When a certain field contains the same value over and over, 100% of the time, it renders that
field or data point useless to analysis or visualization. In other words, this condition is the
same as a field being empty (containing no values at all).

The visualized values for the Coupons field (not very interesting at all!) is displayed in the
following screenshot:

Once again, we could simply ignore the Coupon field when doing our analysis. In fact, it
would be easier to ignore an entire field than it would be to ignore specific values within a
field (as in the example discussed earlier in this section).

Dealing with Outliers Using Python

[239]

It is still advisable to remove the field or data point from your file, reducing the size of the
file, saving (some) space and absolutely eliminating the possibility of mistakenly using the
information contained within that field within a visualization.

The following Python script can be used to eliminate the specific field from the data. As
before, we simply read and rewrite each record of the source file, field by field, skipping the
Coupon field:

--- create a new file from the original file dropping the
--- Coupons field

import csv
with open('SlotsResults_dropped_coupons.csv', 'w') as csvfile_o:
 fieldnames =
['Location','Denomination','Month','Weekday','Type','Theme','Age','Promotio
n','Weather','Coin-in']

 with open('SlotsResults_larger.csv') as csvfile:
 reader = csv.DictReader(csvfile)
 writer = csv.DictWriter(csvfile_o, fieldnames=fieldnames)
 writer.writeheader()
 for row in reader:

--- write the fields but no Coupon field!
 writer.writerow({'Location': row['Location'],
 'Denomination': row['Denomination'],
 'Month': row['Month'],
 'Weekday': row['Weekday'],
 'Type': row['Type'],
 'Theme': row['Theme'],
 'Age': row['Age'],
 'Promotion': row['Promotion'],
 'Weather': row['Weather'],
 'Coin-in': row['Coin-in']
 })

Yes, you guessed it. Once more, we have managed to leverage pretty much the same
Python script from earlier sections to drop the Coupons field from our data.

(This time, it's easier still as we just need to remove the references to the Coupon field).

Dealing with Outliers Using Python

[240]

More to drop
I would also advise considering dropping any additional fields (or records for that matter)
that you may not initially be interested in; this will improve processing performance and
save storage space.

If during your data profiling, you noticed that the data point weather is almost always
recorded as hot and dry (Las Vegas, Nevada weather!), you might find that the field is not
very useful, so you could go ahead and drop that field as well. In a particular analytical
exercise, does the day of the week matter or is the month sufficient?

One strategy for you to consider is to generate multiple specifically focused files from the
original big data source; that is, create a file that contains only the data you want to use for a
certain visualization or project. More on this topic is discussed in the next section.

More examples
Effective big data statistical projects should be based on focused problem definitions. In
other words, it is almost always an advantage to reduce the size of your data source (or
reduce the size of the population) so that you can be more effective with the managing and
manipulating of the data–yet still, produce meaningful (and correct) results.

The process of sampling or defining your population allows you the opportunity to cut
down on the volume of data you need to physically process through or touch. This saves
CPU cycles and more importantly, saves your time. This can also be referred to as cutting
through the clutter (or noise) often so prevalent in big data sources.

Understanding that defining a population to work with on a particular big data project isn't
simply truncating the records read or randomly selecting certain record subsets, is critical.

Back to a point made in an earlier section of this chapter:

An effective big data strategy may be to create files focused on a particular objective or context.

To carry this thought to another level, one can define a population focused on a particular
objective. This population can be, frankly, defined in any way that makes sense to you or is
appropriate to your objectives.

Dealing with Outliers Using Python

[241]

Because there is very rarely enough time or money to process all information available from
a big data source, the goal really becomes finding a representative sample (or subset) of that
population. That population can be defined as including all data with the characteristic you
wish to understand.

Let's explore this concept using our sample gaming data.

A themed population
Gaming machine manufacturers often take inspiration for designing slot machines from
popular culture, popular films, television shows, and other icons because players relate to
these themes and are therefore more likely to want to play the machines.

Suppose our interest for a particular big data project focuses on a particular type of slot
machine theme. In fact, an assumption presented to us is that horror-based slot machines
continually produce below average coin-in totals unless there is a promotion offered. There
is a further belief that this is only true for slot machines of a denomination less than one
dollar.

As a data scientist, your first step is to create a project population definition based upon the
preceding description. Given our supreme knowledge of the available gaming data
(gleaned from proper data profiling sessions), we might be able to define our population
using the data fields or measures namely, Denomination, Theme, and Promotion, as
shown in the following screenshot:

Based upon the preceding population definition, we can create the following Python script
to generate our sample population:

--- let us create a sample population based upon
--- Denomination, Theme and Promotion

import csv
with open('SlotsResults_larger_new.csv', 'w') as csvfile_o:
 fieldnames =

Dealing with Outliers Using Python

[242]

['Location','Denomination','Month','Weekday','Type','Theme','Age','Promotio
n','Coupons','Weather','Coin-in']

 with open('SlotsResults_larger.csv') as csvfile:

 reader = csv.DictReader(csvfile)
 writer = csv.DictWriter(csvfile_o, fieldnames=fieldnames)

 writer.writeheader()

 for row in reader:

--- use if with or & and conditions and notice line concat

 if ((row['Denomination']=='Dime') or
(row['Denomination']=='Nickel') or \
 (row['Denomination']=='Penny') or
(row['Denomination']=='Quarter') or \
 (row['Denomination']=='Two Cent')) and
(row['Theme']=='Horror') and (row['Promotion']=='None'):
 writer.writerow({'Location': row['Location'],
 'Denomination': row['Denomination'],
 'Month': row['Month'],
 'Weekday': row['Weekday'],
 'Type': row['Type'],
 'Theme': row['Theme'],
 'Age': row['Age'],
 'Promotion': row['Promotion'],
 'Coupons': row['Coupons'],
 'Weather': row['Weather'],
 'Coin-in': row['Coin-in']
 })

A focused philosophy
The idea of generating smaller, thinly-focused subsets (or populations) of data from much
larger and widely-focused big data sources is not new or particularly innovated. Relational
databases create views of portions or slices of data within the database that are focused and
optimized for a particular use.

