O'REILLY"

SECUIItY

ENABLING SECURITY IN A CONTINUOUS DELIVERY PIPELINE

Laura Bell, Michael Brunton-Spall,
Rich Smith & Jim Bird

Agile Application Security

Enabling Security in a Continuous Delivery Pipeline

Laura Bell, Michael Brunton-Spall, Rich Smith, and Jim Bird

Agile Application Security
by Laura Bell , Michael Brunton-Spall , Rich Smith , and Jim Bird

Copyright A© 2017 Laura Bell, Rich Smith, Michael Brunton-Spall, Jim Bird. All rights reserved.
Printed in the United States of America.
Published by Oa€™ Reilly Media, Inc. , 1005 Gravenstein Highway North, Sebastopol, CA 95472.

0Oa€™ Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com .

Editor: Courtney Allen

Production Editor: Colleen Cole
Copyeditor: Amanda Kersey
Proofreader: Sonia Saruba

Indexer: Wendy Catalano

Interior Designer: David Futato
Cover Designer: Karen Montgomery
[llustrator: Rebecca Demarest

September 2017: First Edition
Revision History for the First Edition

e 2017-09-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491938843 for release details.

The Oa€™ Reilly logo is a registered trademark of Oa€™ Reilly Media, Inc. Agile Application Security , the
cover image, and related trade dress are trademarks of O4€™ Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own risk. If any code samples or
other technology this work contains or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or
rights.

978-1-491-93884-3
[LSI]

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491938843

Preface

Software is eating the world. Developers are the new kingmakers. The internet of things means there will be a
computer in every light bulb.

These statements indicate the growing dominance of software development, to the point where most people in
the world will never be further than a meter away from a computer, and we will expect much of our life to
interact with computer-assisted objects and environments all the time.

But this world comes with some dangers. In the old world of computing, security was often only considered in
earnest for banking and government systems. But the rise of ubiquitous computing means a rise in the value
that can be realized from the abuse of systems, which increases incentives for misuse, which in turn increases
the risks systems face.

Agile software development techniques are becoming rapidly adopted in most organizations. By being
responsive to change and dramatically lowering the cost of development, they provide a standard that we expect
will continue to grow until the majority of software is built in an Agile manner.

However, security and Agile have not historically been great bedfellows.

Security professionals have had their hands full with the aforementioned government, ecommerce, and banking
systems, trying to architect, test, and secure those systems, all in the face of a constantly evolving set of threats.
Furthermore, what is often seen as the most fun and exciting work in security, the things that get covered on the
tech blogs and the nightly news, is done by teams of professional hackers focusing on vulnerability research,
exploit development, and stunt hacks.

You can probably name a few recent branded vulnerabilities like Heartbleed, Logjam, or Shellshock (or heaven
forbid even recognize their logos), or recognize the teams of researchers who have achieved a jailbreak on the
latest iPhones and Android devices. But when was the last time a new defensive measure or methodology had a
cool , media-friendly name, or you picked up the name of a defender and builder?

Security professionals are lagging behind in their understanding and experience of Agile development, and that
creates a gap that is scary for our industry.

Equally, Agile teams have rejected and thrown off the shackles of the past. No more detailed requirements
specifications, no more system modeling, no more traditional Waterfall handoffs and control gates. The problem
with this is that Agile teams have thrown the baby out with the bathwater. Those practices, while sometimes
slow and inflexible, have demonstrated value over the years. They were done for a reason, and Agile teams in
rejecting them can easily forget and dismiss their value.

This means that Agile teams rarely consider security as much as they should. Some of the Agile practices make
a system more secure, but that is often a beneficial side effect rather than the purpose. Very few Agile teams
have an understanding of the threats that face their system; they dona€™ t understand the risks they are taking;
they dona€™ t track or do anything to control those risks; and they often have a poor understanding of who it
even is that is attacking their creations.

Who Should Read This Book

We dona€™ t know if you are an Agile team leader, or a developer who is curious or wants to know more about
security. Maybe you are a security practitioner who has just found an entire development team you didna€™ t
know existed and you want to know more.

This book was written with three main audiences in mind.

The Agile Practitioner

You live, breathe, and do Agile. You know your Scrum from your Kaizen, your test-driven-development from
your feedback loop. Whether you are a Scrum Master, developer, tester, Agile coach, Product Owner, or
customer proxy, you understand the Agile practices and values.

This book should help you understand what security is about, what threats exist, and the language that security
practitioners use to describe what is going on. Wea€™ 1l help you understand how we model threats, measure
risks, build software with security in mind, install software securely, and understand the operational security
issues that come with running a service.

The Security Practitioner

Whether you are a risk manager, an information assurance specialist, or a security operations analyst, you
understand security. You are probably careful how you use online services, you think about threats and risks
and mitigations all of the time, and you may have even found new vulnerabilities and exploited them yourself.

This book should help you understand how software is actually developed in Agile teams, and what on earth
those teams are talking about when they talk about sprints and stories. You will learn to see the patterns in the
chaos, and that should help you interact with and influence the team. This book should show you where you can
intervene or contribute that is most valuable to an Agile team and has the best effect.

The Agile Security Practitioner

From risk to sprints, you know it all. Whether you are a tool builder who is trying to help teams do security
well, or a consultant who advises teams, this book is also for you. The main thing to get out of this book is to
understand what the authors consider to be the growing measure of good practice. This book should help you be
aware of others in your field, and of the ideas and thoughts and concepts that we are seeing pop up in
organizations dealing with this problem. It should give you a good, broad understanding of the field and an idea
for what to research or learn about next.

Navigating This Book

You could read this book from beginning to end, one chapter at a time. In fact, we recommend it; we worked
hard on this book, and we hope that every chapter will contain something valuable to all readers, even if ita
€™ just our dry wit and amusing anecdotes!

But actually, we think that some chapters are more useful to some of you than others.

