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Preface

Algebraic curves over finite fields have been studied by mathematicians at
least as far back as Gauss more than two centuries ago. Tremendous progress
was made on this topic in the 20th century, with the seminal work of Hasse
and Weil in the 1930s and 1940s on the number of points on such curves,
as well as many other important discoveries. A new milestone was reached
in the 1980s when the use of algebraic curves led to major breakthroughs in
some other domains: the discovery of algebraic geometry codes by Goppa that
led to asymptotically good sequences of codes that outperformed the Gilbert-
Varshamov bound, a classical benchmark for families of good linear codes;
the invention of the elliptic curve public key cryptosystem independently by
Koblitz and Miller; and the use of elliptic curves for the factorization of large
integers by Lenstra.

The discovery of such unexpected relationships marked the beginning of
a new chapter in cryptography, the study and practice of protecting data
against adversaries. Intensified effort has been made to develop and refine
cryptographic tools using algebraic curves, while potential applications have
also motivated deeper theoretical studies of algebraic curves. Elliptic curve
cryptography, in particular, has seen a surge in interest and research activ-
ities. A good number of books have also been written on this topic. How-
ever, the reach of algebraic curves in cryptography goes far beyond elliptic
curve cryptography or, indeed, public key cryptography. Examples of other
cryptographic applications of algebraic curves that have emerged in the past
two decades include multiparty computations, secret sharing, authentication
codes, frameproof codes, private information retrieval, key distribution, broad-
cast encryption, one-time signatures, and sequences for stream ciphers.

Having worked quite a bit in some of these areas in recent years, we felt
that the richness of the use of algebraic curves in these other cryptographic
applications has not been much covered systematically in the literature. The
main intention of this book is to bridge this gap.

With graduate students and researchers intended as the primary readers
of this book, we have tried to make the content as self-contained as possible.
The book, therefore, begins with a chapter on the background knowledge of
algebraic curves needed for the rest of the book. This is followed by a chapter
on error-correcting codes, where a discussion on algebraic geometry codes is
included. Indeed, in some of the topics covered in this book, algebraic curves
enter into cryptography through algebraic geometry codes. Despite the wide

xiii

© 2013 Taylor & Francis Group, LLC



xiv Preface

availability of literature on elliptic curves and elliptic curve cryptography, it
would still be odd for a book on algebraic curves in cryptography to omit
this topic completely. Hence, a chapter is included to provide a brief intro-
duction. Starting from Chapter 4, each chapter deals with a selected topic
in cryptography (other than elliptic curve cryptography). The topics we have
chosen to discuss in this book include secret sharing schemes, authentication
codes, frameproof codes, key distribution schemes, broadcast encryption, and
sequences. Each chapter begins with some introductory material for the topic
before application of algebraic geometry is featured. It is quite possible for
any of these chapters to be studied independently of the others.

We have received much support and help in the process of writing this
book. For this, we are immensely grateful. We thank the Singapore National
Research Foundation, Singapore Ministry of Education, and Nanyang Techno-
logical University, for the generous funding we have received for our research.
We are also grateful to those who have given us precious feedback during the
preparation, especially Carles Padró, and those who have provided invaluable
technical help, in particular Jie Chen, Hoon Wei Lim, and Enver Ozdemir.
Special thanks must go to Sze Ling Yeo, without whose help Chapter 3 would
not have been possible. Part of this book was written when S. Ling was visiting
École Normale Supérieure de Lyon and when H. Wang was visiting Macquarie
University. It is a pleasure to thank these institutions for their hospitality.

San Ling
Huaxiong Wang
Chaoping Xing
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Chapter 1

Introduction to Algebraic Curves

Algebraic curves have found many applications in coding and cryptography
since the discovery of the Goppa geometry codes [71]. There are quite a few
standard books on algebraic curves [61, 76, 75, 117], although most of these
books discuss curves over algebraically closed fields. For our purpose, we are
interested primarily in algebraic curves over finite fields, in fact, preferably al-
gebraic curves with explicit defining equations. In this chapter, a self-contained
introduction to algebraic curves is given.

1.1 Plane Curves

Throughout this chapter, and indeed throughout this book, we always as-
sume that Fq is the finite field with q elements. We denote by Fq[x1, x2, . . . , xn]
the multivariate polynomial ring with n variables.

A polynomial f(x1, x2, . . . , xn) ∈ Fq[x1, x2, . . . , xn] is called absolutely
irreducible if it is irreducible over the algebraic closure Fq

1.
An affine plane curve over Fq is defined by f(x, y) = 0 with an absolutely

irreducible polynomial f(x, y) ∈ Fq[x, y].

Example 1.1.1 (i) Let E be a curve over F2 defined by

y2 + y + x3 + x = 0.

It has four affine points (0, 0), (0, 1), (1, 0), (1, 1) over F2. This curve is
called an elliptic curve, a subject that will be extensively studied in
Chapter 3.

(ii) Let q be an odd prime power and let X be a curve over Fq defined by

y2 = f(x),

where f(x) is a square-free polynomial over Fq of degree ≥ 3. This curve

1An algebraic closure K of a field F is an algebraic extension such that every univariate

polynomial of degree ≥ 1 over K has at least one root in K. In the case where F is the

finite field Fq, an algebraic closure K can be taken to be the union ∪∞

i=1Fqi .

1
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2 Algebraic Curves in Cryptography

is called a hyperelliptic curve. When the degree of f(x) is 3, X is
actually an elliptic curve (see Chapter 3 as well).

(iii) An affine plane line is defined by ax+by+c = 0, where (a, b) 6= (0, 0).

(iv) The curve over Fr2 defined by the equation

yr + y − xr+1 = 0

is called a Hermitian curve.

If f(x, y) ∈ Fq[x, y] is not absolutely irreducible (though it is irreducible
over Fq), then it cannot define a plane curve. An illustration is given in the
following example.

Example 1.1.2 Consider the polynomial y2 + x4. It is irreducible over F3.
However, it is reducible over F9 (hence it is reducible over F3). Over F9, it
can be factored into a product (y − αx2)(y + αx2), where α is a root of the
polynomial t2 + 1 ∈ F3[t]. Thus, y

2 + x4 = 0 does not define a curve over F3.
In fact, y2 + x4 = 0 implies that y−αx2 = 0 or y+αx2 = 0, i.e., y2 + x4 = 0
is the union of two other curves.

We are now ready to discuss projective plane curves. Before doing this, we
need to introduce affine and projective planes.

Definition 1.1.3 (i) The n-dimensional affine space over Fq, denoted by
An, is defined by

An def
= An(Fq)

def
= {(a1, a2, . . . , an) : ai ∈ Fq}.

An element of An is called a point. A point in the subspace defined by

An(Fq)
def
= An ∩Fn

q = {(a1, a2, . . . , an) : ai ∈ Fq} is called Fq-rational.

In the case n = 2, A2 is called the affine plane over Fq.

(ii) (Roughly speaking, the n-dimensional projective space is obtained by
adding some “points at infinity” to the n-dimensional affine space. In
order to do so, we need to go to the affine space of dimension n+ 1.)

An n-dimensional projective space over Fq, denoted by Pn(Fq) or P
n,

is the set of equivalence classes of nonzero (n+1)-tuples (a0, a1, . . . , an)
of elements of Fq under the equivalence relation given by:

(a0, a1, . . . , an) ∼ (b0, b1, . . . , bn)

if and only if there exists a nonzero element λ of Fq such that ai = λbi
for all i = 0, 1, . . . , n. An element of Pn is called a point. We de-
note by [a0, a1, . . . , an] the equivalence class containing the (n+1)-tuple
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(a0, a1, . . . , an). Thus, [a0, a1, . . . , an] and [λa0, λa1, . . . , λan] stand for
the same point if λ 6= 0. A point in the set

Pn(Fq)
def
= {[a0, a1, . . . , an] ∈ Pn : ai ∈ Fq for i = 0, 1, . . . , n}

is called Fq-rational.

When n = 2, P2 is called the projective plane over Fq.

Proposition 1.1.4 (i) The number of Fq-rational points in A2(Fq) is q
2.

(ii) The number of Fq-rational points in P2(Fq) is given by q2 + q + 1.

Proof. The first part is clear.
To prove (ii), we can list all the elements of P2(Fq). In fact, it is not

difficult to verify that

P2(Fq) = {[a, b, 1] : a, b ∈ Fq} ∪ {[a, 1, 0] : a ∈ Fq} ∪ {[1, 0, 0]}.

Counting the number of points in P2(Fq) gives the desired result. ✷

Remark 1.1.5 From the proof of Proposition 1.1.4, we can see that P2(Fq)
can be regarded as consisting of two subsets. One consists of the points whose
third coordinate is equal to 1. It has q2 points and can be identified with
A2(Fq). The other subset, consisting of all points whose third coordinate is
equal to 0, has q + 1 points. The points in this subset are called “points at
infinity.”

Example 1.1.6 Consider the curve defined in Example 1.1.1(i). It has four
points (0, 0), (0, 1), (1, 0), (1, 1) in the affine space A2(F2). To see that it has
one “point at infinity,” we have to homogenize this curve (i.e., creating a
homogeneous equation from the one given, by introducing a new variable Z,
such that specializing to Z = 1 returns us to the original given equation) to
the following equation

Y 2Z + Y Z2 +X3 +XZ2 = 0.

Now, we can see that there are five points altogether in the projective plane
satisfying this equation: [0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1], and [0, 1, 0]. The first
four points are just the affine points. The last one is a new point. Hence, this
point is sometimes denoted as ∞ if we only express the curve equation and
points in the affine form. Indeed, in most cases, it is more convenient to work
with affine curve equations and affine points.

From the above example, we know that, in order to find all the projective
points of a given curve defined by an affine equation, we have to consider
the homogeneous equation for the curve instead of the affine equation. A
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homogeneous polynomial in three variables of degree m over Fq is of the
form

∑
i+j+k=m aijkX

iY jZk, where aijk ∈ Fq. If an affine plane curve is
defined by a nonzero polynomial f(x, y) of degree m > 0, then we can convert
it into a projective plane curve by homogenizing it to Zmf(X/Z, Y/Z) = 0 as
we did in Example 1.1.6.

A projective plane curve over Fq is defined by f(X,Y, Z) = 0 with an
absolutely irreducible homogeneous polynomial f(X,Y, Z) ∈ Fq[X,Y, Z].

Example 1.1.7 (i) The Klein curve is defined by the following homoge-
neous equation

X3Y + Y 3Z + Z3X = 0.

(ii) A projective plane line is defined by aX + bY + cZ = 0, where
(a, b, c) 6= (0, 0, 0). In the case (a, b) 6= (0, 0), it is the projective line
from the affine equation of Example 1.1.1(iii). However, compared with
the affine line of Example 1.1.1(iii), it has one more point, i.e., [b,−a, 0],
which is viewed as a “point at infinity.”

(iii) By homogenizing the affine equation of Example 1.1.1(iv), we obtain the
projective Hermitian curve over Fr2 defined by ZY r+ZrY −Xr+1 =
0. Compared with the affine curve of Example 1.1.1(iv), it also has one
more point, i.e., [0, 1, 0], which is viewed as a “point at infinity” as well.

We now introduce the notion of smoothness of plane curves.

Definition 1.1.8 Let X be an affine curve defined by an equation f(x, y) = 0.
A point P of X is called nonsingular or simple if

(
∂f

∂x
(P ),

∂f

∂y
(P )

)
6= (0, 0),

where ∂f
∂x (P ),

∂f
∂y (P ) denote the formal partial derivatives of f with respect

to x and y, respectively, at P . Otherwise, P is called a singular point. For a
nonsingular point P = (a, b), the tangent line of X at P is defined by

∂f

∂x
(P )(x− a) + ∂f

∂y
(P )(y − b) = 0.

If all points of X are simple, then X is called nonsingular or smooth.

Note that all singular points of an affine plane f(x, y) = 0 can be determined
by solving the system of equations





f(x, y) = 0
∂f
∂x = 0
∂f
∂y = 0.

(1.1)

Previously, we converted affine curves to projective curves by homogenizing
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polynomials. Conversely, we can convert projective curves to affine curves by
dehomogenizing polynomials (i.e., by setting one of the variables to be 1).
In many cases, it is more convenient to deal with affine curves rather than
projective curves.

Let P = [a, b, c] be a point on the projective curve defined by f(X,Y, Z) =
0. As (a, b, c) 6= (0, 0, 0), without loss of generality, we may assume that c 6= 0,
thus P = [a/c/, b/c, 1] and the curve can be dehomogenized to the affine curve
defined by f(x, y, 1) = 0. If b 6= 0 (respectively, a 6= 0), we can consider the
affine curve f(x, 1, y) = 0 (respectively, f(1, x, y) = 0) instead.

Definition 1.1.9 Let X be a projective curve defined by an equation
f(X,Y, Z) = 0. Let P = [a, b, c] be a point of X . We may assume that c 6= 0.
Then, P is called nonsingular or simple if (a/c, b/c) is a simple point of the
affine curve defined by f(x, y, 1) = 0. Otherwise, P is called a singular point.
In the case where P is simple, the tangent line of X at P is defined by

∂f

∂x
(
a

c
,
b

c
)(X − aZ) + ∂f

∂y
(
a

c
,
b

c
)(Y − bZ) = 0.

(Here, in ∂f
∂x and ∂f

∂y , we regard f as the function f(x, y, 1) in two variables x

and y.) If all points of X are simple, then X is called nonsingular or smooth.

Example 1.1.10 (i) Consider the projective Klein curve over Fq defined
in Example 1.1.7(i). If P = [a, b, 1] is a singular point, we dehomogenize
the equation to x3y + y3 + x = 0. By (1.1), we obtain a system of
equations

a3b+ b3 + a = 0, 3a2b+ 1 = 0, a3 + 3b2 = 0.

Solving this system gives no solution if q 6≡ 0 (mod 7), and one solution
(a, b) = (2, 4) if q ≡ 0 (mod 7). For points of the types [a, 1, c] and
[1, b, c], we can obtain similar results. Thus, the projective Klein curve
is smooth if q 6≡ 0 (mod 7), and it has only one singular point [2, 4, 1] if
q ≡ 0 (mod 7).

(ii) Using the same method as in (i), we can show that the projective line
defined in Example 1.1.7(ii) is smooth, hence the affine line defined in
Example 1.1.1(iii) is also smooth.

(iii) Again using the same method, we can show that the projective elliptic
curve defined in Example 1.1.6 is smooth, hence the affine curve defined
in Example 1.1.1(i) is also smooth.

(iv) The projective Hermitian curve defined in Example 1.1.7(iii) is also
smooth, hence the affine curve defined in Example 1.1.1(iv) is smooth
as well.
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6 Algebraic Curves in Cryptography

(v) Finally, we consider the affine hyperelliptic curve over Fq defined in
Example 1.1.1(ii). Solving the system of equations (1.1) for g(x, y) =
y2 − f(x), we get f(x) = f ′(x) = 0, where f ′(x) denotes the derivative
of f(x). This is impossible since f(x) has no multiple roots. This implies
that the affine hyperelliptic curve in Example 1.1.1(ii) is smooth.

To look at the projective hyperelliptic curve, we first homogenize the
affine curve to get a projective curve: Y 2Zd−2 − Zdf(X/Z) = 0, where
d ≥ 3 denotes the degree of f(x). Apart from those “finite” points
[a, b, 1] corresponding to the points on the affine curve y2 − f(x) = 0,
there is one more point [0, 1, 0]. We dehomogenize this curve to an affine
equation: zd−2 − zdf(x/z) = 0 and consider (0, 0). It is easy to check
that (0, 0) is a singular point if d > 3 and a nonsingular point if d = 3.
In conclusion, the projective hyperelliptic curve has one singular point
[0, 1, 0] for d > 3, and it is smooth for d = 3.

1.2 Algebraic Curves and Their Function Fields

In the previous section, an affine plane curve has two variables and is
defined by one equation. If we want to define a curve in an n-dimensional
space, we need n variables. Roughly speaking, a curve in an n-dimensional
space is defined by n − 1 equations (we will have a more precise definition
later (see Definition 1.2.3)).

Example 1.2.1 Consider the affine curve X over F2 in the 3-dimensional
space defined by {

y2 + y = x3 + x
z2 + z = y3 + y2.

It has eight F2-rational points: (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0,
1), (1, 1, 0), and (1, 1, 1). Note that, for an affine plane curve over F2, it has at
most four F2-rational points. This is because A2(F2) has only four points.

To give a more precise definition of a curve, we have to study function
fields first.

Let k be a finite field Fq or its algebraic closure Fq. For x transcendental
over k, the rational function field k(x) of one variable over k is the set

of all f(x)
g(x) , where f(x), g(x) are polynomials in k[x]. An extension K over k,

denoted by K/k, is called a function field of one variable over k if, for any
x ∈ K \ k, the field K is a finite algebraic extension over the rational function
field k(x).

Example 1.2.2 (i) Let L be the line defined by ax + by + c = 0 with
(a, b) 6= (0, 0), as in Example 1.1.1(iii). We may assume that a 6= 0. It is
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clear that y is a variable over Fq. Since x = −(by + c)/a, x is algebraic
over Fq(y). Hence, Fq(x, y) is a function field of one variable over Fq.
This function field is called the function field of L, denoted by Fq(L).
In fact, it is easy to see that Fq(x, y) = Fq(y), i.e., Fq(L) is a rational
function field.

(ii) In Example 1.1.1(i), x is a variable over F2, while y is algebraic over
F2(x). Thus, F2(x, y) is a function field of one variable over F2. This
function field is called the function field of E , denoted by F2(E).

(iii) In Example 1.2.1, x is a variable over F2, while y is algebraic over F2(x).
Since z is algebraic over F2(x, y), z is also algebraic over F2(x). Thus,
F2(x, y, z) is a function field of one variable over F2. This function field
is called the function field of X , denoted by F2(X ).

The above examples show that, for all the three curves, their function fields
are function fields of one variable. This fact will be used to define a curve.

In order to define curves in higher dimensions, we need to use the n-
dimensional projective space, for n > 2, defined in Definition 1.1.3.

Definition 1.2.3 An affine curve X over Fq in An is defined by a system of
polynomial equations:





f1(x1, x2, . . . , xn) = 0
...

fm(x1, x2, . . . , xn) = 0

(1.2)

with fi ∈ Fq[x1, x2, . . . , xn] such that the following conditions are satisfied:

(i) the ideal of Fq[x1, x2, . . . , xn] generated by f1, . . . , fm is a prime ideal
(hence, the ideal of Fq[x1, x2, . . . , xn] generated by f1, . . . , fm is also a
prime ideal);

(ii) the quotient field of the residue ring Fq[x1, x2, . . . , xn]/(f1, . . . , fm) is
a function field of one variable over Fq, where (f1, . . . , fm) denotes the
ideal of Fq[x1, x2, . . . , xn] generated by f1, . . . , fm.

The quotient field in (ii) is called the function field of X , denoted by Fq(X ).
A point P of An satisfying fi(P ) = 0, for all i = 1, . . . ,m, is called a point
of X . The point P is said to be an Fq-rational (or rational) point of X if it
belongs to An(Fq).

A projective curve Y over Fq is obtained by homogenizing the polynomials
in (1.2) satisfying the above two conditions. The function field of this projec-
tive curve is defined to be the function field of the above affine curve. A point
P of Pn which is a zero for all the homogenized polynomials is called a point
of Y. The point P is said to be an Fq-rational (or rational) point of Y if it
belongs to Pn(Fq).
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8 Algebraic Curves in Cryptography

Remark 1.2.4 (i) The first condition in Definition 1.2.3 cannot be
changed to the weaker condition “the ideal of Fq[x1, x2, . . . , xn] gen-
erated by f1, . . . , fm is a prime ideal.” For instance, the ideal of F3[x, y]
generated by x2 + y4 is a prime ideal, while the ideal of F3[x, y] gener-
ated by x2 + y4 is not a prime ideal. This requirement coincides with
our definition of plane curves since x2 + y4 is not absolutely irreducible.

(ii) Since the ideal of Fq[x1, x2, . . . , xn] generated by f1, . . . , fm is a prime
ideal, the residue ring Fq[x1, x2, . . . , xn]/(f1, . . . , fm) is a domain and its
quotient field can be defined.

(iii) It is not difficult to verify that the function fields defined in Example
1.2.2 coincide with the above definition of the function field of a general
curve.

1.3 Smooth Curves

We generalize Definition 1.1.8 to curves in spaces of higher dimension.

Definition 1.3.1 Let X ⊆ An be an affine curve defined by a set of poly-
nomials f1, . . . , fm ∈ Fq[x1, . . . , xn]. Then X is said to be nonsingular (or
smooth, or simple) at a point P of X if the m× n Jacobian matrix

(
∂fi
∂xj

(P )

)

at P has rank n−1. Otherwise, X is said to be singular at P . If X is smooth
at every point of X , then we say that X is a nonsingular (or smooth) affine
curve.

The above definition coincides with Definition 1.1.8 when X is a plane curve
defined by one polynomial f(x1, x2) = 0.

For a projective curve in Pn and a point P = [a0, a1, . . . , an] with ai 6= 0,
we may dehomogenize all polynomials with respect to the index i to obtain an
affine curve. Then P is called a nonsingular (or smooth, or simple) point
if

(a0/ai, a1/ai, . . . , ai−1/ai, ai+1/ai, . . . , an/ai)

is a smooth point on the affine curve.
Nonsingular points on a curve have a nice associated property, which we

will see later in this section (Theorem 1.3.5). We first require the following
notion.

Definition 1.3.2 Let K/k be a function field of one variable, where k is a
finite field Fq or its algebraic closure Fq. A discrete valuation of K/k is a
surjective map ν : K → Z ∪ {∞} satisfying the following conditions:
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(i) ν(z) =∞ if and only if z = 0;

(ii) ν(yz) = ν(y) + ν(z) for all y, z ∈ K;

(iii) ν(y + z) ≥ min (ν(y), ν(z)) for all y, z ∈ K;

(iv) ν(y + z) = min (ν(y), ν(z)) if ν(y) 6= ν(z) for y, z ∈ K;

(v) ν(K∗) 6= {0}, where K∗ = K \ {0};

(vi) ν(α) = 0 for all α ∈ k∗ = k \ {0}.

We now look at some examples of function fields of plane curves.

Example 1.3.3 Consider the plane line L over Fq defined by ax+ by+ c = 0
with a 6= 0. Then the function field Fq(L) is Fq(y) by Example 1.2.2(i). For

any y = α ∈ Fq, we get a unique Fq-rational point Pα
def
= (−bα/a− c/a, α) on

L. Define a map να from Fq(L) to Z∪{∞} by: να(0) =∞, and να(f(y)) = r if
f(y) = (y−α)r(g(y)/h(y)) 6= 0 for some g(y), h(y) ∈ Fq[y] with g(α) 6= 0 and
h(α) 6= 0. Then it is not difficult to verify that να is a discrete valuation. This
means that, for each “finite” Fq-rational point Pα (by a “finite” point, we mean
a point on the affine curve), we obtain a discrete valuation να. For the “point at
infinity” [−(b+c)/a, 1, 0], we define another discrete valuation ν∞ from Fq(L)
to Z ∪ {∞} by: ν∞(0) = ∞, and ν∞(g(y)/h(y)) = deg(h(y)) − deg(g(y)) for
g(y), h(y) ∈ Fq[y] with g(y), h(y) 6= 0. Again, one can verify that ν∞ is a
discrete valuation.

Now assume that β is an element in some extension field of Fq and let
p(y) ∈ Fq[y] be the minimal polynomial of β with respect to Fq. Define a
map νp(y) from Fq(L) to Z ∪ {∞} by: να(0) = ∞, and νp(y)(f(y)) = r if
f(y) = p(y)r(g(y)/h(y)) 6= 0 for some g(y), h(y) ∈ Fq[y] with p(y) ∤ g(y) and
p(y) ∤ h(y). Then it is not difficult to verify that νp(y) is a discrete valuation.
Thus, for each point (−bβ/a − c/a, β) ∈ A2 of L, we have a corresponding
valuation νp(y).

In conclusion, we have shown the following:

(i) For every “finite” point (−bβ/a− c/a, β) = [−bβ/a− c/a, β, 1], we have
a corresponding discrete valuation.

(ii) If β and γ are conjugate, i.e., they have the same minimal polynomial
over Fq (this is equivalent to γ = βqs for some s ∈ Z (see [95, Theorem
2.13])), then the discrete valuations corresponding to (−bβ/a− c/a, β)
and (−bγ/a− c/a, γ) are equal.

(iii) Let p(y) ∈ Fq[y] be the minimal polynomial of β with respect to Fq.
Then νp(y)(u(y)) > 0 if and only if u(β) is well defined and u(β) = 0.

(iv) For the “point at infinity,” we also have a corresponding discrete valua-
tion.
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In fact, all the discrete valuations of Fq(L) = Fq(y) are those corresponding
to the points of L (see [151, Corollary I.2.3]).

Example 1.3.4 Consider the elliptic curve defined in Example 1.1.1(i).

(i) Define a map ν(0,0) from F2(E) = F2(x, y) to Z ∪ {∞} by: ν(0,0)(x) = 1,
ν(0,0)(y) = 1, and extend this map to the function field F2(E) = F2(x, y)
so that it satisfies the conditions of Definition 1.3.2. Then it is a discrete
valuation. We can see that ν(0,0)(g(x, y)) > 0 if and only if g(0, 0) is well
defined and g(0, 0) = 0.

(ii) Now for the “point at infinity” O
def
= [0, 1, 0], we define a map νO from

F2(E) to Z ∪ {∞} by: νO(x) = −2, νO(y) = −3, and extend this map
to the function field F2(E) = F2(x, y) so that it satisfies the conditions
of Definition 1.3.2. Then νO is a discrete valuation. We homogenize the
equation of Example 1.1.1(i) to ZY 2 + Z2Y +X3 + Z2X = 0 and then
dehomogenize it to z + z2 + x3 + z2x = 0 and consider the point (0, 0).
We can see that νO(h(x, z)) > 0 if and only if h(0, 0) is well defined and
h(0, 0) = 0.

The two examples above illustrate that we can define a discrete valuation for
every nonsingular point of a curve.

Theorem 1.3.5 Let P be a nonsingular point of an affine (or projective)
curve X over Fq (P may not be Fq-rational). Then there exists a unique dis-
crete valuation of Fq(X ), denoted by νP , such that νP (f) > 0 if and only if
f(P ) is well defined and f(P ) = 0.

We do not give a proof for this theorem. The reader may refer to [61, page
82, Corollary 4] and [117, Theorem 3.1.5] for the detailed proof.

For an Fq-rational point P of X , an element t of Fq(X ) is called a local
parameter at P if t(P ) is well defined and νP (t) = 1. Note that a local
parameter is not unique and always exists (see [151, pages 2–3] and [117, page
15]). For instance, both x and y in Example 1.3.4(i) are local parameters at
(0, 0).

Let X be an affine curve over Fq. For a point P = (a1, . . . , an) (P may

not be Fq-rational), we denote by P
(qi) the point (aq

i

1 , . . . , a
qi

n ). Two points P

and Q of X are said to be conjugate if Q = P (qi) for some i ∈ Z. Note that,
if Q = P (qi), then P = Q(qj) for some j ∈ Z.

Now let X be a projective curve over Fq. For a point P , not necessarily Fq-

rational, given by P = [a0, a1, . . . , ak−1, 1, ak+1, . . . , an], we denote by P (qi)

the point [aq
i

0 , a
qi

1 , . . . , a
qi

k−1, 1, a
qi

k+1, . . . , a
qi

n ]. Two points P and Q of X are

said to be conjugate if Q = P (qi) for some i ∈ Z. In this case, we also have
that, if Q = P (qi), then P = Q(qj) for some j ∈ Z. The collection of all points
conjugate to a given point P is called a closed point. The degree of a closed
point P, denoted by deg(P), is defined to be the cardinality of P.
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Consider now the plane line L over Fq defined by ax + by + c = 0 with

a 6= 0, and let P1
def
= (−bβ1/a − c/a, β1) and P2

def
= (−bβ2/a − c/a, β2) be

two points on L. From Example 1.3.3, we know that, if both β1 and β2 are
roots of an irreducible polynomial p(y) ∈ Fq[y], then P1 and P2 define the
same discrete valuation. Since β1 and β2 are roots of the same irreducible

polynomial, we have β2 = βqi

1 for some i ∈ Z and, hence, P2 = (−bβ2/a −
c/a, β2) = ((−bβ1/a − c/a)q

i

, βqi

1 ) = P
(qi)
1 . Conversely, if P2 = P

(qi)
1 for

some i ∈ Z, then β2 = βqi

1 , so β1 and β2 are roots of the same irreducible
polynomial. This means that two conjugate points correspond to the same
discrete valuation of Fq(L). In fact, this is true for any curve.

Theorem 1.3.6 Let P,Q be two nonsingular points of an affine (or projec-
tive) curve X over Fq (P,Q may not be Fq-rational). Then these two points
correspond to the same discrete valuation of Fq(X ) if and only if they are
conjugate to each other.

We refer to [117, Theorem 3.1.15] for the detailed proof of this theorem.
Let P be a closed point. For a point P ∈ P and an element t of Fq(X )

with νP (t) = 1, we have νQ(t) = 1 for all points Q conjugate to P since νP
and νQ are identical. In this case, t is called a local parameter at P. Again,
a local parameter is not unique and always exists (see [151, pages 2–3] and
[117, page 15]) for any closed point. For instance, in Example 1.3.3, let p(y)
be an irreducible polynomial with two distinct roots β1 and β2. Then p(y) is
a local parameter of the closed point containing both (−bβ1/a− c/a, β1) and
(−bβ2/a− c/a, β2).

1.4 Riemann-Roch Theorem

The Riemann-Roch Theorem is arguably one of the most fundamental
results in the study of algebraic curves. We begin our discussion by first con-
sidering an example.

Example 1.4.1 (i) Consider the set Pk of all the polynomials over Fq of
degree less than or equal to k. This set is actually a linear space over Fq

of dimension k+1. We now interpret this space using discrete valuations.
Let ν∞ be the discrete valuation of the line L corresponding to the “point
at infinity” discussed in Example 1.3.3. Then Pk is the set {f ∈ Fq(L) =
Fq(y) : ν∞(f) ≥ −k, νQ(f) ≥ 0 for all other “finite” points Q}.

(ii) Let E be the elliptic curve defined in Example 1.1.1(i). LetO = [0, 1, 0] be
the “point at infinity.” By Example 1.3.4(ii), there is a discrete valuation

© 2013 Taylor & Francis Group, LLC



12 Algebraic Curves in Cryptography

νO corresponding to O. For k ≥ 0, consider the set

Vk
def
= {f ∈ F2(E) = F2(x, y) : νO(f) ≥ −k, νQ(f) ≥ 0 for all other

“finite” points Q}.
Then it is easy to verify that Vk is an F2-linear space. In fact, it has a
basis {

xiyj : i ≥ 0, 0 ≤ j ≤ 1, 2i+ 3j ≤ k
}
.

By counting the number of elements in the above basis, we know that
the dimension of Vk is equal to k if k ≥ 1, and dimF2(V0) = 1.

The above examples suggest that, to a given point P of a smooth curve X
over Fq and a nonnegative integer k, we can associate a set over Fq, denoted
by L(kP ), i.e.,

L(kP ) def
= {f ∈ Fq(X ) : νP (f) ≥ −k, νQ(f) ≥ 0 for all points Q 6= P}.

(1.3)
By Definition 1.3.2, we can verify that L(kP ) is a linear space over Fq. This
space is called a Riemann-Roch space. The following theorem shows that
this Riemann-Roch space is a finite dimensional space over Fq and its dimen-
sion can be determined.

Theorem 1.4.2 Let X be a smooth projective curve over Fq. Then there exists
a nonnegative integer g, which is an invariant of X , such that, for every Fq-
rational point P and integer k ≥ 0, the dimension of the Riemann-Roch space
L(kP ) is at least k+1−g. Moreover, the dimension is exactly equal to k+1−g
if k ≥ 2g − 1.

The above theorem is a special case of Theorem 1.4.7 and is called the
Riemann-Roch Theorem. The invariant g in the above theorem is called
the genus of X . We do not prove this theorem here as we are only interested
in its applications. There are many books to which the reader may refer for
the proof of this theorem and the definition of the genus of a curve (see [151,
Theorem I.5.15], [61, page 108] and [75, page 295, Theorem 1.3]).

To calculate the dimension of a Riemann-Roch space, it is essential to know
the genus of a curve. However, it is in general not easy to find this invariant
even when the curve is explicitly given. Fortunately, for a smooth plane curve,
the genus can be determined in terms of the degree of the polynomial defining
this curve.

Theorem 1.4.3 Let X be a projective (respectively, affine) smooth plane
curve defined by f(X,Y, Z) = 0 (respectively, h(x, y) = 0). Then the genus
of X is equal to (d− 1)(d− 2)/2, where d is the degree of f(X,Y, Z) (respec-
tively, h(x, y)).

Again, we direct the reader to the existing literature available, e.g., [61, page
102, Proposition 5], for the proof of Theorem 1.4.3. To illustrate Theorems
1.4.2 and 1.4.3, we look at some examples now.
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Example 1.4.4 (i) The genus of a projective (or affine) plane line is (1−
1)(1 − 2)/2 = 0. Thus, for any k ≥ 0 and Fq-rational point P , we have
dimFq (L(kP )) = k + 1− 0 = k + 1. This result coincides with Example
1.4.1(i).

(ii) Let E be the elliptic curve defined in Example 1.1.1(i). It is smooth and
hence its genus is (3 − 1)(3 − 2)/2 = 1. Thus, for any k ≥ 1 and Fq-
rational point P , we have dimFq(L(kP )) = k + 1 − 1 = k. This result
coincides with Example 1.4.1(ii).

(iii) By Example 1.1.10(iv), the projective Hermitian curve defined in Ex-
ample 1.1.7(iii) is smooth. Hence, its genus is (r+1− 1)(r+1− 2)/2 =
r(r − 1)/2.

(iv) Let X be the hyperelliptic curve defined in Example 1.1.1(ii). If the
degree d of f(x) is bigger than 3, then it is not smooth by Example
1.1.10(v). Thus, we cannot use the formula in Theorem 1.4.3 to find the
genus of this curve, although we know that the genus of this curve is
⌊(d − 1)/2⌋ (see [151, Proposition VI.2.3]). On the other hand, if the
degree of f(x) is 3, i.e., X is an elliptic curve, then X is smooth and
hence its genus is (3− 1)(3− 2)/2 = 1.

Next, we generalize the Riemann-Roch spaces defined above.
Let X be a smooth curve over Fq. A divisor is a formal sum

∑
P∈X nPP ,

with nP ∈ Z for all P ∈ X , and nP = 0 for all but finitely many points
P ∈ X . For a divisor D =

∑
P∈X nPP , we also denote the coefficient nP by

νP (D). Note that the points in a divisor may not be Fq-rational. A divisor∑
P∈X nPP is said to be Fq-rational if nP = nQ for any two conjugate points

P,Q. In this book, except for Chapter 3 where divisors may not necessarily
be Fq-rational, we always mean an Fq-rational divisor whenever a divisor is
mentioned.

The divisor group of X , denoted by Div(X ), is the free abelian group
consisting of all Fq-rational divisors, with the obvious formal addition as the
group operation. A divisor D =

∑
P∈X nPP is called positive (or effective),

written as D ≥ 0, if nP ≥ 0 for all points P ∈ X . For two divisors D and G
with D −G being positive, we write D ≥ G or G ≤ D.

The degree of a divisorD =
∑

P∈X nPP , denoted by deg(D), is defined to
be
∑

P∈X nP . It is clear that deg defines a group homomorphism from Div(X )
to Z. The kernel of this homomorphism is a subgroup of Div(X ), denoted by
Div0(X ), i.e.,

Div0(X ) def
=

{∑

P∈X
nPP ∈ Div(X ) :

∑

P∈X
nP = 0

}
.
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14 Algebraic Curves in Cryptography

Lemma 1.4.5 Let X be a smooth projective curve over Fq. Let z be an ele-
ment in Fq(X ) \ Fq. Then we have

∑

νP (z)>0

νP (z) = −
∑

νP (z)<0

νP (z) = [Fq(X ) : Fq(z)],

where [Fq(X ) : Fq(z)] denotes the degree of the field extension Fq(X )/Fq(z).

The reader may refer to [151, Theorem I.5.15], [61, page 108] or [75, page 295,
Theorem 1.3] for the proof of the above lemma.

If z ∈ Fq \ {0}, we define div(z) = 0, and for z ∈ Fq(X ) \ Fq, we have,
by Lemma 1.4.5, that [Fq(X ) : Fq(z)] is finite (see the definitions of function
fields of one variable and curves in Section 1.2), hence we can define a divisor

div(z) =
∑

P∈X
νP (z)P.

Such a divisor is called a principal divisor. If νP (z) > 0, the point P is
called a zero of z, and if νP (z) < 0, the point P is called a pole of z. The
zero divisor and pole divisor of z are defined as

div0(z) =
∑

P∈X : νP (z)>0

νP (z)P and div∞(z) = −
∑

P∈X : νP (z)<0

νP (z)P,

respectively. By Lemma 1.4.5, a principal divisor has degree deg(div0(z)) −
deg(div∞(z)) = 0. Furthermore, as

div(yz) =
∑

P∈X
νP (yz)P =

∑

P∈X
(νP (y) + νP (z))P = div(y) + div(z)

for any two nonzero elements y, z ∈ Fq(X ), all principal divisors
form a subgroup of Div0(X ), denoted by Princ(X ). The quotient group
Div0(X )/Princ(X ) is called the divisor class group of degree zero. Two
divisors D and G are said to be equivalent if there exists a nonzero element
z ∈ Fq(X ) such that D = G+ div(z).

Now, for any divisorD of X over Fq, we define the Riemann-Roch space
of D by

L(D)
def
= {z ∈ Fq(X ) \ {0} : div(z) +D ≥ 0} ∪ {0}.

Then it is easy to verify that L(D) is a vector space over Fq. If D = kP for an
integer k and an Fq-rational point P , then L(D) coincides with the Riemann-
Roch space defined in (1.3). If G is equivalent to D with D = G+div(z), then
it is easy to verify that L(D) = zL(G). Hence, dimL(D) = dimL(G). In this
book, the dimension dimL(G) is also denoted by ℓ(G).

Lemma 1.4.6 Let X be a smooth projective curve over Fq and let D be a
divisor of X over Fq. Then
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(i) L(D) is a subspace of L(G) if D ≤ G;
(ii) L(0) = Fq;

(iii) L(D) = {0} if deg(D) < 0.

Proof. (i) is clear.
(ii) It is clear that Fq is contained in L(0). Now let a be a nonzero element

of L(0), then div(a) ≥ 0 by definition. This means that a has no poles. On
the other hand, by Lemma 1.4.5, a has at least one pole if a 6∈ Fq. Thus, a
must be an element of Fq.

(iii) For any nonzero element z of Fq(X ), we have deg(div(z)) = 0 (for
z ∈ Fq(X ) \Fq, this follows from Lemma 1.4.5, whereas, for z ∈ Fq, it is obvi-
ous that div(z) = 0). Hence, deg(D+div(z)) < 0. This implies that D+div(z)
cannot be a positive divisor. Therefore, z 6∈ L(D), i.e., L(D) = {0}. ✷

The following theorem generalizes the Riemann-Roch Theorem in Theorem
1.4.2.

Theorem 1.4.7 Let X be a smooth projective curve over Fq of genus g and
let D be a divisor of X over Fq. Then

dimL(D) ≥ deg(D) + 1− g.
Furthermore, if deg(D) ≥ 2g − 1, we have dimL(D) = deg(D) + 1− g.
The reader may refer to [151, Theorem I.5.15] or [61, page 108] for the proof
of the above theorem.

Example 1.4.8 Consider the projective line L defined by aZ + bY + cZ = 0
with a 6= 0. The function field of L is the same as that of the affine line
defined by ax + by + c = 0, which is Fq(y) by Example 1.2.2(i). Let p(y)
be an irreducible polynomial of degree d over Fq. Then it has d conjugate

roots β, βq , . . . , βqd−1

. Thus, all points conjugate to [−(bβ + c)/a, β, 1] are

Pi
def
= [−(bβqi + c)/a, βqi , 1] for i = 0, . . . , d−1 (cf. paragraph before Theorem

1.3.6). Let D be the divisor
∑d−1

i=0 Pi. Then D is an Fq-rational divisor and

L(D) =

{
f(y)

p(y)
: f(y) ∈ Fq[y], deg(f(y)) ≤ d

}
.

It is easy to see that it is a vector space of dimension d + 1 over Fq since
{yi/p(y)}di=0 is a basis. This result coincides with Theorem 1.4.7.

1.5 Rational Points and Zeta Functions

Let X be a projective curve over Fq defined by a finite set S of polynomials.
We are interested in the number of Fq-rational points on X . In fact, there are
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only finitely many Fq-rational points on X . To see this, we assume that X is
contained in the projective space Pn. Then the set of Fq-rational points is a
subset of Pn(Fq). Now our conclusion follows from the following result.

Proposition 1.5.1 The cardinality of Pn(Fq) is (qn+1 − 1)/(q − 1).

Proof. It is clear that there are altogether qn+1−1 nonzero elements in An+1.
By Definition 1.1.3(ii), two elements of An+1 are in the same equivalence class
if and only if they belong to the same vector space of dimension 1 over Fq.
Thus, there are altogether (qn+1− 1)/(q− 1) equivalence classes in An+1, i.e.,
there are (qn+1 − 1)/(q − 1) points in Pn. ✷

Let X be a smooth projective plane curve defined by f(X,Y, Z) = 0,
where f(X,Y, Z) is a polynomial of degree d. For each x = α ∈ Fq, there
are at most d solutions for the equation f(α, y, 1), thus there are at most dq
“finite points” on this curve. Together with those “points at infinity,” there
are at most dq+ q+1 Fq-rational points (note that all the “points at infinity”
of a projective plane are [β, 1, 0], with β ∈ Fq, and [1, 0, 0]). This implies that
the number of points on X is controlled by its degree d. In fact, we will see
in this section that the number of points on a plane curve is controlled by its
genus, which is (d− 1)(d− 2)/2.

However, no matter how large the degree of a smooth projective plane
curve is, it has at most q2 + q + 1 Fq-rational points since all Fq-rational
points of this curve belong to P2. Therefore, in order to get more points, we
need to use curves in spaces of higher dimensions.

Let X be a smooth projective curve in Pn defined by polynomials
f1, . . . , fn−1 ∈ Fq[X0, X1, . . . , Xn]. Then X is a curve over Fq. Since these
polynomials belong to Fq[X0, X1, . . . , Xn], it is natural to view these polyno-
mials over Fqm [X0, X1, . . . , Xn], for all m ≥ 1. Thus, X is also a curve defined
over Fqm . Hence, we can speak of Fqm-rational points of X . It is clear that all
Fq-rational points are Fqm -rational points, for any m ≥ 1. Let Nm denote the
number of Fqm -rational points on X , then Nm ≥ N1 for all m ≥ 1. Define a
power series associated with X as follows:

ZX (t) = EXP

( ∞∑

m=1

Nm

m
tm

)
, (1.4)

where EXP(x) stands for the function ex. The above function is called the
zeta function of X . From the definition, we know that, once this function
is given, we have information on the number of Fqm -rational points on X , for
all m ≥ 1.

Before studying this zeta function, we first look at an example.

Example 1.5.2 Let L be the projective line defined by aX + bY + cZ = 0
over Fq with (a, b, c) 6= (0, 0, 0). We may assume that a 6= 0. First, we consider
the number of “finite points.” For each y = β ∈ Fqm , there is a unique solution
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for the equation ax+ bβ + c = 0. This implies that we get qm “finite points”
{[−(bβ+c)/a, β, 1] : β ∈ Fqm}. Together with the “point at infinity” [−b, a, 0],
we obtain altogether qm+1 Fqm -rational points on L. Hence, we obtain, where
ln is the natural logarithm,

ln (ZL(t)) =

∞∑

m=1

qm + 1

m
tm

=

∞∑

m=1

(qt)m

m
+

∞∑

m=1

1

m
tm

= ln

(
1

1− qt

)
+ ln

(
1

1− t

)

= ln

(
1

(1− t)(1 − qt)

)
,

i.e.,

ZL(t) =
1

(1− t)(1 − qt) .

The above example shows that the zeta function of a projective line is a
simple rational function. In fact, this is true for an arbitrary projective curve,
due to the following Weil Theorem.

Theorem 1.5.3 Let X be a smooth projective curve of genus g over Fq. Then
the zeta function of X is a rational function of the form

ZX (t) =
L(t)

(1− t)(1 − qt) , (1.5)

where L(t) is a polynomial of degree 2g in Z[t] with L(0) = 1. Furthermore,

if we factor L(t) into a product
∏2g

i=1(1 − wit) ∈ C[t], then |wi| = √q for all
1 ≤ i ≤ 2g.

The numerator L(t) of the zeta function in the above theorem is called the
L-function of X . The proof of the Weil Theorem was a breakthrough in the
history of number theory and algebraic geometry. There are several proofs for
the Weil Theorem, ranging from relatively elementary ones to more advanced
ones using ℓ-adic cohomology. The reader may refer to [151, Chapter V] for
an elementary proof and to [75, Appendix C] for an advanced proof.

One of the nice consequences of the Weil Theorem is that a bound on the
number of Fqm-rational points on a curve can be derived.

Corollary 1.5.4 Let X be a smooth projective curve of genus g with L-
function L(t) =

∑2g
i=0 ait

i. Write L(t) into a product
∏2g

i=1(1 − wit) and let
Nm be the number of Fqm-rational points on X . Then

(i) a2g−i = qg−iai for all 0 ≤ i ≤ 2g, in particular, a2g = qg;
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(ii) Nm = qm + 1 −∑2g
i=1 w

m
i for all m ≥ 1, in particular, N1 = q + 1 −∑2g

i=1 wi = q + 1 + a1;

(iii) (Hasse-Weil bound) |Nm − qm − 1| ≤ 2g
√
qm for all m ≥ 1, in par-

ticular, N1 ≤ q + 1 + 2g
√
q.

Proof. (i) Consider the reciprocal polynomial of L(t)

L̃(t)
def
= t2gL

(
1

t

)
=

2g∏

i=1

(t− wi).

As all the coefficients of L(t) are real numbers, the complex conjugate of a
root of L(t) is again a root of L(t). On the other hand, the complex conjugate

of wi is q/wi since |wi| = √q. This implies that
∏2g

i=1 wi = qg and L(t) =∏2g
i=1(1− (q/wi)t) =

∏2g
i=1((q/wi)t− 1). Thus,

L̃(qt)
def
= (qt)2gL

(
1

qt

)
=

2g∏

i=1

(qt− wi) = qg
2g∏

i=1

(
q

wi
t− 1

)
= qgL(t).

Comparing the coefficients of L̃(qt) with those of qgL(t) gives the desired
result.

(ii) Combining (1.4) and (1.5), we have

ZX (t) = EXP

( ∞∑

m=1

Nm

m
tm

)
=

∏2g
i=1(1− wit)

(1− t)(1 − qt) .

By taking the logarithm for both sides of the above identity, then expanding
the right-hand side into a power series and finally comparing coefficients of
the two power series, we obtain Nm = qm + 1 −∑2g

i=1 w
m
i for all m ≥ 1. As

a1 = −∑2g
i=1 wi, we get N1 = q + 1 + a1.

(iii) By (ii), we have

|Nm − qm − 1| =
∣∣∣∣∣

2g∑

i=1

wm
i

∣∣∣∣∣ ≤
2g∑

i=1

|wm
i | = 2g

√
qm.

The proof is completed. ✷

From the above corollary, we see that there are only g unknown coefficients
a1, . . . , ag in the L-function of X and these g coefficients can be determined
by N1, . . . , Ng. This means that, once we know the numbers of Fqm-rational
points for m = 1, . . . , g, we can totally determine the zeta function of X and
hence the number of Fqm -rational points for all m ≥ 1.

Example 1.5.5 (i) Consider the plane curve E over F3 defined by the
affine equation y2 = x3 − x + 1. It is easy to check that all points
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(including the “point at infinity” [0, 1, 0]) on E are nonsingular. Hence,
the genus of this curve is 1. By Corollary 1.5.4, to find the zeta func-
tion of this curve, it is sufficient to determine the number of F3-
rational points. It is easy to verify that all the F3-rational points of
this curve are (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2), together with the
“point at infinity,” i.e., N1 = 7. Hence, by Corollary 1.5.4(ii), we have
a1 = N1 − 3− 1 = 3. Therefore, the zeta function is

ZE(t) =
1 + 3t+ 3t2

(1− t)(1 − 3t)
.

From this zeta function, we can obtain the number of F3m-rational points
for all m ≥ 1. The two reciprocal roots of 3t2+3t+1 are (−3+

√
−3)/2

and (−3 −
√
−3)/2. Hence, we have the number of F3m-rational points

on E as

Nm = 3m + 1−
(−3 +

√
−3

2

)m

−
(−3−

√
−3

2

)m

.

For instance, there are seven F9-rational points and 28 F27-rational
points.

(ii) Consider the Hermitian curve H over Fr2 defined in Example 1.1.1(iv).
By Example 1.4.4(iii), the genus g of this curve is r(r − 1)/2. For any
x = α ∈ Fr2 , α

r+1 ∈ Fr. Thus, there is an element β ∈ Fr2 such that
Tr(β) = αr+1, where Tr stands for the trace map from Fr2 to Fr. Hence,
the equation yr + y − αr+1 = 0 becomes Tr(y − β) = 0. We know that
the kernel of the trace map has r elements (see [95, Theorem 2.23]), i.e.,
there are r solutions for this equation. This implies that, for any given
α ∈ Fr2 , we get r points on H. Together with the “point at infinity”
[0, 1, 0], we have 1 + r · r2 = 1 + r3 Fr2-rational points. Therefore, it
follows from Corollary 1.5.4(ii) that

N1 = 1 + r3 = r2 + 1−
2g∑

i=1

wi,

where {wi}2gi=1 stand for the reciprocal roots of the L-function of H.
From the above identity, we have −∑2g

i=1 wi = r2(r − 1) = 2gr. As
|wi| = r, we must have wi = −r for all 1 ≤ i ≤ 2g. Finally, we conclude
that the zeta function of H is

ZH(t) =
(1 + rt)r(r−1)

(1 − t)(1− r2t) .

In particular, N2 = (r2)2 + 1 − 2g(−r)2 = r3 + 1 = N1. This implies
that all the Fr4-rational points are also Fr2-rational.
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For an algebraic curve X , we denote by N(X ) the number of Fq-rational
points on X . By the Hasse-Weil bound, we know that the number of Fq-
rational points on a curve is upper bounded in terms of q and its genus. One
might wonder how large this number could be, i.e., we want to determine the
values of the following quantity

Nq(g) = max
X

N(X ),

where X ranges over all projective, smooth algebraic curves of genus g over
Fq.

One can imagine that it is not easy at all to determine the exact value
Nq(g) for an arbitrary pair (q, g). The complete solution to this problem has
been found only for g = 0, 1, 2 (see [47, 139, 138, 140, 141]). The reader may
refer to [164] and [116, pages 120–121] for tables on the values of Nq(g) for
some small values of q and g.

To look at the asymptotic behavior of Nq(g) when q is fixed and g tends
to ∞, we can define the following asymptotic quantity

A(q)
def
= lim sup

g→∞

Nq(g)

g
.

An upper bound on A(q) was given by Vlǎduţ and Drinfeld [167]:

A(q) ≤ √q − 1.

For applications, it is more important to find lower bounds for this asymptotic
quantity. Ihara [78] first showed, by using modular curves, that A(q) ≥ √q−1
for any square power q. This result determines the exact value of A(q) for all
square powers, i.e., for any square power q, we have

A(q) =
√
q − 1. (1.6)

On the other hand, no single value of A(q) is known if q is a nonsquare.
However, some lower bounds have been obtained so far. For instance, by us-
ing modular curves and explicit function fields, Zink [182] and Bassa-Garcia-
Stichtenoth [7] showed that

A(q3) ≥ 2(q2 − 1)

q + 2
. (1.7)

Serre [141, Part II, Theorem 24] made use of class field theory to show that
there is an absolute positive constant c such that

A(q) ≥ c · log(q)
for all prime powers q, where, here and throughout this book, log is taken to
mean log2.

In another direction, lower bounds have already been obtained for A(q),
for small nonsquare q such as q = 2, 3, 5, 7, 11, 13, etc. For instance, in [180],
Xing and Yeo showed that

A(2) ≥ 0.258.
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Chapter 2

Introduction to Error-Correcting

Codes

2.1 Introduction

Cryptography is concerned with sensitive data transmission, storage, etc.,
while coding theory deals with the error-prone process of data transmission
across noisy channels and data storage, via clever means, so that errors that
occur can be corrected. Interestingly, though their primary objectives are dif-
ferent, much interplay between these two areas of research has been discov-
ered. For example, the McEliece (or, equivalently, Niederreiter) cryptosystem
is a public key cryptosystem based on error-correcting codes (see [105, 112]),
though it does not fall within the scope of this book. However, we will see
in some of the later chapters that error-correcting codes play prominent roles
in cryptographic primitives such as secret sharing schemes and authentication
codes. They also constitute one of the ways in which algebraic curves enter into
cryptography, through algebraic geometry codes, i.e., error-correcting codes
constructed using algebraic curves. This chapter serves to provide a brief in-
troduction to error-correcting codes. For a more comprehensive introduction
to the subject, the reader may refer to [96].

2.2 Linear Codes

For an integer q ≥ 2, a q-ary code C of length n is a nonempty subset of

An def
= {(u1, . . . , un) : ui ∈ A},

where A is a finite set of q elements, called the code alphabet. An element
of C is called a codeword and an element of An is just called a “word.”

If the size of C is M , we say that C is a q-ary (n,M)-code. If q = 2, 3, or
4, we call C a binary, ternary, or quaternary code, respectively.

Example 2.2.1 (i) Consider the source encoding of four characters, “A,
B, C, D”, as follows:

21
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A → 00, B → 01, C → 10, D → 11.

Suppose the message “A,” which is encoded as 00, is transmitted over a
noisy channel. It may become distorted and assume that 01 is received.
Then, according to this encoding rule, the receiver decodes it to “B,”
which means that the communication fails in this case.

In this example, the collection of the encoded messages {00, 01, 10, 11}
forms a binary (2, 4)-code. This code does not allow correction or detec-
tion of errors.

(ii) We now introduce some redundancy in order to detect errors. For in-
stance, we can modify the above encoding scheme as follows

A → 000, B → 011, C → 101, D → 110.

Then we can detect one error. For example, suppose the message “A,”
which is encoded as 000, is transmitted over a noisy channel. It may
become distorted and assume that 010 is received. Since 010 is not one
of the four codewords, we know that there must be errors. The collection
of the encoded messages {000, 011, 101, 110} forms a binary (3, 4)-code.
It can detect one error. However, it is less efficient than the previous
(2, 4)-code as a 3-bit message carries only 2-bit information.

The information rate of a q-ary (n,M)-code is defined by R(C) def
=

(logqM)/n, where logq is the logarithm to the base q. It is easy to see that
R(C) ≤ 1 for all codes as M = |C| ≤ |An| = qn. In Example 2.2.1(i), the
information rate of the code is (log2 4)/2 = 1, which achieves the maximum
possible. However, the code does not allow any error detection. In Example
2.2.1(ii), the information rate of the code is (log2 4)/3 = 2/3, which means
that a 3-bit message carries only 2-bit information. From this example, we
see that the information rate measures the transmission speed of the message,
i.e., the transmission efficiency of the code.

Thus, we know that, for a fixed length n, the size of a q-ary code measures
the transmission efficiency of the code. A natural question is then which pa-
rameter(s) of a code would measure its error correction or detection capability.
We now introduce this parameter, namely, the minimum distance of a code.

Definition 2.2.2 Let x and y be words of length n over an alphabet A. The
(Hamming) distance from x to y, denoted by d(x,y), is defined to be the
number of places at which x and y differ. If x = x1 · · ·xn and y = y1 · · · yn,
then

d(x,y) = d(x1, y1) + · · ·+ d(xn, yn), (2.1)

where xi and yi are regarded as words of length 1, and

d(xi, yi) =

{
1 if xi 6= yi
0 if xi = yi.
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Example 2.2.3 (i) Let A = {0, 1} and let x = 000000, y = 011101, z =
111111. Then

d(x,y) = 4, d(y, z) = 2, d(z,x) = 6.

(ii) Let A = {0, 1, 2} and let x = 1200, y = 1012, z = 0011. Then

d(x,y) = 3, d(y, z) = 2, d(z,x) = 4.

Proposition 2.2.4 Let x,y, z be words of length n over A. Then we have

(i) 0 ≤ d(x,y) ≤ n;

(ii) d(x,y) = 0 if and only if x = y;

(iii) d(x,y) = d(y,x);

(iv) (Triangle inequality) d(x, z) ≤ d(x,y) + d(y, z).

Proof. (i), (ii), and (iii) are obvious from the definition of the Hamming dis-
tance. It is enough to prove (iv) when n = 1, which we now assume.

If x = z, then (iv) is obviously true since d(x, z) = 0.
If x 6= z, then either y 6= x or y 6= z, so (iv) is again true. ✷

Definition 2.2.5 For a code C containing at least two words, the (mini-
mum) distance of C, denoted by d(C), is

d(C) = min{d(x,y) : x,y ∈ C, x 6= y}.

A code, of length n, size M , and distance d, is referred to as an (n,M, d)-
code. The numbers n,M, d are called the parameters of the code.

Example 2.2.6 (i) Let C = {00000, 10112, 22222} be a ternary code (i.e.,
with code alphabet {0, 1, 2}). Then d(C) = 4 since

d(00000, 10112) = 4,

d(00000, 22222) = 5,

d(10112, 22222) = 4.

Hence, C is a ternary (5,3,4)-code.

(ii) Let C = {000000, 111111, 222222} be a ternary code. Then d(C) = 6
since

d(000000, 111111) = 6,

d(000000, 222222) = 6,

d(111111, 222222) = 6.

Hence, C is a ternary (6,3,6)-code.
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Remark 2.2.7 For a q-ary (n,M, d)-code, the minimum distance d in fact
measures its error detection and correction capabilities (see [96]).

We have just introduced arbitrary codes without algebraic or combinatorial
structures. If we can equip codes with certain structures, it could make both
theoretical study and practical applications easier. A natural way is to equip
codes with a linear structure, i.e., make a code into a linear space. In order to
do so, we set the code alphabet to be the finite field Fq of q elements. Then
Fn
q is an Fq-vector space of dimension n. A linear code of length n over Fq

is a subspace of Fn
q .

From now on in this section, we focus on linear codes.
A q-ary linear code of length n and dimension k is referred to as an [n, k]-

linear code. Furthermore, if the minimum distance is d, it is referred to as an
[n, k, d]-linear code.

One of the advantages of linear codes is that the minimum distance can
be easily determined through the Hamming weight defined below.

Definition 2.2.8 Let x be a word in Fn
q . The (Hamming) weight of x,

denoted by wt(x), is defined to be the number of nonzero coordinates in x,
i.e.,

wt(x) = d(x,0),

where 0 is the zero word.

Remark 2.2.9 For every element x of Fq, we can define the Hamming weight
as follows:

wt(x) = d(x, 0) =

{
1 if x 6= 0
0 if x = 0.

Then, writing x ∈ Fn
q as x = (x1, x2, . . . , xn), the Hamming weight of x can

also be equivalently defined as

wt(x) = wt(x1) + wt(x2) + · · ·+wt(xn). (2.2)

Lemma 2.2.10 If x,y ∈ Fn
q , then d(x,y) = wt(x− y).

Proof. For x, y ∈ Fq, d(x, y) = 0 if and only if x = y, which is true if and only
if x − y = 0 or, equivalently, wt(x − y) = 0. The desired result now follows
from (2.1) and (2.2). ✷

Definition 2.2.11 Let C be a code (not necessarily linear). The minimum
(Hamming) weight of C, denoted wt(C), is the smallest of the weights of
the nonzero codewords of C.

Theorem 2.2.12 Let C be a linear code over Fq. Then d(C) = wt(C).
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Proof. Recall that, for any words x,y, we have d(x,y) = wt(x− y).
By definition, there exist x′,y′ ∈ C such that d(x′,y′) = d(C), so

d(C) = d(x′,y′) = wt(x′ − y′) ≥ wt(C),

since x′ − y′ ∈ C.
Conversely, there is a z ∈ C\{0} such that wt(C) = wt(z), so

wt(C) = wt(z) = d(z,0) ≥ d(C).

This completes the proof. ✷

Example 2.2.13 Consider the binary linear code

C = {000000, 111000, 000111, 111111}.

We see that

wt(111000) = 3, wt(000111) = 3, wt(111111) = 6.

Hence, d(C) = 3.

For a q-ary linear code C, the dual code C⊥ of C is defined to be the
orthogonal complement of C, i.e.,

C⊥ = {x ∈ Fn
q : x · c = 0 for all c ∈ C},

where · denotes the usual inner product. The dual minimum distance
of C, denoted by d⊥(C) or d(C⊥), is defined to be the minimum distance
of C⊥. If C is a subspace of C⊥, then C is called a self-orthogonal code.
Furthermore, if C = C⊥, then C is said to be self-dual.

Example 2.2.14 The binary code {0000, 1111} is self-orthogonal. Its dual
code is {0000, 1111, 1100, 0110, 0011, 1001, 0101, 1010}.

The binary code {0000, 1100, 0011, 1111} is self-dual.
Note that, in the Euclidean space Rn (where R denotes the real field), the in-
tersection of a subspace with its orthogonal complement is always 0. However,
this is no longer true in Fn

q , as we have seen in the above example.
Since a linear code C is determined by a basis, we can form a matrix by

putting the codewords in a basis as rows. Such a matrix is called a generator
matrix. If C ⊆ Fn

q has dimension k, then a generator matrix of C has size
k × n. A generator matrix of the dual code of C is called a parity-check
matrix of C. The size of a parity-check matrix is (n− k)× n. It is clear that
the code C is also determined by its parity-check matrices.

Theorem 2.2.15 For a q-ary linear code C of length n, we have

dim(C) + dim(C⊥) = n,

where the dimension is over Fq.
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Proof. Let G be a generator matrix of C, then the rank r(G) of G is dim(C).
Then C⊥ is the solution space of the system of equations Gx = 0. Hence,
dim(C⊥) = n− r(G) = n− dim(C). The proof is completed. ✷

Example 2.2.16 The matrices

(
1 1 1 0 0
0 0 1 1 1

)
,




1 1 0 0 0
0 0 0 1 1
0 1 1 1 0




are generator and parity-check matrices, respectively, of the binary code

{00000, 11100, 00111, 11011}.
If a generator matrix (respectively, parity-check matrix) of a linear code C
is given, then all the parameters of C are determined. It is easy to see that
the length and dimension of C can be determined by the size of these two
matrices. Furthermore, the minimum distance of C is also determined by a
parity-check matrix through the following result.

Theorem 2.2.17 Let C be a linear code and let H be a parity-check matrix
for C. Then

(i) C has distance ≥ d if and only if any d − 1 columns of H are linearly
independent;

(ii) C has distance ≤ d if and only if H has d columns that are linearly
dependent.

Proof. Let v = (v1, . . . , vn) ∈ C be a codeword of weight e > 0. Suppose
the nonzero coordinates are in the positions i1, . . . , ie, so that vj = 0 if j 6∈
{i1, . . . , ie}. Let ci (1 ≤ i ≤ n) denote the ith column of H .

By the definition of a parity-check matrix, it is easy to see that C contains
a nonzero word v = (v1, . . . , vn) of weight e (whose nonzero coordinates are
vi1 , . . . , vie) if and only if

0 = vHT = vi1c
T
i1 + · · ·+ viec

T
ie ,

which is true if and only if there are e columns of H (namely, ci1 , . . . , cie ) that
are linearly dependent. Here, T denotes the transpose of a matrix or a vector.

To say that the distance of C is ≥ d is equivalent to saying that C does
not contain any nonzero word of weight ≤ d−1, which is in turn equivalent to
saying that any ≤ d − 1 columns of H are linearly independent. This proves
(i).

Similarly, to say that the distance of C is ≤ d is equivalent to saying that
C contains a nonzero word of weight ≤ d, which is in turn equivalent to saying
that H has ≤ d columns (and hence d columns) that are linearly dependent.
This proves (ii). ✷

An immediate corollary of Theorem 2.2.17 is the following result.
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Corollary 2.2.18 Let C be a linear code and let H be a parity-check matrix
for C. Then the following statements are equivalent:

(i) C has distance d;

(ii) any d − 1 columns of H are linearly independent and H has d columns
that are linearly dependent.

Example 2.2.19 Let C be a binary linear code with a parity-check matrix

H =




1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1


 .

Then its minimum distance is 3 since any two columns are linearly indepen-
dent, while the first two and the fourth columns are linearly dependent.

For a binary linear code, its extended code is obtained by adding a parity-
check coordinate. This idea can be generalized to codes over any finite field.

Definition 2.2.20 For any code C over Fq, the extended code of C, de-
noted by C, is defined to be

C =

{
(c1, . . . , cn,−

n∑

i=1

ci) : (c1, . . . , cn) ∈ C
}
.

When q = 2, the extra coordinate −∑n
i=1 ci =

∑n
i=1 ci added to the codeword

(c1, . . . , cn) is called the parity-check coordinate.

Theorem 2.2.21 If C is an (n,M, d)-code over Fq, then C is an (n +
1,M, d′)-code over Fq, with d ≤ d′ ≤ d + 1. If C is linear, then so is C.
Moreover, when C is linear,




0

H
...
0

1 · · · 1 1




is a parity-check matrix of C if H is a parity-check matrix of C.

The proof is straightforward, so it is left to the reader.

Example 2.2.22 (i) Consider the binary linear code

C1 = {0000, 1100, 0011, 1111}.

It has parameters [4, 2, 2]. The extended code

C1 = {00000, 11000, 00110, 11110}

is a binary [5, 2, 2]-linear code.
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(ii) Consider the binary linear code C2 = {0000, 0111, 0011, 0100}. It has
parameters [4, 2, 1]. The extended code

C2 = {00000, 01111, 00110, 01001}

is a binary [5, 2, 2]-linear code.
This example shows that the minimum distance d(C) can achieve both

d(C) and d(C) + 1.

The Golay codes were discovered by Golay in the late 1940s. It turns out
that the Golay codes are essentially unique in the sense that binary codes with
the same parameters as them can be shown to be equivalent to them.1

Definition 2.2.23 Let G be the 12× 24 matrix

G = (I12|A),

where I12 is the 12× 12 identity matrix and A is the 12× 12 matrix

A =




0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 0 0 1 0
1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
1 1 1 1 0 0 0 1 0 1 1 0
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
1 0 0 1 0 1 1 0 1 1 1 0
1 0 1 0 1 1 0 1 1 1 0 0
1 1 0 1 1 0 1 1 1 0 0 0
1 0 1 1 0 1 1 1 0 0 0 1




.

The binary linear code with generator matrix G is called the extended bi-
nary Golay code and will be denoted by G24.

Let Ĝ be the 12× 23 matrix

Ĝ = (I12|Â),

where I12 is the 12× 12 identity matrix and Â is the 12× 11 matrix obtained
from the matrix A by deleting the last column of A. The binary linear code
with generator matrix Ĝ is called the binary Golay code and will be denoted
by G23.

As a generator matrix of a Golay code is explicitly given, we can easily
determine its parameters.

1Two codes are said to be equivalent if one can be obtained from the other by permuting

coordinates, multiplying nonzero scalars to coordinates, or composing operations of both

types.
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Theorem 2.2.24 The extended binary Golay code G24 is a [24, 12, 8]-linear
code, while the Golay code G23 is a [23, 8, 7]-linear code. Furthermore, G24 is
self-dual.

We leave the proof of this theorem to the reader.
Finally, we introduce a class of linear codes, Reed-Muller codes, in this

section.
There are many ways to define the Reed-Muller codes. We choose an in-

ductive definition. Note that we consider only binary Reed-Muller codes here.

Definition 2.2.25 The (first-order) Reed-Muller codes R(1,m) are bi-
nary codes defined, for all integers m ≥ 1, recursively as follows:

(i) R(1, 1) = F2
2 = {00, 01, 10, 11}.

(ii) For m ≥ 1,

R(1,m+ 1) = {(u,u) : u ∈ R(1,m)} ∪ {(u,u+ 1) : u ∈ R(1,m)},

where 1 is the all-one vector.

The parameters of the Reed-Muller codes can be readily determined as well.

Theorem 2.2.26 For m ≥ 1, the Reed-Muller code R(1,m) is a binary
[2m,m + 1, 2m−1]-linear code, in which every codeword, except 0 and 1, has
weight 2m−1.

We leave the proof of this theorem to the reader again.

2.3 Bounds

Most of the results and their proofs in this section are straightforward, so
we omit the proofs. The reader may refer to [96] for the detailed proofs.

To consider codes with good parameters, we need to introduce the follow-
ing quantity, one of the most important for the theoretical study of error-
correcting codes.

Definition 2.3.1 For a given code alphabet A of size q (with q > 1) and
given values of n and d, let Aq(n, d) denote the largest possible size M for
which there exists an (n,M, d)-code over A. Thus

Aq(n, d) = max{M : there exists an (n,M, d)-code over A}.

Any (n,M, d)-code C that has the maximum size, that is, for which M =
Aq(n, d), is called an optimal code.

© 2013 Taylor & Francis Group, LLC



30 Algebraic Curves in Cryptography

It is clear that Aq(n, d) depends only on the size of A, n, and d. It is
independent of the choice of A (except for its size).

The numbers Aq(n, d) play a central role in coding theory and much effort
has been made in determining their values. In fact, the problem of determin-
ing the values of Aq(n, d) is sometimes known as the main coding theory
problem.

Instead of considering all codes, we may restrict ourselves to linear codes
and obtain the following similar definition:

Definition 2.3.2 For a given prime power q and given values of n and d, let
Bq(n, d) denote the largest possible size qk for which there exists an [n, k, d]-
code over Fq. Thus

Bq(n, d) = max{qk : there exists an [n, k, d]-code over Fq}.

While it is in general rather difficult to determine the exact values of
Aq(n, d) and Bq(n, d), there are some properties that afford easy proofs.

Theorem 2.3.3 ([96, Theorem 5.1.7]) Let q ≥ 2 be a prime power. Then

(i) Bq(n, d) ≤ Aq(n, d) ≤ qn for all 1 ≤ d ≤ n;

(ii) Bq(n, 1) = Aq(n, 1) = qn;

(iii) Bq(n, n) = Aq(n, n) = q.

Note that all the results on Aq(n, d) in Theorem 2.3.3 are still true for any
positive integers q > 1.

In the case of binary codes, there are additional elementary results on
A2(n, d) and B2(n, d).

Theorem 2.3.4 ([96, Theorem 5.1.11]) Suppose d is odd.

(i) Then a binary (n,M, d)-code exists if and only if a binary (n+1,M, d+
1)-code exists. Therefore, if d is odd, A2(n+ 1, d+ 1) = A2(n, d).

(ii) Similarly, a binary [n, k, d]-linear code exists if and only if a binary
[n+ 1, k, d+ 1]-linear code exists, so B2(n+ 1, d+ 1) = B2(n, d).

Remark 2.3.5 The last statement in Theorem 2.3.4(i) is equivalent to: if d
is even, then A2(n, d) = A2(n− 1, d− 1). There is also an analogue for (ii).

While the determination of the exact values of Aq(n, d) and Bq(n, d) may
be difficult, several well-known bounds, both upper and lower ones, do exist.
We discuss some of them in the rest of this section.

A list of lower bounds and, in some cases, exact values for A2(n, d) may
be found at the following web page maintained by Simon Litsyn of Tel Aviv
University:
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http://www.eng.tau.ac.il/∼litsyn/tableand/index.html.

The following website, maintained by Markus Grassl, contains tables which
give the best known bounds (upper and lower) on the distance d for q-ary linear
codes (q ≤ 9) of given length and dimension:

http://www.codetables.de.

We discuss five well-known bounds: the sphere-covering bound, the
Gilbert-Varshamov bound, the sphere-packing bound, the Singleton bound,
and the Plotkin bound.

To study these bounds, we have to consider a sphere of a given radius and
its volume.

Definition 2.3.6 Let A be an alphabet of size q, where q > 1. For any vector
u ∈ An and any integer r ≥ 0, the sphere of radius r and center u, denoted
SA(u, r), is the set {v ∈ An : d(u,v) ≤ r}.

Definition 2.3.7 For a given integer q > 1, a positive integer n and an integer
r ≥ 0, define V n

q (r) to be

V n
q (r) =

{ (
n
0

)
+
(
n
1

)
(q − 1) +

(
n
2

)
(q − 1)2 + · · ·+

(
n
r

)
(q − 1)r if 0 ≤ r ≤ n

qn if n ≤ r.

Lemma 2.3.8 ([96, Lemma 5.2.3]) For all integers r ≥ 0, a sphere of radius
r in An contains exactly V n

q (r) vectors, where A is an alphabet of size q > 1.

We are now ready to state the sphere-covering bound.

Theorem 2.3.9 (Sphere-covering bound)([96, Theorem 5.2.4]) For an in-
teger q > 1 and integers n, d such that 1 ≤ d ≤ n, we have

qn
∑d−1

i=0

(
n
i

)
(q − 1)i

=
qn

V n
q (d− 1)

≤ Aq(n, d).

The Gilbert-Varshamov bound is a lower bound for Bq(n, d) (i.e., for linear
codes) known since the 1950s. There is also an asymptotic version of the
Gilbert-Varshamov bound (see Section 2.5), which concerns infinite sequences
of codes whose lengths tend to infinity. For a long time, the asymptotic Gilbert-
Varshamov bound was the best lower bound known to be attainable by an
infinite family of linear codes, so it became a kind of benchmark for judging
the “goodness” of an infinite sequence of linear codes. Between 1977 and 1982,
Goppa constructed algebraic geometry codes using algebraic curves over finite
fields with many rational points. A major breakthrough in coding theory was
achieved shortly after these discoveries when it was shown that there are
sequences of algebraic geometry codes that perform better than the asymptotic
Gilbert-Varshamov bound for certain sufficiently large q (see Theorem 2.5.3).
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Theorem 2.3.10 (Gilbert-Varshamov bound)([96, Theorem 5.2.6]) Let
n, k, and d be integers satisfying 2 ≤ d ≤ n and 1 ≤ k ≤ n. If

V n−1
q (d− 2) =

d−2∑

i=0

(
n− 1

i

)
(q − 1)i < qn−k, (2.3)

then there exists an [n, k]-linear code over Fq with minimum distance at least
d.

Corollary 2.3.11 ([96, Corollary 5.2.7]) For a prime power q > 1 and inte-
gers n, d such that 2 ≤ d ≤ n, we have

Bq(n, d) ≥ qn−⌈logq(V
n−1
q (d−2)+1)⌉ ≥ qn−1

V n−1
q (d− 2)

,

where, for a real number x, ⌈x⌉ is the smallest integer greater than or equal
to x.

The first upper bound for Aq(n, d) that we discuss is the Hamming bound,
also known as the sphere-packing bound.

Theorem 2.3.12 (Hamming or sphere-packing bound)([96, Theorem
5.3.1]) For an integer q > 1 and integers n, d such that 1 ≤ d ≤ n, we have

Aq(n, d) ≤
qn

∑⌊(d−1)/2⌋
i=0

(
n
i

)
(q − 1)i

=
qn

V n
q (⌊(d− 1)/2⌋) ,

where, for a real number x, ⌊x⌋ is the largest integer less than or equal to x.

It is natural to wonder if there exist any codes attaining the sphere-packing
bound.

Definition 2.3.13 A q-ary code that attains the Hamming (or sphere-

packing) bound, i.e., one which has qn
/(∑⌊(d−1)/2⌋

i=0

(
n
i

)
(q − 1)i

)
codewords,

is called a perfect code.

Some of the earliest known codes, such as the Hamming codes and the
Golay codes, are perfect codes.

Hamming codes were discovered by Richard W. Hamming. They form an
important class of codes; they have interesting properties and are easy to
encode and decode.

Let q ≥ 2 be any prime power. Note that any nonzero vector v ∈ Fm
q

generates a subspace <v> of dimension 1. Furthermore, for v,w ∈ Fm
q \{0},

< v>=<w> if and only if there is a nonzero scalar λ ∈ Fq\{0} such that
v = λw. Therefore, there are exactly (qm − 1)/(q − 1) distinct subspaces of
dimension 1 in Fm

q .
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Definition 2.3.14 Letm ≥ 2. A q-ary linear code, whose parity-check matrix
H has the property that the columns of H are made up of precisely one
nonzero vector from each vector subspace of dimension 1 of Fm

q , is called a
q-ary Hamming code, often denoted as Ham(m, q).

Proposition 2.3.15 (Parameters of the q-ary Hamming codes)([96,
Proposition 5.3.15]) The Hamming code Ham(m, q) is a [(qm−1)/(q−1), (qm−
1)/(q − 1)−m, 3]-code.

Definition 2.3.16 The dual of the q-ary Hamming code Ham(m, q) is called
a q-ary simplex code. It is sometimes denoted by S(m, q).

The next bound, the Singleton bound, is an interesting one that is related
to the well-known Reed-Solomon codes.

Theorem 2.3.17 (Singleton bound)([96, Theorem 5.4.1]) For any integer
q > 1, any positive integer n and any integer d such that 1 ≤ d ≤ n, we have

Aq(n, d) ≤ qn−d+1.

In particular, when q is a prime power, the parameters [n, k, d] of any linear
code over Fq satisfy

k + d ≤ n+ 1.

Remark 2.3.18 The following is an easy direct proof for the inequality k +
d ≤ n+ 1 in the case of an [n, k, d]-linear code C:

Given any parity-check matrix H for C, the row rank, and hence the rank,
of H is, by definition, n − k. Therefore, any n − k + 1 columns of H form a
linearly dependent set. By Theorem 2.2.17(ii), d ≤ n− k + 1.

Definition 2.3.19 A linear code with parameters [n, k, d] such that k + d =
n+ 1 is called a maximum distance separable (MDS) code.

Remark 2.3.20 An alternative way to state the Singleton bound is: for any
q-ary (n,M, d)-code C, we have

R(C) + δ(C) ≤ 1,

where R(C) is the information rate given by (logqM)/n and δ(C) is the
relative minimum distance (d(C) − 1)/n. A linear code C is MDS if and
only if R(C) + δ(C) = 1.

One of the interesting properties of MDS codes is the following.

Theorem 2.3.21 ([96, Theorem 5.4.5]) Let C be a linear code over Fq with
parameters [n, k, d]. Let G,H be a generator matrix and a parity-check matrix,
respectively, for C. Then, the following statements are equivalent:

(i) C is an MDS code;
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(ii) every set of n− k columns of H is linearly independent;

(iii) every set of k columns of G is linearly independent;

(iv) C⊥ is an MDS code.

Definition 2.3.22 An MDS code C over Fq is trivial if and only if C satisfies
one of the following:

(i) C = Fn
q ;

(ii) C is equivalent to the code generated by 1 = (1, . . . , 1); or

(iii) C is equivalent to the dual of the code generated by 1.

Otherwise, C is said to be nontrivial.

An interesting family of examples of MDS codes is given by the (general-
ized) Reed-Solomon codes.

Definition 2.3.23 Let n ≤ q. Let α = (α1, α2, . . . , αn), where αi (1 ≤ i ≤ n)
are distinct elements of Fq. Let v = (v1, v2, . . . , vn), where vi ∈ F∗

q for all
1 ≤ i ≤ n. For k ≤ n, the generalized Reed-Solomon code GRSk(α,v) is
defined to be

{(v1f(α1), v2f(α2), . . . , vnf(αn)) : f(x) ∈ Fq[x] and deg(f(x)) < k}.

The elements α1, α2, . . . , αn are called the code locators of GRSk(α,v).
In the literature, the generalized Reed-Solomon code GRSk(α,1) is often

referred to as a Reed-Solomon code.

It is easy to verify that generalized Reed-Solomon codes are linear.

Theorem 2.3.24 The generalized Reed-Solomon code GRSk(α,v) has pa-
rameters [n, k, n− k + 1], so it is an MDS code.

Proof. It is obvious that GRSk(α,v) has length n. It is clear that a nonzero
polynomial gives a nonzero codeword since a nonzero polynomial of degree at
most k − 1 has at most k − 1 zeros. Thus, the dimension of the code is the
same as that of the space of polynomials of degree < k, i.e., the dimension is
k. It remains to show that the minimum distance of GRSk(α,v) is n− k+1.

To do this, we count the maximum number of zeros in a nonzero
codeword. Suppose f(x) is not identically zero. Since deg(f(x)) < k, the
polynomial f(x) can only have at most k − 1 zeros, i.e., the codeword
(v1f(α1), v2f(α2), . . . , vnf(αn)) has at most k − 1 zeros among its coordi-
nates. In other words, its weight is at least n−k+1, so the minimum distance
d of GRSk(α,v) satisfies d ≥ n− k+ 1. However, the Singleton bound shows
that d ≤ n− k + 1, so d = n− k + 1. Hence, GRSk(α,v) is MDS. ✷

It is interesting to note that the dual of a generalized Reed-Solomon code
is again a generalized Reed-Solomon code.
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Theorem 2.3.25 The dual of the generalized Reed-Solomon code GRSk(α,v)
over Fq of length n is GRSn−k(α,v

′) for some v′ ∈ (F∗
q)

n.

Proof. First, let k = n − 1. From Theorems 2.3.21 and 2.2.15, the dual of
GRSn−1(α,v) is an MDS code of dimension 1, so it has parameters [n, 1, n].
In particular, its basis consists of a vector v′ = (v′1, . . . , v

′
n), where v

′
i ∈ F∗

q for
all 1 ≤ i ≤ n. Clearly, this dual code is GRS1(α,v

′).
It follows, in particular, that, for all f(x) ∈ Fq[x] of degree < n − 1, we

have
v1v

′
1f(α1) + · · ·+ vnv

′
nf(αn) = 0, (2.4)

where v = (v1, . . . , vn).
Now, for arbitrary k, we claim that GRSk(α,v)

⊥ = GRSn−k(α,v
′).

A typical codeword inGRSk(α,v) is (v1f(α1), . . . , vnf(αn)), where f(x) ∈
Fq[x] with degree ≤ k−1, while a typical codeword in GRSn−k(α,v

′) has the
form (v′1g(α1), . . . , v

′
ng(αn)), with g(x) ∈ Fq[x] of degree ≤ n − k − 1. Since

deg(f(x)g(x)) ≤ n− 2 < n− 1, we have

(v1f(α1), . . . , vnf(αn)) · (v′1g(α1), . . . , v
′
ng(αn)) = 0

from (2.4).
Therefore, GRSn−k(α,v

′) ⊆ GRSk(α,v)
⊥. Comparing the dimensions of

both codes, the theorem follows. ✷

Now we introduce the last bound for this section.

Theorem 2.3.26 (Plotkin bound)([96, Theorem 5.5.2]) For any integer
q > 1, any positive integer n and any integer d such that rn < d, where
r = 1− q−1, we have

Aq(n, d) ≤
⌊

d

d− rn

⌋
.

Remark 2.3.27 The Plotkin bound holds for codes for which d is large rel-
ative to n. It is often better than many of the other upper bounds, although
it is only applicable to a smaller range of values of d.

2.4 Algebraic Geometry Codes

Algebraic geometry codes play important new roles in both coding theory
and cryptography, the latter of which is the theme of this book. We introduce
them in this section.

First, we look at some examples.
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Example 2.4.1 (i) Let L be the plane line over Fq defined by ax+by+c =
0 with a 6= 0. Denote by ∞ the point [−b, a, 0]. Let Pi = (−(bαi +
c)/a, αi) (i = 1, . . . , n with n ≤ q) be n distinct Fq-rational points.
Consider the code

{(f(P1), . . . , f(Pn)) : f ∈ L(k∞)}.
By Example 1.4.1(i), the set L(k∞) consists of all univariate polynomials
f(y) of degree at most k. Thus, the codeword (f(P1), . . . , f(Pn)) is the
same as (f(α1), f(α2), . . . , f(αn)). Hence, when we describe the above
code in the polynomial language, it is none other than

{(f(α1), . . . , f(αn)) : f ∈ Fq[y], deg(f) ≤ k}.
This is precisely a generalized Reed-Solomon code discussed in the pre-
vious section.

(ii) Let H be the Hermitian curve defined by yr+y = xr+1 over Fr2 . Denote
by ∞ the point [0, 1, 0]. Let Pi = (αi, βi) (i = 1, . . . , n with n ≤ r3) be
n distinct Fr2-rational points. Consider the code over Fr2 defined by

{(f(P1), . . . , f(Pn)) : f ∈ L(m∞)}.
Assume that n > m ≥ 2g−1 = r(r−1)−1 with g being the genus of H.
Then, by the Riemann-Roch Theorem, we have dimL(m∞) = m+1−g.
On the other hand, by the fact that y is algebraic over the field Fq(x)
of degree r, we know that the set {xiyj : 0 ≤ ri + (r + 1)j ≤ m, i ≥
0 and 0 ≤ j ≤ r−1} is linearly independent over Fr2 and it is contained
in L(m∞). By counting the number of elements in this set, we conclude
that it is a basis of L(m∞). Therefore, the code is




(f(α1, β1), . . . , f(αn, βn)) :

f(x, y) =
∑

0≤ri+(r+1)j≤m,i≥0, 0≤j≤r−1

aijx
iyj ∈ Fr2 [x, y]




.

We will investigate the parameters of this code later.

For X a smooth curve over Fq and a divisorD =
∑

P∈X mPP , the support
of D, denoted by Supp(D), is defined to be the set {P : mP 6= 0}. Thus, for
any f ∈ L(D) and any point Q 6∈ Supp(D), Q is not a pole of f and we can
evaluate f at the point Q. An algebraic geometry code, introduced by Goppa,
is defined as follows.

Definition 2.4.2 Let X be a projective smooth curve over Fq and let D be a

divisor on X . Assume that P def
= {P1, . . . , Pn} is a set of n distinct Fq-rational

points on X such that P ∩ Supp(D) = ∅. Then the code

C(D;P) def
= {(f(P1), . . . , f(Pn)) : f ∈ L(D)}

is called an algebraic geometry code.
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Clearly, the two examples in Example 2.4.1 are special cases of algebraic
geometry codes. In particular, generalized Reed-Solomon codes are actually
algebraic geometry codes.

By the Riemann-Roch Theorem, we can estimate the parameters of an
algebraic geometry code.

Theorem 2.4.3 Let X be a smooth projective curve over Fq of genus g and

let D be a divisor on X over Fq of degree m with m < n. Assume that P def
=

{P1, . . . , Pn} is a set of n distinct Fq-rational points on X such that P ∩
Supp(D) = ∅. Then the code C(D;P) has parameters [n, k, d] with

k ≥ m+ 1− g, d ≥ n−m,

and hence k+ d ≥ n+1− g. Furthermore, if m ≥ 2g− 1, then k = m+1− g.