The idea is similar to using a pair of binoculars to zoom in on a precise area of a panoramic
view of the countryside in front of you.

It's the same concept.

Dealing with Outliers Using Python

[243]

Summary
In this chapter, we talked about what outliers are and typical methods to deal with them.
We also introduced Python as a tool to address outliers identified in your big data project.

In the next chapter, we will cover big data operational intelligence and look to address the
challenges of applying basic analytics and visualization techniques to big data with Splunk.

8
Big Data Operational

Intelligence with Splunk
Once there is an understanding of the challenges of applying basic analytics and
visualization techniques to big data, the value of the data can be realized. This chapter
offers working examples demonstrating solutions for valuing big data by gaining
operational intelligence (using Splunk).

The chapter is organized into the following main sections:

About Splunk
Splunk and big data
Splunk visualization – real-time log analysis
Splunk visualization – deeper into the logs

About Splunk
Splunk originated in 2003 and was founded to pursue a disruptive new vision for making
machine-generated big data easily accessible, usable, and valuable to everyone. This
(machine-generated) big data can be from a wide range of sources, including websites,
servers, applications, networks, mobile devices, and so on, and it can span multiple
environments and even be cloud-based.

Splunk (the product), runs from both a standard command line or an interface that is totally
web-based (which means that no thick client application needs to be installed to access and
use the tool) and performs large-scale, high-speed indexing on both historical and real-time
data.

Big Data Operational Intelligence with Splunk

[245]

Now you can also subscribe to the Splunk Cloud service, and get a
dedicated Splunk deployment that is hosted in Amazon Web Services.

Splunk does not require a restore of any of the original data, but it stores a compressed copy
of the original data (along with its indexing information) allowing you to delete or
otherwise move (or remove) the original data. Splunk then utilizes this searchable
repository from which to efficiently create a graph, report, alert, dashboard, and visualize in
detail.

Splunk's main product is Splunk Enterprise, or simply Splunk, which was developed using
C/C++ and Python for maximum performance and utilizes its own SPL for maximum
functionality and efficiency.

You can literally install Splunk on any machine-virtual or physical in minutes using
standard installers. It doesn't require any external packages and it drops cleanly into its
own directory (usually into c:\Program Files\Splunk). Once installed, you can check
out the README file, splunk.txt file (found in that folder) to verify the version number of
the build you just installed and where to find the latest online documentation.

As the time of writing, simply going to the website h t t p ://d o c s . s p l u n k . c o m will provide
you with more than enough documentation to get started with any of the Splunk products
and all of the information available to read online or to download in PDF format to print or
read offline. In addition, it is a good idea to bookmark the Splunk Splexicon for further
reference. The Splexicon is a cool online portal of technical terms that are specific to Splunk
and all definitions include links to related information from the Splunk documentation.

Splunk and big data
Splunk has the ability to read all kinds of data-including big data–in almost any format and
from any device or application.

Splunk's power is in its ability to turn data into OI or operational intelligence without the
need for special parsing or adaptions to handle big data or a particular data format. Here is
how it works; Splunk uses internal algorithms to learn how to process new data and new
data sources automatically and efficiently. Once Splunk is aware of a new data type, you do
not have to reintroduce it to Splunk in the future, saving your time.

http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com
http://docs.splunk.com

Big Data Operational Intelligence with Splunk

[246]

Furthermore, since Splunk can work with both local and remote data, it is almost infinitely
scalable. What this means is that your big data sources can be located on the same (physical
or virtual) machine or machines as the Splunk instance you are using (meaning its local
data) or on entirely different machines, practically anywhere in the world (meaning its
remote data), Splunk can even take advantage of cloud-based big data!

So, let's consider some examples where we can employ Splunk with big operational data!

Splunk visualization – real-time log analysis
Enterprise applications typically continuously generate logging or messaging data in real
time, allowing support personnel to monitor user activities, application events, and even
the performance of processing within the application or even the application itself by
reviewing this information.

The advantage of being familiar with this data may seem obvious, for example, some uses
may be:

Monitoring memory or space usage may allow administrators to be proactive and
address shortages before there is an application outage
Identifying trends in application performance can allow support personnel to
resolve conflicts or errors causing degraded performance before reaching
unacceptable levels

The opportunity for using application server logged information to improve performance
and the level of support for an application is conceivably infinite.

Businesses are now realizing that application logging is an untapped resource in that it
holds a wealth of knowledge about the business or, what is happening within the business.
Using the right approach, application logging data can be used to troubleshoot a business
problem or support a particular business objective.