We roughly divided this book into three parts.

Part 1: Fundamentals

Agile and security are very broad fields, and we dona€™ t know what you already know. Especially if you
come from one field, you might not have much knowledge or experience of the other.

If you are an Agile expert, we recommend first reading ChapterA 1, Getting Started with Security , to be sure
that you have a baseline understanding of security.

If you arena€™ t doing Agile yet, or you are just starting down that road, then before we move on to the
introduction to Agile, we recommend that you read ChapterA 2, Agile Enablers . This represents what we think
the basic practices are and what we intend to build upon.

ChapterA 3, Welcome to the Agile Revolution , covers the history of Agile software development and the
different ways that it can be done. This is mostly of interest to security experts or people who dona€™ t have

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch01.html#mbs_into_to_security
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch02.html#agile_precursors
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch03.html#mbs_into_to_agile

that experience yet.

Part 2: Agile and Security
We then recommend that everybody starts with ChapterA 4, Working with Your Existing Agile Life Cycle .

This chapter attempts to tie together the security practices that we consider, with the actual Agile development
life cycle, and explains how to combine the two together.

Chapters 5 through 7 give an understanding of requirements and vulnerability management and risk
management, which are more general practices that underpin the product management and general planning
side of development.

Chapters 8 through 13 cover the various parts of a secure software development life cycle, from threat
assessment, code review, testing, and operational security.

Part 3: Pulling It All Together

ChapterA 14 looks at regulatory compliance and how it relates to security, and how to implement compliance in
an Agile or DevOps environment.

ChapterA 15 covers the cultural aspects of security. Yes, you could implement every one of the practices in this
book, and the previous chapters will show you a variety of tools you can use to make those changes stick. Yet
Agile is all about people, and the same is true of effective security programs: security is really cultural change
at heart, and this chapter will provide examples that we have found to be effective in the real world.

For a company to change how it does security, it takes mutual support and respect between security
professionals and developers for them to work closely together to build secure products. That cana€™ t be
ingrained through a set of tools or practices, but requires a change throughout the organization.

Finally, ChapterA 16 looks at what Agile security means to different people, and summarizes what each of us
has learned about what works and what doesnd€™ t in trying to make teams Agile and secure.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as variable or
function names, databases, data types, environment variables, statements, and keywords. If you see the af?
at the end of a code line, this indicates the line continues on the next line.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by context.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch04.html#agile-lifecycle
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch05.html#security_requirements
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch07.html#risk_for_developers
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#threat_assessments
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch13.html#operational_security
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch14.html#compliance
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch15.html#building_culture
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch16.html#common_challenges

This element signifies a tip or suggestion.

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Oa€™Reilly Safari

Safari (formerly Safari Books Online) is a membership-based training and reference platform for enterprise,
government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interactive tutorials, and curated
playlists from over 250 publishers, including Oa€™ Reilly Media, Harvard Business Review, Prentice Hall
Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press,
Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press,
Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari .

How to Contact Us

Please address comments and questions concerning this book to the publisher:
Oa€™ Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can
access this page at http.//bit.ly/agile-application-security .

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com .

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com .

http://oreilly.com/safari
http://oreilly.com/safari
http://bit.ly/agile-application-security
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http.//twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube .com/oreillymedia

Acknowledgments

First, thank you to our wonderful editors: Courtney Allen, Virgnia Wilson, and Nan Barber. We couldna€™ t
have got this done without all of you and the rest of the team at OA€™ Reilly.

We also want to thank our technical reviewers for their patience and helpful insights: Ben Allen, Geoff Kratz,
Pete McBreen, Kelly Shortridge, and Nenad Stojanovski.

And finally, thank you to our friends and families with putting up with yet another crazy project.

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter 1. Getting Started with Security

So what is security?
A deceptively simple question to ask, rather more complex to answer.

When first starting out in the world of security, it can be difficult to understand or to even to know what to look
at first. The successful hacks you will read about in the news paint a picture of Neo-like adversaries who have a
seemingly infinite range of options open to them with which to craft their highly complex attacks. When
thought about like this, security can feel like a possibly unwinnable field that almost defies reason.

While it is true that security is a complex and ever-changing field, it is also true that there are some relatively
simple first principles that, once understood, will be the undercurrent to all subsequent security knowledge you
acquire. Approach security as a journey, not a destinationd€”one that starts with a small number of
fundamentals upon which you will continue to build iteratively, relating new developments back to familiar
concepts.

With this in mind, and regardless of our backgrounds, it is important that we all understand some key security
principles before we begin. We will also take a look at the ways in which security has traditionally been
approached, and why that approach is no longer as effective as it once was now that Agile is becoming more
ubiquitous.

Security for development teams tends to focus on information security (as compared to physical security like
doors and walls, or personnel security like vetting procedures). Information security looks at security practices
and procedures during the inception of a project, during the implementation of a system, and on through the
operation of the system.

While we will be talking mostly about information security in this book, for the sake of brevity we will just use
security to refer to it. If another part of the security discipline is being referred to, such as physical security, then it
will be called out explicitly.

This Isna€™1 Just a Technology Problem

As engineers we often discuss the technology choices of our systems and their environment. Security forces us
to expand past the technology. Security can perhaps best be thought of as the overlap between that technology
and the people who interact with it day-to-day as shown in FigureA 1-1 .

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch01.html#fig_rs_ch02_1

Technology | Security Society

Figure 1-1. When society had less dependence on technology, the need for security was less

So what can this picture tell us? It can be simply viewed as an illustration that security is more than just about
the technology and must , in its very definition, also include people.

People dona€™ t need technology to do bad things or take advantage of each other; such activities happened
well before computers entered our lives; and we tend to just refer to this as crime . People have evolved for
millennia to lie, cheat, and steal items of value to further themselves and their community. When people start
interacting with technology, however, this becomes a potent combination of motivations, objectives, and
opportunity. In these situations, certain motivated groups of people will use the concerted circumvention of
technology to further some very human end goal, and it is this activity that security is tasked with preventing.