Proof. Let f be a nonzero element of L(D). We consider the Hamming weight
of cf = (f(P1), . . . , f(Pn)). Let I be the set {1 ≤ i ≤ n : f(Pi) = 0}. Then f ∈
L(D −∑i∈I Pi). Hence, by Lemma 1.4.6(iii), we have deg(D −∑i∈I Pi) ≥ 0
since f is a nonzero element. Therefore, we get wt(cf ) = n−|I| ≥ n−deg(D) =
n−m > 0. From this, we conclude that (i) the minimum distance of C(D;P)
is at least n−m; (ii) the dimension of C(D;P) is the same as that of L(D).
The desired result on the dimension now follows from the Riemann-Roch The-
orem. ✷

Remark 2.4.4 The dual code C(D;P)⊥ of an algebraic geometry code
C(D;P) can be described in terms of the residues of certain differentials
[151, 163]. In this book, we also refer to the dual code of an algebraic ge-
ometry code as a residual code. Under the condition deg(D) = m ≥ 2g− 1,
the parameters of the residual code C(D;P)⊥ for the code C(D;P) of Theo-
rem 2.4.3 are [n, n− ℓ(D) = n−m+ g− 1, d ≥ m− 2g+2] (see [151, Theorem
2.2.7] and [163, Theorem 3.1.43]).

Example 2.4.5 (i) Let L be a projective line defined over Fq. Then it has
genus g = 0. Thus, an algebraic geometry code C(D;P) from L has
parameters [n, k ≥ m+1, d ≥ n−m]. By the Singleton bound, we must
have k = m + 1 and d = n −m. This means that C(D;P) is an MDS
code. Note that the length of the code C(D;P) is at most q + 1 as L
has just q+1 points. If D = m∞, then C(D;P) coincides with Example
2.4.1(i).

(ii) Let E be a curve of genus g = 1 over Fq. Then an algebraic geometry
code C(D;P) from E has parameters satisfying n ≤ k + d ≤ n+ 1. The
first inequality follows from Theorem 2.4.3, while the second inequality
follows from the Singleton bound. Note that, in this case, the length of an
algebraic geometry code from a curve of genus 1 is at most q+1+⌊2√q⌋
by the Hasse-Weil bound.
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Now let E be the elliptic curve y2+y = x3+x over F2 defined in Example
1.1.1(i). Let P consist of all the four “finite points” P1 = (0, 0), P2 =
(0, 1), P3 = (1, 0), P4 = (1, 1) and let D = m∞.

For m = 2, we have L(2∞) = {0, 1, x, 1 + x}. Thus,

C(D;P) = {0000, 1111, 0011, 1100}.

This is a binary [4, 2, 2]-code and it meets the lower bound of parameters
in Theorem 2.4.3.

For m = 3, we have L(3∞) = {0, 1, x, 1 + x, y, y + 1, y + x, y + x + 1}.
Thus,

C(D;P) = {0000, 1111, 0011, 1100, 0101, 1010, 0110, 1001}.

This is a binary [4, 3, 2]-MDS code. The distance of this code is better
than the lower bound n−m = 1 given in Theorem 2.4.3.

(iii) Consider an algebraic geometry code C(D;P) from the Hermitian curve
H defined by yr + y = xr+1 over Fr2 . Then k + d ≥ n + 1 − g =
n+ 1 − r(r − 1)/2. If D = m∞, then C(D;P) coincides with Example
2.4.1(ii).

Remark 2.4.6 From Example 2.4.5(ii), we know that the lower bound on
the parameters of algebraic geometry codes given in Theorem 2.4.3 could be
improved. There has indeed been a lot of effort on improving the parameters
of algebraic geometry codes, but we are not going to investigate these im-
provements in this chapter. Instead, we revisit this topic in Chapter 6, when
we consider the construction of frameproof codes.

2.5 Asymptotic Behavior of Codes

An important question in coding theory is the construction of good codes
with large length. In other words, we want to construct asymptotically good
codes. We first consider some examples.

Example 2.5.1 (i) Consider the q-ary Hamming code Ham(m, q) defined
in Definition 2.3.14. It has length nm = (qm − 1)/(q − 1), dimension
km = (qm − 1)/(q − 1) − m, and distance dm = 3 (see Proposition
2.3.15). Thus, we get

lim
m→∞

km
nm

= 1, lim
m→∞

dm − 1

nm
= 0.
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(ii) Consider the binary Reed-Muller code R(1,m) defined in Definition
2.2.25. It has length nm = 2m, dimension km = m + 1, and distance
dm = 2m−1 (see Theorem 2.2.26). Thus, we obtain

lim
m→∞

km
nm

= 0, lim
m→∞

dm − 1

nm
=

1

2
.

The above examples show that either the information rate or the relative
minimum distance tends to zero when the length tends to infinity. Now the
question is whether we can find a sequence of codes with length tending to
infinity such that both the information rate and the relative minimum distance
tend to positive numbers. To further study the asymptotic behavior of codes,
we need to define some asymptotic quantities.

For a code C over Fq, we denote by n(C),M(C), and d(C) the length,
the size, and the minimum distance of C, respectively. Let Uq be the set of
ordered pairs (δ, R) ∈ R2 for which there exists a family {Ci}∞i=1 of codes over
Fq with n(Ci)→∞ and

δ = lim
i→∞

d(Ci)− 1

n(Ci)
, R = lim

i→∞

logqM(Ci)

n(Ci)
.

The following description of Uq can be found in [163, Section 1.3.1].

Lemma 2.5.2 There exists a continuous function αq(δ), for δ ∈ [0, 1], such
that

Uq = {(δ, R) ∈ R2 : 0 ≤ R ≤ αq(δ), 0 ≤ δ ≤ 1}.
Moreover, αq(0) = 1, αq(δ) = 0 for δ ∈ [(q − 1)/q, 1], and αq(δ) decreases on
the interval [0, (q − 1)/q].

One of the major problems in coding theory is to determine the domain
Uq, or equivalently, the function αq(δ). However, it is not an easy task to de-
termine the function αq(δ). In fact, one knows very little about this function.
Nowadays, researchers attempt to find lower and upper bounds for this func-
tion instead. The first benchmark bound for αq(δ) is the Gilbert-Varshamov
bound given in the following theorem.

Theorem 2.5.3 One has

αq(δ) ≥ 1−Hq(δ) (2.5)

for δ ∈ (0, 1− 1/q), where Hq(δ) is the q-ary entropy function

Hq(δ)
def
= δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ).

Proof. For every n ≥ 2, put dn
def
= ⌊δn⌋. Then, by the definition of Aq(n, d),

there exists a q-ary (n,Aq(n, dn))-code Cn. It is clear that limn→∞
d(Cn)−1
n(Cn)

=
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δ. By the sphere-covering bound (see Theorem 2.3.9), one has

αq(δ) ≥ limn→∞
logq M(Cn)

n(Cn)

= limn→∞
logq Aq(n,dn)

n(Cn)

≥ 1− limn→∞
logq(

∑d−1
i=0 (

n
i)(q−1)i)

n

= 1−Hq(δ),

where the last equality follows from Stirling’s formula. ✷

From the proof of the above theorem, we know that the asymptotic Gilbert-
Varshamov bound is not constructive since the sphere-covering bound is not
constructive. In other words, the proof does not lead to any polynomial-time
construction of codes attaining the asymptotic Gilbert-Varshamov bound. The
Gilbert-Varshamov bound had remained the best known bound for about 30
years before algebraic geometry codes were introduced by Goppa. Next, we
derive the asymptotic bounds from the algebraic geometry codes introduced
in Section 2.4.

Theorem 2.5.4 One has

αq(δ) ≥ 1− δ − 1

A(q)
(2.6)

for δ ∈ (0, 1−1/A(q)), where A(q) is the asymptotic quantity defined in Section
1.5.

Proof. Let {X/Fq} be a family of curves such that g(X ) → ∞ and
N(X )/g(X ) → A(q), where g(X ) denotes the genus of X . Choose an Fq-
rational point P0 and n = N(X ) − 1 other distinct Fq-rational points
P1, . . . , Pn. Choose a family {m} of positive integers such that m/n→ 1− δ.
The algebraic geometry code C(D;P) defined in Section 2.4 (with D = mP0

and P = {P1, . . . , Pn}) is an [n,≥ m − g(X ) + 1,≥ n −m]-linear code over
Fq. It has a subcode that is a q-ary [n,m− g(X ) + 1, n−m]-linear code. It is
easy to see that, for k = m − g(X ) + 1, we have k/n → 1 − δ − 1/A(q). The
desired result follows. ✷

Remark 2.5.5 Through the above proof and the construction of algebraic
geometry codes in Section 2.4, we know that the bound (2.6) is constructive
provided the sequences of curves attaining A(q) and the associated Riemann-
Roch spaces can be constructed in polynomial time.
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Example 2.5.6 Consider the family of curves {Xi}i≥1 over Fq2 in [65, 66],
where the function field of Xi is Fq2(x1, . . . , xi), with x1, x2, . . . defined by

xqi+1 + xi+1 =
xqi

xq−1
i + 1

.

This family of curves is explicit. Moreover, the associated Riemann-Roch space
L(mP ), for an Fq-rational point P on Xi, can be constructed in polynomial
time (see [143]). This family of curves satisfies

g(Xi) =

{
(qi/2 − 1)2 if i is even
(q(i+1)/2 − 1)(q(i−1)/2 − 1) if i is odd

and
N(Xi) ≥ qi−1(q2 − q) + 1.

Thus, N(Xi)/g(Xi)→ q − 1.
Hence, there is a family of algebraic geometry codes over Fq2 which can

be explicitly constructed and which attains the bound in Theorem 2.5.4.
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Chapter 3

Elliptic Curves and Their Applications

to Cryptography

With the advent of public key cryptography in the 1970s, the role of math-
ematics in real-world applications entered a new and exciting phase. Indeed,
many well-established mathematical problems were thrust into the limelight
with many computational problems taking on an added significance. Essen-
tially, at the heart of a public key scheme is a pair of public/private keys such
that we can be reasonably assured that the private key (kept hidden from all
but the originator) cannot be computed from the public key (accessible to all)
using the available resources.

To achieve such a property, “computationally hard” mathematical prob-
lems are exploited. Some notable examples include the integer factorization
problem and the discrete logarithm problem, which form the basis of the
earliest public key encryption schemes, namely, the RSA and ElGamal encryp-
tion schemes, respectively. In particular, these schemes work with the ring of
integers modulo n (for some large composite integers n) or the multiplicative
subgroups of finite fields.

In view of the rapid growth in information technology and its penetration
into our daily lives, it is inevitable that security issues become an increasing
concern. As proofs of the computational infeasibility of the above two problems
remain elusive, different hard mathematical problems continue to be sought. In
addition, encryption schemes which can be adapted to small devices and new
scenarios are required. For instance, it may be more practical for the public
key to reflect the identity of the users. Such emerging trends and requirements
fuel the continual evolution in the use of mathematical tools in cryptography.

In Chapter 1, we briefly introduced elliptic curves as examples of algebraic
plane curves. In fact, elliptic curves have been a well-studied mathematical
object, fascinating many renowned mathematicians, as these curves offer a
rich and insightful structure. It is therefore not surprising that, over the past
few decades, researchers have discovered that elliptic curves, particularly those
defined over finite fields, lend themselves as ideal candidates to address some
of the key issues in cryptography. The main areas include the following:

• many discrete logarithm-based schemes can be adapted to elliptic curves
which are suitable for small devices;

43
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• pairings defined on elliptic curves give rise to new applications such as
identity-based schemes and tripartite key exchange;

• elliptic curves can be used to factor integers, and the algorithm is rela-
tively efficient for integers with moderately large prime factors.

This chapter is devoted to an exposition on the role of elliptic curves
in the area of public key cryptography. As this topic has attracted much
active research leading to a large repository of interesting results, a thorough
treatment is unfortunately an impossible endeavor. As such, we only seek to
provide the reader with an overall flavor by introducing important notions and
results on elliptic curves as well as the main applications in cryptography. We
encourage the reader to consult the extensive literature on this subject to delve
deeper into any aspect of particular interest [12, 19, 20, 42, 48, 53, 60, 74, 77].

3.1 Basic Introduction

In Example 1.1.1(i), we gave an example of an elliptic curve over the binary
field F2. For fields with odd characteristic, we mentioned in Example 1.1.1(ii)
that a hyperelliptic curve y2 = f(x), where f(x) is a square-free polynomial
over Fq, is an elliptic curve when the degree of f(x) is 3. Since such curves
are algebraic plane curves, all the results of Chapter 1 apply.

We begin this section by revisiting examples from Chapter 1 and recalling
some of the results on algebraic curves when applied to such curves. We then
present the general definitions of elliptic curves over finite fields and study the
divisor class groups of such curves. By establishing a one-to-one correspon-
dence between the divisor class group and the points on the curve, we define
a group law governing the points on the curve.

In Example 1.1.1(i), we considered the affine curve defined over F2:

E : y2 + y = x3 + x.

Its projective form is Y 2Z+Y Z2 = X3+XZ2. This is an example of an elliptic
curve. We recall some of the properties of E , given in Chapter 1, below:

• The elliptic curve E is smooth (Example 1.1.10(iii)).

• The elliptic curve E has five rational points: O = [0, 1, 0], [0, 0, 1], [0, 1, 1],
[1, 0, 1], [1, 1, 1] (Example 1.1.1(i)). The point O is known as the “point
at infinity,” while the other four points are finite points.

• The genus of E is 1 (Theorem 1.4.3).
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• The Riemann-Roch space L(kO) has dimension k for any positive integer
k (Example 1.4.1(ii)). A basis for this space is {xiyj : i ≥ 0, 0 ≤ j ≤
1, 2i+ 3j ≤ k}.

• By the Hasse-Weil bound (Corollary 1.5.4(iii)), E has at most 2+1+2
√
2

F2-rational points, so E has the largest possible number of F2-rational
points.

• The L-function of E is L(t) = 1+2t+2t2 (Theorem 1.5.3). Since L(t) =
(1 − (−1 + i)t)(1 − (−1 − i)t), for any positive integer m, E has 2m +
1− ((−1 + i)m + (−1− i)m) F2m-rational points.

For odd characteristic p, we see from Example 1.1.1(ii) that an elliptic
curve E can take the form

E : y2 = f(x),

where f(x) is a square-free polynomial of degree 3. An example is the curve
y2 = x3 − x+ 1 over F3 given in Example 1.5.5(i). Once again, E has genus 1
and properties similar to the above ones hold as well.

These examples may suggest that an elliptic curve is an algebraic curve
of genus 1. This is indeed true. We now turn to the general definition of an
elliptic curve.

Definition 3.1.1 An elliptic curve E over Fq is a projective plane curve
defined by

E : Y 2Z +A1XY Z +A3Y Z
2 = X3 +A2X

2Z +A4XZ
2 +A6Z

3, (3.1)

where A1, A2, A3, A4, A6 ∈ Fq. This equation is known as the generalized
projective Weierstrass equation for E .

Remark 3.1.2 (i) Note that E will, in general, refer to a subset of P2(Fq).
The Fq-rational points of E will be denoted by E(Fq).

(ii) Observe that, by letting Z = 0, the point O = [0, 1, 0] lies on E for any
finite field. By convention, O is referred to as the “point at infinity.”

(iii) If Z 6= 0, then we can dehomogenize the generalized projective Weier-
strass equation to obtain the generalized affine Weierstrass equation:

y2 + h(x)y = s(x), (3.2)

where h(x) = A1x+A3 and s(x) = x3+A2x
2+A4x+A6. In other words,

an elliptic curve E can also be defined as the set of points comprising O
and all (x, y) satisfying w(x, y) = 0, where w(x, y) = y2 + h(x)y − s(x).
Henceforth, we will use this affine definition to describe the elliptic curve
E .

The next lemma gives a map that transforms a point on E to another point
on E .
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Lemma 3.1.3 Let E be an elliptic curve over Fq defined by y2+h(x)y = s(x).

For each finite point P = (x, y) on E, we have that χE(P )
def
= (x,−y−h(x)) ∈ E

as well. In particular, if h(x) = 0, then χE(x, y) = (x,−y) ∈ E. Furthermore,
χE is an involution, i.e., χE ◦ χE is the identity map on E.

Proof. Let x and y be such that y2 + h(x)y = s(x). Then (−y − h(x))2 +
h(x)(−y − h(x)) = y2 + 2h(x)y+ h(x)2 − h(x)y − h(x)2 = y2 + h(x)y = s(x),
so (x,−y − h(x)) ∈ E . Clearly, χE ◦ χE(x, y) = χE(x,−y − h(x)) = (x, y). ✷

For purposes of applications to cryptography, we are only interested in
smooth elliptic curves. Recall from Chapter 1 that E is smooth if E is non-
singular at all its points. Let w(x, y) = y2 + h(x)y − s(x). Then E is singular
at a point P if and only if ∂w

∂x (P ) = ∂w
∂y (P ) = 0. By considering projective

coordinates and the homogenized form of w, it is clear that E is nonsingular
at O. A criterion for E to be nonsingular, in terms of the coefficients Ai’s,
is given in the next proposition. The reader may refer to [144, Chapter III,
Proposition 1.4] for the proof.

For an elliptic curve E given by the generalized affine Weierstrass equation
in (3.2), the discriminant of E is given by

△ = −B2
2B8 − 8B3

4 − 27B2
6 + 9B2B4B6, (3.3)

where
B2 = A2

1 + 4A2

B4 = 2A4 +A1A3

B6 = A2
3 + 4A6

B8 = A2
1A6 + 4A2A6 −A1A3A4 +A2A

2
3 −A2

4.

Proposition 3.1.4 Let E be an elliptic curve given by the generalized affine
Weierstrass equation in (3.2). Then E is smooth if and only if △ 6= 0.

The generalized Weierstrass equation can be somewhat too complicated
especially when the characteristic of Fq is not 2 or 3. Indeed, for such char-
acteristics, the generalized Weierstrass equation can be transformed, by a
suitable change of variables, into the following Weierstrass normal form:

W (x, y)
def
= y2 − x3 −Ax −B = 0, (3.4)

with A,B ∈ Fq. In this case, the discriminant of the elliptic curve becomes

△ = −16(4A3 + 27B2). (3.5)

We refer the reader to [144, Chapter III, Section 1] for the details of this
transformation.

From now on, for the sake of simplicity, we assume that p 6= 2, 3, where p
is the characteristic of Fq, so that E can be defined by the equation (3.4).
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Remark 3.1.5 (i) When q is even, an elliptic curve E over Fq can be trans-
formed into one of the following forms: y2 + y = s(x), deg(s(x)) = 3, or
y2 + y = x+ 1/(ax+ b), a, b ∈ Fq, a 6= 0 (see [151, Proposition 6.1.2]).

(ii) When p = 3, an elliptic curve E over Fq can be transformed into the
following form: y2 = s(x), deg(s(x)) = 3 and s(x) is square-free (see
[151, Proposition 6.1.2]).

(iii) Apart from the Weierstrass form, other coordinate systems for el-
liptic curves, such as the Edwards coordinates, have also been pro-
posed with the view to speed up some computational problems.
More details on the Edwards coordinates can be found at the URL:
http://cr.yp.to/newelliptic/newelliptic.html.

Using W (x, y) and Proposition 3.1.4, the smoothness of E can be checked
more easily. In fact, it can be directly verified that E is smooth if and only
if 4A3 + 27B2 6= 0. Let s(x) = x3 + Ax + B so that y2 = s(x). Recall that
E is smooth means that s(x) has no multiple root. In other words, over Fq,
s(x) can be factored as s(x) = (x − a1)(x − a2)(x − a3), where a1, a2, a3 are
distinct.

At this juncture, it is useful for us to restate the definition of elliptic curve
that we will work with for the remainder of this chapter.

Definition 3.1.6 Let p ≥ 5 be a prime and let q = pr. Suppose that we have
A,B ∈ Fq such that 4A3 + 27B2 6= 0. Then a (nonsingular) elliptic curve E
over Fq is the set of points comprising the point at infinity O as well as the
pairs (x, y) such that y2 = x3+Ax+B. We also letW (x, y) = y2−x3−Ax−B
and s(x) = x3 +Ax+B.

In Chapter 1, the notions of the function field and discrete valuation for
an algebraic curve were introduced. Evidently, these concepts apply to elliptic
curves as well. We now demonstrate these ideas and prove some of the related
results when restricted to elliptic curves.

We define the coordinate ring of E to be Fq[E ] = Fq[x, y]/(W (x, y)). The
function field of E , denoted by Fq(E) = Fq(x, y), is defined as the quotient
field of Fq[E ]. The elements of Fq[E ] are known as polynomials on E while the
elements of Fq(E) are known as rational functions on E . In particular, two ra-
tional functions f1/g1 and f2/g2 are equivalent if f1g2−f2g1 = V (x, y)W (x, y)
for some V (x, y) ∈ Fq[x, y]. Clearly, every rational function maps a point of E
to an element of Fq ∪ {∞}.

Write s(x) = (x − a1)(x − a2)(x − a3). For i = 1, 2, 3, let Pi denote the
point (ai, 0) on E .

Example 3.1.7 (i) Let P = (a, b) ∈ E , where a 6= ai, i = 1, 2, 3. Then
(x− a)(P ) = 0 and (x− a)(χE (P )) = 0. Hence, P and χE(P ) are zeros
of x− a. Moreover, x− a has no other zero.
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(ii) For i = 1, 2, 3, we have y(Pi) = 0. Moreover, y has no other zero.

(iii) Consider the function x/y. Using the projective coordinates O = [0, 1, 0],
we have (x/y)(O) = (xz/yz)(O) = 0.

We know from Chapter 1 that the discrete valuation of every rational
function at any rational point on E can be defined. The next theorem gives
us the discrete valuations explicitly. We refer the reader to [37, Theorem 4.3]
for the proof.

Theorem 3.1.8 Let E be an elliptic curve given by y2 = (x−a1)(x−a2)(x−
a3), where a1, a2, a3 are distinct, let O be the point at infinity, and let Pi =
(ai, 0) (1 ≤ i ≤ 3) be points on E.

(i) Let f ∈ Fq(E) and let P = (a, b) ∈ E be such that P 6∈ {P1, P2, P3, O}.
Write f = (x− a)dg, where g(P ) 6= 0,∞. Then νP (f) = d.

(ii) Let P = Pi, for i = 1, 2, 3. For f ∈ Fq(E), write f = ydg, where
g(P ) 6= 0,∞. Then νP (f) = d.

(iii) For f ∈ Fq(E), write f = (x/y)dg, where g(O) 6= 0,∞. Then νO(f) = d.
In particular, νO(x) = −2 and νO(y) = −3.

Example 3.1.9 We consider the elliptic curve y2 = x3−4x defined over F11.

(i) Since P = (−1, 5) and Q = (−1, 6) lie on E , νP (x+ 1) = νQ(x+ 1) = 1.
We also have νO(x+1) = −2. For all other points R on E , νR(x+1) = 0.
Hence,

∑
R∈E νR(x+ 1) = 0.

(ii) If P ∈ {(0, 0), (2, 0), (−2, 0)}, then νP (y) = 1. Furthermore, νO(y) = −3.
For all other points R on E , νR(y) = 0. Hence,

∑
R∈E νR(y) = 0.

(iii) Since x = y2/(x+ 2)(x− 2), ν(0,0)(x) = 2.

(iv) By Definition 1.3.2(iv), ν(0,0)(2y + x) = 1.

Remark 3.1.10 By Lemma 1.4.5, counting multiplicities, the number of ze-
ros of a function of E must be equal to the number of its poles. Recall that
a plane line is defined by ℓ(x, y) = αy + βx + γ = 0, where α, β, γ ∈ Fq and
(α, β) 6= (0, 0). Clearly, O is the only pole of ℓ(x, y) and νO(ℓ) = −3 or −2
according to α 6= 0 or α = 0, respectively. This shows that the line ℓ(x, y) = 0
can have either two or three zeros (counting multiplicities) on E . This fact will
be used to define a group law on E in Subsection 3.1.2.

We recall the notions of a divisor and the Riemann-Roch space from
Chapter 1. A divisor of E is a formal sum of points on E . In other words,
a divisor of E can be written in the form

∑
P∈E mPP , where mP ∈ Z for

all P ∈ E , and mP = 0 for all but finitely many points P ∈ E . For a
positive integer k, the Riemann-Roch space L(kO) is defined as the space
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L(kO) = {f ∈ Fq(E) : νO(f) ≥ −k, νP (f) ≥ 0 for all P ∈ E \ {O}} ∪ {0}.
The Riemann-Roch Theorem (Theorem 1.4.2) tells us that L(kO) is a finite-
dimensional vector space over Fq with dimension k+1−1 = k. In fact, a basis
for L(kO) is {xiyj : i ≥ 0, 0 ≤ j ≤ 1, 2i+ 3j ≤ k}.

According to Theorem 1.4.3, the genus of any elliptic curve is exactly 1.
An interesting question is whether elliptic curves give all the possible algebraic
curves of genus 1. The next theorem answers this question. The reader may
refer to [144, Chapter III, Proposition 3.1] for details of the proof.

Theorem 3.1.11 Let E be a smooth absolutely irreducible algebraic curve
with genus 1. If E contains at least one Fq-rational point O, then E is an
elliptic curve. In other words, there exist x, y ∈ Fq(E) satisfying a generalized
Weierstrass equation w(x, y) = 0.

3.1.1 The Divisor Class Group of an Elliptic Curve

In this subsection, we investigate the divisor class group of degree zero of

E , that is, the group Pic0(E) def
= Div0(E)/Princ(E) (see Section 1.4). In fact,

Pic0(E) comprises all divisor classes of degree zero of E . In particular, we show
that there exists a one-to-one correspondence between Pic0(E) and the points
on E .

We begin by showing that the divisor class group of degree zero contains
at least as many elements as E .

Lemma 3.1.12 Let P and Q be two distinct points on E. Then there does
not exist any function f such that div(f) = P −Q.

Proof. We prove by contradiction. Suppose that there exists some function f
such that div(f) = P − Q. Then f ∈ L(Q) (since div(f) + Q = P ≥ 0). By
the Riemann-Roch Theorem, ℓ(Q) = 1 and we know that L(Q) contains Fq.
It follows that L(Q) = Fq and f is a constant. This is a contradiction since P
and Q are distinct. ✷

For two divisors D and G of the same degree, by D ∼= G we mean that D
is equivalent to G. For a divisor D of degree Div0(E), we denote by [D] the
equivalence class in Pic0(E) containing D.

Corollary 3.1.13 (i) For two points P and Q of E, P ∼= Q as divisors if
and only if P = Q as points of E.

(ii) The divisor classes [P − O] are all distinct, for distinct P ∈ E. In par-
ticular, Pic0(E) must be at least as large as E.

Let f be a polynomial on E . Then it is easy to see that νO(f) ≤ −2,
so f must have at least two zeros. Lemma 3.1.12 shows that, in fact, any
nonconstant rational function on E must have at least two zeros and two
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poles. Indeed, if there is some function f with exactly one zero P and one
pole Q, then div(f) = P − Q, which implies that the divisors P and Q are
equivalent, contradicting Corollary 3.1.13(i).

Theorem 3.1.14 Let D be a divisor of degree 0. Then there exists a unique
point P ∈ E such that D ∼= P −O.

Proof. Let D′ = O +D. Then deg(D′) = 1. By the Riemann-Roch Theorem,
L(D′) has dimension 1. In particular, L(D′) 6= {0}. Let f be a nonzero func-
tion in L(D′). We have div(f)+D+O ≥ 0. Since deg(div(f)) = 0, there must
exist some P on E such that div(f) = P −D−O. Consequently, D ∼= P −O.
The uniqueness follows from Corollary 3.1.13. ✷

Theorem 3.1.14 shows that every equivalence class in Pic0(E) contains
P −O for a unique P ∈ E . In other words, Pic0(E) comprises precisely all the
classes [P −O], for P ∈ E . Let τ and σ be the maps

τ : Pic0(E) → E
[P −O] 7→ P

and
σ : E → Pic0(E)
P 7→ [P −O].

Clearly, σ and τ are inverses of each other with σ(O) = [0], the 0 divisor class.
Consequently, there is a one-to-one correspondence between the sets Pic0(E)
and E .

For each D ∈ Div0(E), while Theorem 3.1.14 shows the existence of a
unique P ∈ E such that D is equivalent to P −O, it does not give an explicit
way of finding this P . Part (ii) in the following example illustrates how this
can be done.

Example 3.1.15 Consider the elliptic curve E : y2 = x3 + 4x+ 4 over F7.

(i) Consider the line defined by ℓ1(x, y) = y+x+2 = 0. To find the zeros of
ℓ1(x, y) on E , we substitute y = −x− 2 into the equation of E , yielding
(x + 2)2 = x3 + 4x + 4, or equivalently, x3 − x2 = 0 or x2(x − 1) = 0.
Hence, x = 0 is a double root while x = 1 is a simple root. For x = 0,
we have y = 5, and for x = 1, we have y = 4. Consequently, (0, 5) is a
double zero of ℓ1(x, y) while (1, 4) is a simple zero of ℓ1(x, y). Using the
divisor notation, div(ℓ1(x, y)) = 2(0, 5) + (1, 4)− 3O.

(ii) Consider the points P = (0, 2) and Q = (1, 4) on E . We now want to
find a point R on E such that R − O is equivalent to P + Q − 2O as
divisors. To this end, consider the line defined by ℓ2(x, y) = y − 2 −
4−2
1−0 · x = y − 2x − 2 = 0. One checks easily that P and Q are zeros
of ℓ2(x, y). To find the third zero of ℓ2(x, y), we substitute y = 2x + 2
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into the equation of E so that (2x + 2)2 = x3 + 4x + 4. Solving for x,
we find that x = 0, 1, or 3. Consequently, S = (3, 1) is the third zero of
ℓ2(x, y) and we conclude that ℓ2(x, y) has three simple zeros. Therefore,
div(ℓ2(x, y)) = P +Q+ S − 3O.

Next, consider div(x−3) = (3, 1)+(3,−1)−2O. Hence, div(ℓ2(x, y)/(x−
3)) = P + Q − (3,−1) − O or (P − O) + (Q − O) − ((3,−1) − O) =
div(ℓ2(x, y)/(x − 3)). In other words, D = P +Q − 2O is equivalent to
(3,−1)−O as divisors.

Lemma 3.1.16 Let P = (a, b) ∈ E. Recall that χE(P ) = (a,−b). We have
−[P −O] = [χE(P )−O].
Proof. Note that x− a has a zero at P , a zero at χE(P ), and a double pole at
O. When b = 0, then P = (a, 0) is a double zero of x− a. Hence, div(x− a) =
P + χE(P ) − 2O. Since [P − O] + [χE(P ) − O] = [P + χE(P ) − 2O] = [0], it
follows that [χE(P )−O] = −[P − O]. ✷

3.1.2 The Group Law on Elliptic Curves

In Subsection 3.1.1, we have identified points on an elliptic curve E with
divisor classes in Pic0(E) via the bijective map σ. Since Pic0(E) is an abelian
group, this suggests that we can define a group structure on E as well by
turning σ into a group homomorphism. More specifically, let P and Q be two
points on E . Let R ∈ E be such that [P − O] + [Q − O] = [R − O]. This is
possible since Pic0(E) is a group and R exists by Theorem 3.1.14. We can then
define P ⊕Q = R. Indeed, R = τ(σ(P ) + σ(Q)).

Example 3.1.17 Refer to the elliptic curve of Example 3.1.15. Then (0, 2)⊕
(1, 4) = (3,−1).

Theorem 3.1.18 An elliptic curve E, under the operation ⊕ defined above,
is an abelian group.

Proof. First, we show that O acts as our identity. This is true since, for any
point P ∈ E , O ⊕ P = τ([0] + [P − O]) = τ([P − O]) = P . Next, it is
clear that ⊖P = χE(P ), where ⊖P denotes the unique point on E such that
P ⊕ (⊖P ) = O, according to Lemma 3.1.16. Finally, the associativity and
commutativity of ⊕ follow from the respective corresponding properties for
the addition in Pic0(E). ✷

It is possible to obtain explicit expressions for the coordinates of R = P⊕Q
in terms of the coordinates of P and Q.

To this end, let P and Q be two points on E . Suppose that P = (a, b)
and Q = (c, d). If a = c and b = −d, then Q = ⊖P so that P ⊕ Q = O (see
proof of Theorem 3.1.18). Therefore, we assume that we do not have a = c
and b = −d. The main idea is to find R via the zeros on lines as follows.
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• Let ℓ = 0 be the line on which P and Q lie.

• Since P 6= ⊖Q, ℓ must be of the form ℓ = y −Mx− C, i.e., the line is
given by y −Mx− C = 0.

• Since νO(ℓ) = −3, it follows that ℓ has three zeros.

• Let P,Q, and S = (g′, h′) be these zeros.

• Then div(ℓ) = P +Q+ S − 3O.

• Further, with v = x− g′, we have div(v) = S + (g′,−h′)− 2O.

• Hence, div(ℓ/v) = P+Q−(g′,−h′)−O = (P−O)+(Q−O)−((g′,−h′)−
O).

• Consequently, we have R = P ⊕Q = χE(S) = (g′,−h′).

We are now ready to give the coordinates of P ⊕Q.

Theorem 3.1.19 Let P = (a, b) and Q = (c, d) be two points on E such that
P 6= ⊖Q. Define M as

M =

{
d−b
c−a if a 6= c
3a2+A

2b if a = c.

Furthermore, let C = b −Ma. Then the point P ⊕Q is given by R = (g, h),
where

g =M2 − a− c and h = −Mg − C.

Proof. Let ℓ = 0 be the line passing through P and Q. It is clear that ℓ is given
by ℓ = y −Mx− C, where M and C are as defined. Let S be the third zero
of ℓ. Write S = (g′, h′). Now, we substitute y =Mx+C into the equation for
E to obtain

(Mx+ C)2 = x3 +Ax +B.

Expanding this produces f(x) = x3−M2x2+(A−2CM)x+B−C2 = 0. Now,
a, c and g′ must be roots of this equation since they are the x-coordinates of
P , Q and S, which satisfy both the equation of the elliptic curve and ℓ = 0.
Thus, f(x) = (x − a)(x − c)(x − g′) and comparing the coefficients of the x2

terms gives a + c + g′ = M2. Hence, g′ = M2 − a − c. It is now clear that
h′ = Mg′ + C. Finally, according to the procedure of computing P ⊕ Q, we
obtain g = g′ and h = −h′ = −Mg − C. ✷

The formula for P ⊕Q in Theorem 3.1.19 is known as the addition for-
mula. In the case P = Q, the formula given in Theorem 3.1.19 to compute
[2]P is often called the duplication formula.
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Remark 3.1.20 It may be instructive to consider an elliptic curve over the
real field R which can be represented graphically on the xy-plane. Here, O
can be interpreted as the point that lies on all vertical lines. For each point
P on E , χE(P ) is in fact the reflection of P in the x-axis. Given two points P
and Q on E , we can draw a line ℓ = 0 passing through P and Q. In the case
P = Q, then ℓ = 0 is the tangent line to E at P . It can be easily seen that
ℓ = 0 cuts E at one other point, which we denote by S. Finally, reflecting S
in the x-axis gives R = P ⊕Q.

Note that, in some elementary textbooks on elliptic curves, the group law
on E is often defined via the geometric or algebraic approach. However, proving
the associativity can be very messy in this case. As such, in this chapter, we
have opted to introduce the group law via the divisor class group, where all
the group properties are easily proved.

Summing up all the discussion we have had thus far yields the following
result:

Theorem 3.1.21 The set of points on E forms an abelian group that is iso-
morphic to the divisor class group of degree zero via the isomorphism σ such
that σ(P ) = [P −O].

In particular, this isomorphism enables us to derive a criterion to decide
when a divisor is principal, as the next proposition demonstrates.

Proposition 3.1.22 A divisor D =
∑

P∈E mPP , where mP ∈ Z for all P , is
principal if and only if deg(D) =

∑
P∈E mP = 0 and

⊕
P∈E mPP = O, where

⊕ refers to the sum of points on E, −P means ⊖P , and mP = P ⊕ · · · ⊕ P
(m times).

Proof. First, suppose that
⊕

P∈E mPP = O and deg(D) = 0. Then
[
∑

P∈E mPP−
∑

P∈E mPO] = [O−O], so∑P∈E mPP −
∑

P∈E mPO is princi-
pal. Since deg(D) = 0,

∑
P∈E mP = 0 so that

∑
P∈E mPO is the zero divisor.

Consequently, D = D −∑P∈E mPO is principal.
Conversely, suppose that D is principal. It is clear that deg(D) = 0. Let

S =
⊕

P∈E mPP . If S 6= O, then [
∑

P∈E mPP −
∑

P∈E mPO] = [S − O],
which implies that D is equivalent to S−O, which is nonprincipal (see Lemma
3.1.12). We conclude that S = O. ✷

From now on, we simply denote the addition operation in E by +, i.e.,
P ⊕Q = P +Q. Similarly, ⊖P = −P . For any positive integer m, we use [m]P
to denote P +P + · · ·+P (m times) and [−m]P to denote −P −P − · · · −P
(m times). We note that, despite the similarity in notation with the use of +
in divisors, the meaning of + should be clear from the context.

Corollary 3.1.23 For a positive integer m, let P be a point on E so that
[m]P = O. Then there exists a function fm,P , unique up to a constant multi-
ple, such that div(fm,P ) = mP −mO.
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Proof. The existence of fm,P follows immediately from Proposition 3.1.22.
Now suppose that g is another function such that div(g) = mP −mO. Then
div(fm,P /g) is the zero divisor. Consequently, fm,P/g must be a constant. ✷

Example 3.1.24 Suppose that P is a point on an elliptic curve E such that
[2]P = O. This means that P = −P . Since the characteristic of the field is
not 2, it follows that the y-coordinate of P must be 0. Conversely, if a is a
root of x3 +Ax+B = 0, then P = (a, 0) is such that [2]P = O. We have seen
earlier that div(x− a) = 2P − 2O (cf. proof of Lemma 3.1.16).

Remark 3.1.25 The function fm,P in Corollary 3.1.23 is known as a Miller
function at P . More discussion on the Miller functions is found in Subsection
3.4.2.

3.2 Maps between Elliptic Curves

We have so far defined an elliptic curve to be a set of points satisfying the
Weierstrass normal form y2 = x3 + Ax + B, where A,B ∈ Fq are such that
4A3 + 27B2 6= 0. Note that there are altogether at most q2 − 1 such curves.
How are these curves related? Are there any similarities or differences between
the curves? Suppose that we choose a certain curve for our applications to
cryptography. Will the security of our cryptographic scheme be compromised
in any way if we transform to another curve?

These questions motivate us to study various maps between elliptic curves
in this section. In particular, we discuss morphisms, isomorphisms, and iso-
genies between curves. Moreover, we introduce and study the Frobenius map
and the multiplication map in some detail.

3.2.1 Morphisms of Elliptic Curves

We begin with the most general maps, namely, morphisms.

Definition 3.2.1 Let E1 and E2 be two elliptic curves defined over Fq given by
the Weierstrass equations: E1 : y2 = x3+A1x+B1 and E2 : y2 = x3+A2x+B2.
Amorphism ψ between E1 and E2 is a pair of rational functions on E1, namely,
ψ = (hx, hy), where hx, hy ∈ Fq(E1) such that h2y = h3x + A2hx +B2.

Let ψ = (hx, hy) be a morphism between E1 and E2. For a point P = (a, b)
on E1, we have ψ(P ) = (hx(P ), hy(P )) = (hx((a, b)), hy((a, b))). Note that
the representation of ψ may not be unique. In particular, ψ = (hx, hy) and
ψ′ = (h′x, h

′
y) are equivalent if the following conditions hold:
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• hx ≡ h′x (mod y2 − x3 −A1x−B1);

• hy ≡ h′y (mod y2 − x3 −A1x−B1);

• h2y = h3x +A2hx +B2;

• h′2y = h′3x +A2h
′
x +B2.

It is clear that the set of equivalent morphisms forms an equivalence class.
Let ψ = (hx, hy) be a morphism from E1 to E2. Observe that hy(P ) is not
defined if and only if hx(P ) is not defined. In this case, we set ψ(P ) = O.
Note that, in all cases, the value of ψ(P ) does not depend on the particular
choice of the functions hx and hy in the representation of ψ.

Example 3.2.2 (i) Let E1 and E2 be any two elliptic curves over a field
Fq. Fix a point P ∈ E2. The map ψ = P is the constant morphism
which sends all Q ∈ E1 to P ∈ E2.

(ii) For any elliptic curve E , the map E → E defined by P 7→ P , for every
P ∈ E , is called the identity morphism.

(iii) For an elliptic curve E , the map χE that sends P to −P is clearly a
morphism from E to itself (see Lemma 3.1.3). It is called the negation
morphism.

(iv) Let E1 and E2 be elliptic curves over F11 defined by E1 : y2 = x3+x and
E2 : y2 = x3 + 5x. Define ψ : E1 → E2 such that ψ((x, y)) = (4x, 8y).
Now, we have (8y)2 = 9y2 = 9(x3 + x) = (4x)3 + 5(4x). Thus, ψ is a
morphism from E1 to E2 with ψ(O) = O.

In the next example, we look at the translation map of an elliptic curve.

Example 3.2.3 Let E1 = E2 = E be given by the Weierstrass equation:
y2 = x3+Ax+B. Fix a finite point P = (a, b) ∈ E . We define the translation
morphism at P by τP (Q) = Q+P . We now try to derive hx and hy. By the
addition formula, we have

hx = ((y − b)/(x− a))2 − x− a
= (y−b)2−(x+a)(x−a)2

(x−a)2

= x3+Ax+B−2by+a3+Aa+B−(x3+a3−a2x−ax2)
(x−a)2

= (x+a)(A+ax)−2by+2B
(x−a)2 .

Similarly, we have

hy = ((y − b)/(x− a)) · (a− hx)− b
= (y−b)(a(x−a)2−(x+a)(A+ax)+2by−2B)−b(x−a)3

(x−a)3 .

As expected, τP is not defined for x = a and y = −b. In the case where
x = a and y = b(6= −b), we can perform the following computations.
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Since P = (a, b) ∈ E , we have b2 = a3 + Aa + B. Subtracting this from
y2 = x3+Ax+B produces y2−b2 = x3−a3+A(x−a) = (x−a)(x2+ax+a2+A).
Hence, y−b

x−a = x2+ax+a2+A
y+b . Substituting this into the addition formula yields

h′x and h′y, which can be evaluated at points for which x = a.
As expected, τP (−P ) = O. Thus, τP is a morphism on E and is called the

translation map at P . In fact, we can show similarly that the addition formula
is a group homomorphism from E × E to E .

Given three elliptic curves E1, E2, E3 defined over Fq and morphisms ψ1 :
E1 → E2 and ψ2 : E2 → E3, we define the composition ψ2 ◦ ψ1 : E1 → E3 by
ψ2 ◦ ψ1(P ) = ψ2(ψ1(P )) for all P ∈ E1. For example, for any two points P1

and P2 on an elliptic curve E , τP1 ◦ τP2 = τP1+P2 .
Next, we state two standard results on morphisms between curves. Their

proofs can be found in [144, Chapter II, Theorem 2.3 and Proposition 2.6(b)].

Lemma 3.2.4 Let E1 and E2 be two elliptic curves defined over Fq, and let
ψ be a morphism from E1 to E2.

(i) The morphism ψ is either the constant morphism or it is surjective.

(ii) Let Q be a point on E2. Then the set {P ∈ E1 : ψ(P ) = Q} is finite.

Definition 3.2.5 Let E1 and E2 be two elliptic curves and let ψ be a mor-
phism from E1 to E2. Then ψ is an isomorphism if there exists a morphism
ψ′ from E2 to E1 such that ψ ◦ ψ′ is the identity morphism on E2 and ψ′ ◦ ψ
is the identity on E1. In the case where ψ is an isomorphism, we say that
E1 and E2 are isomorphic curves. If E1 = E2, then we say that ψ is an
automorphism.

Example 3.2.6 Let E be an elliptic curve and P an arbitrary point on E .
Then the translation map τP at P is an automorphism on E with inverse
τ−P . Furthermore, the negation morphism χE is an automorphism too with
χE itself as the inverse.

Let E1 and E2 be two elliptic curves defined over Fq and let Fq(E1) and
Fq(E2) be their respective function fields. Let ψ be a morphism from E1 to
E2. For all functions f ∈ Fq(E2), we can compose f with ψ to get f ◦ ψ(P ) =
f(ψ(P )) for all P ∈ E1. Thus, f ◦ψ is an element of Fq(E1). It follows that ψ in-
duces a map ψ∗ from Fq(E2) to Fq(E1). In fact, ψ∗ is a homomorphism of fields.
Moreover, if ψ is nonconstant, then ψ∗ is an injective homomorphism from
Fq(E2) to Fq(E1). From this, we see that Fq(E2) can be identified with a sub-
field of Fq(E1) via ψ∗. We define the degree of ψ to be the degree of this field
extension deg(ψ) = [Fq(E1) : ψ∗(Fq(E2))]. Furthermore, ψ is said to be sepa-
rable (respectively, inseparable) if the field extension Fq(E1)/ψ∗(Fq(E2)) is
separable (respectively, (purely) inseparable). We denote the separable and in-
separable degrees of the extension Fq(E1)/ψ∗(Fq(E2)) by degs(ψ) and degi(ψ),
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respectively. Note that, if ψ = (hx, hy), then ψ
∗(Fq(E2)) = Fq(hx, hy), which

is clearly a subfield of Fq(E1) = Fq(x, y).
Another way to define an isomorphism of elliptic curves is given by the

next proposition. We leave the proof to the reader.

Proposition 3.2.7 A morphism ψ of elliptic curves is an isomorphism if and
only if ψ∗ is an isomorphism of fields. Hence, ψ is an isomorphism if and only
if deg(ψ) = 1.

Remark 3.2.8 Let E1 and E2 be two elliptic curves defined over Fq. According

to Lemma 3.2.4(ii), for a point Q ∈ E2, the set ψ−1(Q)
def
= {P ∈ E1 : ψ(P ) =

Q} is finite. Indeed, ψ−1(Q) can have at most deg(ψ) elements. Moreover,
|ψ−1(Q)| = deg(ψ) for all but finitely many points Q ∈ E2.

We now turn to an important class of morphisms between elliptic curves
known as isogenies. An isogeny σ between two elliptic curves E1 and E2 is
a morphism that sends O ∈ E1 to O ∈ E2. As we have noted, a morphism is
either a constant or is surjective. Hence, an isogeny is either the zero map or
a nonconstant morphism with finite kernel. Two elliptic curves are known as
isogenous if there is an isogeny σ between them. For instance, the morphisms
in Example 3.2.2(ii) and (iii) are isogenies.

Let λ be any morphism between E1 and E2. Suppose that P is a point on
E1 with λ(P ) = O. Then σ = λ ◦ τP sends O to O, so σ is again an isogeny.
Equivalently, λ = σ ◦ τ−P , so any morphism is the composition of an isogeny
with a translation map.

Another interesting property of an isogeny is the following.

Theorem 3.2.9 Let σ be an isogeny from E1 to E2. Then σ is a group homo-
morphism.

Once again, we leave the proof of Theorem 3.2.9 for the interested reader
to check out from books such as [144, Chapter III, Theorem 4.8].

From Theorem 3.2.9, it follows that a nonconstant isogeny is a group ho-
momorphism with finite kernel. Let σ be an isogeny from E1 to E2. Then its
kernel is a subgroup of E1. Further, for each Q ∈ E2, |σ−1(Q)| is constant. Fix
an R ∈ E1 so that σ(R) = Q. Then σ−1(Q) = {P + R : P ∈ ker(σ)}. In fact,
we have the following result, which we state without proof (see [144, Chapter
II, Proposition 2.6(b)]).

Theorem 3.2.10 Let σ be an isogeny from E1 to E2. Then, for each Q ∈ E2,
we have |σ−1(Q)| = degs(σ), where degs refers to the degree of separability of
σ. In particular, | ker(σ)| = degs(σ).

Recall that we consider only elliptic curves over finite fields of characteristic
different from 2 and 3. Suppose that we have two elliptic curves E1 : y2 =
x3 +A1x+B1 and E2 : y2 = x3 +A2x+B2. We consider now the question of
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isomorphism between E1 and E2, and how the coefficients A1, B1, A2, B2 are
related when E1 and E2 are isomorphic. More precisely, we provide two criteria
to determine if two curves are isomorphic. This then allows us to calculate
the number of isomorphism classes of elliptic curves over a finite field Fq (two
elliptic curves belong to the same isomorphism class if and only if they are
isomorphic).

We omit the proof of the following theorem. The reader may refer to [144,
pages 49–50] for a discussion.

Theorem 3.2.11 Two elliptic curves E1 : y2 = x3 + A1x + B1 and E2 :
y2 = x3 + A2x + B2 are isomorphic over Fq if and only if there exists a
nonzero constant u ∈ F∗

q such that A2 = A1u
4 and B2 = B1u

6. Moreover, the
isomorphism is given by ψ : E1 → E2 such that ψ(x) = u2x and ψ(y) = u3y.

Remark 3.2.12 This result shows us that an isomorphism of two elliptic
curves over Fq is determined by just one parameter u ∈ F∗

q . Note that it is
possible for two curves to be nonisomorphic over Fq but to become isomorphic
over an extension field Fqk for some k. In this case, u ∈ Fqk \ Fq.

Recall that we have defined the discriminant of an elliptic curve E under
the generalized Weierstrass form in (3.3). Using the Weierstrass normal form,
it can be simplified to △ = −16(4A3 + 27B2) (see (3.5)). We only consider
smooth curves (see Definition 3.1.6), so △ 6= 0. In this case, we also define the
j-invariant of E by j(E) = −1728(4A)3/△.

The next theorem shows us that isomorphic curves (over Fq) have the same
j-invariants.

Theorem 3.2.13 Let E1 and E2 be two elliptic curves defined over Fq. Then
E1 and E2 are isomorphic (over Fq) if and only if j(E1) = j(E2).
Proof. Suppose that E1 and E2 are isomorphic (over Fq). It follows from
Theorem 3.2.11 that there exists some nonzero constant u ∈ Fq such that
A2 = A1u

4 and B2 = B1u
6. Therefore, j(E2) = 1728(4u4A1)

3/(16(4(u4A1)
3+

27(B1u
6)2)) = j(E1).

Conversely, suppose that j(E1) = j(E2). This yields A3
1B

2
2 = A3

2B
2
1 . We

wish to look for a nonzero u ∈ Fq so that x′ = u2x and y′ = u3y, where x, y
define the equation of E1 and x′, y′ define the equation of E2. If A1 = 0, then
B1 cannot be 0 since E1 is nonsingular. Hence, A2 = 0 and B2 6= 0. This
gives j = 0 and we choose u = (B2/B1)

1/6 6= 0. Next, suppose that B1 = 0.
As before, we see that B2 = 0 and A1, A2 6= 0. Further, j = 1728. We let
u = (A2/A1)

1/4 in this case. Finally, suppose that A1B1 6= 0. In this case, we
set u = (A2/A1)

1/4 = (B2/B1)
1/6. ✷

Remark 3.2.14 Note that E1 and E2 having identical j-invariants shows that
they are isomorphic over the algebraic closure Fq of Fq, but not necessarily
over Fq. To show that E1 and E2 are indeed isomorphic over Fq, we need to
find a u in Fq as in Theorem 3.2.11.
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Example 3.2.15 Let E1 and E2 be two elliptic curves defined over F7 given
by the Weierstrass equations: E1 : y2 = x3 + x and E2 : y2 = x3 − x. Since
j(E1) = j(E2) = 1728, both E1 and E2 are isomorphic over Fq. Note that, in
this case, we need a u with u4 = −1. Thus, E1 and E2 are not isomorphic over
F7, but since 4|((72 − 1)/2), there exists a u ∈ F∗

49 such that u4 = −1, so E1
and E2 are isomorphic over F49.

Definition 3.2.16 We say that two elliptic curves E1 and E2 are twists
of each other if they are isomorphic over Fq. Furthermore, they are called
quadratic twists if they are not isomorphic over Fq but are isomorphic over
Fq2 .

Fix a nonsquare v ∈ Fq and a u ∈ Fq2 such that u2 = v. Let E be an
elliptic curve defined over Fq with Weierstrass equation E : y2 = x3 +Ax+B.
Then the curve defined by E ′ : y′2 = x′3 + A′x′ + B′, with y′ = yu3, x′ =
xu2, A′ = Au4, B′ = Bu6, is a quadratic twist of E . This is clear since E and
E ′ are not isomorphic over Fq but are isomorphic over Fq(u). Furthermore,
it can be shown that, up to isomorphism over Fq, this is the only quadratic
twist of E .
Theorem 3.2.17 Let E be an elliptic curve with E ′ as its quadratic twist.
Suppose that N and N ′ denote the numbers of Fq-rational points on E and E ′,
respectively. Then N +N ′ = 2q + 2.

Proof. Let E : y2 = x3+Ax+B and E ′ : y′2 = x′3+A′x′+B′, where A′ = Au4,
B′ = Bu6, y′ = yu3, x′ = xu2 for some u ∈ Fq2\Fq. First, we have an identity
element in E and E ′ each, thereby constituting two distinct points. We now
count the number of finite points on E(Fq) ∪ E ′(Fq).

Suppose that v = u2 ∈ Fq, and since u 6∈ Fq, v must be a nonsquare in Fq.
Let x ∈ Fq. Then x

′ = xu2 = xv ∈ Fq. Since x
′3+A′x′+B′ = u6(x3+Ax+B),

and u6 = v3, which is a nonsquare in Fq, it follows that x
3+Ax+B is a square

in Fq if and only if x′3 +A′x′ +B′ is a nonsquare in Fq. This implies that, for
each x ∈ Fq for which x

3+Ax+B 6= 0, we can either find two distinct values of
y such that (x, y) ∈ E(Fq) or there are two distinct values of y′ ∈ Fq such that
(x′, y′) ∈ E ′(Fq). Furthermore, if x ∈ Fq and x3 + Ax + B = 0, then x′ ∈ Fq

and x′3 + A′x′ + B′ = 0, so that (x, 0) and (x′, 0) are in E(Fq) and E ′(Fq),
respectively. We conclude that each x ∈ Fq gives rise to two distinct points in
E(Fq)∪E ′(Fq). It follows that there are 2q finite points in E(Fq)∪E ′(Fq) and,
hence, a total of 2q + 2 points.

Next, we suppose that B = 0 and u2 6∈ Fq. Since we need u4 ∈ Fq, this
is only possible if 4|(q + 1), so q ≡ 3 (mod 4). Now, for each A and x ∈ F∗

q ,
x3+Ax = x(x2+A), so x3+Ax is a square in Fq if and only if (−x)((−x)2+A)
is a nonsquare. This means that E(Fq) has 2(q − 1)/2 + 1 + 1 = q + 1 points.
Thus, if E ′ is a quadratic twist of E , it has Weierstrass equation y′2 = x′3+A′x′,
so |E(Fq)|+ |E ′(Fq)| = q + 1 + q + 1 = 2q + 2, as required.

Finally, we consider the case in which A = 0. Suppose that u2 6∈ Fq and
u6 ∈ Fq. This is only possible if 6|(q + 1), i.e., q ≡ 5 (mod 6). Fix a B ∈ F∗

q .
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Since 3 ∤ (q−1), the map α 7→ α3, for α ∈ Fq, is one-to-one, so there is exactly
one x such that x3 +B = y2, for every y ∈ Fq. Consequently, E(Fq) has q+ 1
elements and by the same argument as above, |E(Fq)|+ |E ′(Fq)| = 2q + 2.

In conclusion, we have shown that E and E ′ have a total of 2q + 2 Fq-
rational points in all cases. ✷

Before we end this subsection, we use Theorem 3.2.11 to count the num-
ber of nonisomorphic elliptic curves over a finite field Fq. We illustrate the
technique for prime fields Fp.

The elliptic curves are of the form y2 = x3 + Ax + B, with A,B ∈ Fp.
Hence, there are altogether p2 possible curves over Fp given by such equations,
but such a curve is singular if and only if 4A3 +27B2 = 0. This occurs if and
only if there exists some constant C for which A = −3C2 and B = 2C3.
In particular, each C uniquely determines the pair (A,B) and vice versa.
Consequently, there are p singular curves and p2 − p (nonsingular) elliptic
curves.

Fix an elliptic curve E : y2 = x3+Ax+B. We have seen that another curve
E ′ : y2 = x3+A′x3+B′ is isomorphic to E if and only if there exists a nonzero
constant u such that A′ = Au4 and B′ = Bu6. The number of different elliptic
curves isomorphic to E over Fp is now (p−1)/|Aut(E)|, where Aut(E) refers to
the group of automorphisms of E . Summing over all representatives of elliptic
curves in each isomorphism class yields

∑
E(p− 1)/|Aut(E)| = p(p− 1). Thus,∑

E(1/|Aut(E)|) = p. We now look at Aut(E). Recall that an automorphism
of E is an isomorphism from E to E . In other words, it comprises u such that
A = Au4 and B = Bu6. If B = 0, then |Aut(E)| = gcd(4, p − 1). If A = 0,
then |Aut(E)| = gcd(6, p− 1). Otherwise, |Aut(E)| = 2.

It follows that, in the case p ≡ −1 (mod 12), |Aut(E)| = 2 for all E , so
that the number of nonisomorphic elliptic curve classes over Fp is exactly 2p.
To see this, let N be the total number of nonisomorphic elliptic curve classes
over Fp. Since gcd(6, p− 1) = gcd(4, p− 1) = 2, we have N/2 = p or N = 2p.
The other cases can be similarly estimated or computed.

In particular, the number of nonisomorphic elliptic curves classes is 2p+6,
2p+ 2, 2p+ 4, 2p for p ≡ 1, 5, 7, 11 (mod 12), respectively.

3.2.2 The Frobenius and Multiplication Morphisms

We now discuss two important isogenies, namely, the Frobenius map
and the multiplication map. These two isogenies play an important role
in proving many important results on elliptic curves as we shall see in the
remainder of the chapter.

Throughout this subsection, we let q = pk for some prime p (p 6= 2, 3) and
positive integer k. Fix an elliptic curve over Fq as E : y2 = x3 + Ax +B. We
define the qth-power Frobenius morphism φq by φq((x, y)) = (xq , yq) for
every finite point (x, y) ∈ E and φq(O) = O.

We first show that φq((x, y)) lies on E . Indeed, raising the Weierstrass
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normal form of E to the qth power yields y2q = x3q + Axq + B or (yq)2 =
(xq)3+Axq +B. Thus, (xq , yq) ∈ E . Since φq(O) = O, φq is an isogeny. Given
any two elliptic curves E1, E2 and any isogeny σ : E1 → E2, it is easy to see
that σ ◦φq = φq ◦ σ, where φq on the left-hand side is on E1 while that on the
right-hand side is on E2.

Let e be a positive integer. It is clear that the composition φq ◦ · · · ◦ φq
(e times) = φqe . Since any element z in Fqe satisfies zq

e

= z, the following
lemma is immediate.

Lemma 3.2.18 Let P be a point on E. Then P is an Fqe-rational point of E
if and only if φqe(P ) = P .

In the next proposition, we state some important properties for φq. The
reader may refer to [144, Chapter V, Theorem 3.1] for the proofs.

Proposition 3.2.19 (i) The Frobenius morphism φq is injective.

(ii) The Frobenius morphism φq is purely inseparable of degree q.

Lemma 3.2.18 enables us to prove a very nice result on isogenous curves.

Theorem 3.2.20 Let E1 and E2 be two isogenous elliptic curves over Fq.
Then they have the same number of Fq-rational points, i.e., |E1(Fq)| =
|E2(Fq)|.

Proof. Let σ be an isogeny from E1 to E2. Let φq denote the qth-power
Frobenius morphism. By Lemma 3.2.18, φq(P ) = P for all P ∈ E1(Fq)
and for all P ∈ E2(Fq). In other words, E1(Fq) = ker(1 − φq) on E1 and
E2(Fq) = ker(1 − φq) on E2. For a fixed Q ∈ E2 and for all P ∈ E1 with
σ(P ) = Q, we have Q ∈ E2(Fq) if and only if P ∈ ker((1 − φq) ◦ σ).

Now, |E2(Fq)| = | ker((1−φq) ◦ σ)|/| ker(σ)| = | ker(σ ◦ (1−φq))|/| ker(σ)|.
Note that we have used the facts that φq commutes with σ and that 1 − φq
operates on E2 and E1, respectively, in the above equality. Since isogenies are
group homomorphisms (see Theorem 3.2.9), we obtain |E2(Fq)| = | ker(1−φq)|,
where 1− φq is on E1, and this is equal to |E1(Fq)| as required. ✷

In fact, the converse of the statement in Theorem 3.2.20 is also true, that is,
two elliptic curves having the same number of Fq-rational points are isogenous.
This is known as Tate’s isogeny theorem and was first proposed and proved
by John Tate in 1966 (see [161]).

To end this subsection, we discuss yet another useful isogeny.
Letm be an integer and let E be an elliptic curve. The map [m] : P 7→ [m]P

is a map from E to E defined by [m]P = P +P + · · ·+P (m times). The map
[m] is called a multiplication morphism. Observe that, when m = −1, we
obtain the negation morphism χE . By first showing that [2] is a morphism
and using induction, we can show that [m] is a morphism for any integer m.
Since [m](O) = O, the morphism [m] is in fact an isogeny.
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Here are some basic properties of the map [m].
First, it is clear that, for any two integersm and n, we have [m]◦[n] = [mn].

Next, we show that [m] is not a constant for all nonzero integers m. Clearly,
the map [2] is not a constant since there are only four points P on E for which
[2]P = O. Now suppose that, for some integer m, the map [m] is a constant
map. If m is even, we can write m = 2n. Since [2] is not a constant map, it
follows immediately that [n] is a constant map. We can thus assume that m
is odd. Pick a point P 6= O such that [2]P = O. Then [m]P = [m− 1]P +P =
P 6= O. Consequently, [m] is not the zero map and cannot be a constant.
In fact, we have the following result (cf. [144, Chapter III, Corollary 5.5 and
Theorem 6.2]).

Proposition 3.2.21 Let m be an integer.

(i) The map [m] is separable if and only if p ∤ m.

(ii) The degree of [m] satisfies deg([m]) = m2.

The points P on E for which [m]P = O are called m-torsion points. We
now proceed to study more about these points.

3.3 The Group E(Fq) and Its Torsion Subgroups

In this section, our aim is to investigate two particular subgroups of E ,
namely, the m-torsion subgroup E [m] and the group E(Fq) of Fq-rational
points of E . In addition, we present a useful class of elliptic curves known
as supersingular elliptic curves.

3.3.1 The Torsion Group E [m]

For an integer m 6= 0, let E [m] denote the kernel of the multiplication map
[m]. All points of E [m] are called m-torsion points. Note that, since [m]P = O
if and only if [−m]P = O, it suffices to consider m > 0. Furthermore, we
consider all points P ∈ E(Fq) rather than only points in E(Fq). In other
words, E [m] may not be a subgroup of E(Fq).

Since [m] is an isogeny, E [m] is finite. We begin by finding the number of
m-torsion points.

Let m be an integer with gcd(m, p) = 1, where p is the characteristic
of Fq. By Proposition 3.2.21, [m] is separable (since p ∤ m). In addition,
|E [m]| = | ker([m])| = deg([m]) = m2 (by Theorem 3.2.10).

What is the group structure of E [m]? We first take a look at an example.

Example 3.3.1 Let m = 2. Suppose that [2]P = O. Write P = (a, b). Since
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we have P = −P , it follows that b = 0, and hence, a is a root of x3 +Ax+B.
This yields three possible values of a. As 2O = O, E [2] has four points, and
as a group, E [2] ∼= Z2 × Z2.

For a positive integer m, we first observe that E [m] is not cyclic, for oth-
erwise E [m] will contain an element of order m2.

Now, suppose that ℓ is a prime that divides m. Since E [ℓ] is not cyclic,
we can only have E [ℓ] = Zℓ × Zℓ. Since E [m] is abelian, it follows from the
Fundamental Theorem of Finite Abelian Groups that E [m] ∼= Zm1 × Zm2 ×
· · · × Zmk

with m1|m2| · · · |mk. Since E [ℓ] ⊆ E [m] and E [ℓ] ∼= Zℓ × Zℓ, we
must have k = 2, i.e., E [m] ∼= Zm1 × Zm2 , where m1|m2 and m1m2 = m2.
Consequently, m1 = m2 = m, so that E [m] ∼= Zm × Zm.

Next, we consider the case where m is a power of p.

Lemma 3.3.2 For all positive integers e, E [pe] is either {O} or isomorphic
to Zpe .

Proof. By Proposition 3.2.21(i), the map [pe] is inseparable. Therefore, it fol-
lows from Theorem 3.2.10 that |E [pe]| = degs([p

e]) < deg([pe]) = p2e. In
particular, for e = 1, |E [p]| = 1 or p. Thus, the result holds for e = 1.

Suppose that E [p] = {O}. Then, it is clear that, for all e > 1, E [pe] = {O}
(for otherwise, there would be a point of order p).

Since E [p] ⊆ E [pe], E [pe] must be cyclic; otherwise, E [pe] contains Zp×Zp,
which then means E [p] ⊇ Zp × Zp, a contradiction. Now consider the group
morphism θ: E [pe] → E [pe−1] by sending P to [p]P , for e ≥ 2. It is clear
that the kernel of θ is E [p] and it is surjective (see Lemma 3.2.4). Hence,
|E [pe]| = p|E [pe−1]|. By induction, we obtain the desired result. ✷

Definition 3.3.3 An elliptic curve E is called a supersingular elliptic
curve if E [p] = {O}. Otherwise, E is an ordinary elliptic curve.

Example 3.3.4 From the proof of Theorem 3.2.17, if q ≡ 3 (mod 4), then
the curve E : y2 = x3 + x has q + 1 Fq-rational points. Similarly, for all
odd integers d, we have qd ≡ 3 (mod 4) and, thus, E(Fqd) has q

d + 1 points.
Suppose that E [p] ∼= Zp, where p is the characteristic of Fq. In other words, E
has a point P of order p. Suppose there is some integer d such that P ∈ E(Fqd).
If d is odd, since E [p] is a subgroup of E(Fqd), it follows that we must have

p|(qd + 1), which is impossible. If d ≡ 2 (mod 4), then we have p|(1 + qd/2)2,
whereas, if d ≡ 0 (mod 4), then we have p|(qd/2r − 1)2

r

, where 2r exactly
divides d. Hence, we conclude that E [p] = {O} and E is supersingular.

Our preceding analysis leads us to the following result on the structure of
E [m] for any arbitrary positive integer m.

Theorem 3.3.5 Let E be an elliptic curve over Fq of characteristic p. Write
m = pem′ for some m′ with gcd(p,m′) = 1. Then E [m] ∼= Zm′ × Zm′ or
Zm′ × Zm.
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Remark 3.3.6 Let m be a positive integer such that gcd(m, p) = 1. By
Theorem 3.3.5, if E is an elliptic curve over Fq of characteristic p, then E [m] ∼=
Zm ×Zm. Hence, there exist P1, P2 ∈ E [m] such that all points P ∈ E [m] can
be represented in the form P = aP1+ bP2, for a, b ∈ Zm. Suppose that σ is an
isogeny on E . Since [m]σ(P ) = σ([m]P ) = σ(O) = O for all points P ∈ E [m]
(note that it is easy to verify that [m] commutes with every isogeny), it means
that σ, when restricted to E [m], is a homomorphism from E [m] to E [m]. In
particular, σ can be represented by a 2 × 2 matrix [σ]m on E [m] with entries
in Zm.

3.3.2 The Group E(Fq)

In Corollary 1.5.4, we have discussed the Hasse-Weil bound for the number
of Fq-rational points on an algebraic curve of genus g. Applying to elliptic
curves (which are curves of genus 1 according to Theorem 3.1.11), we obtain
Theorem 3.3.7.

Theorem 3.3.7 (Hasse’s Theorem) Let N(q) denote the number of Fq-
rational points on E. Then |N(q)− q − 1| ≤ 2

√
q.

Remark 3.3.8 In fact, there is an independent proof for Hasse’s Theorem
for elliptic curves via the use of the Frobenius morphism φq. The main ideas
of the proof can be summarized as follows.

• Recall that N(q) = | ker(1 − φq)| = degs(1 − φq) = deg(1 − φq) since
1− φq is separable (cf. [144, Chapter III, Corollary 5.5]).

• For two endomorphisms ψ1 and ψ2 on E , 〈ψ1, ψ2〉 def
= deg(ψ1 + ψ2) −

deg(ψ1)−deg(ψ2) is bilinear and satisfies the Cauchy-Schwarz inequality:

|〈ψ1, ψ2〉| ≤ 2
√
deg(ψ1)

√
deg(ψ2).

• Hence, |N(q)− q − 1| = |deg(1− φq)− deg(φq)− deg(1)| = |〈1,−φq〉| ≤
2
√
deg(1)

√
deg(−φq) = 2

√
q.

For the rest of this section, we let

a(q)
def
= q + 1−N(q).

Thus far, we have the following information on a(q):

• By Hasse’s Theorem, a(q)2 ≤ 4q.

• Recall that the L-function of E is given by L(t) = 1−a(q)t+ qt2. Hence,
if we write L(t) = (1− αt)(1 − βt), it follows that a(q) = α+ β.
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Consider the Frobenius morphism φq on E . Let m be relatively prime to p.
From Remark 3.3.6, we know that there exists a matrix [φq ]m that represents
the action of φq on E [m]. The following result will be useful. We refer the
reader to [172, Proposition 4.11] for a proof.

Theorem 3.3.9 Let Tr([φq ]m) and det([φq ]m) denote the trace and determi-
nant of the matrix [φq]m, respectively. Then, we have the following:

(i) a(q) ≡ Tr([φq ]m) (mod m);

(ii) q ≡ det([φq]m) (mod m);

(iii) φq2 − [a(q)] ◦ φq + [q] is the zero morphism on E.

In view of Theorem 3.3.9(iii), and since φq2 = φ2q, the polynomial t2 −
a(q)t+q is sometimes called the characteristic polynomial of the Frobenius
morphism φq.

In the next theorem, we classify the group orders of all the non-isogenous
classes of elliptic curves over a fixed finite field Fq. This classification is done
via the endomorphism ring of E . The reader may refer to [127] and [173] for
the proof.

Theorem 3.3.10 The set of isogeny classes of elliptic curves over Fq, of
characteristic p, is in a natural bijection with the set of integers a(q) satisfying
|a(q)| ≤ 2

√
q and any of the following conditions:

(i) gcd(q, a(q)) = 1;

(ii) q is a square and a(q) = ±2√q;

(iii) q is a square, p 6≡ 1 (mod 3) and a(q) = ±√q;
(iv) q is not a square, p = 2 or 3, and a(q) = ±√pq;

(v) q is not a square and a(q) = 0, or, q is a square, p 6≡ 1 (mod 4) and
a(q) = 0.

The following corollary is now a direct consequence.

Corollary 3.3.11 Suppose that q is a prime. Then there exists an elliptic
curve over Fq with N(q) Fq-rational points for all integers N(q) satisfying
q + 1− 2

√
q ≤ N(q) ≤ q + 1 + 2

√
q.

Corollary 3.3.12 Suppose that q = pu, where p is a prime. Then the maxi-
mum number of Fq-rational points that an elliptic curve defined over Fq can
have satisfies

Nmax(q) =

{
q + ⌊2√q⌋ if u ≥ 3 is odd and p|⌊2√q⌋
q + 1 + ⌊2√q⌋ otherwise.

Moreover, there exists an elliptic curve for which this maximum is attained.
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Proof. This is a direct consequence of Theorem 3.3.10. If q is a square, then
Theorem 3.3.10(ii) shows that Nmax(q) = q + 1 + 2

√
q. If q is not a square

and p ∤ ⌊2√q⌋, then, by Theorem 3.3.10(i), Nmax(q) = q + 1 + ⌊2√q⌋. Fi-
nally, if q is not a square and p|⌊2√q⌋, we discuss this case by consider-
ing u = 1 or u ≥ 3 separately. If u = 1, then p = q. In this case, we
must have p = 2 or 3 and the case of Theorem 3.3.10(iv) achieves the
maximum, i.e., Nmax(q) = q + 1 +

√
pq = 2q + 1 = q + 1 + ⌊2√q⌋. If

u ≥ 3, then the case of Theorem 3.3.10(i) achieves the maximum, i.e.,
Nmax(q) = q + 1 + (⌊2√q⌋ − 1) = q + ⌊2√q⌋ is the number of Fq-rational
points on some elliptic curve. ✷

For brevity, let N be the number of Fq-rational points on E . Then [N ]P =
O for all P ∈ E(Fq). This means that E(Fq) ⊆ E [N ]. Now, the structure of
E [N ] is known, namely, E [N ] ∼= ZN × ZN (unless p|N , in which case E [N ] ∼=
ZN ′×ZN ′ or ZN ′×ZN , where N ′ is the largest divisor of N that is coprime to
p). For convenience, assume that p ∤ N . We conclude that E(Fq) ∼= Zℓ × Zm,
where ℓ|m and ℓm = N . Further, by considering the action of φq on E , we can
obtain more information on ℓ as the next lemma shows.

Lemma 3.3.13 Suppose that gcd(N, p) = 1 and E(Fq) ∼= Zℓ × Zm. Then we
have that ℓ|(a(q)− 2) and ℓ|(q − 1).

Proof. Since ℓ|m, we have ℓ2|N . In particular, E [ℓ] ⊆ E(Fq). Consider the
Frobenius morphism φq on E [ℓ]. Since every ℓ-torsion point is Fq-rational, it

follows that φq is the identity on E [ℓ]. Hence, [φq]ℓ =

(
1 0
0 1

)
. By Theorem

3.3.9, a(q) ≡ Tr([φq ]ℓ) ≡ 2 (mod ℓ) and q ≡ det([φq ]ℓ) ≡ 1 (mod ℓ). This
completes the proof. ✷

Note that, when ℓ = 1, E(Fq) is cyclic. We now describe the values of ℓ
and m for each of the five cases in Theorem 3.3.10 (see [127]).

Theorem 3.3.14 (i) If gcd(a(q), q) = 1, then E(Fq) can take all possible
structures Zℓ × Zm, where ℓm = N and ℓ|gcd(q − 1,m).

(ii) Suppose that q is a square and a(q) = ±2√q. Then ℓ = m =
√
q ∓ 1.

(iii) Suppose that q is a square, p 6≡ 1 (mod 3) and a(q) = ±√q. Then ℓ = 1.

(iv) Suppose that p = 2 or 3, q is not a square and a(q) = ±√pq. Then
ℓ = 1.

(v) Suppose that a(q) = 0 and either one of the following conditions holds: q
is not a square and p 6≡ 3 (mod 4), or q is a square and p 6≡ 1 (mod 4).
Then ℓ = 1.

(vi) Suppose that q is not a square, p ≡ 3 (mod 4) and a(q) = 0. Then ℓ = 1
or 2 and both possibilities may occur.
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We remark that Theorem 3.3.14 does not tell us how to construct an elliptic
curve with a given structure, but rather, it only guarantees the existence of
such a curve.

3.3.3 Supersingular Elliptic Curves

Supersingular elliptic curves were introduced in Definition 3.3.3 as elliptic
curves which have no point of order p. In this subsection, we present another
characterizing property of supersingular elliptic curves and provide some ex-
amples of these curves.

As before, we let a(q) = q + 1−N(q).

Theorem 3.3.15 An elliptic curve E over Fq, of characteristic p, is super-
singular if and only if a(q) ≡ 0 (mod p).

Proof. For any integer k ≥ 1, let a(qk) = qk + 1 − N(qk), where N(qk)
denotes the number of Fqk -rational points on E . Let L(t) = 1− a(q)t+ qt2 =
(1 − αt)(1 − βt) be the L-function of E . Then a(qk) = αk + βk by Corollary
1.5.4(ii). Observe that α2 = a(q)α − q and β2 = a(q)β − q. Hence, for any
k ≥ 1, αk+2 = a(q)αk+1 − qαk and βk+2 = a(q)βk+1 − qβk. Adding these two
equations, we obtain

a(qk+2) = a(q)a(qk+1)− qa(qk). (3.6)

Now, suppose that a(q) ≡ 0 (mod p). Then, it is obvious that

a(q2) = a(q)2 − 2q ≡ 0 (mod p), (3.7)

while the relation in (3.6) immediately implies that a(qk) ≡ 0 (mod p) for
all integers k ≥ 2. Hence, N(qk) ≡ qk + 1 ≡ 1 (mod p). Since p ∤ N(qk),
E(Fqk) cannot contain any point of order p, for all k ≥ 1, and so, E [p] = {O}.
Consequently, E is supersingular.

Next, suppose that a(q) ≡ a (mod p) for some 1 ≤ a ≤ p − 1. It follows
from the relations in (3.6) and (3.7) that a(qk) ≡ a(q)k ≡ ak (mod p), for all
k ≥ 1. Let h be the order of a mod p. ThenN(qh) ≡ qh+1−ah ≡ qh+1−1 ≡ 0
(mod p). Thus, E [p] 6= {O}, so E is not supersingular. ✷

Remark 3.3.16 From Theorem 3.3.15, we observe that all the elliptic curves
of Theorem 3.3.10, apart from those in (i), are supersingular.

Corollary 3.3.17 If q = p is prime, then all supersingular elliptic curves
over Fp have p+ 1 points.

Proof. This is an immediate consequence of Theorem 3.3.15 and Hasse’s The-
orem (Theorem 3.3.7). ✷
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Example 3.3.18 (i) Let q ≡ 3 (mod 4). We have seen in the proof of
Theorem 3.2.17 that all the curves given by y2 = x3+Ax, where A 6= 0,
have q + 1 Fq-rational points. Thus, these curves are supersingular by
Theorem 3.3.15.

(ii) Let q ≡ 2 (mod 3). Consider the elliptic curve E : y2 = x3 + B, with
B 6= 0, defined over Fq. Once again, the proof of Theorem 3.2.17 shows
that E has q + 1 Fq-rational points and is thus supersingular.

Remark 3.3.19 (i) In fact, it can be proved that the curves with equation
y2 = x3 + Ax are supersingular if and only if q ≡ 3 (mod 4), and the
curves with equation y2 = x3 +B are supersingular if and only if q ≡ 2
(mod 3). For proofs of the converse, the reader may refer to [144, pages
143–144, Examples 4.4 and 4.5] and [172, Proposition 4.35].

(ii) It may be appealing to use supersingular curves for applications to cryp-
tography as computations can be carried out more efficiently with such
curves. However, such curves have serious drawbacks with respect to the
discrete logarithm problem. This will be discussed in greater detail in
the ensuing sections.

3.4 Computational Considerations on Elliptic Curves

We proceed next to briefly discuss some computational issues involving el-
liptic curves. Such considerations are especially important when elliptic curves
are used in cryptographic applications.

We continue to restrict our discussion to elliptic curves given by equations
of the form y2 = x3 +Ax+B.

3.4.1 Finding Multiples of a Point

Given a point P = (a, b) on E , we know that −P = (a,−b). The duplication
formula provides an easy way to compute [2]P . Given a positive integer m, a
naive approach to compute [m]P is to carry outm−1 additions P+P+· · ·+P .
However, it is straightforward to adapt the square-and-multiply approach for
exponentiation in finite fields to compute [m]P . This is described as follows:

(i) Write m in its binary form, i.e., m = m0 + 2m1 + 22m2 + · · · + 2tmt,
with mi ∈ {0, 1} and mt = 1.

(ii) Let P0 = P .

(iii) For i = 1, . . . , t, apply the duplication formula to compute Pi
def
= [2i]P =

[2]Pi−1 recursively.
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(iv) Then, [m]P =
∑t

i=0[mi]Pi.

Remark 3.4.1 In the above algorithm, t = ⌊logm⌋ (we recall that, through-
out this book, log is taken to mean log2). It requires t additions to compute
P1, . . . , Pt. In addition, it requires at most another t additions to sum up the
appropriate Pi’s to obtain [m]P . Hence, to compute [m]P requires at most
2t ≤ 2 logm additions.

Example 3.4.2 Consider the elliptic curve E : y2 = x3 + x+ 1 over F37. It is
easily verified that P = (8, 22) lies on E . The following table gives the value
of [2i]P , for 0 ≤ i ≤ 5.

TABLE 3.1: Values of [2i]P for 0 ≤ i ≤ 5.

i 0 1 2 3 4 5
[2i]P (8, 22) (14, 24) (21, 25) (28, 22) (9, 6) (9, 31)

Hence, [13]P = [8]P + [4]P + P = P3 + P2 + P0 = (28, 22) + (21, 25) +
(8, 22) = (6, 1). Further, [−19]P = [19](−P ) = [16](−P ) + [2](−P ) + (−P ) =
−P4 − P1 − P0 = (9, 31) + (14, 13) + (8, 15) = (33, 28).

Since −P is easily obtained from P for an elliptic curve, we can reduce the
number of additions required in the preceding procedure by allowing for neg-
ative signs in the expansion of m. We illustrate this process with an example.

Example 3.4.3 Consider the curve y2 = x3 + x+ 1 over F37 as in Example
3.4.2. Once again, consider the point P = (8, 22).

(i) Suppose that we want to compute [31]P . Now, 31 = 1+2+4+8+16 =
32− 1. Thus, [31]P = [32]P −P = P5−P0 = (9, 31)+ (8, 15) = (17, 26).
Only one addition is required in this case, whereas four additions are
needed in the previous approach.

(ii) Suppose that we want to compute [23]P . We have 23 = 1+2+4+16 =
(1 + 2 + 4) + 16 = (−1 + 8) + 16 = −1 + 32 − 8. Thus, [23]P = −P −
[8]P + [32]P = −P0 − P3 + P5 = (8, 15) + (28, 15) + (9, 31) = (30, 24).

In general, if mimi+1 . . .mj is a string of 1’s in the sequence m0m1 . . .mt,
then mi2

i + · · · +mj2
j = 2i + · · · + 2j = 2j+1 − 2i. In this way, it is easily

seen that the number of additions required is at most 3 logm/2.
There is an alternative and often more efficient method to compute multi-

ples of Fqk -rational points on supersingular elliptic curves defined over Fq. Sup-
pose that E is an elliptic curve with q+1 Fq-rational points. According to The-
orem 3.3.15, E is supersingular. By Theorem 3.3.9(iii), we have φq2 + [q] = 0.
In particular, for all points P = (x, y) ∈ E , we have [q]P = −φq2(P ), i.e.,
[q]P = (xq

2

,−yq2). Computing (xq
2

, yq
2

) is often much easier than computing
[q](x, y). The procedure can now be described as follows.

© 2013 Taylor & Francis Group, LLC



70 Algebraic Curves in Cryptography

(i) Write m = m0 +m1q + · · · +mtq
t with m0, . . . ,mt ∈ {0, 1, . . . , q − 1}

and mt 6= 0 .

(ii) For i = 1, . . . , t, we have [qi](x, y) = (xq
2i

, (−1)iyq2i).

(iii) For k = 0, 1, . . . , q − 1, compute Pk = [k](x, y) = (xk, yk).

(iv) Then [m]P =
∑t

i=0[q
i]Pmi =

∑t
i=0(x

q2i

mi
, (−1)iyq2imi

).

3.4.2 Computing the Miller Functions

For an integer m, let P ∈ E [m] be an m-torsion point. Recall that a Miller
function is a function fm,P such that div(fm,P ) = mP −mO (Remark 3.1.25).
The Miller functions will be the key component in the definitions of the Weil
and Tate pairings, to be defined in Section 3.5.

The Miller algorithm in Figure 3.1 seeks to output a function f , given
inputs of an integer m and a point P on E , such that div(f) = mP − [m]P −
(m− 1)O. In particular, if P ∈ E [m], then div(f) = mP −mO.

For any two points T1 and T2 on E , let fT1,T2 be the function such that
div(fT1,T2) = T1+T2−(T1⊕T2)−O, where (T1⊕T2) is the point on E that is the
sum of T1 and T2 under the group law. (Such a function exists by Proposition
3.1.22.) Represent m in its binary form: m = m0 + 2m1 + 22m2 + · · ·+ 2tmt,
where mi ∈ {0, 1} and mt = 1. The Miller algorithm resembles the double-
and-add algorithm, but operates in a left-to-right manner.

FIGURE 3.1: The Miller algorithm.

Input: an integer m and a point P on E
Output: a function f such that div(f) = mP − [m]P − (m− 1)O

1. f ← 1 and T ← P

2. for i = t− 1 down to 0 do

3. f ← f2 · fT,T and T ← [2]T

4. if mi = 1 then

5. f ← f · fT,P and T ← T + P

6. return f

Example 3.4.4 Here, we illustrate the algorithm with a simple example.
Take m = 13 = 1 + 0 · 2 + 1 · 4 + 1 · 8, so that t = 3.

1. Initialize: T ← P, f ← 1.
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2. t = 2: f ← f2 · fT,T = fP,P ; T ← [2]T = [2]P ;
(div(f) = P + P − [2]P −O = 2P − [2]P −O).

– m2 = 1: f ← f · f[2]P,P ; T ← T + P = [3]P ;
(div(f) = 2P − [2]P −O+ [2]P +P − [3]P −O = 3P − [3]P − 2O).

3. t = 1: f ← f2 · f[3]P,[3]P ; T ← [2]T = [6]P ;
(div(f) = 2(3P − [3]P − 2O) + 2[3]P − [6]P −O = 6P − [6]P − 5O).

– m1 = 0.

4. t = 0: f ← f2 · f[6]P,[6]P ; T ← [2]T = [12]P ;
(div(f) = 2(6P − [6]P − 5O)+ 2[6]P − [12]P −O = 12P − [12]P − 11O).

– m0 = 1: f ← f · f[12]P,P ; T ← [13]P ;
(div(f) = 12P − [12]P − 11O + [12]P + P − [13]P − O = 13P −
[13]P − 12O).

5. Output f .

Theorem 3.4.5 The Miller algorithm outputs a function f , given inputs of
an integer m and a point P on E, such that div(f) = mP − [m]P − (m− 1)O.

Proof. For j = 1, . . . , t, let fj be the function obtained at the jth step (i.e.,
i = t−j). For j = 1, ifmt−1 = 0, we have f1 = fP,P , so div(f1) = 2P−[2]P−O,
whereas if mt−1 = 1, we have f1 = fP,P · f[2]P,P , so div(f1) = 3P − [3]P −
2O. For j = 1, . . . , t, let kj =

∑j
k=0 2

kmt−j+k. We prove by induction that
div(fj) = kjP − [kj ]P − (kj − 1)O. Now, fj+1 = f2

j · f[kj ]P,[kj]P if mt−j = 0,

and is f2
j · f[kj]P,[kj ]P · f[2kj ]P,P if mt−j = 1. In the former case,

div(fj+1) = 2div(fj) + div(f[kj ]P,[kj]P )
= 2kjP − 2[kj ]P − 2(kj − 1)O + 2[kj ]P − [2kj ]P −O
= 2kjP − [2kj ]P − (2kj − 1)O
= kj+1P − [kj+1]P − (kj+1 − 1)O.

If mt−j = 1, it follows that

div(fj+1) = 2div(fj) + div(f[kj ]P,[kj ]P ) + div(f[2kj ]P,P )
= 2kjP − [2kj ]P − (2kj − 1)O + [2kj ]P + P − [(2kj + 1)]P −O
= (2kj + 1)P − [(2kj + 1)]P − 2kjO
= kj+1P − [kj+1]P − (kj+1 − 1)O.