Nevertheless, using this application-logged information, requires that an organization have
a log management strategy (LMS).

An LMS will typically consist of the following:

A collection of the logs, audit records, audit trails, event logs, and so on
A common method for centralized log aggregation and/or indexing
A facility for long-term log storage and retention of the logged information

Big Data Operational Intelligence with Splunk

[247]

A log rotation ability (or a way of limiting the total size of the logs retained while
still allowing analysis of recent events)
Log analysis (in real time and in bulk after storage)
Log search and reporting

In this first example, we'll use Splunk to perform some analysis, searching, and reporting of
information contained in various application log files.

IBM Cognos
IBM Cognos is a popular business intelligence application and it often uses a TM1 Server as
its data source. TM1 is an in-memory database that can be customized to provide
forecasting, planning, and consolidation abilities (just to name a few) to small, medium, and
even large global organizations. Although it is not a requirement, multiple TM1 Servers are
often deployed (installed) on various machines (which may or may not be at the same
location) within an organization, to serve different user communities or business objectives.
All of these servers can be accessed through IBM Cognos TM1 Web, which provides
multidatabase support, allowing users to access these multiple Cognos TM1 Servers (that
are registered on the same Cognos TM1 Admin Server) and where users have the same
username and password combination. TM1 Web can also be installed and configured on yet
another machine.

All of these TM1 Servers record status messages on the activity of the server in their log
files. These messages contain details on activity such as server startup and shutdown, client
login events, transactional data changes, errors encountered, executed processes, chores,
loaded cubes and dimensions, and synchronized replication. The extent (or level) of detail
that is logged is configurable at the server level.

If one has the appropriate access, one can open, search, and view an individual server's
current transaction log, from the application, but at best, this is a slow and painful process
and is viewed in a typical table of transactions format.

Application log files are continually updated (as long as the server is running) and at some
(predetermined) point are truncated and a new log is started. In addition, error and
exception logs are generated by the server when certain events occur. All of this logging
and messaging can result in a significant amount of data from each of the servers running,
so attempting to perform analysis on all of the available data, generated over a span of time
is nearly impossible. Unless, of course, you use Splunk.

Big Data Operational Intelligence with Splunk

[248]

Splunk allows you to consider all of the logs generated by all of the servers, as a single data
source. It indexes all of the machine-generated data regardless of format or location
allowing real-time and historical searches using the same interface!

In our example, envision the following scenario: Our organization has five groups of
products that need to be forecasted, each by a different product forecasting group. Each
group of users is located in a different geographical location and they use their own TM1
Server to forecast, accessed through the TM1 web interface.

Since there are currently five distinct groups of products, we are currently running five
different TM1 Servers, each located on a separate virtual machine (VM).

Each of the servers is running an identical product forecasting application (same features,
functionalities, and purpose), but only contain data concerning a single group of product. In
other words, each product group forecasts sales for only their products and on a particular
TM1 Server. At certain intervals, we'll assume all forecast data for all products is replicated
to a reporting application where it is consolidated and reviewed. Product groups are
measured and rewarded on not only the accuracy of their forecasts, but also on the time it
takes to enter, review, adjust, approve, and report their forecast efforts. Over time, various
groups have complained that their server isn't up and available as much as they would like
and the time it takes for system maintenance (such as data loading) to be performed is
increasing.

The following is our TM1 Server architecture:

Big Data Operational Intelligence with Splunk

[249]

As we've mentioned earlier, each individual TM1 Server is continually generating logging
information. To effectively monitor our TM1 Servers, we want to visualize all of the server
logs as a single big data operational data source.

So, let's get started!

To start monitoring with Splunk (or actually to do pretty much anything with Splunk), you
need to feed it some type of data. Once Splunk becomes aware of your data, it instantly
indexes it so that it's available for searching and analyzing purposes. At that point, the data
has been transformed into Splunk events (each with its own set of searchable fields).

Splunk is particularly efficient in dealing with all IT streaming, machine, and historical
data.

MS Windows event logs, web server logs, live application logs, network feeds, system
metrics, change monitoring, message queues, archive files, or anything else of
interest–including our Cognos TM1 Server logs–can be easily monitored using Splunk.

The following are the steps to begin monitoring big data with Splunk:

Point Splunk at your big data or a source of big data
Provide some details about the big data/data source (that then becomes a Splunk
data input)

Splunk then begins to index the big data/data source (transforming it into searchable
events) allowing you to begin searching and monitoring your big data.

Pointing Splunk
Once you have logged into your Splunk instance, you can click on the menu (in the upper
right of the page) titled Settings, and then click on the Add Data image (as shown in the
following screenshot):

Big Data Operational Intelligence with Splunk

[250]

From there, select monitor (found in the middle of the page and shown in the following
screenshot):

Big Data Operational Intelligence with Splunk

[251]

Once on the Splunk Add Data page (shown in the following screenshot), use the scroll bar
to move through the list displayed on the left of the page and locate and select Files &
Directories:

Since we want to continuously monitor all of the log files that each TM1 Server generates
(not just a single log file), we'll point Splunk to the folders where the servers write and
update files (rather than selecting an individual file). Splunk makes accomplishing this easy
by letting you browse or navigate to the desired (logging) folder.