However, it should be noted that technological improvements have widened the fraternity of people who can
commit such crime, whether that be by providing greater levels of instruction, or widening the reach of
motivated criminals to cover worldwide services. With the internet, worldwide telecommunication, and other
advances, you are much more easily attacked now than you could have been before, and for the perpetrators
there is a far lower risk of getting caught. The internet and related technologies made the world a much smaller
place and in doing so have made the asymmetries even starkera€’the costs have fallen, the paybacks increased,
and the chance of being caught drastically reduced. In this new world, geographical distance to the richest
targets has essentially been reduced to zero for attackers, while at the same time there is still the old established
legal system of treaties and process needed for cross-jurisdictional investigations and extraditionsa€’this aside
from the varying definitions of what constitutes a computer crime in different regions. Technology and the
internet also help shield perpetrators from identification: no longer do you need to be inside a bank to steal its
moneya€”’you can be half a world away.

Circumvention is used deliberately to avoid any implicit moral judgments whenever insecurity is discussed.

The more technologies we have in our lives, the more opportunities we have to both use and benefit from them.
The flip side of this is that societya€™ s increasing reliance on technology creates greater opportunities,
incentives, and benefits for its misuse. The greater our reliance on technology, the greater our need for that
technology to be stable, safe, and available. When this stability and security comes into question, our
businesses and communities suffer. The same picture can also help to illustrate this interdependence between

the uptake of technology by society and the need for security in order to maintain its stability and safety, as
shown in FigureA 1-2 .

Technology = Security Society

Figure 1-2. As society becomes increasingly dependent on technology, the need for security and impacts of its absence increase
significantly

As technology becomes ever more present in the fabric of society, the approaches taken to thinking about its
security become increasingly important.

A fundamental shortcoming of classical approaches to information security is failing to recognize that people
are just as important as technology. This is an area we hope to provide a fresh perspective to in this book.

Not Just for Geeks

There was a time that security was the exclusive worry of government and geeks. Now, with the internet being
an integral part of peoplea€™ s lives the world over, securing the technologies that underlie it is something that
is pertinent to a larger part of society than ever before.

If you use technology, security matters because a failure in security can directly harm you and your
communities.

If you build technology, you are now the champion of keeping it stable and secure so that we can improve our
business and society on top of its foundation. No longer is security an area you can mentally outsource:

e You are responsible for considering the security of the technology.

¢ You provide for people to embrace security in their everyday lives.

Failure to accept this responsibility means the technology you build will be fundamentally flawed and fail in
one of its primary functions.

Security Is About Risk

Security, or securing software more specifically, is about minimizing risk. It is the field in which we attempt to
reduce the likelihood that our people, systems, and data will be used in a way that would cause financial or
physical harm, or damage to our organizationa€™ s reputation.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch01.html#fig_rs_ch02_2

Vulnerability: Likelihood and Impact

Most security practices are about preventing bad things from happening to your information or systems. But
risk calculation isna€™ t about stopping things; itA€™ s about understanding what could happen, and how, so
that you can prioritize your improvements.

To calculate risk you need to know what things are likely to happen to your organization and your system, how
likely they are to happen, and the cost of them happening. This allows you to work out how much money and
effort to spend on protecting against that stuff.

We Are All Vulnerable

Vulnerability is about exposure. Outside the security field, vulnerability is how we talk about being open to
harm either physically or emotionally. In a systems and security sense, we use the word vulnerability to
describe any flaw in a system, component, or process that would allow our data, systems, or people to be
misused, exposed, or harmed in some way.

You may hear phrases such as, &€ cea new vulnerability has been discovered ina€isoftwarea€ or perhaps, a
€xThe attacker exploited a vulnerability ind€14€ as you start to read about this area in more depth. In these
examples, the vulnerability was a flaw in an applicationA€™ s construction, configuration or business logic that
allowed an attacker to do something outside the scope of what was authorized or intended. The exploitation of
the vulnerability is the actual act of exercising the flaw itself, or the way in which the problem is taken
advantage of.

Not Impossible, Just Improbable

Likelihood 1s the way we measure how easy (or likely) it is that an attacker would be able (and motivated) to
exploit a vulnerability.

Likelihood is a very subjective measurement and has to take into account many different factors. In a simple
risk calculation you may see this simplified down to a number, but for clarity, here are the types of things we
should consider when calculating likelihood:

Technical skill required to exploit the vulnerability
Do you need to be a deep technical specialist, or will a passing high-level knowledge be enough?
Reliability

Does the exploit work reliably? What about over the different versions, platforms, and architectures where
the vulnerability may be found? The more reliable the exploit, the less likely attacks are to cause a side
effect that is noticeable: this makes it a safer exploit for an attacker to use, as it can reduce the chances of
detection.

Automation

Does the exploitation of the vulnerability lend itself well to be automated? This can help its inclusion in
things like exploit kits or self-propagating code (worms), which means you are more likely to be subject to
indiscriminate exploit attempts.

Access

Do you need to be have the ability to communicate directly with a particular system on a network or have a
particular set of user privileges? Do you need to have already compromised one or more other parts of the
system to make use of the vulnerability?

Motivation

Would the end result of exploiting this vulnerability be enough to motivate someone into spending the time?

Measuring the Cost

Impact is the effect that exploiting a vulnerability or having your systems misused or breached in someway
would have on you, your customers, and your organization.