Hence, the result follows by induction since kt = m. ✷
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3.4.3 Finding the Order of E(Fq)

Throughout this subsection, N = N(q) denotes the number of Fq-rational
points on an elliptic curve E .

Finding N is essential in most cryptographic applications. The Hasse-Weil
bound gives us q+1− 2

√
q ≤ N ≤ q+ 1+ 2

√
q. In this subsection, we briefly

describe some of the existing methods that can be used to compute N .
The most naive approach is to list all the points on E and count them. This

is, however, not necessary as it is sufficient to determine whether an element
in the field is a square.

Let E : y2 = x3 +Ax +B be the usual Weierstrass normal form of E .
Lemma 3.4.6 Let χ : Fq → {0, 1,−1} be defined as:

χ(a) =





0 if a = 0
1 if a is a square in F∗

q

−1 otherwise.

Then N = q + 1 +
∑

a∈Fq
χ(a3 +Aa+B).

Proof. Observe that, if a3 + Aa + B is a square in F∗
q , then there exist two

points in E(Fq) with a as the x-coordinate. If a3 + Aa + B = 0, then (a, 0)
is the only point in E(Fq) with a as the x-coordinate. Finally, if a3 +Aa+B
is not a square, then E(Fq) has no point with x-coordinate equal to a. Sum-
ming up, it follows that E(Fq) has χ(a3 + Aa + B) + 1 points with a as
the x-coordinate. Together with O, the number of points in E(Fq) must be
N = 1 +

∑
a∈Fq

(χ(a3 +Aa+B) + 1) = q + 1 +
∑

a∈Fq
χ(a3 +Aa+B). ✷

The function χ can be effectively computed, because in fact, for z ∈ Fq,
we have χ(z) = z(q−1)/2.

Example 3.4.7 Let q ≡ 3 (mod 4). Consider the curve E : y2 = x3 + x. We
now use Lemma 3.4.6 to show that E has q + 1 Fq-rational points. Since −1
is not a square in F∗

q , for x ∈ F∗
q , x

3 + x is a square if and only if −(x3 + x) =
(−x)3 + (−x) is not a square. Hence,

∑
a∈Fq

χ(a3 + a) = 0. Consequently,
N = q + 1 as expected.

Write a = a(q) = q + 1−N .
By Corollary 1.5.4, the number of Fqk -rational points on E can be com-

puted once N is known. More precisely, let L(t) = 1−at+qt2 = (1−αt)(1−βt)
be the L-function of E . Then Nk = |E(Fqk)| = q+1−(αk+βk), for all positive
integers k. Letting ak = αk + βk, the proof of Theorem 3.3.15 shows that ak
satisfies the relation ak+2 = aak+1−qak (see (3.6)), for k ≥ 1, and a2 = a2−2q
(see (3.7)). In this way, the values of Nk can be easily obtained.

Example 3.4.8 Let q be a square and suppose that E has q + 1 + 2
√
q Fq-

rational points. Then L(t) = (1 +
√
qt)2, so that α = β = −√q. Hence,

ak = (−1)k2qk/2 and Nk = qk + 1− (−1)k2qk/2. Therefore, we conclude that
E has the maximum number of Fqk -rational points whenever k is odd.
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By definition, the order k of a point P is the smallest integer such that
[k]P = O. Since k|N , it may sometimes be possible for us to deduce the value
of N from the Hasse-Weil bound if some such k is known. We illustrate this
technique with the next example.

Example 3.4.9 Consider the elliptic curve E : y2 = x3 + x + 2 defined over
F97. It can be directly verified that P = (61, 8) lies on E . It can be further
checked that P has order 26. By the Hasse-Weil bound, N must lie in the
interval [97 + 1− 2

√
97, 97 + 1 + 2

√
97] or [79, 117]. From the fact that 26|N ,

we can conclude that N = 104, since 104 is the only multiple of 26 in this
interval.

Remark 3.4.10 We may use the “baby-step giant-step” procedure (which
requires around O(q1/4) computations) to compute the order of a point P ∈
E(Fq). The reader may refer to [172] for more details on this method. Indeed,
knowledge of the orders for a few points is often sufficient to help us determine
N .

All the methods we have described so far are computationally inefficient
to determine the order N of the group E(Fq). In fact, there is a deterministic
polynomial-time algorithm to determine N , or more precisely, the value of
a = a(q). This algorithm was first proposed by Schoof, but later improved
by Atkin and Elkies. In essence, it tries to find the values of a(q) mod ℓ for
a large number of primes ℓ, where the product of these primes is greater
than 4

√
q. This is done with the aid of certain polynomials known as division

polynomials as well as the characteristic polynomial t2 − a(q)t + q of the
Frobenius morphism. Indeed, Theorem 3.3.9(iii) yields φq2 + [q] = [a(q)] ◦ φq .
For all points in E [ℓ], it follows that φq2 (P )+[q mod ℓ]P = [a(q) mod ℓ]◦φq(P ).
Working with division polynomials then enables us to determine a(q) mod
ℓ. Finally, the exact value of a(q) is computed via the Chinese Remainder
Theorem. This algorithm has the fastest running time of O(log4 q) with fast
arithmetic. For more on this method and on division polynomials, see [172].

3.4.4 The Discrete Logarithm Problem on an Elliptic Curve

For a point P ∈ E and an integer m, we have described computationally
efficient methods to compute [m]P . Conversely, given a point Q = [m]P , can
we determine m efficiently?

This problem is the elliptic curve version of the discrete logarithm prob-
lem.

Evidently, the discrete logarithm problem can be defined for any abelian
group, for instance, the multiplicative group of the nonzero elements of any
finite field. Indeed, the discrete logarithm problem underpins the security of
some well-known cryptographic schemes, including the ElGamal encryption
scheme and the digital signature standard.

In general, the discrete logarithm problem in an arbitrary group can be
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solved via methods such as the ρ or the “baby-step giant-step” algorithms.
However, these algorithms have a complexity of around the square root of the
size of the group. We briefly describe the ρ algorithm for elliptic curve groups.

Once again, let P and Q be two points on E such that Q = [m]P . Suppose
further that P has order N .

(i) Pick around s pairs of values (a1, b1), (a2, b2), . . . , (as, bs). Let Ri =
[ai]P + [bi]Q, for i = 1, 2, . . . , s.

(ii) Divide E(Fq) into s subsets G1, . . . , Gs of roughly equal size.

(iii) Let S0 = [a0]P + [b0]Q for some random integers a0, b0.

(iv) Construct the sequence of points S1, S2, . . . as follows. For every i ≥ 0,
if Si ∈ Gji for some 1 ≤ ji ≤ s, set Si+1 = Si +Rji .

(v) By the birthday paradox, after around
√
N points have been con-

structed, there exist two points Si = [ci]P+[di]Q and Sj = [cj ]P +[dj ]Q
such that Si = Sj .

(vi) If gcd(dj − di, N) = 1, we have m = −(cj − ci)/(dj − di) mod N . If
gcd(dj − di, N) 6= 1, we have to choose a new point S0 again to run the
above algorithm.

For finite fields, there exists a subexponential-time algorithm, known as the
index calculus algorithm, to solve the discrete logarithm problem. Essentially,
this procedure exploits the facts that, in the case of a prime field Fp, every
element of the field can be regarded as an integer, which can then be factored
into a product of prime numbers, while in the case of Fpe where e > 1, each
element can be expressed as a product of irreducible polynomials over Fp. As
such, the particular structure of the finite field plays a critical role in this
algorithm.

An important question now confronts us: Do the structures of elliptic
curves offer any “loophole” that can be exploited to solve the discrete log-
arithm problem? This question remains open today. In other words, for arbi-
trary elliptic curves, only the exponential-time general approaches are known
to solve the discrete logarithm problem. Nonetheless, for certain classes of
elliptic curves, there may exist algorithms that solve the discrete logarithm
problem efficiently.

For example, in Subsection 3.5.5, we show that the discrete logarithm
problem for supersingular elliptic curves can be reduced to a corresponding
problem in some finite field, of a manageable size, for which the index calculus
algorithm applies.

Anomalous elliptic curves over Fp are elliptic curves with exactly p
points. It has been shown by Semaev [137], Satoh and Araki [135] and Smart
[149] that the discrete logarithm problem on such curves can be transformed
into a discrete logarithm problem in the additive group Zp, hence, making
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the problem trivial to solve. Furthermore, by using summation polynomials
in the index calculus algorithm and the method of Weil descent, Claus Diem
[48] showed that the discrete logarithm problem for elliptic curves over finite
fields Fqn , where q and n are large, can be solved in subexponential time. The
reader may refer to [48, 172] for details of these algorithms.

3.5 Pairings on an Elliptic Curve

Pairing on elliptic curves are an efficient and powerful tool for the study
of elliptic curves. For applications to cryptography, pairings on elliptic curves
play important roles in pairing-based cryptographic schemes and discrete log-
arithms.

Let G1, G2, G3 be abelian groups. A pairing w : G1 × G2 → G3 is a
mapping that sends every pair of elements in G1×G2 to some element in G3.
Moreover,w is bilinear if it is linear in each of its two inputs. More specifically,
let g1, g

′
1 ∈ G1 and g2, g

′
2 ∈ G2. Then w(g1g

′
1, g2) = w(g1, g2)w(g

′
1, g2) and

w(g1, g2g
′
2) = w(g1, g2)w(g1, g

′
2). (Here, the group operations in G1, G2, G3

are written multiplicatively, with multiplicative identity 1.)
In the case where G1 = G2, a pairing w is said to be alternating if, for all

g1, g2 ∈ G1 = G2, w(g1, g2) = w(g2, g1)
−1. Furthermore, w is nondegenerate

if w(g1, g2) = 1 for all g2 ∈ G2 implies that g1 = 1.
For example, let V be the set of 2-tuples over any commutative ring R.

Then the determinant function det(v, w), defined as the determinant of the 2×
2 matrix with v and w as its rows, is a bilinear, alternating, and nondegenerate
pairing from V × V to the additive group of the ring R.

In this section, we introduce two pairings from the product of two elliptic
curves defined over Fq to F

∗
q . Such pairings are useful as they often help to

transfer operations or structures in elliptic curves to corresponding operations
or structures in Fq.

From now on, we fix a positive integer m that is relatively prime to p,
where p is the characteristic of Fq.

3.5.1 The Weil Pairing

Let E be an elliptic curve over Fq and let Q be a point in E [m]. Recall that
a Miller function fm,Q satisfies div(fm,Q) = mQ−mO.

Lemma 3.5.1 There exists a function gm,Q such that gmm,Q = fm,Q ◦ [m].

Proof. First of all, we note that, for any T ∈ [m]−1(Q) and S ∈ [m]−1(O),
one has that νT (fm,Q ◦ [m]) = m and νS(fm,Q ◦ [m]) = −m. Moreover, Q is
the unique zero of fm,Q and O is its unique pole. Hence, div(fm,Q ◦ [m]) =
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m
∑

R∈E[m](τR(Q0) − τR(O)), where Q0 is any point such that [m]Q0 = Q
and τR is the translation map in Example 3.2.3. By Proposition 3.1.22,
the divisor D =

∑
R∈E[m] τR(Q0) − τR(O) is principal since, as points on

E , ∑R∈E[m](τR(Q0) − τR(O)) =
∑

R∈E[m]Q0 = [m2]Q0 = [m]Q = O.

Thus, we can find a function gm,Q with div(gm,Q) = D. It follows that
mD = m div(gm,Q) = div(gmm,Q) = div(fm,Q ◦ [m]). By scaling, we obtain
gmm,Q = fm,Q ◦ [m]. ✷

We are now ready to define the Weil pairing wm(P,Q) from E [m]× E [m]
to the group µm of mth roots of unity in Fq as follows.

Definition 3.5.2 The Weil pairing is defined to be a map wm : E [m] ×
E [m] → µm such that, for points P and Q in E [m], wm(P,Q) = (gm,Q ◦
τP )/gm,Q. Equivalently, wm(P,Q) = gm,Q(P + X)/gm,Q(X) for any X ∈ E
such that both X and P +X are neither zeros nor poles of gm,Q.

As τ∗P fixes fm,Q ◦ [m], for all P ∈ E [m], by Lemma 3.5.1, we have gmm,Q ◦
τP = gmm,Q or (gm,Q ◦ τP )m = gmm,Q. It follows that ((gm,Q ◦ τP )/gm,Q)

m = 1.
Therefore, wm(P,Q) is indeed an mth root of unity.

Remark 3.5.3 Note that the choice of gm,Q is not unique. In fact, the various
gm,Q’s differ by a constant multiple. It is easy to verify that wm(P,Q) is
independent of the choice of gm,Q.

Example 3.5.4 Consider the elliptic curve E : y2 = x3 − x over Fq. Recall
that Fq is of characteristic 6= 2, 3. The point Q = (0, 0) is a 2-torsion point.
Recall that f2,Q = x, i.e., div(x) = 2Q − 2O. Now, for any point (x, y),

[2](x, y) = (λ2 − 2x, λ(3x− λ2)− y), where λ = 3x2−1
2y . Thus, f = f2,Q ◦ [2] is

given by f = λ2 − 2x = (3x2−1)2−8xy2

4y2 = x4+2x2+1
4y2 = (x2+1)2

4y2 . It follows that

g2,Q = (x2 + 1)/2y.
Fix another point P = (a, 0) ∈ E [2] \ {O}. We compute S = (a, 0) + (b, c)

using the addition formula. (Here, (b, c) is the point X in Definition 3.5.2.)
By direct computation, the x-coordinate of S is (ab − 1)(a+ b)/(b − a)2 and
its y-coordinate is c(2a+ b− 3a2b)/(b− a)3.

Table 3.2 gives the values of w2(P,Q) for a = 0, 1,−1.

TABLE 3.2: Values of w2(P,Q) for a = 0, 1,−1.
a S g2,Q(S) w2(P,Q)
0 (−1/b, c/b2) (b2 + 1)/2c 1
1 ((b + 1)/(b− 1),−2c/(b− 1)2) −(b2 + 1)/2c −1
−1 (−(b− 1)/(b+ 1),−2c/(b+ 1)2) −(b2 + 1)/2c −1

As expected, each of the values is a square root of unity.
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In the next theorem, we record some of the useful properties satisfied by
wm. The reader may consult books such as [144, Chapter III, Propositions 8.1
and 8.2] for the proofs.

Theorem 3.5.5 The Weil pairing wm : E [m] × E [m] → Fq, as defined in
Definition 3.5.2, satisfies the following properties:

(i) The pairing wm is bilinear, i.e., for all P1, P2, Q1, Q2 ∈ E [m],

wm(P1 + P2, Q1) = wm(P1, Q1)wm(P2, Q1)
wm(P1, Q1 +Q2) = wm(P1, Q1)wm(P1, Q2).

(ii) The pairing wm satisfies wm(T, T ) = 1 for all T ∈ E [m]. In particular,
for P,Q ∈ E [m], wm(P,Q) = wm(Q,P )−1, i.e., wm is alternating.

(iii) The pairing wm is nondegenerate, i.e., if, for some P ∈ E [m], we have
that wm(P,Q) = 1 for all Q ∈ E [m], then P = O.

(iv) Let m′ be another integer coprime to p. Let P ∈ E [mm′] and Q ∈ E [m] ⊂
E [mm′]. Then, wmm′(P,Q) = wm([m′]P,Q).

(v) Let σ : E → E be an isogeny. Then, for any P ∈ E [m], wm(σ(P ),
σ(Q)) = wm(P,Q)deg(σ).

(vi) For any τ in the Galois group of Fq over Fq, we have

wm(τ(P ), τ(Q)) = τ(wm(P,Q)).

Example 3.5.6 Refer to the pairing of Example 3.5.4.

(i) From the bilinearity, we have w2((1, 0), (−1, 0)) = w2((0, 0) +
(−1, 0), (−1, 0)) = w2((0, 0), (−1, 0))w2((−1, 0), (−1, 0)) = −1.

(ii) Furthermore, let P0 ∈ E [4] with [2]P0 = (0, 0). Then, it follows from
Theorem 3.5.5(iv) that, for all Q ∈ E [2], w4(P0, Q) = w2([2]P0, Q) =
w2((0, 0), Q).

Remark 3.5.7 Recall from Remark 3.3.6 that E [m] is a rank two Zm-module.
Let P and Q generate E [m]. We claim that wm(P,Q) is a primitivemth root of
unity. Indeed, suppose this was not the case. Then there exists d < m such that
1 = wm(P,Q)d = wm([d]P,Q). Thus, for any integers a and b, wm([d]P, [a]P +
[b]Q) = wm([d]P, [a]P )wm([d]P, [b]Q) = wm(P, P )adwm([d]P,Q)b = 1. This
implies that wm([d]P,R) = 1 for all R ∈ E [m]. By the nondegeneracy of wm

(Theorem 3.5.5(iii)), we conclude that [d]P = O. This is a contradiction as P
has order m. Hence, wm(P,Q) is a primitive mth root of unity.
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Observe that the definition of the Weil pairing given in Definition 3.5.2 is
not very useful for computations. This is because it is not immediately clear
how we may compute the function gm,Q. It will thus be useful if we can define
the Weil pairing based on the Miller functions instead. This is possible as the
next theorem shows. The proof uses the Weil reciprocity and may be found
in books such as [172, Section 11.6.1].

Theorem 3.5.8 Let m be a positive integer relatively prime to p, and let
P,Q ∈ E [m]. Fix some X that is not in the subgroup generated by P and Q.
Let D = (X ⊕ Q) − X and D′ = (⊖X ⊕ P ) − ⊖X, where, from here till
the end of this subsection, we use ⊕ and ⊖ for the group operations on E
to avoid ambiguity. Then wm(P,Q) = fm,P (D)/fm,Q(D

′) where fm,P (D) =
fm,P (X⊕Q)
fm,P (X) and fm,Q(D

′) = fm,Q(⊖X⊕P )
fm,Q(⊖X) .

Example 3.5.9 Consider the elliptic curve E : y2 = x3 + 30x+34 over F631.
It can be shown that E has 650 F631-rational points. Furthermore, E [5] ⊆
E(F631) and is generated by P = (121, 387) and Q = (36, 60). Let X = (0, 36)
be a point of E . One checks directly that X has order 130, so X is not in
the subgroup generated by P and Q. In addition, X ⊕ Q = (176, 486) and
⊖X ⊕ P = (532, 300).

We compute the values f5,P (X⊕Q), f5,P (X), f5,Q(⊖X⊕P ), and f5,Q(⊖X)
via the Miller algorithm, by evaluating the functions at each step. Table 3.3
shows the values of f5,P (X ⊕ Q), f5,P (X), f5,Q(⊖X ⊕ P ), and f5,Q(⊖X) at
each stage of the Miller algorithm.

TABLE 3.3: Values of f5,P (X ⊕Q), f5,P (X), f5,Q(⊖X ⊕ P ), and f5,Q(⊖X).

i f5,P (X ⊕Q) f5,P (X)
2 1 1
1 28 560
0 103 219

i f5,Q(⊖X ⊕ P ) f5,Q(⊖X)
2 1 1
1 541 255
0 284 204

From Table 3.3, we obtain f5,P (X ⊕ Q)/f5,P (X) = 103/219 = 473 and
f5,Q(⊖X ⊕ P )/f5,Q(⊖X) = 284/204 = 88. Thus, w5(P,Q) = 473/88 = 242.

3.5.2 The Tate-Lichtenbaum Pairing

In this subsection, we present a special form of the Tate-Lichtenbaum
pairing which is often used in cryptography. To this end, let m be a prime
different from p, the characteristic of Fq, and assume thatm|(q−1), so that Fq

contains all the mth roots of unity. We further assume that E has a nonzero
Fq-rational point of order m. We also let E(Fq)[m] = E [m]∩ E(Fq) denote the
group of all m-torsion points in E(Fq).

Let µm denote the subgroup of F∗
q of order m. Now, consider the two

quotient groups: G′ = E(Fq)/mE(Fq) and H = F∗
q/(F

∗
q)

m ∼= µm, where (F∗
q)

m
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is obtained by raising every element of F∗
q to its mth power. Then the three

groups G = E(Fq)[m], G′ and H all have exponent m.
We now define the Tate-Lichtenbaum pairing to be the map tm : G×

G′ → µm given by tm(P,Q) = fm,P (Q + X)/fm,P (X), where X is chosen
so that both the numerator and denominator are well defined. Here, P is
an m-torsion point in E(Fq)[m], Q is a point in E(Fq) which can be viewed
as an equivalence class in E(Fq)/mE(Fq), and tm is well defined only up to
multiplication by mth roots of unity. In other words, if we choose Q′ so that
Q′−Q ∈ mE(Fq), then tm(P,Q)/tm(P,Q′) is an mth root of unity. Similarly,
for any X,X ′, we have fm,P (Q+X)/fm,P (X) = ζmfm,P (Q+X ′)/fm,P (X

′)
for some ζ ∈ F∗

q .
We state two important properties of the Tate-Lichtenbaum pairing and

we again leave the proofs to the interested reader to check out from [172,
Sections 3.4 and 11.3].

Theorem 3.5.10 (i) The pairing tm is bilinear, i.e., for all P1, P2 ∈ G
and Q1, Q2 ∈ G′,

tm(P1 + P2, Q1) = tm(P1, Q1)tm(P2, Q1)
tm(P1, Q1 +Q2) = tm(P1, Q1)tm(P1, Q2).

(ii) The pairing tm is nondegenerate, i.e., if tm(P,Q) = 1 for all Q ∈
E(Fq)/mE(Fq), then P = O. Similarly, if tm(P,Q) = 1 for all P ∈
E(Fq)[m], then Q belongs to mE(Fq), i.e., Q is O when viewed as a class
in E(Fq)/mE(Fq).

To ensure that tm is uniquely defined, we may define a modified Tate
pairing to be t̂m(P,Q) = tm(P,Q)(q−1)/m. Recall that we have assumed that
m|(q − 1). Suppose further that E(Fq)[m

2] and E(Fq)[m] are isomorphic to
Zm (and hence, m2 ∤ |E(Fq)|). In this case, E(Fq)/mE(Fq) is isomorphic to
E(Fq)[m] (since all elements of E(Fq)[m] can be viewed as distinct representa-
tives of the equivalence classes of E(Fq)/mE(Fq)). Then it can be shown that
t̂m : E(Fq)[m]× E(Fq)[m]→ µm is a perfect pairing, i.e., t̂m(P, P ) 6= 1 for all
P ∈ E(Fq)[m] \ {O}.

Remark 3.5.11 In cryptographic applications, the Tate pairing is often pre-
ferred to the Weil pairing for the following reasons:

• The computations involved are simpler, and hence more efficient. In gen-
eral, the Tate pairing uses half the number of computations as compared
to the Weil pairing.

• Since t̂m(P, P ) 6= 1, it is more useful as nontrivial values of t̂m([a]P, [b]P )
can be computed.

However, we require F∗
q to contain the mth roots of unity and E(Fq) to

have a point of order m but not a point of order m2.
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3.5.3 Embedding Degrees

Observe that, for the Weil pairing, we work with points in the group E [m]
which may not be a subgroup of E(Fq). Furthermore, wm(P,Q) ∈ Fq is an
mth root of unity. What is the smallest extension of Fq that we work with?
Such considerations motivate the following definition.

Definition 3.5.12 For an integer m relatively prime to p, the embedding
degree with respect to q and m is defined as the smallest integer d for which
qd ≡ 1 (mod m). In other words, the embedding degree d is the order of q
modulo m.

Indeed, the embedding degree with respect to q and m is the smallest
degree of the field extension over Fq that contains all the mth roots of unity.
More specifically, let µm denote the group of mth roots of unity. Then d is
the smallest integer such that µm ⊆ Fqd .

Let k be the smallest integer such that E [m] ⊆ E(Fqk), so that the com-
putations of wm are all carried out in Fqk . The next lemma shows that d|k.

Lemma 3.5.13 Suppose that E [m] ⊆ E(Fqk). Then q
k ≡ 1 (mod m).

Proof. Let P and Q be points in E [m] that, together, generate E [m]. According
to Remark 3.5.7, wm(P,Q) is a primitivemth root of unity. Let ζ = wm(P,Q).
Let τ be any automorphism in the Galois group of Fq over Fqk . Then Theo-
rem 3.5.5(vi) yields τ(ζ) = τ(wm(P,Q)) = wm(τ(P ), τ(Q)) = wm(P,Q) = ζ.
Hence, ζ ∈ Fqk . Since ζ is a primitive mth root of unity, all the mth roots of
unity lie in Fqk , and it follows that qk ≡ 1 (mod m). ✷

Under certain additional assumptions, we can in fact show that d = k.

Theorem 3.5.14 Let m be a positive integer relatively prime to p and sup-
pose that there exists a point of order m in E(Fq). Furthermore, suppose that
gcd(m, q − 1) = 1. Let d be the embedding degree with respect to q and m.
Then E [m] ⊆ E(Fqd).

Proof. Let P ∈ E(Fq) be a point of orderm. Consider the Frobenius map φq on
E . Let T be a point in E [m] such that P and T generate E [m]. We shall show
that φqd(T ) = T , thus showing that E [m] ⊆ E(Fqd). Note that φq(P ) = P
(since P ∈ E(Fq)) and φq(T ) = [a]P + [b]T for some a, b ∈ Zm. By Theorem
3.5.5(v), wm(φq(P ), φq(T )) = wm(P, T )deg(φq) = wm(P, T )q = wm(P, [q]T ).
On the other hand, wm(φq(P ), φq(T )) = wm(P, [a]P + [b]T ) = wm(P, [b]T ).
Since wm(P, T ) is a primitive mth root of unity (cf. Remark 3.5.7), comparing
the two expressions yields q ≡ b (mod m). Thus, φq(T ) = [a]P + [q]T .

Since φq is a group homomorphism (Theorem 3.2.9) and the multiplication
maps commute with all isogenies, it follows that φ2q(T ) = φq([a]P + [q]T ) =

[a(1 + q)]P + [q2]T . By applying φq recursively, we obtain φdq(T ) = [a(1 + q+

· · ·+ qd−1)]P +[qd]T . By the definition of d, qd ≡ 1 (mod m). Moreover, since
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gcd(m, q−1) = 1, it follows that 1+q+· · ·+qd−1 ≡ 0 (mod m). Consequently,
φqd(T ) = T , as desired. ✷

Remark 3.5.15 Theorem 3.5.14 shows that, if the embedding degree d is
small, then computations such as pairing computations or finding multiples of
points can be carried out in fields that are of reasonable size. This makes the
computations more efficient. On the other hand, this fact is exploited to trans-
form the elliptic curve discrete logarithm problem to the discrete logarithm
problem in finite fields, which may be more feasible to solve if the embedding
degree is small. (We will discuss this in more detail in Subsection 3.5.5.) In
short, for cryptographic applications, we look for elliptic curves for which the
embedding degrees are not so big as to make the computations cumbersome,
but also not too small for the discrete logarithm problem to pose a threat.
This consideration leads to the design of pairing friendly curves and the reader
can find a survey of this topic in [60].

Example 3.5.16 (i) Suppose that E has q+1 Fq-rational points and an Fq-
rational point of orderm. In particular, q ≡ −1 (mod m). Let P ∈ E [m].
By Theorem 3.3.9(iii), φq2 (P )+[q]P = 0, so φq2(P ) = −[q]P = P . Since
this holds for all P ∈ E [m], it follows that E [m] ⊆ E(Fq2). Hence, d ≤ 2.
Moreover, if m is odd and q 6≡ −1 (mod m2), it follows from Theorem
3.5.14 that d = 2 since E [m] 6⊆ E(Fq).

(ii) Suppose that q is a square and that E has N = q+1+
√
q points (which

is possible by Theorem 3.3.10(iii)). Assume that m|N and m2 ∤ N . Then
m|(q3/2 − 1), so m|(q3 − 1). This shows that the embedding degree is 3.

In fact, by looking at each of the cases in Theorem 3.3.10(ii)–(v), one can
prove that the embedding degree of supersingular elliptic curves is at most 6.

3.5.4 Modified Weil Pairing on Supersingular Elliptic Curves

In many pairing-based cryptographic applications, it is essential that the
pairing w used satisfies w(P, P ) 6= 1 for some point P of order m > 1. As we
have seen, the modified Tate pairing t̂m fulfils this criterion while it does not
hold true for the Weil pairing wm. In this subsection, we introduce a modified
Weil pairing when a certain distortion map exists.

Definition 3.5.17 Let m be a positive integer with gcd(m, q) = 1 and let P
be a point of order m > 1. An m-distortion map σ (with respect to P ) from
E to E is an isogeny such that {P, σ(P )} generates E [m].

Let σ be an m-distortion map for E with respect to a point P ∈ E [m].
Observe that, since σ is an isogeny on E , it is defined for all points Q ∈ E [m]
and we have σ(Q) ∈ E [m]. We can define the modified Weil pairing ŵm on
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E [m]× E [m] as ŵm(Q,Q′) = wm(Q, σ(Q′)). Since P and σ(P ) generate E [m],
it follows that ŵm(P, P ) 6= 1.

We now give an example of a distortion map for supersingular elliptic
curves.

Example 3.5.18 Let q ≡ 3 (mod 4). By Example 3.3.18, the elliptic curve
E with equation y2 = x3 + x is supersingular. Let α ∈ Fq2 such that α2 = −1.
Note that α 6∈ Fq. Define the map σ on E by σ((x, y)) = (−x, αy) and σ(O) =
O.

(i) First, we show that σ((x, y)) lies on E . This is clear since (αy)2 = α2y2 =
−y2 = −(x3 + x) = (−x)3 + (−x).

(ii) Clearly, σ is a morphism, and since σ(O) = O, it is an isogeny.

(iii) Let m ≥ 3 with gcd(m, q) = 1. Assume that there exists an Fq-rational
point P of order m. We claim that P and σ(P ) generate E [m]. First of
all, we note that σ is in fact an automorphism. Thus, σ(P ) also has order
m. To prove our claim, it is sufficient to show that, for any a, b ∈ Zm

so that [a]P = [b]σ(P ), one must have a = b = 0. Since P ∈ E(Fq),
we can write [a]P = (x1, y1) and [b]P = (x2, y2) ∈ E(Fq), for some
x1, y1, x2, y2 ∈ Fq. Therefore, (x1, y1) = σ((x2, y2)) = (−x2, αy2). Since
α 6∈ Fq, we must have x1 = x2 = 0 and y1 = y2 = 0. Hence P = (0, 0),
which has order 2, but this is not possible since m ≥ 3.

Remark 3.5.19 Using a similar argument as in Example 3.5.18, we can de-
fine an m-distortion map for the curve y2 = x3 + 1 when q ≡ 2 (mod 3).
Specifically, suppose that m > 3 is relatively prime to p and suppose that
m|(q + 1). Define σ on E by σ((x, y)) = (αx, y) and σ(O) = O, where α3 = 1.

3.5.5 Pairings and the Discrete Logarithm Problem

As promised in Remark 3.5.15, in this subsection, we show that the discrete
logarithm problem on an elliptic curve can be converted to a discrete logarithm
problem in some finite field via the use of pairings. This idea was proposed by
Menezes, Okamoto, and Vanstone (see [107]) and is commonly referred to as
the MOV attack.

Let P ∈ E(Fq) be of order m. Typically, m is a large prime. Suppose that
Q = [t]P . Our aim is to find the value of t mod N , where N = N(q) is the
number of Fq-rational points on E .

Suppose that E [m] ⊆ E(Fqk ). Lemma 3.5.13 says that qk ≡ 1 (mod m). Let
Nk denote the number of Fqk -rational points on E . The following procedure
enables us to find t.

• Pick a random point R ∈ E(Fqk).

• Let R′ = [Nk/m]R. Then R′ has order m.
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• Let ζ = wm(P,R′). If ζ = 1, choose a different R.

• Compute ζ′ = wm(Q,R′).

• Find u such that ζ′ = ζu.

• Then determine t = u mod m.

Observe that, in the above procedure, ζ′ = wm(Q,R′) = wm([t]P,R′) =
wm(P,R′)t = ζt. This is why we have t = u mod m.

Remark 3.5.20 It follows from the MOV attack that, if the elliptic curve
has a small embedding degree (such as in the case of supersingular elliptic
curves), then the discrete logarithm problem on the curve may be carried over
to one in a finite field of relatively small order. This is a potential drawback
for using such curves since there exist subexponential-time algorithms to solve
the discrete logarithm problem in finite fields via the index calculus method.

Remark 3.5.21 Let P be an Fq-rational point of orderm on an elliptic curve
E over Fq. Suppose further that m|(q−1). Then the modified Tate pairing can
be used to solve the discrete logarithm problem on E as well. This is due to the
fact that t̂m(P, P ) 6= 1 for all P ∈ E(Fq)[m] \ {O}. In particular, finding the
value of t reduces to solving the discrete logarithm problem in F∗

q for t̂m(P,Q)

with respect to t̂m(P, P ).

3.6 Elliptic Curve Cryptography

As mentioned in the introduction, elliptic curves appear in many different
aspects of public key cryptography. Having been equipped with the funda-
mental notions and results on elliptic curves as well as some computational
considerations, we conclude this chapter with an overview of some of the key
contributions of elliptic curves to public key cryptography.

3.6.1 The Elliptic Curve Factorization Method

We begin by showing how elliptic curves can be used to factor composite
integers. This method was proposed by Hendrik W. Lenstra Jr. in 1987 [84]
and is commonly termed the elliptic curve factorization method (or ECM
for short).

Let n = pq be a composite integer with p and q prime. For some integers
A,B ∈ Zn, consider the curve En : y2 = x3 + Ax + B defined over Zn. Let
En(Zn) denote the set of points (x, y) ∈ Zn × Zn such that y2 ≡ x3 +Ax+B
(mod n).
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Strictly speaking, En is not an elliptic curve since elliptic curves are defined
over fields. Nonetheless, there is no special reason to prevent us from carrying
out the computations as we did for elliptic curves over finite fields.

Suppose that P = (x, y) satisfies the equation En : y2 = x3 +Ax+B over
Zn.

Recall that, in the addition and duplication formulas, expressions such
as (d − b)/(c − a) or (3a2 + A)/(2b) are involved. In other words, we need
to compute the inverse of some elements modulo n. Since n is composite,
not every integer less than n has an inverse. However, if by any chance we
encounter a computation of (c− a)−1 mod n such that gcd(c− a, n) > 1, this
will give us a factor of n, which, incidentally, is what we are after.

Here is a toy example.

Example 3.6.1 Let n = 391. Consider the curve given by y2 = x3+x−1 over
Zn. It is easy to check that the point P = (228, 14) lies on the curve. We com-
pute [2]P using the duplication formula, working modulo n. Using the notation
in Theorem 3.1.19, we find thatM = −2 and [2]P = (330, 190). Letting [3]P =
[2]P+P = (330, 190)+(228, 14), we haveM = (190−14)/(330−228) mod 391.
However, 330 − 228 = 102 and gcd(102, 391) = 17. Hence, 17 is a factor of
n = 391. In fact, 391 = 17 · 23.

A natural question arises. How often can we expect to encounter a nontriv-
ial gcd when we add points? Equivalently, how do we pick the correct points
to add to increase the chance of arriving at a nontrivial gcd?

Observe that the curve En can be viewed as an elliptic curve over Zp and
Zq separately, and let Ep and Eq represent these curves, respectively. Let Np

(respectively, Nq) denote the number of Fp-rational points (respectively, Fq-
rational points) on Ep (respectively, Eq). For any point P ∈ En(Zn), let Pp

be the point on Ep obtained by reducing the coordinates of P modulo p, and
similarly for Pq. Then, [Np]Pp = O and [Nq]Pq = O. As such, if k is an integer
such that Np|k or Nq|k, it will be very likely that, in the computation of the
multiple [k]P , a nontrivial gcd will result. In view of this, we often take k to
be a product of prime powers where the primes are less than some bound. In
this way, if Np (or Nq) is L-smooth for some L, i.e., all the prime factors of
Np (or Nq) are less than or equal to L, then we can expect it to be a factor
of k.

Observe that, in Example 3.6.1, the curve E17 : y2 = x3 + x − 1 over F17

has 18 points, while the curve E23 : y2 = x3 + x − 1 over F23 has 20 points.
By considering k = 23 · 33 and P = (1, 1), the factor 17 will be revealed in the
process of computing k[P ].

We can now describe the elliptic curve factorization method as follows.

• Pick random x, y, A and let B = y2 − x3 − Ax mod n. If gcd(4A3 +
27B2, n) 6= 1 or n, then we have factored n. If gcd(4A3 + 27B2, n) = n,
choose another set of x, y, A, and repeat this step.

• Fix a bound L.
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• Let P = (x, y).

• For j = 2, 3, . . . , L, compute [j]P .

• If a nontrivial gcd is obtained, then we have factored n.

Remark 3.6.2 (i) Observe that this algorithm is very similar to the con-
ventional Pollard (p−1)-method that works with the group Z∗

n. Nonethe-
less, a big advantage of this approach with elliptic curves is that, each
time a set of x, y, A is picked, a new elliptic curve is obtained with dif-
ferent Np and Nq. By the Hasse-Weil bound, Np and Nq are about the
size of p and q, respectively. By varying Np and Nq, we are more likely
to hit on a smooth number so that [k]P = O.

(ii) With careful analysis, it can be shown that the elliptic curve factoriza-
tion method has a subexponential-time complexity of

O
(
e(1+o(1))

√
2 ln p ln ln p

)
,

where p is the smallest prime factor of n. Hence, it can be quite an
effective method to factor integers with relatively small factors (although
it is slower than the number field sieve method for integers n whose
factors are of the order of

√
n).

3.6.2 Discrete Logarithm-Based Elliptic Curve Schemes

Recall that, in general, the discrete logarithm problem on elliptic curves
is considered much harder than its counterpart in finite fields. Hence, elliptic
curves offer an attractive substitute for finite fields for the various discrete
logarithm-based schemes. Indeed, elliptic curves over smaller fields can be
used to offer a similar level of security, thereby making them very suitable for
lightweight devices.

In this subsection, we describe a key exchange protocol based on elliptic
curves as well as the elliptic curve variant of the ElGamal encryption scheme.

First, suppose that Alice and Bob want to derive a secret key from a point
on an elliptic curve. They can launch the following protocol.

• Both Alice and Bob agree on a certain elliptic curve E over Fp and fix a
particular point P ∈ E(Fp) (of a large prime order).

• Alice picks an integer a randomly and computes P1 = [a]P . She sends
P1 to Bob.

• Bob picks an integer b randomly and computes P2 = [b]P . He sends P2

to Alice.

• Alice computes Q = [a]P2 = [ab]P .
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• Bob computes Q = [b]P1 = [ab]P .

• Their shared secret key is Q.

Suppose that Alice and Bob only require the x-coordinate to derive their
final secret. Then it is not necessary for them to send the y-coordinates of P1

and P2 to each other. In this case, Alice and Bob will have to compute the
y-value from the equation of the elliptic curve and they will obtain either the
actual point or its negative. Eventually, they will obtain ±Q but, since the
x-coordinates of Q and −Q are the same, no confusion results.

Can a malicious intruder, Eve, who sees the exchange, find out Q? One
possible means is for her to compute the discrete logarithm of P1 with respect
to P to obtain a. This will enable her to compute Q = [a]P2. However, if E
is not one of the elliptic curves for which discrete logarithm is easy, it will be
extremely hard for her to do so.

Of course, what Eve seeks after is really the point Q. Can she determine Q
from the knowledge of P , [a]P , and [b]P? So far, this seems to be as hard as
the discrete logarithm problem itself. However, if she randomly picks a point
R and wishes to test if R = Q, she may do so with the help of pairings using
the following procedure.

• Choose a pairing (for example, the modified Weil pairing or the modified
Tate pairing) w such that w(P, P ) 6= 1.

• Compute ζ = w(P1, P2) and ζ
′ = w(R,P ).

• If ζ = ζ′, then Q = R.

Let R = [k]P . Here, this procedure works since w(P1, P2) =
w([a]P, [b]P ) = w(P, P )ab and w(R,P ) = w([k]P, P ) = w(P, P )k . Since
w(P, P ) 6= 1, we must have k = ab so that R = Q.

Remark 3.6.3 The problem of determining Q from P , P1, and P2 is the
computational Diffie-Hellman problem, while the problem of deciding
if R = Q is the decisional Diffie-Hellman problem. Thus, the decisional
Diffie-Hellman problem for elliptic curves can be solved. Recall that both these
problems are considered computationally hard for finite fields (see [42]).

Next, we describe an encryption scheme which is an analog of the ElGamal
encryption scheme.

The first issue is to represent a message M as a point on an elliptic curve.
We describe a possible method for an elliptic curve E over a prime field Fp.
Represent M as an integer with, say, M < p/100. Let xi = 100M + i, where
i = 0, 1, . . . , 99. If there exists some yi such that (xi, yi) is a point in E(Fp),
then let PM = (xi, yi). Note that the probability that this happens for each i
is 1/2. Conversely, given PM = (x, y), then M = ⌊x/100⌋.

Suppose that Alice wants to send her plaintext PM ∈ E(Fp) to Bob.
The scheme can be described as follows.
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• Setup: Bob chooses a large prime p and an elliptic curve E over Fp in
which the discrete logarithm problem is hard to solve. He picks a point
P in E(Fp). Finally, he randomly selects an integer a and computes
Q = [a]P .

– Public key: p, E , P,Q.

– Private key: a.

• Encryption: For Alice to send PM to Bob, she picks a random integer
k and computes M1 = [k]P . Then she computes M2 = PM + [k]Q. She
sends (M1,M2) to Bob.

• Decryption: Upon receiving the pair (M1,M2) from Alice, Bob decrypts
as follows. He computes M3 =M2 − [a]M1. Then, M3 = PM .

It is straightforward to check that the scheme works since M2 − [a]M1 =
PM + [k]Q− [a][k]P = PM + [k][a]P − [a][k]P = PM .

In order for an eavesdropper Eve to decrypt the message, she will need
either a or k, both of which require her to solve a discrete logarithm problem.

3.6.3 Pairing-Based Schemes

Excitement in elliptic curve cryptography reached a new climax when it
was discovered that pairings could be used to design schemes for new scenarios
that could not be considered previously. Two important examples are the
tripartite key exchange and the identity-based encryption schemes.

We first look at the tripartite key exchange.
In this scenario, Alice, Bob, and Carl are trying to obtain a secret key S

among themselves. Using the approach described in Subsection 3.6.2 requires
two rounds of interaction between them. On the other hand, the bilinearity
of pairings enables them to share a secret by just publishing a piece of public
information each.

To this end, Alice, Bob, and Carl agree on an elliptic curve E over a fixed
finite field Fq. They also fix a point P on E(Fq) of suitably large prime order.
Suppose that there exists a pairing w on E such that w(P, P ) 6= 1. Recall
that this can be achieved via either the modified Tate pairing (under suitable
conditions) or an appropriately defined modified Weil pairing.

The protocol is as follows.

• Alice, Bob, and Carl each pick a random integer, say a, b, and c, re-
spectively. Alice, Bob, and Carl each compute A = [a]P , B = [b]P , and
C = [c]P , respectively, and make it public.

• Alice computes w(B,C)a, Bob computes w(A,C)b, and Carl computes
w(A,B)c, which each uses as the desired common secret key.
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Note that the values that Alice, Bob, and Carl compute independently are
indeed the same, i.e., S = w(P, P )abc = w(A,B)c = w(B,C)a = w(A,C)b.
Hence, S is their desired common secret key.

What can Eve, a malicious intruder, do? Evidently, if Eve can solve the
elliptic curve discrete logarithm problem, she can compute S, just like what
the others did since she will be able to find a, b, c then. We have seen that
the elliptic curve discrete logarithm problem can be reduced to the discrete
logarithm problem in finite fields. In fact, this is especially true here, since Eve
can simply compute α = w(P, P ) and β = w(P, [a]P ). Thus, she can obtain a
if the discrete logarithm in the corresponding finite field can be solved. This
suggests that, once again, elliptic curves with small embedding degrees (such
as supersingular elliptic curves) should be avoided.

A novel use of elliptic curves in cryptography is in the invention of identity-
based encryption. Here, identity-based encryption means that the public key
of a user is linked to his identity. Examples of identity-based keys can include
a person’s e-mail address, personal name, etc. In such schemes, a trusted
authority is required. A trusted authority is one who manages and publishes
the public keys of all users.

Once again, we fix an elliptic curve E over a finite field Fp, where p is a
prime, and a point P in E(Fp) of large prime order. We also fix a pairing w
on E with w(P, P ) 6= 1. Let Carl act as the trusted authority here. We now
describe the main protocol.

• Key Setup:

– Carl maintains a master secret s ∈ Z. He computes Q = [s]P and
publishes Q to the public.

– Suppose that e represents the identity of Bob. Let E = [e]P be the
public key of Bob.

– Carl sends E0 = [s]E = [se]P to Bob as his secret key.

• Encryption: Suppose that Alice wants to send a secret messageM ∈ Fp

to Bob. She first picks a random integer t ∈ Z, and sends (U, V ) =
([t]P,M + w(E,Q)t) to Bob.

• Decryption: To obtain M , Bob computes M = V − w(E0, U).

Since w(E0, U) = w([s]E, [t]P ) = w(E,P )st = w(E, [s]P )t = w(E,Q)t,
the decryption indeed gives M .

We remark that we have only described the skeletal ideas of the identity-
based encryption scheme. The actual scheme involves hash functions and other
modifications to make the implementation more feasible and secure. Note how
the bilinearity of the pairing comes in very handy here. As usual, this scheme is
susceptible to attacks on both the elliptic curve discrete logarithm and elliptic
curve Diffie-Hellman problems.

Apart from identity-based encryption schemes such as the one we just
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presented, identity-based signature schemes have been proposed as well. To
find out more on this active area of research, the reader can check out the
annual International Conference on Pairing-Based Cryptography (Pairing).

In a different direction, Boneh and Silverberg considered in [28] multi-
linear maps, which are generalizations of bilinear maps such as the pairings
discussed in this section. While such maps have cryptographic applications
such as multipartite Diffie-Hellman key exchange and very efficient broadcast
encryption, the explicit construction of such maps from algebraic geometry
seems to have some serious obstacles, leading them to say that “such maps
might have to either come from outside the realm of algebraic geometry, or
occur as ‘unnatural’ computable maps arising from geometry.” Very recently,
Garg, Gentry, and Halevi [68] succeeded in constructing multilinear maps from
ideal lattices and applied their construction to multipartitite Diffie-Hellman
key exchange and non-interactive zero-knowledge proof systems. Their work
has also led to the first construction of attribute-based encryption for general
circuits [133, 67].
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Chapter 4

Secret Sharing Schemes

A secret sharing scheme is a method of protecting a secret among a group of
participants in such a way that only certain specified subsets of the partici-
pants (those belonging to an access structure) can reconstruct the secret. A
secret sharing scheme is normally initialized by a trusted dealer who securely
transfers a piece of information related to the secret, called a share, to each
participant in the scheme. The first secret sharing schemes proposed indepen-
dently by Shamir [142] and Blakley [21] were (t, n)-threshold schemes where
the access structure consists of all subsets of at least t (out of a total number
of n) participants. Secret sharing schemes for general access structures were
introduced and constructed by Ito, Saito, and Nishizeki [79]. Secret sharing
schemes, originally motivated by the problem in secure information storage,
have become an indispensable basic cryptographic tool in any security envi-
ronment where active entities are groups rather than individuals, e.g., general
protocols for multiparty computation, Byzantine agreement, threshold cryp-
tography, access control, and generalized oblivious transfer (cf. [9]).

4.1 The Shamir Threshold Scheme

Definition 4.1.1 Let t and n be positive integers such that t ≤ n. Let
P = {P1, . . . , Pn} be a group of n participants and let K denote the set
of secrets. We assume Pi’s share is selected from a set Si. A (t, n)-threshold
scheme (also called a t-out-of-n secret sharing scheme) is a pair of algo-
rithms: the share distribution algorithm D and the secret reconstruc-
tion algorithm C. For a secret fromK and an element from the set of random
inputs R, the share distribution algorithm applies the mapping

D : K ×R→ S1 × · · · × Sn

to assign shares to the participants in P . The secret reconstruction algorithm
C takes the shares of a subset A ⊆ P of participants and returns the secret
via the restriction of C to A, where

C :
∏

Pi∈P
Si → K,

91
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if and only if |A| ≥ t.
A (t, n)-threshold scheme is perfect if, for all (i1, i2, . . . , it−1) where 1 ≤

ij ≤ n, we have

prob(K = k | Si1 = si1 ,Si2 = si2 , . . . ,Sit−1 = sit−1) = prob(K = k),

where K,Si1 , . . . ,Sit−1 denote the random variables defined on the sets
K,Si1 , . . ., Sit−1 , respectively, and prob denotes the probability.

The best known (t, n)-threshold scheme using algebra is the Shamir
Threshold Scheme [142], which we describe next.

LetK = Fq, where q ≥ n+1 is a prime power. Let Si = Fq, for 1 ≤ i ≤ n. In
the share distribution, the dealer chooses n distinct nonzero elements xi ∈ Fq,
for i = 1, . . . , n, and makes these elements public to all the participants. To
share a secret k ∈ K, the dealer randomly chooses a secret polynomial of
degree at most t− 1 over Fq

f(x) = k +

t−1∑

j=1

ajx
j ,

where aj ∈ Fq for all 1 ≤ j ≤ t − 1, and then computes yi = f(xi). For
1 ≤ i ≤ n, the dealer gives the share yi to Pi secretly.

Now suppose t participants Pi1 , . . . , Pit want to recover the secret. By
pooling together their shares, they know t points (xi1 , yi1), . . . , (xit , yit) on
the secret polynomial f(x). Since f(x) is a polynomial of degree at most t−1,
knowing t points of f(x) can uniquely determine the polynomial and recover
k = f(0). In other words, t points of f(x) produce the following system of
equations

k + a1xi1 + a2x
2
i1
+ . . .+ at−1x

t−1
i1

= yi1

k + a1xi2 + a2x
2
i2
+ . . .+ at−1x

t−1
i2

= yi2

...
...

k + a1xit + a2x
2
it + . . .+ at−1x

t−1
it

= yit .

The above system has t linear equations and t unknowns k, a1, . . . , at−1.
We can rewrite the system as follows:

A




k
a1
...

at−1


 =




yi1
yi2
...
yit


 ,
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where the coefficient matrix A is a Vandermonde matrix

A =




1 xi1 x
2
i1
. . . xt−1

i1

1 xi2 x
2
i2 . . . x

t−1
i2

...
...

...
...

1 xit x
2
it
. . . xt−1

it


 .

Since the xi’s are all distinct, the determinant of A, detA =
∏

1≤k<j≤t(xij −
xik), is nonzero. It follows that the system of equations has a unique solution
for k, a1, . . . , at−1. We can then recover the secret k.

Next, we show that any t−1 participants can obtain no information about
the secret. Assume the t − 1 participants are Pi1 , . . . , Pit−1 , who want to
recover the secret. Set F = {f(x) ∈ Fq[x] : f(xi1) = yi1 , . . . , f(xit−1 ) =
yit−1 , deg(f) ≤ t− 1}. We define θ : F → Fq by θ(f(x)) = f(0). It is easy to
verify that θ is one-to-one. Since f(0) = k is the secret, it follows that they
cannot rule out any of the possibilities for the secret in Fq.

Therefore, the above scheme is a perfect (t, n)-threshold scheme.
Note that the above reconstruction algorithm outputs the full polynomial

f(x) when at least t shares are known. In other words, not only does it recover
the secret k, it also recovers the random inputs a1, a2, . . . , at−1. An alternative
method to solving the system of linear equations is based on the Lagrange
Interpolation Formula. The formula gives the explicit expression of the
unique polynomial of degree at most t− 1:

f(x) =

t∑

j=1

yij
∏

1≤ℓ≤t,ℓ 6=j

x− xiℓ
xij − xiℓ

.

Since the t participants Pi1 , . . . , Pit only need to know the secret k = f(0),
they can simply compute f(0) as follows:

k =
t∑

j=1

yij
∏

1≤ℓ≤t,ℓ 6=j

xiℓ
xiℓ − xij

.

Letting

bj =
∏

1≤ℓ≤t,ℓ 6=j

xiℓ
xiℓ − xij

for all 1 ≤ j ≤ t,

we then have

k =

t∑

j=1

bjyij .

This means that the secret k is a linear combination of the t shares.
We give a toy example to illustrate the Shamir Threshold Scheme.

Example 4.1.2 Suppose q = 7, t = 3, n = 6, and the public values are
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xi = i, 1 ≤ i ≤ 6. To share a secret, say 5, in F7, the dealer randomly
selects a polynomial f(x) of degree at most 2 with constant term 5, say,
f(x) = 5 + 3x+ 2x2. The six shares are

s1 = f(x1) = 3, s2 = f(x2) = 5, s3 = f(x3) = 4,
s4 = f(x4) = 0, s5 = f(x5) = 0, s6 = f(x6) = 4.

Suppose P1, P3, and P6 pool their shares together. They compute the secret
by solving the following linear equations

k + a1 + a2 = 3
k + 3a1 + 2a2 = 4
k + 6a1 + a2 = 4.

Alternatively, according to the Lagrange Interpolation Formula, we have
b1 = 6, b2 = 6, and b3 = 3, and the secret is k = b1s1 + b2s3 + b3s6 = 5.

4.2 Other Threshold Schemes

Besides the Shamir threshold scheme, there are also other threshold
schemes known. In this section, we describe some of these well-known thresh-
old schemes. We continue to assume that the set of participants is P =
{P1, . . . , Pn}.

4.2.1 The Karnin-Greene-Hellman (n, n)-Threshold Scheme

In the Shamir (t, n)-threshold scheme, it is required that the set of secrets
can be “encoded” as a finite field Fq and q ≥ n+ 1. In [87], Karnin, Greene,
and Hellman proposed a simple construction when t = n, for which these
requirements are not necessary. Let K = Zm and Si = Zm for i = 1, 2, . . . , n
(where m is not necessarily a prime). The scheme works as follows.

To share a secret k ∈ K, the dealer independently selects n − 1 random
elements yi ∈ Zm, for i = 1, 2, . . . , n − 1, and then computes yn = k −∑n−1

i=1 yi mod m. The dealer then sends the share yi to the participant Pi, for
i = 1, 2, . . . , n. Clearly, the n participants can recover the secret k by simply
adding their shares over Zm,

k =
n∑

i=1

yi mod m.

We show that any n − 1 participants have no information about the secret.
Assume that n− 1 participants P1, . . . , Pi−1, Pi+1, . . . , Pn want to recover the
secret. They can only compute k − yi =

∑n
j=1,j 6=i yj mod m. Since yi is a
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random value, knowing k − yi obtains no information about k. This means
that the scheme is perfect.

The Karnin-Greene-Hellman (n, n)-threshold scheme can be easily gener-
alized to any group. For instance, if K = {0, 1}ℓ, bit-wise XOR defines a group
operation, we obtain a scheme where both the secret and the shares are strings
of ℓ bits.

4.2.2 The Blakley Threshold Scheme

The Blakley Threshold Scheme [21] is based on an intuitive geometric
idea: two non-parallel lines in a plane intersect at a unique point, while a
single line cannot determine the point of intersection.

Let Pt(Fq) denote the t-dimensional projective space over Fq defined in
Chapter 1 (cf. Definition 1.1.3(ii)). Note that Pt(Fq) is obtained by omitting
the zero vector in Ft+1

q and identifying two vectors x and x′ satisfying the re-
lation x = λx′, where λ is a nonzero element of Fq. This defines an equivalence
relation on Ft+1

q \{0}. The set of equivalence classes, i.e., the lines through the
origin of Ft+1

q , are the points of Pt(Fq); there are (qt+1 − 1)/(q− 1) points in
Pt(Fq). Similarly, each i-dimensional subspace of Ft+1

q gives rise to an (i− 1)-
dimensional subspace of Pt(Fq), called an (i − 1)-flat. In particular, 0-flats
(respectively, 1-flats, 2-flats, and (t − 1)-flats) are called points (respec-
tively, lines, planes, and hyperplanes). Note that each point of Pt(Fq) lies
on (qt − 1)/(q − 1) hyperplanes.

The Blakley threshold scheme works as follows. To realize a (t, n)-
threshold scheme, the secret is represented as a point P in Pt(Fq). There
are (qt − 1)/(q − 1) hyperplanes that contain P . The dealer randomly selects
n distinct hyperplanes from these (qt − 1)/(q − 1) hyperplanes containing P ,
and distributes a hyperplane to each participant as his share. It is shown in
[21] that if q is sufficiently large and n is not too large, then the probability
that any t of the hyperplanes intersect in a point different from P is close to 0.
Thus, any t out of n shares are sufficient to recover the secret in general. On
the other hand, fewer than t hyperplanes will intersect only in some subspace
containing P . Thus, fewer than t participants are able to recover the sub-
space, but still cannot figure out the secret P exactly. Note that the scheme
is not perfect in general since the participants of an unauthorized subset (i.e.,
fewer than t participants) can have a better chance of guessing the secret than
someone outside the group of participants. This means that an unauthorized
subset of participants may obtain some partial information about the secret.
Although the original scheme is not perfect, the geometric solution suggested
by Blakley has gained much attention and has grown into an active area for
the development of secret sharing schemes.

Simmons in [147] improved the Blakley scheme to make it perfect, where
the Blakley scheme was reformulated in terms of affine spaces instead of pro-
jective spaces. Let At(Fq) be the t-dimensional affine space over Fq defined
in Definition 1.1.3(i). The cosets of {0} in Ft

q are called points, those of 1-
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dimensional (respectively, 2-dimensional and (t − 1)-dimensional) subspaces
are called lines (respectively, planes and hyperplanes) and, in general, the
cosets of i-dimensional subspaces are called i-flats. To realize a (t, n)-threshold
scheme in At(Fq), the secrets are encoded as the points of At(Fq). To share a
secret (a point) P , the dealer randomly chooses a line Ld that passes through
P and makes Ld public (there are q points in each line). Then the dealer se-
lects a hyperplane V such that V intersects Ld at only P . The shares of the
secret are the points of V . A subset of participants can reconstruct the secret
if and only if their shares can span V . Indeed, the shares of an unauthorized
subset will only span a flat which intersects Ld in the empty set, so they gain
no information about the secret.

For a detailed explanation of secret sharing schemes using projective and
affine spaces, we refer the reader to [136, 147].

4.2.3 The Asmuth-Bloom Threshold Scheme

Asmuth and Bloom used the Chinese Remainder Theorem [4] to construct
another threshold scheme. Let p0 < p1 < . . . < pn be publicly known primes.
The set of secrets is Zp0 and the participant Pi is associated with the prime
pi, for i = 1, 2, . . . , n. To share a secret k ∈ Zp0 , the dealer randomly selects

an integer α such that s = αp0 + k <
∏t

i=1 pi. For i = 1, 2, . . . , n, the dealer
then securely distributes to Pi the share

si = s mod pi.

Assume that there are t participants Pi1 , Pi2 , . . . , Pit who want to recover
the secret. They take their shares si1 , si2 , . . . , sit to obtain the following system
of congruences

s ≡ si1 mod pi1
...

s ≡ sit mod pit .

By the Chinese Remainder Theorem, the above system of congruences has a
unique solution 0 ≤ s <

∏t
j=1 pi ≤

∏t
j=1 pij , so the secret is computed as

k = s mod p0.
Obviously, any t participants can always reconstruct the secret from their

shares. However, as pointed out in [4], the scheme is not perfect since, from
the perspective of any t− 1 participants, the probabilities of their shares with
respect to two different secrets are not the same, but asymptotically equal. A
larger value of p0 will eventually lead to a smaller difference between these two
probabilities and this difference approaches zero when p0 grows to infinity.
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4.3 General Secret Sharing Schemes

Let 2P denote the family of all subsets of P . A subset Γ of 2P with the
property that, if I ∈ Γ and I ⊆ I ′, then I ′ ∈ Γ, is called monotone in-
creasing. An access structure Γ is a monotone increasing subset of 2P .
The elements in Γ are called authorized subsets (of P) and the elements
not in Γ are called unauthorized subsets. The notion of access structures
plays an important role in the theory of secret sharing. Informally, (perfect)
secret sharing realizing a given access structure is a method of providing col-
lective ownership of a secret by distributing the shares of the secret in such
a way that any set of participants from the access structure is able to jointly
recover the secret, whereas if a group of participants does not belong to the
access structure, then the participants will get no information about the secret
(in the information-theoretic sense). For example, the access structure of the
Shamir (t, n)-threshold has the access structure defined by

Γt,n = {I ⊆ P : |I| ≥ t}.
Sometimes, we call Γt,n the (t, n)-threshold access structure.

Example 4.3.1 Let P = {P1, P2, P3, P4} and

Γ =

{
{P1, P2, P4}, {P1, P3, P4}, {P2, P3},
{P1, P2, P3}, {P2, P3, P4}, {P1, P2, P3, P4}

}
.

Then Γ is an access structure of P .
Similar to Definition 4.1.1 for threshold schemes, we have the following

definition of secret sharing schemes for general access structures.

Definition 4.3.2 Let Γ be an access structure with n participants P =
{P1, . . . , Pn} and let K denote the set of secrets. We assume Pi’s share is
selected from a set Si. A secret sharing scheme realizing Γ is a pair of
algorithms: the share distribution algorithm D and the secret recon-
struction algorithm C. For a secret from K and an element from the set of
random inputs R, the share distribution algorithm applies the mapping

D : K ×R→ S1 × · · · × Sn

to assign the shares to the participants in P . The secret reconstruction algo-
rithm C takes the shares of a subset I ⊆ P of participants and its restriction
to I returns the secret if and only if I ∈ Γ, where

C :
∏

Pi∈P
Si → K.

A secret sharing scheme over Γ is perfect if, for all I = {i1, i2, . . . , ij} /∈ Γ,
we have

prob(K = k | Si1 = si1 ,Si2 = si2 , . . . ,Sij = sij ) = prob(K = k).
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4.3.1 Secret Sharing Schemes from Cumulative Arrays

Cumulative arrays for access structures were formally introduced in [80],
but the idea behind them was implicitly used in the construction of [79] to
show the existence of a perfect secret sharing scheme for any access structure.

Definition 4.3.3 Suppose P = {P1, . . . , Pn} is a set of n participants and Γ
is an access structure on P . Let X = {x1, . . . , xd} and let τ : P → 2X be a
mapping from P to the family of subsets of X . We call (τ,X) a cumulative
array for Γ if the following condition is satisfied:

⋃

P∈I

τ(P ) = X if and only if I ∈ Γ.

Moreover, a cumulative array (τ,X) for Γ is called minimal if, for any cu-
mulative array (τ ′, X ′) for Γ, |X ′| ≥ |X |.

Let (τ,X) be a cumulative array for an access structure Γ with X =
{x1, . . . , xd}. We may, without loss of generality, assume that the secret set
K is an abelian group. To share a secret k ∈ K, the dealer constructs a
Karnin-Greene-Hellman (d, d)-threshold scheme with d shares. In other words,
the dealer randomly chooses d − 1 elements k1, . . . , kd−1 ∈ K and computes

kd = k−∑d−1
i=1 ki, then distributes the shares to the participants according to

(τ,X), i.e., the share of the participant Pi is

si = {kj : if xj ∈ τ(Pi)}.

Then, obviously, the shares from the participants in I ∈ 2P consist of all the d
components k1, . . . , kd if and only if I ∈ Γ. We obtain the following theorem.

Theorem 4.3.4 A cumulative array for an access structure Γ yields a perfect
secret sharing scheme for Γ.

Next, we show how to construct a cumulative array from any access struc-
ture. Let Γ be an access structure on P . A subset I ⊆ P is called a minimal
authorized subset if I ∈ Γ, but J 6∈ Γ for any J ⊆ I such that J 6= I.
We denote by Γ0 the set of all the minimal authorized subsets of Γ. Then Γ
is uniquely determined by Γ0. The set Γ0 is called the basis of Γ. On the
other hand, I ⊆ P is called a maximal unauthorized subset if I /∈ Γ, but
I∪{Pj} ∈ Γ for any Pj /∈ I. We denote by Γ+ = {U1, . . . , Ud} the set of maxi-

mal unauthorized sets with respect to Γ, and define the mapping τ : P → 2Γ
+

by
τ(P ) = {Ui : P 6∈ Ui, 1 ≤ i ≤ d} for all P ∈ P .

Theorem 4.3.5 For Γ, an access structure on P, (τ,Γ+) given above is a
minimal cumulative array for Γ.
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Proof. First, we show that (τ,Γ+) is a cumulative array. For each I /∈ Γ, there
exists an i such that I ⊆ Ui. It follows that, for each P ∈ I, Ui /∈ τ(P ), so

Ui /∈
⋃

P∈I

τ(P ),

which implies that ∪P∈Iτ(P ) 6= Γ+.
On the other hand, for each I ∈ Γ, we know that I 6⊆ Ui for any Ui in Γ+.

It follows that, for each Ui ∈ Γ+, there exists P ∈ I such that P /∈ Ui. We
then have ∪P∈Iτ(P ) = Γ+, proving that (τ,Γ+) is indeed a cumulative array.

Next, we show that (τ,Γ+) is minimal. Assuming that (θ,X) is a cumula-
tive array for Γ, we need to show that |Γ+| ≤ |X |. For each x ∈ X , define

α(x) = {P : x /∈ θ(P )}.

We claim that, for any I ∈ Γ and any x ∈ X , I 6⊆ α(x). For otherwise, if
I ⊆ α(x), then x /∈ θ(P ) for each P ∈ I, which implies x /∈ ∪P∈Iθ(P ), a
contradiction. This shows that, for each x ∈ X , α(x) /∈ Γ. On the other hand,
for each U ∈ Γ+, there exists x ∈ X such that x /∈ ∪P∈Uθ(P ), we then have
U ⊆ α(x). Combining the two observations above, we have shown that, for all
U ∈ Γ+, we have that U = α(x) for some x ∈ X . It follows that |Γ+| ≤ |X |,
showing that (τ,Γ+) is indeed minimal. ✷

Since a superset of an authorized subset must again be an authorized set,
we have the following corollary.

Corollary 4.3.6 Let Γ ⊆ 2P . There exists a perfect secret sharing scheme
realizing Γ as access structure if and only if Γ is monotone increasing.

We associate the cumulative array above with Table 4.1, where the binary

TABLE 4.1: Cumulative array of the access structure Γ.

Γ+ U1 U2 . . . Ud

P1 c1,1 c1,2 . . . c1,d
P2 c2,1 c2,2 . . . c2,d
...

...
Pn cn,1 cn,2 . . . cn,d

entries ci,j in the table are defined as follows:

ci,j =

{
1 if Pi /∈ Uj

0 otherwise.

In Example 4.3.1, we have U1 = {P1, P2}, U2 = {P1, P3}, U3 =
{P1, P4}, U4 = {P2, P4}, and U5 = {P3, P4}. The table for the correspond-
ing cumulative array is shown in Table 4.2.
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TABLE 4.2: Cumulative array from Example 4.3.1.

Γ+ {P1, P2} {P1, P3} {P1, P4} {P2, P4} {P3, P4}
P1 0 0 0 1 1
P2 0 1 1 0 1
P3 1 0 1 1 0
P4 1 1 0 0 0

.

Assume the secret k is shared using a Karnin-Greene-Hellman (5, 5)-
threshold scheme such that k = k1 + k2 + k3 + k4 + k5. We assign shares
to the participants in accordance with the cumulative array as in Table 4.3.

TABLE 4.3: Secret sharing scheme corresponding to Example 4.3.1.

Γ+ {P1, P2} {P1, P3} {P1, P4} {P2, P4} {P3, P4}
k1 k2 k3 k4 k5

P1 − − − k4 k5
P2 − k2 k3 − k5
P3 k1 − k3 k4 −
P4 k1 k2 − − −

.

In other words, the share of P1 is s1 = {k4, k5}, the share of P2 is s2 =
{k2, k3, k5}, and so on.

We see that, in contrast to the Shamir threshold scheme, the size of each
share of a secret sharing scheme constructed from a cumulative array is typi-
cally larger than the size of the secret. For example, in a (t, n)-threshold access
structure Γ, the set of maximal unauthorized subsets is

Γ+ = {J ⊆ P : |J | = t− 1},

so |Γ+| =
(

n
t−1

)
and the share of each participant consists of

(
n−1
t−1

)
components

of ki’s. This means that the size of the share of each participant is
(
n−1
t−1

)
times

that of the secret. This is perhaps one of the reasons that cumulative arrays
have not been the subject of much study in the context of secret sharing.
It turns out, however, that cumulative arrays have applications in threshold
cryptography, such as those studied in some recent works in sharing block
cipher encryption [32, 101], threshold message authentication codes [100], and
shared generation of pseudorandom functions [108, 169], just to mention a
few.

We end this subsection with the notion of generalized cumulative arrays,
introduced in [101] by Martin et al.
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Definition 4.3.7 Let Γ be an access structure on P . A generalized cumu-
lative array (GCA) (τ1, . . . , τℓ, X1, . . . , Xℓ) for Γ is a collection of disjoint fi-
nite sets X1, . . . , Xℓ, where eachXi is associated with a mapping τi : P → 2Xi ,
such that, for I ⊆ P , we have

⋃

P∈I

τi(P ) = Xi for some i (1 ≤ i ≤ ℓ) if and only if I ∈ Γ.

Secret sharing schemes for Γ can be realized from GCAs in much the same
way as from cumulative arrays. Again, we assume that the set of secrets, K, is

an abelian group and Xi = {x(i)1 , . . . , x
(i)
di
}. To share a secret k ∈ K, the dealer

implements independently ℓ (di, di)-threshold schemes for the same secret k,

where each (di, di)-threshold scheme consists of di shares k
(i)
1 , . . . , k

(i)
di
∈ K

satisfying k = k
(i)
1 + k

(i)
2 + · · · + k

(i)
di
, for each 1 ≤ i ≤ ℓ. The dealer then

distributes the shares to the participants according to (τ1, . . . , τℓ, X1, . . . , Xℓ).
Precisely, the share of the participant Pt is

ℓ⋃

i=1

{
k
(i)
j : 1 ≤ j ≤ di and x(i)j ∈ τi(Pt)

}
.

Then, it is easy to verify that there exists at least one (di, di)-threshold
scheme for some i such that the participants from I ∈ 2P have all the shares

k
(i)
1 , . . . , k

(i)
di

if and only if I ∈ Γ.
The efficiency of a GCA can be measured by various parameters. In par-

ticular, the following values should be as small as possible:

(i) the number of shares for each P ∈ P , measured as
∑ℓ

i=1 |τi(P )|;
(ii) the number of the total shares generated by the dealer, expressed by∑ℓ

i=1 |Xi|.
Various constructions for generalized cumulative arrays that improve the

performance of secret sharing schemes are given in [101] and [99].

4.3.2 The Benaloh-Leichter Secret Sharing Scheme

In this subsection, we give another construction, due to Benaloh and Le-
ichter [11], for general access structures. The construction is based on mono-
tone Boolean circuits, so sometimes it is also called the monotone circuit
construction.

The construction is based on a recursive approach: it begins with schemes
for simple access structures, from which a scheme for a composition of those
simple access structures is obtained. More explicitly, let Γ1 and Γ2 be two
access structures on the same set of participants P = {P1, . . . , Pn}, from
which two new access structures Γ1 ∨ Γ2 and Γ1 ∧ Γ2 are defined as follows:

Γ1 ∨ Γ2 = {A : A ∈ Γ1 or A ∈ Γ2}
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and
Γ1 ∧ Γ2 = {A : A ∈ Γ1 and A ∈ Γ2}.

Let Πi : K × Ri → S
(i)
1 × · · · × S

(i)
n be a scheme realizing Γi, for i = 1, 2,

where the common set of secrets for both schemes is K.
First, a secret sharing scheme realizing Γ1∨Γ2 is constructed as follows. Let

k be the secret to be shared. Let Π1(k, r1) = (s11, . . . , s1n) and Π2(k, r2) =
(s21, . . . , s2n), where ri is chosen uniformly and independently from Ri, for
i = 1, 2. Now let

Π∨ : K ×R1 ×R2 → (S
(1)
1 × S(2)

1 )× · · · × (S
(1)
n × S(2)

n )
(k, r1, r2) 7→ ((s11, s21), . . . , (s1n, s2n)),

where the set of shares for the participant Pi is S
(1)
i ×S

(2)
i and the pair (s1i, s2i)

is given to Pi as his share, for 1 ≤ i ≤ n.
It is not difficult to prove that Π∨ is a perfect secret sharing scheme real-

izing Γ1 ∨ Γ2 provided that Πi is a perfect secret sharing scheme realizing Γi,
for i = 1, 2.

Next, a secret sharing scheme realizing Γ1 ∧ Γ2 is constructed as follows.
As before, let k be the secret to be shared. We may assume that K possesses
an abelian group structure. Choose k1 and k2 randomly from K conditional
on k1 + k2 = k and then distribute shares for ki using Πi, for i = 1, 2. More
explicitly, let Π(k1, r

′
1) = (s′11, . . . , s

′
1n) and Π(k2, r

′
2) = (s′21, . . . , s

′
2n), where

r′i is chosen uniformly and independently from Ri, for i = 1, 2. Let

Π∧ : K ×R1 ×R2 → (S
(1)
1 × S(2)

1 )× · · · × (S
(1)
n × S(2)

n )
(k, r′1, r

′
2) 7→ ((s′11, s

′
21), . . . , (s

′
1n, s

′
2n)),

where the set of shares for the participant Pi is S
(1)
i ×S

(2)
i and the pair (s′1i, s

′
2i)

is given to Pi as his share, for 1 ≤ i ≤ n.
It can again be proved that Π∧ is a perfect secret sharing scheme realizing

Γ1 ∧ Γ2 provided that Πi is a perfect secret sharing scheme realizing Γi, for
i = 1, 2.

Now, for any access structure Γ = {A1, . . . , Aℓ}, it is theoretically possible
to construct a secret sharing scheme realizing it by using the above method
recursively, since Γ = {A1}∨· · ·∨{Aℓ} and there is a Karnin-Greene-Hellman
(|Ai|, |Ai|)-threshold scheme for each {Ai}, 1 ≤ i ≤ l.

To characterize the access structures that can be efficiently realized by the
Benaloh-Leichter scheme, we need to view each access structure as a Boolean
function in the following way. First, we identify each set A ⊆ P with its
characteristic vector ϑA ∈ {0, 1}n, where the ith entry ϑA[i] equals 1 if and
only if Pi ∈ A. On the other hand, to an access structure Γ, we associate
the function fΓ : {0, 1}n → {0, 1}, where fΓ(ϑB) = 1 if and only if B ∈ Γ.
In this way, fΓ and Γ are uniquely determined by each other, that is, fΓ
completely describes Γ and vice versa. The Boolean function fΓ is monotone
increasing since Γ is. Furthermore, fΓ1 ∨fΓ2 = fΓ1∨Γ2 and fΓ1 ∧fΓ2 = fΓ1∧Γ2 .
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Hence, if an access structure can be described by a small monotone formula,
which is defined with OR and AND gates but without NEGATION gates
and without negated variables, it can be efficiently computed by the Benaloh-
Leichter scheme.

The following result shows that, for a given access structure Γ, the effi-
ciency of the Benaloh-Leichter scheme is determined by the associated Boolean
function fΓ on which the construction is based.

Theorem 4.3.8 ([11]) Let Γ be an access structure and assume that fΓ can
be computed by a monotone formula in which the variable xi appears ai times
in the formula, for 1 ≤ i ≤ n. Then there exists a secret sharing scheme from
the Benaloh-Leichter construction realizing Γ in which the size of the share
for Pi is the product of ai and the size of the secret.

It should be noted that an access structure can be realized with different
schemes by different monotone Boolean functions, resulting in different sizes
for the shares. We end this subsection with an illustration of this point.

Example 4.3.9 Let Γ be a (3, 5)-threshold structure on P = {P1, P2, P3, P4,
P5} given by

Γ =




{P1, P2, P3}, {P1, P2, P4}, {P1, P2, P5}, {P1, P3, P4},
{P1, P3, P5}, {P1, P4, P5}, {P2, P3, P4}, {P2, P3, P5},
{P2, P4, P5}, {P3, P4, P5}



 .

We give five examples of different Boolean expressions for Γ:

1. C1 = x1x2x3+x1x2x4+x1x2x5+x1x3x4+x1x3x5+x1x4x5+x2x3x4+
x2x3x5 + x2x4x5 + x3x4x5. This is the disjunctive normal form for Γ;

2. C2 = (x1 +x2 +x3)(x1 +x2 +x4)(x1 +x2+x5)(x1 +x3+x4)(x1 +x3+
x5)(x1 + x4 + x5)(x2 + x3 + x4)(x2 + x3 + x5)(x3 + x4 + x5). This is the
conjunctive normal form for Γ;

3. C3 = x1x2(x3 + x4 + x5) + (x1 + x2 + x3)x4x5 + (x1 + x2)x3(x4 + x5);

4. C4 = (x1 + x2)(x3 + x4)x5 + (x1 + x2 + x5)(x1 + x3)(x1 + x4)(x2 +
x3)(x2 + x4)(x3 + x4 + x5);

5. C5 = x1(x2 + x3)(x2 + x4 + x5)(x3 + x4 + x5) + (x1 + x2 + x3)(x2 +
x4)(x2 + x5)(x3 + x4)(x3 + x5)(x4 + x5).

4.4 Information Rate

From Definition 4.3.2, a secret sharing scheme is perfect if the probability of
any unauthorized subset of participants who, by pooling their shares together,
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can guess the secret correctly is not better than an outsider. A useful tool in
studying perfectness is the notion of entropy, introduced by Shannon in 1948.
The entropy can be thought of as a mathematical measure of information or
uncertainty. We begin this section with a brief introduction to entropy.

4.4.1 Entropy

In this subsection, we review some basic concepts from information theory
that are used in this book. For a complete treatment of the subject, the reader
is referred to [44].

We denote by X a random variable defined on a finite set X with a given
probability distribution {prob(x)}x∈X . The entropy of X is defined by

H(X)
def
= −

∑

x∈X

prob(X = x) log prob(X = x)

(recall that log is log2).
The entropy H(X) is a measure of the average information content of the

elements in X or, equivalently, a measure of the average uncertainty one has
about which element of the set X has been chosen when the choice of the ele-
ments fromX is made according to the probability distribution {prob(x)}x∈X .

The entropy has the following properties. The proofs are straightforward,
so they are omitted here.

Proposition 4.4.1 For any random variable X on a set X, the following
properties hold:

(i) 0 ≤ H(X) ≤ log |X |;

(ii) H(X) = 0 if and only if there exists x0 ∈ X such that prob(X = x0) = 1;

(iii) H(X) = log |X | if and only if prob(X = x) = 1
|X| , for all x ∈ X.

Given two finite sets X , Y , and a joint probability distribution
{prob(x, y)}x∈X,y∈Y on their Cartesian product, the entropy of the random
variable X×Y on the set X × Y is defined to be:

H(X,Y)
def
= −

∑

(x,y)∈X×Y

prob(X = x,Y = y) log prob(X = x,Y = y).

The conditional entropy H(X | Y), also called the equivocation of X
given Y, is defined as

H(X | Y)

def
= −

∑

x∈X

∑

y∈Y

prob(Y = y) prob(X = x | Y = y) log (prob(X = x | Y = y)) ,
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where prob(X = x | Y = y) is the conditional probability of X = x given
Y = y. The conditional entropy can be written as

H(X | Y) =
∑

y∈Y

prob(Y = y)H(X | Y = y),

where

H(X | Y = y) = −
∑

x∈X

prob(X = x | Y = y) log prob(X = x | Y = y)

can be interpreted as the average uncertainty one has about which element
of X has been chosen when the choice is made according to the probability
distribution {prob(x | y)}x∈X , i.e., when it is known that the value chosen
from the set Y is y.

Some properties of the conditional entropy are listed in the following propo-
sition. The proofs follow readily from the definitions, so we leave them as an
exercise to the reader.

Proposition 4.4.2 The following properties hold for any random variables
X, Y and Z:

(i) 0 ≤ H(X | Y) ≤ H(X);

(ii) H(X | Y) = 0 if and only if, for every y ∈ Y , there exists x ∈ X with
prob(X = x | Y = y) = 1;

(iii) H(X | Y) = H(X) if and only if X and Y are independent;

(iv) H(X,Y) = H(X) +H(Y | X) = H(Y) +H(X | Y);

(v) H(X | Y,Z) ≤ H(X | Z).

If we have n+1 sets X1, . . . , Xn, Y and a probability distribution on their
Cartesian product, the conditional entropyH(X1,X2, . . . ,Xn | Y) of the joint
space X1 × · · · ×Xn given Y is defined as

H(X1, . . . ,Xn | Y)
def
= H(X1 | Y) +H(X2 | X1,Y) + · · ·+H(Xn | X1, . . . ,Xn−1,Y).

(4.1)

In particular, we have

H(X1, . . . ,Xn) = H(X1)+H(X2 | X1)+ · · ·+H(Xn | X1, . . . ,Xn−1). (4.2)

We state here another property of entropy that will be used in the next
section.

Proposition 4.4.3 For any random variables X,Y and Z, we have

H(X | Y,Z) ≥ H(X | Z)−H(Z).
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Proof. From (4.2), we have that

H(X,Y,Z) = H(Z) +H(Y | Z) +H(X | Y,Z),

so
H(X | Y,Z) +H(Z)

= H(X,Y,Z) −H(Y | Z)
≥ H(X,Y,Z) −H(Y)
= H(X) +H(Y | X) +H(Z | X,Y) −H(Y)
≥ H(X) +H(Y | X)−H(Y)
= H(X,Y)−H(Y)
= H(X | Y).

✷

The expectation E(g(x)) of a function g(x) on X is defined as

E(g(x))
def
=
∑

x∈X

g(x) prob(x),

where {prob(x)}x∈X is the probability distribution on X .
Given random variables X and Y, the mutual information I(X;Y)

between X and Y is defined to be

I(X;Y)
def
= H(X)−H(X | Y)

and it has the following properties:

(i) I(X;Y) = I(Y;X);

(ii) I(X;Y) ≥ 0.

Given sets X,Y, Z and a joint probability distribution on their Cartesian
product, the conditional mutual information I(X;Y | Z) between X and
Y given Z can be written as

I(X;Y | Z) def
= E

(
prob(X=x,Y=y|Z=z)

prob(X=x|Z=z) prob(Y=y|Z=z)

)

= H(X | Z)−H(X | Z,Y).

If we have n + 1 sets X1, . . . , Xn, Y and a probability distribution on their
Cartesian product, the conditional mutual information I(X1,X2, . . . ,Xn;Y)
of the joint space X1 ×X2 × · · · ×Xn given Y is defined as

I(X1,X2, . . . ,Xn;Y)
def
=

n∑

i=1

I(Xi;Y | X1,X2, . . . ,Xi−1).

© 2013 Taylor & Francis Group, LLC



Secret Sharing Schemes 107

4.4.2 Perfect Secret Sharing Schemes

For any secret sharing scheme, we have earlier assumed that there is a
probability distribution on the set of secrets K, and we denote the entropy
of this probability distribution by H(K). Similarly, there is a probability dis-
tribution on the list of shares SI =

∏
Pi∈I Si given to any specified subset of

participants I ⊆ P , and the entropy of this probability distribution is denoted
by H(SI). Using the notion of entropy, a perfect secret sharing scheme can be
defined as follows.

Definition 4.4.4 Let Γ be an access structure on P . A secret sharing scheme
realizing the access structure Γ is perfect if the following two conditions hold:

(i) For any authorized subset of participants I ∈ Γ, we have

H(K | SI) = 0,

i.e., the shares of an authorized subset of participants can uniquely de-
termine the secret;

(ii) For any unauthorized subset of participants I /∈ Γ, we have

H(K | SI) = H(K),

i.e., the shares of an unauthorized subset of participants give no infor-
mation on the secret.

In this chapter, in particular, starting from Section 4.6 till the end of the
chapter, we assume that a secret sharing scheme is perfect unless otherwise
specified.

In the following, we show that, in a perfect secret sharing scheme, the
uncertainty about the share of each participant is at least as great as the
uncertainty about the secret. Similarly, the share for each participant is at
least as long as the secret.

Theorem 4.4.5 For any perfect secret sharing scheme realizing an access
structure Γ and any participant P ∈ P, we have

H(SP ) ≥ H(K),

where H(SP ) is the entropy of the share of the participant P ∈ P.

Proof. Assume I is a maximal unauthorized subset of participants and P /∈ I.
Then, clearly, I ∪ {P} ∈ Γ. We have the following identities

H(K | SI) = H(K) and H(K | SI ,SP ) = 0.
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It follows from Proposition 4.4.2(i) and (iv) that

H(SP ) ≥ H(SP | SI)
= H(SP ,SI)−H(SI)
= H(K,SP ,SI)−H(K | SI ,SP )−H(SI)

(since H(K,SP ,SI) = H(SI ,SP ) +H(K | SI ,SP ))
= H(K,SP ,SI)−H(SI)

(since H(K | SI ,SP ) = 0)
= H(K,SP ,SI)−H(K,SI) +H(K | SI)
= H(K,SP ,SI)−H(K,SI) +H(K)

(since H(K | SI) = H(K))
≥ H(K)

(since H(K,SP ,SI) ≥ H(K,SI)).

This proves the desired result. ✷

We can also show that the size of the set of shares for each participant in
a perfect secret sharing scheme is at least the size of the set of secrets. The
following theorem is due to Kurosawa and Okada [92]

Theorem 4.4.6 In any perfect secret sharing scheme realizing an access
structure Γ, for any P ∈ P, we have

|SP | ≥ |K|,

where SP is the set of shares for P .

Proof. Without loss of generality, for any P ∈ P , we may assume that {P} 6∈ Γ.
Let I be a minimal authorized subset in Γ such that P ∈ I. Let J = I \ {P}.
Then J is an unauthorized subset. Therefore, for any k ∈ K and any sJ ∈ SJ ,
we have

prob(K = k | SJ = sJ) = prob(K = k).

Fix such an sJ ∈ SJ . Since I is an authorized subset, for any k ∈ K, there
exists an sP such that

prob(K = k | SJ = sJ ,SP = sP ) = 1.

Thus, for the given sJ , the probability condition above actually induces a
mapping θ : K → SP by θ(k) = sP . It is easy to verify that θ is one-to-one.
Hence, |SP | ≥ |K|. ✷

Definition 4.4.7 Assume
∏

is a secret sharing scheme realizing the access
structure Γ on a set of participants P = {P1, . . . , Pn}.
(i) The information rate for Pi ∈ P is defined as

ρi =
H(K)

H(Si)
.
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(ii) The average rate of the scheme
∏

is defined as

ρ̃ =
1

n

n∑

i=1

ρi.

(iii) The information rate of the scheme
∏

is defined as

ρ = min
1≤i≤n

ρi.

From Theorems 4.4.5 and 4.4.6, we have the following relation for the
information rates:

0 ≤ ρ ≤ ρ̃ ≤ 1.

Clearly, as shares in any secret sharing scheme need to be distributed to
the participants through secure communication channels and to be stored by
the participants, it is desirable to have the shares as short as possible. Indeed,
the size of the shares is widely considered as the most important efficiency
measure of a secret sharing scheme.

Definition 4.4.8 A perfect secret sharing scheme is called ideal if its infor-
mation rate is ρ = 1. In other words, in an ideal secret sharing scheme, the
size of the share for each participant is the same as the size of the secret.