Big Data Operational Intelligence with Splunk

[252]

Once you've selected the folder, you can add Whitelist and Blacklist parameters, if you
wish to. These parameters can be used to apply regular expressions to tell Splunk to
explicitly include or exclude certain file(s) found in the designated folder (again in our
example, we'll allow Splunk to include all the files in the logging folders).

After you've selected the desired (logging) folder, click on the button at the top of the page
labeled Next (shown in the following screenshot):

Big Data Operational Intelligence with Splunk

[253]

On Splunk's Input Settings page, you can specify a Source type, App context, and Host.
App context and Host are important parameters, but for our example, the most important
parameter is the Source type.

The Source type parameter is one of the defaults that Splunk assigns to all incoming data. It
tells Splunk what kind of data you've got, so that Splunk can format the data intelligently
during indexing. Since we have multiple folders containing the application log files we
wish to monitor, we can designate a source type for the log files so that all incoming TM1
logs will be organized and indexed quickly and similarly.

By default, Splunk sets the source type to Automatic (so that it can just deal with it), but
you can select from known Source Type or create a new type.

I've created a new Splunk source type and named it Source TM1 Log (as shown in the
preceding screenshot). I'll use this same source type for all of our TM1 Server logging
folders.

Big Data Operational Intelligence with Splunk

[254]

Once you add a new source type, it's easy to select again when we add the next logging
folder (as shown in the following screenshot).

If you forget to set the source type when adding a folder, you can go back
and change the source type later.

When you have completed reviewing and selecting the Input settings, you can click on the
button labeled Review (shown in the following screenshot):

Big Data Operational Intelligence with Splunk

[255]

Splunk then displays the following screenshot with the details of the input source you just
set up for you to review:

Lastly, you click on the button labeled Submit (shown in the following screenshot):

As the following page indicates, we are now ready to begin using Splunk to visualize our
application log big data contained in the c:\Sample TM1 Log Files folder.

Big Data Operational Intelligence with Splunk

[256]

Once you have pointed Splunk to all (five) of your TM1 server logging folders and set each
folder to the same (that is, the Cognos TM1 Log file) Source type (shown in the following
screenshot), you can then perform searches using that single source type and Splunk will
consider all of the data in all of the folders as a single input source.

Let's try this out with some simple Splunk searches.

Big Data Operational Intelligence with Splunk

[257]

From the Splunk Search page, we could simply type:

sourcetype="Cognos TM1 Log"

This will search all of the data that Splunk currently has indexed (is aware of) that has the
same source type (the Cognos TM1 Log file) and list the transactions or events it finds
(there are a lot!):

Now, let us narrow down that searching a bit. If we modify our original search to the
following:

sourcetype="Cognos TM1 Log" date_month=february

We will tell Splunk to only return events found that occurred in February.

Splunk provides the ability for you to define custom fields within your
data, but it also is intelligent enough to give you a list of fields it finds on
its own. The date_month is an example of a field that Splunk found.

Big Data Operational Intelligence with Splunk

[258]

With an interest in application support (of our TM1 Servers), we might ask the question,
“How many times were TM1 Servers shut down during the month of February?” Having
worked with TM1 in the past, we know that TM1 Servers log all events (including when the
server is shut down) by writing a record in the log file such as the following:

[]INFO 2015-02-05 16:55:53.593 TM1.ServerServer shutdown

So now we can alter our Splunk search again to include a reference to the phrase shutdown
(the asterisk is used as a wildcard character to match an unlimited number of characters in a
string):

sourcetype="Cognos TM1 Log" date_month=february shutdown*

Now, Splunk returns 26 matches or Events found within our data source:

So, we can now understand from our data that given our five TM1 Servers, 26 shutdown
events have occurred during the month of February.

Can we now visualize that information with Splunk?–thankfully, it's pretty easy:

From the search page, click on the tab labeled Visualization:

Big Data Operational Intelligence with Splunk

[259]

Next, select Pivot:

Splunk will ask us if we want to consider using all of the fields in the data in our
visualization; for now, let's just say yes by selecting the option button labeled All Fields
(17):

Once you've clicked on OK on the Fields dialog (as shown in the following screenshot),
from the Splunk New Pivot page, we can set the Split Rows, Split Columns, and Column
Values to be used by Splunk to create a pivot table that our visualization will be based
upon:

Big Data Operational Intelligence with Splunk

[260]

Setting rows and columns
To choose which data fields to use as the pivot's rows and columns, you can click on the +
buttons. Splunk then provides a list of fields to choose from. For the rows, we can select the
field date_month field:

Big Data Operational Intelligence with Splunk

[261]

Once you select the field, you can set a few related parameters, such as a Label or caption
for the value and if you want to display the actual numeric values within your
visualization:

For the columns, we can again click on the + button and select date_mday:

Big Data Operational Intelligence with Splunk

[262]

Finally, using the toolbar located on the left side of the New Pivot page (shown in the
following screenshot), we can select a visualization type for Splunk to create for us (I've
chosen an Area Chart):

Big Data Operational Intelligence with Splunk

[263]

And so Slunk builds us our first big data visualization showing the count of server
shutdown events that occurred in the month of February, split by the day of the month:

There are various ways to enhance this visualization, for example, re-
ordering the display of the days of the week, adding a baseline, changing
colors, adding titles, and so on. The reader should take a time to explore
and experiment!