For the majority of businesses, we measure impact in terms of money lost. This could be actual theft of funds
(via credit card theft or fraud, for example), or it could be cost of recovering from a breach. Cost of recovery
often includes not just addressing the vulnerability, but also:

e Responding to the incident itself

e Repairing other systems or data that may have been damaged or destroyed

¢ Implementing new approaches to help increase the security of the system in an effort to prevent a repeat
e Increased audit, insurance, and compliance costs

e Marketing costs and public relations

e Increased operating costs or less favorable rates from suppliers

At the more serious end of the scale are those of us who build control systems or applications that have direct
impact on human lives. In those circumstances, measuring the impact of a security issue is much more personal,
and may include death and injury to individuals or groups of people.

In a world where we are rapidly moving toward automation of driving and many physical roles in society,
computerized medical devices, and computers in every device in our homes, the impact of security
vulnerabilities will move toward an issue of protecting people rather than just money or reputation.

Risk Can Be Minimized, Not Avoided

We are used to the idea that we can remove the imperfections from our systems. Bugs can be squashed and
inefficiencies removed by clever design. In fact, we can perfect the majority of things we build and control
ourselves.

Risk is a little different.

Risk is about external influences to our systems, organizations, and people. These influences are mostly outside
of our control (economists often refer to such things as externalities). They could be groups or individuals with
their own motivations and plans, vendors and suppliers with their own approaches and constraints, or
environmental factors.

As we dona€™ t control risk or its causes, we can never fully avoid it. It would be an impossible and fruitless
task to attempt to do so. Instead we must focus on understanding our risks, minimizing them (and their impacts)
where we can, and maintaining watch across our domain for new evolving or emerging risks.

The acceptance of risk is also perfectly OK, as long as it is mindful and the risk being accepted is understood.
Blindly accepting risks, however, is a recipe for disaster and is something you should be on the lookout for, as it
can occur all too easily.

An Imperfect World Means Hard Decisions

While we are on this mission to minimize and mitigate risks, we also have be aware that we live in an
environment of limits and finite resources. Whether we like it or not, there are only 24 hours in a day, and we
all need to sleep somewhere in that period. Our organizations all have budgets and a limited number of people
and resources to throw at problems.

As a result, there are few organizations that can actually address every risk they face. Most will only be able to
mitigate or reduce a small number. Once our resources are spent, we can only make a list of the risks that

remain, do our best to monitor the situation, and understand the consequence of not addressing them.

The smaller our organizations are, the more acute this can be. Remember though, even the smallest teams with
the smallest budget can do something. Being small or resource poor is not an excuse for doing nothing, but an
opportunity to do the best you can to secure your systems, using existing technologies and skills in creative
ways.

Choosing which risks we address can be hard and isna€™ t a perfect science. Throughout this book, we should
give you tools and ideas for understanding and measuring your risks more accurately so that you can make the
best use of however much time and however many resources you have.

Threat Actors and Knowing Your Enemy
So who or what are we protecting against?

While we would all love to believe that it would take a comic-book caliber super villain to attack us or our
applications, we need to face a few truths.

There is a range of individuals and groups that could or would attempt to exploit vulnerabilities in your
applications or processes. Each has their own story, motivations, and resources; and we need to know how these
things come together to put our organizations at risk.

There Is an Attacker for Everyone

In recent years we have been caught up with using the word cyber to describe any attacker that approaches via
our connected technologies or over the internet. This has led to the belief that there is only one kind of attacker
and that they probably come from a nation-state actor somewhere a€ cefar away.a€

Cyber is a term that, despite sounding like it originated from a William Gibson novel, actually emanated from the
US military.

The military considered there to be four theaters of war where countries can legally fight: land, sea, air, and space.
When the internet started being used by nations to interfere and interact with each other, they recognized that
there was a new theater of war: cyber, and from there the name has stuck.

Once the government started writing cyber strategies and talking about cyber crime, it was inevitable that large
vendors would follow the nomenclature, and from there we have arrived at a place where it is commonplace to
hear about the various cybers and their associated threats. Unfortunately cyber has become the all-encompassing
marketing term used to both describe threats and brand solutions. This commercialization and over-application
has had the effect of diluting the term and making it something that has become an object of derision for many in
the security community. In particular, those who are more technically and/or offensively focused often use a
€ecyberd€ as mockery.

While some of us (including more than one of your authors) might struggle with using the word 4€ cecyber,a€ it
is undeniable that it is a term well understood by nonsecurity and nontechnical people; alternate terms such as a
€ einformation security,a€ a€infosec,a€ a€cecommsec, A€ or a€cedigital securitya€ are all far more opaque
to many. With this in mind, if using &€ cecybera€ helps you get bigger and more points across to those who are
less familiar with the security space or whose roles are more focused on PR and marketing, then so be it. When in
more technical conversations or interacting with people more toward the hacker end of the infosec spectrum, be
aware that using the term may devalue your message or render it mute altogether.

Thata€™ s simply not the case.

There are many types of attackers out there, the young, impetuous, and restless; automated scripts and roaming
search engines looking for targets; disgruntled ex-employees; organized crime; and the politically active. The
range of attackers is much more complex than our &€ cecybera€ wording would allow us to believe.

Motivation, Resources, Access

When you are trying to examine the attackers that might be interested in your organization you must consider
both your organizationa€™ s systems and its people. When you do this, there are three different aspects of the
attackera€™ s profile or persona worth considering:

1. Their motivations and objectives (why they want to attack and what they hope to gain)
2. Their resources (what they can do, what they can use to do it, and the time they have available to invest)

3. Their access (what they can get hold of, into, or information from)

When we try to understand which attacker profiles our organization should protect against, how likely each is to
attack, and what impact it would have, we have to look at all of these attributes in the context of our
organization, its values, practices, and operations.

We will cover this subject in much more detail as we learn to create security personas and integrate them into
our requirements capture and testing regimes.

Security Values: Protecting Our Data, Systems, and People

We have a right (and an expectation) that when we go about our days and interact with technologies and
systems, we will not come to harm while our data remains intact and private.