Clearly, the Shamir (t, n)-threshold scheme is ideal, and so is the Karnin-
Greene-Hellman (n, n)-threshold scheme.

Example 4.4.9 Consider the access structure Γustcon, where the participants
correspond to the edges of a complete undirected graph with m vertices
v1, . . . , vm, i.e., there are n =

(
m
2

)
participants in the access structure, and a

participant is an edge (vi, vj), where i < j. A set of participants (edges) is in
the access structure if the set contains a path from v1 to vm. We construct a
secret sharing scheme to realize this access structure as follows. Let k ∈ {0, 1}
be a secret. To share k, the dealer chooses m − 2 random bits r2, . . . , rm−1

independently with uniform distribution. Furthermore, the dealer sets r1 = k
and rm = 0. The share of the participant (vi, vj) is ri ⊕ rj , where ⊕ is the
bit-XOR operation. It can be proved (see [9]) that the resulting secret sharing
scheme is ideal.

A natural question to ask is: Given an access structure Γ, can we always
find an ideal perfect secret sharing scheme to realize Γ? We address this prob-
lem in the rest of this subsection.

We first prove two lemmas.

Lemma 4.4.10 Suppose Γ is an access structure on P, B /∈ Γ and A∪B ∈ Γ,
where A,B ⊆ P. Then, for any perfect secret sharing scheme realizing Γ, we
have

H(SA | SB) = H(K) +H(SA | SB ,K).
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Proof. From (4.1), we have

H(SA,K | SB) = H(SA | SB,K) +H(K | SB)
H(SA,K | SB) = H(K | SA,SB) +H(SA | SB).

It follows that

H(SA | SB,K) +H(K | SB) = H(K | SA,SB) +H(SA | SB).

Since B /∈ Γ and A ∪B ∈ Γ, we have

H(K | SB) = H(K) and H(K | SA,SB) = 0,

so the result follows. ✷

Lemma 4.4.11 Suppose Γ is an access structure and A∪B /∈ Γ, where A,B ⊆
P. Then H(SA | SB) = H(SA | SB,K).

Proof. From the proof of Lemma 4.4.10, we know that

H(SA | SB,K) +H(K | SB) = H(K | SA,SB) +H(SA | SB).

Since
H(K | SB) = H(K) and H(K | SA,SB) = H(K),

the result follows. ✷

Theorem 4.4.12 Let

Γ0 = {{P1, P2}, {P2, P3}, {P3, P4}}
for P = {P1, P2, P3, P4}. Then, in any perfect secret sharing scheme realizing
Γ, the following inequality holds:

H(S2) +H(S3) ≥ 3H(K).

Proof. Let A = {P3} and B = {P1, P4}. Then we have B /∈ Γ and A ∪B ∈ Γ.
Applying Lemma 4.4.10, we obtain

H(S3 | S1,S4) = H(K) +H(S3 | S1,S4,K).

We then have the following sequence of inequalities

H(K) = H(S3 | S1,S4)−H(S3 | S1,S4,K)
≤ H(S3 | S1,S4)
≤ H(S3 | S1)
= H(S3 | S1,K) (by Lemma 4.4.11)
≤ H(S2,S3 | S1,K)
= H(S2 | S1,K) +H(S3 | S1,S2,K)
≤ H(S2 | S1,K) +H(S3 | S2,K)
= H(S2 | S1)−H(K) +H(S3 | S2)−H(K) (by Lemma 4.4.10)
≤ H(S2) +H(S3 | S2)− 2H(K)
≤ H(S2) +H(S3)− 2H(K).
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Hence, the result follows. ✷

Corollary 4.4.13 Let

Γ0 = {{P1, P2}, {P2, P3}, {P3, P4}}

for P = {P1, P2, P3, P4}. Then, for any perfect secret sharing scheme realizing
Γ, the information rate satisfies ρ ≤ 2/3. Consequently, there is no ideal secret
sharing scheme realizing Γ.

Proof. By the definition of ρ, we have

H(K)

H(S2)
≥ ρ and

H(K)

H(S3)
≥ ρ.

It follows that
H(K)

H(S2) +H(S3)
≥ ρ

2
.

By Theorem 4.4.12, we obtain

ρ

2
≤ H(K)

H(S2) +H(S3)
≤ 1

3
.

Hence, ρ ≤ 2
3 . ✷

Let Γ1,Γ2, and Γ3 be access structures on P = {P1, P2, P3, P4} with bases
Γ1
0,Γ

2
0, and Γ3

0 as given below, respectively, by

Γ1
0 = {{P1, P2}, {P2, P3}, {P3, P4}, {P2, P4}},

Γ2
0 = {{P1, P2}, {P2, P3}, {P1, P3, P4}},

Γ3
0 = {{P1, P2}, {P2, P3}, {P1, P3, P4}, {P2, P4}}.

In a similar way, we can show (see [156]) that the conditions in Theo-
rem 4.4.12 are satisfied for Γ1,Γ2, and Γ3. Therefore, the information rates of
the perfect secret sharing schemes realizing Γ1, Γ2, and Γ3 satisfy ρ ≤ 2

3 .
The above discussion shows that there are access structures that cannot

be realized by ideal perfect secret sharing schemes. In other words, there is
at least one share whose size needs to be strictly larger than the size of the
secret. Actually, one of the most important issues in the theory of secret
sharing schemes is the size of shares. With the best known schemes, such as
schemes based on cumulative arrays and monotone Boolean functions, most
general access structures require the size of share to be exponential in the
number of participants even if the size of the secret is only one bit. Beimel, in
his thesis [8], conjectured:
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There exists an ǫ > 0 such that, for every positive integer n, there
is an access structure Γ with n participants, for which every per-
fect secret sharing scheme realizing Γ requires shares of length
exponential in the number of participants n, i.e., 2ǫn.

Proving or disproving this conjecture is one of the most important open ques-
tions in secret sharing schemes.

4.5 Quasi-Perfect Secret Sharing Schemes

We have seen that, in a perfect secret sharing scheme, the size of the set
of shares for each participant is at least the size of the set of secrets, i.e.,
|Si| ≥ |K|, for all 1 ≤ i ≤ n. Quasi-perfect secret sharing schemes are schemes
in which the sizes of shares can be smaller than that of the secret. It was first
introduced by Blakley and Meadows [22] under the name of ramp schemes.

Let A ⊆ 2P . We say A is monotone decreasing if, for any A ∈ A and
B ⊆ A, then B ∈ A.
Definition 4.5.1 Let A,Γ ⊆ 2P be monotone decreasing and monotone in-
creasing, respectively, such that A∩Γ = ∅. A secret sharing scheme is said to
be quasi-perfect with adversary structure A and access structure Γ (some-
times, we simply say access structure (A,Γ), if no confusion arises) if the
following conditions are satisfied:

(i) H(K | SA) = H(K) for any A ∈ A;
(ii) H(K | SI) = 0 for any I ∈ Γ;

(iii) 0 ≤ H(K | SB) ≤ H(K) for any B ∈ 2P \ (A ∪ Γ) .

We say the scheme is non-perfect if there exists B ∈ 2P \ (A∪ Γ) such that

0 < H(K | SB) < H(K).

According to the definition, any perfect secret sharing scheme realizing an
access structure Γ is quasi-perfect with the access structure pair (A,Γ), for
any monotone decreasing A ⊆ 2P \ Γ.

A typical example of a quasi-perfect scheme is a ramp scheme, introduced
by Blakley and Meadows [22].

Definition 4.5.2 Let 0 ≤ d < t ≤ n be integers. A (d, t, n)-ramp scheme is
a quasi-perfect secret sharing scheme realizing (A,Γ) such that

A = {A ⊆ P : |A| ≤ d}
Γ = {I ⊆ P : |I| ≥ t}.

Sometimes, we write A and Γ as Ad,n and Γt,n, respectively.
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Example 4.5.3 Let 0 ≤ d < t ≤ n be integers. Let the set of secrets be
K = Ft−d

q , where q ≥ n + (t − d), and let x1, . . . , xn+(t−d) be distinct in Fq.
To share a secret (k1, . . . , kt−d) ∈ K, the dealer selects a random polynomial
of degree at most t− 1,

f(x) = a0 + a1x+ · · ·+ at−1x
t−1

such that f(xj) = kj−n for n+1 ≤ j ≤ n+(t−d). The share of the participant
Pi is f(xi), for all 1 ≤ i ≤ n. It is easy to see that t or more participants can
recover the secret while d or fewer participants have no information about the
secret. It is therefore a (d, t, n)-ramp scheme.

Theorem 4.5.4 Let Γ,A ⊆ 2P be such that Γ ∩ A = ∅, and let |K| ≥ 2.
There exists a non-perfect secret sharing scheme with adversary structure A
and access structure Γ on P for the set of secrets K if and only if A is
monotone decreasing and Γ is monotone increasing.

Proof. Assume that
∏

is a secret sharing scheme with adversary structure A
and access structure Γ on P for the set of secrets K. For any I ∈ Γ and k ∈ K,
we have H(K | SI) = 0 by the definition of

∏
. Then, for any I ′ ⊇ I, we have

H(K | SI′) ≤ H(K | SI) = 0.

It follows that I ′ ∈ Γ. Therefore, Γ is monotone increasing. Similarly, A is
monotone decreasing.

Conversely, suppose A and Γ are monotone decreasing and increasing,
respectively. We shall construct a non-perfect secret sharing scheme with ad-
versary structure A and access structure Γ on P . We divide into two cases:
|K| > 2 and |K| = 2.

If |K| > 2, without loss of generality, we may assume K = Z|K| =
{0, 1, . . . , |K| − 1}. For each k ∈ K, we write

k = 2k1 + k2,

where k2 ∈ Z2 = {0, 1}, and k1 ∈ Z⌊(|K|−1)/2⌋+1 = {0, 1, . . . , ⌊(|K| − 1)/2⌋}.
Since Γ is monotone increasing, there exists a secret sharing scheme

∏
1

with access structure Γ to realize the secret k1 ∈ Z⌊(|K|−1)/2⌋+1. Let Γc
A =

2P \A. Then it is easy to see that Γc
A is monotone increasing, and there exists

a secret sharing scheme
∏

2 with access structure Γc
A to realize the secret

k2 ∈ Z2. Assume that the shares of Pi, where 1 ≤ i ≤ n, in
∏

1 and
∏

2 are
si1 and si2, respectively. We consider a secret sharing scheme

∏
for the set

of secrets K as follows. To share a secret k ∈ K, we express k = 2k1 + k2 as
above. Then we share k1 by

∏
1 and k2 by

∏
2 with n shares (s11, . . . , sn1)

and (s12, . . . , sn2), respectively. Note that, in the scheme
∏
, the share of Pi

is si = (si1, si2), for 1 ≤ i ≤ n. It follows that
(i) For any I ∈ Γ, we have I ∈ Γc

A since Γ ⊆ Γc
A. It follows that

H(K1 | SI) = H(K2 | SI) = 0,

so H(K | SI) = 0.
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(ii) For any A ∈ A, H(K1 | SA) = H(K1) and H(K2 | SA) = H(K2), so
H(K | SA) = H(K).

(iii) For any B 6∈ Γ∪A, we have H(K1 | SB) = H(K1) and H(K2 | SB) = 0.
Therefore,

0 < H(K | SB) < H(K).

If |K| = 2, we consider the following distribution rule:

k 0 0 0 1 1 1
k1 0 0 0 1 1 1
k2 0 0 1 1 1 0

i.e., k1 = k and
prob(K2 = 0 | K = 0) = 2

3 ,

prob(K2 = 1 | K = 0) = 1
3 ,

prob(K2 = 1 | K = 1) = 2
3 ,

prob(K2 = 0 | K = 1) = 1
3 .

Using an identical argument as for the case |K| > 2, we can show that
there exists a non-perfect secret sharing scheme with adversary structure A
and access structure Γ on P with the set of secrets K. This completes the
proof. ✷

We see from Example 4.5.3 that, in a non-perfect secret sharing scheme, the
size of the share of the participant can be smaller than the size of the secret.
In the following, we derive a lower bound, due to Ogata and Kurosawa [118],
on the sizes of shares in non-perfect secret sharing schemes.

Lemma 4.5.5 In any secret sharing scheme with adversary structure A and
access structure Γ, if I ∈ Γ, A ∈ A, and A ⊂ I, then

∑

P∈I\A
H(SP ) ≥ H(K).

Proof. Since

H(K | SI) = H(K | SA,SI\A)
≥ H(K | SA)−H(SI\A) (using Proposition 4.4.3)
≥ H(K | SA)−

∑
P∈I\AH(SP ),

it follows that
∑

P∈I\A
H(SP ) ≥ H(K | SA)−H(K | SI) = H(K).

✷
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Theorem 4.5.6 In any secret sharing scheme with adversary structure A and
access structure Γ,

max
P∈P
{H(SP )} ≥

H(K)

min{|I \A| : I ∈ Γ, A ∈ A} .

Proof. First, assume A ⊂ I. Then, from Lemma 4.5.5,

|I \A| max
P∈I\A

H(SP ) ≥
∑

P∈I\A
H(SP ) ≥ H(K),

and so
|I \A|max

P∈P
H(SP ) ≥ H(K).

Next, assume A 6⊂ I. We define I ′ = I∪A. Since Γ is monotone increasing,
we know I ′ ∈ Γ and A ⊆ I ′, so

|I ′ \A| max
P∈I′\A

H(SP ) ≥ H(K).

Clearly, |I \A| = |I ′ \A|. We obtain the desired result. ✷

From Theorem 4.5.6, we know that, in a (d, t, n)-ramp scheme,
maxP∈P{H(SP )} ≥ H(K)/(t− d) for any P ∈ P . If H(SP ) = H(K)/(t− d)
holds for all P ∈ P , we say the ramp scheme is optimal.

4.6 Linear Secret Sharing Schemes

We first remind the reader that, starting from here till the end of this
chapter, all secret sharing schemes are assumed to be perfect, unless otherwise
specified.

Linear secret sharing schemes are schemes in which the secret is a linear
combination of the shares of the participants. Most secret sharing schemes are
linear, including the Shamir threshold scheme, the Blakley threshold scheme,
the Asmuth-Bloom threshold scheme, the Benaloh-Leichter scheme, and the
schemes from cumulative arrays and generalized cumulative arrays.

It is well known that linear secret sharing schemes are closely related to a
linear algebraic model of computation called a span program, introduced by
Karchmer and Wigderson [86]. The existence of an efficient construction of a
linear secret sharing scheme for an access structure is essentially equivalent to
the existence of a small monotone span program for the characteristic function
of the access structure (or simply a small monotone span program for the
access structure).

In this section, we establish this equivalence. For simplicity of exposition,
we restrict the discussion to the case where the space of secrets K is Fq. The
case of K = Fd

q (where d > 1) may be treated similarly.

© 2013 Taylor & Francis Group, LLC



116 Algebraic Curves in Cryptography

Definition 4.6.1 LetK = Fq be a finite field. We say a secret sharing scheme
realizing an access structure Γ is linear over Fq if the following conditions are
satisfied:

(i) The share of each participant is a vector over Fq, i.e., for each i,
there exists a constant di such that the share of Pi, denoted by si =
(si,1, si,2, . . . , si,di), is in Fdi

q ;

(ii) The secret is a linear combination of shares from authorized subsets,
i.e., for each I ∈ Γ, there exist constants {ai,j : Pi ∈ I, 1 ≤ j ≤ di}
(which can be publicly computed) such that

k =
∑

i : Pi∈I

∑

1≤j≤di

ai,jsi,j ,

where the constants and the arithmetic are over Fq.

The total size of the shares in the scheme is defined as d =
∑n

i=1 di.

It is easy to see that the Shamir (t, n)-threshold scheme is linear. Indeed,
for the polynomial f(x) = k + a1x+ · · ·+ at−1x

t−1, we can compute k using
the Lagrange Interpolation Formula

k =

t∑

j=1

sij
∏

1≤ℓ≤t,ℓ 6=j

xiℓ
xiℓ − xij

,

where sij = f(xij ) is the share of the participant Pij . We have seen in Section
4.1 that, by letting

bj =
∏

1≤ℓ≤t,ℓ 6=j

xiℓ
xiℓ − xij

for all 1 ≤ j ≤ t,

we then have

k =
t∑

j=1

bjsij .

In other words, the secret k is a linear combination of any t shares.

Remark 4.6.2 Beimel [8] has shown that the linearity of the reconstruction
function in linear secret sharing schemes is equivalent to the linearity of the
share distribution function. More precisely, a secret sharing scheme is linear if

(i) The share of each participant is a vector over Fq;

(ii) The share distribution function D : K×R→ S1×· · ·×Sn is linear, i.e.,
each coordinate of the share of every participant is a linear combination
of the secret k and the random input r ∈ R.
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Let Γ be an access structure on P = {P1, . . . , Pn}. LetM be a d×e matrix
over Fq, where d ≥ e, let ψ : {1, . . . , d} → {1, . . . , n} be a surjective mapping
and let ε be a nonzero vector in Fe

q. Recall that we have assumed that K = Fq.

Definition 4.6.3 The quadruple M = (K,M,ψ, ε) is called a monotone
span program (MSP for short), with labeling ψ and target vector ε.
The jth row of M is said to be labeled by Pi if ψ(j) = i. We say that the
MSPM computes the access structure Γ if

I ∈ Γ⇐⇒ ε ∈ span(MI),

where span(MI) is the subspace of Ke spanned by the rows of M , which are
labeled by the members in I.

If ε ∈ span(MI) for some I ⊆ P , then we say thatM accepts I. The size
ofM is d, the number of rows of M .

Example 4.6.4 Let P = {P1, . . . , P6} be a set of participants. Consider the
access structure Γ on P defined by the basis

Γ0 =

{
{P1, P2}, {P3, P4}, {P5, P6}, {P1, P5}, {P1, P6},
{P2, P6}, {P2, P5}, {P3, P6}, {P4, P5}

}
.

Define the matrix M over Fq with the labeling map ψ such that

MP1 =




1 0 1 0 0
0 0 0 1 0
0 0 0 0 1




MP2 =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




MP3 =

(
1 1 0 0 0
0 0 0 0 1

)

MP4 =

(
0 1 0 0 0
0 0 0 1 0

)

MP5 =

(
1 1 1 0 0
1 0 0 1 0

)

MP6 =

(
0 1 1 0 0
1 0 0 0 1

)
.

In other words, MPi consists of the rows of M labeled by Pi. It can be
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easily checked that M = (Fq,M, ψ, ε) is an MSP computing Γ, where
ε = (1, 0, 0, 0, 0) and

M =




MP1

MP2

MP3

MP4

MP5

MP6



.

Theorem 4.6.5 Let K be a finite field. Assume there exists a monotone span
program, of size d, over K computing an access structure Γ. Then there is a
linear secret sharing scheme with the set of secrets K that realizes the access
structure Γ, with d as the total size of the shares.

Proof. Let M = (K,M,ψ, ε) be an MSP with e columns. We construct a
linear sharing scheme as follows. The dealer randomly chooses a vector α =
(r1, . . . , re) ∈ Ke such that the inner product of α and ε is the secret k,
i.e., ε · α = k. Consider the vector MαT , and label each of its coordinates
according to the labeling of the corresponding row in M . The share of Pi

consists of all the coordinates of MαT that are labeled by Pi in M . We show
that this gives rise to a linear secret sharing scheme realizing Γ.

Let I be an authorized subset in Γ. Since M computes Γ, we have
ε ∈ span(MI), i.e., ε is a linear combination of the rows labeled by the partic-
ipants in I. We denote these rows by Mi1 , . . . ,Miu . It follows that there exist
constants bi1 , . . . , biu in K such that

u∑

j=1

bijMij = ε.

From the construction, it is easy to see that the participants in I hold the
values

Mi1 ·α, . . . ,Miu · α.
We have

k = ε · α =




u∑

j=1

bijMij


 ·α =

u∑

j=1

bij (Mij · α).

This means that the participants in I can reconstruct the secret by applying
a linear function to the coordinates of their shares.

Next, we show that, for any unauthorized subset I /∈ Γ, the participants
from I have no information about the secret. To this end, we show that, for
any two secrets k and k′, there is a one-to-one mapping between the shares of
I with secret k and the shares of I with secret k′. From linear algebra, we know
that ε /∈ span(MI) if and only if there exists β ∈ Ke such thatMIβ

T = 0 and
ε ·β 6= 0. Let σI be the possible vector of shares of I in accordance with secret
k and let α be the random vector for the shares generated by the dealer. We
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haveMIα
T = σI and ε ·α = k. Define a mapping φ from the random vectors

for the secret k to the random vectors for the secret k′ as follows:

φ(α) = α+ δβ,

where δ = (k′− k)/(ε ·β). Since α generates the share vector σI , the random
vector φ(α) generates the same share vector for I as well, because

MI(α+ δβ)T =MIα
T + δMIβ

T = σI + δ0 = σI .

The secret corresponding to the random vector α+ δβ is

ε · (α+ δβ) = k + δε · β = k′.

It is easy to check that the mapping φ has an inverse, so it is one-to-one. The
desired result follows. ✷

Now, we show the converse of Theorem 4.6.5, due to Beimel [8].

Theorem 4.6.6 Let K be a finite field. Assume there exists a (perfect) linear
secret sharing scheme over K realizing the access structure Γ in which the
total size of the shares is d. Then there is a monotone span program over K
of size d computing Γ.

Proof. We construct the monotone span programM = (K,M,ψ, ε) as follows.
Let

D : K ×R→ S1 × · · · × Sn

be the share distribution algorithm of the linear secret sharing scheme, where
R is the set of the random inputs and Si = Kdi . Let the share of Pi be
(si,1, . . . , si,di), and let d =

∑n
i=1 di.

M : Let M be a d × 2|R| matrix over K, where each row is labeled by a
coordinate of shares, i.e., the ijth row corresponds to the jth coordinate
of the share vector of Pi. The columns are indexed by a pair (k, r) ∈
{0, 1} ×R. The entries are defined as

Mij ,(k,r) = D(k, r)ij ,
where D(k, r)ij denote the jth coordinate of the share vector of Pi,
provided the secret and the random input for D are k and r, respectively.

ψ: The labeling mapping is defined by

ψ(ij) = i, where 1 ≤ i ≤ n and 1 ≤ ij ≤ di.

ε: We assume that the first |R| columns of M are indexed by the secret 0
and the last |R| columns of M are indexed by the secret 1. The target
vector ofM is defined as

ε = (0, . . . , 0, 1, . . . , 1),

where the first |R| coordinates of ε are all 0 and the last |R| coordinates
are all 1.
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We claim that this monotone span program computes Γ. In other words, we
will prove that I ∈ Γ if and only if ε ∈ span(MI).

Let I ∈ Γ. From the definition of a linear secret sharing scheme, we know
that the secret is a linear combination of the coordinates of the shares of the
participants in I. Since {0, 1} is a subset of K, it follows that there exist
constants {ai,j : Pi ∈ I, 1 ≤ j ≤ di} such that, for every (k, r) ∈ {0, 1} × R,
we have

k =
∑

Pi∈I

∑

1≤j≤di

ai,jsi,j =
∑

Pi∈I

∑

1≤j≤di

ai,jMij ,(k,r).

LetMij be the ijth row ofM . Since the above equation holds for every column
labeled by (k, r) ∈ {0, 1} ×R, we obtain

ε =
∑

Pi∈I

∑

1≤j≤di

ai,jMij ,

soM computes Γ as required.
On the other hand, for any I ⊆ P , if ε ∈ span(MI), then ε is a linear

combination of the rows labeled by the participants from I. This implies that
the participants from I can distinguish when the secret is 0 and when the
secret is 1. The perfectness of the scheme implies that I must be in Γ. ✷

We end this subsection with a short discussion on the notion of the dual
access structure, which plays an important role in the next section.

Definition 4.6.7 Let Γ be an access structure on P . The set Γ∗ = {I : Ī =
P \ I /∈ Γ} is called the dual access structure of Γ.

The following theorem, due to Gál [64] and Fehr [56], will be required in
the proof of Theorem 4.7.3.

Theorem 4.6.8 Assume K is a finite field. Let M = (K,M,ψ, ε) be an
MSP of size d computing an access structure Γ. There exists an MSP M∗ =
(K,M∗, ψ, ε∗) of the same size d, computing its dual access structure Γ∗.
Moreover,M∗ can be efficiently constructed, andM andM∗ satisfyMTM∗ =
εTε∗.

Proof. Assume that M is a d × e matrix over K whose columns are linearly
independent and that the target vector is ε = (1, 0, . . . , 0) ∈ Ke (note that, if
the columns of M are not linearly independent or ε is not in the given form,
we can apply some suitable linear transformation to get a new MSP satisfying
the required property to compute the same access structure asM). Let v0 be
a solution of the system of linear equations MTx = εT and let v1, . . . ,vd−e

be a basis of ker(MT ), where ker(MT ) = {y ∈ Kd : MTy = 0}. Set

M∗ = (v0,v1, . . . ,vd−e) and ε∗ = (1, 0, . . . , 0) ∈ Kd−e+1.

Note that M∗ is a d × (d − e+ 1) matrix satisfying MTM∗ = εTε∗ = E,
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where E is an e × (d − e + 1) matrix with all entries equal to zero, except
in its upper-left corner where the entry is 1. Furthermore, every solution of
MTx = εT is a linear combination of the columns of M∗ as follows

x = v0 + k1v1 + · · ·+ kd−evd−e,

for some k1, . . . , kd−e.
Now we show that the MSP M∗ = (K,M∗, ψ, ε∗) computes Γ∗. For any

I ∈ Γ, there exists a vector λ such that λĪ = 0 and MTλ = εT , where
Ī = P \ I. Therefore, λ must be of the form λ = M∗k with the first entry
of k being 1. However, since M∗

Ī
k = λĪ = 0 and k · (ε∗)T = 1, Ī cannot be

accepted byM∗.
Consider now a set I such that Ī is not accepted byM∗. This means that

ε∗ is not in the subspace generated by the rows of M∗
Ī
or, equivalently, there

exists a vector k with M∗
Ī
k = 0 and k · (ε∗)T = 1. If we set a = M∗k, then

aĪ = 0 and hence

MT
I aI =MTa =MTM∗k = Ek = εT .

Therefore I ∈ Γ.
Thus, we have shown that I ∈ Γ if and only if Ī is not accepted by M∗,

proving the claim. ✷

4.7 Multiplicative Linear Secret Sharing Schemes

Multiplicative linear secret sharing and strongly multiplicative linear secret
sharing were introduced by Cramer, Damg̊ard, and Maurer in [45]. They play
an important role in the design of secure multiparty computation protocols.
Roughly speaking, multiplication is the property that the product of secrets
can be recovered by a linear combination of the products of the shares of the
individual participants. In this section, we study the multiplication properties
of linear secret sharing schemes (LSSSs).

As we have seen, monotone span programs are equivalent to linear secret
sharing schemes. Sometimes it is convenient to describe linear secret sharing
schemes in terms of MSPs, which we do for this section.

LetM = (K,M,ψ, ε) be a linear secret sharing scheme realizing an access
structure Γ. Given two vectors x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Kd, we
define x ⋄ y to be the vector containing all entries of the form xi · yj with
ψ(i) = ψ(j). More precisely, let

x = (x11, . . . , x1d1 , . . . , xn1, . . . , xndn),
y = (y11, . . . , y1d1 , . . . , yn1, . . . , yndn),
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where
∑n

i=1 di = d, and (xi1, . . . , xidi), (yi1, . . . , yidi) are the entries labeled
with Pi according to ψ. Then x ⋄ y is the vector composed of the

∑n
i=1 d

2
i

entries xijyik, where 1 ≤ j, k ≤ di, 1 ≤ i ≤ n. We shall write the entries of
x ⋄ y in some fixed order. We also define xT ⋄ yT = (x ⋄ y)T .

Definition 4.7.1 Let M = (K,M,ψ, ε) be a linear secret sharing scheme
realizing an access structure Γ on P . ThenM is calledmultiplicative if there
exists a recombination vector z ∈ K

∑n
i=1 d2

i such that, for all k, k′ ∈ K and
ρ,ρ′ ∈ Ke−1, we have

kk′ = z
(
M(k,ρ)T ⋄M(k′,ρ′)T

)
. (4.3)

Moreover,M is strongly multiplicative if, for all I /∈ Γ, MĪ is multi-
plicative, whereMĪ denotes the MSPM restricted to the subset Ī = P \ I.

Note that, in the Shamir (t, n)-threshold scheme, if the secrets k and k′

are shared using two polynomials f(x) and g(x) of degree at most t − 1,
with the shares (f(x1), . . . , f(xn)) and (g(x1), . . . , g(xn)), respectively, then
the shares of the secret kk′ from the polynomial h(x) = f(x)g(x) are
(f(x1)g(x1), . . . , f(xn)g(xn)). However, the degree of h(x) is at most 2t − 2.
Thus, the reconstruction of h(x) (and so kk′) requires at least 2t − 1 points
of (f(x1)g(x1), . . . , f(xn)g(xn)). It follows that n ≥ 2t − 1, i.e., the Shamir
(t, n)-threshold scheme is multiplicative provided n ≥ 2t− 1, or equivalently,
t < n/2 + 1. Similarly, we can show that the Shamir (t, n)-threshold scheme
is strongly multiplicative provided t < n/3 + 1. In other words, the threshold
access structure has the properties that no two (respectively, no three) unau-
thorized subsets can cover the full set of participants P in order to achieve
the multiplication (respectively, strong multiplication) property. Such proper-
ties can be generalized to any access structure.

Definition 4.7.2 An access structure Γ on P is called Q2 (respectively, Q3)
if no two (respectively, no three) sets from Γc = {I : I ⊆ P , I 6∈ Γ} can cover
P .

Theorem 4.7.3 If there exists an MSP M of size d over K that computes
a Q2 access structure Γ, then there exists a multiplicative MSPM′ of size at
most 2d over K that computes Γ.

The proof of Theorem 4.7.3 follows immediately from Lemmas 4.7.4 and 4.7.5
below.

Lemma 4.7.4 If there exists an MSPM of size d over K that computes an
access structure Γ, then there exists a multiplicative MSPM′ of size at most
2d over K that computes Γ ∪ Γ∗, where Γ∗ is the dual of Γ.

Proof. Assume M = (K,M,ψ, ε) is an MSP of size d computing an access
structure Γ. Let M∗ = (K,M∗, ψ, ε∗) be the MSP constructed in Theorem
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4.6.8. Then M∗ computes the dual access structure Γ∗ with size d, and M
and M∗ satisfy MTM∗ = εTε∗. We also denote the d× e matrix M as M =
(g0,g1, . . . ,ge−1) and the d×(d−e+1) matrixM∗ asM∗ = (v0,v1, . . . ,vd−e).
We constructM′ = (K,M ′, ψ′, ε′) as follows.

Set

M ′ =

(
g0 g1 · · · ge−1 0 · · · 0
v0 0 · · · 0 v1 · · · vd−e

)
.

Note that M ′ is a 2d× d matrix.
The labeling mapping ψ′ is constructed in accordance with ψ: ψ′(i) = ψ(i)

if 1 ≤ i ≤ d and ψ′(i) = ψ(i− d) if d+1 ≤ i ≤ 2d. Let ε′ = (1, 0, . . . , 0) ∈ Kd.
It is easy to see thatM′ = (K,M ′, ψ′, ε′) computes Γ ∪ Γ∗.
We are left to show thatM′ is multiplicative. In other words, we will show

that, for any k, k′ ∈ K and vectors ρ,ρ′ ∈ Kd−1, kk′ is a linear combination
of the coordinates of M ′(k,ρ)T ⋄ M ′(k′,ρ′)T . We write ρ = (ρ1,ρ2) and
ρ′ = (ρ′

1,ρ
′
2), where ρ1,ρ

′
1 ∈ Ke−1 and ρ2,ρ

′
2 ∈ Kd−e. We have

(k,ρ1)M
TM∗

(
k′

ρ′
2

)
= (k,ρ1)(M

TM∗)

(
k′

ρ′
2

)

= (k,ρ1)E

(
k′

ρ′
2

)

= kk′.

Clearly, (k,ρ1)M
TM∗(k′,ρ′

2)
T is a linear combination of the entries in the

vector M(k,ρ1)
T ⋄M∗(k′,ρ′

2)
T , and so a linear combination of the entries in

M ′(k,ρ)T ⋄M ′(k′,ρ′)T , proving the result. ✷

Lemma 4.7.5 If Γ is a Q2 access structure, then Γ = Γ ∪ Γ∗.

Proof. We show that, for any I ∈ Γ∗, we have I ∈ Γ. Indeed, otherwise, if
I 6∈ Γ, then Ī ∈ Γ∗ by the definition of Γ∗. Since (Γ∗)∗ = Γ, it follows from
I ∈ Γ∗ that Ī 6∈ Γ. This shows that both I and Ī are not in Γ, which contra-
dicts the assumption that Γ is Q2. ✷

Remark 4.7.6 The intuitive idea behind Theorem 4.7.3 can be described as
follows. LetM = (K,M,ψ, ε) be a linear secret sharing scheme realizing an
access structure Γ. From Theorem 4.6.8, we construct a linear secret sharing
schemeM∗ = (K,M∗, ψ, ε∗) for the dual access structure Γ∗. We then form
a new secret sharing scheme as follows. We apply both M andM∗ to share
the same secret k independently. In other words, for each secret k, we have
two share vectors (a1, . . . , ad) and (a∗1, . . . , a

∗
d) fromM andM∗, respectively.

For another secret k′, we obtain another two share vectors (b1, . . . , bd) and
(b∗1, . . . , b

∗
d). We then show that kk′ is a linear combination of the entries in

(a1b
∗
1, a2b

∗
2, . . . , adb

∗
d), by applying Theorem 4.6.8.
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We define mspK(Γ) to be the smallest size of an MSP that computes Γ, and
define µK(Γ) (respectively, µ∗

K(Γ)) to be the smallest size of a multiplicative
(respectively, strongly multiplicative) MSP over K, which computes Γ (we
adopt the convention that the value is ∞ if Γ cannot be computed). Clearly,
we have

mspK(Γ) ≤ µK(Γ) ≤ µ∗
K(Γ).

Theorem 4.7.7 For every finite field K and any access structure Γ, we have
µK(Γ) <∞ if and only if Γ is Q2, and µ∗

K(Γ) <∞ if and only if Γ is Q3.

Proof. We show that µK(Γ) <∞ if and only if Γ is Q2.
Assume that Γ is Q2. Since any access structure Γ can be realized with a

linear secret sharing scheme (e.g., using the cumulative array construction),
by Theorem 4.7.3, we know that Γ can be realized by a multiplicative secret
sharing scheme, and so µK(Γ) <∞.

Conversely, assume that M = (K,M,ψ, ε) is a multiplicative MSP com-
puting Γ. If Γ is not Q2, there exists a set I ⊂ P such that I ∪ Ī = P and
I, Ī /∈ Γ. It follows that neither the rows ofMI nor the rows ofMĪ can span ε.
By the duality argument, there exist vectors κ and κ′, both with first coordi-
nate equal to 1, such that MIκ

T = 0 and MĪκ
′T = 0. By the multiplication

property, we have z(MκT ⋄Mκ′T ) = 1, where z is the recombination vector.

However, by the choice of κ and κ′, we haveMκT ⋄Mκ′T = 0 since I∪ Ī = P .
We therefore have z(MκT ⋄Mκ′T ) = 0, a contradiction. Hence, Γ is Q2.

Next, we prove the second statement on Q3. Let Γ be a Q3 access structure
and M = (K,M,ψ, ε) a linear secret sharing scheme realizing it. For any
I ⊆ P , I 6∈ Γ, it is easy to see that MĪ , the restriction of M to Ī, realizes
the access structure ΓĪ = {J ⊆ Ī : J ∈ Γ}. The access structure ΓĪ is Q2

over Ī because Γ is Q3 over P = Ī ∪ I. Now we can transform MĪ into a
multiplicative linear secret sharing scheme following the general construction
of Theorem 4.7.3. The process applies to all I 6∈ Γ, so we obtain a strongly
multiplicative linear secret sharing scheme realizing Γ (note that, in general,
this construction results in a scheme of exponential size).

Conversely, assume thatM = (K,M,ψ, ε) is a strongly multiplicative lin-
ear secret sharing scheme realizing Γ. If Γ is not Q3, there exist I1, I2, I3 6∈ Γ
such that I1 ∪ I2 ∪ I3 = P . We may further assume I3 = P \ (I1 ∪ I2). Again,
we know that MĪ3 , the restriction of M to Ī3, realizes the access structure
ΓĪ3 = {J ⊆ Ī3 : J ∈ Γ}. By the definition of a strongly multiplicative secret
sharing scheme, we know thatMĪ3 is multiplicative. This contradicts the as-
sumption I1 ∪ I2 = P \ I3, since both I1 and I2 are not in ΓĪ3 , proving the
desired result. ✷

From Theorem 4.7.3, we know how to construct a multiplicative linear
secret sharing scheme from a linear secret sharing scheme, with information
rate decreasing at most by 1/2. However, it remains open how to efficiently
construct a strongly multiplicative linear secret sharing scheme from a linear
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secret sharing scheme or a multiplicative linear secret sharing scheme. In [181],
Zhang et al. gave a new characterization of strong multiplication using so
called 3-multiplicative linear secret sharing schemes.

It is easy to see that we have an induced labeling map ψ′ :
{1, . . . ,∑n

i=1 d
2
i } → {P1, . . . , Pn} on the entries of x⋄y, distributing the entry

xijyiℓ to Pi, since both xij and yiℓ are labeled by Pi under ψ. For an MSP
M = (K,M,ψ, ǫ), write M = (g1, . . . ,ge), where gi ∈ Kd, with d =

∑n
i=1 di,

is the ith column vector of M , 1 ≤ i ≤ e. We construct a new matrix M⋄ as
follows:

M⋄ = (g1 ⋄ g1, . . . ,g1 ⋄ ge,g2 ⋄ g1, . . . ,g2 ⋄ ge, . . . ,ge ⋄ g1, . . . ,ge ⋄ ge).

Obviously,M⋄ is a matrix over K with
∑n

i=1 d
2
i rows and e2 columns. For any

two vectors u,v ∈ Ke, it is easy to verify that

(MuT ) ⋄ (MvT ) =M⋄(u⊗ v)T ,

where u ⊗ v denotes the tensor product with its entries written in a proper
order. Define the induced labeling map ψ′ on the rows of M⋄. We have the
following lemma.

Lemma 4.7.8 Let M = (K,M,ψ, ε) be a linear secret sharing scheme real-
izing an access structure Γ, and let ψ′ be the associated labeling of M⋄. Then
M is multiplicative if and only if ε ∈ span(M⋄), where ε = (1, 0, . . . , 0).
Moreover, M is strongly multiplicative if and only if ε ∈ span((M⋄)A) for all
A ∈ A = 2P \ Γ.

Proof. By Definition 4.7.1, M is multiplicative if and only if kk′ =
z(M(k,ρ)T ⋄ M(k′,ρ′)T ) for all k, k′ ∈ K, ρ,ρ′ ∈ Ke−1 and some recom-
bination vector z. Obviously,

M(k,ρ)T ⋄M(k′,ρ′)T =M⋄((k,ρ)⊗ (k′,ρ′))T =M⋄(kk
′,ρ′′)T , (4.4)

where (kk′,ρ′′) = (k,ρ)⊗(k′,ρ′). On the other hand, kk′ = ε(kk′,ρ′′)T . Thus,
M is multiplicative if and only if

(ε− zM⋄)(kk
′,ρ′′)T = 0. (4.5)

As k, k′,ρ and ρ′ are arbitrary, equality (4.5) holds if and only if ε−zM⋄ = 0,
i.e., ε ∈ span(M⋄). The latter part of the lemma can be proved similarly. ✷

Now we define 3-multiplicative linear secret sharing schemes. We extend
the diamond product “⋄” and define x ⋄ y ⋄ z to be the vector containing
all entries of the form xiyjzℓ with ψ(i) = ψ(j) = ψ(ℓ), where the entries of
x ⋄ y ⋄ z are written in some fixed order.

Definition 4.7.9 Let M = (K,M,ψ, ε) be a linear secret sharing scheme
realizing an access structure Γ. Then M is called 3-multiplicative if there
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exists a recombination vector z ∈ K
∑n

i=1 d3
i such that, for all k1, k2, k3 ∈ K

and ρ1,ρ2,ρ3 ∈ Ke−1, we have

k1k2k3 = z
(
M(k1,ρ1)

T ⋄M(k2,ρ2)
T ⋄M(k3,ρ3)

T
)
.

We can derive an equivalent definition for 3-multiplicative linear secret
sharing schemes, similar to Lemma 4.7.8:M is 3-multiplicative if and only if
ε ∈ span(M ⋄M ⋄M), where M ⋄M ⋄M is defined analogously to M⋄. The
following theorem gives a necessary and sufficient condition for the existence
of a 3-multiplicative linear secret sharing scheme.

Theorem 4.7.10 For any access structure Γ, there exists a 3-multiplicative
linear secret sharing scheme realizing Γ if and only if Γ is Q3.

Proof. Suppose M = (K,M,ψ, ε) is a 3-multiplicative linear secret sharing
scheme realizing Γ. If Γ is not Q3, then there exist A1, A2, A3 ∈ A = 2P \ Γ
such that A1 ∪ A2 ∪ A3 = P . It follows that there exists ρi ∈ Ke−1 such
that MAi(1,ρi)

T = 0, for 1 ≤ i ≤ 3. Since A1 ∪ A2 ∪ A3 = P , we have
M(1,ρ1)

T ⋄M(1,ρ2)
T ⋄M(1,ρ3)

T = 0, which contradicts Definition 4.7.9.
On the other hand, from Theorem 4.7.13, we have a 3-multiplicative lin-

ear secret sharing scheme from a strongly multiplicative linear secret sharing
scheme. By Theorem 4.7.7, the result follows. ✷

A trivial example of a 3-multiplicative linear secret sharing scheme is the
Shamir threshold secret sharing scheme that realizes any Q3 threshold access
structure. Using an argument identical to that for the case of strongly mul-
tiplicative linear secret sharing schemes, we have a general construction for
3-multiplicative linear secret sharing schemes based on the Shamir threshold
secret sharing schemes, with exponential complexity.

More generally, the notion of λ-multiplicative secret sharing schemes was
introduced and studied in [181] and [6]. For any λ vectors xi = (xi1, . . . , xid) ∈
Kd, 1 ≤ i ≤ λ, we define ⋄λi=1xi to be the

∑n
i=1 d

λ
i -dimensional vector which

contains entries of the form
∏λ

i=1 xiji with ψ(j1) = · · · = ψ(jλ).

Definition 4.7.11 Let M = (K,M,ψ, ε) be a linear secret sharing scheme
realizing an access structure Γ, and let λ > 1 be an integer. Then M is
λ-multiplicative if there exists a recombination vector z such that, for all
k1, . . . , kλ ∈ K and ρ1, . . . ,ρλ ∈ Ke−1, we have

λ∏

i=1

ki = z(⋄λi=1M(ki,ρi)
T ).

Moreover,M is strongly λ-multiplicative if, for all A /∈ Γ, the restricted
linear secret sharing schemeMĀ is λ-multiplicative.

Again, we can define a new matrix by taking the diamond product of λ
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copies ofM . This gives an equivalent definition for (strongly) λ-multiplicative
linear secret sharing schemes. Moreover, since the Shamir threshold secret
sharing scheme is trivially λ-multiplicative and strongly λ-multiplicative, a
proper composition of the Shamir threshold secret sharing schemes results in
a general construction for both λ-multiplicative linear secret sharing schemes
and strongly λ-multiplicative linear secret sharing schemes. Let Qλ be a
straightforward extension of Q2 and Q3, i.e., an access structure Γ is Qλ

if the set of participants P cannot be covered by λ sets in A = 2P \ Γ. The
following corollary is easy to prove.

Corollary 4.7.12 Let Γ be an access structure on P. Then there exists a
λ-multiplicative (respectively, strongly λ-multiplicative) linear secret sharing
scheme realizing Γ if and only if Γ is Qλ (respectively, Qλ+1).

Zhang et al. [181] showed the following results that establish the re-
lationship between strongly multiplicative secret sharing schemes and 3-
multiplicative secret sharing schemes. Their proofs are omitted here.

Theorem 4.7.13 Let Γ be a Q3 access structure and let M = (K,M,ψ, ε)
be a strongly multiplicative linear secret sharing scheme realizing Γ. Suppose
that M has size d and |ψ−1(Pi)| = di, for 1 ≤ i ≤ n. Then there exists a
3-multiplicative linear secret sharing scheme for Γ of size O(d2).

Theorem 4.7.14 Any 3-multiplicative linear secret sharing scheme is
strongly multiplicative.

4.8 Secret Sharing from Error-Correcting Codes

Secret sharing schemes are closely related to error-correcting codes. In
this section, we show how to construct a secret sharing scheme from an error-
correcting code.

Let C be a q-ary [n+ 1, t, d]-code, let G = (g0,g1, . . . ,gn) be a generator
matrix for C, and let K = Fq be the set of secrets. We give a construction for
a secret sharing scheme for P = {P1, . . . , Pn}, called EC-LSSS Construction,
as follows:

(1) Let the generator matrix G be publicly known to everyone in the system.

(2) To share a secret k ∈ K, the dealer randomly selects a vector

r = (r0, r1, . . . , rt−1) ∈ Kt

such that k = r · g0.
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(3) Each participant Pi receives a share si = r · gi, for i = 1, . . . , n.

It is easy to see that the shares of the participants Pi1 , . . . , Piℓ can re-
construct the secret k if g0 can be represented as a linear combination of
gi1 , . . . ,giℓ . Indeed, assume g0 = a1gi1 + · · ·+ aℓgiℓ . Then we have

k = r · g0 = r ·




ℓ∑

j=1

ajgij


 =

ℓ∑

j=1

ajr · gij =

ℓ∑

j=1

ajsij .

Let

ΓC = {I : I ⊆ P , g0 is a linear combination of gi, Pi ∈ I}.

Then it is easy to check that ΓC is a monotone increasing collection of subsets
of P .

Theorem 4.8.1 For any q-ary [n+ 1, t, d]-code C, EC-LSSS Construction re-
sults in a linear secret sharing scheme realizing ΓC .

Proof. We show that EC-LSSS Construction gives rise to a linear MSP real-
izing ΓC . We define M = (g1, . . . ,gn) and set ψ to be the identity mapping
on {1, . . . , n}, i.e., ψ(i) = i, for i = 1, . . . , n, and let ε = g0. Then it is easy
to see that M = (K,M,ψ, ε) is an MSP realizing ΓC . Using an argument
identical to that for Theorem 4.6.5, we know that the secret sharing scheme
from EC-LSSS Construction is a linear secret sharing scheme realizing ΓC . ✷

An interesting question is the determination of the access structure ΓC for
any given code C, which turns out to be a hard question in general.

McEliece and Sarwate [104] observed that the Shamir secret sharing
scheme is essentially the same as EC-LSSS Construction using a Reed-Solomon
code. Recall that an [n+ 1, t, d]-Reed-Solomon code C is defined as

C = {(f(0), f(x1), . . . , f(xn)) : deg(f) ≤ t− 1, f(x) ∈ K[x]},

where x1, . . . , xn are n distinct nonzero elements in K. The code C has a
generator matrix

G =




1 1 · · · 1
0 x1 · · · xn
0 x21 · · · x2n

...
0 xt−1

1 · · · xt−1
n




= (g0,g1, . . . ,gn).

Since any t columns of G are linear independent and any t + 1 columns
are linearly dependent in Kt, it is easy to see that ΓC is the (t, n)-threshold
access structure Γt,n. We have the following result immediately.
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Theorem 4.8.2 Let C be an [n+ 1, t, d]-Reed-Solomon code. Then EC-LSSS
Construction results in a (t, n)-threshold scheme which is identical to the
Shamir (t, n)-threshold scheme.

More generally, threshold schemes can be constructed from MDS codes,
which include the Reed-Solomon codes.

Theorem 4.8.3 Let C be an [n + 1, t, d]-MDS code over K. Then EC-LSSS
Construction results in a (t, n)-threshold scheme.

Proof. Assume that G = (g0,g1, . . . ,gn) is a generator matrix of the
[n + 1, t, d]-MDS code C. It follows that any t columns of G are linearly
independent, while any t + 1 columns are linearly dependent over K. We
then have g0 ∈ span(gi1 , . . . ,git) for any {i1, . . . , it} ⊆ {1, . . . , n}, where
1 ≤ i1 < i2 < · · · < it ≤ n. Therefore ΓC = Γt,n. By Theorem 4.8.1, the
desired result follows. ✷

Massey [102] observed that, for any linear code C, the access structure ΓC

can be determined by the so-called minimal codewords in C⊥, the dual code
of C.

Recall that, for any vector x = (x0, x1, . . . , xn), the support of x is defined
as

supp(x) = {i : xi 6= 0}.

Theorem 4.8.4 For any I = {Pi1 , . . . , Piℓ} ⊆ P and any linear code C,
I ∈ ΓC if and only if {0, i1, . . . , iℓ} ⊇ supp(c∗) for some c∗ ∈ C⊥.

Proof. Let G = (g0,g1, . . . ,gn) be a generator matrix of C. Observe that

I = {Pi1 , . . . , Piℓ} ∈ ΓC

⇐⇒ g0 =
∑ℓ

j=1 xijgij for some xi1 , . . . , xiℓ

⇐⇒ (1, 0, . . . , 0,−xi1 , 0, . . . , 0,−xiℓ , 0, . . . , 0)(g0,g1, . . . ,gn)
T = 0

⇐⇒ (1, 0, . . . , 0,−xi1 , 0, . . . , 0,−xiℓ , 0, . . . , 0)GT = 0

⇐⇒ (1, 0, . . . , 0,−xi1 , 0, . . . , 0,−xiℓ , 0, . . . , 0) ∈ C⊥.

The desired result follows immediately. ✷

Definition 4.8.5 For a given linear code C and codewords c1, c2 ∈ C, we
say that c2 covers c1 if supp(c1) ⊆ supp(c2). A nonzero codeword c ∈ C
that covers only its scalar multiples, but no other nonzero codewords of C, is
called a minimal codeword.
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It is easy to see that there is a one-to-one correspondence between the set
of minimal authorized subsets in ΓC and the set of minimal codewords of the
dual code C⊥ whose first coordinate is 1.

Thus, Theorem 4.8.4 can be restated as follows.

Theorem 4.8.6 For any [n+ 1, t, d]-code, the minimal authorized subsets of
ΓC are completely determined by the minimal codewords in C⊥.

Unfortunately, there is no known efficient algorithm to determine the mini-
mal codewords in a linear code, so finding an efficient algorithm for computing
ΓC remains an interesting research problem.

We have, however, the following interesting result, due to Chen, Cramer,
Goldwasser, de Haan, and Vaikuntanathan [39].

Theorem 4.8.7 Let C be an [n+1, t, d]-code over a finite field K. Then EC-
LSSS Construction results in a (d⊥ − 2, n− d + 2, n)-ramp scheme, where d⊥

is the minimum distance of C⊥.

Proof. We first show that ΓC = Γ∗
C⊥ , i.e., the access structure from C is the

dual of the access structure from C⊥. Indeed, I ∈ ΓC if and only if there
is c∗ = (c∗0, c

∗
1, . . . , c

∗
n) ∈ C⊥ with c∗0 = 1 and c∗i = 0 for those i’s with

Pi ∈ P \ I = Ī. Since c∗ can be viewed as a share vector, with secret equal to
1 and shares equal to 0 for Ī, in the secret sharing from EC-LSSS Construction
for C⊥, the existence of such a share vector is equivalent to Ī /∈ ΓC⊥ .

Since there are at most n+ 1− d⊥ zero c∗i in C⊥, we have

n− |I| = |Ī| ≤ n+ 1− d⊥,

which means |I| ≥ d⊥−1. In other words, any subset of P of size smaller than
or equal to d⊥− 2 is an unauthorized subset. Similarly, any set of size ≤ d− 2
is not in ΓC⊥ . We have proved that ΓC = Γ∗

C⊥ . It follows that, for any I with
|I| ≥ n− d+ 2, we have I ∈ ΓC . This completes the proof. ✷

Using an argument identical to that for Theorem 4.8.7, we can prove the
following more general result.

Corollary 4.8.8 Let C be an [n + 1, t, d]-code over a finite field K. Then
EC-LSSS Construction results in a (u, v, n)-ramp scheme, where u = −2 +
min{wt(c∗) : c∗ ∈ C⊥, c∗0 = 1} and v = n+ 2−min{wt(c) : c ∈ C, c0 = 1}.

Recall that a self-dual code C is a linear code for which C = C⊥.

Corollary 4.8.9 Let C be a self-dual [n + 1, t, d]-code over a finite field K.
Then EC-LSSS Construction results in a (d−2, n+2−d, n)-ramp scheme which
is multiplicative.
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Proof. Since d = d⊥ for self-dual codes, the secret sharing scheme is a (d −
2, n + 2 − d, n)-ramp scheme by Theorem 4.8.7. Since, for any c, c′ ∈ C, we
have c · c′ = 0, it follows that

c0c
′
0 = −c1c′1 − · · · − cnc′n,

from which the multiplication property follows. ✷

4.9 Secret Sharing from Algebraic Geometry Codes

In the previous section, we have shown how a linear secret sharing scheme
can be constructed from a linear code. However, the access structure of the
secret sharing scheme from such a construction is hard to determine for most
linear codes. In [38], Chen and Cramer applied techniques from algebraic
geometry to construct linear secret sharing schemes with some nice properties:
they are (d, t, n)-ramp schemes for which the parameters of d and t can be
explicitly computed; they have the strong multiplication property; the size
of the finite field Fq can be dramatically smaller than n, in contrast to the
condition q ≥ n+ 1 for the Shamir scheme.

The construction of secret sharing schemes from algebraic curves proceeds
as follows. The reader should refer to Chapter 1 for the notations and basic
facts on algebraic curves.

(1) Let X be a smooth projective curve over Fq of genus g, and let
P,Q0, Q1, . . . , Qn be distinct rational points on X . Let t be any fixed
integer with 1 ≤ t < n− 2g. Define a divisor D as D = (2g+ t)P . Then
D has support {P} and its degree is 2g + t.

(2) To share a secret k ∈ Fq, the dealer randomly selects an element f ∈
L(D) such that f(Q0) = k.

(3) The share of the participant Pi is f(Qi) = si ∈ Fq, for 1 ≤ i ≤ n.

Note that, in (2) of the construction above, the function f ∈ L(D) always
exists since L(D) contains the constant functions. Moreover, since L(D) is a
linear space over Fq of dimension g+ t+1 (see Theorem 1.4.7), we know that
the choice of f with f(Q0) = k requires g + t random elements from Fq. For
(3), the functions f ∈ L(D) only have a pole at P , so the values f(Qi) are
well-defined and are from Fq.

Lemma 4.9.1 Let D be a divisor on X that is defined over Fq and let
dimL(D) > 0. Then f ∈ L(D) is uniquely determined by the evaluations
of f on any deg(D) + 1 rational points on X outside the support of D.
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Proof. Let d = deg(D) and let Q1, . . . , Qd+1 be d+ 1 rational points outside
the support of D. We define

φ : L(D) −→ Fd+1
q , f 7→ (f(Q1), . . . , f(Qd+1)).

Then φ is an injective linear map of Fq-vector spaces. Indeed, if f, h ∈ L(D)
and φ(f) = φ(h), then f − h ∈ L(D− (Q1 + · · ·+Qd+1)) ⊆ L(D) because the
support of D is disjoint from the Qi’s. The degree of the divisor D − (Q1 +
· · ·+Qd+1) is negative, so f = h.

Let f be an element in L(D). Given any d+1 rational points Q1, . . . , Qd+1

on X , for any rational point Q0 different from Q1, . . . , Qd+1 and outside the
support of D, using elementary linear algebra, it can be shown that there exist
coefficients bi ∈ Fq such that

f(Q0) =

d+1∑

i=1

bif(Qi).

Hence, the desired result follows. ✷

We denote by ΓX the access structure of the secret sharing scheme from
the above construction with a curve X .

Lemma 4.9.2 Let X be a smooth projective curve over Fq, and let
Q0, Q1, . . . , Qn be n + 1 distinct rational points on X . Let I ⊆ P be a subset
of participants. Then

(i) I ∈ ΓX if and only if

dimL
(
D −

(
Q0 +

∑

Pi∈I

Qi

))
= dimL

(
D −

∑

Pi∈I

Qi

)
;

(ii) I /∈ ΓX if and only if

dimL
(
D −

(
Q0 +

∑

Pi∈I

Qi

))
< dimL

(
D −

∑

Pi∈I

Qi

)
.

Proof. It is easy to see that (i) is equivalent to (ii). We show that (ii) is true. As
mentioned before, the scheme can be viewed as a linear secret sharing scheme
from the algebraic geometry code constructed from L(D) in Section 2.4. From
Section 4.8, we know that I /∈ ΓX if and only if there exists h ∈ L(D) such
that h(Qi) = 0 for all i ∈ I and h(Q0) = 1.

Note that, in general, for any divisors E and E′, if E ≤ E′, then L(E) ⊆
L(E′). Since the support of D is disjoint from the Qi’s, we have

L
(
D −

(
Q0 +

∑

Pi∈I

Qi

))
⊆ L

(
D −

∑

Pi∈I

Qi

)
⊆ L(D).
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All functions h′, if any, in the difference

L
(
D −

∑

Pi∈I

Qi

)∖
L
(
D −

(
Q0 +

∑

Pi∈I

Qi

))

satisfy h′ ∈ L(D), h′(Q0) 6= 0 and h′(Qi) = 0 for all Pi ∈ I. By scaling h′ such
that h′(Q0) = 1, we obtain the desired function h. Clearly, the difference of
the above two spaces is nonempty if and only if their dimensions differ. ✷

Theorem 4.9.3 Let X be a smooth projective curve over Fq of genus g and
let 1 ≤ t < n − 2g. The construction above yields a (t, 2g + t + 1, n)-ramp
linear secret sharing scheme.

Proof. Let I ⊆ P and |I| = t. We have

deg

(
D −

(
Q0 +

∑

Pi∈I

Qi

))
= 2g − 1

and

deg

(
D −

∑

Pi∈I

Qi

)
= 2g.

Therefore, from Theorem 1.4.7,

dimL
(
D −

(
Q0 +

∑

Pi∈I

Qi

))
= g < g + 1 = dimL

(
D −

∑

Pi∈I

Qi

)
.

From Lemma 4.9.2, it follows that I /∈ ΓX .
On the other hand, let I ⊆ P and |I| = 2g + t+ 1. Then

dimL
((

D −
∑

Pi∈I

Qi

))
= 0,

since D −∑Pi∈I Qi is a divisor of negative degree. Therefore,

0 = dimL
(
D −

(
Q0 +

∑

Pi∈I

Qi

))
≤ dimL

(
D −

∑

Pi∈I

Qi

)
= 0.

From Lemma 4.9.2 again, we have I ∈ ΓX . ✷

The above construction can be viewed as EC-LSSS Construction from the
algebraic geometry code in Definition 2.4.2.

Thus, the resulting secret sharing scheme is indeed a perfect linear scheme,
realizing some access structure on P . While the determination of its exact
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access structure still remains open, Theorem 4.9.3 shows that we can pin
down a pair consisting of an adversary structure A and an access structure
Γ of the scheme. In other words, we have shown that the scheme obtained
above from an algebraic curve is quasi-perfect with explicit access structure
(A,Γ), where A = At,n and Γ = Γ2g+t+1,n. In certain applications, such as
secure multiparty computation, it would be sufficient to compute an adversary
structure A and an access structure Γ, instead of knowing the exact access
structure, of the underlying secret sharing scheme (see [38]).

Next, we show that secret sharing schemes from algebraic curves have good
multiplication properties. Note that Definition 4.7.1 for multiplicative linear
secret sharing schemes can be generalized to quasi-perfect linear secret sharing
schemes in a straightforward manner. Here, we generalize the strong multipli-
cation in Definition 4.7.1 to quasi-perfect linear secret sharing schemes.

Definition 4.9.4 LetM = (Fq,M, ψ, ε) be a quasi-perfect linear secret shar-
ing scheme with an adversary structure A and an access structure Γ. We say
that M is strongly multiplicative with respect to A if, for any I ⊆ P
with I = P \A for some A ∈ A,MI is multiplicative. As before,MI denotes
the restriction ofM to I.

Theorem 4.9.5 Let X be a smooth projective curve over Fq of genus g and let
1 ≤ t < n− 2g. The construction above yields a (t, 2g + t+ 1, n)-ramp linear
secret sharing scheme, which is multiplicative if 2t < n − 4g, and strongly
multiplicative with respect to At,n if 3t < n− 4g.

Proof. The proof is similar to that for the Shamir threshold scheme. We prove
the strong multiplication case since the multiplication property can be treated
in the same way. Note that, for any f, h ∈ L(D), we have div(fh) = div(f) +
div(h). It follows that

0 ≤ (div(f) +D) + (div(h) +D) = div(fh) + 2D.

We then have fh ∈ L(2D). Denote byM the secret sharing scheme based on
X . Clearly,M is linear. By Lemma 4.9.1, it is easy to see thatM is strongly
multiplicative with respect to At,n if n− t > deg(2D) = 4g+2t. Indeed, let I
be any set with I ⊆ {1, . . . , n} and |I| = 4g + 2t+ 1. We define the following
linear mappings

φ0 : L(2D) −→ Fq, f̂ 7→ f̂(Q0),

φ : L(2D) −→ F4g+2t+1
q , f̂ 7→ (f̂(Qi))i∈I ,

and
χ : F4g+2t+1

q −→ L(2D),

such that χφ is the identity on L(2D).
Then, for all f, h ∈ L(D), if si = f(Qi) and s′i = h(Qi) for all i ∈ I, we

have
k · k′ = φ0χ((si · s′i)i∈I),
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where k = f(Q0), k
′ = h(Q0). ✷

Note that, in the Shamir threshold scheme, for a given finite field Fq, the
number of participants n, corresponding to the nonzero elements in Fq, is
bounded by q − 1. Actually, the Shamir threshold scheme is a special case of
the construction from algebraic curves where the genus of the curve is 0. The
number of participants n in the construction based on algebraic curves over Fq

is determined by the number N1 of Fq-rational points of the curve, or, more
precisely, n ≤ N1− 2. For example, for elliptic curves (where g = 1), it is well
known that N1 ≤ q + ⌊2√q⌋ + 1 (cf. Corollary 1.5.4(iii)). It follows that the
scheme can have up to n = N1 − 2 = q + ⌊2√q⌋ − 1 participants, an increase
of up to ⌊2√q⌋ participants compared to the Shamir threshold scheme for the
same field Fq.

Example 4.9.6 Consider the Hermitian curve yr + y − xr+1 = 0 over Fr2

in Example 1.5.5(ii). The genus of this curve is r(r − 1)/2, and there are
r3 + 1 Fr2-rational points. Let r = 8. Then the scheme can admit up to 511
participants, with up to t = n − 2g − 1 = 511 − 56 − 1 = 454 adversaries.
Compare this scheme to the Shamir threshold scheme on the same field F64,
which only allows at most 63 participants.

Since the Shamir (t+1, n)-threshold scheme can be viewed as a (t, t+1, n)-
ramp scheme, it is multiplicative (respectively, strongly multiplicative) if and
only if t < n/2 (respectively, t < n/3). We now show that, for the construction
based on algebraic curves, the bounds on t can be asymptotically met even if
the field Fq is small. Indeed, consider the family of curves {Xi}i≥1 over Fq2 in
[65, 66] (see also Example 2.5.6) defined by

xqi+1 + xi+1 =
xqi

xq−1
i + 1

for i = 1, 2, . . . .
Let gi = g(Xi) be the genus of Xi, and let ni = N(Xi) be the number

of Fq2 -rational points of Xi. As shown in Example 2.5.6, we have gi/ni →
1/(q − 1). By Theorem 4.9.5, it follows that there is an infinite family of
curves, yielding (ti, 2gi + ti + 1, ni)-ramp linear secret sharing schemes with

strong multiplication for any ti <
(

1
3 −

4gi
3ni

)
ni, where gi/ni → 1/(q−1). Now,

for any small ǫ > 0, we can choose a prime power q such that 4
3(q−1) < ǫ. This

implies there are infinite families of integers g, n, and t such that

(
1

3
− ǫ
)
n ≤ t <

(
1

3
− 4g

3n

)
n.

In other words, for any small ǫ > 0, there exists a finite field Fq2 such that, for
infinitely many n, there exists a scheme with strong multiplication and with
(13 − ǫ)n ≤ t < 1

3n. Similarly, for each ǫ > 0, there exists a finite field Fq2 such
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that, for infinitely many n, there exists a scheme with multiplication and with
(12 − ǫ)n ≤ t < 1

2n.
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Chapter 5

Authentication Codes

One of the main goals of a cryptographic system is to provide authentication,
which simply means providing assurance about the content and origin of the
communicated message. Traditionally, it was assumed that a secrecy system
provides authentication by virtue of the secret key being only known to the
intended communicants; this would prevent an enemy from constructing a
fraudulent message. Simmons in [145] argued that the two goals of cryptogra-
phy are independent. He showed that a system that provides perfect secrecy
might not provide any protection against authentication threats. Similarly, a
system can provide perfect authentication without concealing the message.

In an authentication system, a threat is an attempt by an enemy in the
system to modify a communicated message or inject a fraudulent message
into the communication channel. In a secrecy system, the attacker is passive,
while, in an authentication system, the enemy is active and not only observes
the communicated message and gathers information such as the plaintext and
the ciphertext, but also actively interacts with the system to achieve its goal.
This view of the system clearly explains Simmons’s motivation for basing
authentication systems on game theory [145].

The most important criteria that can be used to classify authentication
systems are: (1) the relation between authenticity and secrecy, and (2) the
framework for the security analysis. The first criterion divides authentica-
tion systems into those that provide authentication with and without
secrecy. The second criterion divides authentication systems into systems
with unconditional security and systems with computational security.
Unconditional security implies that the enemy has unlimited resources, while
in systems with computational security, the security relies on the required
computation exceeding the enemy’s computational power. In this book, we
are mainly interested in unconditionally secure authentication codes without
secrecy.

137
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5.1 Authentication Codes

Authentication codes were invented by Gilbert, MacWilliams, and Sloane
[69]. The general theory of unconditional authentication has been developed
by Simmons ([146, 148]).

In the conventional model for unconditional authentication, there are three
participants: a transmitter, a receiver, and an opponent. The transmitter
wants to communicate some information to the receiver using a public channel
which is subject to active attack, that is, the opponent can either impersonate
the transmitter and insert a message in the channel, or replace a transmitted
message with another. To protect against these threats, the transmitter and
the receiver share a secret key. The key is then used in an authentication code
(A-code for short).

The information that the transmitter wants to send is called a source
state, denoted by s and taken from a finite source space S. The source state
is mapped into a (channel) message, denoted by m and taken from a message
spaceM.

Exactly how this mapping is performed is determined by the secret key
(also called the encoding rule), which is denoted by e and taken from a key
space E . The key is secretly shared between the transmitter and the receiver.

Definition 5.1.1 An authentication code (A-code) is a quadruple
(S, E ,M, f), where f is a mapping from S × E toM:

f : S × E −→M,

such that f(s, e) = m = f(s′, e) implies s = s′. Sometimes we use (S, E ,M)
to denote an A-code, without specifying the mapping f .

In the definition above, an important property is that f satisfies the condi-
tion that f(s, e) = m = f(s′, e) implies s = s′. It follows that, for each e ∈ E ,
f(·, e) induces an injective mapping from S toM. In other words, two differ-
ent source states cannot be mapped into the same message for a given key. In
general, the mapping f can be a probabilistic mapping, i.e., f(s, e) may take
on one of several possible values determined by some probability distribution.
This is called a splitting. Here, we are only interested in non-splitting A-code,
i.e., where f is deterministic.

Given an A-code (S, E ,M, f), in order to authenticate a source state, the
transmitter and receiver follow the following protocol. First, they agree on a
key e ∈ E , which is selected according to the probability distribution on E . At
a later time, if the transmitter wants to communicate a source state s ∈ S to
the receiver over an insecure channel, he computes m = f(s, e) and sends m
to the receiver. When the receiver receives the message m, he checks whether
a source s such that f(s, e) = m exists. If such an s exists, the message m is
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accepted as authentic (m is called valid). Otherwise, m is not authentic and
is thus rejected.

We will study two different types of attacks that the opponent may carry
out:

• Impersonation attack: the opponent introduces a message m into
the channel, hoping to have it accepted as authentic by the receiver.

• Substitution attack: the opponent observes a messagem in the chan-
nel, and then changes it to m′, hoping for m′ to be valid. We require
that the messages m and m′ correspond to different source states.

Associated with each of these attacks is a deception probability, which
represents the probability that the opponent will successfully deceive the re-
ceiver. We assume that the opponent chooses the message that maximizes his
chance of success. These probabilities are denoted by PI for the impersonation
attack and PS for the substitution attack, respectively. They are formally de-
fined as follows:

PI = max
m∈M

prob(m is valid)

and
PS = max

m′∈M,m′ 6=m
prob(m′ is valid | m is valid).

In order to compute PI and PS , we need to specify the probability dis-
tributions on S and E . This induces a probability distribution on M. We
adopt

Kerckhoff’s principle: Everything in the system, except for the
actual key, is public.

In other words, we assume that the authentication code and the probability
distributions on S and E are known to the opponent. The only information
unknown to the opponent is the value of the key e.

We denote by E(m) the set of keys for which the message m is valid, i.e.,

E(m) = {e ∈ E : ∃s ∈ S, f(s, e) = m}.

If we assume that the probability distributions on S and E are uniform,
the deception probabilities can be expressed as

PI = max
m∈M

|E(m)|
|E|

and

PS = max
m′∈M,m′ 6=m

|E(m) ∩ E(m′)|
|E(m)| .

Since the opponent can choose between the two attacks, we define the
overall deception probability of an A-code, denoted by PD, as

PD = max{PI , PS}.
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An A-code without secrecy is an A-code where the source state (i.e., plain-
text) is concatenated with a tag to obtain the message which is sent through
the channel.

Definition 5.1.2 An A-code without secrecy (or systematic A-code) is
a quadruple (S, E , T , f), where f is a mapping from S×E to T , where S is the
set of source states, E is the set of keys, and T is the set of authenticators
(or tags). Sometimes we use (S, E , T ) to denote an A-code without secrecy,
without specifying the mapping f .

Given an A-code without secrecy (S, E , T , f), the transmitter and receiver
follow the following protocol to achieve authentication. When the transmitter
wants to send the information s ∈ S using a key e ∈ E , which is secretly
shared with the receiver, he transmits the message m = (s, t), where s ∈ S
and t = f(s, e) ∈ T . (In terms of the notation in Definition 5.1.1, this means
M = S × T .) When the receiver receives a message m = (s, t), she checks
the authenticity by verifying whether t = f(s, e) or not, using the secret key
e ∈ E . If the equality holds, the message m is said to be valid.

Thus, for an A-code without secrecy (S, E , T , f) with uniformly distributed
keys and source states, the deception probabilities can be expressed as

PI = max
s,t

|{e ∈ E : t = f(s, e)}|
|E|

and

PS = max
s,t

max
s′ 6=s,t′

|{e ∈ E : t = f(s, e), t′ = f(s′, e)}|
|{e ∈ E : t = f(s, e)}| .

In authentication theory, we sometimes consider multiple transmissions,
i.e., a key is used to authenticate multiple messages. An attack is said to be
spoofing of order r if the opponent has seen r communicated messages and
tries to construct a fraudulent message, under a single key. The opponent’s
chance of success in this case is denoted by Pr. In particular, P0 = PI and
P1 = PS .

Example 5.1.3 Let S = {s = (s1, . . . , sk) : si ∈ Fq}. For each source state
s = (s1, . . . , sk) ∈ S, we define a polynomial

s(x) = s1x+ s2x
2 + · · ·+ skx

k.

Let E = {e = (a, b) : a, b ∈ Fq} and T = Fq. We define the mapping
f : S × E → T by

f(s, e) = f ((s1, s2, . . . , sk), (a, b)) = a+ s(b),

where s(b) is the value of s(x) evaluated at x = b. Then (S, E , T , f) is an
A-code without secrecy with

PI =
1

q
and PS =

k

q
.
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Indeed, first we have |E| = q2 and

PI = max
s,t

|{e ∈ E : t = f(s, e)}|
|E| = max

s,t

|{(a, b) : s(b) + a = t}|
q2

.

For a given value of b, a is uniquely determined by a = t− s(b) for any value
of (s, t) and thus PI = q/q2 = 1/q.

For the substitution attack, we have

PS = max
s,t

max
s′ 6=s,t′

|{e ∈ E : t = f(s, e), t′ = f(s′, e)}|
|{e ∈ E : t = f(s, e)}|

= max
s,t

max
s′ 6=s,t′

|{(a, b) : s(b) + a = t, s′(b) + a = t′}|
|{(a, b) : s(b) + a = t}|

= max
s,t

max
s′ 6=s,t′

|{(a, b) : s(b) + a = t, (s− s′)(b) + (t′ − t) = 0}|
q

.

Now a is uniquely determined by a = t−s(b) and since (s−s′)(x)+(t′− t)
is a nonzero polynomial of degree at most k, it has at most k zeros. Thus, for
any (s, t) and (s′, t′), we have

|{(a, b) : s(b) + a = t, (s− s′)(b) + (t′ − t) = 0}| ≤ k,

therefore PS = k/q.

5.2 Bounds for A-Codes

In this section, we introduce some bounds for the security and efficiency
of A-codes.

5.2.1 Information-Theoretic Bounds for A-Codes

We begin with a review of some fundamental bounds on A-codes which are
obtained by using information theory. The security and efficiency of an A-code
(S, E ,M, f) (or (S, E , T , f) for A-code without secrecy) can be measured by
a number of parameters: the deception probabilities PI and PS , the size of the
key space E , the size of the message spaceM (or the authentication tag space
T ). The goal of authentication theory is to examine the relationships among
these parameters and give constructions that, for the given source space and
deception probabilities, have the shortest possible length for the key and the
transmitted message.

We assume that the reader is familiar with the basic properties of entropy.
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A brief review has been given in Subsection 4.4.1. For any set Y, we let Y
denote a random variable defined on Y. We state without proof Simmons’s
information-theoretic bounds.

Theorem 5.2.1 (Simmons’s bound) ([146, 30]) For any A-code (S, E ,M,
f), we have

(i) PI ≥ 2−I(M;E);

(ii) PS ≥ 2−I(M′;E|M),

where E is the random variable defined on E, and M′ and M are random
variables on M such that m′ 6= m, with m,m′ ∈M.

From Theorem 5.2.1, we obtain the following corollary.

Corollary 5.2.2 In an A-code (S, E ,M, f), we have

PS ≥ 2−H(E|M).

These bounds show how authentication codes provide protection. For the
impersonation attack, we see that PI is lower bounded by the mutual infor-
mation between the transmitted message and the key. This means that, in
order to have good protection against the impersonation attack, i.e., for PI to
be small, we must give away a lot of information about the key. On the other
hand, from Corollary 5.2.2, we know that, in the substitution attack, PS is
lower bounded by the uncertainty about the key when a message has been
observed. Thus, we cannot waste all the key entropy for protection against
the impersonation attack, but some uncertainty about the key must remain
for protection against the substitution attack.

A general form of Simmons’s bounds for protection against spoofing of
order r, proved independently by Rosenbaum [126] and Pei [121], is

Pr ≥ 2−I(E;M′|Mr),

where I(E;M′ | Mr) is the conditional mutual information between the key
and the message, given a string of r transmitted messages.

5.2.2 Combinatorial Bounds for A-Codes

In our model of A-codes, each source state s is mapped to a message m.
We see that, among all the messages in M, at least |S| messages must be
authentic, since every source state is mapped to a different message in M.
Similarly, for the substitution attack, after observation of one valid message,
at least |S| − 1 of the remaining |M| − 1 messages must be authentic. Thus,
we have the following theorem.
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Theorem 5.2.3 ([81]) For any A-code (S, E ,M), we have

PI ≥
|S|
|M| and PS ≥

|S| − 1

|M| − 1
.

The above theorem shows that, in order to have good protection, i.e., for
PD = max{PI , PS} to be small, |M| must be chosen to be much larger than
|S|. For a fixed source space, an increase in the authentication protection
implies an increase in the size of the message space.

By multiplying the bound in Theorem 5.2.1(i) and that in Corollary 5.2.2
together, we have

P 2
D ≥ PIPS ≥ 2−I(M;E)−H(E|M) = 2−H(E).

Since H(E) ≤ log |E|, we obtain the following famous square root bound.

Theorem 5.2.4 ([69]) For any A-code (S, E ,M), we have

PD ≥
1√
|E|
.

Moreover, the above bound can be tight only if |S| ≤
√
|E|+ 1.

The square root bound gives a direct relationship between the size of the
key space and the protection that we can expect to obtain. The following
theorem follows directly.

Theorem 5.2.5 In an A-code (S, E ,M), assuming that PD = 1/q, then

(i) |E| ≥ q2;

(ii) |M| ≥ q|S|.

We call an A-code optimal if the bounds (i) and (ii) of Theorem 5.2.5 are
met with equality.

The following combinatorial bounds are the extension of Theorem 5.2.3
for A-codes to protect against spoofing of order r.

Theorem 5.2.6 ([162]) We have

(i) in an A-code with secrecy (S, E ,M),

Pr ≥
|S| − r
|M| − r , r = 0, 1, . . . ;

(ii) in an A-code without secrecy (S, E , T ),

Pr ≥
1

|T | , r = 0, 1, . . . .
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An A-code that satisfies (i) or (ii) in Theorem 5.2.6 with equality, i.e., with

Pr = |S|−r
|M|−r for an A-code with secrecy and Pr = 1

|T | for an A-code without

secrecy, is said to provide perfect protection for spoofing of order r.
The opponent’s best strategy in spoofing of order r for such an A-code is to
randomly select one of the remaining valid messages (codewords).

Next, we give some characterizations of A-codes from certain combinatorial
objects. Given an A-code (S, E ,M, f), we can associate an |E|×|M| matrix A,
called the incidence matrix, where A = (Ae,m)e∈E,m∈M is a binary matrix
whose rows are labeled by the keys and columns by the messages, such that
Ae,m = 1 if m is a valid message under e, and Ae,m = 0 otherwise.

An authentication matrix B of an A-code without secrecy (S, E , T , f)
is a matrix of size |E| × |S| whose rows are labeled by the keys, columns by
the source states, and Be,s = t if t is the authentication tag for the source
state s under the key e, i.e., Be,s = t = f(s, e).

A-codes that provide perfect protection for all orders of spoofing up to
r are said to be r-fold secure. These codes can be characterized by using
combinatorial structures such as orthogonal arrays and t-designs.

Definition 5.2.7 An orthogonal array OAλ(t, k, v) is an array with λvt

rows, each row of size k, with entries from a set X of v symbols, such that, in
any t columns of the array, every t-tuple of elements of X occurs in exactly λ
rows.

Example 5.2.8 The following table gives an OA2(2, 5, 2) on the set {0, 1}:

0 0 0 0 0
1 1 0 0 0
0 0 0 1 1
1 1 0 1 1
1 0 1 0 1
0 1 1 0 1
1 0 1 1 0
0 1 1 1 0.

Definition 5.2.9 A set system is a pair (X,B), where X is a set of elements
called points and B is a collection of subsets of X , the members of which are
called blocks. A set system can be described by an incidence matrix. Let
(X,B) be a set system, where X = {x1, . . . , xN} and B = {B1, . . . , BM}. The
incidence matrix of (X,B) is the M ×N matrix A = (aij), where

aij =

{
1 if xj ∈ Bi

0 if xj 6∈ Bi.

Conversely, given an incidence matrix, we can define an associated set system
in an obvious way.
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Definition 5.2.10 A subset S of a set X is called a t-subset of X if S has
cardinality t. A t-(v, k, λ) design is a set system (X,B), where |X | = v and
|B| = k for every B ∈ B, and every t-subset of X occurs in exactly λ blocks
in B.

The incidence matrix of a t-(v, k, λ) design is the incidence matrix of the
underlying set system (X,B).

Example 5.2.11 The following table gives a 3-(8, 4, 1) design on the set
{0, 1, 2, 3, 4, 5, 6, 7}:

7 0 1 3
7 1 2 4
7 2 3 5
7 3 4 6
7 4 5 0
7 5 6 1
7 6 0 2
2 4 5 6
3 5 6 0
4 6 0 1
5 0 1 2
6 1 2 3
0 2 3 4
1 3 4 5

with incidence matrix 


1 1 0 1 0 0 0 1
0 1 1 0 1 0 0 1
0 0 1 1 0 1 0 1
0 0 0 1 1 0 1 1
1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1
1 0 1 0 0 0 1 1
0 0 1 0 1 1 1 0
1 0 0 1 0 1 1 0
1 1 0 0 1 0 1 0
1 1 1 0 0 1 0 0
0 1 1 1 0 0 1 0
1 0 1 1 1 0 0 0
0 1 0 1 1 1 0 0




.

Theorem 5.2.12 ([152]) Suppose we have an A-code without secrecy
(S, E , T ) in which PI = PS = 1/|T |. Then |E| ≥ |S|(|T | − 1) + 1 and equality
occurs if and only if there exists an orthogonal array OAλ(2, |S|, |T |), where
λ = (|S|(|T | − 1) + 1)/|T |2.
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We say a source space is r-fold uniform if every string of r distinct source
states has probability

1

|S|(|S| − 1) · · · (|S| − r + 1)
.

The following result, due to Tombak and Safavi-Naini [162], relates A-codes
with r-fold security to combinatorial structures.

Theorem 5.2.13 ([162]) Let (S, E ,M) be an A-code with an r-fold uniform
source. Then (S, E ,M) provides r-fold security against spoofing if and only if
its incidence matrix is the incidence matrix of an (r+1)-(|M|, |S|, λ) design.

Two of the goals of authentication theory are to derive bounds for various
parameters in A-codes and to construct A-codes with desired properties. For
a review of different bounds and constructions for A-codes, the reader may
refer to [81, 152, 85].

5.3 A-Codes and Error-Correcting Codes

A-codes are closely related to error-correcting codes (see [146] for more
detailed explanation). In this section, we show their connections, based on the
approach of Johansson, Kabatianskii and Smeets [83].

5.3.1 From A-Codes to Error-Correcting Codes

We begin with a construction of error-correcting codes from A-codes. To
this end, we introduce the notion of an I-equitable A-code (see [81]).

Definition 5.3.1 An A-code without secrecy (S, E , T , f) is called I-
equitable if it has the additional property:

∀s ∈ S, t ∈ T , PI =
|{e : f(s, e) = t}|

|E| .

In other words, an I-equitable A-code without secrecy (S, E , T , f) has the
property that, for any given s ∈ S and t ∈ T , we have

|{e ∈ E : f(s, e) = t}| = |E|PI . (5.1)

It follows that, in an I-equitable A-code, PI = 1/|T |. These codes achieve the
best protection against the impersonation attack in the sense that the bound
PI ≥ |S|/|M| = 1/|T | in Theorem 5.2.3 is met with equality.

© 2013 Taylor & Francis Group, LLC



Authentication Codes 147

Theorem 5.3.2 Let q be a prime power. If there exists an I-equitable A-code
without secrecy (S, E , T ) with PI = 1/q, then there exists a q-ary (n,M, d)-
error-correcting code, where n = |E|,M = q(q−1)|S|+q, and d = |E|(1−PS).

Proof. Let n = |E| and we set E = {e1, . . . , en}. Let T = {t1, t2, . . . , tq}. For
each s ∈ S, we define

c[s] = (f(s, e1), f(s, e2), . . . , f(s, en)) ∈ T n.

We then consider the set of codewords

C = {c[s] : s ∈ S} ⊆ T n.

For each codeword c[s], we define its composition as

comp (c[s]) = (α1, α2, . . . , αq), where αi =
1

n
|{j : c[s]j = ti}| . (5.2)

Since (S, E , T ) is I-equitable, it follows from (5.1) that, for all s ∈ S,

comp (c[s]) = (PI , . . . , PI) =

(
1

q
, . . . ,

1

q

)
.

On the other hand, we have

PS = max
s,t

max
s′ 6=s,t′

|{e ∈ E : t = f(s, e), t′ = f(s′, e)}|
|{e ∈ E : t = f(s, e)}| .

From (5.1), it follows that

|{j : c[s]j = t, c[s′]j = t′}| ≤ PSPI · n. (5.3)

By letting t = t′ and letting t run through T , we obtain

d (c[s], c[s′]) ≥ n− qPIPS · n = n(1− PS), (5.4)

where d(x,y) is the Hamming distance between the vectors x and y.
If we further assume that T is a finite field, and let t′ = αt+β for arbitrary

α 6= 0, β ∈ T , then (5.4) can be rewritten as

d (c[s], αc[s] + β1) ≥ n− qPIPS · n = n(1− PS). (5.5)

This means that, for each codeword c[s] in the code C, we can form new
codewords by using all the affine transformations φ : c 7→ αc + β1, where
0 6= α, β ∈ T . Since PS 6= 1, no two codewords arising from these transforma-
tions can be the same and the distance property of (5.4) still holds. Since all
codewords have constant composition, we can also add multiples of the code-
word 1 = (1, . . . , 1) to the code C, without changing the minimum distance.
Thus, we have a new code C′ given by

C′ = {αc[s] + β1 : c[s] ∈ C,α 6= 0, β ∈ T } ∪ {γ1 : γ ∈ T }
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with the same distance property as C, i.e., the minimum distance d of the code
C′ satisfies d ≥ n(1− PS). The number of codewords in C′ is q(q − 1)|S|+ q,
proving the desired result. ✷

Theorem 5.3.3 For an I-equitable A-code (S, E , T ) for which PI = PS =
1/q, the number of source states is upper bounded as

|S| ≤ |E| − 1

q − 1
.

Proof. The code obtained from the A-code has parameters (n,M, d) =
(|E|, q(q − 1)|S|+ q, θ|E|), where θ = 1− PS = (q − 1)/q. Recall that Aq(n, d)
is the maximum number of codewords in an (n,M, d)-code. By shortening of
codes and the Plotkin bound (Theorem 2.3.26), we have

Aq(n, θn) ≤ qAq(n− 1, θn) ≤ q θn

θn− θ(n− 1)
= qn = q|E|.

It follows immediately that |S| ≤ |E|−1
q−1 , proving the desired result. ✷

5.3.2 From Linear Error-Correcting Codes to A-Codes

Next, we discuss how to obtain A-codes from error-correcting codes.
Let C be a linear (n,M, d)-code over Fq with the following property

∀c ∈ C, λ ∈ Fq, we have c+ λ1 ∈ C. (5.6)

While obviously not all linear codes satisfy the condition in (5.6), the
following lemma provides a way to tweak a given linear code to one that
meets this condition, if the given code has a codeword of weight n.

Lemma 5.3.4 If there exists a linear (n,M, d)-code C with a codeword c
of Hamming weight n, then there exists a linear (n,M, d)-code C′ such that
1 ∈ C′.