Big Data Operational Intelligence with Splunk

[264]

Possibly another view of this information would be interesting to the support staff. Back
on the New Pivot page, let's change the Split Columns to date_wday:

Next, let us select pie chart as our visualization type and then review and set certain
parameters (shown in the following screenshot) such as the Field to drive Color in the
visualization, add some labels or captions, and so on.

Big Data Operational Intelligence with Splunk

[265]

This effort gives us the following visualization, which indicates the breakdown of server
shutdown events by the days of the week, including a nice mouse-over popup that
provided the details behind each day:

It should be noted that all of the Splunk visualizations you create on your big data input
source can easily be saved and used as a dynamic report or as a panel within a Splunk
dashboard (more on this later in this chapter).

Big Data Operational Intelligence with Splunk

[266]

Finishing with errors
In Cognos TM1, an application administrator can create TurboIntegrator
(TI) processes and save the processes on an IBM Cognos TM1 Server. The administrator
also assigns security privileges to the TurboIntegrator processes and users must have access
privileges to execute the TurboIntegrator processes. A TurboIntegrator process contains a
script of functions and commands to programmatically import data as well as create and
modify TM1 objects, such as cubes and dimensions. Even with extensive testing efforts,
sometimes these processes finish executing with errors. Those who support the TM1 Servers
need to have information about these errors. Since we have five TM1 Servers running
continuously in five distinct and separate locations, all constantly creating logging and
messaging information, it is somewhat difficult to monitor all of these logs for processing
errors.

Splunk and processing errors
Once again, Splunk offers an easy way to monitor all of the server logs for individual events
in this case TurboIntegrator processing errors. Let's look at an example.

From the Splunk search page, we can use the following:

source=* "finished executing with errors"

From the results, we should take note of the Selected Fields (displayed on the left of the
page):

Big Data Operational Intelligence with Splunk

[267]

Specifically, note the source field value of four. If we click on the field, we can see the
details of the source field (shown in the following screenshot):

One can see that processing errors have occurred in four of the TM1 Servers (based upon
finding the phrase "finished executing with errors" in all of the four logging
folders listed).

Now, let's put together a quick, simple visualization based upon the information that
Splunk has derived from our big data source.

As we did earlier in this section, we can click on the tab labeled Visualization, and then
click on the image Pivot. From there, once again we will keep Fields default All Fields (17).

Now, we should be back at the New Pivot page, where we can set the values we want
Splunk to use in our visualization. We'll use the source as the Split Rows value (I've named
it TM1 Server) and linecount as the Split Columns value:

Big Data Operational Intelligence with Splunk

[268]

Finally, I selected bar chart for the visualization type this time (shown in the following
screenshot):

One might see how a dynamic report or dashboard of this time would be valuable
information to an application support person.

Let's look at one more example of using Splunk to monitor events generated by multiple
online application servers.

Splunk visualization – deeper into the logs
We spoke about TurboIntegrator earlier in this chapter. TurboIntegrator is the Cognos TM1
ETL scripting language used to (among other things) load data from external data sources
into a TM1 server. These TI scripts can read directly from most data sources and can also
easily load data from text or CSV files. Most organizations create multiple TI scripts, test
and then schedule them to execute on a routine schedule, to keep the information within
TM1 up to date.

Big Data Operational Intelligence with Splunk

[269]

In a mature organization (or one that follows proven-practice methodologies), ETL scripts
should generate load or processing statistics. These stats can then be used for many things
such as determining the success of the executed process (records read = records loaded),
performance trending (using the duration time of the processes, are they beginning to run
slower over time?), and so on.

In our example, our organizations load process scripts and write statistics upon conclusion
or successful end. This information includes the process name, the run date, the duration,
the total records read, the total records loaded, and the total records excepted (not loaded),
and so on. This information is saved in a process folder and eventually archived to a
separate area where we can use Splunk to create some interesting visualizations.

New fields
In Splunk, once you've set up a source for your data, Splunk tries to determine (or extract)
as many fields as it can so that you can use them for your analysis and visualizations. Of
course, you always have the opportunity to extract new fields from your data.

To extract additional fields, you can navigate to the Splunk search page, and then:

Click on the link labeled Extract New Fields (shown in the following screenshot):1.

From there, Splunk steps you through the process of creating new fields on the2.
Extract Fields page (shown in the following screenshot). The first step is to select
a Splunk source or Source type and then click on the button labeled Next:

Big Data Operational Intelligence with Splunk

[270]

 From there, you can use a regular expression to parse or extract data as a new3.
field or use a delimiter. For our example, we can click on the image marked
Delimiters, as shown in the following screenshot:

Big Data Operational Intelligence with Splunk

[271]

4. Next, select the delimiter you wish to use (Space, Comma, Tab, Pipe, or Other).
In our example file, the delimiter is the comma. Once I select the Comma,
Splunk immediately parses our data into the five fields we expect identified as
field1 through field5 (shown in the following screenshot):

If you click on the edit icon to the right of each field, Splunk gives you the5.
opportunity to provide a more meaningful name:

Big Data Operational Intelligence with Splunk

[272]

After I rename the fields (type the new field name and then click on Rename6.
Field), we now have Run_date, Duration,
Records_Read, Records_Loaded, and Exceptions:

7. After we have renamed all of our fields, we click on Next and Splunk asks us to
provide an Extractions Name and set Permissions as to which users can access
them:

Big Data Operational Intelligence with Splunk

[273]

Done! Now we are ready to use our new fields to create a new big data visualization.