Security is how we achieve this and we get it by upholding a set of values.

Know What You Are Trying to Protect

Before anything else, stop for a second and understand what it is that you are trying to secure, what are the
crown jewels in your world, and where are they kept? It is surprising how many people embark on their
security adventure without this understanding, and as such waste a lot of time and money trying to protect the
wrong things.

Confidentiality, Integrity, and Availability

Every field has its traditional acronyms, and confidentiality, integrity, and availability (CIA) is a treasure in
traditional security fields. It is used to describe and remember the three tenets of secure systemsa€”’the features
that we strive to protect.

Confidentiality: Keep It Secret

There are very few systems now that allow all people to do all things. We separate our application users into
roles and responsibilities. We want to ensure that only those people we can trust, who have authenticated and
been authorized to act, can access and interact with our data.

Maintaining this control is the essence of confidentiality.

Integrity: Keep It Safe

Our systems and applications are built around data. We store it, process it, and share it in dozens of ways as part
of normal operations.

When taking responsibility for this data, we do so under the assumption that we will keep it in a controlled
state. That from the moment we are entrusted with data, we understand and can control the ways in which is is
modified (who can change it, when it can be changed, and in what ways). Maintaining data integrity is not
about keeping data preserved and unchanged; it is about having it subjected to a controlled and predictable set
of actions such that we understand and preserve its current state.

Availability: Keeping the Doors Open and the Lights On

A system that cana€™ t be accessed or used in the way that it was intended is no use to anyone. Our businesses
and lives rely on our ability to interact with and access data and systems on a nearly continuous basis.

The not-so-much witty, as cynical among us will say that to secure a system well, we should power it down,
encase it in concrete, and drop it to the bottom of the ocean. This, however, wouldna€™ t really help us
maintain the requirement for availability.

Security requires that we keep our data, systems, and people safe without getting in the way of interacting with
them.

This means finding a balance between the controls (or measures) we take to restrict access or protect
information and the functionality we expose to our users as part of our application. As we will discuss, it is this
balance that provides a big challenge in our information sharing and always-connected society.

Nonrepudiation

Nonrepudiation is a proof of both the origin and integrity of data; or put another way, is the assurance that an
activity cannot be denied as having been taken. Non-repudiation is the counterpart to auditability, which taken
together provide the foundation upon which every activity in our systema€”’every change and every taska
€”should be traceable to an individual or an authorized action.

This mechanism of linking activity to a usage narrative or an individuala€™ s behavior gives us the ability to
tell the story of our data. We can recreate and step through the changes and accesses made, and build a timeline.
This timeline can help us identify suspicious activity, investigate security incidents or misuse, and even debug
functional flaws in our systems.

Compliance, Regulation, and Security Standards

One of the main drivers for security programs in many organizations is compliance with legal or industry-
specific regulatory frameworks. These dictate how our businesses are required to operate, and how we need to
design, build, and operate our systems.

Love them or hate them, regulations have beend€”and continue to bea€’the catalyst for security change, and
often provide us with the management buy-in and support that we need to drive security initiatives and changes.
Compliance a€emustsa€ can sometimes be the only way to convince people to do some of the tough but
necessary things required for security and privacy.

Something to be eyes-wide-open about from the outset is that compliance and regulation are related but distinct
from security. You can be compliant and insecure, as well as secure and noncompliant. In an ideal world, you
will be both compliant and secure; however, it is worth noting that one does not necessarily ensure the other.

These concepts are so important, in fact, that ChapterA 14, Compliance is devoted to them.

Common Security Misconceptions or Mistakes

When learning about something, anti-patterns can be just as useful as patterns; understanding what something is
not helps you take steps toward understanding what it is.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch14.html#compliance

What follows below is an (almost certainly incomplete) collection of common misconceptions that people have
about security. When you start looking for them, you will see them exhibited with an often worrying frequency,
not only in the tech industry, but also in the mass media and your workplace in general.

Security Is Absolute

Security is not black and white; however, the concept of something being secure or insecure is one that is
chased and stated countless times per day. For any sufficiently complex system, a statement of (in)security in an
absolute sense is incredibly difficult, if not impossible, to make, as it all depends on context.

The goal of a secure system is to ensure the appropriate level of control is put in place to mitigate the threats
you see are relevant to that systema€™ s use case. If the use case changes, so do the controls that are needed to
render that system secure. Likewise, if the threats the system faces change, the controls must evolve to take into
account the changes.

Security from who? Security against what? and How could that mitigation be circumvented? are all questions
that should be on the tip of your tongue when considering the security of any system.

Security Is a Point That Can Be Reached

No organization or system will ever be &€ ;esecure .4€ There is no merit badge to earn, and nobody will come
and tell you that your security work is done and you can go home now. Security is a culture, a lifestyle choice if
you prefer, and a continuous approach to understanding and reacting to the world around us. This world and its
influences on us are always changing, and so must we.

It is much more useful to think of security as being a vector to follow rather than a point to be reached. Vectors
have a size and a direction, and you should think about the direction you want to go in pursuit of security and
how fast youa€™ d like to chase it. However, ita€™ s a path you will continue to walk forever.

The classic security focus is summed up by the old joke about two men out hunting when they stumble upon a
lion. The first man stops to do up his shoes, and the second turns to him and cries, &€ e Are you crazy? You
cana€™ t outrun a lion.A€ The first man replies, &€ el dond€™ t have to outrun the lion. I just have to outrun
you.a€

Your systems will be secure if the majority of attackers would get more benefit by attacking somebody else. For
most organizations, actually affecting the attackersa€™ motivations or behavior is impossible, so your best
defense is to make it so difficult or expensive to attack you that itd€™ s not worth it.