Proof. Let G be a generator matrix of the code C. We can do some elementary
operations on G without changing the minimum distance, including multipli-
cation of columns by nonzero scalars. Thus, if we multiply each column of G
with the inverse of the coordinate of c in that column, we get a new code C′

with the same parameters as C such that 1 ∈ C′. ✷

Clearly, a linear code containing 1 satisfies the condition in (5.6).
From now on, we assume that C satisfies the condition in (5.6).
Let t, t′ ∈ Fq and c = (c1, . . . , cn), c

′ = (c′1, . . . , c
′
n) ∈ C.
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If d (c− c′, (t− t′)1) 6= 0, then

∣∣{j : cj = t, c′j = t′
}∣∣ ≤

∣∣{j : cj − c′j = t− t′
}∣∣

= n− d (c− c′, (t− t′)1)

≤ n− d.

Note that d (c− c′, (t− t′)1) = 0 for some t, t′ ∈ Fq if and only if c− c′ = λ1
for some λ ∈ Fq.

We will see below that, if there are two codewords in C whose difference
is a multiple of 1, it will result in an A-code with PS = 1. We have to factor
out these codewords from C. To this end, we define an equivalence relation R
on C by

aRb if and only if a− b = λ1 for some λ ∈ Fq.

Now we partition the code C into equivalence classes under the relation R.
Then it is easy to see that each class contains exactly q elements.

We denote the set of equivalence classes induced by R on C by

Ĉ = C/R = {ŵ : w ∈ C} ,

where ŵ denotes the equivalence class containing the codeword w.
Let U be a code consisting of the representatives from the equivalence

classes, that is, each class contributes one and only one element. Then it is
not hard to see that U is an (n,M/q, d)-code.

Next, we construct a new code V as follows. Let Fq = {0, α1, . . . , αq−1}.
Define

V = {(u,u+ α11,u+ α21, . . . ,u+ αq−11) : u ∈ U}. (5.7)

Then V is an (nq,M/q, qd)-code.
Using an argument similar to that for Theorem 5.3.2 in Subsection 5.3.1,

we construct an A-code (S, E , T , f) based on V as follows. Each codeword in
V is associated with a source state, i.e.,

V = {v[s] : s ∈ S} ,

where v[s] = (f(s, e1), f(s, e2), . . . , f(s, enq)). From (5.7), we know that
comp(v) = (1/q, . . . , 1/q) for any v ∈ V . It follows that PI = 1/q.

We compute the success probability of the substitution attack. Let s and
s′ be the two source states that maximize PS . We consider their corresponding
codewords v[s] and v[s′] (and let v[s]j and v[s′]j denote their jth coordinates,
respectively). Assume that we have seen s with tag t from v[s], and we replace
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it with s′ and tag t′ from v[s′]. Then we have

PS =
|{j :v[s]j=t,v[s′]j=t′}|

|{j :v[s]j=t}|

=
|{j :v[s]j=t,v[s]j−v[s′]j=t−t′}|

|{j :v[s]j=t}|

=
|{j :v[s]j−v[s′]j=t−t′}|

n .

Then PS is the maximum value of the composition values in

comp (v[s]− v[s′])

for v[s],v[s′] ∈ V .
Let α be the element of Fq with the maximum composition value. Consider

comp (v[s] − (v[s′] + α1)) in the code C. Then the maximum composition
value is at the element 0 of Fq and the maximum composition value is 1−d/n.
Thus, the maximum value of comp (v[s] − v[s′]) over all pairs in the code V
is 1− d/n and therefore PS = 1− d/n.

We have obtained the following result.

Theorem 5.3.5 ([83]) Let C be a linear (n,M, d)-code over Fq such that, if
c ∈ C, then c + λ1 ∈ C for all λ ∈ Fq. Then there exists an A-code without
secrecy (S, E , T ) with parameters

|S| =Mq−1, |E| = nq, |T | = q, PI = 1/q, and PS = 1− d/n.

This construction is called the q-twisted construction.

Example 5.3.6 Let Pk be the set of all polynomials of degree ≤ k in Fq[x]
and set Fq = {0, α1, . . . , αq−1}. We consider

C = {(f(0), f(α1), . . . , f(αq−1)) : f ∈ Pk} .

Then C is a (q, qk+1, q − k)-Reed-Solomon code. It is clear that 1 ∈ C. Since
C is linear, it follows that, if c ∈ C, then c + λ1 ∈ C for all λ ∈ Fq, so the
condition (5.6) holds. By Theorem 5.3.5, we obtain an A-code (S, E , T ) with
parameters

|S| = qk, |E| = q2, |T | = q, PI = 1/q, and PS = k/q,

which results in the same parameters as Example 5.1.3.

Recall that Aq(n, d) denotes the maximum number of codewords in a q-ary
code of length n with distance d. Let A∗

q(n, d) denote the maximum number
of codewords in a q-ary code C of length n and distance d, with the additional
property that c ∈ C implies c + λ1 ∈ C for all λ ∈ Fq. Let S(|E|, PI , PS)
denote the maximum number of source states in an A-code with given |E|, PI ,
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and PS . From the relationship between error-correcting codes and A-codes we
have just seen, it is interesting to further explore the relationship among these
three values Aq(n, d), A

∗
q(n, d), and S(|E|, PI , PS). From Theorem 5.3.5, we im-

mediately have the following relationship between A∗
q(n, d) and S(|E|, PI , PS):

S(n, 1/q, PS) ≥ A∗
q (n/q, (1− PS)n/q) /q.

Similar to the Gilbert-Varshamov bound (Theorem 2.3.10), we have the
following result.

Lemma 5.3.7 The quantity A∗
q(n, d) satisfies

A∗
q(n, d) ≥

qn

V n
q (d− 1)

,

where V n
q (d− 1) =

∑d−1
i=0

(
n
i

)
(q− 1)i is the size of a usual Hamming sphere of

radius d− 1 in Fn
q around a codeword.

Proof. Consider a code C with cardinality A∗
q(n, d) satisfying the condition in

(5.6). If A∗
q(n, d)V

n
q (d−1) < qn, there exists a vector x of length n which does

not lie in any of the spheres of radius d− 1 centered at a codeword of C. This
implies that the vector x + λ1, for any λ ∈ Fq, does not lie in any of these
spheres either. Indeed, if x+λ1 is in the sphere around c, then d(x+λ1, c) < d
and so d(x, c−λ1) < d. Therefore, x is in the sphere around c−λ1, which is a
contradiction. We can hence add these q vectors x+λ1 (λ ∈ Fq) as codewords
and still have a code C′ for which c ∈ C′ implies c+λ1 ∈ C′. This contradicts
the maximality of A∗

q(n, d). It follows that A∗
q(n, d)V

n
q (d − 1) ≥ qn, and the

result follows. ✷

5.4 Universal Hash Families and A-Codes

Universal hash families were introduced by Carter and Wegman [35], and
were further studied by many authors. They have found numerous applica-
tions, such as in cryptography, complexity theory, search algorithms, and in-
formation retrieval, to mention a few. We refer to [154] for a good account of
the development of this topic. In this section, we are interested in the appli-
cation of universal hash families to authentication codes.

Consider a hash family H, which is a set of N functions h : A→ B, where
|A| = k and |B| = ℓ. Without loss of generality, we assume k ≥ ℓ and we
call H an (N ; k, ℓ) hash family, while the elements h of H are called hash
functions from A to B.
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Definition 5.4.1 An (N ; k, ℓ) hash family is called ǫ-almost universal (ǫ-
AU for short) if, for any two distinct elements a1, a2 ∈ A, there are at most
ǫN functions h ∈ H such that h(a1) = h(a2).

Definition 5.4.2 An (N ; k, ℓ) hash family is called ǫ-almost strongly uni-
versal (ǫ-ASU for short) if

(i) for any a ∈ A and any b ∈ B, there exist exactly N/ℓ functions h ∈ H
such that h(a) = b; and

(ii) for any two distinct elements a1, a2 ∈ A and for any two (not necessarily
distinct) elements b1, b2 ∈ B, there exist at most ǫN/ℓ functions h ∈ H
such that h(ai) = bi, for i = 1, 2.

We can depict an (N ; k, ℓ) hash family in the form of an N × k array H
of ℓ symbols, where each row of the array corresponds to one of the functions
in the family, the columns are indexed by the elements of A and the entries
are the corresponding values of the hash functions at the elements of A. It is
then easy to see that

(i) an (N ; k, ℓ) hash family is ǫ-AU if and only if, for any two columns in
H , there exist at most ǫN rows such that the entries in the two given
columns are equal;

(ii) an (N ; k, ℓ) hash family is ǫ-ASU if and only if each element occurs the
same number of times in each column and, for any two columns in H ,
every possible ordered pair of elements occurs at most ǫN/ℓ times.

Remark 5.4.3 Note that ǫ-ASU implies ǫ-AU. Indeed, suppose H is an ǫ-
ASU (N ; k, ℓ) hash family, and a1, a2 are two elements in A. For each b ∈ B,
there exist at most ǫN/ℓ functions h ∈ H such that h(a1) = h(a2) = b.
Since there are ℓ choices for b, there are at most ǫN functions h such that
h(a1) = h(a2). Therefore H is an ǫ-AU (N ; k, ℓ) hash family.

The following theorem, due to Bierbrauer, Johansson, Kabatianskii, and
Smeets [14] and Stinson [154], establishes the equivalence between ǫ-AU hash
families and error-correcting codes.

Theorem 5.4.4 If there exists a q-ary (N,M, d)-code, then there exists an
ǫ-AU (N ;M, q) hash family, where ǫ = 1−d/N . Conversely, if there exists an
ǫ-AU (N ;M, q) hash family, then there exists a q-ary (N,M,N(1− ǫ))-code.

Proof. Suppose C = {c1, . . . , cM} is a q-ary (N,M, d)-code. Construct an
N ×M array, H , in which the columns are the codewords in C. If we look at
any two columns of H , we see that they contain different entries in at least
d rows. Set d = (1 − ǫ)N , we obtain an ǫ-AU (N ;M, q) hash family with
ǫ = 1− d/N .

Conversely, taking the columns of the array associated with an ǫ-AU

© 2013 Taylor & Francis Group, LLC



Authentication Codes 153

(N ;M, q) hash family as codewords of a code, we obtain a q-ary (N,M, d)-
code with d ≥ N(1− ǫ). ✷

Corollary 5.4.5 Suppose q is a prime power and 1 ≤ t ≤ q. Then there is a
t−1
q -AU (q; qt, q) hash family.

Proof. Recall that a Reed-Solomon code is a linear code with parameters
(q, qt, q − t + 1) over Fq. Applying Theorem 5.4.4, the result follows immedi-
ately. ✷

Example 5.4.6 ([154]) Let q = 5 and k = 3. We construct a 2
5 -AU (5; 125, 5)

hash family. Consider a [5, 3, 3]-Reed-Solomon code C over F5, with generator
matrix

G =




1 1 1 1 1
1 2 4 3 0
1 4 1 4 0


 .

There are five functions in H = {fi : F3
5 → F5, i ∈ F5}. Note that each

codeword in C is obtained by computing (a, b, c)G, where a, b, c ∈ F5. The
value of fi(a, b, c) is the ith coordinate from the codeword (a, b, c)G. We can
write G = (gij), where gij = 2ij mod 5, for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3, and
g04 = 1, g14 = g24 = 0. Thus, we can easily obtain the following formula for
the hash function fi, for i ∈ F5:

fi(a, b, c) =

{
a+ b2i + c4i mod 5 if 0 ≤ i ≤ 3
a if i = 4.

Theorem 5.4.7 ([14, 153]) If there exists an A-code without secrecy (S, E , T )
with PI = 1/|T | and PS = ǫ, then there exists an ǫ-ASU (N ; k, ℓ) hash family
with N = |E|, k = |S| and ℓ = |T |. Conversely, if there exists an ǫ-ASU hash
family with the above parameters, then there exists an A-code with the same
parameters as above.

Proof. Given an A-code without secrecy (S, E , T , f) with PI = 1/|T | and
PS = ǫ, to each key e ∈ E we can associate a unique function he from S to T
defined by he(s) = f(s, e). It is straightforward to verify that H = {he : e ∈ E}
is an ǫ-ASU hash family from S to T .

Conversely, given an ǫ-ASU (N ; k, ℓ) hash family H from A to B, we can
associate an A-code without secrecy (S, E , T ), where S = A, T = B and
|E| = |H|, and each key e ∈ E corresponds to a unique hash function he ∈ H
indexed by e. The (authentication) mapping f : S × E → T is defined by
f(s, e) = he(s). It is then easy to verify that the resulting A-code has PI = 1/ℓ
and PS = ǫ. ✷

Much research effort on A-codes has been devoted to constructions which
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ensure that the opponent’s deception probabilities are bounded by 1/ℓ. In
terms of ǫ-ASU hash families, this means ǫ = 1/ℓ. Such codes were shown to
be equivalent to an orthogonal array, and from Theorem 5.2.12, we know that
|E| ≥ k(ℓ − 1) + 1. This means that, for a fixed security (i.e., 1/ℓ), the key
size increases linearly as a function of the size of possible source states – a
situation similar to the “one-time pad.” Thus, for source states of large sizes,
many bits of keys are required to store and “secretly” exchange.

The significance of ǫ-ASU hash families in the constructions of A-codes is
that by not requiring the deception probability to be the theoretical minimum,
i.e., ǫ > 1/ℓ, we can expect to reduce the key size significantly. As we will see
later, by allowing PS > PI = 1/ℓ (i.e., ǫ > 1/ℓ), it is possible for the size of
source states to grow exponentially in the key size. This observation is very
important from the point of view of practice. We may deal with scenarios
where we are satisfied with the deception probability slightly larger than 1/ℓ,
but have limitation on the key storage.

5.4.1 ǫ-AU Hash Families

We derive bounds on ǫ-AU families from well-known bounds in coding
theory. The following results are due to Sarwate [134] and Stinson [154].

Theorem 5.4.8 If there exists an ǫ-AU (N ; k, ℓ) hash family, then

ǫ ≥ k − ℓ
ℓ(k − 1)

.

Proof. When ǫ ≥ 1/ℓ, it follows trivially that ǫ ≥ k−ℓ
ℓ(k−1) . We assume, hence-

forth, that ǫ < 1/ℓ. By the Plotkin bound in coding theory (cf. Theorem
2.3.26), for any q-ary (N,M, d)-code satisfying (1− 1

q )N < d, we have

d

N
≤ M(q − 1)

(M − 1)q
.

SupposeH is an ǫ-AU (N ; k, ℓ) hash family. Using Theorem 5.4.4, we construct
an ℓ-ary (N, k,N(1−ǫ))-code, which must satisfy the Plotkin bound. We then
obtain

N(1− ǫ)
N

≤ k(ℓ− 1)

(k − 1)ℓ
,

which implies the desired result. ✷

The following bound was proved by Stinson [153] using a nice variance
technique similar to the proof of Fisher’s inequality for balanced incomplete
block designs.

Theorem 5.4.9 If there exists an ǫ-AU (N ; k, ℓ) hash family, then

N ≥ k(ℓ− 1)

k(ǫℓ− 1) + ℓ2(1 − ǫ) .
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Proof. Suppose H is an ǫ-AU (N ; k, ℓ) hash family from A to B. For every hash
function h ∈ H and for every y ∈ B, define a block Qhy = h−1(y) (it is possible
that some blocks are empty). The set system (A, {Qhy : h ∈ H, y ∈ B})
satisfies the following properties:

1. there are k points and ℓN blocks;

2. the blocks can be partitioned into N parallel classes of ℓ blocks;

3. every pair of points occurs in at most ǫN blocks.

Let C = Qhy be any block, and set α = |C|. For any block Qgx, where
g 6= h, define µgx = |C ∩ Qgx|. Then we have the following relations, where
each sum is taken over all g ∈ H, g 6= h, and over all x ∈ B:

∑
1 = ℓ(N − 1)

∑
µgx = α(N − 1)

∑(
µgx

2

)
≤
(
α

2

)
(ǫN − 1).

It follows that the mean of the values µgx is µ = α/ℓ. If we compute the
variance of the µgx, we obtain the following:

0 ≤
∑

(µgx − µ)2

=
∑

µ2
gx − 2µ

∑
µgx + µ2ℓ(N − 1)

≤ α(α − 1)(ǫN − 1) + α(N − 1)− α2(N − 1)

ℓ
.

This implies that

N ≥ α(ℓ− 1)

ℓǫ(α− 1) + (ℓ− α) .

Since each parallel class contains ℓ blocks that partition the k points, we
can choose C such that α = |C| ≥ k/ℓ. Since the right-hand side of the above
inequality is an increasing function of α, the desired result follows. ✷

The existence of an ǫ-AU hash family can be harnessed to obtain another
new ǫ-AU hash family (possibly with a different ǫ). We discuss two such con-
structions below.

Theorem 5.4.10 If there exists an ǫ-AU hash family H from A to B, then
there exists an ǫ-AU hash family Hi from Ai to Bi with |H| = |Hi|, for any
integer i ≥ 1.

Proof. For every h ∈ H, we define a hash function hi : A
i → Bi by

hi(a1, . . . , ai) = (h(a1), . . . , h(ai)).
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Then Hi = {hi : h ∈ H} is an ǫ-AU hash family as desired. ✷

Theorem 5.4.11 Suppose there exist an ǫ1-AU (N1; k, ℓ1) hash family and an
ǫ2-AU (N2; ℓ1, ℓ2) hash family. Then there exists an (ǫ1+ǫ2)-AU (N1N2; k, ℓ2)
hash family.

Proof. Suppose H1 = {h1 : A1 → B1} andH2 = {h2 : A2 → B2} are an ǫ1-AU
(N1; k, ℓ1) hash family and an ǫ2-AU (N2; ℓ1, ℓ2) hash family, respectively, and
A2 = B1. For each (h1, h2) ∈ H1×H2, we define a hash function h : A1 → B2

by h(a) = h2(h1(a)). Let H be the set of all such hash functions. It is easy to
see that the probability that h(a) = h(a′), for any two inputs a, a′ ∈ A1 and
any h ∈ H, is at most ǫ1+(1− ǫ1)ǫ2 < ǫ1+ ǫ2. Therefore, H is an (ǫ1+ ǫ2)-AU
(N1N2; k, ℓ2) hash family. ✷

Corollary 5.4.12 Let q be a prime power and let i ≥ 1 be an integer. Then
there exists an i

q -AU (qi; q2
i

, q) hash family.

Proof. By Corollary 5.4.5, there is a 1
q -AU (q; q2, q) hash family. Applying

Theorem 5.4.10, we have 1
q -AU (q; q2

j

, q2
j−1

) hash families, for 1 ≤ j ≤ i.
Applying Theorem 5.4.11 to all these i hash families, we obtain the desired
result. ✷

5.4.2 ǫ-ASU Hash Families

Next, we move on to discuss bounds for ǫ-ASU hash families as well as
constructions of ǫ-ASU hash families from known ǫ-AU hash families and ǫ-
ASU hash families.

The following result is due to Stinson [154].

Theorem 5.4.13 If there exists an ǫ-ASU (N ; k, ℓ) hash family, then ǫ ≥ 1/ℓ.

Proof. Let a1, a2 ∈ A be distinct elements. For any b1, b2 ∈ B, let

Nb1,b2 = |{h ∈ H : h(a1) = b1, h(a2) = b2}|.

Then Nb1,b2 ≤ ǫN/ℓ for all b1, b2 ∈ B, and

∑

b1,b2∈B

Nb1,b2 = N.

It follows that ǫ ≥ 1/ℓ. ✷

We call an ǫ-ASU (N ; k, ℓ) optimal if equality holds in Theorem 5.4.13,
i.e., ǫ = 1/ℓ. The following result shows that optimal ASU hash families are
equivalent to orthogonal arrays.
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Theorem 5.4.14 ([154]) There exists a 1
ℓ -ASU (N ; k, ℓ) hash family if and

only if there exists an orthogonal array OAλ(2, k, ℓ) in which λ = N/ℓ2.

Proof. We write the functions in a 1
ℓ -ASU (N ; k, ℓ) hash family as an N × k

array H of ℓ symbols, where each row of the array corresponds to one of the
functions in the family. It is easy to see that H is an OAN/ℓ2(2, k, ℓ), and
similarly for the converse. ✷

The following bound was originally proved using combinatorial techniques
in [153].

Theorem 5.4.15 If there exists an ǫ-ASU (N ; k, ℓ) hash family, then

N ≥ 1 +
k(ℓ − 1)2

ℓǫ(k − 1) + ℓ− k .

Proof. Suppose H is an ǫ-ASU (N ; k, ℓ) hash family from A to B. Let c be an
element in A and let π be a permutation of B. For each h ∈ H, we define a
hash function hcπ from A to B via

hcπ(a) =

{
h(a) if a 6= c
π(h(a)) otherwise.

It is easy to see that, for each c ∈ A and each permutation π of B,

Hcπ = {hcπ : h ∈ H}

is also an ǫ-ASU (N ; k, ℓ) hash family from A to B.
We can apply the idea of construction forHcπ repeatedly. Then, for a given

b ∈ B, we can obtain an ǫ-ASU (N ; k, ℓ) hash family, also denoted by H, in
which there is one hash function h0 such that h0(a) = b for all a ∈ A.

For every h ∈ H, define µh = |{a : b = h(a)}|. Then we have the following
relations:

∑

h∈H,h 6=h0

1 = N − 1

∑

h∈H,h 6=h0

µh = k

(
N

ℓ
− 1

)

∑

h∈H,h 6=h0

(
µh

2

)
≤
(
ǫ
N

ℓ
− 1

)(
k

2

)
.

The mean of the values µh is

µ =

∑
h∈H,h 6=h0

µh∑
h∈H,h 6=h0

1
=
k(N − ℓ)
ℓ(N − 1)

.

© 2013 Taylor & Francis Group, LLC



158 Algebraic Curves in Cryptography

We compute the variance of the µh, and obtain the following:

0 ≤
∑

h∈H,h 6=h0

(µh − µ)2

=
∑

h∈H,h 6=h0

µ2
h − 2µ

∑

h∈H,h 6=h0

µh + µ2(N − 1)

≤ k(k − 1)

(
ǫ
N

ℓ
− 1

)
− k2(Nℓ − 1)2

N − 1
+ k

(
N

ℓ
− 1

)
.

By simplifying the above inequality, the desired result follows. ✷

Example 5.4.16 ([153]) Let q be a prime power, and let s, t be integers such
that s ≥ t. We show that there exists a 1

qt -ASU (qs+t; qs, qt) hash family.
Let A = Fqs and B = Fqt . Then A and B are s-dimensional and t-

dimensional vector spaces over Fq, respectively. Let φ : A → B be any sur-
jective linear transformation. Then we have |φ−1(b)| = qs−t for every b ∈ B.
Note that such a linear transformation always exists. For example, if the ele-
ments of A are represented as s-dimensional vectors over Fq, then φ(a) could
be defined as any t coordinates of a since s ≥ t. Let

H = {hab : a ∈ A, b ∈ B} ,

where hab(x) = φ(ax)+b, for x ∈ A. Suppose x1, x2 ∈ A, x1 6= x2, and y1, y2 ∈
B. We show that the number of hash functions hab such that hab(x1) = y1
and hab(x2) = y2 is exactly qs−t. From the definition of H, we obtain the
following equation

φ(ax1)− φ(ax2) = y1 − y2
or equivalently,

φ(a(x1 − x2)) = y1 − y2.
Since x1−x2 is nonzero, it is invertible in Fqs . Thus, when a runs through

Fqs , so does a(x1 − x2). It follows that there are qs−t choices of a ∈ Fqs that
satisfy the above equation. For each such a, a unique value of b is determined
such that hab(xi) = yi, for i = 1, 2. Therefore, the functions constructed have
the desired property.

A very useful method of constructing an ǫ-ASU hash family is to compose
an AU hash family and an ASU hash family with appropriate parameters. The
following theorem is due to Stinson [153], and independently to Bierbrauer,
Johansson, Kabatianskii, and Smeets [14].

Theorem 5.4.17 Suppose there exist an ǫ1-AU (N1; k, ℓ1) hash family and
an ǫ2-ASU (N2; ℓ1, ℓ2) hash family. Then there exists an (ǫ1 + ǫ2)-ASU
(N1N2; k, ℓ2) hash family.
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Proof. Without loss of generality, we assume H1 is an ǫ1-AU (N1; k, ℓ1) hash
family from A to B1 and H2 is an ǫ2-ASU (N2; ℓ1, ℓ2) hash family from B1

to B2. Define H = {h2h1 : h1 ∈ H1, h2 ∈ H2}. We show that H is an ǫ-ASU
(N1N2; k, ℓ2) hash family from A to B2 with ǫ ≤ ǫ1 + ǫ2.

Let a1, a2 ∈ A (a1 6= a2) and let b1, b2 ∈ B2. We compute an upper bound
on the number of functions h ∈ H such that h(a1) = b1 and h(a2) = b2.

We first consider the case when b1 and b2 are the same, say b1 = b2 = b.
Let L = {h1 ∈ H1 : h1(a1) = h1(a2)} and let α = |L|. Since H1 is an ǫ1-AU
hash family, we have α ≤ ǫ1N1. For any h1 ∈ L, there are exactly N2/ℓ2
functions h2 ∈ H2 such that h2(h1(a1)) = h2(h1(a2)) = b (by property (i) of
an ǫ-ASU hash family). On the other hand, for any h1 ∈ H1 \ L, there are at
most ǫ2N2/ℓ2 functions h2 ∈ H2 such that h2(h1(a1)) = h2(h1(a2)) = b (by
property (ii) of an ǫ-ASU hash family). Thus, the number of functions h ∈ H
such that h(a1) = h(a2) = b is at most

α× N2

ℓ2
+ (N1 − α) ×

ǫ2N2

ℓ2
=
N2(α+ (N1 − α)ǫ2)

ℓ2

≤ N2(α+N1ǫ2)

ℓ2

≤ N2(N1ǫ1 +N1ǫ2)

ℓ2

=
N1N2(ǫ1 + ǫ2)

ℓ2
.

If b1 6= b2, since any h1 ∈ L must give h2(h1(a1)) = h2(h1(a2)), the num-
ber of functions h ∈ H such that h(a1) = b1 and h(a2) = b2 is smaller. Thus
we have proved property (ii) of an ǫ-ASU hash family. It is straightforward to
see that property (i) of an ǫ-ASU hash family is also satisfied, hence we have
proved that H is an ǫ-ASU hash family with ǫ ≤ ǫ1 + ǫ2. ✷

Corollary 5.4.18 ([14, 154]) Suppose r and s are integers. Then there is a
1

qr−1 -ASU (q3r+2s; q(r+s)(qs(q−1)+1), qr) hash family.

Proof. Applying Corollary 5.4.5, replacing q and t by qr+s and qs(q − 1) + 1,
respectively, we obtain a q−1

qr -AU (qr+s; q(r+s)(qs(q−1)+1), qr+s) hash family.

By Example 5.4.16, we obtain a 1
qr -ASU (q2r+s; qr+s, qr) hash family. Apply-

ing Theorem 5.4.17, the desired result follows. ✷
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5.5 A-Codes from Algebraic Curves

In this section, we describe a construction, given in [179], of ǫ-ASU hash
families based on algebraic curves over finite fields which, in return, gives a
construction of A-codes according to Theorem 5.4.7.

The construction proceeds as follows. Let X be a smooth projective curve
over Fq, g = g(X ) the genus of X , Fq(X ) the function field of X , and X (Fq)
the set of all Fq-rational points on X .

LetM be a subset of X (Fq), i.e., M is a set of Fq-rational points of X . Let
D be a positive divisor with M ∩ Supp(D) = ∅. Choose an Fq-rational point
R in M and put G = D − R. Then deg(G) = deg(D)− 1, L(G) ⊂ L(D) and
Fq ∩ L(G) = {0}, where L(G) and L(D) are the Riemann-Roch spaces of G
and D, respectively. We have

L(D) = Fq ⊕ L(G) = {α+ f : f ∈ L(G), α ∈ Fq}.
Each element (P, α) ∈M × Fq can be associated with a map h(P,α) : L(G)→
Fq defined by

h(P,α)(f) = f(P ) + α.

Lemma 5.5.1 Let H = {h(P,α) : (P, α) ∈M × Fq}. If deg(D) ≥ 2g+ 1, then
the cardinality of H is equal to q|M |.
Proof. It is sufficient to prove that {h(P,α)}(P,α)∈M×Fq

are pairwise distinct.
Assume that h(P,α) = h(Q,β) for (P, α) and (Q, β) in M × Fq, i.e.,

h(P,α)(f) = h(Q,β)(f) (5.8)

for all f ∈ L(G). In particular,

α = h(P,α)(0) = h(Q,β)(0) = β. (5.9)

It follows from (5.8) and (5.9) that

f(P ) = f(Q)

for all f ∈ L(G). This yields that
e(P ) = e(Q) (5.10)

for all e ∈ L(D) since L(D) = Fq ⊕ L(G).
Suppose that P is different from Q. As deg(D − P ) > deg(D − P −Q) ≥

2g − 1, we obtain, by the Riemann-Roch Theorem (cf. Theorem 1.4.7), that

ℓ(D − P ) = deg(D)− g and ℓ(D − P −Q) = deg(D)− g − 1.

Moreover, we can choose a function u from the set L(D−P ) \L(D−P −Q).
Then it is clear that u(P ) = 0 and u(Q) 6= 0, which contradicts (5.10). Hence
P = Q. ✷
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Theorem 5.5.2 Let X be a smooth projective curve over Fq and M a set of
Fq-rational points on X . Suppose that D is a positive divisor with deg(D) ≥
2g+1 and M∩Supp(D) = ∅. Then there exists an ǫ-ASU (N ; k, q) hash family
with

N = q|M |, k = qℓ(D)−1 = qdeg(D)−g, ǫ =
deg(D)

|M | .

Proof. Let R ∈M be an Fq-rational point on X and put G = D −R. Define

A = L(G), B = Fq,

and
H = {h(P,α) : (P, α) ∈M × Fq}.

Let N = |H| (so N = q|M | by Lemma 5.5.1). It is easy to verify that, for
any a ∈ A = L(G) and b ∈ B = Fq, there exist exactly |M | = N/q pairs
(P, α) ∈M × Fq such that

h(P,α)(a) = a(P ) + α = b,

i.e., there exist exactly N/q functions h(P,α) ∈ H such that h(P,α)(a) = b.
Now let a1, a2 be two distinct elements of A and b1, b2 two elements of B.

We consider

m = max
a1 6= a2 ∈ A
b1, b2 ∈ B

∣

∣

{

h(P,α) ∈ H : h(P,α)(a1) = b1, h(P,α)(a2) = b2
}∣

∣

= max
a1 6= a2 ∈ A
b1, b2 ∈ B

|{(P, α) ∈ M × Fq : a1(P ) + α = b1, a2(P ) + α = b2}|

= max
a1 6= a2 ∈ A
b1, b2 ∈ B

|{(P, α) ∈ M × Fq : (a1 − a2 − b1 + b2)(P ) = 0, a2(P ) + α = b2}| .

As a1−a2 ∈ L(G)\{0} and b1−b2 ∈ Fq, we know that 0 6= a1−a2−b1+b2 ∈
L(D). Thus, there are at most deg(D) distinct zeros of a1− a2− b1+ b2 in M
(see proof of Theorem 2.4.3). Since α is uniquely determined by P from the
equality a2(P ) + α = b2, we have that at most deg(D) pairs (P, α) ∈M × Fq

satisfy
(a1 − a2 − b1 + b2)(P ) = 0 and a2(P ) + α = b2,

i.e.,

m ≤ deg(D) =
deg(D)

|M |
N

q
.

Hence, we can take ǫ = deg(D)/|M |. This completes the proof. ✷

Theorem 5.5.2 gives a construction of ǫ-ASU hash families based on general
algebraic curves over finite fields. In the examples below, we apply Theorem
5.5.2 to some special curves to obtain ǫ-ASU families with nice parameters.
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Example 5.5.3 Consider the projective line L over Fq. Then g = g(L) = 0.

(a) Let d be an integer such that 1 ≤ d ≤ q, and P an Fq-rational point of
L. Put

D = dP and M = L(Fq) \ {P}.
Then deg(D) = d ≥ 2g+1, |M | = q, andM∩Supp(D) = ∅. By Theorem
5.5.2, we obtain an ǫ-ASU (N ; k, q) hash family with

N = q2, k = qd, ǫ =
d

q
,

which has the same parameters as Example 5.3.6.

(b) Let d be an integer satisfying 2 ≤ d ≤ q. Put M = L(Fq). As there
always exists an irreducible polynomial of degree d over Fq, we can find
a positive divisor D such that deg(D) = d and M ∩ Supp(D) = ∅. Then
deg(D) = d ≥ 2g + 1 and |M | = q + 1. By Theorem 5.5.2, we obtain an
ǫ-ASU (N ; k, q) hash family with

N = q(q + 1), k = qd, ǫ =
d

q + 1
.

Example 5.5.4 Let q = pu for some prime p. Put

Nq =

{
q + ⌊2√q⌋ if p|⌊2√q⌋ and u ≥ 3 odd
q + ⌊2√q⌋+ 1 otherwise.

It is proved in [141] and [173] that there exists an elliptic curve E over Fq

with Nq Fq-rational points (cf. Corollary 3.3.12). Let d be an integer such
that 3 ≤ d ≤ Nq − 1, and let P be an Fq-rational point of E . Put

D = dP and M = E(Fq) \ {P}.
Then deg(D) = d ≥ 2g + 1, |M | = Nq − 1, and M ∩ Supp(D) = ∅. By
Theorem 5.5.2, we obtain an ǫ-ASU (N ; k, q) hash family with

N = q(Nq − 1), k = qd−1, ǫ =
d

Nq − 1
.

Example 5.5.5 Let q be a square prime power and let r =
√
q. Consider the

Hermitian curve H over Fq defined by

yr + y = xr+1.

Then the number of Fq-rational points of H is equal to r3 + 1 = q
√
q+ 1 and

the genus of H is g =
√
q(
√
q − 1)/2. Choose an Fq-rational point P and put

D = dP for an integer d such that 2g + 1 = q − √q + 1 ≤ d ≤ r3 = q
√
q.

Define M to be the set H(Fq) \ {P}. Then deg(D) = d ≥ 2g + 1, |M | = q
√
q,

and M ∩ Supp(D) = ∅. By Theorem 5.5.2, we obtain an ǫ-ASU (N ; k, q) hash
family with

N = q2
√
q, k = qd−

√
q(
√
q−1)/2, ǫ =

d

q
√
q
.
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Example 5.5.6 Consider the curves {Xm}m≥1 over Fq2 given in Exam-
ple 2.5.6 by:

xqm+1 + xm+1 =
xqm

xq−1
m + 1

for m = 1, 2, . . . . Then the number of Fq2-rational points of Xm is more than
(q2 − q)qm−1, and the genus gm of Xm is less than qm, for all m ≥ 1. Choose
an integer c between 2 and q−1 (c is independent ofm), an Fq2 -rational point
Pm of Xm and put Dm = cqmPm. Let Mm be a subset of Xm(Fq2) \ {Pm}
with

|Mm| = (q2 − q)qm−1 = qm(q − 1).

By Theorem 5.5.2, we obtain a sequence of ǫ-ASU (Nm; km, q
2) hash families

with

Nm = qm(q3 − q2), km = q2cq
m−gm ≥ q2(c−1)qm , ǫ =

deg(Dm)

|Mm|
=

c

q − 1
.

From Theorem 5.4.7, we can translate ǫ-ASU hash families, in particular
those from Theorem 5.5.2, to A-codes directly. For example, rephrasing the
construction of Example 5.5.6 in terms of A-codes, we have the following
result.

Corollary 5.5.7 Let q be a prime power, and let c and m be integers satisfy-
ing 2 ≤ c ≤ q− 1 and m ≥ 1. There exists an A-code without secrecy (S, E , T )
with the following parameters

|S| = q2(c−1)qm , |E| = qm(q3 − q2), |T | = q2,

and with deception probabilities

PI =
1

q2
, PS =

c

q − 1
.

For example, if we take q = 220, c = 2 and m = 1, we can obtain an A-code
with 40× 220 bits of source state, 80 bits of key, and 40 bits of tag, while the
probabilities of the impersonation and substitution attacks are bounded by
approximately 2−40 and 2−19, respectively.

5.6 Linear Authentication Codes

A source state s ∈ S in an A-code without secrecy (S, E , T , f) can be
uniquely associated with a mapping φs : E → T defined by φs(e) = f(s, e),
for all e ∈ E . Then the A-code (S, E , T , f) can be characterized by the family
of mappings Φ = {φs : s ∈ S}. In a conventional authentication code, the key
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space E and the authenticator space T do not have any algebraic structures.
We now consider A-codes in which E and T have some additional algebraic
structures. In particular, E and T are vector spaces over a finite field Fq,
and Φ is a family of Fq-linear mappings from E to T . These codes are called
linear A-codes. As shown in [171], linear A-codes are useful in constructing
distributed authentication schemes.

Definition 5.6.1 An A-code without secrecy (S, E , T , f) is linear over Fq

if

(i) E and T are finite dimensional vector spaces over Fq; and

(ii) for every s ∈ S, φs, defined by φs(e) = f(s, e), is an Fq-linear transfor-
mation from E to T .

We identify S with Φ = {φs : s ∈ S}, and write the A-code as (Φ, E , T , f)
to emphasize that the source states are represented as linear transformations.
We may assume that E = Fn

q and T = Fm
q . Given a basis e1, e2, . . . , en of E and

a basis a1, a2, . . . ,am of T , a linear transformation φ ∈ Φ can be represented
by a unique n ×m matrix A over Fq such that φ(e) = eA, for all e ∈ E . We
let ker(φ) = {e ∈ E : φ(e) = 0}. Then ker(φ) is a subspace of E and its
dimension is denoted by dim(ker(φ)).

We compute the success probabilities of the impersonation and substitu-
tion attacks for a linear A-code. For the impersonation attack, we have

PI = max
φ∈Φ

max
a∈T

|{e : φ(e) = a}|
|E|

= max
φ∈Φ

|{e : φ(e) = 0}|
|E|

= max
φ∈Φ

qdim(ker(φ))−n

= qγ−n,

where γ = maxφ∈Φ{dim(ker(φ)) : φ ∈ Φ}. Clearly, γ ≤ n−m and, if equality
holds, then PI achieves the maximal value. In this case, each φ is onto, i.e.,
φ(E) = T , for all φ ∈ Φ.

For the substitution attack, we have

PS = max
φ, φ′ ∈ Φ

φ 6= φ′

max
a,a′∈T

|{e : φ(e) = a, φ′(e) = a′}|
|{e : φ(e) = a}|

= max
φ, φ′ ∈ Φ

φ 6= φ′

max
a,a′∈T

|{e : φ(e) = a} ∩ {e : φ′(e) = a′}|
|{e : φ(e) = 0}| .

In order to compute PS , we need the following lemma.

Lemma 5.6.2 For any φ, φ′ ∈ Φ and any a, a′ ∈ T , we have either
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(i) |{e : φ(e) = a} ∩ {e : φ′(e) = a′}| = 0; or

(ii) |{e : φ(e) = a} ∩ {e : φ′(e) = a′}| = |{e : φ(e) = 0} ∩ {e : φ′(e) = 0}|.

Proof. Assume that |{e : φ(e) = a} ∩ {e : φ′(e) = a′}| 6= 0, then there ex-
ists e0 ∈ {e : φ(e) = a} ∩ {e : φ′(e) = a′}. We define a function τ from
{e : φ(e) = a} ∩ {e : φ′(e) = a′} to {e : φ(e) = 0} ∩ {e : φ′(e) = 0}
by τ(e) = e − e0. It is easy to see that τ is one-to-one, which implies
|{e : φ(e) = a} ∩ {e : φ′(e) = a′}| ≤ |{e : φ(e) = 0} ∩ {e : φ′(e) = 0}|. On the
other hand, we can define a function π from {e : φ(e) = 0}∩{e : φ′(e) = 0} to
{e : φ(e) = a}∩{e : φ′(e) = a′} by π(e) = e+e0. Again, π is one-to-one, which
implies |{e : φ(e) = 0} ∩ {e : φ′(e) = 0}| ≤ |{e : φ(e) = a} ∩ {e : φ′(e) = a′}|,
completing the proof of the lemma. ✷

From Lemma 5.6.2, PS can be rewritten as

PS = max
φ, φ′ ∈ Φ

φ 6= φ′

|{e : φ(e) = 0} ∩ {e : φ′(e) = 0}|
|{e : φ(e) = 0}| .

It follows that both PI and PS must be the reciprocals of some powers of q,
i.e., PI = q−t and PS = q−d for some integers t and d with t ≥ d, and so the
performance of a linear A-code over Fq can be determined by the parameters
|Φ|, n,m, t, and d. For given t and d (which correspond to the security level of
the A-code), and n and m (which correspond to the key size and the length
of the tag), we would like to have |Φ| as large as possible. Equivalently, for
given t, d, and |S| (the number of sources), we would like to construct a linear
A-code with |Φ| = |S| such that n and m are as small as possible.

5.6.1 Interpreting a Linear A-Code as a Family of Subspaces

Given an A-code without secrecy A = (S, E , T , f), we may, without loss
of generality, assume (T ,+) is an abelian group. Let E∗ = E × T . We define
a new A-code A∗ = (S, E∗, T , f∗) with

f∗ : S × E∗ → T

defined by f∗(s, (e, a)) = f(s, e) + a.

Lemma 5.6.3 Let A = (S, E , T , f) be an A-code without secrecy. Then A∗ =
(S, E∗, T , f∗) defined above is an I-equitable A-code without secrecy and P ∗

S ≤
PS, where P

∗
S and PS are the probabilities of substitution attacks in A∗ and

A, respectively.
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Proof. For any s ∈ S and a ∈ T , we have

P ∗
I =

|{(e, b) : f∗(s, (e, b)) = a}|
|E × T |

=
|⋃b∈T {e ∈ E : f(s, e) = a− b}|

|E||T |

=
|E|
|E||T |

=
1

|T | .

Hence, (S, E∗, T , f∗) is I-equitable.
Furthermore,

P ∗
S = max

s, s′ ∈ S

s 6= s′

max
a,a′∈T

|{(e, b) : f(s, e) = a− b} ∩ {(e, b) : f(s′, e) = a′ − b}|
|{(e, b) : f(s, e) = a− b}|

≤ max
s, s′ ∈ S

s 6= s′

max
c,c′∈T

|{e : f(s, e) = c} ∩ {e : f(s′, e) = c′}|
|{e : f(s, e) = c}|

= PS .

✷

The I-equitable property means that, for any choice of s and a, (s, a) has
the least chance of success for the impersonation attack, and minimizes PI .
In view of Lemma 5.6.3, we only consider I-equitable linear A-codes.

We further assume that PS < 1. Then any source state φ ∈ Φ of a linear
A-code (Φ, E , T ) can be interpreted as a surjective linear mapping from E to
T . Indeed, for given φ0 ∈ Φ, let L0 = Im(φ0) ⊆ T . If there exists φ ∈ Φ and
φ 6= φ0 such that Im(φ) 6= L0, since the A-code is I-equitable, we know that
dim(Im(φ)) = dim(L0). It follows that there exists an isomorphism θ from
Im(φ) to L0 and θφ is an Fq-linear mapping from E to T with ker(θφ) =
ker(φ0). Note that θφ 6∈ Φ. Otherwise, if φ is authenticated, the authenticated
message (φ, φ(e)) can be substituted with (θφ, θ(φ(e)) that the receiver will
always accept as authentic. This contradicts the assumption PS < 1. Thus, we
can simply replace φ by θφ without changing the parameters of the A-code,
and the procedure can be repeatedly carried out until each element in Φ is an
onto linear mapping from E to L0. We then take T to be L0.

Let V (n, q) denote an n-dimensional linear space over Fq.

Definition 5.6.4 A linear A-code without secrecy (S, E , T ) is called an
[n,M, t, d]-linear A-code if |S| =M, |E| = qn, PI = 1/qt, and PS = 1/qd.

Theorem 5.6.5 There exists an [n,M, t, d]-linear A-code if and only if there
exists a family L of subspaces of V (n, q) such that
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(i) |L| =M ;

(ii) dim(L) = n− t, for all L ∈ L;

(iii) dim(L ∩ L′) ≤ n− (t+ d), for all L,L′ ∈ L, L 6= L′.

Proof. Consider an [n,M, t, d]-linear A-code A = (Φ, E , T ) and let

L = {ker(φ) : φ ∈ Φ}.

Since A is I-equitable, PI = 1/qn−dim(ker(φ)) = q−t, and so dim(ker(φ)) =
n− t, for all φ ∈ Φ. From Lemma 5.6.2, we know that

PS = max
φ, φ′ ∈ Φ

φ 6= φ′

qdim(ker(φ)∩ker(φ′))

qdim(ker(φ))

= max
φ, φ′ ∈ Φ

φ 6= φ′

qdim(ker(φ)∩ker(φ′))−n+t

= q−d.

It follows that dim(ker(φ) ∩ ker(φ′)) ≤ n− (t+ d), and the necessity follows.
Conversely, if there is a family L of subspaces of V (n, q) such that condi-

tions (i) to (iii) are satisfied, then we take E = V (n, q) and T = V (t, q). For
each subspace L ∈ L, there exists an Fq-linear transformation φL from E to
T such that L = ker(φL). Let Φ = {φL : L ∈ L}. Then it is straightforward
to verify that (Φ, E , T ) is an [n,M, t, d]-linear A-code. ✷

5.6.2 Bounds for Linear A-Codes

In an [n,M, t, d]-linear A-code over Fq, given n, t, and d, we would like to
have M as large as possible. In this subsection, we derive some upper bounds
for M . We denote by M(n, t, d, q) the maximum M for which an [n,M, t, d]-
linear A-code over Fq exists.

Let [
n
k

]

q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)

denote the Gaussian coefficient. Then the number of k-dimensional sub-

spaces of V (n, q) is

[
n

k

]

q

, which gives an upper bound for M(n, t, d, q).

Theorem 5.6.6 For any integers n, t, d with n ≥ t ≥ d and prime power q,
we have

M(n, t, d, q) ≤
[

n
n− t

]

q

.
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For d = 1, the bound in Theorem 5.6.6 is tight as the following corollary
shows.

Corollary 5.6.7 We have

M(n, t, 1, q) =

[
n

n− t

]

q

.

Proof. Let L be the set of all (n−t)-dimensional subspaces of the n-dimensional

vector space V (n, q). Then |L| =
[

n

n− t

]

q

. Since, for any L,L′ ∈ L such that

L 6= L′, we have dim(L ∩ L′) ≤ n− t− 1, from Theorem 5.6.5, we know that

there exists an [n,

[
n

n− t

]

q

, t, 1]-linear A-code over Fq. ✷

If we take n = 2 and t = 1, then

[
2
1

]

q

= q+1. We obtain a [2, q+1, 1, 1]-

linear A-code. In other words, we have a linear A-code (S, E , T ) with the
following parameters

|S| = q + 1, |E| = q2, |T | = q, and PI = PS = 1/q.

We note that A-codes with these parameters were first constructed by
Gilbert, MacWilliams, and Sloane [69]. Their construction uses projective
planes and works as follows.

Let q be a prime power. Consider the projective plane P2(Fq) over the
field Fq. Fix a line ℓ in P2(Fq). The points on ℓ are regarded as source states,
points not lying on ℓ are regarded as the encoding rules (i.e., keys), and the
lines different from ℓ are regarded as the messages. To authenticate a source
state (a point on ℓ), the transmitter sends to the receiver the entire line that
is uniquely determined by the source state and the key (a point not lying
on ℓ). This results in an authentication code with q + 1 source states, q2

authentication keys, and q authenticators. The deception probabilities of this
code are

PI = PS = 1/q.

On the other hand, choosing different values of t in Corollary 5.6.7 results in
linear A-codes with different parameters. The following result improves the
bound in Theorem 5.6.6 when d ≥ 2.

Theorem 5.6.8 For an [n,M, t, d]-linear A-code over Fq, we have

M(n, t, d, q) ≤

[
n

n− (t+ d) + 1

]

q[
n− t

n− (t+ d) + 1

]

q

.
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Proof. From Theorem 5.6.5, we know that there is an [n,M, t, d]-linear A-
code if and only if there is a family L = {V1, V2, . . . , VM} of subspaces of
V (n, q), with dim(Vi) = n − t and dim(Vi ∩ Vj) ≤ n − (t + d), for i 6= j. For
each 1 ≤ i ≤ M , let ℜi denote the family of subspaces of Vi of dimension
n− (t+ d) + 1. It follows that

|ℜi| =
[

n− t
n− (t+ d) + 1

]

q

.

We claim that
ℜi ∩ ℜj = ∅, for all i 6= j.

Otherwise, if C ∈ ℜi ∩ ℜj is a subspace of dimension n − (t + d) + 1, then
C is a subspace of both Vi and Vj , which contradicts the assumption that
dim(Vi ∩ Vj) ≤ n− (t+ d). We then have

[
n

n− (t+ d) + 1

]

q

≥
∣∣∣∣∣
M⋃

i=1

ℜi

∣∣∣∣∣
= M |ℜi|

= M

[
n− t

n− (t+ d) + 1

]

q

.

The desired result follows immediately. ✷

For any fixed n and k, as q →∞, we have
[
n
k

]

q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)

≈ q(n−k)k.

It follows that

M(n, t, d, q) ≤
[

n
n− (t+ d) + 1

]

q

/[
n− t

n− (t+ d) + 1

]

q

≈ q(n−(t+d)+1)(t+d−1)

q(n−(t+d)+1)(d−1)

= q(n−(t+d)+1)t. (5.11)

In the general theory of A-codes, it is possible, as we have seen earlier,
for the size of source states to grow exponentially with the size of the keys,
for example, in the construction based on universal hash families in Section
5.4. However, this is not true for linear A-codes. In fact, from Theorem 5.6.8,
it is easy to see that logq |S| ≤ n2 = (logq |E|)2, and this bound can be
asymptotically achieved. For example, if (t+d)−1 ≈ t ≈ n/2, then, as we will
see in the next subsection, we have a linear A-code with logqM(n, t, d, q) ≈
n2/4.
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5.6.3 Constructions of Linear A-Codes

Rank distance codes were introduced by Gabidulin in [63]. They have been
used to construct other authentication schemes such as A2-codes by Johansson
[82] and group A-codes by van Dijk et al. [165]. We show that linear A-codes
can be constructed from rank distance codes, and such constructions result in
linear A-codes that asymptotically meet the bound in Theorem 5.6.8.

Definition 5.6.9 Let Λ = {Ai} be a set of m × t matrices over Fq. The
distance d(A,B) between two matrices A and B in Λ is defined by d(A,B) =
rank(A−B) and the minimum distance of Λ, denoted by d(Λ), is defined as

d(Λ) = min
A, B ∈ Λ
A 6= B

d(A,B).

Let d = d(Λ) and M = |Λ|. We call Λ an (m × t,M, d)-rank distance
code.

The following theorem establishes a relationship between linear A-codes
and rank distance codes.

Theorem 5.6.10 If there exists an (m× t,M, d)-rank distance code over Fq,
then there exists an [m+ t,M, t, d]-linear A-code over Fq.

Proof. Let Λ be an (m×t,M, d)-rank distance code. We define a set of (t+m)×t
matrices

Φ =

{(
It
A

)
: A ∈ Λ

}
,

where It denotes the t× t identity matrix. For each

(
It
A

)
∈ Φ, we define

ker

(
It
A

)
=

{
(e1, e2) ∈ Ft+m

q : (e1, e2)

(
It
A

)
= 0

}
,

where e1 ∈ Ft
q and e2 ∈ Fm

q . We consider a set of subspaces of Ft+m
q given by

L =

{
ker

(
It
A

)
:

(
It
A

)
∈ Φ

}
.

Clearly, |L| =M and dim

(
ker

(
It
A

))
= m. We show that, for any A,B ∈ Λ,

A 6= B, we have

dim

(
ker

(
It
A

)⋂
ker

(
It
B

))
≤ m− d.
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Indeed,

∣∣∣∣ker
(
It
A

)⋂
ker

(
It
B

)∣∣∣∣

=

∣∣∣∣
{
(e1, e2) ∈ Ft+m

q : (e1, e2)

(
It
A

)
= 0, (e1, e2)

(
It
B

)
= 0

}∣∣∣∣

=
∣∣{(−e2A, e2) ∈ Ft+m

q : e2A = e2B
}∣∣

=
∣∣{e2 ∈ Fm

q : e2(A−B) = 0
}∣∣

= qm−rank(A−B)

≤ qm−d.

From Theorem 5.6.5, we know that (Φ,Ft+m
q ,Ft

q) is an [m + t,M, t, d]-linear
A-code and the claimed result follows. ✷

As shown in [82], in an (m × t,M, d)-rank distance code, we always have
d ≤ m−k+1, where k = logqt M . Codes for which the equality holds are called
maximum rank distance codes (orMRD codes for short). Gabidulin [63]
showed that MRD codes can be constructed from linearized polynomials.

Recall that a polynomial of the form F (z) =
∑k−1

i=0 fiz
qi , where fi ∈ Fqt ,

is called a linearized polynomial over Fqt . Let k,m, t be integers satisfying
0 < k ≤ m ≤ t. By Lk,t, we denote the set of all linearized polynomials over
Fqt of degree at most qk−1. Assume that g1, g2, . . . , gm are specified elements
of the field Fqt which are linearly independent over Fq. For each F (z) ∈ Lk,t,
set

cF (z),g1,...,gm =




F (g1)
F (g2)

...
F (gm)


 .

We associate cF (z),g1,...,gm with an m× t matrix A(cF (z),g1,...,gm) = (aij),
which is obtained by writing F (gi) (expressed in a fixed basis of Fqt over Fq)
as a row vector with entries aij ∈ Fq.

Lemma 5.6.11 ([82]) The set {A(cF (z),g1,...,gm) : F (z) ∈ Lk,t} is an MRD

code. In other words, {A(cF (z),g1,...,gm) : F (z) ∈ Lk,t} is an (m × t, qtk,m −
k + 1)-rank distance code.

Corollary 5.6.12 Let n, t, d be integers satisfying 0 < t+ d ≤ n and let q be
a prime. Then the above construction from linearized polynomials results in
an [n, qt(n−t−d+1), t, d]-linear A-code.
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Proof. Put k = n − t − d + 1 and m = n − t. Applying Theorem 5.6.10 and
Lemma 5.6.11, we obtain the desired result. ✷

Note that the parameters given in Corollary 5.6.12 asymptotically meet
the bounds in Theorem 5.6.8.

Example 5.6.13 Choosing n = 2 and t = d = 1, we have a linear A-code
(S, E , T ) with |S| = q, |E| = q2, and |T | = q, with PI = PS = 1/q. This
code has the same parameters as the A-code A = (S ′, E ′, T ′, f ′), where S ′ =
Fq, T ′ = Fq, E ′ = Fq × Fq, and f ′ defined as f ′(s, (e1, e2)) = e1s + e2,
for all s ∈ S ′, (e1, e2) ∈ E ′. It is easy to verify that A is linear and that
PI = PS = 1/q.
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Chapter 6

Frameproof Codes

6.1 Introduction

In order to protect a product such as computer software, for example, a
distributor may mark each copy with some codeword and then ships to each
user his data marked with that codeword. This marking allows the distributor
to detect any unauthorized copy and trace it back to the user. Since a marked
object can be traced, the users will be deterred from releasing an unauthorized
copy. However, a coalition of users may detect some of the marks, namely, the
marks where their copies differ. They can then change these marks arbitrarily.
To prevent a group of users from “framing” another user, Boneh and Shaw
[27] defined the concept of c-frameproof codes. A c-frameproof code has the
property that no coalition of at most c users can frame a user not in the
coalition.

In the traitor tracing scheme suggested by Chor, Fiat, and Naor in [41],
a sender (such as a distribution center or a company) wishes to broadcast
an encrypted message to a set of users who use their individual decoders
to decrypt the broadcast message. (More discussion on broadcast encryption
may be found later in Chapter 8.) A decoder box consists of N keys, where
each key takes on one of q possible values. A decoder box a can typically be
represented as an N -tuple (a1, . . . , aN ), where 1 ≤ ai ≤ q for 1 ≤ i ≤ N .
A user can redistribute the keys of his decoder box without altering it. If an
unauthorized copy of the decoder box is found containing the keys of user u’s
decoder box, one can accuse u of producing a pirate decoder box. However,
u could claim that he was framed by a coalition which created a decoder
box containing his keys. Thus, it is desirable to construct decoder boxes that
satisfy the following property: no coalition can collude to frame a user not
in the coalition. Codes that satisfy this property are then called frameproof
codes, or c-frameproof codes if the condition is relaxed by limiting the size
of the coalition to at most c users.

A second example, described in Fiat and Tassa [58], concerns pay-per-
view movies. Suppose a pay-per-view movie is divided into segments, and each
segment has possible variations. The possible variations of a segment could
have the same “content,” but be “marked” in some manner that is not easily
detected. A different variation of the movie is broadcast to each subscriber.

173
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A copy of the movie can, therefore, be represented as an N -tuple. A coalition
might try to create a pirate copy of the movie by copying segments from the
versions broadcast to them, in much the same way as a coalition producing a
pirate decoder box in the example described above. The cable company may
want to design a scheme that enables the identification of one or more of the
members of a coalition that produced a pirated movie.

6.2 Constructions of Frameproof Codes without Alge-

braic Geometry

We now formally introduce the definition of frameproof codes and some
properties. We also discuss some constructions of frameproof codes without
using algebraic geometry.

Let S be a set of q elements with q > 1 and let N be a positive integer.
Define the ith projection, for 1 ≤ i ≤ N , as

πi : S
N → S, (a1, . . . , aN ) 7→ ai.

For a subset A ⊆ SN , we define the descendants of A, denoted by desc(A),
to be the set of all x ∈ SN such that, for each 1 ≤ i ≤ N , there exists some
a ∈ A (dependent on i) satisfying πi(x) = πi(a).

Definition 6.2.1 Let c ≥ 2 be an integer. A q-ary c-frameproof code of
length N is a subset C ⊆ SN such that, for all A ⊆ C with |A| ≤ c, we have

desc(A) ∩ C = A. (6.1)

From this definition, it is clear that a q-ary c-frameproof code C is a q-ary
c1-frameproof code for any 2 ≤ c1 ≤ c.

For a finite set S of size q, we denote a q-ary c-frameproof code in SN of
size M by c-FPC(N,M). Since each codeword can be “fingerprinted” into a
copy of the distributed documents, we would like the value ofM to be as large
as possible. This leads to the following definition.

Definition 6.2.2 For a fixed integer q > 1 and integers c ≥ 2 and N ≥ 2, let
Mq(N, c) denote the maximum size of q-ary c-frameproof codes of length N ,
i.e.,

Mq(N, c)
def
= max{M : there exists a q-ary c-FPC(N,M) }.

In [150], Staddon, Stinson, and Wei proved thatMq(N, c) ≤ c
(
q⌈N/c⌉ − 1

)
.

This result was improved by Blackburn in [16], where the following was shown.
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Theorem 6.2.3 Let c ≥ 2 and N ≥ 2 be integers and let q be a prime power.
Then

Mq(N, c) ≤ max
{
q⌈N/c⌉, r

(
q⌈N/c⌉ − 1

)
+ (c− r)

(
q⌊N/c⌋ − 1

)}
, (6.2)

where r = N mod c.

Proof. Let C ⊆ SN be a q-ary c-frameproof code of cardinalityM =Mq(N, c).
If M ≤ q, then the bound (6.2) is trivially true. Hence, we assume that

M > q.
For any subset T ⊆ {1, 2, . . . , N}, define UT by

UT = {x ∈ C : there exists no y ∈ C \ {x} such that πi(x) = πi(y) for any i ∈ T}.

Note that |UT | ≤ q|T | − 1 since every codeword x ∈ UT is uniquely identified
by the subword (xi)i∈T . Let T1, T2, . . . , Tc ⊆ {1, 2, . . . , N} be disjoint subsets,
where |Tj | = ⌈N/c⌉ whenever 1 ≤ j ≤ r and where |Tj | = ⌊N/c⌋ whenever
1 + r ≤ j ≤ c. Thus, we must have ∪cj=1Tj = {1, 2, . . . , N}. The bound of the
theorem follows if we have C = ∪cj=1UTj .

Suppose, for a contradiction, that there exists x ∈ C\∪cj=1UTj . Then there
exist y1,y2, . . . ,yc ∈ C \ {x} such that yj and x agree in their ith compo-
nents for all i ∈ Tj. However, in this case, we have x ∈ desc({y1,y2, . . . ,yc}),
which contradicts the c-frameproof property of C. This contradiction proves
that C = ∪cj=1UTj , as desired. ✷

Remark 6.2.4 (i) For almost all parameter sets, the second term on the
right-hand side of (6.2) is the larger of the two.

(ii) An obvious consequence of Theorem 6.2.3 is that, for a q-ary c-
frameproof code of length N , the size is at most

δq⌈N/c⌉ +O
(
q⌈N/c⌉−1

)
,

where δ = N mod c.

6.2.1 Constructions of Frameproof Codes

In this subsection, we discuss some constructions of frameproof codes.
It has been suggested by many authors that frameproof codes can be con-

structed from error-correcting codes. We now introduce some such construc-
tions.

Proposition 6.2.5 The set C of all words of Hamming weight 1 in ZN
q forms

a c-frameproof code of size N(q − 1), for any c ≥ 2.

© 2013 Taylor & Francis Group, LLC



176 Algebraic Curves in Cryptography

Proof. Let x ∈ C be a word of Hamming weight 1 and assume that its ith
component is nonzero. Now, any subset P of C with x ∈ desc(P ) must contain
a codeword y such that πi(x) = πi(y). Thus, we must have x = y since the
Hamming weight of y is 1. The desired result follows. ✷

Proposition 6.2.6 A q-ary (N,M, d)-code C is a q-ary c-FPC(N,M) with
c = ⌊(N − 1)/(N − d)⌋.

Proof. Let A be a subset of C with |A| ≤ c. Suppose that desc(A) ∩ C 6= A.
Choose x ∈ (desc(A) ∩ C) \ A. Since there are at most c elements in A, it
follows from x ∈ desc(A) that there is a codeword y ∈ A such that y agrees
with x in at least ⌈N/c⌉ positions, i.e., the Hamming weight of y−x satisfies

wt(y − x) ≤ N −
⌈
N

c

⌉
≤ N − N

c
.

As x 6= y, we get

d ≤ wt(y − x) ≤ N − N

c
,

which implies c ≥ N/(N − d). This contradicts c = ⌊(N − 1)/(N − d)⌋. ✷

Example 6.2.7 Now we consider the construction of frameproof codes in
Proposition 6.2.6 by looking at algebraic geometry codes based on projective
lines and elliptic curves.

(i) We know that a code from a projective line is an MDS code (cf. Example
2.4.1(i) and Theorem 2.3.24). Let C be a q-ary [N, k,N − k + 1]-MDS
code. Then, by Proposition 6.2.6, we obtain a q-ary c-FPC(N, qk) with
c = ⌊(N − 1)/(k − 1)⌋.

(ii) A q-ary algebraic geometry code based on an elliptic curve has param-
eters [N, k,≥ N − k] with N ≤ q + 1 + 2

√
q. Thus, we obtain a q-ary

c-FPC(N, qk) with c = ⌊(N − 1)/k⌋.

Proposition 6.2.8 Let N be an even integer such that N ≥ 4. Let m be a
prime power such that m ≥ N + 1 and set q = m2 + 1. Then there exists a
q-ary 2-frameproof code C of cardinality 2(q − 1)N/2(1 − 1/(2

√
q − 1)).

Proof. Define F to be the disjoint union F = {∞} ∪ F2
m. Let β0, β1,

α1, α2, . . . , αN−1 be distinct elements of Fm. For polynomials f, g ∈ Fm[x],
we write (f, g)(αi) for the element (f(αi), g(αi)) ∈ F . Define C1 ∈ FN by

C1 = {(∞, (f, g)(α1), (f, g)(α2), . . . , (f, g)(αN−1))},

where f, g ∈ Fm[x] are such that deg(f) = (N/2)− 1 and deg(g) ≤ (N/2)− 1.
Define C2 ∈ FN by

C2 = {(t(β0), t(β1)), (s, t)(α1), (s, t)(α2), . . . , (s, t)(αN−1))},
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where s, t ∈ Fm[x] are such that deg(s) ≤ (N/2)− 2 and deg(t) ≤ (N/2).
By considering their first components, it is clear that C1 and C2 are dis-

joint. A polynomial of degree at most (N/2) − 1 is determined by its values
at N/2 distinct points, hence the polynomials f and g are uniquely deter-
mined by a codeword x ∈ C1. There are mN/2 −m(N/2)−1 choices for f and
there are mN/2 choices for g, and so |C1| = (m2)N/2(1 − 1/m). The poly-
nomial s defining C2 is determined by (N/2) − 1 of the final N − 1 com-
ponents of a codeword x ∈ C2. Similarly, the polynomial t is determined
by (N/2) + 1 of these components. Hence, |C2| is equal to the number of
choices for s and t, and so |C2| = m(N/2)−1m(N/2)+1 = mN . Summing our
expressions for |C1| and |C2| and using the fact that m =

√
q − 1 shows that

|C| = 2(q − 1)N/2(1− 1/(2
√
q − 1)), as required, where C = C1 ∪ C2.

It remains to show that C is a 2-frameproof code. To this end, we first
claim that codewords x ∈ C1 and y ∈ C2 can agree in at most (N/2) − 1
components. The first components of x and y are never equal. If N/2 of the
remaining positions agree, then the definitions of C1 and C2 imply that a
polynomial f of degree exactly (N/2) − 1 and a polynomial s of degree at
most (N/2)− 2 agree at N/2 points. This contradiction establishes our claim.

Let x ∈ C and suppose that P ⊂ C is such that |P | = 2 and x ∈ desc(P ).
We must show that x ∈ P .

Suppose that x ∈ C1. Since π1(x) = ∞, P must contain an element from
C1. Suppose |P ∩ C1| = 1. Since a codeword in C2 agrees with x in at most
(N/2) − 1 components, the codeword y ∈ P ∩ C1 agrees with x in at least
(N/2) + 1 positions. Hence, x and y agree in at least N/2 of the components
other than the first. However, a codeword in C1 is determined by specifying
any N/2 of its final N − 1 components. Hence, x = y and our result follows
in this case. Now suppose that |P ∩C1| = 2. If a codeword y ∈ P agrees with
x in (N/2) + 1 positions, then x = y as before. Suppose both codewords in
P agree with x in exactly N/2 positions. Then one of the codewords, y ∈ P
say, agrees with x in N/2 of its final N − 1 components. However, since any
N/2 of the last N − 1 components determine a codeword in C1, we have that
x = y. Hence, our result follows when x ∈ C1.

Suppose that x ∈ C2. By considering the first component of x, the set P
must contain a codeword in C2. If there exists y ∈ P ∩ C2 that agrees with
x in (N/2) + 1 positions, then x = y (at least N/2 values of s and at least
(N/2) + 1 values of t are specified, so s and t are determined). In particular,
since a codeword in P ∩ C1 can agree with x in at most (N/2)− 1 positions,
this shows that our result holds in the case when |P ∩ C1| = 1. The case
remaining is when P ⊆ C2 and each of its codewords agrees with x in N/2
positions. Let y ∈ P be the codeword that agrees with x in the first posi-
tion. Then (N/2)− 1 of the values of s and (N/2) + 1 of the values of t are
specified by the components where x and y agree. Hence, x = y in this case. ✷
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6.2.2 Two Characterizations of Binary Frameproof Codes

In this subsection, we concentrate on binary frameproof codes by introduc-
ing a combinatorial description of binary frameproof codes and giving some
constructions.

For binary frameproof codes, we can introduce an equivalent definition.
The advantage of this new definition is to allow an explanation of the practical
use of frameproof codes.

For a binary (N,M)-code C = {c1, . . . , cM}, let A = {a1, . . . ,ad} be a
subset of C. We say i ∈ {1, . . . , N} is undetectable if πi(a1) = · · · = πi(ad).
Let U(A) be the set of undetectable bit positions, then

F (A)
def
= {x ∈ FN

2 : πi(x) = πi(a1) for all i ∈ U(A)}

is called the feasible set of A. If U(A) = ∅, then we define F (A) = FN
2 .

The feasible set F (A) represents the set of all possible N -tuples that could
be produced by the coalition A by comparing the d codewords they jointly
hold. If there is a codeword cj ∈ F (A) \ A, then user j could be “framed” if
the coalition A produces the N -tuple cj . The following definition is motivated
by the desire for this situation not to occur.

Definition 6.2.9 A binary (N,M)-code is called a c-frameproof code C
if, for every A ⊆ C such that |A| ≤ c, we have F (A) ∩ C = A.

It is easy to verify that this definition coincides with the previous one as
the feasible set F (A) is just the set desc(A).

We now look at some examples.

Example 6.2.10 (i) For any integer N ≥ 1, there exists a binary N -
FPC(N,N). The matrix depicting the code is the N×N identity matrix
(the matrix depicting a code is the one whose rows consist of all the
codewords).

(ii) There exists a binary 2-FPC(3, 4). The matrix depicting the code is as
follows 



1 0 0
0 1 0
0 0 1
1 1 1


 .

We now give a characterization of binary frameproof codes in terms of set
systems, defined earlier in Definition 5.2.9.

Since the matrix depicting a binary c-FPC(N,M) is an M × N (0, 1)-
matrix, we can view a binary frameproof code as a set system by identifying
the depicting matrix with the incidence matrix of this set system. We have
the following characterization of frameproof codes as set systems.
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Theorem 6.2.11 There exists a binary c-FPC(N,M) if and only if there
exists a set system (X,B) such that |X | = N , |B| = M , and, for any subset
of blocks B1, . . . , Bd with d ≤ c, there does not exist a block B ∈ B such that

d⋂

i=1

Bi ⊆ B ⊆
d⋃

i=1

Bi.

Proof. Assume that we have a binary c-FPC(N,M). Let c1, . . . , cd be d code-
words with d ≤ c. Without loss of generality, assume that, in these codewords,
the first s bit positions are 0, the next t bit positions are 1, and in every other
bit position at least one of the d codewords has the value 1 and at least one
has the value 0. (Hence, the undetectable bit positions are the first s + t bit
positions.) Then it is not hard to see that the frameproof property is equiv-
alent to saying that any other codeword has at least one 1 in the first s bit
positions, or at least one 0 in the next t bit positions. In other words, there
does not exist another codeword with 0 in the first s bit positions and 1 in
the next t bit positions.

Let (X,B) be the set system, with X = {x1, . . . , xN}, whose incidence
matrix is the matrix depicting the binary c-FPC(N,M) (so B corresponds
to the rows of this matrix). Let B1, . . . , Bd be the blocks in the set system
corresponding to the d codewords c1, . . . , cd. Then

d⋂

i=1

Bi = {xs+1, . . . , xs+t}

and
d⋃

i=1

Bi = {xs+1, . . . , xN}.

Hence, the frameproof condition is equivalent to saying that there does not
exist a block B ∈ B \ {B1, . . . , Bd} such that ∩di=1Bi ⊆ B ⊆ ∪di=1Bi. ✷

Next, we give a characterization of 2-frameproof codes in terms of the
Hamming distance.

Lemma 6.2.12 A binary code C with |C| ≥ 3 is a 2-frameproof code if and
only if, for any three distinct elements x,y, and z of C, one has the strict
triangle inequality

d(x, z) < d(x,y) + d(y, z).

Proof. Without loss of generality, we may assume that the undetectable bit
positions of {x, z} are 1, . . . , r, then the Hamming distance d(x, z) satisfies
d(x, z) = N−r. Since the triangle inequality holds for the Hamming distance,
we note that showing that the strict triangle inequality holds is equivalent to
showing that there is at least one bit position within the first r bit positions
where y is different from x and z. This is just the condition that the code is
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2-frameproof. ✷

The following result is an immediate corollary of the previous lemma.

Corollary 6.2.13 A binary (N,M)-code C is a 2-frameproof code if 2d(C) >
dmax(C), where d(C) is the minimum Hamming distance of C, while dmax(C)
denotes the maximum Hamming distance of C, i.e., dmax(C) = max{d(x,y) :
x,y ∈ C}.

Theorem 6.2.14 For any odd prime power q ≥ 31, there exists a binary
2-FPC(q, (q2 − q)/2).

Proof. Let χ : F∗
q2 → {−1, 1} be the quadratic (Legendre) character, i.e.,

χ(α) =

{
1 if α is a square in Fq2

−1 otherwise.

Then, for every element x ∈ Fq2 \ Fq, we associate a binary vector vx =
(vx,α)α∈Fq indexed by the elements of Fq, namely

vx,α
def
=

1

2
(1 + χ(x+ α)) .

Note that both x and xq define the same binary vector, i.e., vx = vxq .
Hence, the binary code C = {vx : x ∈ Fq2 \ Fq} is a (q, (q2 − q)/2)-code
with minimum distance d(C) at least q/2 − 3

√
q/2, and maximum distance

dmax(C) at most q/2 + 3
√
q/2 (see [150, 158] for the detailed proof). Thus,

for q > 81, one has 2d(C) > dmax(C). In fact, it can be verified by computer
that 2d(C) > dmax(C) for the codes produced by this construction for all odd
prime powers q with 31 ≤ q ≤ 81. Applying Corollary 6.2.13, we obtain the
desired result. ✷

6.2.3 Combinatorial Constructions of Binary Frameproof
Codes

We proceed next to give some constructions of frameproof codes from
combinatorial objects such as t-designs, packing designs, hash families and
orthogonal arrays. All the results on design theory that we require can be
found in standard references such as [43].

Recall that t-(v, k, λ) designs have been introduced in Definition 5.2.10.
Note that, by simple counting, the number of blocks in a t-(v, k, 1) design is(
v
t

)
/
(
k
t

)
. We use t-designs to construct frameproof codes as described in the

following theorem.

Theorem 6.2.15 If there exists a t-(N, k, 1) design, then there exists a binary
c-FPC(N,

(
N
t

)
/
(
k
t

)
), where c = ⌊(k − 1)/(t− 1)⌋.
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Proof. Let d ≤ c and let B1, . . . , Bd be d distinct blocks in the given t-(N, k, 1)
design (X,B), and let B ∈ B\{B1, . . . , Bd}. If B ⊆ ∪di=1Bi, then there exists a
Bi, where 1 ≤ i ≤ d, such that |B∩Bi| ≥ t, given that d ≤ c = ⌊(k−1)/(t−1)⌋.
Since we have a t-design with λ = 1, it follows that B = Bi, a contradiction.
Hence, for any B ∈ B \ {B1, . . . , Bd}, we have that B 6⊆ ∪di=1Bi. The t-design
is a set system satisfying the conditions of Theorem 6.2.11, so the conclusion
follows. ✷

There are many known results on the existence and construction of t-
(v, k, 1) designs for t = 2, 3. On the other hand, no t-(v, k, 1) design with
v > k > t is known to exist for t ≥ 6. However, known infinite classes of
2- and 3-designs provide some nice infinite classes of frameproof codes. We
illustrate with a few samples of typical results that can be obtained.

For 3 ≤ k ≤ 5, a 2-(v, k, 1) design exists if and only if v ≡ 1 or k (mod (k2−
k)) (see [43]). Hence, we obtain the following result.

Theorem 6.2.16 There exist frameproof codes as follows:

(i) a binary 2-FPC(N,N(N − 1)/6) if N ≡ 1, 3 (mod 6);

(ii) a binary 3-FPC(N,N(N − 1)/12) if N ≡ 1, 4 (mod 12);

(iii) a binary 4-FPC(N,N(N − 1)/20) if N ≡ 1, 5 (mod 20).

Another type of combinatorial designs which can be used to construct
frameproof codes are packing designs. We give the definition as follows.

Definition 6.2.17 A t-(v, k, λ) packing design is a set system (X,B), where
|X | = v, |B| = k for every B ∈ B, and every t-subset of X occurs in at most
λ blocks in B.

Using the same argument as in the proof of Theorem 6.2.15, we have the
following construction for frameproof codes.

Theorem 6.2.18 If there exists a t-(N, k, 1) packing design with M blocks,
then there exists a binary c-FPC(N,M), where c = ⌊(k − 1)/(t− 1)⌋.

We mentioned previously that no t-(v, k, 1) designs are known to exist if
v > k > t ≥ 6. However, for any t, there are infinite classes of packing designs
with a large number of blocks (i.e., close to

(
v
t

)
/
(
k
t

)
). These can be obtained

from orthogonal arrays (cf. Definition 5.2.7). It is easy to obtain a packing
design from an orthogonal array, as shown in the next lemma. Here, we are
only interested in orthogonal arrays OAλ(t, k, v) with λ = 1, so we simplify
the notation to OA(t, k, v).

Lemma 6.2.19 If there is an OA(t, k, v), then there is a t-(kv, k, 1) packing
design that contains vt blocks.
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Proof. Suppose that there is an OA(t, k, v) with entries from the set
{0, 1, . . . , v − 1}. Define X = {(x, y) : 0 ≤ x ≤ k − 1, 0 ≤ y ≤ v − 1}.
For every row (y0, y1, . . . , yk−1) in the orthogonal array, define a block B =
{(i, yi) : i = 0, 1, . . . , k − 1}. Let B consist of the vt blocks thus constructed.
It is easy to check that (X,B) is a t-(kv, k, 1) packing design. ✷

The following lemma ([43, Chapter VI.7]) provides infinite classes of or-
thogonal arrays for any integer t.

Lemma 6.2.20 If q is a prime power and t < q, then there exists an OA(t, q+
1, q), and hence a t-(q2 + q, q + 1, 1) packing design with qt blocks exists.

From Theorem 6.2.18 and Lemma 6.2.20, we obtain the following result.

Theorem 6.2.21 For any prime power q and any integer t < q, there exists
a ⌊q/(t− 1)⌋-FPC(q2 + q, qt).

6.3 Asymptotic Bounds and Constructions from Alge-

braic Geometry

Like asymptotic coding theory, it is natural to look at the asymptotic
behavior of c-frameproof codes in the sense that q and c are fixed and the
length n tends to infinity. Throughout this section, we assume that c < q.

Definition 6.3.1 For fixed integers q > c ≥ 2, the rate of a q-ary c-
FPC(n,M) is defined to be the quantity (logqM)/n. We also define the
asymptotic quantity

Dq(c) = lim sup
n→∞

logqMq(n, c)

n
.

It seems that the exact values of Dq(c) are not easy to be determined
for any given q and c. Instead, we will obtain some lower bounds for Dq(c).
Before looking at lower bounds, we first derive an upper bound for Dq(c) from
Theorem 6.2.3.

Theorem 6.3.2 We have that

Dq(c) ≤
1

c
.

Proof. By Theorem 6.2.3, we have

Mq(n, c) ≤ max
{
q⌈n/c⌉, r

(
q⌈n/c⌉ − 1

)
+ (c− r)

(
q⌊n/c⌋ − 1

)}
,
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where r ∈ {0, 1, . . . , c− 1} is the remainder of n divided by c. Thus, we have

Mq(n, c) ≤ cq⌈n/c⌉.

The desired result follows. ✷

From now on, in this section, we concentrate on lower bounds for Dq(c).
From the relationship between error-correcting codes and frameproof codes

given in Proposition 6.2.6, we immediately obtain a lower bound for Dq(c)
from the Gilbert-Varshamov bound (see Theorem 2.5.3).

Theorem 6.3.3 Let q > c > 1 be two integers. Then

Dq(c) ≥ 1−Hq

(
1− 1

c

)
,

where
Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ)

is the q-ary entropy function defined in Theorem 2.5.3.

Proof. Choose a sequence of pairs (ni, di) such that ni →∞ as i→∞, and

ni − 1

ni − di
≥ c for all sufficiently large i and lim

i→∞
ni

ni − di
= c.

From the proof of the asymptotic Gilbert-Varshamov bound (cf. Theorem
2.5.3), we know that there exists a sequence of q-ary codes {Ci}∞i=1 with
parameters (ni,Mi, di) such that

lim
i→∞

di
ni

= 1− 1

c
and lim

i→∞

logqMi

ni
≥ 1−Hq

(
1− 1

c

)
.

Thus, by Proposition 6.2.6, every Ci is a c-frameproof code, for sufficiently
large i. Hence,

Dq(c) ≥ lim
i→∞

logqMi

ni
≥ 1−Hq

(
1− 1

c

)
.

This completes the proof. ✷

Remark 6.3.4 The bound in Theorem 6.3.3 is only an existential result as
the Gilbert-Varshamov bound is not constructive.

For the rest of this section, we introduce two lower bounds for Dq(c) from
algebraic geometry codes. One bound can be obtained by directly applying
Proposition 6.2.6 and the Tsfasman-Vlăduţ-Zink bound. However, the sec-
ond bound employs the group structure of the Jacobians of algebraic curves.
Note that the Jacobian, denoted by J (X/Fq), of an algebraic curve X/Fq is
defined to be the quotient group Div0(X )/Princ(X ) (see Section 1.4 for the
definition of this quotient group).
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Theorem 6.3.5 For a prime power q and an integer c ≥ 2, we have

Dq(c) ≥
1

c
− 1

A(q)
,

where A(q) is as defined at the end of Chapter 1.

Proof. Let δ = 1− 1/c. Combining Proposition 6.2.6 with Theorem 2.5.4, and
using the same arguments as in the proof of Theorem 6.3.3, we obtain the
desired result. ✷

Remark 6.3.6 (i) The bound in Theorem 6.3.5 is constructive since the alge-
braic geometry codes in Theorem 2.5.4 are constructive as long as the family
of curves is explicit (e.g., that in Example 2.5.6).
(ii) Comparing with the upper bound in Theorem 6.3.2, we find that

1

c
− 1

A(q)
≤ Dq(c) ≤

1

c
.

As we have seen from Chapter 1, 1/A(q)→ 0 as q →∞, i.e., Dq(c) approaches
1/c as q →∞.

Corollary 6.3.7 (i) If q is the square of a prime power, then, for any c ≥ 2,

Dq(c) ≥
1

c
− 1√

q − 1
.

(ii) If q is a prime power, then for any c ≥ 2

Dq(c) ≥
1

c
− 96

log q
.

Proof. If q is a square, we have A(q) =
√
q − 1 (see (1.6)).

If q is any prime power, we have (see [116, Theorem 5.2.9])

A(q) ≥ log q

96
.

The desired result follows from Theorem 6.3.5. ✷

The bound in Theorem 6.3.5 can be improved using algebraic geometry
codes. However, to this end, we need to modify Goppa’s construction of alge-
braic geometry codes.

Let X be an algebraic curve over Fq with n distinct Fq-rational points
P1, P2, . . . , Pn. Choose a positive divisor D such that L(D−∑n

i=1 Pi) = {0}.
Let νPi(D) = vi ≥ 0 and let ti be a local parameter at Pi for each i, i.e.,
νPi(ti) = 1.
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Consider the map

φ : L(D) −→ Fn
q , f 7→ ((tv11 f)(P1), (t

v2
2 f)(P2), . . . , (t

vn
n f)(Pn)).

Then the image of φ forms a subspace of Fn
q that is defined as an algebraic

geometry code. The image of φ is denoted by C(D;
∑n

i=1 Pi), or simply, by
abuse of notation, C(D;P), where P = {P1, P2, . . . , Pn}. The map φ is an
embedding since L(D−∑n

i=1 Pi) = {0}, and hence the dimension of C(D;P)
is equal to ℓ(D).

Remark 6.3.8 Note that the above construction is a modified version of the
algebraic geometry codes defined by Goppa (see Chapter 2). The advantage
of the above construction is to make it possible to get rid of the condition
Supp(D)∩ {P1, P2, . . . , Pn} = ∅. This is crucial for our construction of frame-
proof codes in this section.

When the condition Supp(D)∩{P1, P2, . . . , Pn} = ∅ is satisfied, i.e., vi = 0
for all i = 1, . . . , n, then the above construction of algebraic geometry codes
is consistent with Goppa’s construction.

Proposition 6.3.9 Let X/Fq be an algebraic curve of genus g and let
P1, P2, . . . , Pn be n distinct Fq-rational points of X . Let D be a positive divisor
on X such that deg(D) < n. Let c ≥ 2 satisfy L(cD −∑n

i=1 Pi) = {0}. Then
C(D;

∑n
i=1 Pi) is a c-FPC(n, qℓ(D)).

Proof. For all f ∈ L(D), denote by cf the codeword

φ(f) = ((tv11 f)(P1), (t
v2
2 f)(P2), . . . , (t

vn
n f)(Pn)),

where vi = νPi(D), for 1 ≤ i ≤ n. Let A = {cf1 , . . . , cfr} be a subset of

C
def
= C(D;

∑n
i=1 Pi) with |A| = r ≤ c. Let cg ∈ desc(A) ∩ C for some

g ∈ L(D). Then, by the definition of the descendant, for each 1 ≤ i ≤ n, we
have

r∏

j=1

πi(cfj − cg) = 0,

where πi(cfj − cg) is the ith coordinate of cfj − cg. This implies that

r∏

j=1

(tvii fj − tvii g)(Pi) = 0,

i.e.,

νPi




r∏

j=1

(tvii fj − tvii g)


 ≥ 1.

This is equivalent to

νPi




r∏

j=1

(fj − g)


 ≥ −rvi + 1.
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Hence,

r∏

j=1

(fj − g) ∈ L
(
rD −

n∑

i=1

Pi

)
⊆ L

(
cD −

n∑

i=1

Pi

)
= {0}.

Thus, the function
∏r

j=1(fj−g) is the zero function. This means that fℓ−g = 0
for some 1 ≤ ℓ ≤ r. Hence, cg = cfℓ ∈ A. ✷

Remark 6.3.10 One main feature of the above proposition is that the mini-
mum distance of the algebraic geometry code does not play an important role.
However, the above construction has a disadvantage, i.e., it is not explicitly
constructive since no explicit construction of the divisor D, for given c, is
known. The existence of such a divisor D can, however, be shown, and it is
given below.

From Proposition 6.3.9, we know that it is crucial to find a divisor D such
that L(cD −∑n

i=1 Pi) = {0}. We will show some sufficient conditions for the
existence of such a divisor D, but first we need to introduce more notations.

For an algebraic curve X/Fq of genus g, recall that J (X/Fq) =
Div0(X )/Princ(X ) denotes the divisor class group of degree zero of X/Fq.
It is a finite abelian group whose order is L(1) (see [151, Theorem 5.1.15]),
where L(t) is the L-function of X/Fq (see Chapter 1). This order is com-
monly known as the divisor class number, or simply class number, of X .
Suppose that X has an Fq-rational point P0. For a divisor D, we denote by
[D−deg(D)P0] the class of the degree zero divisor D−deg(D)P0 in J (X/Fq).

Lemma 6.3.11 Let X/Fq be a smooth projective curve of genus g with an
Fq-rational point P0. Then, for an integer c ≥ 2 and any fixed integer m ≥ g,
the subgroup of J (X/Fq)

{c[D −mP0] : D > 0, deg(D) = m}
has order at least h/c2g, where h denotes the class number.

Proof. It is a well-known fact that the set

{[D −mP0] : D > 0, deg(D) = m}
is the whole group J (X/Fq) for m ≥ g (e.g., see [176, proof of Lemma 2.2]).
Therefore,

{c[D −mP0] : D > 0, deg(D) = m} = cJ (X/Fq).