For example, we could construct a simple search statement using the Run_Date field to
search for all of the data load events that occurred in January 2016:

sourcetype=LoadTimes Run_Date=01/*/16

The sourcetype=LoadTimes restricts our search to our single input source and then we
reference the newly extracted Run_Date field to narrow the search to show only the ones
we are interested in:

As we did earlier in this chapter, we can again click on the tab labeled Visualization, click
on Pivot, and then select All Fields. On the New Pivot page, we can select Run_Date
for the Split Rows and Run_Date (again) as the Split Columns. Be sure to set Sum of
Duration as the Column Values:

Big Data Operational Intelligence with Splunk

[274]

Lastly, we can select column chart for the visualization type. With some experimentation
with labels and captions, we get a pretty respectable visualization showing the duration (in
minutes) of the daily data load process for each day in January 2016:

Let's take this one step farther and save the visualization as a Splunk dashboard.

To do that, you can simply click on the menu labeled Save As… and then select Dashboard
Panel.

Big Data Operational Intelligence with Splunk

[275]

The new Dashboard Panel dialog box then allows you to assign a name for your new
dashboard and panel as well as set the proper access allowing others to share your new
dashboard:

Splunk notifies you once your dashboard is created (shown in the following screenshot) and
to view your dashboard, you can click on View Dashboard:

Big Data Operational Intelligence with Splunk

[276]

Viola! We have a Splunk big data dashboard!

Perhaps, though we might want to compare run times from January of the prior year in the
same dashboard, there are several ways to accomplish this, but the general idea is that you:

Recreate the search (similar to the January 2016 search we just completed).1.
 Use the new search results to create a visualization (just like we did for the 20162.
search).
Save the new visualization as a dashboard panel (again, just like we did for the3.
2016 column chart, as shown in the preceding screenshot).

Big Data Operational Intelligence with Splunk

[277]

Editing the dashboard
Once you have your new dashboard panel saved, you can reopen our dashboard and click
on the menu item in the upper right of the page labeled Edit, and then select Edit Panels
(shown in the following screenshot):

Next, click on the button labeled + Add Panel (shown in the following screenshot):

The Add Panel dialog appears:

Big Data Operational Intelligence with Splunk

[278]

On the Add Panel dialog, you could select New if you wanted to create the new panel from
here (or you could use an existing report or prebuilt panel–these are the options the reader
should review), but we have already created our panel, so we click on Clone from
Dashboard, which then lists dashboard panels available to select and include.

The panel named 2015 Data Load Times is the panel that I have already created as
described earlier. Data Load Times was the initial panel we created and is already part of
our dashboard:

Big Data Operational Intelligence with Splunk

[279]

When I click on the 2015 Load Times panel, Splunk provides a preview of the panel:

Yes, that's the one I want, so I can click on the button at the top of the preview dialog
labeled Add to Dashboard. The following is our two paneled Splunk big data dashboard:

Big Data Operational Intelligence with Splunk

[280]

More about dashboards
In Splunk, dashboards are described as a type of view, and that view is made up of panels
like the two simple ones we just created. Panels can contain objects known as modules such
as Search boxes, Fields, Charts, Tables, and Lists. You can make your dashboard simple
and straightforward (like our data load example) or very complex and sophisticated. To
help with the more complex efforts, Splunk provides a dashboard editor that gives you a
starting framework for your dashboard and then gives you the tools to customize your
dashboard in numerous ways.

Summary
In this chapter, we started with a short discussion on what Splunk is and how it can
potentially be used to harness the value of big data; specifically, with the machine or
application-generated operational big data. We also considered several working examples
using Splunk to search and then visualize the application server log files.

It should be noted that the examples provided in this chapter were, however, realistic, but
also somewhat modest and that Splunk is a mature, robust tool that offers functions and
features much too numerous for the scope of this book.

As an aside, I recommend joining the online Splunk community (it's excellent!) or checking
out the many wonderful and helpful Splunk books available today, including mine,
Mastering Splunk, Packt Publishing, 2014.

Index

3
3Vs, big data visualization
 variety 14
 velocity 13
 volume 13

A
accessibility 138, 139, 140
Amazon AWS Command Line Interface (CLI) 59
Amazon Elastic MapReduce (EMR) 46
Amazon Simple Storage Service (S3)
 about 47
 URL 47, 48, 49
Amazon Web Services (AWS) 46
Apache Software Foundation (ASF) 38
application programming interface (API) 39
appropriateness 136, 137

B
bar chart
 used, for data visualization 168, 169, 170, 171
big data visualization, approaches
 about 23
 access 23, 24
 adjudication 32, 33
 context 25, 26
 dashboards 30, 31
 Data Driven Documents (D3) 29, 30
 Hadoop 24
 instant gratifications 29
 investigation 32, 33
 operational intelligence (OI) 33, 34
 outlier 31, 32
 pictures, using 29
 quality, defining 26, 27, 28
 results, displaying 28

 speed 23, 24
 storage 23, 24
big data visualization, challenges
 3Vs 12
 about 10
 big data, defining 11
 big data, pushing 12
 categorization 14, 15
 data, gauging with Excel 11, 12
 visualization 20
big data
 about 110
 example 240, 241
 Hadoop, using 45
 manipulating, with Python 223, 224
 R, limitation 78, 79
 relational database, using 242
 Splunk, working 245, 246
 themed population 241
Body Mass Index (BMI) 94
bubble chart 145