Security Is Static

Security tools, threats, and approaches are always evolving. Just look at how software development has
changed in the last five years. Think about how many new languages and libraries have been released and how
many conferences and papers have been presented with new ideas. Security is no different. Both the offensive
(attacker) security worlds and the defensive are continually updating their approaches and developing new
techniques. As quickly as the attackers discover a new vulnerability and weaponize it, the defenders spring to
action and develop mitigations and patches. [ta€™ s a field where you cana€™ t stop learning or trying, much
like software development.

Security Requires Special [Insert Item/Device/Budget]

Despite the rush of vendors and specialists available to bring security to your organization and systems, the real
truth is you dond€™ t need anything special to get started with security. Very few of the best security specialists
have a certificate or special status that says they have passed a test; they just live and breathe their subject every
day. Doing security is about attitude, culture, and approach. Dona€™ t wait for the perfect time, tool, or

training course to get started. Just do something.

As you progress on your security journey, you will inevitably be confronted by vendors who want to sell you all
kinds of solutions that will do the security for you. While there are many tools that can make meaningful
contributions to your overall security, dond€™ t fall into the trap of adding to an ever-growing pile. Complexity
is the enemy of security, and more things almost always means more complexity (even if those things are
security things). A rule of thumb followed by one of the authors of this book is not to add a new solution unless
it lets you decommission two, which may be something to keep in mind.

Leta€™s Get Started

If you picked up this book, there is a good chance that you are either a developer who wants to know more
about this security thing, or you are a security geek who feels you should learn some more about this Agile
thing you hear all the developers rabbiting on about. (If you dona€™ t fall into either of these groups, then wea
€™1]] assume you have your own, damn fine reasons for reading an Agile security book and just leave it at
that.)

One of the main motivations for writing this book was that, despite the need for developers and security
practitioners to deeply understand each othera€™ s rationale, motivations, and goals, the reality we have
observed over the years is that such understanding (and dare we say empathy) is rarely the case. Whata€™ s
more, things often go beyond merely just not quite understanding each other and step into the realm of actively
trying to minimize interactions; or worse, actively undermining the efforts of their counterparts.

It is our hope that some of the perspectives and experience captured in this book will help remove some of the
misunderstandings, and potentially even distrust, that exist between developers and security practitioners, and
shine a light into what the others do and why .

Chapter 2. Agile Enablers

Much of this book is written to help security catch up in an Agile world. We have worked in organizations that
are successfully delivering with Agile methodologies, but we also work with companies that are still getting to
grips with Agile and DevOps.

Many of the security practices in this book will work regardless of whether or not you are doing Agile
development, and no matter how effectively your organization has embraced Agile. However, there are some
important precursor behaviors and practices which enable teams to get maximum value from Agile
development, as well as from the security techniques that we outline in this book.

All these enabling techniques, tools, and patterns are common in high-functioning, Agile organizations. In this
chapter, we will give an overview of each technique and how it builds on the others to enhance Agile
development and delivery. Youd€™ 1l find more information on these subjects further on in the book.

Build Pipeline

The first, and probably the most important of these enabling techniques from a development perspective, is the
concept of a build pipeline . A build pipeline is an automated, reliable, and repeatable way of producing
consistent deployable artifacts.

The key feature of a build pipeline is that whenever the source code is changed, it is possible to initiate a build
process that is reliably and repeatably consistent.

Some companies invest in repeatable builds to the point where the same build on different machines at different
times will produce exactly the same binary output, but many organizations simply instantiate a build machine
or build machines that can be used reliably.

The reason this is important is because it gives confidence to the team that all code changes have integrity. We
know what it is like to work without build pipelines, where developers create release builds on their own
desktops, and mistakes such as forgetting to integrate a coworkera€™ s changes frequently cause regression
bugs in the system.

If you want to move faster and deploy more often, you must be absolutely confident that you are building the
entire project correctly every time.

The build pipeline also acts as a single consistent location for gateway reviews. In many pre-Agile companies,
gateway reviews are conducted by installing the software and manually testing it. Once you have a build
pipeline, it becomes much easier to automate those processes, using computers to do the checking for you.

Another benefit of build pipelines is that you can go back in time and check out older versions of the product
and build them reliably, meaning that you can test a specific version of the system that might exhibit known
issues and check patches against it.

Automating and standardizing your build pipeline reduces the risk and cost of making changes to the system,
including security patches and upgrades. This means that you can close your window of exposure to
vulnerabilities much faster.

However, just because you can compile and build the system fast and repeatedly doesna€™ t mean it will work
reliably. For that you will need to use automated testing .

Automated Testing

Testing is an important part of most software quality assurance programs. It is also a high source of costs,
delays, and wastes in many traditional programs.

Test scripts take time to design and write, and more time to run against your systems. Many organizations need
days or weeks of testing time, and more time to fix and re-test the bugs that are found in testing before they can
finally release.

When testing takes weeks of work, it is impossible to release code into test any faster than the tests take to
execute. This means that code changes tend to get batched up, making the releases bigger and more
complicated, which necessitates even more testing, which necessitates longer test times, in a negative spiral.

However, much of the testing done by typical user acceptance testers following checklists or scripts adds little
value and can be (and should be) automated.

Automated testing generally follows the test pyramid , where most tests are low level, cheap, fast to execute,
simple to automate, and easy to change. This reduces the teama€™ s dependence on end-to-end acceptance
tests, which are expensive to set up, slow to run, hard to automate, and even harder to maintain.

As wed€™] see in ChapterA 11 , modern development teams can take advantage of a variety of automated
testing tools and techniques: unit testing, test-driven development (TDD), behavior-driven design (BDD),
integration testing through service virtualization, and full-on user acceptance testing. Automated test
frameworks, many of which are open source, allow your organization to capture directly into code the rules for
how the system should behave.

A typical system might execute tens of thousands of automated unit and functional tests in a matter of seconds,
and perform more complex integration and acceptance testing in only a few minutes.