Since J (X/Fq) is isomorphic to the group of Fq-rational points on the Jaco-
bian of X/Fq, the p-rank of J (X/Fq) is at most 2g for any prime p (see [110,
page 39]). The desired result follows. ✷

For X/Fq as above, and for any r ≥ 0, let Ar denote the set of Fq-rational
positive divisors on X of degree r, and let Ar denote the cardinality of Ar.
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Lemma 6.3.12 Let X/Fq be an algebraic curve of genus g with at least one
Fq-rational point P0 and of class number h. Let c,m, n be three integers sat-
isfying c ≥ 2 and g ≤ m ≤ n < cm, and let G be a fixed positive divisor on
X of degree n. Then there exists a positive divisor D of degree m such that
L(cD −G) = {0}, provided that Acm−n < h/c2g.

Proof. By Lemma 6.3.11, we have

|{[cH − cmP0] : H > 0, deg(H) = m}| = |cJ (X/Fq)| ≥
h

c2g
.

Moreover,

|{[K +G− cmP0] : K > 0, deg(K) = cm− n}| ≤ |Acm−n| = Acm−n.

Thus, {[cH − cmP0] : H > 0, deg(H) = m} \ {[K + G − cmP0] : K >
0, deg(K) = cm− n} is not empty.

Choose an element [cD − cmP0] from the above nonempty set, for some
positive divisor D. We claim that L(cD − G) = {0}. Otherwise, there would
be a nonzero function f ∈ L(cD−G). Therefore, the divisor div(f) + cD−G
is a positive divisor. Put K = div(f) + cD −G. Then deg(K) = cm− n, and
cD is equivalent to K +G, i.e., [cD − cmP0] is the same as [K +G− cmP0].
This contradicts the choice of [cD − cmP0]. ✷

The following lemma can be found in [176, 177].

Lemma 6.3.13 Let X/Fq be a smooth projective curve of genus g ≥ 2 with
class number h. Then the number Ar of Fq-rational positive divisors of X/Fq

of degree r satisfies

Ar <
(3
√
q − 1)qr+1−ggh

(q − 1)(
√
q − 1)

for 0 ≤ r ≤ g − 1. (6.3)

Proof. It was shown in [115, Lemma 3(ii)] that, in the field C(t) of rational
functions over the complex numbers, we have the identity

g−2∑

n=0

Ant
n +

g−1∑

n=0

qg−1−nAnt
2g−2−n =

L(t)− htg
(1− t)(1 − qt) ,

where L(t) is the L-function of X/Fq. Letting t→ 1, we get

g−2∑

n=0

An +

g−1∑

n=0

qg−1−nAn = lim
t→1

L(t)− htg
(1− t)(1 − qt)

= lim
t→1

L′(t)− ghtg−1

−(1− qt)− q(1− t)

=
L′(1)− gh
q − 1

.
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Now L(t) =
∏2g

i=1(1− ωit), with |ωi| = √q for all 1 ≤ i ≤ 2g, by Weil’s proof
of the Riemann Hypothesis for global function fields (see Theorem 1.5.3). By
logarithmic differentiation,

L′(t)

L(t)
=

2g∑

i=1

−ωi

1− ωit
.

Putting t = 1 and using L(1) = h, we obtain

|L′(1)| ≤ h
2g∑

i=1

|ωi|
|1− ωi|

≤ 2gh
√
q

√
q − 1

,

so ∣∣∣∣
L′(1)− gh
q − 1

∣∣∣∣ ≤
(3
√
q − 1)gh

(q − 1)(
√
q − 1)

.

Thus, by noting that

qg−1−rAr <

g−2∑

n=0

An +

g−1∑

n=0

qg−1−nAn ≤
(3
√
q − 1)gh

(q − 1)(
√
q − 1)

for 0 ≤ r ≤ g − 1, the lemma now follows. ✷

Lemma 6.3.14 Let X/Fq be an algebraic curve of genus g with at least one
Fq-rational point. Let c,m, n be three integers satisfying c ≥ 2, g ≤ m ≤ n <
cm, and

cm− n ≤ g(1− 2 logq c)− 1− logq
(3
√
q − 1)g

(q − 1)(
√
q − 1)

. (6.4)

Let G be a fixed positive Fq-rational divisor on X of degree n. Then there
exists a positive divisor D of degree m such that L(cD −G) = {0}.

Proof. By rewriting the inequality (6.4), we have

(3
√
q − 1)gq(cm−n)+1−gh

(q − 1)(
√
q − 1)

≤ h

c2g
.

The desired result follows from Lemmas 6.3.12 and 6.3.13. ✷

Now that we have shown the existence of the positive divisor D with the
properties required in Proposition 6.3.9, we are ready to obtain an improve-
ment to Theorem 6.3.5 using algebraic geometry.

Theorem 6.3.15 For a prime power q and an integer 2 ≤ c ≤ A(q), we have

Dq(c) ≥
1

c
− 1

A(q)
+

(1− 2 logq c)

c
× 1

A(q)
. (6.5)
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Proof. Choose a family of curves Xi/Fq with growing genus such that we have
limi→∞N(Xi)/g(Xi) = A(q). Put ni = N(Xi) and gi = g(Xi). Let Pi be the
set of all Fq-rational points of Xi and put

Gi =
∑

P∈Pi

P.

For any fixed ε > 0, set

mi =

⌊
ni

c
+

(1− 2 logq c)gi

c
− εgi

c

⌋
.

Then

lim
i→∞

cmi − ni − (1− 2 logq c)gi

gi
= −ε < 0.

Therefore, for all sufficiently large i, we have

cmi − ni ≤ gi(1 − 2 logq c)− 1− logq
(3
√
q − 1)gi

(q − 1)(
√
q − 1)

.

By Lemma 6.3.14, there exists a divisor Di of Xi, of degree mi, such that
L(cDi − Gi) = {0}, for each sufficiently large i. Thus, by Proposition 6.3.9,
the code C(Di;Gi) is a c-FPC(ni, q

ℓ(Di)). Hence,

Dq(c) ≥ lim
i→∞

logq q
ℓ(Di)

ni

≥ lim
i→∞

mi − gi + 1

ni

=
1

c
− 1

A(q)
+

(1− 2 logq c)

c
× 1

A(q)
− ε

cA(q)
.

Since the above inequality holds for any ε > 0, we get

Dq(c) ≥
1

c
− 1

A(q)
+

(1 − 2 logq c)

c
× 1

A(q)

by letting ε tend to 0. This completes the proof. ✷

Remark 6.3.16 For c ≤ A(q), Theorem 6.3.15 improves the lower bound in
Theorem 6.3.5 by

(1− 2 logq c)

c
× 1

A(q)
.
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6.4 Improvements to the Asymptotic Bound

In this section, we show several improvements to the asymptotic bound
(6.5) in Theorem 6.3.15. The main tools continue to come from algebraic
geometry.

First of all, if c is the characteristic of Fq, then Lemma 6.3.11 can be
improved.

Lemma 6.4.1 Let c be the characteristic of Fq. Let X/Fq be a smooth pro-
jective curve of genus g with an Fq-rational point P0 and of class number h.
Then, for any fixed integer m ≥ g, the subgroup of J (X/Fq)

{c[D −mP0] : D > 0, deg(D) = m}

has order at least h/cg.

The proof is exactly the same as that for Lemma 6.3.11, except that we use
the fact that the c-rank of J (X/Fq) is at most g (see [110, page 39]).

Subsequently, Theorem 6.3.15 can be modified to the following.

Theorem 6.4.2 For a prime power q with c being the characteristic of Fq

satisfying c ≤ A(q), we have

Dq(c) ≥
1

c
− 1

A(q)
+

(1 − logq c)

c
× 1

A(q)
. (6.6)

The second improvement to Theorem 6.3.15 is based on three papers by
Randriam [123, 124, 125].

Let X/Fq be a smooth projective curve of genus g with an Fq-rational
point P0. For r ≥ 1, we denote by Wr the subset

{[D − rP0] : D > 0, deg(D) = r}

of J (X/Fq).

Definition 6.4.3 Let X/Fq be an algebraic curve with n distinct Fq-rational
points P1, . . . , Pn (it is allowed for one of them to be equal to P0). Let G
be the divisor G = P1 + P2 + · · · + Pn. For c ≥ 2, the c-frameproof Xing

number xc
def
= xc(X , G) is defined to be the largest integer such that

cJ (X/Fq)− [G− deg(G)P0]
def
= {c[H ]− [G− deg(G)P0] : [H ] ∈ J (X/Fq)}

is not contained in Wxc .
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Note that cJ (X/Fq) − [G − deg(G)P0] 6⊆ Wxc is equivalent to the fact
that, for any positive divisor D of degree xc, there exists a divisor H of degree
zero such that the divisor G−D − deg(G−D)P0 is not equivalent to cH .

Furthermore, we define the following quantities

A(X ) def
=
|X (Fq)|
g(X ) , δc(X ) def

=
logc |J (Fq)[c]|

g(X ) (6.7)

and

ν(X , G) def
=

deg(G)

g(X ) , ξc(X , G) def
=

xc(X , G)
g(X ) , (6.8)

where J (Fq)[c] stands for the c-torsion subgroup of J (X/Fq) and g(X ) is the
genus of X . Then these quantities satisfy the following conditions.

Proposition 6.4.4 We have

(i) ν(X , G) ≤ A(X );

(ii) ξc(X , G) < 1;

(iii) If c = c1c2 with c1, c2 relatively prime, then

δc(X ) = δc1(X ) logc(c1) + δc2(X ) logc(c2);

(iv) 0 ≤ δc(X ) ≤ 2 for any c;

(v) 0 ≤ δc(X ) ≤ 1 if c is a power of the characteristic of Fq.

Proof. Part (i) is clear since deg(G) is at most the number of Fq-rational points
on X . Part (ii) follows from the fact that Wg, where g = g(X ) is the genus of
X , is the whole group J (X/Fq) (see [176]). Part (iii) follows from the Chinese
Remainder Theorem. Parts (iv) and (v) follow from [110, pages 39 and 64]. ✷

Based on Proposition 6.3.9, we have the following.

Corollary 6.4.5 Let X/Fq be an algebraic curve of genus g with at least n Fq-
rational points. Suppose n ≥ g, then there exists a c-FPC(n, q⌊(n+xc)/c⌋−g+1).

Proof. Set d
def
= ⌊(n+xc)/c⌋. As n ≥ g > xc and c ≥ 2, one deduces d < n. On

the other hand, since cd− n ≤ xc, by the definition of xc, one has that there
exists a divisor D0 of degree zero such that c[D0]− [G−nP0] is not contained
in Wcd−n, where the divisor G is given by G =

∑n
i=1 Pi. This implies that the

divisor D = D0 + dP0 satisfies L(cD − G) = {0}. By Proposition 6.3.9, the
algebraic geometry code C(D;

∑n
i=1 Pi) defines a frameproof code with the

desired parameters. ✷

Since xc plays an important role for the parameters of a frameproof code
derived from an algebraic geometry code, we give a lower bound on xc(X , G)
(cf. Lemma 6.3.14).
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Proposition 6.4.6 Let X/Fq be an algebraic curve of genus g. Set

s(q) = 1 + logq
3(
√
q − 1)

(q − 1)(
√
q − 1)

.

Then
xc(X , G) ≥

⌊
g − logq |J (Fq)[c]| − logq g − s(q)

⌋
. (6.9)

Proof. Let J denote the Jacobian J (X/Fq), so that J [c] denotes the c-torsion
subgroup J (Fq)[c], and let h = |J | be the class number. Then [J : cJ ] =
|J [c]|. Thus, we have, for G and n as above,

logq |cJ − [G− nP0]| = logq |cJ | = logq h− logq |J [c]|.

On the other hand, for 0 ≤ r ≤ g − 1, by [177, Lemma 3.9], we have

logq |Wr | < logq h+ r − g + logq g + s(q).

If cJ − [G− nP0] is contained in Wr, then we have |cJ − [G − nP0]| ≤ |Wr |
and hence

r > g − logq |J [c]| − logq g − s(q),
and the desired result follows. ✷

We say that a sequence {Xk/Fq} of curves forms an ∞-sequence if g(Xk)
tends to infinity. From Chapter 1, we know that A(q) is the largest positive
number such that there exists an ∞-sequence {Xk/Fq} of curves satisfying
A(Xk)→ A(q) as k→∞, where A(Xk) is as defined in (6.7).

We define two other quantities. Let δ−c (q) be the smallest real number such
that there exists an ∞-sequence {Xk/Fq} of curves satisfying

A(Xk)→ A(q) and δc(Xk)→ δ−c (q) as k →∞.

Let ξ+c (q) be the largest real number such that there exist an ∞-sequence
{Xk/Fq} of curves and a family {Gk} of divisors on {Xk} satisfying

A(Xk)→ A(q) and ξc(Xk, Gk)→ ξ+c (q) as k→∞.

Then, by Proposition 6.4.4, we have 0 ≤ δ−c (q) ≤ 2 and 0 ≤ ξ+c (q) ≤ 1.
Moreover, we have the following relationship between δ−c (q) and ξ

+
c (q).

Lemma 6.4.7 We have that

ξ+c (q) ≥ 1− δ−c (q) logq c.

The above lemma is just the asymptotic version of Proposition 6.4.6.
Now we are ready to give an asymptotic version of Corollary 6.4.5.

Theorem 6.4.8 Let q be a prime power with A(q) > 1, then
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(i)

Dq(c) ≥
1

c
− 1

A(q)
+
ξ+c (q)

cA(q)
; (6.10)

(ii)

Dq(c) ≥
1

c
− 1

A(q)
+

1− δ−c (q) logq c
cA(q)

. (6.11)

Proof. Part (ii) can be derived by combining Lemma 6.4.7 and Part (i). Part (i)
is actually the asymptotic version of Corollary 6.4.5. To see this, let {Xk/Fq}
be an ∞-sequence of curves and let {Gk} be a family of divisors on {Xk}
consisting of all the Fq-rational points on Xk, so that A(Xk) → A(q) > 1
and ξc(Xk, Gk) → ξ+c (q) as k → ∞. Then, for sufficiently large k, we have
g(Xk) < deg(Gk) and we can apply Corollary 6.4.5 to (Xk, Gk) to obtain a
family of frameproof codes with rate lower bounded by

1

N(Xk)

(⌊
N(Xk) + xc(Xk, Gk)

c

⌋
− g(Xk) + 1

)
→ 1

A(q)

(
A(q) + ξ+c (q)

c
− 1

)

as k →∞, where N(Xk) is the number of Fq-rational points on Xk.
This completes the proof. ✷

Note that the bound in Theorem 6.3.15 immediately follows from Part
(ii) of Theorem 6.4.8 and the fact that δ−c (q) ≤ 2. We now give the second
improvement to Theorem 6.3.15 due to Randriam.

Theorem 6.4.9 Let q be a prime power with A(q) > 1, then

Dq(c) ≥
1

c
− 1

A(q)
+

1− 2 logq c+
νp(c)
νp(q)

cA(q)
, (6.12)

where p is the characteristic of Fq and, for any integer x, νp(x) denotes the
number a such that pa exactly divides x.

Proof. Write c = pνp(c)c′. Put c1 = pνp(c) and c2 = c′. By Proposition 6.4.4(iii),
we have

δ−c (q) ≤ δ−c2(q) logc c2 + δ−c1(q) logc c1 ≤ 2− νp(c)

νp(q)
logc q.

The desired result follows. ✷

The best possible bound that we can derive from (6.10) is

Dq(c) ≥
1

c
− 1

A(q)
+

1

cA(q)
(6.13)

since ξ+c (q) ≤ 1. For the rest of this section, we show that the bound (6.13)
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can be achieved for c = 2 if A(q) > 4. The result is given by Randriam in [124].
In fact, we prove in Proposition 6.4.13 that ξ+2 (q) = 1 under the condition
that A(q) > 4, but first we need some preparatory results.

A result similar to the following lemma can be found in [151, Proposition
1.6.12].

Lemma 6.4.10 Let X/Fq be an algebraic curve of genus g and let D be a
divisor on X with deg(D) ≤ g − 2 and ℓ(D) = 0. Then, for all points P ∈
X (Fq) except for perhaps at most g of them, we have ℓ(D + P ) = 0.

Proof. Suppose that there are g + 1 distinct points P1, P2, . . . , Pg+1 ∈ X (Fq)
such that ℓ(D+P ) > 0. Choose a nonzero function fi from each space L(D+
Pi). We claim that the functions f1, f2, . . . , fg+1 are Fq-linearly independent.

Assume that there exist λ1, . . . , λg+1 ∈ Fq such that
∑g+1

i=1 λifi = 0, i.e.,

−λ1f1 =

g+1∑

i=2

λifi. (6.14)

Since L(D) = {0}, the left-hand side of (6.14) is either 0 or has a pole at P1,
while the right-hand side has no pole at P1. This forces both sides to be equal
to 0. This implies that λ1 = 0. In the same way, we can show that all other
λi are equal to 0 as well. Hence, we have a lower bound for the dimension of

L
(
D +

∑g+1
i=1 Pi

)
:

ℓ

(
D +

g+1∑

i=1

Pi

)
≥ g + 1. (6.15)

Since deg(D) ≤ g − 2, we have deg(D +
∑g+1

i=1 Pi) ≤ 2g − 1. Furthermore,
by the Clifford Theorem [151, Theorem 1.6.13], we have

ℓ

(
D +

g+1∑

i=1

Pi

)
≤ 1 +

1

2
deg

(
D +

g+1∑

i=1

Pi

)
≤ g + 1

2
. (6.16)

The conclusion in (6.16) contradicts (6.15). This completes the proof. ✷

The following lemma is crucial for our result.

Lemma 6.4.11 Let X/Fq be an algebraic curve of genus g and let D be a
divisor on X with deg(D) ≤ g − 3 and ℓ(D) = 0. Then, for all points P ∈
X (Fq) except for perhaps at most 4g of them, we have ℓ(D + 2P ) = 0.

Proof. We assume that |X (Fq)| ≥ 4g > g. Otherwise, there is nothing to
prove. Without loss of generality, we may assume that deg(D) = g − 3. By
the Riemann-Roch Theorem (cf. [144, Chapter II, Theorem 5.4]), we have

ℓ(D) = deg(D)− g + 1 + ℓ(K −D) = −2 + ℓ(K −D)

© 2013 Taylor & Francis Group, LLC



Frameproof Codes 195

and

ℓ(D + 2P ) = deg(D + 2P )− g + 1 + ℓ(K −D − 2P ) = ℓ(K −D − 2P ),

where K is a canonical divisor. If we replace K −D by B, the lemma can be
rephrased as follows:

If B is a divisor on X with deg(B) = g + 1 and ℓ(B) = 2, then
there exist at most 4g points P ∈ X (Fq) such that ℓ(B− 2P ) > 0.

By replacing B with an equivalent divisor, we may assume that B is a positive
divisor and {1, f} is an Fq-basis of L(B).

For the rest of the proof, we need the differential form of a function.
The differential forms of all functions in Fq(X ) form a one-dimensional space.
Moreover, if a function t is a local parameter at a point, then the differential
form dt is not zero. The reader may refer to [151] for more details on differential
forms.

First, we claim that the differential form df of f is not zero. Suppose that
df = 0, then there exists a function h such that f = hp, where p is the
characteristic of Fq. Hence, {1, h, f} are linearly independent as they have
distinct multiplicities at a certain point. This contradicts ℓ(B) = 2 since
1, h, f ∈ L(B).

Let S
def
= {P ∈ X (Fq) : ℓ(B − 2P ) > 0}. We have to show that |S| ≤ 4g.

For any point Q, we consider νQ(df) (note that if t is a local parameter at
Q and f can be written as u(dt) for some function u, then νQ(df) is defined
to be νQ(u)). We are in exactly one of the following four mutually exclusive
situations:

(i) Q 6∈ S ∪ Supp(B). Then νQ(f) ≥ 0 and νQ(df) ≥ 0.

(ii) Q ∈ Supp(B) \ S. Then νQ(f) ≥ 0 and

νQ(df) ≥ νQ(f)− 1 ≥ −νQ(B)− 1 ≥ −2νQ(B).

(iii) Q ∈ S \ Supp(B). Then we have ℓ(B) = 2 and ℓ(B − 2Q) ≥ 1. By
the inclusions L(B − 2Q) ⊆ L(B − Q) ⊆ L(B) and the fact that 1 ∈
L(B)\L(B−Q), we must have ℓ(B−Q) = ℓ(B−2Q) = 1. Let α = f(Q),
then f−α ∈ L(B−Q) = L(B−2Q). Hence, νQ(f−α) ≥ 2 and, therefore,
νQ(df) = νQ(d(f − α)) ≥ 1.

(iv) Q ∈ S ∩ Supp(B). Since B is a positive divisor, we have νQ(B) ≥ 1 and
νQ(f) ≥ −νQ(B). We claim that it is impossible to have νQ(B) = 1
and νQ(f) = −νQ(B) simultaneously. Suppose, to the contrary, that
both the equalities hold. Then we must have f ∈ L(B) \ L(B − Q)
and 1 ∈ L(B − Q) \ L(B − 2Q). Thus, all the inclusions L(B − 2Q) ⊆
L(B − Q) ⊆ L(B) are strict. Hence, we have ℓ(B) ≥ 3, which is a
contradiction.

Finally, since at least one of νQ(B) ≥ 1 and νQ(f) ≥ −νQ(B) is strict,
we must have νQ(df) ≥ −2νQ(B) + 1.
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Summing all the inequalities, we obtain

2g − 2 = deg(div(df)) =
∑

Q

νQ(df) ≥ −2deg(B) + |S|.

The desired result follows from the above inequality since deg(B) = g + 1. ✷

Proposition 6.4.12 Let X/Fq be an algebraic curve of genus g and let G
be a divisor of degree n. If |X (Fq)| > 4g, then there exists a divisor D of
degree ⌊(n+ g − 1)/2⌋ (or, equivalently, g − 2 ≤ deg(2D −G) < g) such that
ℓ(2D −G) = 0.

Proof. Set N
def
= ⌊(n+g−1)/2⌋−⌊(n−1)/2⌋. For each 0 ≤ i ≤ N , we construct

a divisor Di with

deg(Di) = i+

⌊
n− 1

2

⌋
and ℓ(2Di −G) = 0 (6.17)

iteratively as follows.
Let D0 be any divisor of degree ⌊(n− 1)/2⌋. Then deg(2D0 −G) < 0 and

hence ℓ(2D0 −G) = 0.
Assume that we have constructedDi satisfying (6.17) for up to some i < N .

Then the divisor A
def
= 2Di −G satisfies −2 ≤ deg(A) < g − 2 and ℓ(A) = 0.

By Lemma 6.4.11, there exists a point P ∈ X (Fq) such that ℓ(A + 2P ) = 0.

Now Di+1
def
= Di + 2P satisfies (6.17).

Finally, we set D = DN and the desired result follows. ✷

Proposition 6.4.13 If A(q) > 4, then ξ+2 (q) = 1.

Proof. Let {X/Fq} be an∞-sequence with A(X )→ A(q). Then, for sufficiently
large g(X ), one must have N(X/Fq) > 4g(X ). Let n = N(X/Fq) and let
P1, P2, . . . , Pn be n distinct Fq-rational points on X . PutG = P1+P2+· · ·+Pn.
By Proposition 6.4.12, there exists a divisor D of degree ⌊(n+g−1)/2⌋, where
g = g(X ), such that ℓ(2D−G) = 0, i.e., 2D−G is not equivalent to any positive
divisor of degree deg(2D−G). This implies that 2J (X/Fq)− [G− deg(G)P0]
is not contained in Wdeg(2D−G), where P0 is a fixed Fq-rational point. By
definition, the 2-frameproof Xing number x2(X , G) is at least deg(2D−G) ≥
g − 2. Thus, we have

1 ≥ ξ+2 (q) ≥ lim inf
g(X )→∞

ξ2(X , G) = lim inf
g(X )→∞

x2(X , G)
g(X ) ≥ 1.

This completes the proof. ✷

Combining Theorem 6.4.8 and Proposition 6.4.13, we immediately have
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Theorem 6.4.14 If q is a prime power with A(q) > 4, then

Dq(2) ≥
1

2
− 1

2A(q)
.
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Chapter 7

Key Distribution Schemes

Key distribution is one of the major problems in communication and network
security. A key predistribution scheme (KPS) is a method by which a trusted
authority (TA) distributes secret information among a set of users in such a
way that every user in a group in some specified family of privileged subsets
is able to compute a common key associated with that group. The key can be
used for secure communication among the users in the group or can be used
by the TA to send information privately to those users. In addition, certain
coalitions of users (called forbidden subsets) outside a privileged subset must
not be able to find out any information on the value of the key associated to
that subset.

Key predistribution schemes refer to the key distribution methods by which
secret keys are assigned to users in the network in advance before the actual
communication occurs. The schemes that have been studied can be divided
into two classes. In the first class, the schemes are based on the evaluation
of multivariate symmetric polynomials over a finite field, first introduced by
Blom [23], and generalized by Blundo et al. [26]. The construction methods
are algebraic in nature and can be formulated using symmetric multilinear
functions in linear spaces (see [119, 120]). The schemes in the second class are
combinatorial. They are constructed by using cover-free families, a method
first introduced by Mitchell and Piper [109], later studied by numerous re-
searchers. Cover-free families are combinatorial objects that have interesting
links with different subjects such as information theory, group testing, and
cryptography.

The main parameter to measure the efficiency of a key predistribution
scheme is the information rate, which is defined as the ratio between the
size of the secret keys and the maximum size of the secret information received
by the users.

7.1 Key Predistribution

Given a set U of users with |U| = n, consider a family P ⊆ 2U of privileged
subsets and a family F ⊆ 2U of forbidden subsets. In a (P ,F , n)-key pre-
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distribution scheme, or (P ,F , n)-KPS for short, every user i ∈ U receives
from a trusted authority (TA) a secret value (or a fragment) ui such that,
for every P ∈ P , a common key from a key space K, say kP ∈ K, associated
with P , can be computed by every user i ∈ P , while the coalitions of users
F ∈ F with F ∩ P = ∅ do not obtain any information about kP .

For 1 ≤ i ≤ n, let Ui denote the set of all possible secret values that might
be distributed to user i by the TA. For any subset of users X ⊆ U , let UX

denote the Cartesian product Ui1 × · · · × Uij , where X = {i1, . . . , ij} and
i1 < · · · < ij . We assume that there is a probability distribution on UU , and
the TA chooses uU ∈ UU according to this probability distribution. For every
i ∈ U and P ∈ P , let Ui and KP denote the random variables corresponding,
respectively, to the secret information ui of user i and the common key kP .

Definition 7.1.1 We say a key predistribution scheme is a (P ,F , n)-key
predistribution scheme, or (P ,F , n)-KPS for short, if the following con-
ditions are satisfied:

(i) Each user i in any privileged set P can compute kP , i.e.,

H(KP | Ui) = 0 for every i ∈ P ∈ P ;

(ii) If F ∈ F and P ∈ P are such that P ∩ F = ∅, then

H(KP | (Uj)j∈F ) = H(KP ).

Observe that all common keys kP are taken from the key space K. More-
over, we usually assume that all values of kP are equally probable, i.e.,
H(KP ) = log |K|.

We will use the following notations. A (P , w, n)-KPS (respectively, (P ,≤
w, n)-KPS), where 1 ≤ w ≤ n, denotes a (P ,F , n)-KPS in which the fam-
ily F of forbidden subsets consists of all subsets of U with exactly w users
(respectively, at most w users). Note that a (P , w, n)-KPS is automatically
a (P ,≤ w, n)-KPS. A (t,F , n)-KPS (respectively, a (≤ t,F , n)-KPS), where
2 ≤ t ≤ n, denotes a (P ,F , n)-KPS in which the family P of privileged subsets
consists of all subsets of U with exactly t users (respectively, at most t users).
In this chapter, we are interested mainly in (t, w, n)-KPS in which the family
P of privileged subsets consists of all subsets of U with exactly t users, and
the family F of forbidden subsets consists of all subsets with exactly w users.

We are interested in the efficiency of a KPS, as measured by the amount of
secret information that is distributed to each user, as well as the total amount
of information distributed to all the users, defined as follows.

Definition 7.1.2 In a (P ,F , n)-KPS,

(i) the information rate is defined as

ρ =
log |K|

maxi∈U H(Ui)
,
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i.e., the ratio between the length of the common key and the maximum
length of the secret information stored by the users;

(ii) the total information rate is defined as

ρT =
log |K|
H(UU )

,

i.e., the ratio between the length of the common keys and the length of
the total secret information distributed to all the users.

Example 7.1.3 A trivial (P ,≤ n, n)-KPS is constructed by distributing, for
every P ∈ P , a random common key kP ∈ K, where K is the key space, to all
the users in P . In particular, in a trivial (t,≤ n, n)-KPS, every user receives as
his secret information

(
n−1
t−1

)
elements in K as possible values of the common

keys. In this construction, we have

ρ =
1(

n−1
t−1

)

and

ρT =
1(
n
t

) .

7.2 Key Predistribution Schemes with Optimal Informa-

tion Rates

In this section, we review, without proofs, some information-theoretic and
combinatorial lower bounds for KPSs that were proved in [26] and [24], as well
as some KPSs that attain some of these bounds. KPSs attaining such bounds
are said to be optimal.

7.2.1 Bounds for KPSs

First, we consider a lower bound for the size of information held by each
user in a (t, w, n)-KPS given in [26].

Theorem 7.2.1 ([26]) Let U be a set of n users and let t, w ≤ n − t be
integers. In a (t, w, n)-KPS, we have

H(Ui) ≥
(
t+ w − 1

t− 1

)
H(K),

for i = 1, . . . , n.
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Next, we look at lower bounds for the size of information held by each user
in a more general (P ,F , n)-KPS.

Theorem 7.2.2 ([24]) Let U = {1, . . . , n} be a set of n users.

(i) In a (P ,F , n)-KPS, suppose that, for any P ∈ P, we have that U\P ∈ F .
Then, for i = 1, . . . , n, we have

H(Ui) ≥ τiH(K),

where τi = |{P ∈ P : i ∈ P}|.

(ii) In a (≤ n,F , n)-KPS, for i = 1, . . . , n, we have

H(Ui) ≥ viH(K),

where vi = |{F ∈ F : i 6∈ F}|.

We are also interested in the number of keys (secret values) that the TA
has to generate in order to construct the scheme. Denoting by #Γ(P ,F , n)
the number of keys that the TA has to generate for a (P ,F , n)-KPS Γ (and
similarly for (P ,≤ w, n)-KPS, (≤ t,F , n)-KPS, (t, w, n)-KPS, etc.), we have
the following combinatorial lower bounds.

Theorem 7.2.3 ([24]) Let U be a set of n users.

(i) For any (P ,F , n)-KPS Γ, suppose that, for any P ∈ P, we have that
U \ P ∈ F . Then, we have

#Γ(P ,F , n) ≥ |P|.

(ii) For any (≤ n,F , n)-KPS Γ, we have

#Γ(≤ n,F , n) ≥ |F|.

In particular, we have the following corollary.

Corollary 7.2.4 Let U = {1, . . . , n} be a set of n users.

(i) In a (≤ n,w, n)-KPS, for i = 1, . . . , n, we have

H(Ui) ≥
w∑

j=0

(
n− 1

j

)
H(K).

(ii) In a (≤ n,w, n)-KPS Γ, we have

#Γ(≤ n,w, n) ≥
w∑

j=0

(
n

j

)
.
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7.2.2 The Blom Scheme

In [23], Blom presented a (2, w, n)-KPS based on polynomial evaluation
over a finite field. Let q ≥ n be a prime power. The TA chooses n distinct
elements si ∈ Fq, and gives si to user i (1 ≤ i ≤ n). These values are known
to all the users. The TA then constructs a random polynomial

f(x, y) =

w∑

i=0

w∑

j=0

aijx
iyj

with coefficients in Fq, such that aij = aji for all i, j. In other words, f(x, y)
is a random symmetric polynomial in two variables of degree at most w in
each variable.

For 1 ≤ j ≤ n, the TA computes the polynomial

fj(x) = f(x, sj) =

w∑

i=0

bijx
i,

and gives the w + 1 values bij to user j, where these w + 1 values constitute
the secret information uj.

The key associated with the pair of users P = {i, j} is

kP = fi(sj) = fj(si).

Theorem 7.2.5 ([23]) For any w ≥ 1, there is a (2, w, n)-KPS with infor-
mation rate

1

w + 1

and total information rate
1(

w+2
2

) .

Remark 7.2.6 The original Blom scheme was presented in the setting of
MDS (maximum distance separable) codes. Here, we follow the formulation
in [26, 155].

Example 7.2.7 Take n = 3, q = 19, and w = 1, and the public values are
s1 = 5, s2 = 8, and s3 = 1. Now suppose that the TA chooses the symmetric
polynomial

f(x, y) = 4 + 11(x+ y) + 3xy.

This gives rise to the following polynomials, which are sent to users 1, 2, and
3, respectively:

f1(x) = 2 + 7x
f2(x) = 16 + 16x
f3(x) = 15 + 14x.

The three keys determined by this information are: k1,2 = 1, k1,3 = 9, and
k3,2 = 13.
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7.2.3 The Blundo et al. Scheme

The Blom scheme was generalized by Blundo et al. [26] to a (t, w, n)-KPS
that is described as follows.

Recall that a polynomial f in t variables is said to be symmetric if

f(x1, . . . , xt) = f(xσ(1), . . . , xσ(t))

for every permutation σ over {1, . . . , t}. Let q ≥ n be a prime power. The
TA chooses n distinct elements si ∈ Fq, and gives si to user i (1 ≤ i ≤ n).
These values are known to all the users. The TA chooses uniformly at random
a symmetric polynomial f(x1, x2, . . . , xt) in t variables with coefficients in Fq

and of degree at most w in each variable. Every user i ∈ U receives as its secret
information ui the symmetric polynomial in t − 1 variables that is obtained
from f by fixing the first variable to si, i.e.,

ui(x2, . . . , xt) = f(si, x2, . . . , xt).

The common key corresponding to a privileged subset P = {i1, i2, . . . , it} is

kP = f(si1 , si2 , . . . , sit) ∈ Fq.

Since the polynomial f is symmetric, this value can be computed by every
user in P .

Therefore, the secret information ui of every user i consists of

(
t+ w − 1

t− 1

)

elements in the field Fq, because this is the number of coefficients of a sym-
metric polynomial in t− 1 variables of degree at most w in each variable.

Theorem 7.2.8 ([26]) For any t ≥ 2 and w ≥ 1, there is a (t, w, n)-KPS
with information rate

ρ =
1(

t+w−1
t−1

)

and total information rate

ρT =
1(

t+w
t

) .

7.2.4 The Fiat-Naor Scheme

In [57], Fiat and Naor gave a construction for (≤ n,F , n)-KPS. Assume
that the set K is an additive abelian group. For every F ∈ F , a random value
sF ∈ K is distributed to all the users in U \ F . The common key for a set
P ⊆ U is

kP =
∑

F∈F ,P∩F=∅
sF .

In particular, in a Fiat-Naor (≤ n,w, n)-KPS, the secret information of every
user consists of

∑w
j=0

(
n−1
j

)
elements in K.

We give an example to illustrate the scheme.
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Example 7.2.9 Take n = 3, q = 19, and w = 1, and suppose that the TA
chooses the values s∅ = 7, s{1} = 5, s{2} = 4, and s{3} = 7. Then the eight
keys determined by this information are:

k∅ = s∅ + s{1} + s{2} + s{3} = 4
k{1} = s∅ + s{2} + s{3} = 18
k{2} = s∅ + s{1} + s{3} = 0
k{3} = s∅ + s{1} + s{2} = 16
k{1,2} = s∅ + s{3} = 14
k{1,3} = s∅ + s{2} = 11
k{2,3} = s∅ + s{1} = 12
k{1,2,3} = s∅ = 7.

Theorem 7.2.10 ([57]) For any w ≥ 1, there exists an (n,w, n)-KPS with
information rate

1∑w
j=0

(
n−1
j

)

and total information rate
1∑w

j=0

(
n
j

) .

Remark 7.2.11 According to the bounds in Section 7.2.1 all the schemes
described so far have optimal information rates. The Blom and Blundo et
al. schemes meet the bound in Theorem 7.2.1, while the Fiat-Naor scheme
satisfies the bound in Corollary 7.2.4.

7.3 Linear Key Predistribution Schemes

Padró et al. [119, 120] have observed that most of the proposed key pre-
distribution schemes are linear, that is, all random variables involved in those
schemes are defined by linear mappings. They developed a general framework
to study linear KPSs in [119, 120].

Lemma 7.3.1 Let E,E0, and E1 be vector spaces over a finite field Fq. As-
sume that φ0 : E → E0 and φ1 : E → E1 are linear mappings over Fq, where
φ0 is surjective. Let x be a random element chosen from E. Then we have:

(i) The value of x0 = φ0(x) can be uniquely determined from x1 = φ1(x) if
and only if kerφ1 ⊆ kerφ0;

(ii) The value of x1 provides no information about the value of x0 if and
only if kerφ1 + kerφ0 = E.
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Proof. The proof is straightforward and we leave it to the reader. ✷

Theorem 7.3.2 Let U = {1, . . . , n} be the set of users and let P ⊆ 2U and
F ⊆ 2U be the families of privileged subsets and forbidden subsets, respectively.
Let E and Ei 6= {0}, where i = 0, 1, . . . , n, be vector spaces over a finite field
Fq. Suppose that there exist a surjective linear mapping πi : E → Ei for every
i ∈ U and a surjective linear mapping πP : E → E0 for every privileged subset
P ∈ P satisfying:

(i) kerπi ⊆ kerπP for any i ∈ P ;

(ii) ∩j∈F (kerπj) + kerπP = E for any F ∈ F satisfying F ∩ P = ∅.
Then, there exists a (P ,F , n)-KPS with information rate

ρ =
dimE0

maxi∈U dimEi
,

and total information rate

ρT =
dimE0

dimE
.

Proof. Let the key space be K = E0. We assume that the vector spaces E,
E0, E1, . . . , En, as well as the mappings πi and πP , are publicly known. In the
initialization phase, the TA randomly chooses a vector x ∈ E and sends the
vectors ui = πi(x) ∈ Ei to every user i ∈ U as his or her secret information.

Assume P ∈ P is a privileged subset. The key associated with P will
be kP = πP (x) ∈ E0. Set φ0 = πP and φ1 = πi. Then, applying (i) in
Lemma 7.3.1, we know that every user i ∈ P can compute the key kP .

On the other hand, for any forbidden subset F ∈ F satisfying F ∩ P = ∅,
we show that the coalition F obtains no information about kP . Indeed, to
this end, set φ0 = πP and φ1 : E → ∏

j∈F Ej defined by φ1(x) = (πj(x))j∈F .
Note that φ1(x) is the secret information known by the users in F . Since
kerφ1 = ∩j∈F kerπj , we have kerφ0 + kerφ1 = E and, applying (ii) in
Lemma 7.3.1, we conclude that the users in F cannot obtain any informa-
tion on kP = φ0(x). ✷

Definition 7.3.3 A (P ,F , n)-KPS is called linear if it can be constructed
according to Theorem 7.3.2.

Example 7.3.4 The Blundo et al. scheme is a linear (t, w, n)-KPS. Let Et

(respectively, Et−1) be the vector space of symmetric polynomials in t (re-
spectively, t− 1) variables, with coefficients in Fq and of degree at most w in
each variable. For each user i ∈ U , we consider the surjective linear mapping

πi : Et → Et−1

f 7→ πi(f) = gi,
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where gi(x1, . . . , xt−1) = f(si, x1, . . . , xt−1).
For any privileged subset P = {i1, . . . , it} ⊆ U , we consider the linear

mapping πP : Et → Fq defined by πP (f) = f(si1 , . . . , sit). Condition (i) in
Theorem 7.3.2 is clearly satisfied by these πi’s, while (ii) is true by observing
that kerπP has codimension 1 and that f(x1, . . . , xt) =

∏t
i=1

∏
j∈F (xi −

sj) ∈ ∩j∈F (kerπj) \ kerπP for any F ∈ F satisfying F ∩ P = ∅. These
surjective linear mappings define, by Theorem 7.3.2, a linear (t, w, n)-KPS
that is obviously equivalent to the Blundo et al. (t, w, n)-KPS in Subsection
7.2.3.

Next, we describe a family of linear key predistribution schemes whose
specification structure depends on a choice of vectors in a certain vector space.
We first need some basic concepts about multilinear functions. Let V be a
vector space over a finite field Fq and let V t denote the vector space V ×V ×
· · ·×V , where there are t copies of V in the product. A mapping φ : V t → Fq

is called a multilinear function (or t-linear function if we want to specify
the number of variables) if, for any i = 1, 2, . . . , t, we have

φ(v1, . . . ,vi + v′
i, . . . ,vt) = φ(v1, . . . ,vi, . . . ,vt) + φ(v1, . . . ,v

′
i, . . . ,vt)

and

φ(v1, . . . , λvi, . . . ,vt) = λφ(v1, . . . ,vi, . . . ,vt) for any λ ∈ Fq.

If dimV = k, the t-linear functions φ : V t → Fq form a vector space J t(V )
over Fq of dimension kt.

A t-linear function φ ∈ J t(V ) is symmetric if

φ(v1, . . . ,vt) = φ(vσ(1), . . . ,vσ(t))

for any permutation σ over {1, . . . , t} and any (v1, . . . ,vt) ∈ V t.
The symmetric t-linear functions form a subspace St(V ) ⊂ J t(V ). If

{e1, . . . , ek} is a basis of V , a symmetric t-linear function φ is uniquely deter-
mined by the values hi1,...,it = φ(ei1 , . . . , eit), where 1 ≤ i1 ≤ · · · ≤ it ≤ k.

Therefore, dimSt(V ) =
(
t+k−1

t

)
.

Theorem 7.3.5 ([119]) Let V be a vector space with dim V = k over a finite
field Fq and let {v1, . . . ,vn} be a set of vectors in V such that every subset of
w + 1 vectors is linearly independent. Then, for every t with 2 ≤ t ≤ q, there
exists a (t, w, n)-KPS with information rate

ρ =
1(

t+k−2
t−1

)

and total information rate

ρT =
1(

t+k−1
t

) .
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Proof. Let V = Fk
q . For each user i ∈ U , consider the surjective linear mapping

πi : St(V )→ St−1(V ) defined by

πiφ(x1, . . . , xt) = φ(vi, x1, . . . , xt−1).

Let P = {i1, . . . , it} ∈ P be a privileged subset. We consider the surjective
linear mapping πP : St(V )→ Fq defined by

πPφ(x1, . . . , xt) = φ(vi1 , . . . ,vit).

Using elementary linear algebra, we can show that the linear mappings
(πi)i∈U and (iP )P∈P satisfy the conditions in Theorem 7.3.2, and hence de-
fine a (t, w, n)-KPS whose information rates are derived from the dimensions
of St(V ) and St−1(V ). ✷

A nice construction of KPS along the line of symmetric linear functions is
from error-correcting codes.

Theorem 7.3.6 Let C ⊆ Fn
q be an [n, k]-linear code such that the dual code

C⊥ has minimum distance d⊥. Then, for every t with 2 ≤ t ≤ q, there exists
a (t, d⊥ − 2, n)-KPS with common keys in Fq, with information rate

ρ =
1(

t+k−2
t−1

)

and total information rate

ρT =
1(

t+k−1
t

) .

Proof. Apply Theorem 7.3.5 to the vectors v1, . . . ,vn ∈ Fk
q corresponding to

the columns of a generator matrix of C. Since every d⊥ − 1 columns are lin-
early independent, the result follows immediately. ✷

If C ⊆ Fn
q is a Reed-Solomon code, the construction results in the KPS by

Blundo et al. [26]. Let C⊥ be the trivial [n, 1, n]-code over Fq, spanned by the
vector (1, . . . , 1) ∈ Fn

q . Then C is an [n, n− 1]-code over Fq. The (2, n− 2, n)-
KPS obtained from C is similar to the one proposed by Matsumoto and Imai
in [103].

Example 7.3.7 If the number n of users is not too large, many known con-
structions of codes over small fields can be used to construct KPSs. For
q = 2, 3, 4, 5, 7, 8, 9 and n ≤ 256, the best known codes can be found in the
tables in [72]. For example, since there exists a [256, 224, 9]-linear code over
F2, we have a (2, 7, 256)-KPS over F2 with the size of the secret information
of each user

(
t+k−2
t−1

)
= 32. Observe that the size of the secret information of

the Blom (2, 7, 256)-KPS is at least (w + 1) log q = 8 log 256 = 64 because we
have to take q ≥ n.
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Example 7.3.8 Since there exists a [240, 210, 10]-linear code over F3, for t =
2, 3, we obtain a (t, 8, 240)-KPS over F3 with the size of the secret information(
t+30−2

t−1

)
log 3, which is 48 if t = 2, and 738 if t = 3. In the KPS from the

Blundo et al. scheme, the size is 72 if t = 2, and 357 if t = 3. In the second
case, the size of the Blundo et al. KPS is smaller, but computations must be
done in the larger field F241 instead of F3.

7.4 Key Predistribution Schemes from Algebraic Geom-

etry

We saw in the previous section that, if the number of users is not too large
and the common keys are taken from a small field, KPSs can be obtained
by using some of the best known codes [72] with suitable parameters, and
the size of the secret information for the resulting KPSs can be smaller than
that for the schemes with optimal information rates. However, we may be
interested in the construction of KPSs for an arbitrarily large number of users,
with common secret keys of constant length that are secure against coalitions
formed by a constant fraction of the users. Specifically, we want to construct
(t, w, n)-KPSs over a fixed base field Fq such that t is a constant value with
2 ≤ t ≤ q and w = cn for some constant c with 0 < c < 1.

By the asymptotic Gilbert-Varshamov bound (see Theorem 2.5.3), for ev-
ery prime power q and for every δ with 0 ≤ δ < (q − 1)/q, there exists a
sequence {Cn} of linear codes over Fq such that Cn has length n, minimum
distance dn ≥ δn, and dimension kn with limn→∞ kn/n = 1−Hq(δ), where Hq

is the q-ary entropy function. In particular, there exist a positive integer n0

and a constant α with 0 < α < 1 such that kn ≥ (1 − α)n for all n ≥ n0.
Consider c < δ < (q − 1)/q. Then δn ≥ cn + 2 if n is not too small.

For these parameters, the dual code C⊥
n has dimension at most αn and dual

minimum distance at least cn + 2. Therefore, for every sufficiently large n,
there exists a (t, cn, n)-KPS over a fixed base field Fq in which the size of
the secret information of a user is at most

(
t+αn−2

t−1

)
log q. Asymptotically, the

size of the key of a user is O(nt−1). For a Blundo et al. (t, cn, n)-KPS, since
the size of the base field depends on the number of users, the size of the
key of a user is at least

(
t+cn−1

t−1

)
logn, which asymptotically is O(nt−1 logn).

Therefore, the construction based on error-correcting codes is asymptotically
better by a factor of logn. We now consider a construction based on algebraic
geometry that realizes this coding approach.

Although the proof of the Gilbert-Varshamov bound is non-constructive,
constructions of codes exceeding this bound have nonetheless been obtained
by using Goppa’s algebraic geometry codes [70]. We analyze in the following
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the parameters of the KPSs that are obtained by using linear codes from
algebraic curves.

Let X be a smooth projective curve over Fq and let g be its genus. Let
Q,P1, . . . , Pn be distinct Fq-rational points on X . Consider the divisor G =
mQ, where 2g − 1 ≤ m < n, and the Riemann-Roch space L(G) = {f ∈
Fq(X ) : div(f) + G ≥ 0}, which is a vector space with dimension deg(G) −
g + 1 = m− g + 1. Then, from Section 2.4, we know that

C = {(f(P1), . . . , f(Pn)) : f ∈ L(G)} ⊆ Fn
q

is an [n, k]-linear code with k = m − g + 1 and its dual code has minimum
distance d⊥ ≥ deg(G)− 2g + 2 = m− 2g + 2.

Theorem 7.4.1 Let X be a smooth projective curve over Fq, let g be its
genus, and let N be the number of Fq-rational points on X . Consider positive
integers t, w, n with 2 ≤ t ≤ q and 2g + w < n ≤ N − 1. Then there exists a
(t, w, n)-KPS with information rate

ρ =
1(

t+w+g−1
t−1

)

and total information rate

ρT =
1(

t+w+g
t

) .

Proof. Taking m = 2g + w, we obtain a linear code C with dimension
k = g + w + 1 and dual minimum distance d⊥ ≥ m − 2g + 2 = w + 2.
By Theorem 7.3.6, the code C provides a KPS with the desired information
rate and total information rate. ✷

In Theorem 7.4.1, the case g = 0 corresponds to that of Reed-Solomon
codes, and hence we obtain the KPS by Blundo et al. [26]. By using curves
of higher genus, we can obtain efficient KPSs over a constant base field for
an arbitrarily large number of users. We analyze in the following the family
of KPSs obtained from the family of curves given by Garcia and Stichtenoth
in [66].

Let q be a prime power. There exists a family of curves {Xj}j>0 defined
over Fq2 such that the number of Fq2 -rational points on Xj is Nj ≥ (q − 1)q j

and the genus of Xj is gj ≤ q j (cf. Example 2.5.6). By Theorem 7.4.1, for
positive integers j, t, w with 2 ≤ t ≤ q and 2q j + w < (q − 1)q j − 1, there
exists a (t, w, n)-KPS over the base field Fq2 with n = (q − 1)q j − 1, whose
information rate satisfies

ρ ≥ 1(
t+w+q j−1

t−1

) .

Note that only KPSs over fields of the form Fq2 are obtained in the con-
struction this way, but there exist other families of algebraic geometry codes
that provide similar results for general fields Fq (see, for example, [163]).
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We proceed to compare this family of KPSs with the one by Blundo et
al. [26]. For simplicity, we consider only the case t = 2. In addition, we consider
KPSs that are secure against coalitions formed by a constant fraction of the
users. By using the curves of Garcia-Stichtenoth, we obtain an infinite family
of (2, w, n)-KPSs over a fixed base field Fq2 with the size of the user’s secret
at most (w + n

q−1 + 2)2 log q. The size of the user’s secret in the Blundo et

al. (2, w, n)-KPS is at least (w + 1) logn. We assume w = cn − 1 for some
constant c such that 0 < c < 1 − 2/(q − 1), where q > 3. The upper bound
on c guarantees that the condition w < n− 2q j is satisfied. In this situation,
the above KPS improves the size of the secret information in the Blundo et
al. KPS if

j ≥ 2

(
1 +

2

c(q − 1)

)
.

Indeed, in this case, since n = (q − 1)qj − 1, it follows that

(w + 1) logn ≥ cnj log q ≥
(
cn+

2n

q − 1

)
2 log q ≥

(
cn+

n

q − 1
+ 2

)
2 log q.

Remark 7.4.2 In the (t, w, n)-KPS by Blundo et al. [26], every coalition
F ⊆ U with |F | = w + 1 can compute the secret information of all privileged
subsets. In the more general construction based on error-correcting codes, the
common keys that a coalition F ⊆ U with |F | ≥ w + 1 can obtain depend on
the users involved in it. In a way, the construction has ramp security. From
Theorem 7.3.6, we know a coalition F ⊆ U can obtain the secret key of a
privileged subset P ⊆ U if and only if one of the vectors vi with i ∈ P is a
linear combination of the vectors in {vj : j ∈ F}, where the vector vi is the
ith column of a generator matrix of the corresponding code C. For instance, in
the construction in Theorem 7.4.1, the coalitions with at least w+2g+1 users
can obtain the common keys of all privileged subsets, while the coalitions F
with w + 1 ≤ |F | ≤ w + 2g obtain only partial information of the common
keys.

Other constructions of KPSs from algebraic curves can be found in [40].

7.5 Key Predistribution Schemes from Cover-Free

Families

In the previous sections, we considered algebraic constructions of KPSs.
In the rest of this chapter, we study combinatorial constructions of KPSs
from cover-free families. The idea of using cover-free families to construct key
predistribution schemes is due to Mitchell and Piper [109], under the name
of key distribution pattern. However, the study of cover-free families dates

© 2013 Taylor & Francis Group, LLC



212 Algebraic Curves in Cryptography

back to the early 1960s. Kautz and Singleton [88] first studied these combi-
natorial objects under the name of superimposed binary codes. These codes
are related to file retrieval, data communication, and magnetic memory. In
1985, Erdős, Frankl, and Füredi [55] studied cover-free families as a gener-
alization of Sperner systems. Furthermore, cover-free families have also been
discussed by numerous researchers in other contexts such as information the-
ory, combinatorics, communication, and many other topics in cryptography
and information security.

Definition 7.5.1 Let X = {x1, . . . , xN} be a set of N elements (points) and
let B = {B1, . . . , BT } be a set of T subsets (blocks) of X . Then, for P and
F collections of subsets of {1, . . . , T}, (X,B) is called a (P ,F , T )-cover-free
family (or (P ,F , T )-CFF for short) provided that

⋂

i∈P

Bi 6⊆
⋃

j∈F

Bj

for all P ∈ P and F ∈ F such that P ∩ F = ∅.

We can construct a (P ,F , T )-KPS from a (P ,F , T )-CFF as follows. As-
sume that a (P ,F , T )-CFF is publicly known. Let the users in the KPS be
denoted by {1, . . . , T}. For 1 ≤ j ≤ N , the TA chooses a random value sj ∈ Fq

and gives sj to every user i for which xj ∈ Bi. Thus, user i receives |Bi| ele-
ments in Fq as his or her secret information.

The common key kP for a privileged set P is defined by

kP =
∑

j:xj∈∩i∈PBi

sj.

Note that each user in P can compute kP . However, if F is a coalition such
that F ∩ P = ∅, then there is at least one element xj such that xj ∈ ∩i∈PBi,
but xj 6∈ ∪i∈FBi. Hence, F does not know sj and so has no information about
kP . We have the following theorem.

Theorem 7.5.2 Suppose (X,B) is a (P ,F , T )-CFF. Then there exists a
(P ,F , T )-KPS with information rate

ρ =
1

max{|Bi| : 1 ≤ i ≤ T }
,

and total information rate

ρT =
1

N
.

We have already seen above that a KPS can be constructed from a cover-
free family. However, given an arbitrary (P ,F , T ), it is not easy to find a good
(P ,F , T )-CFF that results in an efficient (P ,F , T )-KPS.

In this section, we study the class of CFFs that give rise to (s, t, T )-KPSs,
and give some bounds and constructions for this class of CFFs.
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Definition 7.5.3 Let X be a set of N elements (points) and let B be a set
of T subsets (blocks) of X . Then (X,B) is called an (s, t)-cover-free family
provided that, for any s blocks B1, . . . , Bs in B and t other blocks B′

1, . . . , B
′
t

in B, one has
s⋂

i=1

Bi 6⊆
t⋃

j=1

B′
j .

In other words, no intersection of s blocks is contained in the union of t
other blocks. Sometimes, we use the notation (s, t)-CFF(N, T ) to denote an
(s, t)-cover-free family (X,B) in which |X | = N and |B| = T . We call (X,B)
k-uniform if |B| = k for all B ∈ B.

Example 7.5.4 Let
X = {1, 2, 3, 4, 5, 6, 7, 8, 9}

and
B = {B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12},

where
B1 = {4, 5, 6, 7, 8, 9} B2 = {2, 3, 5, 6, 8, 9}
B3 = {2, 3, 4, 6, 7, 8} B4 = {2, 3, 4, 5, 7, 9}
B5 = {1, 2, 3, 7, 8, 9} B6 = {1, 3, 4, 6, 7, 9}
B7 = {1, 3, 4, 5, 8, 9} B8 = {1, 3, 5, 6, 7, 8}
B9 = {1, 2, 3, 4, 5, 6} B10 = {1, 2, 4, 5, 7, 8}
B11 = {1, 2, 5, 6, 7, 9} B12 = {1, 2, 4, 6, 8, 9}.

Then (X,B) is a (2, 1)-CFF(9, 12).

Cover-free families have been studied under different names, such as su-
perimposed codes, key distribution patterns, non-adaptive group testing al-
gorithms, etc. For instance, a (1, t)-cover-free family is exactly a t-cover-free
family studied by Erdős et al. [55], and a (2, t)-cover-free family was intro-
duced, under the name of key distribution pattern, by Mitchell and Piper
[109].

In the following, we describe two combinatorial objects equivalent to cover-
free families: coverings of hypergraphs [54, 174] and disjunct systems [150,
174].

A hypergraph is a pair (V,E), where V is a set of elements called nodes
(or vertices), and E is a collection of nonempty subsets of V called hyper-
edges.

Let ℓ, u, n be integers such that 0 < ℓ < u < n. Set [n] = {1, 2, . . . , n}.
Define Pn;ℓ,u = {X ⊆ [n] : ℓ ≤ |X | ≤ u}. Define a hypergraph Gn;ℓ,u = (V,E)
as follows. Let the set of vertices be V = Pn;ℓ,u, and let the set of hyperedges
E be the collection of intervals defined as follows:

E = {{C ⊆ [n] : Y1 ⊆ C ⊆ Y2} : |Y1| = ℓ, |Y2| = u, Y1, Y2 ⊆ [n]}.
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Definition 7.5.5 A covering of a hypergraph is a subset S of vertices such
that each hyperedge of the hypergraph contains at least one vertex of S.

Example 7.5.6 Let ℓ = 1, u = 2, and n = 4. Then the hypergraph G4;1,2 has
as its set of vertices

P4;1,2 = {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

and its set of hyperedges

E =





{{1}, {1, 2}}, {{1}, {1, 3}}, {{1}, {1, 4}}
{{2}, {1, 2}}, {{2}, {2, 3}}, {{2}, {2, 4}}
{{3}, {1, 3}}, {{3}, {2, 3}}, {{3}, {3, 4}}
{{4}, {1, 4}}, {{4}, {2, 4}}, {{4}, {3, 4}}




.

Then, any of the following subsets of P4;1,2:

{{1}, {2}, {3}, {4}}
{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
{{1}, {2}, {3}, {1, 4}, {2, 4}, {3, 4}}

is a covering of G4;1,2.

Let (X,B) be a set system, where X = {x1, x2, . . . , xN} and B =
{B1, B2, . . . , BT }. Recall that the incidence matrix of (X,B) is the T × N
matrix A = (aij), where

aij =

{
1 if xj ∈ Bi

0 if xj 6∈ Bi.

Conversely, given an incidence matrix, we can define an associated set system
in an obvious way.

Definition 7.5.7 A set system (X,B) is an (i, j)-disjunct system if, for
any P,Q ⊆ X such that |P | ≤ i, |Q| ≤ j and P ∩Q = ∅, there exists a B ∈ B
such that P ⊆ B and Q ∩ B = ∅. An (i, j)-disjunct system is denoted as an
(i, j)-DS(N, T ) if |X | = N and |B| = T .

Example 7.5.8 Let

X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

and
B = {B1, B2, B3, B4, B5, B6, B7, B8, B9},

where

B1 = {5, 6, 7, 8, 9, 10, 11, 12} B2 = {2, 3, 4, 5, 9, 10, 11, 12}
B3 = {2, 3, 4, 5, 6, 7, 8, 9} B4 = {1, 3, 4, 6, 7, 9, 10, 12}
B5 = {1, 2, 4, 7, 8, 9, 10, 11} B6 = {1, 2, 4, 6, 8, 9, 11, 12}
B7 = {1, 3, 4, 5, 6, 8, 10, 11} B8 = {1, 2, 3, 5, 7, 8, 10, 12}
B9 = {1, 2, 4, 5, 6, 7, 11, 12}.
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Then (X,B) is a (2, 1)-DS(12, 9). For instance, let P = {1, 2} and Q = {3}.
Then we have B5 ∈ B such that P ⊆ B5 and B5 ∩Q = ∅.

Theorem 7.5.9 Let i, j, T , and N be integers with i, j ≤ N . The following
statements are equivalent:

(i) There exists a covering of GT ;i,T−j of size N .

(ii) There exists an (i, j)-DS(T,N).

(iii) There exists an (i, j)-CFF(N, T ).

Proof. First, we show that (i) is equivalent to (ii). Observe that S is a covering
of GT ;i,T−j if and only if, for any Y1, Y2 ⊆ [T ], Y1 ⊆ Y2, |Y1| = i, |Y2| = T − j,
there exists C ∈ S such that Y1 ⊆ C ⊆ Y2. This is equivalent to saying that,
for any Y1, Y3 ⊆ [T ], |Y1| = i, |Y3| = T − (T − j) = j, Y1 ∩ Y3 = ∅, there
exists C ∈ S such that Y1 ⊆ C and Y3 ∩C = ∅, which is in turn equivalent to
([T ], S) being an (i, j)-DS(T,N).

For the equivalence of (ii) and (iii), it is easy to see that A is the incidence
matrix of an (i, j)-DS(T,N) if and only if AT , the transpose of A, is the inci-
dence matrix of an (i, j)-CFF(N, T ). ✷

7.5.1 Bounds for Cover-Free Families

We now discuss some bounds for cover-free families.
We begin with a trivial construction for (s, t)-CFFs. For any integers T ≥

s > 0, define X = {xA : A ⊆ [T ], |A| = s}. For 1 ≤ i ≤ T , define Bi = {xA ∈
X : i ∈ A} and B = {Bi : i ∈ [T ]}. It is easy to see then that (X,B) is an
(s, t)-CFF(

(
T
s

)
, T ), for any t ≤ T − s.

We are interested in (s, t)-CFF(N, T )’s with better performance than this
trivial construction, i.e., (s, t)-CFF(N, T )’s withN <

(
T
s

)
. Note that, given the

values of s and t, there is a trade-off between N and T in an (s, t)-CFF(N, T ).
More precisely, we are interested in (s, t)-CFF(N, T )’s for which T is as large
as possible while s, t, and N are given, or equivalently, the value N is as small
as possible while s, t, and T are fixed.

Let N((s, t), T ) denote the minimum value of N in an (s, t)-CFF(N, T ). It
is desirable to determine the value of N((s, t), T ). Unfortunately, as shown in
[174, 29], computing the value of N((s, t), T ) turns out to be rather hard.

Theorem 7.5.10 Given integers s, t, T , and k, the problem of deciding
N((s, t), T ) ≤ k is NP-complete.

Proof. For given integers n, ℓ, and u, let Gn;ℓ,u be a hypergraph defined above.
Set

τ(Gn;ℓ,u) = min{|S| : S is a covering of Gn;ℓ,u}.
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It has been proved in [29] that, for any given integers n, ℓ, u, and k, the prob-
lem of deciding τ(Gn;ℓ,u) ≤ k is NP-complete. Theorem 7.5.10 now follows
from Theorem 7.5.9 immediately. ✷

Theorem 7.5.11 We have the following known bounds on cover-free families:

(i) ([55]) In a k-uniform (1, t)-CFF(N, T ), we have

T ≤
(
N

⌈kt ⌉

)/(
k − 1

⌈kt ⌉ − 1

)
;

(ii) ([50], [130]) For any t ≥ 2, given any (1, t)-CFF(N, T ), we have

N ≥ c t2

log t
logT,

where the constant c is shown to be approximately 1/2 in D’yachkov and
Rykov [50], approximately 1/4 in Füredi [62], and approximately 1/8 in
Ruszinkó [130];

(iii) ([51]) For positive integers s, t, and T , we have

N((s, t), T ) ≥ t(s logT − log t− s log s);

(iv) ([54]) For positive integers s, t, and T , we have

N((s, t), T ) ≥
(
s+ t− 1

s

)
log(T − t− s+ 2);

(v) ([54]) For any ǫ > 0, we have

N((s, t), T ) ≥ (1− ǫ) (s+ t− 2)s+t−2

(s− 1)s−1(t− 1)t−1
log(T − t− s+ 2)

for all sufficiently large T ;

(vi) ([160]) For s, t ≥ 1 and T ≥ s+ t > 2, we have

N((s, t), T ) ≥ 2c

(
s+t
t

)

log(s+ t)
logT,

where the constant c is the same as in (ii);

(vii) ([160], [98]) For any integers s, t ≥ 1 and T ≥ max{⌊(s+ t+ 1)/2⌋2, 5},

N((s, t), T ) ≥ 0.7c

(
s+t
s

)
(s+ t)

log
(
s+t
s

) logT,

where the constant c is the same as in (ii);
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(viii) ([159]) For positive integers s, t, and T , we have

N((s, t), T ) ≤ min

{⌈
(s+ t) logT

− log p

⌉
,

⌈
(s+ t− 1) log 2T

− log p

⌉}
,

where p = 1− sstt/(s+ t)s+t.

The proofs for the bounds in Theorem 7.5.11 are complicated and rather
involved. The interested reader may refer to the original papers for the details.
We only give a proof for (i), adapted from [174]. We first need a lemma on set
systems.

Lemma 7.5.12 ([174]) Suppose (X,B) is an r-uniform set system, where
|X | = k. If, for any t blocks B1, . . . , Bt ∈ B, we have | ∪ti=1 Bi| < k and
tr ≥ k, then |B| ≤

(
k−1
r

)
.

Proof of Theorem 7.5.11(i). When t = 1, the theorem is obvious. Therefore,
we assume henceforth that t ≥ 2.

Suppose (X,B) is a k-uniform (1, t)-CFF. For B ∈ B, define

Nr(B) = {R ⊂ B : |R| = r, ∃B′ 6= B,B′ ∈ B such that R ⊂ B′},

where r = ⌈kt ⌉. We claim that

Nr(B) ≤
(
k − 1

r

)
.

First, suppose Nr(B) < t. We consider two cases: t ≥ k and t < k. If
t ≥ k, then r ≤ 1. It follows that Nr(B) < k because (X,B) is a (1, t)-CFF.
Therefore, Nr(B) ≤

(
k−1
r

)
. If t < k, then Nr(B) < k. In this case, we also

have Nr(B) ≤
(
k−1
r

)
.

In the case Nr(B) ≥ t, let R1, . . . , Rt ∈ Nr(B). Then we have | ∪ti=1 Ri| ≤
k − 1 by the property of Nr(B) and that (X,B) is a (1, t)-CFF. Since tr ≥ k,
by applying Lemma 7.5.12 to the set system (B,Nr(B)), we have

|Nr(B)| ≤
(
k − 1

r

)
.

Therefore, for each B ∈ B, there are at least

(
k

r

)
−
(
k − 1

r

)
=

(
k − 1

r − 1

)

subsets R ⊂ B, which are not contained in any B′ ∈ B \ {B}. It follows that

|B|
(
k − 1

r − 1

)
≤
(
N

r

)
.
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This completes the proof. ✷

For some special cases, the bound in Theorem 7.5.11(i) can be attained.
For example, Erdős et al. [55] gave a probabilistic construction for a 2t-uniform
(1, t)-CFF with

T = (N2/(4t− 2))− o(N2).

However, in general, it remains open whether the bound in Theorem 7.5.11(i)
is the best possible for (1, t)-CFFs.

Since it is hard to compute the exact value of N((s, t), T ) for large values
of T , some authors have considered another measurement for the efficiency of
CFFs, called the performance rate, defined as

R(X,B) = logT

N
,

for a cover-free-family (X,B). We are interested in the asymptotic behavior
of this rate.

Definition 7.5.13 For fixed s and t, we define the asymptotic rate of (s, t)-
CFFs as

R(s, t) = lim
T→∞

logT

N((s, t), T )
.

The following theorem is proved in [94].

Theorem 7.5.14 For any integers s and t, we have

R(s, t) ≤ min
0<x<s

min
0<y<t

R(s− x, t− y)
R(s− x, t− y) + (x+ y)x+y/(xxyy)

.

Definition 7.5.15 An (s, t)-CFF(N, T ) is said to be optimal if N =
N((s, t), T ).

Although computing the value of N((s, t), T ) is hard in general, some
cover-free families with small parameters are known to be optimal. There
are cases where the trivial solution given at the beginning of this subsection
results in optimal solutions. For example, from [54] and [90], we know that,

whenever T ≤ s+ t+ t/s or T ≤ (t+1)s
s−1 −

√
36t
s−1 , we have N((s, t), T ) =

(
T
s

)
,

which implies that the trivial solution is an optimal solution. We list some of
these optimal families in Table 7.1 (taken from [89, 90]).

7.5.2 Constructions from Error-Correcting Codes

A nice construction for cover-free families is to use error-correcting codes
(see [55, 150]).

Let Y be an alphabet of q elements. Recall that a q-ary (n, T, d)-code is a
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TABLE 7.1: Optimal (s, t)-CFF(N, T )’s.

T = 5 6 7 8 9 10 11-12 16 -20

N((1, 2), T ) = 5 6 7 8 9 9 9
N((1, 3), T ) = 5 6 7 8 9 10 11-12 16
N((2, 2), T ) = 10 14 14 14 18 18-20 20-22 22-26
N((2, 3), T ) = 10 15 21 24-28 26-30 30 33-45 45-48

set C of T vectors in Y n such that the Hamming distance between any two
distinct codewords in C is at least d. Consider a q-ary (n, T, d)-code C. We
write each codeword as ci = (ci1, . . . , cin) with cij ∈ Y , where 1 ≤ i ≤ T
and 1 ≤ j ≤ n. Set X = [n] × Y and B = {Bi : 1 ≤ i ≤ T }, where for
each 1 ≤ i ≤ T , we define Bi = {(j, cij) : 1 ≤ j ≤ n}. It is easy to see that
|X | = nq, |B| = T and |Bi| = n. For each choice of i 6= k, we have |Bi ∩Bk| =
|{(j, cij) : 1 ≤ j ≤ n} ∩ {(j, ckj) : 1 ≤ j ≤ n}| = |{j : cij = ckj}| ≤ n− d.

It is straightforward to show that (X,B) is a (1, t)-CFF(nq, T ) if the con-
dition t < n

n−d holds. We thus obtain the following theorem.

Theorem 7.5.16 If there is a q-ary (n, T, d)-code, then there exists a (1, t)-
CFF(nq, T ) provided that t < n

n−d .

Next, we describe the concatenation construction given in [160, 90], which
is a powerful method for constructing a larger cover-free family from smaller
ones.

Definition 7.5.17 A matrix M = (mkℓ)N×T with entries from [q] is called
an (s, t) separating matrix of size (N, T, q) if, for any pair of sets I, J ⊂ [T ]
such that |I| = s, |J | = t and I ∩ J = ∅, there exists an integer x ∈ [N ] such
that the sets {mxi : i ∈ I} and {mxj : j ∈ J} are disjoint.

Let M be an (s, t) separating matrix of size (N0, T0, q) and let
A = (aij)N1×q be the incidence matrix of an (s, t)-DS(q,N1). Denote by
b1,b2, . . . ,bq the columns of A. We construct an N0N1×T0 matrix B =M ⋄A
by substituting the entry i in M by bi. It can be verified that the resulting
matrix B is the incidence matrix of an (s, t)-CFF(N0N1, T0) (see [157]). From
Theorem 7.5.9, we have the following result.

Theorem 7.5.18 If there exist an (s, t) separating matrix of size (N, T, q)
and an (s, t)-CFF(N0, q), then there exists an (s, t)-CFF(NN0, T ).

Separating matrices can be constructed from error-correcting codes, hence
making another link between cover-free families and error-correcting codes.

Theorem 7.5.19 ([160]) If there exists a q-ary (N, T, d)-code, then there ex-
ists an (s, t) separating matrix of size (N, T, q) provided that

d

N
> 1− 1

st
.
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Proof. Let M be an N × T matrix such that each column is a codeword in a
q-ary (N, T, d)-code. Since the minimum distance of the code is d, we know
that any two distinct codewords have at most N − d entries in common. It is
easy to see that the matrix M is an (s, t) separating matrix if N > st(N − d),
proving the desired result. ✷

7.5.3 Constructions from Designs

Let Y be a set of v elements (points), and let A = {A1, A2, . . . , Aβ} be a
family of k-subsets of Y (blocks). Recall from Definition 5.2.10 that (Y,A) is
a t-(v, k, λ) design if every subset of t points occurs in exactly λ blocks. It can
be shown by elementary counting that a t-(v, k, λ) design is also a t′-(v, k, λ′)
design for 1 ≤ t′ ≤ t, where

λ′ =
λ
(
v−t′

t−t′

)
(
k−t′

t−t′

) .

Theorem 7.5.20 ([155]) If there exists an (s+1)-(n, k, λ) design, then there
exists an (s, t)-CFF(λ

(
n

s+1

)
/
(

k
s+1

)
, n) provided

t <
n− s
k − s .

Proof. Let (Y,A) be an (s + 1)-(n, k, λ) design, where Y = {y1, y2, . . . , yn}
and A = {A1, A2, . . . , Aβ}. We consider the dual (X,B) of (Y,A), defined by
X = {A1, A2, . . . , Aβ} and Bi = {Ar ∈ X : yi ∈ Ar}. We show that (X,B) is
an (s, t)-CFF.

For each s-subset ∆ of Y , there are exactly λ(n − s)/(k − s) elements
(blocks) from A that contain ∆. For any given t-subset Λ ⊆ Y satisfying
∆∩Λ = ∅, and for each y ∈ Λ, there are λ blocks that contain ∆∪{y}. Thus,
the number of blocks from A that contain ∆ and at least one member from Λ
is at most λt. Since λt < λ(n− s)/(k − s), it follows that there exists a block
Ai from A that contains ∆ such that Ai∩Λ = ∅. It is then easy to verify that
(X,B) is indeed an (s, t)-CFF(λ

(
n

s+1

)
/
(

k
s+1

)
, n). ✷

Corollary 7.5.21 An (s + 1)-(n, k, 1) design gives rise to an (s, t)-
CFF(N, T ), where

N =

(
n

s+1

)
(

k
s+1

) =
(n− s)

(
n
s

)

(k − s)
(
k
s

) , T = n, and t <
n− s
k − s .

Example 7.5.22 From [109, 155], we know that an inversive plane is a 3-
(q2 + 1, q + 1, 1) design. Such a design is known to exist whenever q is a
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prime power. Applying Corollary 7.5.21, we know that there exists a (2, q)-
CFF(q(q2 +1), q2 +1). Taking q = 3, we obtain a (2, 3)-CFF(30, 10), which is
optimal since N((2, 3), 10) = 30 (see [89]). Note that the codewords of weight
4 in the binary extended Hamming [8, 4, 4]-code form a 3-(8, 4, 1) design [89].
It follows that there is a (2, 2)-CFF(14, 8), which is optimal as well.

Next, we show another construction from a super-simple design. The con-
cept of a super-simple t-design was introduced by Gronau and Mullin [73].
The construction of cover-free families from super-simple designs is proposed
by Kim and Lebedev [89].

Definition 7.5.23 A super-simple t-(v, k, λ) design is a t-(v, k, λ) design
with λ > 1 in which the intersection of any two blocks has at most t elements.

Theorem 7.5.24 ([89]) A super-simple s-(n, k, λ) design gives rise to an
(s, λ− 1)-CFF(λ

(
n
s

)
/
(
k
s

)
, n).

Proof. Let (Y,A) be a super-simple s-(n, k, λ) design, where Y =
{y1, y2, . . . , yn} and A = {A1, A2, . . . , Aβ}. As in the proof of Theorem 7.5.20,
let (X,B) be the dual of (Y,A), where X = {A1, A2, . . . , Aβ} and Bi = {Ar ∈
X : yi ∈ Ar}. We show that (X,B) is an (s, λ− 1)-CFF(λ

(
n
s

)
/
(
k
s

)
, n).

For any s points yi1 , . . . , yis ∈ Y , there are exactly λ blocks from A that
contain these s points, i.e.,

|Bi1 ∩Bi2 ∩ · · · ∩Bis | = λ.

Consider any other t points yj1 , . . . , yjt , where t = λ − 1. Since no two (or
more) blocks of a super-simple s-design can have more than s common points,
for any ℓ with 1 ≤ ℓ ≤ t, we have

|Bi1 ∩Bi2 ∩ · · · ∩Bis ∩Bjℓ | ≤ 1.

It follows that
∣∣Bi1 ∩Bi2 ∩ · · · ∩Bis ∩

(
∪tℓ=1Bjℓ

)∣∣ ≤ t < λ.

We then obtain
Bi1 ∩Bi2 ∩ · · · ∩Bis 6⊆ ∪tℓ=1Bjℓ ,

for otherwise, we would have Bi1 ∩ Bi2 ∩ · · · ∩ Bis ⊆ ∪tℓ=1Bjℓ , which implies
that

∣∣Bi1 ∩Bi2 ∩ · · · ∩Bis ∩
(
∪tℓ=1Bjℓ

)∣∣ = |Bi1 ∩Bi2 ∩ · · · ∩Bis | = λ,

a contradiction. This shows that (X,B) is a cover-free family with the desired
parameters. ✷

Note that it is easy to see that an (s+1)-(n, k, 1) design is a super-simple
s-(n, k, (n−s)/(k−s)) design. Therefore, in this case, Theorem 7.5.24 implies
Theorem 7.5.20.
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7.5.4 Constructions from Perfect Hash Families

Let n and m be integers such that 2 ≤ m ≤ n. Let A be a set of size n and
let B be a set of size m. Recall that a function h from A to B is called a hash
function. We say a hash function h : A→ B is perfect on a subset X ⊆ A if
h is injective when restricted to X . Let w be an integer such that 2 ≤ w ≤ m
and let H be a set of hash functions from A to B.

Definition 7.5.25 We sayH is an (n,m,w)-perfect hash family if, for any
X ⊆ A with |X | = w, there exists at least one function h ∈ H such that h
is perfect on X . We use PHF(N ;n,m,w) to denote an (n,m,w)-perfect hash
family with |H| = N .

Example 7.5.26 Let A = {1, . . . , 9} and B = {1, 2, 3}. Then H =
{h1, h2, h3, h4} given in Table 7.2 is a PHF(4; 9, 3, 3).

TABLE 7.2: An example of PHF(4; 9, 3, 3).

1 2 3 4 5 6 7 8 9
h1 1 3 2 2 3 2 3 1 1
h2 1 3 1 3 1 2 2 2 3
h3 1 2 2 1 3 3 1 2 3
h4 3 3 2 1 1 3 2 1 2

Perfect hash families, introduced by Mehlhorn [106], originally arose as
part of compiler design. They have applications to operating systems, language
translation systems, hypertext, hypermedia, file managers, and information
retrieval systems (see Czech, Havas, and Majewski [46] for a survey of these
results). There are also numerous applications to cryptography, for example,
to broadcast encryption [57], secret sharing [17], key distribution patterns,
cover-free families, and secure frameproof codes [157].

The next section contains some more detailed discussions on perfect hash
families, but for now we give two constructions of cover-free families from
perfect hash families.

The first construction is a direct construction from perfect hash families
and works only for (1, t)-CFFs. Assume that H is a PHF(N ;T,m, t+1) from
A to B. Let A = {1, 2, . . . , T} and B = {1, 2, . . . ,m}. We define

X = H×B = {(h, j) : h ∈ H, j ∈ B}.

For each 1 ≤ i ≤ T , we define a subset (block) Bi of X by

Bi = {(h, h(i)) : h ∈ H},

and B = {Bi : 1 ≤ i ≤ T }. Then (X,B) is a (1, t)-CFF(Nm,T ). Indeed,
|X | = Nm and |B| = T . For any t + 1 blocks Bi1 , . . . , Bit , Bj , since H is a
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PHF(N ;T,m, t+1), there exists a hash function h ∈ H such that h restricted
to {i1, . . . , it, j} is one-to-one. It follows that h(i1), . . . , h(it), h(j) are t+1 dis-
tinct elements in B, which also implies that (h, h(i1)), . . . , (h, h(it)), (h, h(j))
are t + 1 distinct elements in Bi1 , . . . , Bit , Bj , respectively. Hence, the union
of any t blocks in B cannot cover any remaining block. Thus, we have shown
the following result.

Theorem 7.5.27 If there exists a PHF(N ;T,m, t + 1), then there exists a
(1, t)-CFF(Nm,T ).

The second construction from perfect hash families (cf. [155]) provides a
method of building a larger cover-free family from smaller ones. It has a similar
flavor as the coding construction in Subsection 7.5.2.

The construction works as follows.
Let (X0,B0) be an (s, t)-CFF(N0, T0) and let H = {h1, . . . , hN} be a per-

fect hash family PHF(N ;T, T0, s+ t) from {1, . . . , T} to {1, . . . , T0}. Consider
N copies of (X0,B0), denoted by (X1,B1), . . . , (XN ,BN), where Xi and Xj

are disjoint sets, i.e., Xi ∩ Xj = ∅, for all i 6= j. For each 1 ≤ j ≤ N , let

Xj = {x(j)1 , . . . , x
(j)
N0
} and Bj = {B(j)

1 , . . . , B
(j)
T0
}. Clearly, (Xj ,Bj) is an (s, t)-

CFF(N0, T0). We construct a pair (X,B) with

X = X1 ∪ · · · ∪XN and B = {B1, . . . , BT },

where Bi = B
(1)
h1(i)

∪ · · · ∪B(N)
hN (i) = ∪Nj=1B

(j)
hj(i)

, for 1 ≤ i ≤ T . In other words,

an element of B is a union of elements of Bj, 1 ≤ j ≤ N , chosen through
an application of the perfect hash family. We show that (X,B) is an (s, t)-
CFF(NN0, T ).

Clearly, |X | = NN0 and |B| = T . For any s + t blocks
Bi1 , . . . , Bis , Bj1 , . . . , Bjt , there exists at least one hash function hk ∈ H which
is one-to-one on {i1, · · · , is, j1, . . . , jt}. For any 1 ≤ k ≤ N , since (Xk,Bk) is
an (s, t)-CFF(N0, T0), we have

∣∣∣∣∣
s⋂

u=1

Biu

∖
t⋃

v=1

Bjv

∣∣∣∣∣ ≥
∣∣∣∣∣

s⋂

u=1

B
(k)
hk(iu)

∖
t⋃

v=1

B
(k)
hk(jv)

∣∣∣∣∣

≥ 1,

proving the desired result. Thus, we have the following result.

Theorem 7.5.28 Suppose that there exists an (s, t)-CFF(N0, T0) and a
PHF(N ;T, T0, s+ t). Then there exists an (s, t)-CFF(NN0, T ).
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7.6 Perfect Hash Families and Algebraic Geometry

We have seen in Subsection 7.5.4 that we can construct cover-free families
from perfect hash families. In this section, we show how to construct perfect
hash families from algebraic geometry.

Let PHF(N ;n,m,w) denote an (n,m,w)-perfect hash familyH with |H| =
N , and let N(n,m,w) denote the minimum N for which a PHF(N ;n,m,w)
exists, for given n, m, and w. We are interested in determining these values.
In particular, we are interested in the asymptotic behavior of N(n,m,w) as
a function of n when m and w are fixed. Bounds for N(n,m,w) have been
studied by numerous authors (see, for example, [5, 15, 18, 59, 106, 160]). In
particular, it has been proved in [106] that, for fixed m and w, N(n,m,w)
is Θ(logn). However, this result is non-constructive. It was believed that it
would be difficult to give explicit constructions that asymptotically meet this
existential result, but explicit constructions turned out to be possible with
the use of algebraic geometry (cf. [170]). We first review some bounds for
N(n,m,w) without proof.

Theorem 7.6.1 ([59]) We have that

N(n,m,w) ≥
(
n−1
w−2

)
mw−2 log(n− w + 2)

(
m−1
w−2

)
nw−2 log(m− w + 2)

.

As noted in [15], this lower bound is approximately equal to

mw−2

m(m− 1)(m− 2) · · · (m− (w − 1))

logn

log(m− w + 2)

as n→∞ with w and m fixed.
A weaker bound, due to Mehlhorn [106], is the following:

Theorem 7.6.2 We have that N(n,m,w) ≥ logn
logm .

This bound can be met when w = 2. In fact, there exists an explicit con-
struction such that N(n,m, 2) = ⌈ logn

logm⌉, for any integers n and m such that
n ≥ m.

Using an elementary probabilistic argument, the following non-constructive
upper bound for N(n,m,w) was proved by Mehlhorn [106].

Theorem 7.6.3 We have that

N(n,m,w) ≤
⌈

log
(
n
w

)

log(mw)− log
(
mw − w!

(
m
w

))
⌉
.

Using straightforward approximations, Theorem 7.6.3 yields the following
corollary.
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Corollary 7.6.4 ([106]) We have that N(n,m,w) ≤ ⌈wew2/m logn⌉.

From Theorem 7.6.2 and Corollary 7.6.4, it follows that, for fixed m and
w, N(n,m,w) as a function in n is Θ(logn). Efforts have been made to pro-
vide explicit constructions which are much more efficient compared to the
trivial solutions or which compare well with the asymptotic bound of Corol-
lary 7.6.4. Most known explicit perfect hash families are constructed from
error-correcting codes by Alon [2], from resolvable balanced incomplete block
designs by Brickell [31], and through various inductive techniques by Atici,
Magliveras, Stinson, and Wei [5]. For a good survey of this subject, we refer
the reader to Blackburn [15].

In [5], Atici, Magliveras, Stinson, and Wei provided various recursive
methods resulting in explicit constructions of PHF(N ;n,m,w) in which N
is a polynomial function of logn, for fixed m and w. Stinson, Wei, and
Zhu [160] employed combinatorial techniques to generalize and improve the
results from [5]. For given m and w, they constructed PHF(N ;n,m,w)’s
in which N is O(C log∗(n) logn), where C is a constant depending only on
w, and log∗ is a function from Z+ to Z+ recursively defined as follows:
log∗(1) = 1, log∗(n) = log∗(⌈log n⌉) + 1 for n > 1.

Blackburn and Wild introduced and studied linear perfect hash
families in [18]. They showed that there exist explicit constructions for
PHF(N ;n,m,w) with N = (w − 1) logn/ logm. Although these classes of
linear perfect hash families are of interest in their own right, their construc-
tions are, however, quite restrictive in general, since they require m to be a
prime power and very large compared to w and N .

An important method of constructing perfect hash families is to use error-
correcting codes, due to Alon [2].

Theorem 7.6.5 ([2, 5]) Suppose there is a q-ary (N,K, d)-code. Then there
exists a PHF(N ;K, q, w) provided that

d

N
> 1− 1(

w
2

) .

In the rest of this section, we show that, using algebraic geometry,
for any fixed integers w and m, we can obtain explicit constructions of
PHF(N ;n,m,w)’s with N = C logn, where C is a constant depending only
on w and m, as n tends to ∞.

Let X be an algebraic curve defined over Fq and let g = g(X ) be the genus
of X . For a divisor G of X , recall that L(G) denotes the Riemann-Roch space
whose dimension is ℓ(G).

Let T be a subset of X (Fq). Let G be a divisor with T ∩ Supp(G) = ∅.
Each point P ∈ T can be associated with a map hP from L(G) to Fq defined
by

hP (f) = f(P ).
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Lemma 7.6.6 Let H = {hP : P ∈ T }. If deg(G) ≥ 2g + 1, then the cardi-
nality of H is equal to |T |.
Proof. It is sufficient to prove that the elements of H = {hP : P ∈ T } are
pairwise distinct. Assume that hP = hQ for P and Q in T , i.e.,

hP (f) = hQ(f) (7.1)

for all f ∈ L(G). This is equivalent to the fact that

f(P ) = f(Q) (7.2)

for all f ∈ L(G).
Suppose that P is different from Q. As deg(G − P ) > deg(G− P −Q) ≥

2g − 1, we obtain, by the Riemann-Roch Theorem (cf. Theorem 1.4.7),

ℓ(G− P ) = deg(G) − g and ℓ(G− P −Q) = deg(G) − g − 1.