C
categorization
 3Vs 15
 about 14, 15
 data quality 15, 17
 meaningful displays 18, 19
 outliers 17, 18
 veracity 19, 20
columns
 setting 260, 261, 262, 263, 264, 265
comma-separated values (CSV) 144
consistency 133
context
 adding, to data 77
contextual visualization categories

[282]

 about 74
 comparisons 75
 contrasts 75
 definitions attribute 75
 dispersion 76
 explanation attribute 75
 tendencies 76
conventional data visualization 9, 10

D
dashboard creation example
 about 210
 goal 210, 211, 212
 indicators 217, 218, 219
 requisites 210
 sales and spend 212, 213
 Sales as % of Sales Trend graph 214, 215, 216
 Sales v Spend graph 214, 215, 216
 tables 217, 218, 219
dashboards
 about 30, 205, 280
 editing 277, 278, 279
 URL 30
Data Driven Documents (D3)
 about 29, 30, 142, 143
 bar chart visualizations 168
 multiple donuts 164, 165, 166, 167, 168
 Stacked Area via Nest template, viewing 172,

173, 174, 175, 176
 transaction record of machine, counting 155,

157, 158, 159
 URL 146
 used, in big data 144
 using 146, 147, 148, 149, 150, 151, 153, 154
 visual transitions 159, 163, 164
data logger 147
data manipulations
 HiveQL, using 65, 66
 IP address, parsing 69, 70, 71
 sorting 67, 68, 69
data profiling
 about 77
 process 77
data quality assurance (DQA) 16
data quality

 accessibility 138, 139, 140
 appropriateness 136, 137
 categories 106, 107
 consistency 133
 examples 110, 133
 reliability 133, 134, 135
data visualization
 about 7, 8
 bar chart, used 168, 169, 170, 171
 conventional data visualization 9, 10
 example 79, 80, 81
 reference 19
 training options 10
DataManager
 about 109, 110
 Append node 138
 data quality, exercise 121, 122, 125, 126
 Distinct node 138
 Merge node 138
 multiple files, merging 138
 nodes, connecting 113, 114, 115
 nodes, selecting 112
 output nodes 140
 Quality node 127, 128
 scene, executing 120, 121
 script code, adding 116, 117, 119
 setup 111
 Sort Node 138
 work node 115, 116

E
entity relationship (ER) diagrams 9
example, data quality
 reformatting 110, 111
extended data profiling
 comparisons 96, 97, 98
 contrasts 98
 definition attributes, adding 94
 dispersion 102, 103, 104, 105
 example 94
 explanatory attribute, adding 94
 looping 95
 tendencies 100, 101, 102

[283]

F
fields
 extracting 269, 271, 272, 273, 274, 275, 276

G
Garbage In Garbage Out (GIGO) 106
geoJSON 144

H
Hadoop Distributed File System (HDFS) 38
Hadoop, use case
 about 47
 data, manipulating 56, 57, 58, 59, 61, 63, 64
 data, uploading 53, 55
 environment, defining 47, 48, 49, 50, 51, 52
Hadoop
 about 37, 38, 39
 AWS 46
 IBM 39, 40
 used, for big data 45
 using 24
Hive language reference manual
 URL 56
Hive Query Language (HiveQL)
 about 56
 used, for data manipulations 65, 66

I
IBM Cognos 247, 248, 249
IBM
 about 39, 40
 reference 40
If Type 234
Internet of Things (IoT) 13

K
key performance indicators (KPIs) 151

L
layout containers 221
log files
 about 41, 42
 R scripting, example 42, 44

log management strategy (LMS) 246

M
MapReduce 37
MS Excel 41, 42

O
Open Database Connectivity (ODBC) 109
operational intelligence (OI) 33, 34
outliers
 about 17, 18, 224
 delete 224
 identifying 225, 226
 transform 224, 225
output nodes
 about 140
 distribution node 140
 histogram node 140
 statistics node 140

P
Python
 about 222, 223
 script, reusing 235
 used, for manipulating big data 223, 224

R
R
 about 78
 benefits 81, 82, 83, 87, 88, 89, 92, 93
 limitation, with big data 78, 79
 using 78
real-time log analysis
 columns, setting 260, 261, 262, 263, 264, 265
 dashboard 280
 dashboard, editing 277, 278, 279
 errors, finishing 266
 errors, processing 266, 267, 268
 fields, extracting 269, 271, 272, 273, 274, 275,

276

 IBM Cognos 247, 248, 249
 rows, setting 260, 261, 262, 263, 264, 265
 Splunk, pointing 249, 251, 252, 253, 254, 255,

257, 258, 259

[284]

 Splunk, used for monitoring 266, 267, 268
 Splunk, visualization 246, 247, 268, 269
reliability 133, 134, 135
rows
 setting 260, 261, 262, 263, 264, 265

S
sales transactions example
 about 179, 180
 context, adding 180
 data, visualizing 194
 data, wrangling 181, 182, 186, 187, 188, 190,