Each type of test achieves a different level of confidence:
Unit tests

These tests use white-box testing techniques to ensure that code modules work as the author intended. They
require no running system, and generally test the inputs to expected outputs or expected side effects. Good
unit tests will also test boundary conditions and known error conditions.

Functional tests

These tests test whole suites of functions. They often dona€™ t require a running system, but they do
require some setup, tying together many of the code modules. In a system comprised of many subsystems,
they check a single subsystem, ensuring each subsystem works as expected. These tests try to model real-
life case scenarios using known test data and the common actions that system users will perform.

Integration tests

These tests are the start of standing up an entire system. They check that all the connecting configuration
works, and that the subsystems communicate with each other properly. In many organizations, integration
testing is performed only on internal services, so external systems are stubbed with fake versions that
behave in consistent ways. This makes testing more repeatable.

System testing

This is the standing up of a fully integrated system, with external integrations and accounts. These tests
ensure that the whole system runs as expected, and that core functions or features work correctly from end-
to-end.

Automation gets harder the further down the table you go, but here are the benefits of testing that way:
Speed

Automated tests (especially unit tests) can be executed often without needing user interfaces or slow
network calls. They can also be parallelized, so that thousands of tests can be run in mere seconds.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#agile_security_testing

Consistency

Manual testers, even when following checklists, may miss a test or perform tests incorrectly or
inconsistently. Automated tests always perform the same actions in the same way each time. This means
that variability is dramatically reduced in testing, far reducing the false positives (and more important, the
false negatives) possible in manual testing.

Repeatability

Automated tests, since they are fast and consistent, can be relied on by developers each time that they make
changes. Some Agile techniques even prescribe writing a test first, which will fail, and then implementing
the function to make the test pass. This helps prevent regressions, and in the case of test-driven
development, helps to define the outward behavior as the primary thing under test.

Auditability

Automated tests have to be coded. This code can be kept in version control along with the system under
test, and undergoes the same change control mechanisms. This means that you can track a change in system
behavior by looking at the history of the tests to see what changed, and what the reason for the change was.

These properties together give a high level of confidence that the system does what its implementers intended
(although not necessarily what was asked for or the users wanted, which is why it is so important to get
software into production quickly and get real feedback). Furthermore, it gives a level of confidence that
whatever changes have been made to the code have not had an unforeseen effect on other parts of the system.

Automated testing is not a replacement for other quality assurance practices, but it does massively increase the
confidence of the team to move fast and make changes to the system. It also allows any manual testing and
reviews to focus on the high-value acceptance criteria.

Furthermore, the tests, if well written and maintained, are valuable documentation for what the system is
intended to do.

Naturally, automated testing combines well with a build pipeline to ensure that every build has been fully
tested, automatically, as a result of being built. However, to really get the benefits of these two techniques, youa
€™1]] want to tie them together to get continuous integration .

[ta€™ s common and easy to assume that you can automate all of your security testing using the same techniques
and processes.

While you cand€”and shouldd€”automate security testing in your build pipelines (and wea€™ 1l explain how to
do this in ChapterA 12), itA€™ s nowhere near as easy as the testing outlined here.

While there are good tools for security testing that can be run as part of the build, most security tools are hard to
use effectively, difficult to automate, and tend to run significantly slower than other testing tools.

We recommend against starting with just automated security tests, unless you have already had success
automating functional tests and know how to use your security tools well.

Continuous Integration

Once we have a build pipeline, ensuring that all artifacts are created consistently and an automated testing
capability that ensures basic quality checks, we can combine those two systems. This is most commonly called
continuous integration (CI), but therea€™ s a bit more to this practice than just that.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch12.html#external_reviews

The key to continuous integration is the word &€ cecontinuous.a€ The idea of a CI system is that it constantly
monitors the state of the code repository, and if there has been a change, automatically triggers building the
artifact and then testing the artifact.

In some organizations, the building and testing of an artifact can be done in seconds, while in larger systems or
more complex build-test pipelines, it can take several minutes to perform. Where the times get longer, teams
tend to start to separate out tests and steps, and run them in parallel to maintain fast feedback loops.

If the tests and checks all pass, the output of continuous integration is an artifact that could be deployed to your
servers after each code commit by a developer. This gives almost instantaneous feedback to the developer that
he hasna€™ t made a mistake or broken anybody elsea€™ s work.

This also provides the capability for the team to maintain a healthy, ready-to-deploy artifact at all times,
meaning that emergency patches or security responses can be applied easily and quickly.

However, when you release the artifact, the environment you release it to needs to be consistent and working,
which leads us to infrastructure as code .

Infrastructure as Code

While the application or product can be built and tested on a regular basis, it is far less common for the systems
infrastructure to go through this processa€until now.

Traditionally, the infrastructure of a system is purchased months in advance, and is relatively fixed. However
the advent of cloud computing and programmable configuration management means that it is now possible, and
even common, to manage your infrastructure in code repositories.

There are many different ways of doing this, but the common patterns are that you maintain a code repository
that defines the desired state for the system. This will include information on operating systems, hostnames,
network definitions, firewall rules, installed application sets, and so forth. This code can be executed at any time
to put the system into a desired state, and the configuration management system will make the necessary
changes to your infrastructure to ensure that this happens.

This means that making a change to a system, whether opening a firewall rule or updating a software version of
a piece of infrastructure, will look like a code change. It will be coded, stored in a code repository (which
provides change management and tracking), and reliably and repeatably rolled out.

This code is versioned, reviewed, and tested in the same way that your application code is. This gives the same
levels of confidence in infrastructure changes that you have over your application changes.

Most configuration management systems regularly inspect the system and infrastructure, and if they notice any
differences, are able to either warn or proactively set the system back to the desired state.

Using this approach, you can audit your runtime environment by analyzing the code repository rather than
having to manually scan and assess your infrastructure. It also gives confidence of repeatability between
environments. How often have you known software to work in the development environment but fail in
production because somebody had manually made a change in development and forgotten to promote that
change through into production?