By the above results on dimensions, we can choose a function u from the set
L(G−P ) \ L(G− P −Q). Then it is clear that u(P ) = 0 and u(Q) 6= 0. This
contradicts (7.2). Hence, P = Q. The proof is complete. ✷

Theorem 7.6.7 Let X be an algebraic curve over Fq and let T be a set
of Fq-rational points of X . Suppose that G is a divisor with deg(G) ≥
2g + 1 and T ∩ Supp(G) = ∅. Then there exists a perfect hash family
PHF(|T |; qdeg(G)−g+1, q, w) if |T | > deg(G) ×

(
w
2

)
.

Proof. Let H be as in Lemma 7.6.6. For a subset X of L(G) with w elements,
consider the set

SX def
= {(u− v)2 : u 6= v ∈ X}.

Then SX has at most
(
w
2

)
elements and the number of zeros of an element

(u − v)2 is equal to the number of zeros of u − v, which is at most deg(G),
since u − v is an element of L(G). Therefore, the number of zeros of all the
functions in SX is at most

deg(G)× |SX | ≤ deg(G)×
(
w

2

)
.

By the condition |T | > deg(G)×
(
w
2

)
, we can find a point R ∈ T such that R

is not a zero for any function in SX .
We claim that the function hR is one-to-one on the subset X . In fact, sup-

pose u and v are two different elements of X . Then (u − v)2 ∈ SX , thus R is
not a zero of (u− v)2, i.e., u(R) 6= v(R). This is equivalent to hR(u) 6= hR(v).
The proof is complete. ✷

Theorem 7.6.7 gives a generic construction of perfect hash families based
on algebraic curves over finite fields. In the examples below, we apply Theo-
rem 7.6.7 to several special curves to obtain some families with good param-
eters.
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Example 7.6.8 Consider the projective line X/Fq, where g = g(X ) = 0. Let
N be an integer between 2 and q + 1, and let t, w be two positive integers
satisfying N > t

(
w
2

)
. Then there exists a subset T of Fq-rational points of X

with |T | = N and a divisor G of degree t with T ∩ Supp(G) = ∅. Applying
Theorem 7.6.7 gives a PHF(N ; qt+1, q, w). Taking N = q + 1, we obtain a
PHF(q+1; qt, q, w) provided q+1 > t

(
w
2

)
. In particular, a very special case is

the existence of a PHF(q + 1; q2, q, w) for q + 1 > 2
(
w
2

)
(also see [5, Corollary

3.2] for this special case).

Example 7.6.9 Let q = pu for a prime p. Put

Nq(1) =

{
q + ⌊2√q⌋ if p|⌊2√q⌋ and u ≥ 3 odd
q + ⌊2√q⌋+ 1 otherwise.

Recall from Corollary 3.3.12 that there exists an elliptic curve X/Fq with
Nq(1) Fq-rational points.

Let N be an integer between 2 and Nq(1), and let t, w be two positive
integers with t ≥ 3 and N > t

(
w
2

)
. Then there exists a subset T of Fq-rational

points of X with |T | = N and a divisor G of degree t such that T ∩Supp(G) =
∅. Applying Theorem 7.6.7 gives a PHF(N ; qt, q, w) since g = g(X ) = 1. In
particular, there exists a PHF(Nq(1); q

t, q, w) if Nq(1) > t
(
w
2

)
.

Example 7.6.10 Let q be a square prime power. Let r =
√
q. Consider the

Hermitian curve X/Fq defined by

yr + y = xr+1.

Then the number of Fq-rational points of X is equal to r3 + 1 = q
√
q + 1

and the genus of X is g =
√
q(
√
q − 1)/2. Let N be an integer between√

q(
√
q − 1) + 2 and q

√
q + 1, and let t, w be two positive integers with t ≥√

q(
√
q−1)+1 andN > t

(
w
2

)
. Then there exists a subset T of Fq-rational points

of X with |T | = N and a divisor G of degree t such that T ∩ Supp(G) = ∅.
Applying Theorem 7.6.7 gives a PHF(N ; qt+1−√

q(
√
q−1)/2, q, w). In particular,

there exists a PHF(q
√
q + 1; qt+1−√

q(
√
q−1)/2, q, w) if q

√
q + 1 > t

(
w
2

)
.

Next, we give an explicit construction based on the Garcia-Stichtenoth
curves in [65, 66]. Let q be a square prime power and put r =

√
q. Consider the

sequence of algebraic curves {Xi}i≥1 whose function fields are Fq(x1, . . . , xi),
with x1, x2, . . . defined by:

xri+1 + xi+1 =
xri

xr−1
i + 1

(see Example 2.5.6). Then the number of Fq-rational points of Xi is more than
(r2 − r)ri−1, and the genus gi of Xi is less than r

i, for all i ≥ 1.
Put

Ni = (r2 − r)ri−1 = (
√
q − 1)qi/2

ti = ⌊(c+ 1)ri⌋ = ⌊(c+ 1)qi/2⌋
w =

⌊√
2

c+1q
1/4
⌋
,
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where c ≥ 1 is a real constant independent of i. Then

Ni > ti

(
w

2

)
for all i ≥ 1,

and, for each i ≥ 1, there exist a subset Ti of Fq-rational points of Xi with
|Ti| = Ni and a divisor Gi of degree ti of Xi such that Ti ∩ Supp(Gi) = ∅.
Applying Theorem 7.6.7 gives a PHF(Ni; q

ti+1−gi , q, w) for all i ≥ 1. Since

Ni = (
√
q − 1)qi/2, w =

⌊√
2

c+1q
1/4
⌋
, and ti + 1− gi ≥ ⌊(c+ 1)ri⌋+ 1− ri >

⌊cqi/2⌋, we have:

Theorem 7.6.11 Let q be a square prime power and let c ≥ 1 be a real
number. Then there exists a

PHF

(
(
√
q − 1)qi/2; q⌊cq

i/2⌋, q,

⌊√
2

c+ 1
q1/4

⌋)

for each i ≥ 1. In particular, taking c = 1, we obtain a

PHF
(
(
√
q − 1)qi/2; qq

i/2

, q, ⌊q1/4⌋
)

for all i ≥ 1.

We need the following lemma, due to Blackburn, Burmester, Desmedt, and
Wild [17, 15], for the product construction of perfect hash families.

Lemma 7.6.12 ([15]) Suppose there exist an explicit PHF(N ;n, n0, w)
and an explicit PHF(N0; n0, m, w). Then there exists an explicit
PHF(NN0;n,m,w).

Proof. Assume that H1 is a PHF(N ;n, n0, w) from A1 to B1 and that H2 is a
PHF(N0;n0,m,w) from A2 to B2 such that B1 = A2. Then it is straightfor-
ward to verify that H = {h2h1 : h1 ∈ H1, h2 ∈ H2} is a PHF(NN0;n,m,w)
from A1 to B2. ✷

Combining Theorem 7.6.11 with Lemma 7.6.12, we obtain the following
result.

Theorem 7.6.13 For any positive integers m and w such that m ≥ w, there
exist explicit constructions of PHF(N ; n, m,w) such that N = C logn, where
C is a constant independent of n, and n can grow to ∞.

Proof. Let q be the least square prime power such that q ≥ m and q1/4 ≥ w.

Since g(x) =
√

2
x+1q

1/4 is continuous on [1,∞), it follows that we may choose

c0 ∈ [1,∞) such that
√

2
c0+1q

1/4 = w. By Theorem 7.6.11, we know that there

is an explicit PHF((
√
q−1)qi/2; q⌊c0q

i/2⌋, q, w) for all i ≥ 1. Since q ≥ m, there
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exists an explicit PHF(N0; q,m,w), where the parameter N0 can be effectively
determined bym. From Lemma 7.6.12, it follows that there exist constructions
for

PHF(N0(
√
q − 1)qi/2; q⌊c0q

i/2⌋,m,w)

for all i ≥ 1. We thus obtain PHF(N,n,m,w) with N = C logn, where

C ≈ N0(
√
q − 1)

c0 log q
,

in which all the parameters on the right-hand side depend only on m and w,

but n can grow to ∞ as n = q⌊c0q
i/2⌋ for all i = 1, 2, . . . . The desired result

follows. ✷

We give an example to illustrate the efficiency of the constructions above.

Example 7.6.14 Consider PHF(N ;n,m,w) with m = w = 3. Atici, Magliv-

eras, Stinson, and Wei [5] gave an explicit construction of PHF(3×4j; 52j , 3, 3)
for any integer j ≥ 1. This results in a PHF(N ;n, 3, 3) with N ≈ 0.556(logn)2.

Now we look at the construction above. Let q = 34. From Theorem 7.6.11
(with c = 1), we have an explicit construction of PHF(8 × 32i; 34×32i , 34, 3)
for all i ≥ 1. We also know that there exist constructions for PHF(2k2 −
2k; 3k, 3, 3) for all k ≥ 2 (see [5, Corollary 5.2]). Taking k = 4, we obtain a
PHF(24; 34, 3, 3). Applying Lemma 7.6.12, we have an explicit PHF(N ;n, 3, 3)

with N = 24× 8× 32i, n = 34×32i for each i ≥ 1. It follows that

N =
24× 8

4× log 3
logn ≈ 30.285 logn.

Thus, the asymptotic behavior of this construction as n→∞ is much smaller
than that from [5].
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Chapter 8

Broadcast Encryption and Multicast

Security

Multicast communication allows a sender to efficiently broadcast a message to
a specific group of users. Sending a message to a group using unicast requires
the sender to send an individual copy to each receiver, while using broadcast
results in a copy to be sent to all the users instead of a specific group. These
advantages of multicast have made it the preferred communication mode for
group communication services such as broadcasting stock quotes, software
updates, pay TV, etc.

Securing multicast communication requires access control, that is, ensuring
that only authorized users can access the broadcast. In this chapter, we study
several techniques for access control when the group is dynamic: at different
times, different subgroups of the initial group are authorized to receive the
multicast message. This is a common situation in many applications where
authorized groups are formed based on the right to access a service.

Broadcast encryption, introduced by Fiat and Naor [57], enables a center
to securely transmit the data to a large group of receivers in a way that
only a predefined subset of users is able to decrypt the data. Clearly, such a
mechanism can be used to send a session key to members of the authorized
subset and thus provide a solution to secure multicast. Broadcast encryption
systems have been further studied by Blundo et al. [25] and Stinson [155],
who investigated unconditionally secure models and obtained upper and lower
bounds for the communication complexity and key storage of the systems.
Luby and Staddon [97] used a combinatorial approach to study the trade-off
between the number of keys held by each user and the bandwidth needed for
establishing a new session key. Other generalizations of broadcast encryption
schemes that address the problem of multicast security can be found in [1, 91,
156].

A different solution to the secure multicast problem can be obtained from
logical key hierarchy (LKH) proposed by Wallner et al. [168]. In this approach,
a logical key tree is used to allocate and update the users’ keys. The schemes
are primarily designed to support eviction or addition of a single user, and
therefore to form an arbitrary group, multiple rounds of the eviction procedure
need to be invoked. The LKH approach by Wallner et al. has been extended
and improved by many other authors (see, for example, [175, 33, 34, 36]).

231
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8.1 One-Time Broadcast Encryption

A one-time broadcast encryption scheme (OTBES) consists of two
phases. In the first phase, the trusted authority (TA) privately distributes
some secret information to every user. In the second phase, the TA selects a
privileged subset and broadcasts through a public channel an encrypted com-
mon key for that subset. The common key can then be used as a cryptographic
key for subsequent communication. Every user in the privileged subset must
be able to decrypt the common key by using its secret information, while any
forbidden coalition outside the privileged subset obtains no information on
the common key. Broadcasting some public information in an OTBES makes
it possible, in general, to reduce the amount of secret information that every
user receives in the distribution phase.

OTBESs are closely related to key predistribution schemes. We will use
many of the notations from Chapter 7. Given a set U of users with |U| = n,
we consider a family P ⊆ 2U of privileged subsets and a family F ⊆ 2U of
forbidden subsets.

A (P ,F , n)-one-time broadcast encryption scheme (or (P ,F , n)-
OTBES for short) consists of two phases. In the first one, the key predis-
tribution phase, the TA privately distributes to every user i ∈ U some secret
ui ∈ Ui, where Ui denotes the set of all possible secret values that might be
distributed to the user i by the TA. In the second one, the broadcast phase,
for a selected privileged subset P ∈ P and a secret message (or a common
key) mP ∈MP , whereMP denotes the set of all possible secret messages that
might be broadcast to the users in P , the TA publicly broadcasts a broad-
cast message bP ∈ BP that is an encryption of mP , where BP denotes the
set of all possible messages associated with the subset P of users that might
be broadcast. Every user i ∈ P can compute mP from its secret ui and the
broadcast message bP , while, even after seeing the broadcast message, the
users in a forbidden subset F ∈ F with F ∩ P = ∅ obtain no information
about mP .

As in Chapter 7, we can formally state these properties by using entropies.

(i) Without knowing the broadcast, no subset of users has any information
about mP , even if given all the secret information uU :

H(MP | (Ui)i∈U ) = H(MP )

for every P ∈ P . In other words, the secret message mP is independent
of the secrets distributed in the key predistribution phase.

(ii) The message for the privileged subset P is uniquely determined by the
broadcast and the secret information of the user:

H(MP | BP ,Ui) = 0
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for every i ∈ P .

(iii) After receiving the broadcast, no forbidden subset F disjoint from P
has any information on mP : if F ∈ F is such that P ∩ F = ∅, then

H(MP | BP , (Uj)j∈F ) = H(MP ).

As with KPSs, we use the following notation. If P consists of all the t-
subsets of U , then we write (t,F , n)-OTBES for such a (P ,F , n)-OTBES.
Similarly, if P consists of all the subsets of U of size at most t, then we write
(≤ t,F , n)-OTBES. We also use an analogous notation for F . For example,
a (≤ n, 1, n)-OTBES is a one-time broadcast encryption scheme in which
a secret key can be broadcast to any privileged subset of users such that
no individual user outside the privileged subset has any information on the
broadcast message. Note that the family of forbidden subsets is monotone
decreasing: in any (P ,F , n)-OTBES, if F ∈ F and F ′ ⊆ F , then F ′ ∈ F .
Hence, a (P , w, n)-OTBES is the same as a (P ,≤ w, n)-OTBES.

We often measure the efficiency of OTBESs by the actual bit-length of the
secrets stored by the users and the bit-length of the broadcast message. The
amount of secret information that is distributed to each user is measured by
the information rate as in the case of KPSs. We assume that, for all P ∈ P ,
MP = M for some M , i.e., the sets of possible common keys for all the
privileged subsets P ∈ P are the same.

The information rate of an OTBES is defined as

ρ =
log |M |

maxi∈U H(Ui)
,

i.e., the ratio between the length of the common key and the maximum length
of the secret information stored by the users.

We also have to take into account the length of the broadcast message.
Hence, the broadcast information rate of an OTBES is

ρB =
log |M |

maxP∈P H(BP )
.

Clearly, we have that ρ ≤ 1 and ρB ≤ 1. We say that an OTBES has
optimal information rate (respectively, optimal broadcast information
rate) if ρ = 1 (respectively, ρB = 1).

There is a trade-off between the amount of secret information held by each
user and the length of the broadcast. More precisely, to increase ρB, ρ must
be decreased, and vice versa. To analyze this trade-off, we sometimes look at
the total information rate, which is defined as

ρT =
log |M |

maxP∈P H(UU ,BP )
.
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8.1.1 Two Trivial Constructions

It is not possible to optimize both the information rate and the broadcast
information rate of an OTBES. However, there are two simple ways to con-
struct an OTBES with either optimal information rate or optimal broadcast
information rate. We describe such schemes below.

We first give a scheme with optimal broadcast information rate.

Key Predistribution: Suppose there is a key predistribution
(P ,F , n)-KPS with key space Fq. The TA gives the user i a secret key
ui in accordance with the (P ,F , n)-KPS.

Broadcast: For a privileged set P ∈ P , the TA broadcasts

bP = mP + kP ,

wheremP ∈ Fq is the message the TA wants to broadcast, and kP ∈ Fq is
the common key associated with the set P . In other words, the message
mP is encrypted by using the secret common key kP corresponding to
the set P for the underlying KPS.

Decryption: Every user from P knows the secret key kP and can com-
pute mP = bP − kP .

In this construction, the lengths of both the broadcast message and the
secret key are the same, therefore it gives rise to a scheme with optimal broad-
cast information rate. The following theorem is immediate.

Theorem 8.1.1 ([155]) If there exists a (P ,F , n)-KPS having information
rate σ and total information rate τ , then there is a (P ,F , n)-OTBES having
information rate σ, broadcast information rate 1, and total information rate
τ/(τ + 1).

At the other extreme, it is also trivial to construct a (P ,F , n)-OTBES
having optimal information rate. The scheme works as follows.

Key Predistribution: For 1 ≤ i ≤ n, the TA chooses a random ele-
ment ui ∈ Fq and gives it to the user i.

Broadcast: For a privileged set P ⊆ U , the TA broadcasts

bP = (bi = ui +mP : i ∈ P ),

where mP ∈ Fq is the secret message that the TA wants to broadcast to
the users in P .

Decryption: Every user i from P knows the secret key ui, and can then
compute mP = bi − ui.
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This construction has the same length for the common key and the secret
value stored by each user, so it results in a scheme with optimal information
rate.

Theorem 8.1.2 ([155]) For any integers t, w, n such that 2 ≤ t ≤ n and
1 ≤ w ≤ n, there is a (≤ t,≤ w, n)-OTBES having information rate 1,
broadcast information rate 1/n, and total information rate 1/(n+ 1).

8.1.2 The Blundo-Frota Mattos-Stinson Scheme

We describe in the following a family of (t, w, n)-OTBESs proposed by
Blundo, Frota Mattos, and Stinson [25], which is an improvement of the
scheme by Beimel and Chor [10].

Consider a prime power q ≥ n and a positive integer ℓ that is a divisor
of a given integer t. Let P ⊆ U be a set of users with |P | = t. Consider
the collection of subsets (called blocks) of P with ℓ users. Since ℓ divides t,
these

(
t
ℓ

)
blocks can be partitioned into r =

(
t−1
ℓ−1

)
parallel classes, where

a parallel class is a collection of blocks that partition the point set P (see,
for example, [166]). Each of these classes consists of t/ℓ blocks that form a
partition of P . We denote these classes by C1, . . . , Cr and the blocks in Ci are
denoted by Bi,j , where j = 1, . . . , t/ℓ.

Key Predistribution: The TA distributes keys to the users in U ac-
cording to the Blundo et al. (ℓ, t + w − ℓ, n)-KPS over Fq (see Sec-
tion 7.2.3). Therefore, for every set Q ⊆ U with |Q| = ℓ, there is a
common key kQ ∈ Fq that can be computed by the users in Q.

Broadcast: To encrypt a secret message mP = (m1, . . . ,mr) ∈ Fr
q,

where r =
(
t−1
ℓ−1

)
, addressed to the users in a set P with |P | = t, the TA

computes bi,j = kBi,j +mi and broadcasts the message

(bi,j)1≤i≤r,1≤j≤t/ℓ.

Decryption: Every user h in P uses all his keys, denoted by kBi,hi
,

1 ≤ i ≤ r, to compute mi = bi,hi − kBi,hi
for all 1 ≤ i ≤ r.

Theorem 8.1.3 ([25]) Suppose t and ℓ are integers, where ℓ ≥ 2 divides t.
Then there is a (t,≤ w, n)-OTBES having information rate

(
t−1
ℓ−1

)
(
t+w−1
ℓ−1

) ,

broadcast information rate ℓ/t, and total information rate

(
t−1
ℓ−1

)
(
t+w
ℓ

)
+
(
t−1
ℓ−1

) .
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Proof. For each user h ∈ P , we show that h can decrypt the broadcast. For
each i (1 ≤ i ≤ r), there is a block Bi,hi ∈ Ci such that h ∈ Bi,hi . Thus, h can
compute all the keys kBi,hi

∈ Ci such that h ∈ Bi,hi . Hence, h can compute
all the keys kBi,hi

, 1 ≤ i ≤ r, and then compute mi = bi,hi − kBi,hi
, for all

1 ≤ i ≤ r. Therefore, each user in P can recover the message mP .
Next, we show that a coalition of w users disjoint from a privileged set P

has no information about mP after observation of the broadcast. Indeed, it
can be proved that, if |P | = t, the vector (kQ : Q ⊆ P, |Q| = ℓ) is uniformly

distributed in F
(tℓ)
q . Then the

(
t
ℓ

)
keys kQ’s appear to be independent random

elements in Fq. Each of these keys is used to encrypt one element in Fq, so
these keys function as a one-time pad.

It is easy to see that the bit-length of the secret information of each user is(
t+w−1
ℓ−1

)
log q, while the length of the broadcast message is

(
t
ℓ

)
log q. Therefore,

the claimed information rates follow. ✷

We illustrate the Blundo et al. OTBES with an example (see [25]).

Example 8.1.4 Let U = {1, . . . , n}. Assume t = 2 and ℓ = 2. Let P =
{1, 2, 3, 4, 5, 6}. In the key predistribution phase, the TA constructs a random
symmetric polynomial in variables x and y with coefficients in Fq, in which
each of the degrees of x and y is at most w:

f(x, y) =

w∑

i=0

w∑

j=0

aijx
iyj, where aij = aji for all 0 ≤ i, j ≤ w.

For each 1 ≤ i ≤ n, the TA computes a polynomial gi(x) = f(x, yi) and
gives gi(x) to the user i as his secret information, where the values yi ∈ Fq

(1 ≤ i ≤ n) are publicly known.
Next, the

(
6
2

)
= 15 pairs of users in P can be partitioned into r =

(
5
1

)
= 5

disjoint parallel classes, as follows:

C1 = {{5, 6}, {1, 4}, {2, 3}} C2 = {{1, 5}, {2, 6}, {3, 4}}
C3 = {{2, 5}, {1, 3}, {4, 6}} C4 = {{3, 5}, {1, 6}, {2, 4}}
C5 = {{4, 5}, {3, 6}, {1, 2}}.

Suppose the TA wants to broadcast mP = (m1,m2,m3,m4,m5) ∈ F5
q to

the users in P . The TA broadcasts bP , where bP consists of the following 15
values:

b1 = k5,6 +m1 b2 = k1,4 +m1 b3 = k2,3 +m1

b4 = k1,5 +m2 b5 = k2,6 +m2 b6 = k3,4 +m2

b7 = k2,5 +m3 b8 = k1,3 +m3 b9 = k4,6 +m3

b10 = k3,5 +m4 b11 = k1,6 +m4 b12 = k2,4 +m4

b13 = k4,5 +m5 b14 = k3,6 +m5 b15 = k1,2 +m5,

where ki,j = f(yi, yj) = gi(yj) = gj(yi) ∈ Fq.
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Now, we see, for instance, how user 4 can decrypt the broadcast to recover
mP . Since user 4 knows five keys k1,4, k3,4, k4,6, k2,4, and k4,5, he can then
calculate

m1 = b2 − k1,4 = b2 − f(y1, y4)
m2 = b6 − k3,4 = b6 − f(y3, y4)
m3 = b9 − k4,6 = b9 − f(y6, y4)
m4 = b12 − k2,4 = b12 − f(y2, y4)
m5 = b13 − k4,5 = b13 − f(y5, y4).

8.1.3 KIO Construction

In [155], Stinson gave a general construction of (P ,F , n)-OTBESs that
combines a key predistribution scheme (KPS) and an ideal secret sharing
scheme (ISSS).

Key Predistribution: The TA chooses v independent (Pi,Fi, n)-
KPSs, 1 ≤ i ≤ v, and distributes keys to the users in U in accordance
with these KPSs.

Broadcast: To encrypt a secret message mP for a privileged set P ∈ P ,
the TA splits mP into v shares s1, . . . , sv using an ideal (t, v)-threshold
scheme. For 1 ≤ i ≤ v, the TA encrypts the share si with a key ki from
the (Pi,Fi, n)-KPS, in a way that the following conditions are satisfied:

(i) Every user j ∈ P can compute at least t of the keys k1, . . . , kv
(hence user j has t shares of mP and can reconstruct mP );

(ii) Any coalition F ∈ F such that F ∩ P = ∅ can compute at most
t−1 of the keys k1, . . . , kv (hence F can obtain at most t−1 shares
from s1, . . . , sv, and therefore F cannot obtain any information
about mP ).

Decryption: Every user j in P uses t keys to decrypt the t shares of
the (t, v)-threshold scheme, and then reconstructs mP .

Although the idea of the KIO construction is quite simple, it is not straight-
forward to see how to choose appropriate (Pi,Fi, n)-KPSs such that the two
conditions in the broadcast phase are satisfied, so that the required (P ,F , n)-
OTBES can be obtained. To solve this problem, we next give an implementa-
tion of the general KIO construction from the Fiat-Naor KPS.

Suppose that B = {B1, . . . , Bv} is a family of subsets of U , where B is
public knowledge. Let α ≥ 0 be an integer. For each Bj (1 ≤ j ≤ v), suppose
a Fiat-Naor (≤ |Bj |,≤ α, |Bj |)-KPS is constructed with respect to the user
set Bj . The secret keys associated with the jth scheme are denoted by kj,C ,
for any C ⊆ Bj and |C| ≤ α. Note that, according to the Fiat-Naor KPS, the
value kj,C is given to every user in Bj \ C.

Let F ⊆ 2U . Assume that the following two conditions are satisfied:
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(i) For every i ∈ U ,
|{Bj ∈ B : i ∈ Bj}| ≥ t;

(ii) For each F ∈ F ,

|{Bj ∈ B : |F ∩Bj | ≥ α+ 1}| ≤ t− 1.

We can then construct a (≤ n,F , n)-OTBES as follows. Let P ⊆ U . To
broadcast a message mP to the users in P , the TA applies the following
algorithm:

(i) For each 1 ≤ j ≤ v, the TA computes a share sj ∈ Fq from a (t, v)-
threshold scheme with respect to the secret mP .

(ii) For each Bj ∈ B, the TA computes the key kj for the set P ∩Bj in the
Fiat-Naor (≤ |Bj |,≤ α, |Bj |)-KPS implemented on the user set Bj :

kj =
∑

C⊆Bj:C∩P=∅,|C|≤α

kj,C .

(iii) The TA broadcasts

bP = (bj
def
= sj + kj : 1 ≤ j ≤ v).

We show that the above algorithm for the broadcast indeed results in a
(≤ n,F , n)-OTBES. Consider a user i ∈ P . We let Ai = {j : i ∈ Bj}. Then,
the user i can compute kj for every j ∈ Ai. It follows that, for each j ∈ Ai,
i can compute sj = bj − kj . Since, by condition (i) above, |Ai| ≥ t, it follows
that the user i has at least t shares of the (t, v)-threshold scheme, therefore
the user i can recover the secret mP .

On the other hand, let F ∈ F with F ∩ P = ∅. Let AF = {j : |F ∩Bj | ≥
α + 1}. Then the coalition F can compute kj , and so sj , for every j ∈ AF .
However, it has no information on kj , j 6∈ AF , and hence no information about
sj , j /∈ AF . By condition (ii) above, |AF | ≤ t− 1, hence F has at most t− 1
shares of the (t, v)-threshold scheme. Therefore, F has no information about
the secret mP .

Next, we give another implementation of the KIO construction for (≤ n,≤
w, n)-OTBESs, due to Stinson [155], from BIBDs (balanced incomplete
block designs).

Let Y be a set of n elements (called points), and let A = {A1, . . . , Aβ} be
a family of k-subsets of Y (called blocks). We say (Y,A) is an (n, β, r, k, λ)-
BIBD if each point is contained in exactly r blocks and any pair of points
occurs in exactly λ blocks. It is a well-known fact that, in a (n, β, r, k, λ)-
BIBD, we have the following two identities: nr = βk and λ(n− 1) = r(k− 1).
For other results on BIBDs and design theory, we refer the reader to Beth,
Jungnickel, and Lenz [13].

© 2013 Taylor & Francis Group, LLC



Broadcast Encryption and Multicast Security 239

Theorem 8.1.5 ([155]) Suppose there is an (n, β, r, k, λ)-BIBD such that
r > λ

(
w
2

)
. Then there exists a (≤ n,≤ w, n)-OTBES having information rate

1/(rk), broadcast information rate 1/β, and total information rate

1

λ
(
w
2

)
+ 1 + β(k + 1)

.

Proof. Let U be the set of users, and let B be a family of subsets of U . Suppose
(U ,B) is an (n, β, r, k, λ)-BIBD such that r > λ

(
w
2

)
. Note that, for any w-

subset F ⊆ U , F intersects at most λ
(
w
2

)
blocks in at least two points. We

choose α = 1 and t = λ
(
w
2

)
+ 1 for a (t, β)-threshold scheme in the KIO

construction, then it is easy to check that the two conditions for a (≤ n,≤
w, n)-OTBES in the KIO construction are satisfied. Thus, we obtain a (≤ n,≤
w, n)-OTBES.

Next, we calculate the values of the associated information rates. We use
the Shamir threshold scheme for the required (λ

(
w
2

)
+1, β)-threshold scheme,

which is based on a polynomial of degree at most λ
(
w
2

)
over a finite field Fq.

The following entropies are straightforward to compute:

H(BP ) = β log q
H(MP ) = log q
H(Ui) = rk log q
H(UU ) = β(k + 1) log q

H(BP | UU ) =
(
λ
(
w
2

)
+ 1
)
log q

H(UU ,BP ) =
(
λ
(
w
2

)
+ 1 + β(k + 1)

)
log q.

Therefore, the information rate is

ρ =
log q

maxi∈U H(Ui)
=

log q

rk log q
=

1

rk
;

the broadcast information rate is

ρB =
log q

maxP∈P H(BP )
=

log q

β log q
=

1

β
;

and the total information rate is

ρT =
log q

maxP∈P H(UU ,BP )
=

1

λ
(
w
2

)
+ 1 + β(k + 1)

.

✷

Example 8.1.6 ([155]) We construct a (≤ 7,≤ 2, 7)-OTBES from a (7, 7, 3,
3, 1)-BIBD. The blocks of the BIBD are as follows:

B1 = {1, 2, 4} B2 = {2, 3, 5}
B3 = {3, 4, 6} B4 = {4, 5, 7}
B5 = {1, 5, 6} B6 = {2, 6, 7}
B7 = {1, 3, 7}.
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A total of seven Fiat-Naor (≤ 3,≤ 1, 3)-KPSs, denoted by Σi (1 ≤ i ≤ 7),
are constructed. Each Σi has four keys, and each user receives three out of
these four keys. The keys are distributed in accordance to the following rules:
Suppose Bi = {a, b, c}, then a key ki,∅ is given to a, b, and c, a key ki,a is given
to b and c, a key ki,b is given to a and c, and a key ki,c is given to a and b.

It follows that a total of nine keys are given to each user, as listed in
Table 8.1.

TABLE 8.1: Example of seven Fiat-Naor (≤ 3,≤ 1, 3)-KPSs.

1 2 3 4 5 6 7
k1,∅ k1,∅ k2,∅ k1,∅ k2,∅ k3,∅ k4,∅
k1,2 k1,1 k2,2 k1,1 k2,2 k3,3 k4,4
k1,4 k1,4 k2,5 k1,2 k2,3 k3,4 k4,5
k5,∅ k2,∅ k3,∅ k3,∅ k4,∅ k5,∅ k6,∅
k5,5 k2,3 k3,4 k3,3 k4,4 k5,1 k6,2
k5,6 k2,5 k3,6 k3,6 k4,7 k5,5 k6,6
k7,∅ k6,∅ k7,∅ k4,∅ k5,∅ k6,∅ k7,∅
k7,3 k6,6 k7,1 k4,5 k5,1 k6,2 k7,1
k7,7 k6,7 k7,7 k4,7 k5,6 k6,7 k7,3

Now, suppose that the TA wants to broadcast a message mP to a set
P = {2, 3, 5}. The seven keys that will be used in the Fiat-Naor (≤ 3,≤ 1, 3)-
KPSs are computed as follows:

k1 = k1,∅ + k1,1 + k1,4
k2 = k2,∅
k3 = k3,∅ + k3,6 + k3,4
k4 = k4,∅ + k4,4 + k4,7
k5 = k5,∅ + k5,1 + k5,6
k6 = k6,∅ + k6,6 + k6,7
k7 = k7,∅ + k7,1 + k7,7.

Suppose that a Shamir (2, 7)-threshold scheme is implemented on the seven
blocks and that the public value associated with the block Bj is xj ∈ Fq

(1 ≤ j ≤ 7). The TA chooses a random linear polynomial f(x) = mP + ax
for some a ∈ Fq. Then the TA computes sj = mP + axj and broadcasts
bj = kj + sj (1 ≤ j ≤ 7). Therefore, the broadcast bP consists of the following
seven values:

b1 = k1,∅ + k1,1 + k1,4 + ax1 +mP

b2 = k2,∅ + ax2 +mP

b3 = k3,∅ + k3,6 + k3,4 + ax3 +mP

b4 = k4,∅ + k4,4 + k4,7 + ax4 +mP

b5 = k5,∅ + k5,1 + k5,6 + ax5 +mP

b6 = k6,∅ + k6,6 + k6,7 + ax6 +mP

b7 = k7,∅ + k7,1 + k7,7 + ax7 +mP .
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8.1.4 The Fiat-Naor OTBES

In this subsection, we present a construction of OTBESs, due to Fiat and
Naor [57], based on perfect hash families. This is one of the first constructions
of OTBESs.

Suppose H is a PHF(N ;n,m,w) from A = {1, . . . , n} to B = {1, . . . ,m}.
Let U = A = {1, . . . , n}. For each element (h, j) ∈ H×B, we associate a block

Bh,j = {i : h(i) = j},

and let
B = {Bh,j : (h, j) ∈ H×B}.

For each pair (h, j) ∈ H × B, suppose a Fiat-Naor (≤ |Bh,j |,≤ 1, |Bh,j|)-
KPS with respect to the user set Bh,j is implemented in the key distribution
phase. The secret values associated with the (h, j)th KPS are denoted by
k(h,j),C , where C ⊆ Bh,j , and |C| ≤ 1. The value k(h,j),C is given to every
user in Bh,j \ C.

Now we construct a (≤ n,≤ w, n)-OTBES as follows. Let P ⊆ U . The TA
broadcasts a message mP ∈ Fq to P using the following algorithm:

(i) For each h ∈ H, the TA computes a share sh ∈ Fq of an (N,N)-threshold
scheme corresponding to the secret mP , i.e.,

mP =
∑

h∈H
sh.

(ii) For each Bh,j ∈ B, the TA computes the key kh,j corresponding to the
set P ∩Bh,j in the Fiat-Naor (≤ |Bh,j |,≤ 1, |Bh,j|)-KPS with respect to
the user set Bh,j :

kh,j =
∑

C⊆Bh,j :C∩P=∅,|C|≤1

k(h,j),C .

(iii) For each Bh,j ∈ B, the TA computes

bh,j = sh + kh,j .

(iv) The TA then broadcasts

bP = (bh,j : Bh,j ∈ B).

Note that it may be the case that Bh,j is empty for some h and j. When
this is the case, we exclude Bh,j from B. It follows that |B| ≤ Nm. We have
the following result.

Theorem 8.1.7 ([57, 155]) Suppose that there is a PHF(N ;n,m,w). Then
there is a (≤ n,≤ w, n)-OTBES having information rate at least 1/(nN),
broadcast information rate at least 1/(mN), and total information rate at
least 1/((n+m+ 1)N).
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Proof. Suppose F, P ⊆ U with |F | ≤ w and P ∩ F = ∅. Let i be a user in P .
For each h ∈ H, we have i ∈ Bh,h(i). It follows that the user i can compute
kh,h(i), and so sh = bh,h(i)− kh,h(i), for each h ∈ H. Therefore, i can compute
the message mP =

∑
h∈H sh.

Next, we show that the coalition F has no information about mP . Assume
F = {i1, . . . , iℓ}. Since |F | ≤ w, there exists a hash function h∗ ∈ H such that
h∗ is one-to-one on F . It follows that

|F ∩Bh∗,j| ≤ 1,

for any j ∈ B. This implies that F cannot compute kh∗,j for any j ∈ B, hence
F has no information about sh∗ , and thus no information about mP .

We have the following entropies of the resulting scheme:

H(BP ) ≤ mN log q
H(Ui) ≤ nN log q
H(UU ) ≤ (n+m)N log q

H(BP | UU ) = N log q
H(UU ,BP ) ≤ (n+m+ 1)N log q.

Thus, the claimed information rates for the scheme follow immediately. ✷

A class of PHFs of particular interest is when w = 2. In this case, we know
that there exists an explicit construction such that N(n,m, 2) = ⌈logn/ logm⌉
(cf. Theorem 7.6.2).

Corollary 8.1.8 Suppose m ≥ 2 is an integer and n is an integral power of 2.
Then there is an (≤ n,≤ 2, n)-OTBES having information rate logm/(n logn)
and broadcast information rate logm/(m logn) (see Theorem 7.6.2).

We give an example to illustrate the above construction method.

Example 8.1.9 Suppose n = 5 and m = w = 2. Since

⌈
log 5

log 2

⌉
= 3,

we have a PHF(3; 5, 2, 2), say H = {f, g, h} from {1, 2, 3, 4, 5} to {1, 2}, given
in Table 8.2.

TABLE 8.2: Example of a PHF(3; 5, 2, 2).

1 2 3 4 5
f 1 1 1 2 2
g 1 1 2 1 2
h 1 2 1 1 2
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We then have the following collection of blocks:

B1 = Bf,1 = {1, 2, 3} B2 = Bf,2 = {4, 5}
B3 = Bg,1 = {1, 2, 4} B4 = Bg,2 = {3, 5}
B5 = Bh,1 = {1, 3, 4} B6 = Bh,2 = {2, 5}.

For each block Bi, we set up a Fiat-Naor KPS for the user set Bi and
distribute the keys to the users according to Table 8.3.

TABLE 8.3: Example of the Fiat-Naor KPS for Example 8.1.9.

1 2 3 4 5
k1,∅ k1,∅ k1,∅ k2,∅ k2,∅
k1,2 k1,1 k1,1 k2,5 k2,4
k1,3 k1,3 k1,2
k3,∅ k3,∅ k4,∅ k3,∅ k4,∅
k3,2 k3,1 k4,5 k3,1 k4,3
k3,4 k3,4 k3,2
k5,∅ k6,∅ k5,∅ k5,∅ k6,∅
k5,3 k6,5 k5,1 k5,1 k6,2
k5,4 k5,4 k5,3

Suppose the privileged set is P = {2, 4, 5}. The following keys will be used
in the six Fiat-Naor KPSs:

k1 = k1,∅ + k1,1 + k1,3
k2 = k2,∅
k3 = k3,∅ + k3,1
k4 = k4,∅ + k4,3
k5 = k5,∅ + k5,1 + k5,3
k6 = k6,∅.

Now, to broadcast the message mP , the TA will split mP into three shares
using a (3, 3)-threshold scheme, i.e., the TA chooses s1, s2, and s3 such that
mP = s1 + s2 + s3. The broadcast bP consists of the following six values:

b1 = k1 + s1
b2 = k2 + s1
b3 = k3 + s2
b4 = k4 + s2
b5 = k5 + s3
b6 = k6 + s3.
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8.2 Multicast Re-Keying Schemes

The main challenge in securing multicast applications has been to control
access to ensure that only authorized users can access the broadcast. Key
management schemes allocate keys to users such that it is possible for the
group controller to form new groups by sending multicast messages over public
channels. The authorized group is not fixed but changes over time. Hence,
efficient methods of re-keying are of central importance.

In a multicast re-keying scheme, during the initialization phase, the TA
allocates a (common) group key and some auxiliary keys to each user through
a secure channel. The auxiliary keys will be used during the key update phase
and are allocated such that unauthorized users cannot find the updated key.

The group is dynamic, i.e., at different times, different subgroups of the
initial group U are authorized to receive the multicast message. To allow
users of a specified subgroup to decrypt a broadcast message, the TA uses a
public (insecure) channel to multicast one or more messages that allow the
establishment of a new session key. The smallest change to U is by the eviction
of a single user or the joining of a new user. In both cases, the session key must
be changed: in the former case, so that the evicted user cannot access future
communication, while in the latter, a new session key must be established so
that the new user cannot access the old communication. To add a new user, a
new session key will be encrypted with the old session key and the secret key
of the new user. Hence, everyone, including the new user, will share the new
key. However, evicting a user is not straightforward.

The efficiency of multicast re-keying schemes is measured in terms of
communication complexity, key storage, and computation complexity. These
measure, respectively, the required bandwidth for the re-keying message, the
amount of secure storage for the TA and users, and the amount of computation
by each. We focus on the first two measures.

Let U = {1, . . . , n} denote the set of all users, called the multicast group,
and let TA denote the group center. We assume that TA 6∈ U . During the
initialization, each user of U obtains a shared session key kU and some auxiliary
keys from the TA. We may assume that each user joining the multicast group
has an authenticated secure unicast channel with the TA in the initialization
(in practice, this may be obtained by using a public key cryptosystem). After
the initialization phase and throughout the life of the system, the only means
of communication among the users and the TA is a multicast channel that
will be observed by all the users.

A re-keying scheme specifies an algorithm by which the TA may update
the session key for the following two operations: (i) the removal of the users
U \ P from the multicast group U and the updating of the session key kP

for a subgroup P ⊆ U ; (ii) the addition of the users of a subgroup P to the
multicast group U , where P ∩ U = ∅, and the generation of a new session key
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kP∪U known to all users in P ∪ U . We will only be concerned with re-keying
protocols for user removal, since, as we noted earlier, the joining of new users
is much simpler. We also assume there are at most w users who are corrupted
by the adversary.

A re-keying scheme enables the TA to give a new session key kP to a set
P of users by encrypting it in such a way that the users in P have enough key
information to decrypt it while the other users in U\P cannot do so. We model
the encryption with a publicly available black-box pair E,D, such that, given
a key k and a message m, E outputs a random ciphertext c = Ek(m); and,
given a ciphertext c and a key k, D outputs the plaintext m. This guarantees
that any user holding k will be able to decrypt and that any coalition of users
that cannot compute k gains no information from the ciphertext.

Formally, we define a re-keying scheme as follows.

Definition 8.2.1 A re-keying scheme consists of the following three
phases:

(i) Key Initialization: The TA generates a set of auxiliary keys K, and
securely distributes the auxiliary keys K(i) ⊆ K to the user i, for 1 ≤
i ≤ n.

(ii) Broadcast: To re-key the multicast group P ⊆ U (i.e., to evict the
users in U \ P ), the TA generates a new session key kP and broadcasts
the encrypted messages {Ek′(kP ) : k′ ∈ K′}, where Ek(·) is a sym-
metric cipher and K′ is the set of keys derived from K through certain
appropriate operations.

(iii) Re-Keying: Each user i in P can compute at least one element k′ in
K′ through certain appropriate operations on his auxiliary keys K(i), in
order to decrypt the message Ek′ (kP ), while any other user from U \ P
is unable to obtain any k′ in K′ and so cannot decrypt the broadcast
data.

A re-keying scheme is w-resilient if any coalition of up to w users from U \P
is unable to compute any keys in K′.

8.2.1 Re-Keying Schemes from Cover-Free Families

A general framework for multicast re-keying schemes can be described
through the combinatorial structure of its key allocation. Observe that, in
order to thwart the collusion attack by a group F of up to w malicious users,
for each user i, there must exist at least one key in K(i) which is unknown to
any other w users. Otherwise, K(i) is covered by the keys of the group of users
F , and so any multicast message that is decryptable by i is also decryptable
by the coalition of F . This property is exactly captured by the combinatorial
structure of cover-free families we have studied in Chapter 7. Multicast re-
keying schemes based on cover-free families were originally proposed by Kumar
et al. in [91]. They are also called blacklisting schemes.
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Recall that a (1, w)-CFF(v, n) (cf. Definition 7.5.3) is a set system (X,B)
in which no block is a subset of the union of w other blocks. Assume that the
auxiliary keys of the users and the system are allocated in accordance with
a (1, w)-CFF(v, n), i.e., K = X and Bi = K(i), i ∈ U . Then this results in a
re-keying scheme with n users and a total of v keys that can revoke up to w
users.

Theorem 8.2.2 If there exists a (1, w)-CFF(v, n), then there exists a w-
resilient re-keying scheme in which the number of auxiliary keys of the TA
is v, the number of keys for each user i is |Bi|, and the number of broadcast
transmissions to remove up to w users is at most v.

Proof. Denote the set of v keys in the system by X = {k1, . . . , kv}. Suppose
that F is a subset of users who are to be revoked. Assume |F | = w. The TA
chooses a new key kU\F . Then, for every

kj ∈ X \ ∪i∈FK(i),
the TA computes bj = Ekj (k

U\F ) and broadcasts bj . Due to the properties of

a cover-free family, it is easy to see that no user in F can compute kU\F , even
if all the users in F pool all their keys together. On the other hand, every user
h 6∈ F has at least one key from X \ ∪i∈FK(i). Therefore, h can decrypt at
least one of the ciphertexts bj ’s and can compute kU\F . ✷

Example 8.2.3 Let X = {1, 2, 3, 4, 5, 6, 7} and B = {B1, B2, B3, B4, B5, B6,
B7}, where

B1 = {2, 3, 5} B2 = {3, 4, 6} B3 = {4, 5, 7}
B4 = {1, 5, 6} B5 = {2, 6, 7} B6 = {1, 3, 7}
B7 = {1, 2, 4}.

Then (X,B) is a (1, 2)-CFF(7, 7). We construct a re-keying scheme based
on this cover-free family. The TA generates seven keys, k1, . . . , k7, and dis-
tributes the keys to each user in accordance with the underlying cover-free
family. Hence, user 1 receives the keys k2, k3, and k5, user 2 gets the keys
k3, k4, k6, and so on.

The scheme is 2-resilient. Suppose that users 3 and 6 are to be revoked. The
new key k′ is encrypted using all the keys not in {k4, k5, k7}∪{k1, k3, k7}. This
means that the broadcast consists of Ek2(k

′) and Ek6(k
′). Obviously, users 3

and 6 are unable to get the new key k′. However, users 1, 5, and 7 know k2
and can therefore obtain k′ from the first ciphertext, while users 2 and 4 can
recover k′ from the second ciphertext.

8.2.2 Re-Keying Schemes from Secret Sharing

Anzai, Matsuzaki, and Matsumoto in [3], and independently Naor and
Pinkas in [111], proposed a multicast re-keying scheme based on the Shamir
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threshold scheme. The basic idea of their re-keying scheme is as follows. The
TA uses a Shamir (w+1, n)-threshold scheme to construct n shares, s1, . . . , sn,
for the group key k. Every user j is given the share sj . To revoke a set of w
users F = {i1, . . . , iw}, the TA simply broadcasts the w shares of revoked
users, si1 , . . . , siw . After the broadcast, each user not in F has w + 1 shares
and can reconstruct the secret. It is easy to see that, if the number of revoked
users is less than w, the TA can add some dump shares and broadcasts w
shares (shares from the revoked users, plus the dump shares). The above
basic scheme only allows a single revocation. However, the scheme can be
modified for multiple revocations, through combining with the Diffie-Hellman
key exchange protocol, and its security is based on the decisional Diffie-
Hellman problem. We describe the modified scheme as follows.

Assume that p and q are large primes such that q | p−1, and g is a generator
of the multiplicative group Z∗

p, in which the decisional Diffie-Hellman problem
is intractable.

Key Initialization: The TA chooses a secret key k ∈ Zq and con-
structs the polynomial

F (x) = k +

w∑

j=1

ajx
j mod q,

where aj are random values in Zq. The TA generates shares sxi = F (xi)
for 1 ≤ i ≤ n, where x1, . . . , xn ∈ Zq are the public x-coordinates of
the users, and distributes si to user i, for 1 ≤ i ≤ n, through secure
channels.

Broadcast: To revoke w users, say F = {i1, . . . , iw}, the TA chooses
a random value r ∈ Zq and broadcasts gr, together with yi1 =
grsi1 , . . . , yiw = grsiw .

Re-Keying: A non-revoked user, say iw+1, can compute his own expo-
nentiated share

yiw+1 = grsiw+1 = (gr)siw+1 .

Then the user iw+1 can compute the new common key k = grk by

grk =

w+1∏

j=1

y
bj
ij

mod p,

where
bj =

∏

1≤ℓ≤w+1,ℓ 6=j

xiℓ
xiℓ − xij

mod q.

Theorem 8.2.4 ([111]) The construction above gives rise to a w-resilient re-
keying scheme in which the secret key of each user is a single element of Zq,
and the broadcast message of each revocation is of length O(logw). Moreover,
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the scheme can be used for virtually an unlimited number of re-keyings, of up
to w users per revocation.

Proof. The proof is based on the decisional Diffie-Hellman problem. For the
sake of clarity, we show the case when w = 1.

Assume that the scheme is insecure with parameter w = 1 and can be
broken by a user v ∈ U . This user can be simulated by an algorithm D′ which
receives the following inputs: a value sxv = F (xv) of the linear polynomial
F (x), polynomially many tuples 〈gri , griF (xv), griF (0)〉 generated with random
choices of ri’s, and a pair (gr, grF (xv)). If the scheme is insecure, then D′ can
distinguish between grF (0) and a random value.

We construct an algorithm D that uses D′ to solve the decisional Diffie-
Hellman problem. The algorithm D is given inputs ga, gb, and a value C
which is either gab or random. Let D generate inputs to D′ (with F (0) = b
and r = a): it generates a random key 〈xv, F (xv)〉 and gives to D′; it then
generates random ri’s and gives the tuples 〈gri , griF (xv), grib〉 to D′; it also
gives the pair (ga, C) to D′. Let the outputs of D be the same answer that D′

outputs. Then D’s success probability of solving the decisional Diffie-Hellman
problem is the same as D′’s probability of breaking the re-keying scheme. ✷

8.2.3 Logical Key Hierarchy Schemes

Logical key hierarchy (LKH) schemes were first proposed by Wallner
et al. in [168], and independently by Wong et al. in [175]. The n users of the
multicast group are associated with the leaves of a q-ary tree; each node and
leaf of the tree is assigned a key. A user receives all the keys in the path from
his associated node to the root. Hence, the key corresponding to the root node
is shared by all the users.

Figure 8.1 is an LKH scheme based on a binary tree for eight users. Each
user holds the keys on the path from its leaf node to the root. The key shared
by all the group users is k0. To evict user u1, the TA chooses a key k′0,
encrypts it with k2.2, k1.2, and k0.2 and broadcasts Ek2.2 (k

′
0), Ek1.2 (k

′
0), and

Ek0.2(k
′
0) . All users except u1 will have at least one of the keys used for

encryption and so can obtain the new group key k′0. Each user stores O(log n)
keys and the TA has to store O(n) keys. The communication complexity for
each key update is O(log n). A number of variations of this scheme, with the
aim of lowering communication cost, have also been proposed. For example,
the scheme proposed by Canetti et al. [34] uses hash functions to improve
communication complexity while maintaining the key storage of the Wallner
et al. scheme.

In [132], Safavi-Naini et al. gave a variant of the Wallner et al. scheme,
called the w-resilient LKH, which we describe below.

Consider a full q-ary tree F of height ℓ. To each leaf, we associate a q-ary
vector of length ℓ corresponding to the set of keys from that leaf to the root
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FIGURE 8.1: An example of an LKH scheme with eight users.
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of the tree. Thus, a leaf can be uniquely identified with a vector of length ℓ.
For each level i, 1 ≤ i ≤ ℓ, we choose q values {ai1, ai2, . . . , aiq} and use them

to label the qi nodes of the ith level of the tree such that the q nodes with
the same parent are labeled with distinct values.

Definition 8.2.5 Let L be a subset of leaves of a full q-ary tree T . Let T (L)
be a subtree of T with L as its set of leaves. The subtree T (L) is called a
w-resilient LKH if, for any w+1 leaves {Lj1 , . . . , Ljw , Lj} ⊆ L, there exists
i such that the ith component of the vector attached to Lj is different from
that of Ljs , for all 1 ≤ s ≤ w.

When |L| = n, we call T (L) an (n, ℓ, w) q-ary resilient LKH. Figure 8.2
shows an example of a (9, 3, 2) ternary resilient LKH.

We describe two multicast re-keying schemes, called the OR and the AND
re-keying schemes, built on the key initialization scheme from the q-ary re-
silient LKH.

8.2.3.1 Key Initialization Scheme from Resilient LKH

Suppose that T (L) is an (n, ℓ, w) q-ary resilient LKH with L =
{L1, . . . , Ln} as the the set of leaves. We associate each leaf with a user in the
multicast group. The scheme proceeds as follows:

(i) For each 1 ≤ i ≤ ℓ, the TA independently chooses q auxiliary keys
{ki1, . . . , kiq} and assigns them to the nodes in the ith level of T (L) such
that each node receives a key in accordance with its labeled value, i.e.,
if a node is labeled as ais, the key assigned to that node is kis.
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FIGURE 8.2: An example of a 2-resilient LKH from a full ternary tree.
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(ii) Each user is given the keys on the nodes along the path from his leaf to
the root.

The tree T (L) is of height ℓ and each level has q keys, requiring the TA
to generate qℓ node keys. There are ℓ nodes from each leaf to the root, so
each user receives exactly ℓ node keys. Since the tree is w-resilient, for each
user j, there exists i such that, in the ith level of the tree, the labeled value
of the node associated with the user j is different from the labeled values of
the nodes associated with any set of users {j1, . . . , jw} different from j, so
the key assigned to the user j at level i is different from the keys assigned to
{j1, . . . , jw}.
Theorem 8.2.6 In the above key initialization scheme, the numbers of aux-
iliary keys for the TA and each user are qℓ and ℓ, respectively. Moreover, for
any w + 1 users {j1, . . . , jw, j}, we have,

|K(j) \ ∪ws=1K(js)| ≥ 1.

In other words, the family of the key sets for the users and the set of the TA’s
keys forms a (1, w)-CFF(qℓ, n).

Next, we give two re-keying schemes based on the above key initializa-
tion scheme, called the OR broadcast scheme and the AND broadcast
scheme.
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8.2.3.2 The OR Broadcast Scheme

Broadcast: To form a new multicast group P ⊆ U , the TA randomly
chooses a session key kP , encrypts it with those keys not belonging to
the users in U \P , and broadcasts it to all the users. In other words, the
TA broadcasts

{Ek(k
P ) : k ∈ K, k 6∈ K(U \ P )},

where K(U \ P ) = ∪i∈U\PK(i).

Re-Keying: Each user j ∈ P uses one of his keys k ∈ K(j) to decrypt
Ek(k

P ) and obtain the session key kP .

The key initialization is based on a q-ary w-resilient LKH. The users out-
side P do not possess the keys that are used to encrypt kP in the broad-
cast, and are therefore unable to decrypt the encrypted kP , even if they col-
lude. On the other hand, any user in P has at least one key to decrypt.
Indeed, by assumption, there are at most w revoked users; we may assume
that U \ P = {i1, . . . , is} and s ≤ w. For each j ∈ P , from Theorem 8.2.6, we
know that there exists a key kj ∈ K(j)\∪st=1K(it). Thus, by the OR broadcast
scheme, user j can use this key kj to decrypt one of the broadcast messages
Ekj (k

P ) and obtain the new session key. From Theorem 8.2.2, it is obvious
that the numbers of keys for each user and the TA are ℓ and qℓ, respectively.
The number of broadcast ciphertexts is |K| − |K(U \ P )| ≤ qℓ − ℓ = (q − 1)ℓ.
We obtain the following result.

Theorem 8.2.7 If there exists an (n, ℓ, w) q-ary resilient LKH, then there
exists a w-resilient re-keying OR scheme in which the numbers of auxiliary
keys for each user and for the TA are ℓ and qℓ, respectively, and the number
of broadcast transmissions to revoke up to w users is not greater than (q−1)ℓ.

We note that for the OR scheme based on a w-resilient LKH, the number
of revoked users is at most w. This means that the scheme can be used to
form any subgroup of size n− i, for any 1 ≤ i ≤ w.

8.2.3.3 The AND Broadcast Scheme

Broadcast: To form a new multicast group P ⊆ U , for each j ∈ P , the
TA computes

k̂(j) =
∑

k∈K(j)

k,

where we assume all the keys are from a finite field or an abelian group.
The TA then randomly chooses a new session key kP and broadcasts

{E
k̂(j)

(kP ) : j ∈ P}.
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Re-Keying: Each user j in P computes k̂(j) and decrypts E
k̂(j)

(kP ) to

obtain the new session key kP .

Again, the key initialization is based on the q-ary resilient LKH. Each user

j ∈ P can compute the key k̂(j) =
∑

k∈K(j) k and decrypt E
k̂(j)

(kP ) to obtain

the new session key. We can show that the coalition of any w users i1, . . . , iw
outside P has no information to compute kP . Indeed, for each user j ∈ P ,
from Theorem 8.2.2, we know that there exists at least one key in K(j) that is
unknown to the coalition of users i1, . . . , iw, so it is unable to compute k̂(j).

Theorem 8.2.8 If there exists an (n, ℓ, w) q-ary resilient LKH, then there
exists a w-resilient re-keying AND scheme. To form a new multicast group
P ⊆ U , it requires each user to store ℓ keys and the TA to store qℓ keys. The
size of the transmissions for the encrypted new session key is |P |.

We note that the AND scheme can be used to revoke any number of users
and so form multicast groups of any size. Compared to the OR scheme, which
can form a new multicast group with at least n−w users (i.e., revoke at most
w users), the AND scheme is more flexible in terms of the size of the multicast
groups.

8.3 Re-Keying Schemes with Dynamic Group Con-

trollers

All the re-keying schemes in the previous section have a single, fixed group
controller, the TA, who decides and manages the key updates. In many appli-
cations, such as dynamic conferences, users in the group may wish to transmit
data to a subgroup of users. If the single group controller model is used, then
either all communication from the users goes through the group controller,
who then disseminates to the designated group through multicast, or numer-
ous session keys need to be established. These solutions have problems such
as single point of failure, communication overhead for the group controller,
and communication delay.

In contrast to the previous solution in which the controller is fixed, we
consider the scenario where the group controller is dynamic, that is, after
the system initialization, each user can behave like a TA and establish a new
subgroup. This is achieved by a single broadcast from a user to the group,
which can only be decrypted by the users of the target subgroup.

A trivial solution to the problem of dynamic controllers is to take the
scheme of a single controller as a building block and associate a single con-
troller scheme to each user such that the corresponding user is the TA and
the rest of the group are the receivers. The obvious drawback of this solution
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is that the key storage of each user is prohibitively large, namely, n− 1 times
the storage of a user plus the storage of the TA in a single controller scheme,
which is linear in n. For large groups, this is very inefficient.

In the model of multicast re-keying with dynamic controllers, we assume
that there is a TA who initializes the system by assigning auxiliary keys to
the group. After the initialization phase, the only means of communication
among the group users is via multicast channels on which any user in the
group may broadcast messages that will be received by all the users in the
group. The goal is to enable any user to securely establish a common secret
(e.g., a session key) among the users of a designated subgroup.

Formally, a dynamic controller re-keying scheme consists of three
phases:

(i) Key Initialization:This is the phase during which the TA generates
and securely distributes the auxiliary keys to each user of the group.

(ii) Broadcast: Any user of the group (or a subset of the group) broad-
casts an encrypted secret which is only decryptable by the users from a
specified target group.

(iii) Re-Keying: The authorized users are able to decrypt the encrypted
secret while unauthorized users are not.

We also call the scheme w-resilient if any collusion of up to w unautho-
rized users cannot find the secret.

Re-keying schemes with dynamic group controllers were introduced by
Safavi-Naini and Wang in [131]. We describe their two schemes based on per-
fect hash families.

In this section, we denote the set of users of the group by U = {u1, . . . , un}.

8.3.1 The OR Re-Keying Scheme with Dynamic Controller

Assume that, in the key initialization, the users u1, . . . , un share a common
key kU , and each user ui is secretly given a set of auxiliary keys K(ui) ⊆ K,
where K denotes the set of all auxiliary keys. Later, the user ui wants to
update the secret for a new group U \ F for some F ⊆ U . In other words, a
subset F is to be revoked from the group.

Key Initialization: Let H = {h1, . . . , hN} be a PHF(N ;n,m,w+2)
from {1, 2, . . . , n} to {1, 2, . . . ,m}. The TA generates a group key kU and
a set of auxiliary keys K, consisting of N symmetric m × m matrices
with auxiliary keys as entries,

G1 = (k1i,j)1≤i,j≤m, . . . , G
N = (kNi,j)1≤i,j≤m,

where kℓi,j = kℓj,i for all ℓ, i, j. To each user ui, the TA securely sends

the group key kU and the set of auxiliary keys K(ui), consisting of the
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hℓ(i)th row of the matrix Gℓ, for all 1 ≤ ℓ ≤ N , i.e.,

K(ui) = {(k1h1(i),1
, . . . , k1h1(i),m

), . . . , (kNhN (i),1, . . . , k
N
hN (i),m)}.

Broadcast: Suppose that a user ui wants to establish a secret for a
group U \ F . He randomly chooses a secret kU\F and encrypts it with
all his auxiliary keys except those belonging to F , and broadcasts the
encrypted messages. In other words, the user ui broadcasts

{Ek(k
U\F ) : k ∈ K(ui), k 6∈ K(F )},

where K(F ) = ∪u∈FK(u).

Decryption: Each user uj in U \ F uses one of his auxiliary keys to
decrypt the encrypted secret in the broadcast.

Theorem 8.3.1 If there exists a PHF(N ;n,m,w + 2), then there exists a
w-resilient re-keying scheme with dynamic controller in which the number of
auxiliary keys for each user is Nm. To multicast a secret kU\F , for a group
U \ F , where |F | ≤ w, the number of transmissions for the ciphertexts is less
than mN .

Proof. We apply the above OR re-keying scheme with dynamic controller,
keeping the same notation. Assume ui wants to establish a common key for a
group U \ F , where |F | ≤ w. Clearly, the users in F , even if they collude, do
not possess the keys used to encrypt kU\F in the broadcast and are hence un-
able to compute the secret kU\F . We are left to show that any user uj in U \F
has at least one key to decrypt one of the broadcast ciphertexts, and hence
obtain kU\F . Assume F = {ui1 , . . . , uiw}. Let X = {i1, . . . , iw, i, j}, where
i, j 6∈ F . Since H is a PHF(N ;n,m,w+2), we know there exists hα ∈ H such
that hα is perfect on X , which means that hα(i1), . . . , hα(iw), hα(i), hα(j) are
all distinct. It follows that kαhα(i),hα(j) ∈ K(ui) \ K(F ). The user uj holds the

keys of the hα(j)th row of the matrix Gα and so possesses the key kαhα(j),hα(i).
Since the matrix Gα is symmetric, it follows that kαhα(i),hα(j) = kαhα(j),hα(i),

and so ui and uj share a common key which is not in K(U \ F ), and this key
can be used by uj to decrypt the ciphertext in the broadcast. The various
parameters of the schemes are obvious. ✷

From Section 7.6 (more specifically, Theorem 7.6.13) we know that there
exist explicit constructions for PHF(N ;n,m,w) with N = O(log n). The fol-
lowing corollary is immediate.

Corollary 8.3.2 For a given w, there exists a w-resilient re-keying scheme
with dynamic controller in which the number of auxiliary keys for each user
is O(log n). To establish a common key for a multicast group to exclude up to
w users, the number of transmissions for the ciphertexts is O(log n) as well.
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Next, we show how to improve the communication efficiency of the above
OR scheme using erasure codes. The basic idea is to first encode the secret
with an erasure code, then apply the OR re-keying scheme (slightly modified)
to the new codeword.

We begin with the definition of an erasure code.

Definition 8.3.3 An [n, t,m]-erasure code over a finite field Fq is a
polynomial-time function C : Ft

q → Fn
q for which there exists a polynomial-

time function D : F̂q

n → Ft
q, where F̂q = Fq ∪ {⊥}, such that: for all v ∈ Ft

q,

if u ∈ F̂q

n
is such that u agrees with C(v) in at least m places, and is ⊥

elsewhere, then D(u) = v.

Given an [n, t,m]-erasure code over Fq, one can encode a message v ∈ Ft
q

to obtain a codeword C(v) ∈ Fn
q . The message v can be reconstructed even if

up to n−m positions of C(v) are damaged or erased. Erasure codes can be
constructed using error-correcting codes, such as the Reed-Solomon codes.

Given a message vector v = (v0, v1, . . . , vt−1) ∈ Ft
q, we construct the poly-

nomial pv(x) = v0 + v1x+ · · ·+ vt−1x
t−1. Let x1, x2, . . . , xn be n distinct ele-

ments in Fq. The encoding is defined by C(v) = (pv(x1), pv(x2), . . . , pv(xn)),
and the decoding D uses t pairs (xi, pv(xi)) to interpolate the polynomial and
reconstruct the coefficients of pv(x) to obtain the source message v.

In order to apply erasure codes to improve the communication complexity,
we extend the definition of PHFs to α-PHFs.

Definition 8.3.4 Let H be a PHF(N ;n,m,w) from A to B. We call H an
α-PHF(N ;n,m,w) if, for any subset X ⊆ A with |X | = w, there exist at least
α functions from H such that they are all perfect on X .

We note that a 1-PHF(N ;n,m,w) is exactly a PHF(N ;n,m,w) and that
most techniques for constructing PHFs can be generalized to α-PHFs in a
straightforward manner. For example, in Chapter 7 (cf. Theorem 7.6.5), we
have seen that a q-ary (N,n, d)-code results in a PHF(N ;n, q, w) provided
that d > (

(
w
2

)
− 1)N/

(
w
2

)
. It is easy to see that the hash family is actually an

α-PHF if d ≥ ((
(
w
2

)
− 1) + α)N/

(
w
2

)
.

The basic OR re-keying scheme can now be modified as follows. Assume
that the auxiliary keys of the users are elements of a finite field Fq. LetH be an
α-PHF(N ;n,m,w) and let the auxiliary keys for the users be allocated using
the basic OR re-keying scheme. The only difference in the modified scheme
is in the broadcast transmissions. To revoke a subset F of users, the sender

(TA) first divides the secret kU\F into t pieces kU\F = (k
U\F
1 , . . . , k

U\F
t ),

and then encodes kU\F using an [Nm, t, α]-erasure code to obtain a codeword
C(kU\F ) = (c1, . . . , cNm). Next, the sender (TA) uses all the auxiliary keys
that do not belong to the users of F to encrypt the corresponding components
of C(kU\F ) and broadcasts the encrypted messages to all the users. In other
words, the sender (TA) broadcasts

{Eki(ci) : ki ∈ K, ki 6∈ K(F )}.
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Since each non-revoked user has at least α keys that can decrypt α messages
of {Eki(ci) : ki ∈ K, ki 6∈ K(F )}, he can decrypt the α messages and then
apply the erasure code to obtain the secret, while a user in F , as in the basic
OR scheme, cannot find the secret.

In an [n, t,m]-erasure code over Fq, the length of the codeword C(v) is
n log q bits, whereas the length of the source message v is t log q bits. Hence,
the rate, which indicates the extra bandwidth, is n/t. We note that the basic
OR scheme uses an [n, 1, 1]-erasure code in the construction. In general, we
expect t to be as large as possible to minimize the extra bandwidth.

8.3.2 The AND Re-Keying Scheme with Dynamic Controller

In the OR re-keying scheme with dynamic controller, the efficiency relies
on the size of the perfect hash family H. We would like |H| to be as small
as possible (e.g., O(log n)). However, the value of |H| can be substantially
smaller than n only if w is much smaller than n. Therefore, efficiency can be
achieved only when the size of the revoked users is small. In other words, the
OR re-keying schemes are efficient only for large multicast groups.

We present an AND dynamic controller scheme to cater for the revocation
of a large number of users, thus making it suitable for establishing common
secrets for small multicast groups. The scheme works as follows.

Key Initialization: This phase is the same as in the OR re-keying
scheme with dynamic controller.

Broadcast: Assume that a user ui wants to multicast a secret to the
group U \F with |F | > w. For each uj ∈ U \F , and w users ui1 , . . . , uiw
in F , let

H [ui → uj ;ui1 , . . . , uiw ] = {h ∈ H : h is perfect on {i, j, i1, . . . , iw}}

and
H[ui → uj;F ] =

⋃

ui1 ,...,uiw

H [ui → uj;ui1 , . . . , uiw ],

where ui1 , . . . , uiw run through all combinations of w distinct users in
F . To multicast a secret for a group U \F , the user ui chooses a session
key kU\F and broadcasts

{E ̂k(ui→uj)
(kU\F ) : uj ∈ U \ F},

with ̂k(ui → uj) defined by

̂k(ui → uj) =
∑

hℓ∈H[ui→uj ;F ]

kℓhℓ(i),hℓ(j)
,

where we assume all the auxiliary keys are elements of a finite field or
an abelian group.
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Decryption: Each user uj in U \ F computes ̂k(ui → uj) and decrypts
E ̂k(ui→uj)

(kU\F ).

Theorem 8.3.5 If there exists a PHF(N ;n,m,w + 2), then there exists a
w-resilient re-keying scheme with dynamic controller with n users such that
the number of auxiliary keys for each user is Nm. To multicast a secret for a
group U \ F , the number of transmissions for the ciphertexts is |U \ F |.

Proof. Every user uj ∈ U \ F knows the key kℓhℓ(j),hℓ(i)
. Since the matrix Gℓ

is symmetric, we have kℓhℓ(j),hℓ(i)
= kℓhℓ(i),hℓ(j)

. It follows that uj can compute

̂k(ui → uj) and decrypt E ̂k(ui→uj)
(kU\F ). We show that the scheme is w-

resilient.
Assume that w users ui1 , . . . , uiw from F collude. They succeed in comput-

ing kU\F only if they can compute ̂k(ui → uj) for some j. However, this is not
possible. Indeed, since for each j there exists a function hℓ ∈ H[ui → uj ;F ]
such that hℓ is perfect on {i, j, i1, . . . , iw}, it follows that the key kℓhℓ(i),hℓ(j)

is unknown to u1, . . . , uw, so they are unable to compute ̂k(ui → uj). Various
parameters of the scheme can be easily found in terms of the parameters of
the underlying PHF(N ;n,m,w + 2). ✷

8.4 Some Applications from Algebraic Geometry

In this final section, we point out some connections between the construc-
tions for OTBESs/multicast re-keying schemes with algebraic geometry.

8.4.1 OTBESs over Constant Size Fields

We have seen in Section 8.1 that OTBESs are closely related to KPSs.
In Chapter 7, we showed how to construct KPSs over constant size fields
for an arbitrarily large number of users by using algebraic geometry codes.
We present in the following an application of the results of Chapter 7 to the
construction of OTBESs over constant size fields.

In the family of (t, w, n)-OTBESs proposed by Blundo et al. in Subsection
8.1.2, the key predistribution phase is done according to the Blundo et al.
(ℓ, t+w− ℓ, n)-KPS over Fq, so it requires q ≥ n. By using instead KPSs from
algebraic geometry codes, for instance, the ones constructed in Section 7.4,
we can modify the OTBESs from [25] to obtain OTBESs over constant size
fields.

Stinson and Wei [158] proposed a construction of OTBESs that combines
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KPSs, set systems (such as combinatorial designs), and ramp secret sharing
schemes, improving the efficiency from the KIO construction. Since they use
Shamir-like ramp schemes, the size of the secret keys, and hence the size of
the secrets given to each user, depend on the parameters of the set system. As
we have shown in Section 4.9, ramp secret sharing schemes over constant size
fields can be constructed from algebraic curves. Those results can be used to
improve the efficiency of OTBESs as well.

8.4.2 Improving the Fiat-Naor OTBES

The Fiat-Naor OTBES in Subsection 8.1.4 is essentially a combination of a
Fiat-Naor KPS and a perfect hash family, and its performance is determined
by the underlying PHF. As before, let N(n,m,w) denote the minimum N
for which a PHF(N ;n,m,w) exists. Various bounds on N(n,m,w) given in
Section 7.6 can be used to derive the complexity of the corresponding OTBES
from Theorem 8.1.7. For example, applying Corollary 7.6.4, we have the fol-
lowing result.

Corollary 8.4.1 Suppose n,m, and w are integers and n ≥ m ≥ w. There
exists an (≤ n,≤ w, n)-OTBES having information rate

1

n⌈wew2/m logn⌉

and broadcast information rate

1

m⌈wew2/m logn⌉ .

However, most upper bounds on N(n,m,w) are non-constructive, so the
results on OTBESs from Corollary 8.4.1 are also non-constructive. In Sec-
tion 7.6, we showed how to apply algebraic curves to obtain explicit construc-
tions of PHFs with good parameters. From Theorem 8.1.7, this in turn results
in explicit constructions of the Fiat-Naor OTBES with good performance.

8.4.3 Improving the Blacklisting Scheme

The blacklisting scheme proposed by Kumar et al. in [91], discussed in
Subsection 8.2.1, is based on a cover-free family. The performance of the re-
sulting re-keying scheme is completely determined by the parameters of the
underlying (1, w)-CFF(v, n). Using the techniques developed in Chapter 7,
we know that there exist (1, w)-CFF(v, n)’s in which v = O(log n). For ex-
ample, in [55], Erdős, Frankl, and Füredi showed that, for a given n, there
exists a (1, w)-CFF(v, n) with v = O(w2 logn). However, the result is again
non-constructive. Explicit constructions that asymptotically achieve the lower
bound can be obtained through using algebraic curves as shown in Section 7.6.
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Corollary 8.4.2 For any n, there exists an explicit construction for (1, w)-
CFF(v, n) in which v = O(w4 logn).

Proof. From Theorem 7.5.27, we know that a PHF(N ;n,m, t + 1) ex-
plicitly yields a (1, t)-CFF(Nm,n). From Theorem 7.6.11, we have that,
for any square prime power q, there exist explicit constructions of

PHF
(
(
√
q − 1)qi/2; qq

i/2

, q, ⌊q1/4⌋
)

for all i ≥ 1. Taking w = q1/4, the re-

sult follows. ✷

Example 8.4.3 From Example 7.6.14, we know that there is an explicit con-
struction of a PHF(N ;n, 3, 3) with N ≈ 30 logn. From Theorem 7.5.27, we
obtain an explicit construction of (1, 2)-CFF(ℓ, v) with ℓ ≈ 90 log v. Erdős,
Frankl, and Füredi showed in [55] that, for any (1, 2)-CFF(ℓ, v), one has
ℓ ≥ ⌈3.1 log v⌉. Dyer, Fenner, Frieze, and Thomason gave in [51] a proba-
bilistic construction with ℓ = ⌈13 log v⌉. Thus, the explicit construction from
algebraic curves increases the parameter ℓ by around seven times from the
best known probabilistic construction.

8.4.4 Construction of w-Resilient LKHs

The efficiency of the multicast OR and AND re-keying schemes in Subsec-
tion 8.2.3 relies on the parameters of the (n, ℓ, w) q-ary resilient LKH. Next,
we give a construction of resilient LKHs from error-correcting codes.

Let C be the set of codewords in a q-ary (ℓ, n, d)-code. We write each
element of C as ci = (ci1, . . . , ciℓ) with cij ∈ {1, . . . , q}, where 1 ≤ i ≤ n and
1 ≤ j ≤ ℓ. To each codeword ci ∈ C, we associate a leaf Li in the full q-ary
tree T in a natural way, i.e., the node in the jth level of the tree, along the
path from Li to the root, is labeled by cij . Let L = {Li : ci ∈ C}, and let
T (L) be the subtree of T consisting of the set of leaves L.

For each leaf Li, we denote by Vi the set of labeled values of the nodes
along the path from Li to the root. Then, clearly, we have |Vi| = ℓ and
|Vi ∩Vj | ≤ ℓ− d for any distinct leaves Li and Lj . Now, for any w+1 distinct
leaves Li1 , . . . , Liw , Lj , we have

∣∣∣∣∣Vj
∖

w⋃

s=1

Vis

∣∣∣∣∣ ≥ |Vj | −
w∑

s=1

|Vj ∩ Vis | ≥ ℓ− w(ℓ − d) ≥ 1,

provided w ≤ ℓ−1
ℓ−d . Thus, we obtain the following result.

Theorem 8.4.4 If there exists a q-ary (ℓ, n, d)-code, then there exists an
(n, ℓ, ⌊ ℓ−1

ℓ−d⌋) q-ary resilient LKH.

One straightforward application of Theorem 8.4.4 is to use Reed-Solomon
codes. Since a Reed-Solomon code is an (ℓ, qt, ℓ − t + 1)-code for any integer
t < ℓ− 1, from Theorem 8.4.4, we have the following corollary.
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Corollary 8.4.5 Let q be a prime power. For any integers ℓ, t, and w such
that t < ℓ− 1, there exists an (qt, ℓ, ⌊ ℓ−1

t−1 ⌋) q-ary resilient LKH.

The construction based on Reed-Solomon codes is still restrictive because
it requires ℓ ≤ q. In order to relax the condition “ℓ ≤ q,” one can use algebraic
geometry codes. Thus, from the results in Chapter 2, we can restate our result
as follows.

Corollary 8.4.6 For a given integer w ≥ 2 and a prime power q, there exists
a sequence of (ℓ, n, w) q-ary resilient LKHs in which ℓ = O(log n).

Combining Theorems 8.2.7, 8.2.8, and Corollary 8.4.6, we have

Theorem 8.4.7 Let U = {u1, . . . , un} and let P ⊆ U be a multicast group.

1. For |P | ≥ n − w, there exists a w-resilient multicast re-keying scheme
such that the numbers of keys of each user and the TA are both O(log n),
and the number of broadcast transmissions for the encrypted session key
is O(log n).

2. For 1 ≤ |P | ≤ n−1, there exists a w-resilient multicast re-keying scheme
such that the numbers of keys of each user and the TA are both O(log n),
and the number of broadcast transmissions for the encrypted session key
is |P |.
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Chapter 9

Sequences

9.1 Introduction

Stream ciphers form an important class of encryption algorithms. They
encrypt individual characters (usually binary bits) of a plaintext, one at a time,
using an encryption transformation which varies with time. Stream ciphers
are generally faster than block ciphers in hardware, and have less complex
hardware circuitry.

A stream cipher can be either a symmetric (i.e., private-key) or public-key
cryptosystem. Since most stream ciphers use the same keys for encryption
and decryption, they are symmetric. In practical implementations, a stream
cipher will be a bit-based cryptosystem. The plaintext, the ciphertext, and the
key are all bit strings of the same length, but this length can be arbitrary (as
opposed to a block cipher where the lengths are fixed). Encryption proceeds
by taking the plaintext string and bit-wise XORing it with the key string (or,
in other words, adding the two strings bit by bit in the finite field F2). It is
clear that the plaintext is recovered by bit-wise XORing the ciphertext string
and the key string. Thus, in a bit-based stream cipher, the encryption and
decryption algorithms are identical, which has the practical advantage that
the same hardware can be used for both operations.

From the theoretical point of view, it does not make any difference whether
we consider stream ciphers over F2 or over an arbitrary finite field Fq. There-
fore, we consider the general case where the plaintext and the ciphertext
are strings (or, in other words, finite sequences) of elements of Fq, and the
encryption (respectively, decryption) proceeds by term-wise addition (respec-
tively, subtraction) of the same key string of elements of Fq. The key string
is commonly called the keystream and known only to authorized users. It is
convenient from now on to speak of strings (respectively, sequences) over Fq

when we mean strings (respectively, sequences) of elements of Fq.
In an ideal situation, the keystream would be a “truly random” string

over Fq. In this case, the stream cipher would be perfectly secure since the
ciphertexts will carry absolutely no information, and so there will be no basis
for an attack on the cryptosystem. In practice, sources of true randomness are
hard to come by, so keystreams are taken to be pseudorandom strings that
are obtained from certain secret seed data by some (perhaps even publicly
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available) algorithm. A central issue in the security analysis of stream ciphers
is then the quality assessment of these pseudorandom keystreams. In other
words, we need to know how close a given keystream is to true randomness.
We focus here on the complexity-theoretic aspects of this assessment, where
global function fields have been known to play some methodological role. There
are also statistical techniques for this assessment, but they will not be studied
in this chapter.

9.2 Linear Feedback Shift Register Sequences

A linear feedback shift register (LFSR) is a special kind of electronic
switching circuit handling information in the form of elements of Fq. This
circuit contains constant multipliers, adders, and delay elements. LFSRs are
very popular because they are extremely easy to implement in hardware and
they produce sequences with good statistical properties. Algorithmically, an
LFSR is described by a linear recurrence relation defined below.

Definition 9.2.1 Let k be a positive integer. A kth-order LFSR over Fq

is a pair < f(T ), k >, where f(T ) = 1−∑k
i=1 ciT

i ∈ Fq[T ] (note that ck = 0
is allowed). An infinite sequence s = s0s1s2 . . . of elements of Fq is said to
satisfy a kth-order linear recurrence relation over Fq if there exists a kth-order

LFSR < f(T ) = 1−∑k
i=1 ciT

i, k > over Fq such that

sj = c1sj−1 + c2sj−2 + · · ·+ cksj−k, (9.1)

for all j ≥ k, and the sequence is called a kth-order linear recurring
sequence, or a kth-order LFSR sequence, over Fq.

The linear recurrence relation (9.1) and the initial terms s0, s1, . . . , sk−1

determine the rest of the sequence sk, sk+1, . . . uniquely. We denote this se-
quence by < f(T ), k; s0 >, where s0 is the seed s0, s1, . . . , sk−1. The vec-
tor sn = (sn, sn+1, . . . , sn+k−1) is called the nth-state vector and the seed
s0 = (s0, s1, . . . , sk−1) is also called the initial state vector.

Remark 9.2.2 A linear recurring sequence satisfies many other linear recur-
rence relations apart from the one defining it. For instance, consider the binary
sequence 1011011011011011 . . . . It is defined by sj = sj−1+sj−2 with the seed
10, but it also satisfies the linear recurrence relation sj = sj−3 with the seed
101.

Definition 9.2.3 Let s = s0s1s2 . . . be an arbitrary sequence over Fq. If there
exist integers r > 0 and n0 ≥ 0 such that sn+r = sn for all n ≥ n0, then the
sequence is called ultimately periodic and the number r is called a period
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of the sequence. The smallest among all possible periods of the sequence s
is called its least period. An ultimately periodic sequence s0s1s2 . . . with
period N is called (purely) periodic if sn+N = sn holds for all n ≥ 0. If s is
ultimately periodic with period N , then the least nonnegative integer n0 such
that sn+N = sn for all n ≥ n0 is called the preperiod of s.

Example 9.2.4 (i) The sequence generated by sj = sj−1 + sj−2 (j ≥
3) with the seed 111, namely 1110110110110110 . . . , is an ultimately
periodic sequence with least period 3. The preperiod is 1.

(ii) The binary sequence in Remark 9.2.2 is periodic with period 3.

Proposition 9.2.5 A period of an ultimately periodic sequence s is divisible
by the least period of s.

Proof. Let r and N be a period and the least period, respectively, of s. Then,
by definition, there exist n ≥ 0 andm ≥ 0 such that si+r = si for all i ≥ n and
sj+N = sj for all j ≥ m. Hence, si+r = si and si+N = si for all i ≥ max{n,m}.
Let r = t ·N+u with 0 ≤ u ≤ N − 1 and t ≥ 1. Then, for any i ≥ max{n,m},
we have

si = si+r = si+t·N+u = si+(t−1)·N+u = · · · = si+u.

This implies that u = 0 since N is the least period. ✷

To each infinite sequence s over Fq, we can associate a generating function,
which is a power series

s(x) =
∞∑

i=0

six
i

with an indeterminate x.

Theorem 9.2.6 An infinite sequence s = s0s1s2 . . . over Fq is ultimately
periodic if and only if its generating function is rational.
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Proof. If s is ultimately periodic, then there exist integers r > 0 and n ≥ 0
such that si+r = si for all i ≥ n. Thus, the generating function of s is

s(x) =

∞∑

j=0

sjx
j

=

n−1∑

j=0

sjx
j +

∞∑

j=n

sjx
j

=
n−1∑

j=0

sjx
j +

∞∑

a=0

r−1∑

b=0

sn+b+arx
n+b+ar

=

n−1∑

j=0

sjx
j +

r−1∑

b=0

∞∑

a=0

sn+bx
n+b+ar

=

n−1∑

j=0

sjx
j +

r−1∑

b=0

sn+bx
n+b 1

1− xr ,

which is rational.
Now assume that the generating function is a rational function f(x)/g(x)

with f(x), g(x) ∈ Fq[x]. Write the rational function into f(x)/g(x) = h(x) +
xtu(x)/g(x) with h(x), u(x) ∈ Fq[x], gcd(x, g(x)) = 1, and deg(u(x)) + t <
deg(g(x)). Then we can find an integer n > 0 such that g(x)|(xn−1) (see [95]).
Write xn−1 = g(x)v(x) for some v(x) ∈ Fq[x] and x

tu(x)v(x) = xt
∑n−1

i=0 aix
i

for some ai ∈ Fq, 0 ≤ i ≤ n− 1. Hence,

f(x)/g(x) = h(x) + xtu(x)/g(x)

= h(x) + xtu(x)v(x)/(xn − 1)

= h(x) + xt

(
n−1∑

i=0

aix
i

)
−

∞∑

j=0

xjn




= h(x)− xt
∞∑

j=0

(
n−1∑

i=0

aix
i

)
xjn.

Hence, n is a period of the sequence. ✷

9.3 Constructions of Almost Perfect Sequences

Complexity measures for sequences are important in the system-theoretic
approach to stream cipher design. Sequences that are suitable as keystreams
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should satisfy certain criteria. One requirement is that it should be compu-
tationally very hard to replicate such sequences. From this point of view, the
linear complexity of sequences is introduced: the notion of linear complexity is
based on the shortest LFSR generating a given sequence and this sequence can
be computed efficiently by the Berlekamp-Massey algorithm. Another require-
ment is that the sequence must belong to a large class of sequences exhibiting
similar behavior (in some suitable sense).

In this section, we discuss the notions of linear complexity, perfect and
almost perfect sequences, as well as some constructions of such sequences
using algebraic curves.

9.3.1 Linear Complexity

There are several complexity measures for sequences (see [128, 114]). In
this chapter, we concentrate mainly on the linear complexity of sequences
defined as follows.

Definition 9.3.1 The linear complexity of an infinite sequence s, denoted
by ℓ(s), is defined as follows:

(i) if s is the zero sequence 0, then ℓ(s) = 0;

(ii) if no LFSR generates s, then ℓ(s) =∞;

(iii) otherwise, ℓ(s) is the length of a shortest LFSR that generates s.

In practice, it should be hard to replicate the key, which is a sequence, in
a stream cipher. It is obvious that the linear complexity of this sequence must
be large enough so that it is computationally infeasible to exhaustively search
those LFSRs that can generate this key.

Although the key in a stream cipher is infinite, only a finite part of this
key is used in practice as the plaintext is always of finite length. Therefore,
to recover a plaintext, it is sufficient to figure out the finite length of the key
which is used for the encryption for this plaintext. Thus, we need to define
the linear complexity of sequences of finite length.

Definition 9.3.2 The linear complexity of a finite sequence s of length n,
denoted by ℓ(s), is the length of a shortest LFSR that generates an infinite
sequence having s as the first n terms.