191, 192, 193
 Tableau dashboard 195, 196, 198, 199, 200,

201, 202, 203
 work, presenting 205, 206
 workbook, saving 204
Scalable Vector Graphics (SVG) 143
Search Processing Language (SPL) 34
slot machines
 Age values, setting 236
 big data 232
 big data, volume reducing 234
 excessive values, handling 228, 229
 fields, dropping 238, 239
 onto outliers 227
 outliers, setting 232
 processing performance, improving 240
 Python script, writing 237
 redundancy 234
 risk 234
 specific record, removing 233, 234
 specific values, modifying 235, 236
 testing, for profitability 226, 227
 value, establishing 229
Software as a Service (SaaS) 46
Splexicon 245
Splunk
 about 244, 245
 reference 245
 visualization, with real-time log analysis 246,

247, 268, 269
 working, with big data 245, 246
Stacked Area
 viewing, via Nest template 172, 173, 174, 175,

176

Stacked-to-Multiples
 URL 155
Structured Query Language (SQL) 178

T
Tableau Desktop 178
Tableau Public 178
Tableau Reader 178
Tableau Server 178
Tableau
 about 177
 and big data 178, 179
 filtering feature 208
 products 178
 reference 178
 tools 207, 208, 209
TM1 Server
 architecture 248
transitioning 159
Trifacta
 about 179
 reference 179
TurboIntegrator (TI) 266

V
variety 14
velocity 13
virtual machine (VM) 248
Visual Basic Script (VBScript) 110
Visual Query Language (VizQL) 178
visualization
 philosophies 20
 real-time log analysis, with Splunk 246, 247,

268, 269
 strategies 22, 23
 variety 21
 velocity 21
 volume 21, 22
volume
 about 13
 reference 13

W
Wingware

 about 223
 reference 223
wrangling 179

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction to Big Data Visualization
	An explanation of data visualization
	Conventional data visualization concepts
	Training options

	Challenges of big data visualization
	Big data
	Using Excel to gauge your data
	Pushing big data higher
	The 3Vs
	Volume
	Velocity
	Variety

	Categorization
	Such are the 3Vs
	Data quality
	Dealing with outliers
	Meaningful displays
	Adding a fourth V

	Visualization philosophies
	More on variety
	Velocity
	Volume
	All is not lost

	Approaches to big data visualization
	Access, speed, and storage
	Entering Hadoop
	Context
	Quality
	Displaying results
	Not a new concept
	Instant gratifications
	Data-driven documents
	Dashboards
	Outliers
	Investigation and adjudication
	Operational intelligence

	Summary

	Chapter 2: Access, Speed, and Storage with Hadoop
	About Hadoop
	What else but Hadoop?
	IBM too!

	Log files and Excel
	An R scripting example
	Points to consider

	Hadoop and big data
	Entering Hadoop
	AWS for Hadoop projects

	Example 1
	Defining the environment
	Getting started
	Uploading the data
	Manipulating the data
	A specific example

	Conclusion

	Example 2
	[Sorting]
	Sorting
	Parsing the IP

	Summary

	Chapter 3: Understanding Your Data Using R
	[Definitions and explanations]
	Definitions and explanations
	Comparisons
	Contrasts
	Tendencies
	Dispersion

	Adding context
	About R
	R and big data

	Example 1
	Digging in with R
	Example 2
	Definitions and explanations
	No looping
	Comparisons
	Contrasts
	Tendencies
	Dispersion

	Summary

	Chapter 4: Addressing Big Data Quality
	Data quality categorized
	DataManager
	DataManager and big data
	Some examples
	Some reformatting
	A little setup
	Selecting nodes
	Connecting the nodes
	The work node
	Adding the script code
	Executing the scene
	Other data quality exercises
	What else is missing?
	Status and relevance
	Naming your nodes

	More examples
	Consistency
	Reliability
	Appropriateness
	Accessibility
	Other Output nodes

	Summary

	Chapter 5: Displaying Results Using D3
	About D3
	D3 and big data
	Some basic examples
	Getting started with D3
	A little down time
	Visual transitions
	Multiple donuts

	More examples
	Another twist on bar chart visualizations
	One more example
	Adopting the sample

	Summary

	Chapter 6: Dashboards for Big Data - Tableau
	About Tableau
	Tableau and big data
	Example 1 – Sales transactions
	Adding more context
	Wrangling the data
	Moving on
	A Tableau dashboard
	Saving the workbook
	Presenting our work
	More tools

	Example 2
	What's the goal? – purpose and audience
	Sales and spend
	Sales v Spend and Spend as % of Sales Trend
	Tables and indicators
	All together now

	Summary

	Chapter 7: Dealing with Outliers Using Python
	About Python
	Python and big data
	Outliers
	Options for outliers
	Delete
	Transform

	Outliers identified

	Some basic examples
	Testing slot machines for profitability
	Into the outliers
	Handling excessive values
	Establishing the value
	Big data note
	Setting outliers
	Removing Specific Records
	Redundancy and risk
	Another point
	If Type
	Reused

	Changing specific values
	Setting the Age
	Another note

	Dropping fields entirely
	More to drop

	More examples
	A themed population
	A focused philosophy

	Summary

	Chapter 8: Big Data Operational Intelligence with Splunk
	About Splunk
	Splunk and big data

	Splunk visualization – real-time log analysis
	IBM Cognos
	Pointing Splunk
	Setting rows and columns
	Finishing with errors
	Splunk and processing errors

	Splunk visualization – deeper into the logs
	New fields
	Editing the dashboard
	More about dashboards

	Summary

	Index