The Berlekamp-Massey algorithm provides an efficient way for deter-
mining the linear complexity of a sequence of finite length n. The algorithm
takes n iterations, with the mth iteration computing the linear complexity of
the first m terms of the sequence. In fact, the algorithm tells not only the
linear complexity but also the linear recurrence that the sequence obeys.

We refer the reader to [49] for the proof of correctness of the Berlekamp-
Massey algorithm in Figure 9.1. Here we make some remarks.
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FIGURE 9.1: The Berlekamp-Massey algorithm.

Objective: Given a finite sequence s = s0s1 . . . sn−1, find a shortest LFSR
< f(T ), k > that generates s.

Step 1: Assume that m ≥ 0 is the smallest index such that sm 6= 0, i.e.,
s0 = s1 = · · · = sm−1 = 0 and sm 6= 0; then set the initial values

d0 = d1 = · · · = dm−1 = 0, dm = sm,

f1(T ) = f2(T ) = · · · = fm(T ) = 1, fm+1(T ) = 1− dmTm+1,

and
k1 = k2 = · · · = km = 0.

Step 2: Assume that, for i = 1, 2, . . . , N , we have constructed the poly-
nomial fi(T ) with least degree ki that generates the first i terms
of s. Let fN(T ) = 1 + cN1T + · · ·+ cNkNT

kN and compute

dN = sN + cN1sN−1 + · · ·+ cNkN sN−kN .

Case 1: If dN = 0, then set fN+1(T ) = fN(T ) and kN+1 = kN ;

Case 2: If dN 6= 0, then there exists t with 1 ≤ t < N such that
kt < kt+1 = · · · = kN . Set fN+1(T ) = fN (T )−dNd−1

t TN−tft(T )
and kN+1 = max{kN , N + 1− kN}.

Remark 9.3.3 (i) The polynomial fn(T ) generating the sequence s =
s0s1 . . . sn−1 is not unique. However, the degree is unique as it is the
least one.

(ii) Let ℓi(s) denote the linear complexity of the first i terms. Since fm+1(T )
can generate the first m terms as well, we must have ℓm(s) ≤ ℓm+1(s).

(iii) From the above algorithm, we know that if ℓm(s) < ℓm+1(s), then we
must have ℓm(s) < (m+ 1)/2 since ℓm(s) + ℓm+1(s) = m+ 1.

(iv) According to the Berlekamp-Massey algorithm, if ℓm(s) > (m+1)/2 for
some m > 0, then ℓm+1(s) ≤ max{ℓm(s),m + 1 − ℓm(s)}. This implies
that ℓm(s) = ℓm+1(s) since ℓm(s) ≤ ℓm+1(s).

Example 9.3.4 Consider the binary sequence s = 0010001 of length 7. We
have initial values d1 = d0 = s1 = s0 = 0, d2 = s2 = 1; f1(T ) = f2(T ) = 1
and k1 = k2 = 0.

Thus, according to the above algorithm, we have f3(T ) = 1 + T 3 and
k3 = 3. Then we have d3 = 1 · s3 + 1 · s0 = 0, hence f4(T ) = f3(T ) = 1 + T 3

and k4 = k3 = 3.
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Continuing, we obtain d4 = 1 ·s4+1 ·s1 = 0, hence f5(T ) = f4(T ) = 1+T 3

and k5 = k4 = 3.
We then have d5 = 1 ·s5+1 ·s2 = 1, hence f6(T ) = f5(T )+T

5−2f2(T ) = 1
and k6 = max{k5, 5 + 1− k5} = 3.

Finally, we get d6 = 1 and hence f7(T ) = f6(T ) + T 6−2f2(T ) = 1 + T 4,
k7 = max{k6, 6 + 1− k6} = 4.

Thus, a shortest LFSR generating s is < 1 + T 4, 4 >.

Remark 9.3.5 (i) Apart from the Berlekamp-Massey algorithm, the com-
plexity of a sequence can be determined through its generating function
and continued fractions. The reader may refer to [95] for details.

(ii) The result in Remark 9.3.3(iii) can be obtained using continued fractions
as well.

Example 9.3.6 The linear complexity of the sequence 00 . . . 001 of length n is
n by the Berlekamp-Massey algorithm. One of the shortest LFSRs generating
this sequence is 1 + T n.

9.3.2 Constructions of d-Perfect Sequences from Algebraic
Curves

In this subsection, we introduce the notions of perfect and d-perfect se-
quences, and discuss a construction of d-perfect sequences from algebraic
curves.

For an infinite sequence s = s0s1s2 . . . , we denote by ℓn(s) the linear
complexity of the first n terms. Then we obtain a sequence {ℓn(s)}∞n=1 of
nonnegative integers. This sequence is called the linear complexity profile
of s.

To make it hard to recover the first terms of s, we want ℓn(s) to be large.
However, according to Remark 9.3.3(iv), if ℓm(s) > (m + 1)/2 for some m,
then ℓn(s) remains unchanged from n = m until an integer k > m where
ℓk(s) = ℓm(s) < (k + 1)/2. This observation tells us that it is impossible to
construct a sequence s such that ℓn(s) is bigger than (n + 1)/2 for every n.
Thus, it is natural to find sequences with linear complexity profile equal to
{⌈n/2⌉}∞n=1. This gives the following definition introduced by Rueppel [128].

Definition 9.3.7 An infinite sequence s is called perfect if ℓn(s) = ⌈n/2⌉
for all n ≥ 1.

Perfect sequences were generalized by Niederreiter [113] to d-perfect se-
quences, which are defined as follows.

Definition 9.3.8 For an integer d ≥ 1, an infinite sequence s is called d-
perfect if ℓn(s) ≥ (n + 1 − d)/2 for all n ≥ 1. A d-perfect sequence is also
called an almost perfect sequence.
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Lemma 9.3.9 Let s be an infinite sequence. Then s is d-perfect if and only
if (n+ 1− d)/2 ≤ ℓn(s) ≤ (n+ 1 + d)/2 for all n ≥ 1.

Proof. It is sufficient to show that, for a d-perfect sequence s, we have
ℓn(s) ≤ (n + 1 + d)/2 for all n ≥ 1. Suppose that this is false. Let m be
the smallest positive integer such that ℓm(s) > (m+ 1 + d)/2. Then we must
have ℓm−1(s) < ℓm(s). Thus, we have ℓm−1(s) = m− ℓm(s) < (m− 1− d)/2.
This is a contradiction. ✷

Remark 9.3.10 From the above lemma, we can easily see that a perfect
sequence is none other than a 1-perfect sequence.

Before introducing a construction of d-perfect sequences, we need some
preparation on algebraic curves.

Let X be an algebraic curve over Fq and, for an Fq-rational point P of X ,
we choose a local parameter t of P in Fq(X ).

Now we choose a sequence {tr}∞r=−∞ of elements in Fq(X ) such that

νP (tr) = r

for all integers r (for instance, we can let tr = tr). For a given function
f ∈ Fq(X ) \ {0}, we can find an integer v such that νP (f) ≥ v. Hence

νP

(
f

tv

)
≥ 0.

Put

av =

(
f

tv

)
(P ),

i.e., av is the value of the function f/tv at P . Then av is an element of Fq.
Note that the function f/tv − av satisfies

νP

(
f

tv
− av

)
≥ 1,

hence we know that

νP

(
f − avtv
tv+1

)
≥ 0.

Put

av+1 =

(
f − avtv
tv+1

)
(P ).

Then av+1 belongs to Fq and νP (f − avtv − av+1tv+1) ≥ v + 2.
Assume that we have obtained a sequence {ar}mr=v (m > v) of elements of

Fq such that

νP

(
f −

k∑

r=v

artr

)
≥ k + 1 (9.2)
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for all v ≤ k ≤ m. Put

am+1 =

(
f −∑m

r=v artr
tm+1

)
(P ).

Then am+1 ∈ Fq and νP (f−
∑m+1

r=v artr) ≥ m+2. Continuing our construction
of ar in this fashion, we obtain an infinite sequence {ar}∞r=v of elements of Fq

such that

νP

(
f −

m∑

r=v

artr

)
≥ m+ 1 (9.3)

for all m ≥ v. We summarize the above well-known construction in the formal
expansion

f =

∞∑

r=v

artr. (9.4)

This is called the local expansion of f at P . The above local expansion (9.4)
will be the core of our construction. We will use only the special case where
tr = tr for some local parameter t at P . For further background on algebraic
curves and their function fields, we refer the reader to [116].

We now describe a construction of d-perfect sequences based on algebraic
curves over finite fields. We fix some notations for this subsection:

• X/Fq – an algebraic curve over Fq;

• P – an Fq-rational point on X ;

• t – a local parameter at P with deg(div∞(t)) = 2;

• f – a function in Fq(X ) \ Fq(t) with νP (f) ≥ 0.

Consider the local expansion of f at P :

f =
∞∑

n=0

ant
n,

where an (n ≥ 0) are elements of Fq. We may define a sequence
a(f), consisting of some coefficients of the above expansion, as
follows:

a(f) = (a1, a2, a3, . . .).

Proposition 9.3.11 If d ≥ deg(div∞(f)) and νP (f) ≥ 0, then the sequence
a(f) constructed above is d-perfect.

Proof. It is sufficient to prove that

ℓn(a(f)) ≥
n− d+ 1

2
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for all n ≥ d.
Suppose that there exist r + 1 ≤ n elements λ0, . . . , λr of Fq with λ0 = 1

such that

λ0ai+r−1 + λ1ai+r−2 + · · ·+ λr−1ai + λrai−1 = 0 (9.5)

for i = 1, 2, . . . , n− r. Consider the function

L = (λrt
r + λr−1t

r−1 + · · ·+ λ0)f

−
(
λ0a0 + (λ0a1 + λ1a0)t+ · · ·+ (λ0ar−1 + · · ·+ λr−1a0)t

r−1
)
.

Since λ0 = 1 and f 6∈ Fq(t), we know that L is a nonzero element of Fq(X ).
By applying the recursion (9.5) and considering the local expansion of L at
P , we obtain

νP (L) ≥ n+ 1.

On the other hand, the pole divisor of L satisfies

deg(div∞(L)) ≤ deg(div∞(f)) + deg(div∞(tr)) ≤ d+ 2r.

Therefore

n+ 1 ≤ νP (L) ≤ deg(div0(L)) = deg(div∞(L)) ≤ d+ 2r,

i.e.,

r ≥ n+ 1− d
2

.

This implies that a(f) is d-perfect. ✷

9.3.3 Examples of d-Perfect Sequences

In this subsection, we systematically discuss examples of the construction
in Subsection 9.3.2 from the projective line and elliptic curves. In particu-
lar, we determine all possible binary and ternary perfect sequences from the
projective line.

A function t on a curve X is called a degree-d function or a function
of degree d if deg(div∞(t)) = d.

For convenience, we rewrite Proposition 9.3.11 in the following theorem.

Theorem 9.3.12 Let X/Fq be a curve for which there exist an Fq-rational
point P on X and a degree-two function t in Fq(X ) such that νP (t) = 1. Let x
be a function of degree d on X such that Fq(X ) = Fq(x, t) with (x/t)(P ) = 1.
Then there exists a unique power series expansion of the form

x(t) = t+ a2t
2 + a3t

3 + a4t
4 + · · ·

for x which defines an embedding of the function field Fq(X ) in Fq((t)). The
corresponding sequence (1, a2, a3, a4, . . . ) is d-perfect.
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The series x(t) can be rapidly computed via the effective form of Hensel’s
Lemma (see [93, Chapter II, Proposition 2]).

Theorem 9.3.13 (Hensel’s Lemma) Let x and t be as in the previous the-
orem, and let x have minimal polynomial F (X) over Fq(t). Then the power
series expansion for x in Fq((t)) can be determined by setting x1(t) = t and,
for all i,

xi+1 = xi −
F (xi)

F ′(xi)
,

where F ′(X) is the derivative of F (X) with respect to X. The sequence (xi)
satisfies νP (F (xi)) ≥ 2i.

Case 1: Projective lines
To obtain perfect sequences using the above construction, we require a

curve X/Fq, which has a degree-one function x.

Lemma 9.3.14 If there is a degree-one function x on a curve X/Fq, then X
has genus 0, i.e., X is the projective line. Moreover, the function field of X is
the rational function field Fq(x).

Proof. Let div∞(x) = P for an Fq-rational point P on X . Thus, dimL(mP ) ≥
m + 1 since 1, x, x2, . . . , xm are elements in L(mP ) and they are Fq-linearly
independent. By the Riemann-Roch Theorem, we have dimL(2gP ) = 2g +
1− g = g+1, where g is the genus of X . Hence, we obtain g+1 ≥ 2g+1, i.e.,
g ≤ 0. This implies that g = 0 as the genus of a curve is nonnegative.

Consider the extension Fq(X )/Fq(x). By Lemma 1.4.5, we have 1 =
deg(div∞(x)) = [Fq(X ) : Fq(x)]. This means that Fq(X ) = Fq(x). ✷

We begin with the projective line X/Fq and a function x generating Fq(X ).
Let P be the zero of x, and let t be a degree-two function on X such that
νP (t) = 1 and (x/t)(P ) = 1. The form of t is described by means of the
following proposition.

Proposition 9.3.15 Let X/Fq be a genus zero curve with Fq(X ) = Fq(x),
and let P be the zero of x. A degree-two function t ∈ Fq(x) satisfying
(x/t)(P ) = 1 has the form

t =
x+ ax2

1 + bx+ cx2

for some a, b, and c in Fq, where a or c is nonzero, and gcd(1 + ax, 1 + bx+
cx2) = 1.

The proof of the above proposition is straightforward.
If x1 is a generator for the rational function field Fq(x), i.e., Fq(x1) = Fq(x),

then x1 is a degree-one function. Hence, it is of the form

x1 =
ax+ b

cx+ d
,
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where a, b, c, and d are elements of the base field Fq with ad− bc 6= 0. Given
any x1 in Fq(x) and a point P on X , we may replace x1 with x1 − x1(P ).
Thus, by scaling, we may assume that

νP (x1) = 1 and (x1/x)(P ) = 1.

Then x1(P ) = b/d = 0 and (x1/x)(P ) = a/d = 1. Thus, any degree-one
function x1 can be normalized such that it is of the form

x1 =
x

1 + cx
.

By Theorem 9.3.12, the sequence corresponding to the power series expan-
sion for x1 in t is also 1-perfect. Hence, we have shown that the following
proposition is generally true.

Proposition 9.3.16 Suppose x0 and x1 are degree-one functions on a curve
X/Fq and t is a degree-two local parameter at a point P . Suppose, moreover,
that νP (x0) = νP (x1) = 1 and (x1/x0)(P ) = 1. Then x1 is of the form

x1 =
x0

1 + cx0
,

for some c ∈ Fq, and the sequences associated to x0 and x1 are both 1-perfect.

From Proposition 9.3.15, we see that there are four possible choices for the
degree-two local parameter t over the binary field. These are:

(0.0) : t = x+ x2, (1.0) : t =
x+ x2

1 + x+ x2
,

(0.1) : t =
x

1 + x2
, (1.1) : t =

x

1 + x+ x2
.

In this case, the construction for a power series solution x = x(t) to each
of the above equations using Hensel’s Lemma is a special case of an inversion
formula for power series, i.e., if we take Equation (i.j) to define the power
series t(x) in F2[x], then t(x(t)) = t and x(t(x)) = x.

We note that the linear fractional transformation A(u) = u/(1 + u) de-
termines an automorphism of order two of the projective line P1(F2). If we
denote by xij(t) the power series which is a root of Equation (i.j), and set
x(t) = x00(t), then

xij(t) = Aj(x(Ai(t))).

We find the following sequences associated to the t-expansions of x in the four
cases:

(0.0) (1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .),
(0.1) (1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .),
(1.0) (1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, . . .),
(1.1) (1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, . . .).
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These initial segments can be verified to follow the linear complexity of 1-
perfect sequences.

The sequence (0.0) is the well-known 1-perfect sequence of the power series
(see [113, 128, 129])

∞∑

i=0

t2
i

= t+ t2 + t4 + t8 + t16 + · · · ,

and the sequence (0.1) is that of the power series

∞∑

i=1

t2
i−1 = t+ t3 + t7 + t15 + t31 + · · · .

By making the substitution t 7→ t/(1 + t), the corresponding sequences (1.0)
and (1.1) can be seen to have the forms

∞∑

m=1

∞∑

i=0

tm2i and

∞∑

m=1

∞∑

i=0

tm(2i−1),

respectively.
From Proposition 9.3.15, we see that there are 18 possible choices of degree-

two local parameters t over F3, which we subdivide into a block of nine func-
tions:

(0.0) t =
x

1 + x+ x2
, (1.0) t =

x

1− x+ x2
, (2.0) t =

x

1 + x2
,

(0.1) t = x+ x2, (1.1) t =
x+ x2

1 + x+ x2
, (2.1) t =

x+ x2

1− x− x2 ,

(0.2) t =
x− x2

1− x+ x2
, (1.2) t = x− x2, (2.2) t =

x− x2
1 + x− x2 ,

and a second block of nine functions:

(0.0)′ t =
x

1− x2 , (1.0)′ t =
x

1 + x− x2 , (2.0)′ t =
x

1− x− x2 ,

(0.1)′ t =
x+ x2

1− x , (1.1)′ t =
x+ x2

1 + x2
, (2.1)′ t =

x+ x2

1 + x− x2 ,

(0.2)′ t =
x− x2
1 + x

, (1.2)′ t =
x− x2

1− x− x2 , (2.2)′ t =
x− x2
1 + x2

.

The linear fractional transformation A(u) = u/(1+u) determines an auto-
morphism of P1(F3) of order three. As in the binary case above, it is easy to
verify that the roots of any two equations in the same block can be exchanged
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by some action of the group < A >. Since A generates the group of automor-
phisms of P1(F3) which fix the point P = [0, 1] and the residue of functions
at P , we may think of each of the two blocks of equations as comprising an
equivalence class over F3.

The corresponding sequences for the first block are:

(0.0) (1, 1, 2, 1, 0, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 2, . . .),
(0.1) (1, 2, 2, 1, 2, 0, 0, 0, 2, 1, 2, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, . . .),
(0.2) (1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, . . .),

(1.0) (1, 2, 2, 2, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, . . .),
(1.1) (1, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, . . .),
(1.2) (1, 1, 2, 2, 2, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, . . .),

(2.0) (1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0, . . .),
(2.1) (1, 1, 2, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 2, 1, 1, 2, 0, 0, 0, . . .),
(2.2) (1, 2, 2, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 0, . . .),

and for the second block:

(0.0)′ (1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, . . .),
(0.1)′ (1, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, . . .),
(0.2)′ (1, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, . . .),

(1.0)′ (1, 1, 0, 1, 0, 1, 2, 0, 2, 1, 1, 0, 1, 0, 1, 2, 2, 0, 2, 2, 0, 2, 0, 2, 1, 1, 0, 1, 1, 0, . . .),
(1.1)′ (1, 2, 0, 0, 1, 1, 2, 1, 1, 0, 1, 2, 2, 0, 0, 1, 0, 2, 2, 1, 0, 0, 2, 2, 1, 2, 0, 0, 1, 2, . . .),
(1.2)′ (1, 0, 2, 2, 1, 1, 0, 1, 1, 2, 1, 0, 0, 2, 2, 1, 2, 0, 0, 1, 2, 2, 0, 0, 1, 0, 2, 2, 1, 0, . . .),

(2.0)′ (1, 2, 0, 2, 0, 2, 2, 0, 2, 2, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 0, . . .),
(2.1)′ (1, 0, 2, 1, 1, 2, 0, 2, 1, 1, 1, 0, 0, 1, 2, 2, 2, 0, 0, 2, 2, 1, 0, 0, 1, 0, 2, 1, 1, 0, . . .),
(2.2)′ (1, 1, 0, 0, 1, 2, 2, 2, 1, 0, 1, 1, 2, 0, 0, 2, 0, 1, 2, 2, 0, 0, 2, 1, 1, 1, 0, 0, 1, 1, . . .).

All the above 18 sequences are perfect.
We have now found all the binary and ternary perfect sequences from the

projective line.
Case 2: Elliptic curves
We now consider sequences derived from the series expansion of functions

on the elliptic curve
E : y2 + xy = x3 + x

over the field F2 of two elements. Since every point on an elliptic curve can be
translated to any other, we consider only expansions around the fixed point
O at infinity.

On an elliptic curve, there exist no degree-one functions, so Theorem 9.3.12
provides no means of constructing sequences from functions on the curve which
are provably 1-perfect. However, at the end of this subsection, we present a
conjecture that certain 2-perfect sequences obtained from functions on this
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curve are in fact 1-perfect. In the interest of minimizing d, we consider only
the series expansions of linearly independent functions of degree-two and local
parameters for O. We classify these functions as follows.

The set of F2-rational points on E over F2 consists of the four points O,
(0, 0), (1, 0), and (1, 1). Since the 2-torsion group contains only two elements,
E(F2) must be isomorphic to the group Z/4Z.

The automorphism [−1] on E is the map (x, y) 7→ (x, x+ y), which stabi-
lizes (0, 0), so we identify (0, 0) as the 2-torsion point. Any degree-two function
on E which has a zero of order one at O has exactly one other zero on E,
which must be one of the F2-rational points (0, 0), (1, 0), or (1, 1).

The zeros and poles of the functions on E satisfy an additional relation.
Let div(f) be the divisor of the function f , and let Div0(E,F2) be the set of
degree zero divisors on E defined over an algebraic closure of F2. Then there
exists an exact sequence

1 −→ F2(E)∗ −→ Div0(E,F2) −→ E(F2) −→ 0, (9.6)

where the map F2(E)∗ → Div0(E,F2) takes a function to its principal divisor,
and the map Div0(E,F2) → E(F2) is the group homomorphism which takes
the degree zero divisor P − O to the point P , for all P ∈ E(F2). From the
exact sequence (9.6), we may classify the functions in F2(E) by their divisors.
Precisely, they correspond to divisors in the kernel of the map Div0(E,F2)→
E(F2) which are invariant under the Galois group Gal(F2/F2).

In Table 9.1, we list all the possible divisors of degree-two and degree-three
functions with poles only at O, and the functions to which they correspond. In
addition to the divisors of points in E(F2), the two degree-two divisors P and
Q, corresponding to the Galois invariant pairs of points in E(F4) disappearing
on the ideals (x2 + x+ 1, y + 1) and (x2 + x+ 1, y + x+ 1), may appear.

First, we determine the divisors of certain “building block” functions on
E. We write div(f) = div0(f)− div∞(f).

TABLE 9.1: Divisors of degree-two and degree-three functions with poles
only at O.

f div0(f) div∞(f)
x 2(0, 0) 2O

x+ 1 (1, 0) + (1, 1) 2O
y (0, 0) + 2(1, 0) 3O

y + x (0, 0) + 2(1, 1) 3O
y + 1 (1, 1) + P 3O

y + x+ 1 (1, 0) +Q 3O

By listing all possible degree-two divisors which can occur as div∞(f), we
obtain in Table 9.2 the classification of all degree-two functions on E over F2,
expressed as quotients of the functions in Table 9.1.

In Table 9.3, we give the minimal polynomial for the function f over the
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TABLE 9.2: All degree-two functions on E over F2.

f div0(f) div∞(f)
(1) x/y O + (0, 0) 2(0, 1)
(2) x/(y + x) O + (0, 0) 2(1, 1)
(3) y/(x2 + x) O + (1, 0) (0, 0) + (1, 1)
(4) (x+ 1)/(y + 1) O + (1, 0) P
(5) (y + x)/(x2 + x) O + (1, 1) (0, 0) + (1, 0)
(6) (x+ 1)/(y + x+ 1) O + (1, 1) Q

field F2(t), where f and t are one of the six degree-two functions on E/F2 in
Table 9.2. The entry (i.j) corresponds to the pair (f, t), where f is entry (i)
in the Table 9.2, and t is entry (j).

The sequence of coefficients for the series expansion of f with respect to t at
O is proved to be 2-perfect in Theorem 9.3.12. For a given pair, the functions
may in fact be 1-perfect. We give the experimentally determined value d0 for
which the series expansion is believed to be d0-perfect. However, this value is
provably only a lower bound. For a pair (f, t) generating a periodic sequence,
we set d0 equal to 0 in Table 9.3.

We note that, due to the automorphism [−1] of the curve, the nontrivial
minimal polynomials appear in pairs, corresponding to function pairs which
are interchanged under the automorphism induced by [−1].

From Table 9.3, we note that the sequence associated with the root f(t)
of valuation 1 in F2((t)) of any of the four polynomials

(1) F (X) = (t+ t2)X2 + (1 + t)X + t
(2) F (X) = (1 + t+ t2)X2 + (1 + t)X + t
(3) F (X) = tX2 + (1 + t)X + t+ t2

(4) F (X) = (1 + t+ t2)X2 + (1 + t)X + t+ t2

over F2(t), is conjecturally 1-perfect. A proof using the geometry of the associ-
ated function field would be interesting and might point to additional avenues
for constructions of 1-perfect sequences.

The sequences associated with the roots of the four polynomials above are:

(1) (1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, . . .),
(2) (1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, . . .),
(3) (1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, . . .),
(4) (1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, . . .).

In particular, we note that the four sequences above are different from the
1-perfect binary sequences constructed from the projective line. This points
to the possibility of constructing further 1-perfect sequences from curves of
higher genus, if the above sequences are indeed proved to be 1-perfect.
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TABLE 9.3: Minimal polynomials of f over F2(t), with f, t from Table 9.2.

F (X) d0
(1.1) X + t 0
(1.2) (1 + t)X + t 0
(1.3) (t+ t2)X2 + (1 + t)X + t 1
(1.4) (1 + t+ t2)X2 + (1 + t)X + t 1
(1.5) tX2 + (1 + t)X + t+ t2 1
(1.6) (1 + t+ t2)X2 + (1 + t)X + t+ t2 1

F (X) d0
(2.1) (1 + t)X + t 0
(2.2) X + t 0
(2.3) tX2 + (1 + t)X + t+ t2 1
(2.4) (1 + t+ t2)X2 + (1 + t)X + t+ t2 1
(2.5) (t+ t2)X2 + (1 + t)X + t 1
(2.6) (1 + t+ t2)X2 + (1 + t)X + t 1

F (X) d0
(3.1) t2X2 + (1 + t+ t2)X + t 2
(3.2) X2 + (1 + t+ t2)X + t 2
(3.3) X + t 0
(3.4) (1 + t)X + t 0
(3.5) tX2 + (1 + t+ t2)X + t 2
(3.6) (1 + t+ t2)X2 + (1 + t+ t2)X + t 2

F (X) d0
(4.1) t2X2 + (1 + t+ t2)X + t+ t2 2
(4.2) (1 + t2)X2 + (1 + t+ t2)X + t+ t2 2
(4.3) (1 + t)X + t 0
(4.4) X + t 0
(4.5) (t+ t2)X2 + (1 + t+ t2)X + t+ t2 2
(4.6) (1 + t+ t2)X2 + (1 + t+ t2)X + t+ t2 2

F (X) d0
(5.1) X2 + (1 + t+ t2)X + t 2
(5.2) t2X2 + (1 + t+ t2)X + t 2
(5.3) tX2 + (1 + t+ t2)X + t 2
(5.4) (1 + t+ t2)X2 + (1 + t+ t2)X + t 2
(5.5) X + t 0
(5.6) (1 + t)X + t 0

F (X) d0
(6.1) (1 + t2)X2 + (1 + t+ t2)X + t+ t2 2
(6.2) t2X2 + (1 + t+ t2)X + t+ t2 2
(6.3) (t+ t2)X2 + (1 + t+ t2)X + t+ t2 2
(6.4) (1 + t+ t2)X2 + (1 + t+ t2)X + t+ t2 2
(6.5) (1 + t)X + t 0
(6.6) X + t 0
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9.4 Constructions of Multisequences

For practical applications, we have to consider the scenario where a joint
sequence family is used (see [49]). By a joint sequence family, we mean a set
of sequences, or a multisequence, over Fq and we need to find an LFSR that
generates all the sequences in this family.

For a multisequence S = {c1, c2, . . . , cm} of dimensionm (where dimension
means the number of sequences in this family) and of length n, i.e., every
sequence has length n, we define its linear complexity as follows.

Definition 9.4.1 The linear complexity of a multisequence set S =
{ci = (ci1, ci2, . . . , cin)}mi=1 of length n is defined to be the smallest order
k of an LFSR < f(T ), k > generating all of the sequences ci, i = 1, 2, . . . ,m.

For an LFSR < f(T ), k > and a multisequence S = {ci}mi=1 of length n, we
simply say that < f(T ), k > generates S if it generates each of the sequences
c1, c2, . . . , cm.

All the sequences we have discussed above in this section are of finite
length. We next turn to sequences of infinite length.

Consider m sequences

a1 = (a11, a12, a13, . . . ) ∈ F∞
q

a2 = (a21, a22, a23, . . . ) ∈ F∞
q

...
am = (am1, am2, am3, . . . ) ∈ F∞

q ,

and let A be the multisequence {ai}mi=1. We also denote by An the multise-
quence

{(ai1, ai2, . . . , ain)}mi=1

of length n.

Definition 9.4.2 The linear complexity profile of a multisequence A =
{a1, a2, . . . ,am} is defined by the sequence of integers

{ℓn(A)}∞n=1,

where ℓn(A) denotes the linear complexity of An = {(ai1, ai2, . . . , ain)}mi=1,
for all n ≥ 1.

Analogous to the case of single sequences, we may also define almost perfect
multisequences.

Definition 9.4.3 A multisequence A = {a1, a2, . . . ,am} is called almost
perfect if

ℓn(A) ≥
m(n+ 1)

m+ 1
+O(1)

for all n ≥ 1, where O(1) is a function independent of n.
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Furthermore, we can define d-perfect multisequences in a similar manner.

Definition 9.4.4 A multisequence A = {a1, a2, . . . ,am} is called d-perfect
for a positive integer d if

ℓn(A) ≥
⌈
m(n+ 1)− d

m+ 1

⌉

for all n ≥ 1. In particular, A is called perfect if A is an m-perfect multise-
quence, i.e.,

ℓn(A) ≥
⌈
mn

m+ 1

⌉

for all n ≥ 1.

Remark 9.4.5 (i) It can be seen in Section 9.3 that our definitions of per-
fect multisequences are quite natural and consistent with Niederreiter’s
and Rueppel’s definitions in the case where m = 1.

(ii) We will see in Remark 9.4.9 that, if A is a d-perfect multisequence of
dimension m, then d is at least m.

For a multisequence A = {ai = (ai1, ai2, ai3, . . . )}mi=1, put

sj = (a1j , a2j , . . . , amj)
T ∈ Fm

q (9.7)

for all j ≥ 1, where T stands for the transpose of a vector. Then we immedi-
ately have the following lemma from the definitions.

Lemma 9.4.6 The LFSR < f(T ) =
∑k

i=0 λiT
i, k > with λ0 = 1 generates

An = {(ai1, ai2, . . . , ain)}mi=1 if and only if

k∑

i=0

λk−isi+u = 0 ∈ Fm
q

for all 1 ≤ u ≤ n− k, i.e.,



s1 s2 · · · sk+1

s2 s3 · · · sk+2

...
... · · ·

...
sn−k sn−k+1 · · · sn







λk
λk−1

...
λ0


 = 0 ∈ F(n−k)m

q .

In order to give an equivalent condition for perfect multisequences, we need
another lemma.

Lemma 9.4.7 Let A = {a1, a2, . . . ,am} be a multisequence. If

ℓn(A) ≥
⌈
mn

m+ 1

⌉
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for all n ≥ 1, then the rank of the um× um matrix over Fq

Sum
def
=




s1 s2 · · · sum
s2 s3 · · · sum+1

...
... · · ·

...
su su+1 · · · sum+u−1




is equal to um for all u ≥ 1, where sj is defined as in (9.7).

Proof. Suppose that the rank of Sum is less than um, i.e., there exists a nonzero
solution (α0, α1, . . . , αum−1) ∈ Fum

q such that




s1 s2 · · · sum
s2 s3 · · · sum+1

...
... · · ·

...
su su+1 · · · sum+u−1







α0

α1

...
αum−1


 = 0 ∈ Fum

q .

Let 0 ≤ r ≤ um − 1 be the integer satisfying αr 6= 0, αr+1 = αr+2 = · · · =
αum−1 = 0. Then




s1 s2 · · · sr+1

s2 s3 · · · sr+2

...
... · · ·

...
su su+1 · · · sr+u







α0

α1

...
αr


 = 0 ∈ Fum

q .

Hence, by Lemma 9.4.6, we obtain

ℓr+u(A) ≤ r. (9.8)

Write
r + u = w(m+ 1) + k

for some w ≥ 0 and 0 ≤ k ≤ m. Observe that w ≤ u − 1 since r + u ≤
um− 1 + u = u(m+ 1)− 1. Therefore

ℓr+u(A) ≥
⌈
(r + u)m

m+ 1

⌉
=

⌈
(m+ 1)mw + km

m+ 1

⌉

= mw + k +

⌈ −k
m+ 1

⌉
= mw + k = r + u− w ≥ r + 1.

The above inequality contradicts (9.8). This completes the proof. ✷

We have the following result on perfect multisequences.

Theorem 9.4.8 A multisequence A = {a1, a2, . . . ,am} of dimension m is
perfect if and only if

ℓn(A) =
⌈
mn

m+ 1

⌉

for all n ≥ 1.
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Proof. One direction is clear. Now we assume that A is perfect.
It is obvious that ℓn(A) ≤ n for all n ≥ 1, since the LFSR < T n, n >

generates every sequence of length n. On the other hand, we have

ℓn(A) ≥
⌈
mn

m+ 1

⌉
= n

for all 1 ≤ n ≤ m. Therefore, we obtain ℓn(A) = n = ⌈(mn)/(m+ 1)⌉ for all
1 ≤ n ≤ m.

We now assume that n ≥ m+ 1. Write

n = u(m+ 1) + v, u ≥ 1, 0 ≤ v ≤ m.

Then we get

ℓn(A) ≥
⌈
nm

m+ 1

⌉
=

⌈
u(m+ 1)m+ vm

m+ 1

⌉
= mu+ v. (9.9)

By Lemma 9.4.7, the vector

(sTmu+v+1, s
T
mu+v+2, . . . , s

T
mu+v+u)

T ∈ Fum
q

can be represented as an Fq-linear combination of




s1
s2
...
su


 ,




s2
s3
...

su+1


 , . . . ,




sum
sum+1

...
sum+u−1


 ,

i.e., there exist λ1, λ2, . . . , λum ∈ Fq such that




sum+v+1

sum+v+2

...
sum+v+u


 =

um∑

i=1

λum−i+1




si
si+1

...
si+u−1


 .

Hence, by Lemma 9.4.6, the LFSR

< 1−
um∑

i=1

λiT
i,mu+ v >

generates the sequences (a11, a12, . . . , a1n), (a21, a22, . . . , a2n), . . . , (am1, am2,
. . . , amn). This implies that

ℓn(A) = ℓu(m+1)+v(A) ≤ mu+ v. (9.10)

Combining (9.9) with (9.10) gives the desired result. ✷
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Remark 9.4.9 We claim that d is at least m if there exists a d-perfect mul-
tisequence A of dimension m. Suppose d < m, then

ℓn(A) ≥
nm+m− d

m+ 1
>

mn

m+ 1

for all n ≥ 1. Therefore, A is a perfect multisequence. Hence, according to
Theorem 9.4.8,

ℓn(A) =
⌈
mn

m+ 1

⌉
(9.11)

for all n ≥ 1. On the other hand, we have

ℓm+1(A) ≥
⌈
(m+ 1)m+m− d

m+ 1

⌉
= m+ 1, (9.12)

which is in contradiction to (9.11).

Next, we construct d-perfect multisequences from algebraic curves.
Let P be a closed point of degree m. We consider the set of functions of

Fq(X ) which are regular at every point in P, i.e.,

OP

def
= {f ∈ Fq(X ) : νP (f) ≥ 0 for all P ∈ P},

and the set of functions of Fq(X ) which vanish at every point of P, i.e.,

PP

def
= {h ∈ Fq(X ) : h(P ) = 0 for all P ∈ P}.

Then OP is a local ring and PP is its unique maximal ideal. The quotient field
is called the residue class field at P, denoted by FP. This is a finite field
isomorphic to Fqm . For a function x ∈ OP, we denote by x(P) the residue
class of x in FP. For details about the residue class fields at closed points, the
reader may refer to [151, 117].

Throughout this section, we use the following notations and assumptions:

• X/Fq – an algebraic curve over Fq;

• P – a closed point of degree m of X ;

• x1, x2, . . . , xm – m elements of OP such that x1(P), x2(P), . . . , xm(P)
form an Fq-basis of FP;

• t – a local parameter of P with deg(div∞(t)) = m+ 1;

• y – an element of OP satisfying y 6∈⊕m
i=1 Fq(t)xi.

Remark 9.4.10 The condition deg(div∞(t)) = m + 1 implies that Fq(X ) is
an Fq(t)-linear space of dimension m+ 1 (see [151, Theorem I.4.11]). Hence,
the set {x1, x2, . . . , xm} generates a proper Fq(t)-linear subspace of Fq(X ),
i.e., Fq(X ) \

⊕m
i=1 Fq(t)xi is not empty.
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As in Section 9.3, for a function y ∈ OP, we can also consider the local
expansion of y at P. The residue class y(P) of y in OP can be represented as an
Fq-linear combination of x1(P), x2(P), . . . , xm(P). Let a10, a20, . . . , am0 ∈ Fq

satisfy

y(P) =
m∑

i=1

ai0xi(P).

The above equality is equivalent to

νP

(
y −

m∑

i=1

ai0xi

)
≥ 1.

Hence (y −∑m
i=1 ai0xi)/t ∈ OP. Let a11, a21, . . . , am1 ∈ Fq satisfy

(
y −∑m

i=1 ai0xi
t

)
(P) =

m∑

i=1

ai1xi(P),

i.e.,

νP

(
y −∑m

i=1 ai0xi
t

−
m∑

i=1

ai1xi

)
≥ 1.

This is equivalent to

νP

(
y −

m∑

i=1

ai0xi −
(

m∑

i=1

ai1xi

)
t

)
≥ 2.

Hence (y −∑m
i=1 ai0xi − (

∑m
i=1 ai1xi)t)/t

2 ∈ OP.
By induction, we obtain a sequence of vectors {(a1j , a2j , . . . , amj)}∞j=0 such

that

νP


y −

n∑

j=0

(
m∑

i=1

aijxi

)
tj


 ≥ n+ 1

for all n ≥ 0. We express this fact by the formal series

y =

∞∑

j=0

(
m∑

i=1

aijxi

)
tj . (9.13)

The above series is called a local expansion of y at P. The coefficients of the
local expansion (9.13) will be used to construct perfect multisequences.

Put
ai(y) = (ai1, ai2, ai3, . . . ) ∈ F∞

q

for any 1 ≤ i ≤ m and define the multisequence

A(y) = {ai(y)}mi=1. (9.14)

For two divisors D =
∑

P mPP and G =
∑

P nPP on X , we define a

divisor D ∨G def
=
∑

P max{mP , nP }P .
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Theorem 9.4.11 Let A(y) = {ai(y)}mi=1 be constructed as in (9.14). Then
A(y) is d-perfect, where d = deg(div∞(y) ∨ div∞(x1) ∨ div∞(x2) ∨ · · · ∨
div∞(xm)). In particular, {ai(y)}mi=1 is a perfect multisequence if d = m.

Proof. Denote by x the vector (x1, x2, . . . , xm)T ∈ Fq(X )m. For another vector
z = (z1, z2, . . . , zm)T ∈ Fq(X )m, we denote by x·z the inner product∑m

i=1 xizi.
Then the local expansion of y can be written in the form

y =

∞∑

j=0

(x · sj)tj ,

where sj = (a1j , a2j , . . . , amj)
T .

Suppose that an LFSR <
∑k

i=0 λiT
i, k > with λ0 = 1 generates the mul-

tisequence of length n

An(y) = {(ai1, ai2, . . . , ain)}mi=1,

i.e.,
k∑

i=0

λk−isi+u = 0 ∈ Fm
q

for all 1 ≤ u ≤ n− k by Lemma 9.4.6.
Consider the function

L = (λkt
k + λk−1t

k−1 + · · ·+ λ0)y − [λ0(x · s0) +
(λ0(x · s1) + λ1(x · s0)) t+ · · ·+ (λ0(x · sk) + · · ·+ λk(x · s0)) tk]

=
∞∑

j=k+1

λk(x · sj−k)t
j +

∞∑

j=k+1

λk−1(x · sj−k+1)t
j + · · ·+

∞∑

j=k+1

λ0(x · sj)tj

=
∞∑

j=k+1

k∑

l=0

λk−l(x · sj−k+l)t
j =

∞∑

j=k+1

x ·
(

k∑

l=0

λk−lsj−k+l

)
tj

=

∞∑

j=n+1

x ·
(

k∑

l=0

λk−lsj−k+l

)
tj =

∞∑

j=n+1

k∑

l=0

λk−l(x · sj−k+l)t
j .

First of all, we can see L 6= 0 since λ0 = 1 and y 6∈⊕m
i=1 Fq(t)xi. Considering

the zero divisor of L gives

deg(div0(L)) ≥ νP(L) · deg(P) ≥ (n+ 1)m, (9.15)

whereas considering the pole divisor of L gives

deg(div∞(L)) ≤ deg
(
div∞(tk) + div∞(y) ∨ div∞(x1) ∨ · · · ∨ div∞(xm)

)

≤ (m+ 1)k + d. (9.16)
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Combining (9.15) with (9.16) yields

(n+ 1)m ≤ deg(div0(L)) = deg(div∞(L)) ≤ (m+ 1)k + d.

Hence,

k ≥ m(n+ 1)− d
m+ 1

.

This implies

ℓn(A(y)) ≥
m(n+ 1)− d

m+ 1

for all n ≥ 1.
Since ℓn(A(y)) are integers, our result follows.
If d = m, then ℓn(A(y)) ≥ (mn)/(m + 1) for all n ≥ 1. It follows from

Theorem 9.4.8 and Remark 9.4.9 that {ai(y)}mi=1 is a perfect multisequence.
This completes the proof. ✷

Remark 9.4.12 Theorem 9.4.11 does not mean that the multisequence A(y)
is not perfect for d > m (see examples in Section 9.3 for m = 1).

Example 9.4.13 (Binary multisequence of dimension m = 2) Let X be the
projective line over F2 and let P be the unique zero of x2 + x + 1. Then
t = x(x2 + x+ 1) is a local parameter of P.

Put y = x2 and x1 = 1, x2 = x. Then x1(P), x2(P) form an F2-basis of
FP and d = deg(div∞(y) ∨ div∞(x1) ∨ div∞(x2)) = 2 = deg(P). The local
expansion of y at P is

y = (x1+x2)+(x1+x2)t+x2t
2+(x1+x2)t

3+x1t
4+x1t

6+(x1+x2)t
8+ · · · .

Set
a1(y) = (1, 0, 1, 1, 0, 1, 0, 1, . . .)
a2(y) = (1, 1, 1, 0, 0, 0, 0, 1, . . .).

By Theorem 9.4.11, {a1(y), a2(y)} is a perfect multisequence of dimension 2.

Example 9.4.14 (Binary multisequence of dimension m = 3) Let X be the
projective line over F2 and let P be the unique zero of x3 + x + 1. Then
t = x(x3 + x+ 1) is a local parameter of P.

Put y = x3 and x1 = 1, x2 = x, x3 = x2. Then x1(P), x2(P), x3(P) form
an F2-basis of FP and d = deg(div∞(y)∨ div∞(x1)∨ div∞(x2)∨ div∞(x3)) =
3 = deg(P). The local expansion of y at P is

y = (x1 + x2) + (x1 + x3)t+ (x1 + x2 + x3)t
2 + x1t

3 + (x1 + x2)t
4 + x1t

5

+x1t
6 + (x1 + x3)t

8 + · · · .

Set
a1(y) = (1, 1, 1, 1, 1, 1, 0, 1, . . .)
a2(y) = (0, 1, 0, 1, 0, 0, 0, 0, . . .)
a3(y) = (1, 1, 0, 0, 0, 0, 0, 1, . . .).
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By Theorem 9.4.11, {a1(y), a2(y), a3(y)} is a perfect multisequence of dimen-
sion 3.

Example 9.4.15 (Ternary multisequence of dimension m = 2) Let X be the
projective line over F3 and let P be the unique zero of x2+1. Then t = x(x2+1)
is a local parameter of P.

Put y = x2 and x1 = 1, x2 = x. Then x1(P), x2(P) form an F3-basis of
FP and d = deg(div∞(y) ∨ div∞(x1) ∨ div∞(x2)) = 2 = deg(P). The local
expansion of y at P is

y = 2x1 + 2x2t+ 2x1t
2 + x2t

3 + 2x1t
4 + 2x1t

6 + 2x2t
9 + · · · .

Set
a1(y) = (0, 2, 0, 2, 0, 2, 0, 0, . . .)
a2(y) = (2, 0, 1, 0, 0, 0, 0, 0, . . .).

By Theorem 9.4.11, {a1(y), a2(y)} is a perfect multisequence of dimension 2.

Example 9.4.16 (Binary 4-perfect multisequence of dimension m = 2) Let
X be the elliptic curve over F2 defined by z2 + z = x3 + 1 and let P be the
unique common zero of z and x2 + x + 1. Then t = z is a local parameter of
P.

Put y = x2 and x1 = 1, x2 = x. Then x1(P), x2(P) form an F2-basis of FP

and d = deg(div∞(y) ∨ div∞(x1) ∨ div∞(x2)) = 4. The local expansion of y
at P is

y = x1 + x2 + x2t+ x1t
2 + x2t

3 + 0 · t4 + · · · .
Set

a1(y) = (0, 1, 0, 0, . . .)
a2(y) = (1, 0, 1, 0, . . .).

By Theorem 9.4.11, {a1(y), a2(y)} is a 4-perfect multisequence of dimension
2.

9.5 Sequences with Low Correlation and Large Linear

Complexity

Sequences with both low correlation and large linear complexity are re-
quired for stream ciphers [128, 129]. The randomness of a sequence is measured
by its correlation, while the replication complexity of a key cipher sequence
depends on the linear complexity of the sequence. In this section, we make
use of algebraic curves to construct sequences with both low correlation and
large linear complexity. Sequences produced by other methods often satisfy
only one of these two requirements.

We focus only on binary sequences in this section, though correlation can
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be defined for sequences over any finite field. The reader may refer to [49] for
the correlation of nonbinary sequences.

Definition 9.5.1 Let s = s0s1 . . . be a periodic binary sequence with least
period p. For ℓ ≥ 0, the autocorrelation of s is defined by

Cs(ℓ)
def
=

p−1∑

i=0

(−1)si+si+ℓ .

For a sequence s of period p, it is clear that Cs(p + ℓ) = Cs(ℓ) for all ℓ ≥ 0
and Cs(0) = p. If |Cs(ℓ)| is small, it implies that s is far from both its ℓ-shift
sℓ = sℓsℓ+1 . . . and the complement of its ℓ-shift s̄ℓ = 1+sℓ, 1+sℓ+1, . . . . The
converse is also true. This means that the autocorrelation is a measurement
for the randomness of a periodic binary sequence. For some other applications
such as optical communication, CDMA systems, etc., the interest is in families
of binary sequences with low correlation.

Definition 9.5.2 Let S be a finite set of periodic binary sequences. Assume
that all the sequences have least period equal to p. For ℓ ≥ 0, then the

correlation between the ith sequence si = s
(i)
0 s

(i)
1 . . . and the jth sequence

sj = s
(j)
0 s

(j)
1 . . . at shift ℓ is given by

Csi,sj (ℓ)
def
=

p−1∑

t=0

(−1)s
(i)
t +s

(j)
t+ℓ .

The correlation of the sequence family is defined to be

CS
def
= max

i6=j or ℓ 6≡0 (mod p)
{Csi,sj(ℓ)}.

A commonly used method of generating low-correlation sequences is de-
scribed below.

For e ≥ 1 and d ≥ 1, let Pd denote all polynomials over F2e of degree at
most d. Consider the set of sequences

S def
= {Tr((f(αi)))∞i=0 : f ∈ Pd}, (9.17)

where Tr stands for the trace map from F2e to F2 and α is a primitive element
of F2e . It is clear that 2e − 1 is a period for every sequence in this family.
Take a subset P of S such that all sequences in P have least period 2e−1 and
no two are cyclically equivalent (note that two sequences are called cyclically
equivalent if one is a cyclic shift of the other). The reader may refer to [122]
for details about such a family of sequences. Many well-known families of
sequences can be produced in this manner. For instance, if we take d = 3 and
let e be odd, then this family yields the optimal Gold sequences (see [122] for
the definition of Gold sequences). Furthermore, a generalization of this method
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to Galois rings produces some families of sequences with low correlation as
well (see [122]).

On the other hand, there are two disadvantages for the family of sequences
constructed in (9.17):

(i) the linear complexities of the sequences in this family are not large
enough, hence they are not suitable for stream ciphers;

(i) we cannot produce sequences of arbitrary period as the period 2e− 1 in
this family is always fixed.

In this section, we employ algebraic curves to construct families of se-
quences that overcome these two disadvantages. We first need some further
technical notions and results related to algebraic curves before we introduce
the construction of sequences.

Let q = 2e and let X be an algebraic curve over Fq with function field
Fq(X ). An element z of Fq(X ) is called degenerate if it can be written in
the form α + h2 − h for some α ∈ Fq and h ∈ Fq(X ). Otherwise, it is called
nondegenerate. Apparently, if there exists a point P of X such that νP (z)
is odd, then z is nondegenerate since νP (α + h2 − h) is always even for all
α ∈ Fq and h ∈ Fq(X ).

For a given nondegenerate element z of Fq(X ), we add one more equation
y2+y = z to the system of equations defining X . The new curve is denoted by
Xz. In fact, the function field Fq(Xz) of Xz is the field obtained by adjoining
a root of y2 + y − z to Fq(X ). We have the following easy result.

Lemma 9.5.3 Let X be an algebraic curve over Fq, where q = 2e, and let
z be a nondegenerate element of Fq(X ). Then the field Fq(Xz) is a Galois
extension over Fq(X ) of degree 2.

The genus of the curve Xz can be estimated as follows.

Lemma 9.5.4 Let X be an algebraic curve over Fq, where q = 2e, and let
z be a nondegenerate element of Fq(X ). Then the genus of Xz is at most
2g(X )+ d− 1, where g(X ) is the genus of X and d is the degree of the divisor
div∞(z).

The reader may refer to [178] for the proofs of Lemmas 9.5.3 and 9.5.4.
Next, we study the Hamming weight of the trace vectors associated with

nondegenerate elements of Fq(X ) and some Fq-rational points of X .
The following result can be found in [151, Proposition VIII.2.8] when X is

the projective line.

Lemma 9.5.5 Let P1, . . . , Pn be distinct Fq-rational points of X . Let z be a
nondegenerate element of Fq(X ) such that νPi(z) ≥ 0 for all i = 1, . . . , n. Let
Pz be the set of Fq-rational points of Xz lying above those Fq-rational points
of X that are outside {P1, . . . , Pn} (by a point Q of Xz lying above a point P
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of X , we mean that, for any f ∈ Fq(X ) with νP (f) ≥ 0, f(Q) = 0 whenever
f(P ) = 0). Then the Hamming weight of the vector

(Tr(z(P1)), . . . ,Tr(z(Pn)))

is

n− N(Xz)− |Pz|
2

,

where Tr is the trace function from Fq to F2 and N(Xz) denotes the number
of Fq-rational points of Xz.

Proof. First of all, note the fact that, for an element α ∈ Fq, Tr(α) = 0 if and
only if there exists β ∈ Fq such that α = β2 − β (see [95]). Thus, for a fixed
index i, Tr(z(Pi)) = 0 if and only if z(Pi) = a2 − a for some a ∈ Fq. This is
equivalent to saying that there are two points of Xz lying over Pi.

Let r be the number of points of {P1, . . . , Pn} for which there are two points
lying over each. Then the Hamming weight of (Tr(z(P1)), . . . ,Tr(z(Pn))) is
n− r and it is clear that 2r + |Pz| = N(Xz). The desired result follows. ✷

The following lemma provides a sufficient condition under which a set of
elements of Fq(X ) are Fq-linearly independent.

Lemma 9.5.6 Let z1, . . . , zn be n elements of Fq(X ). Suppose that there are
n distinct points P1, . . . , Pn such that νPi(zj) < 0 if and only if i = j, for all
1 ≤ i, j ≤ n. Then z1, . . . , zn are Fq-linearly independent.

Proof. Suppose that there exist n elements λi ∈ Fq, i = 1, . . . , n, with λk 6= 0
(for some k) such that

∑n
i=1 λizi = 0. Then λkzk = −∑i6=k λizi. However,

νPk
(λkzk) < 0, while νPk

(−∑i6=k λizi) ≥ 0. The result follows from this con-
tradiction. ✷

For an algebraic curve X in the projective space PN over Fq, an
automorphism of X is a bijective map from X to itself defined by
P 7→ [f0(P ), f1(P ), . . . , fN (P )], where fi are homogeneous polynomials in
Fq[x0, . . . , xN ] of the same degree. For an automorphism σ of X , it induces
an automorphism of the function field Fq(X ) by sending f(x0, . . . , xN ) to
f(σ(x0), . . . , σ(xN )). All the automorphisms of X form a group which is de-
noted by Aut(X/Fq).

Recall that a closed point P on X is a set of conjugate points. If we consider
divisors, it is more convenient to denote the closed point P by P =

∑
P P .

In this case, we have that σ(P) =
∑

P σ(P ) is again a closed point of X for
any automorphism σ ∈ Aut(X/Fq), and P and σ(P) have the same degree.
For a closed point P and a function f ∈ Fq(X ), it is easy to see that νQ(f) is
the same for all the points Q in P. Therefore, we may define νP(f) = νP (f),
where P is a point in the set of conjugate points defining P.

The reader may refer to [144, 117] for more details on rational maps,
automorphisms of curves, and closed points.

We have the following useful results on automorphisms (see [52, 151]).
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Lemma 9.5.7 Let σ be an automorphism of X . Let P be a point of X (not
necessarily Fq-rational) and let f be a function in Fq(X ). Then

(i) νσ(P )(σ(f)) = νP (f);

(ii) σ(f)(σ(P )) = f(P ) if νP (f) ≥ 0.

We are now ready to present the construction of sequences using algebraic
curves.

Construction of Sequences

Let X be an algebraic curve over Fq. Choose an Fq-rational point
P of X and an automorphism σ ∈ Aut(X/Fq). Then σ

i(P ) are also
Fq-rational points for all i = 0, 1, . . . . Since there are only finitely
many Fq-rational points by the Hasse-Weil bound (see Corollary
1.5.4(iii)), we have some least n ≥ 0 such that σn+i(P ) = σi(P )
for all i ∈ Z. Put Pi = σi(P ) for all i ≥ 0 and choose an element
z ∈ Fq(X ) such that νPi(z) ≥ 0 for all i ≥ 0. Define a sequence

sz
def
= {Tr(z(Pi))}∞i=0.

It is clear that n is a period of sz. The following result provides a sufficient
condition under which n is the least period of sz.

Lemma 9.5.8 Let Pi and z satisfy the conditions in the above construc-
tion. Assume that div∞(z) = mP for a closed point P and some odd m. If
P, σ(P), . . . , σn−1(P) are all distinct and d = deg(div∞(z)) = mdeg(P) satis-
fies

q + 1 + 2(2g(X ) + 2d− 1)
√
q < 2n,

then the least period of sz is exactly n.

Proof. Suppose that there exists an integer 0 ≤ k < n such that k is a period
of sz. Consider the function

f = z − σk(z).

Then f is a nondegenerate element since

div∞(f) = div∞(z − σk(z)) = mP+mσk(P).

Now consider the evaluation of f at Pi+k:

f(Pi+k) = z(Pi+k)− σk(z)(Pi+k)

= z(Pi+k)− z(σ−k(Pi+k))

= z(Pi+k)− z(Pi).

Thus, Tr(f(Pi+k)) = Tr(z(Pi+k) − z(Pi)) = 0 as k is a period of sz. Hence,
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the vector (Tr(f(P1)), . . . ,Tr(f(Pn))) is the zero vector. By Lemma 9.5.5, we
get

n− N(Xf )− |Pf |
2

= 0.

This gives
N(Xf ) = 2n+ |Pf | ≥ 2n. (9.18)

By the Hasse-Weil bound (Corollary 1.5.4(iii)), we have

N(Xf ) ≤ q + 1 + 2g(Xf )
√
q.

On the other hand, by Lemma 9.5.4, we have

g(Xf ) ≤ 2g(X ) + deg(div∞(f))− 1 = 2g(X ) + 2d− 1.

Together, the above two inequalities give

N(Xf ) ≤ q + 1 + 2(2g(X ) + 2d− 1)
√
q. (9.19)

Combining (9.18) with (9.19) yields

2n ≤ q + 1 + 2(2g(X ) + 2d− 1)
√
q,

contradicting the assumption. Hence, the least period of sz is equal to n. ✷

In view of Lemma 9.5.8, it may be possible to obtain in this manner se-
quences with period different from 2e − 1. Indeed, some such examples are
given in Subsection 9.5.2.

Now we turn to study the linear complexity and correlation for the se-
quences constructed above. We first consider the linear complexity.

Theorem 9.5.9 Let Pi and z satisfy the conditions in the above construc-
tion. Assume that div∞(z) = mP for a closed point P and some odd m. If
P, σ(P), . . . , σn−1(P) are all distinct, then the linear complexity of sz satisfies

ℓ(sz) ≥ min

{
n,

2n− q − 1− 2(2g(X ) + d− 1)
√
q

2d
√
q

}
,

where d = deg(div∞(z)) = mdeg(P).

Proof. Denote ℓ(sz) by s. If s = n, we have nothing to prove. Hence, we may
assume that s < n. Then, there exist s+1 binary numbers λ0, λ1, . . . , λs such
that λ0 = λs = 1 and

s∑

i=0

λiTr(z(Pi+v)) = 0

for all v ≥ 0. Setting

u
def
=

s∑

i=0

λiσ
−i(z),
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then u is nondegenerate since div∞(σ−i(z)) = σ−i(mP) for any 0 ≤ i ≤ n−1.
Moreover, deg(div∞(u)) = (s+ 1)deg(div∞(z)) = (s+ 1)d.

Since

s∑

i=0

λiTr(z(Pi+v)) = Tr

(
s∑

i=0

λiz(Pi+v)

)

= Tr

(
s∑

i=0

λiz(σ
i(Pv))

)

= Tr

(
s∑

i=0

λiσ
−i(z)(Pv)

)

= Tr(u(Pv)),

it follows that

(Tr(u(P1)),Tr(u(P2)), . . . ,Tr(u(Pn))) = 0.

By Lemma 9.5.5, we have

0 = n− N(Xu)− |Pu|
2

≥ n− 1

2
N(Xu).

Hence, by the Hasse-Weil bound (Corollary 1.5.4(iii)) and Lemma 9.5.4,

2n ≤ N(Xu) ≤ q + 1 + 2g(Xu)
√
q ≤ q + 1 + 2(2g(X ) + d(s+ 1)− 1)

√
q.

The desired result now follows. ✷

The above theorem indicates that the linear complexity of sz is good if the
period n is relatively large compared with q and 2g(X )√q. Next, we look at
the correlation of such sequences.

Theorem 9.5.10 Let z1, z2 be two elements of Fq(X ) with di =
deg(div∞(zi)) and νPj (zi) ≥ 0 for all 1 ≤ i ≤ 2 and 0 ≤ j ≤ n − 1 (it is
allowed that z1 = z2). Suppose that z1 + σ−w(z2) is nondegenerate for some
w ∈ Z. Then the correlation Csz1 ,sz2

(w) satisfies

|Csz1 ,sz2
(w)| ≤ 2(2g(X ) + d− 1)

√
q + |q + 1− n|+ 2(N(X )− n),

where d is the degree of the divisor div∞(z1 + σ−w(z2)).
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Proof. Put u = z1 + σ−w(z2). By the definition of the correlation, we have

Csz1 ,sz2
(w) =

n∑

i=1

(−1)Tr(z1(Pi))+Tr(z2(Pi+w))

=
n∑

i=1

(−1)Tr(z1(Pi)+z2(Pi+w))

=

n∑

i=1

(−1)Tr(z1(Pi)+σ−w(z2)(Pi))

=

n∑

i=1

(−1)Tr(u(Pi))

= n− 2wt(Tr(u(P1)),Tr(u(P2)), . . . ,Tr(u(Pn)))

= n− 2

(
n− N(Xu)− |Pu|

2

)

= N(Xu)− n− |Pu|.

By the Hasse-Weil bound (Corollary 1.5.4(iii)) and Lemma 9.5.4, we have

|N(Xu)− (q + 1)| ≤ 2g(Xu)
√
q ≤ 2(2g(X ) + d− 1)

√
q.

It is also clear that the size of Pu is at most 2(N(X )− n).
Hence,

|Csz1 ,sz2
(w)| = |N(Xu)− n− |Pu||

≤ |N(Xu)− (q + 1)|+ |q + 1− n|+ |Pu|
≤ 2(2g(X ) + d− 1)

√
q + |q + 1− n|+ 2(N(X )− n).

The proof is complete. ✷

We proceed now to discuss two examples from the above construction of
sequences.

9.5.1 Construction Using a Projective Line

We continue to assume that q is even in this subsection. We fix some
notations for this subsection:

ǫ – a fixed primitive element of Fq;
F = Fq(x) – the rational function field of a projective line X ;
φ – the automorphism of X/Fq: x 7→ ǫx;
P – the unique zero of x− 1.

Let Pi be the unique zero of φi(x− 1) = ǫix− 1 = ǫi(x− ǫ−i) for all i ∈ Z,
and put n = q − 1. Then Pi, Pi+1, . . . , Pi+n−1 are pairwise distinct for any
fixed i ∈ Z. Moreover, Pj = Pj+n for all j ∈ Z since φn is the identity.
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Let Pd(F ) be the set of all closed points of degree d ≥ 2. It is not difficult
to verify that there is a one-to-one correspondence between Pd(F ) and the
set of all monic irreducible polynomials of degree d of Fq[x]. Therefore, the
size Iq(d) of Pd(F ) is equal to the number of monic irreducible polynomials
of degree d of Fq[x] and is given by (cf. [95, Theorem 3.25, page 93])

Iq(d) =
1

d

∑

b|d
µ

(
d

b

)
qb,

where µ(·) is the Möbius function.
Since ǫ is a primitive element of Fq, for P ∈ Pd(F ), it is clear that φ

i(P) =
φi+n(P) for all i ∈ Z.

Lemma 9.5.11 Let P ∈ Pd(F ). If d ≥ 2 and gcd(d, q − 1) = 1, then
φi(P), φi+1(P), . . . , φi+n−1(P) are pairwise distinct for any fixed i ∈ Z.

Proof. It is sufficient to show that φk(P) 6= P for any 1 ≤ k ≤ n − 1. Let
f(x) be the monic irreducible polynomial with div0(f) = P. Then φk(P) is
the unique zero of φk(f(x)) = f(φk(x)) = f(ǫkx), i.e., div0(f(ǫ

kx)) = φk(P).
In order to prove that φk(P) 6= P, we need to show that the roots of f(x) are
not roots of φk(f(x)) = f(ǫkx).

Let α ∈ Fqd be a root of f(x). We want to show that α is not a root of
f(ǫkx). This is equivalent to showing that ǫkα is not a root of f(x). Suppose

that ǫkα is a root of f(x). Since all the roots of f(x) are α, αq, . . . , αqd−1

, there

exists an integer t with 1 ≤ t ≤ d − 1 such that ǫkα = αqt , i.e., ǫk = αqt−1.
This yields

1 = (ǫk)q−1 = α(qt−1)(q−1). (9.20)

Since gcd(d, q − 1) = 1, we have gcd((qd − 1)/(q − 1), q − 1) = 1. Know-

ing αqd−1 = 1, we obtain from (9.20) that αqt−1 = 1, i.e., αqt = α. This
contradicts the fact that f(x) is an irreducible polynomial of degree d since
1 ≤ t ≤ d− 1. ✷

By the above lemma, we find that for d ≥ 2 with gcd(d, q − 1) = 1, the
action of the cyclic group < φ > of order n = q − 1 on Pd(F ) divides Pd(F )

into r
def
= Iq(d)/n equivalence classes. Each class contains n closed points of

degree d. We choose only one point from each class. Thus, we obtain r closed
points of degree d

P1,P2, . . . ,Pr.

It is clear that for 1 ≤ i 6= j ≤ r,
Pj 6∈ {φs(Pi) : s ∈ Z} = {Pi, φ(Pi), . . . , φ

n−1(Pi)}.
For each 1 ≤ i ≤ r, let fi(x) be the monic irreducible polynomial of degree

d of Fq[x] with unique zero Pi, i.e., div0(fi) = Pi. Put

zi
def
=

1

fi(x)
.
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Then Pi is the unique pole of zi (i.e., div∞(zi) = Pi) and νPi(zi) = −1.
Consider the family of binary sequences

Sd = {szi : i = 1, 2, . . . , r = Iq(d)/(q − 1)}

with
szi = {Tr(zi(Pj))}∞j=0 = {Tr(zi(ǫj))}∞j=0,

where Pj is the unique zero of x− ǫj .

Theorem 9.5.12 Let 2 ≤ d ≤ 1
2 ((q − 7)/(2

√
q) + 1) and gcd(d, q − 1) = 1.

Let Sd be the family of binary sequences as constructed above. Then Sd is of
size Iq(d)/(q − 1) and each sequence in Sd is of period n = q − 1. Moreover,

ℓmin(Sd) def
= min{ℓ(s) : s ∈ Sd} ≥

q − 3− 2(d− 1)
√
q

2d
√
q

and
CSd
≤ 2(2d− 1)

√
q + 6.

Proof. By the condition d ≤ 1
2 ((q − 7)/(2

√
q) + 1), we get q + 1 + 2(2g(X ) +

2d − 1)
√
q < 2n. It follows from Proposition 9.5.8 that the least period of

each sequence in Sd is n = q − 1. Let szi ∈ Sd for some 1 ≤ i ≤ r =
Iq(d)/(q− 1). Then Pi is the unique pole of zi and Pi, φ(Pi), . . . , φ

n−1(Pi) are
pairwise distinct. By Theorem 9.5.9, we have

ℓ(szi) ≥
2n− q − 1− 2(2g(X ) + d− 1)

√
q

2d
√
q

=
q − 3− 2(d− 1)

√
q

2d
√
q

for all 1 ≤ i ≤ r. This means that

ℓmin(Sd) ≥
q − 3− 2(d− 1)

√
q

2d
√
q

.

Now let szi and szj be two sequences of Sd (it is allowed that j = i). For
w ∈ Z, consider the function

u
def
= zi + φ−w(zj).

The closed point Pi is the unique pole of zi and φ
−w(Pj) is the unique pole

of φ−w(zj). We consider two cases.
Case 1: i 6= j. We must have Pi 6= φ−w(Pj) since

Pj 6∈ {φs(Pi) : s ∈ Z}.

Thus, Pi is not a pole of φ−w(zj) and νPi(u) = min{νPi(zi), νPi(φ
−w(zj))} =

−1. Therefore, u is nondegenerate.
Case 2: i = j and 0 < w < n. Again, we have Pi 6= φ−w(Pi), thus the same
argument as in Case 1 shows that u is nondegenerate.
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For both cases, zi + φ−w(zj) is nondegenerate. By Theorem 9.5.10, we
obtain

|Cszi
,szj

(w)| ≤ 2(2g(X ) + 2d− 1)
√
q + |q + 1− n|+ 2(N(X )− n)

= 2(2d− 1)
√
q + |q + 1− (q − 1)|+ 2(q + 1− (q − 1))

= 2(2d− 1)
√
q + 6.

Since CSd
< n, it is clear that the sequences sz1, sz2 , . . . , szr are pairwise dis-

tinct. Hence, the size of Sd is equal to r = Iq(d)/(q − 1). ✷

We rewrite Theorem 9.5.12 into the following form by specifying q to be
2e.

Theorem 9.5.13 Let e ≥ 3, let 2 ≤ d ≤ (2e − 7 + 2e/2+1)/2e/2+2, and
gcd(d, 2e−1) = 1. Then there exists a family Sd of binary sequences such that

(a) |Sd| = I2e(d)/(2
e − 1);

(b) each sequence in Sd is of period 2e − 1;

(c) ℓmin(Sd) ≥ (2e − 3− (d− 1)2e/2+1)/(d2e/2+1);

(d) CSd
≤ (2d− 1)2e/2+1 + 6.

If we take d = 2 in Theorem 9.5.13, we obtain the following:

Corollary 9.5.14 (i) Let e ≥ 6, then there exists a family S2 of binary
sequences such that

(a) |S2| = 2e−1;

(b) each sequence in S2 is of period 2e − 1;

(c) ℓmin(S2) ≥ 2e/2−2 − 1
2 − 3

2e/2+2 ;

(d) CS2 ≤ 6(2e/2 + 1).

(ii) Let e be a positive integer and let d be a prime satisfying gcd(d, 2e−1) =
1 and d ≤ ((2e−7)/2e/2+1+1)/2. Then there exists a family Sd of binary
sequences such that

(a) |Sd| = (2ed − 2e)/(d(2e − 1));

(b) each sequence in Sd is of period 2e − 1;

(c) ℓmin(Sd) ≥ (2e − 3− (d− 1)2e/2+1)/(d× 2e/2+1);

(d) CSd
≤ (2d− 1)2e/2+1 + 6.
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Proof. Note that
I2e(2)

2e − 1
= 2e−1.

The desired result in (i) follows from Theorem 9.5.10 when we take d = 2.
Furthermore, for a prime d, we have

I2e(d)

2e − 1
=

2ed − 2e

d(2e − 1)
.

The desired result in (ii) follows from Theorem 9.5.10. ✷

9.5.2 Construction Using Elliptic Curves

We continue to assume that q is even in this subsection. First, we review
some results on elliptic curves [52, 144].

Let E/Fq be an elliptic curve defined over Fq with at least one Fq-rational
point O. Let E(Fq) be the set of all Fq-rational points on E . We can take O
as the zero element of E(Fq). The number of Fq-rational points of E is always
between q + 1 − 2

√
q and q + 1 + 2

√
q by the Hasse-Weil bound (Corollary

1.5.4(iii)). Furthermore, for any d ≥ 1, the number of closed points of degree
d is determined by the number of Fq-rational points. More precisely, suppose
that E has q+1+ t rational places, then the number Bq(d, t) of closed points
of degree d of E is determined by

Bq(d, t)
def
=

1

d

∑

b|d
µ(
d

b
)(qb + 1− ωb

1 − ωb
2),

where ω1, ω2 are the two roots of the quadratic equation X2 + tX + q = 0. In
particular,

Bq(2, t) =
q2 + q − t− t2

2
and Bq(3, t) =

q3 − q − 3qt− t+ t3

3
.

Lemma 9.5.15 (see [52, pages 194–195]) Let E/Fq be an elliptic curve with
at least one Fq-rational point O. Then, for any rational point P of E, there
exists a unique automorphism σP of Aut(E/Fq) such that, for any closed point
P of degree d, σP (P) +O − P − [d]P is a principal divisor. In particular, σO
is the identity, and σi

P = σ[i]P for all i ∈ Z.

Remark 9.5.16 All the Fq-rational points of E form a finite abelian group
(with group operation ⊕) that is isomorphic to the divisor class group of
degree zero of E . If we take O as the zero element of the group and Q is an
Fq-rational point, then

σP (Q) = P ⊕Q.
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An elliptic curve is called cyclic if the Fq-rational points of this curve form
a cyclic group. The next result on the existence of cyclic elliptic curves can
be deduced from Theorem 3.3.10 with p = 2.

Lemma 9.5.17 Let q = 2e. Let t be an integer satisfying one of the following
three conditions:

(i) t is an odd integer between −2√q = −2e/2+1 and 2
√
q = 2e/2+1;

(ii) t = 0;

(iii) t =
√
q = 2e/2 if e is even, and t =

√
2q = 2(e+1)/2 if e is odd.

Then there exists a cyclic elliptic curve over Fq with 1 + q + t Fq-rational
points.

Lemma 9.5.18 Let E be a cyclic elliptic curve over Fq. Let R be a generator
of E(Fq) and let P be a closed point of degree d of E. Suppose the order n

of E(Fq) is relatively prime to d. Then σj
R(P) = σj+n

R (P), for all j ∈ Z, and
σi
R(P), σ

i+1
R (P), . . . , σi+n−1

R (P) are pairwise distinct for any fixed i ∈ Z.

Proof. For any j ∈ Z,

σj+n
R (P) = σj

R(σ
n
R(P)) = σj

R(σ[n]R(P)) = σj
R(σO(P)) = σj

R(P).

In order to prove that σi
R(P), σ

i+1
R (P), . . . , σi+n−1

R (P) are pairwise distinct for
any fixed i ∈ Z, we only need to show that σℓ

R(P) = P only if ℓ ≡ 0 (mod n).
Suppose σℓ

R(P) = P, i.e., σ[ℓ]R(P) = P. Then

σ[ℓ]R(P) +O − P− [d][ℓ]R = O − [d · ℓ]R

is a principal divisor. Therefore, d · ℓ ≡ 0 (mod n) since R is a generator of
E(Fq). Since n is relatively prime to d, this implies ℓ ≡ 0 (mod n). ✷

Let E be a cyclic elliptic curve of order n def
= q+1+t and let R be a generator

of E(Fq). Put Pi = [i]R for all i ∈ Z. For d ≥ 2, let Pd(E) be the set of all places
of E of degree d. Assume gcd(d, n) = 1. According to Lemma 9.5.18, the action

of < σR > on Pd(E) divides Pd(E) into r def
= Bq(d, t)/n = Bq(d, t)/(q + 1 + t)

equivalence classes. Each class contains n closed points of degree d. We choose
only one closed point from each class. Thus, we obtain r closed points of degree
d

P1,P2, . . . ,Pr.

It is clear that for 1 ≤ i 6= j ≤ r,

Pj 6∈ {σs(Pi) : s ∈ Z} = {Pi, σ(Pi), . . . , σ
n−1(Pi)}.

For each 1 ≤ i ≤ r, as dimFq L(Pi) = deg(Pi) + 1− g(E) = d > 1, we can find
an element

zi ∈ L(Pi) \ Fq.
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It is obvious that Pi is the unique pole of zi and νPi(zi) = −1. Consider
the family of binary sequences

Td = {szi : i = 1, 2, . . . , r = Bq(d, t)/(q + 1 + t)},

where
szi = {Tr(zi(Pj))}∞j=0 = {Tr(zi([j]R))}∞j=0.

Theorem 9.5.19 Let t be an integer satisfying one of the three conditions in
Lemma 9.5.17. Let 2 ≤ d ≤ (q+1+2t−2

√
q)/(4

√
q) and gcd(d, q+1+ t) = 1.

Let Td be the family of binary sequences as constructed above. Then Td is of

size Bq(d, t)/(q + 1 + t) and each sequence in Td is of period n
def
= q + 1 + t.

Moreover,

ℓmin(Td) ≥
q + 1 + 2t− 2(d+ 1)

√
q

2d
√
q

and
CTd
≤ 2(2d+ 1)

√
q + |t|.

Proof. By Lemma 9.5.17, there exists a cyclic elliptic curve E/Fq with q+1+ t
Fq-rational places. Employing arguments similar to those in the proof of The-
orem 9.5.12 and using the results of Lemma 9.5.18, and Theorems 9.5.9 and
9.5.10, we can obtain the desired results. ✷

We rewrite Theorem 9.5.19 in the following form by specifying q to be 2e.

Theorem 9.5.20 Let e ≥ 3 be an integer and let t be an integer sat-
isfying one of the three conditions in Lemma 9.5.17. Let 2 ≤ d ≤
(2e + 1 + 2t− 2e/2+1)/(2e/2+2) and gcd(d, 2e + 1 + t) = 1. Then there exists
a family Td of binary sequences such that

(a) |Td| = B2e(d, t)/(2
e + 1 + t);

(b) each sequence in Td is of period 2e + 1 + t;

(c) ℓmin(Td) ≥ (2e + 1 + 2t− (d+ 1)2e/2+1)/(d2e/2+1);

(d) CTd
≤ (2d+ 1)2e/2+1 + |t|.

Corollary 9.5.21 (i) Let e ≥ 8 and let t satisfy condition (ii) or (iii) in
Lemma 9.5.17. Then there exists a family T2 of binary sequences such
that

(a) |T2| = (2e − t)/2;
(b) each sequence in T2 is of period 2e + 1 + t;

(c) ℓmin(T2) ≥ 2e/2−2 − 3
2 − 1+2t

2e/2+2 ;

(d) CT2 ≤ 10 · 2e/2 + |t|.
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(ii) Let e ≥ 9 and let t satisfy one of the three conditions in Lemma 9.5.17.
In addition, suppose gcd(3, t+1+(−1)e) = 1. Then there exists a family
T3 of binary sequences such that

(a) |T3| = (22e − 2e − t2e + t2 − t)/3;
(b) each sequence in T3 is of period 2e + 1 + t;

(c) ℓmin(T3) ≥ 2e/2−2 − 2− 1+2t
2e/2+2 ;

(d) CT3 ≤ 14 · 2e/2 + |t|.

Proof. Note that
Bq(2, t)

q + 1 + t
=
q − t
2

=
2e − t

2

and that q + t+ 1 is an odd number, when t satisfies condition (ii) or (iii) of
Lemma 9.5.17. Taking d = 2 in Theorem 9.5.20 gives the results of part (i).

Note that

Bq(3, t)

q + 1 + t
=
q2 − q − qt+ t2 − t

3
=

(22e − 2e − t2e + t2 − t)
3

and that gcd(3, q + 1 + t) = gcd(3, t+ 1 + (−1)e). Taking d = 3 in Theorem
9.5.20 gives the results of part (ii). ✷
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[130] M. Ruszinkó. On the upper bound of the size of the r-cover-free families.
Journal of Combinatorial Theory, Series A, 66:302–310, 1994.

[131] R. Safavi-Naini and H. Wang. New constructions for multicast re-keying
schemes using perfect hash families. In 7th ACM Conference on Com-
puter and Communication Security, pages 228–234. ACM Press, 2000.

[132] R. Safavi-Naini, H. Wang, and D. S. Wong. Resilient LKH: Secure mul-
ticast key distribution schemes. International Journal of Foundations
of Computer Science, 17:1205–1221, 2006.

[133] A. Sahai and B. Waters. Attribute-based encryption for circuits from
multilinear maps. Cryptology ePrint Archive, 592, 2012.

[134] D. V. Sarwate. A note on universal hash functions. Information Pro-
cessing Letters, 10:41–45, 1980.

[135] T. Satoh and K. Araki. Fermat quotients and the polynomial time dis-
crete log algorithm for anomalous elliptic curves. Commentarii Mathe-
matici Universitatis Sancti Pauli, 47:81–92, 1998.

[136] J. Seberry, C. Charnes, J. Pieprzyk, and R. Safavi-Naini. Crypto top-
ics and applications II, secret sharing, threshold cryptography, signature
schemes, quantum key distributions. In Algorithms and Theory of Com-
putation Handbook, pages 1–30. Chapman & Hall / CRC, 2010.

[137] I. A. Semaev. Evaluations of discrete logarithms in a group of p-torsion
points of an elliptic curve with characteristic p. Mathematics of Com-
putation, 67:353–356, 1998.

[138] J.-P. Serre. Nombres de points des courbes algébriques sur Fq. Séminaire
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ordinary, 63
plane, 1, 4
projective, 4
smooth, 4, 5
smooth affine, 8
supersingular, 63

curves
isogenous, 57
isomorphic, 56

deception probability, 139
degenerate, 288
degree, 10, 56

embedding, 80
inseparable, 56
separable, 56
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degree d function, 270
descendant, 174
design

t-, 145
balanced incomplete block, 238
packing, 181
super-simple, 221

differential form, 195
Diffie-Hellman problem

computational, 86
decisional, 86, 247

discrete logarithm problem, 43, 73
discriminant, 46
distance, 22

dual minimum, 25
minimum, 23
relative minimum, 33

divisor, 13
Fq-rational, 13
degree, 13
effective, 13
equivalent, 14
pole, 14
positive, 13
principal, 14
zero, 14

divisor class group, 14
divisor class number, 186
divisor group, 13
dual code, 25
dual minimum distance, 25
duplication formula, 52
dynamic controller re-keying scheme,

253

effective divisor, 13
elliptic curve, 1, 2, 44, 45

anomalous, 74
cyclic, 298
ordinary, 63
supersingular, 63
twist, 59

elliptic curve factorization method,
83

embedding degree, 80

entropy, 104
equation

affine, 3
Weierstrass, 45

equivalent divisor, 14
equivocation, 104
erasure code, 255
expectation, 106

feasible set, 178
forbidden subset, 199
form

differential, 195
fragment, 200
frameproof code, 173, 174, 178
frameproof Xing number, 190
Frobenius map, 60
Frobenius morphism, 60

characteristic polynomial of, 65
function

degree d, 270
Miller, 54
rational, 47
zeta, 16

function field, 6, 7, 47
rational, 6

Gaussian coefficient, 167
generalized cumulative array, 101
generator matrix, 25
genus, 12
Golay code, 28

binary, 28
extended binary, 28

group
divisor class, 14

Hamming code, 33
q-ary, 33

Hamming weight, 24
minimum, 24

hash family, 151
almost strongly universal, 152
almost universal, 152

hash function, 151
Hasse-Weil bound, 18
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Hermitian curve, 2, 4
homogeneous polynomial, 4
hyperelliptic curve, 2
hypergraph, 213

covering, 214
hyperedge, 213
node, 213
vertex, 213

identity morphism, 55
impersonation attack, 139
incidence matrix, 144
information rate, 22, 200
initial state vector, 262
inner product, 25
inseparable degree, 56
integer factorization problem, 43
irreducible

absolutely, 1
isogenous curves, 57
isogeny, 57
isomorphic curves, 56
isomorphism, 56

Jacobian group, 183
Jacobian matrix, 8

Kerckhoff’s principle, 139
key predistribution scheme, 200

information rate, 200
linear, 206
total information rate, 201

keystream, 261
Klein curve, 4

L-function, 17
Lagrange Interpolation Formula, 93
least period, 263
LFSR, 262

kth-order, 262
sequence, 262

line
affine plane, 2
projective plane, 4
tangent, 4, 5

linear A-code, 164

[n,M, t, d], 166
linear code, 24
linear complexity, 265, 278
linear complexity profile, 267, 278
linear feedback shift register, 262
linear recurring sequence, 262

kth-order, 262
linear secret sharing scheme, 116

3-multiplicative, 125
λ-multiplicative, 126
multiplicative, 122
strongly λ-multiplicative, 126
strongly multiplicative, 122

linearized polynomial, 171
LKH, 248

q-ary resilient, 249
w-resilient, 249

local expansion, 269, 283
local parameter, 10, 11
logical key hierarchy scheme, 248

matrix
generator, 25
parity-check, 25

maximum distance separable, 33
MDS code, 33

nontrivial, 34
trivial, 34

Miller algorithm, 70
Miller function, 54
minimal codeword, 129
minimum distance, 23

dual, 25
monotone circuit construction, 101
monotone span program, 117

size, 117
morphism, 54

composition, 56
constant, 55
degree of, 56
Frobenius, 60
identity, 55
inseparable, 56
multiplication, 61
negation, 55
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separable, 56
translation, 55

multicast group, 244
multilinear function, 207
multiplication map, 60
multiplication morphism, 61
multisequence, 278
mutual information, 106

negation morphism, 55
nondegenerate, 288
nonsingular, 4, 5, 8
nonsingular affine curve, 8
nonsingular curve, 4, 5

one-time broadcast encryption
scheme, 232

opponent, 138
OR broadcast scheme, 250
ordinary elliptic curve, 63
orthogonal array, 144
OTBES, 232

broadcast information rate, 233
information rate, 233
optimal broadcast information

rate, 233
optimal information rate, 233
total information rate, 233

overall deception probability, 139

packing design, 181
pairing, 75

alternating, 75
bilinear, 75
nondegenerate, 75
Tate, 79
Tate-Lichtenbaum, 78
Weil, 76

parallel class, 235
parity-check coordinate, 27
perfect, 279

almost, 278
perfect hash family, 222
perfect hash function, 222
perfect sequence, 267
performance rate, 218

period, 262
least, 263

plane
affine, 2
projective, 3

point, 2, 7, 144
closed, 10
conjugate, 10
nonsingular, 4, 5
rational, 7
simple, 4, 5, 8
singular, 4, 5
smooth, 8

pole divisor, 14
pole of function, 14
polynomial

homogeneous, 4
positive divisor, 13
preperiod, 263
principal divisor, 14
privileged subset, 199
profile

linear complexity, 267, 278
projective plane, 3
projective plane curve, 4
projective plane line, 4
projective space, 2
projective Weierstrass equation, 45
purely periodic, 263

quadratic twist, 59

radius, 31
ramp scheme, 112

optimal, 115
rank distance code, 170

maximum, 171
MRD, 171

rate of frameproof code, 182
rational function, 47
rational function field, 6
rational point, 7
re-keying scheme, 244, 245

w-resilient, 245
dynamic controller, 253
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receiver, 138
recombination vector, 122
Reed-Muller code, 29
Reed-Solomon code, 34

generalized, 34
residual code, 37
residue class field, 282
resilient, 253
Riemann-Roch space, 12
Riemann-Roch Theorem, 12

secret message, 232
secret reconstruction algorithm, 91,

97
secret sharing scheme, 91

t-out-of-n, 91
Asmuth-Bloom, 96
average rate, 109
Benaloh-Leichter, 101
Blakley, 95
ideal, 109
information rate, 108
Karnin-Greene-Hellman, 94
linear, 116
non-perfect, 112
perfect, 92, 107
quasi-perfect, 112
realizing Γ, 97
secret reconstruction algorithm,

91
Shamir threshold scheme, 92
share distribution algorithm, 91
size, 116

seed, 262
self-dual, 25
self-orthogonal, 25
separable degree, 56
separating matrix, 219
sequence

d-perfect, 267
almost perfect, 267
LFSR, 262
perfect, 267

set system, 144
share distribution algorithm, 91, 97

Simmons’s information-theoretic
bound, 142

simplex code, 33
singular, 4, 5, 8
smooth, 8
smooth affine curve, 8
smooth curve, 4, 5
source state, 138
space

affine, 2
projective, 2
Riemann-Roch, 12

span program, 115
sphere, 31
spoofing of order r, 140
square root bound, 143
state vector, 262
stream cipher, 261
strongly multiplicative, 134
substitution attack, 139
supersingular elliptic curve, 63
support

codeword, 129
divisor, 36

tangent line, 4, 5
Tate pairing, 79
Tate-Lichtenbaum pairing, 78, 79
threshold scheme, 91
torsion point, 62
total information rate, 201
translation morphism, 55
transmitter, 138
trusted authority, 200
twists, 59

ultimately periodic, 262
undetectable, 178

valuation, 8

Weierstrass normal form, 46
weight

Hamming, 24
Weil pairing, 76
Weil Theorem, 17
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