By sharing much of the infrastructure code between production and development, we can track and maintain
the smallest possible gap between the two environments and ensure that this doesna€™ t happen.

CONFIGURATION MANAGEMENT DOES NOT REPLACE SECURITY
MONITORING!

While configuration management does an excellent job of keeping the operating environment in a consistent and
desired state, it is not intended to monitor or alert on changes to the environment that may be associated with the
actions of an adversary or an ongoing attack.

Configuration management tools check the actual state of the environment against the desired state on a periodic
basis (e.g., every 30 minutes). This leaves a window of exposure for an adversary to operate in, where
configurations could be changed, capitalized upon, and reverted, all without the configuration management
system noticing the changes.

Security monitoring/alerting and configuration management systems are built to solve different problems, and it
€™ s important to not confuse the two.

It is of course possible, and desirable by high-performing teams, to apply build pipelines, automated testing,
and continuous integration onto the infrastructure itself, ensuring that you have a high confidence that your
infrastructure changes will work as intended.

Once you know you have consistent and stable infrastructure to deploy to, you need to ensure that the act of
releasing the software is repeatable, which leads to release management .

Release Management

A common issue in projects is that the deployment and release processes for promoting code into production
can fill a small book, with long lists of individual steps and checks that must be carried out in a precise order to
ensure that the release is smooth.

These runbooks are often the last thing to be updated and so contain errors or omissions; and because they are
executed rarely, time spent improving them is not a priority.

To make releases less painful and error prone, Agile teams try to release more often. Procedures that are
regularly practiced and executed tend to be well maintained and accurate. They are also obvious candidates to
be automated, making deployment and release processes even more consistent, reliable, and efficient.

Releasing small changes more often reduces operational risks as well as security risks. As wea€™ Il explain
more in this book, small changes are easier to understand, review, and test, reducing the chance of serious
security mistakes getting into production.

These processes should be followed in all environments to ensure that they work reliably, and if automated, can
be hooked into the continuous integration system. If this is done, we can move toward a continuous delivery or
continuous deployment approach, where a change committed to the code repository can pass through the build

pipeline and its automated testing stages and be automatically deployed, possibly even into production.

Continuous delivery and continuous deployment are subtly different.

Continuous delivery ensures that changes are always ready to be deployed to production by automating and
auditing build, test, packaging, and deployment steps so that they are executed consistently for every change.

In continuous deployment, changes automatically run through the same build and test stages, and are
automatically and immediately promoted to production if all the steps pass. This is how organizations like
Amazon and Netflix achieve high rates of change.

If you want to understand the hows and whys of continuous delivery, and get into the details of how to set up your
continuous delivery pipeline properly, you need to read Dave Farley and Jezz Humblea€™ s book, Continuous
Delivery (Addison-Wesley).

One of us worked on a team that deployed changes more than a hundred times each day, where the time
between changing code and seeing it in production was under 30 seconds.

However, this is an extreme example from an experienced team that had been working this way for years. Most
teams that we come into contact with are content to reach turnaround times of under 30 minutes, and 1 to 5
deploys a day, or even as few as 2 to 3 times a month.

Even if you dona€™ t go all the way to continuously deploying each change to production, by automating the
release process you take out human mistakes, and you gain repeatability, consistency, speed, and auditability.

This gives you confidence that deploying a new release of software wona€™ t cause issues in production,
because the build is tested, and the release process is tested, and all the steps have been exercised and proven to
work.

Furthermore, built-in auditability means you can see exactly who decided to release something and what was
contained in that change, meaning that should an error occur, it is much easier to identify and fix.

[ta€™ s also much more reliable in an emergency situation. If you urgently need to patch a software security

bug, which would you feel more confident about: a patch that had to bypass much of your manual testing and
be deployed by someone who hasna€™ t done that in a number of months, or a patch that has been built and

tested the same as all your other software and deployed by the same script that does tens of deploys a day?

Moving the concept of a security fix to be no different than any other code change is huge in terms of being able
to get fixes rapidly applied and deployed, and automation is key to being able to make that mental step forward.

But now we can release easily and often, we need to ensure that teams dona€™ t interfere with each other, for
that we need visible tracking .

Visible Tracking

Given this automated pipeline or pathway to production, it becomes critical to know what is going to go down
that path, and for teams to not interfere with each othera€™ s work.

Despite all of this testing and automation, there are always possible errors, often caused by dependencies in
work units. One piece of work might be reliant on another piece of work being done by another team. In these
more complex cases, ita€™ s possible that work can be integrated out of order and make its way to production
before the supporting work is in place.

Almost every Agile methodology highly prioritizes team communication, and the most common mechanism for
this is big visible tracking of work. This might be Post-it notes or index cards on a wall, or a Kanban board, or
it might be an electronic story tracker ; but whatever it is, there are common requirements:

https://continuousdelivery.com/

Visible

Everybody on the team and related teams should be able to see at a glance what is being worked on and
what is in the pathway to production.

Up-to-date and complete

For this information to be useful and reliable, it must be complete and current. Everything about the
projecta€’’the story backlog, bugs, vulnerabilities, work in progress, schedule milestones and velocity, cycle
time, risks, and the current status of the build pipelinea€”’should be available in one place and updated in
real-time.

Simple

This is not a system to track all the detailed requirements for each piece of work. Each item should be a
placeholder that represents the piece of work, showing a few major things, who owns it, and what state it is
in.

Of course having the ability to see what work people are working on is no use if the work itself isna€™ t
valuable, which brings us to centralized feedback .

Centralized Feedback

Finally, if you have an efficient pipeline to production, and are able to automatically test that your changes
havena€™ t broken your product, you need some way to monitor the effectiveness of the changes you make.
You need to be able to monitor the system, and in particular how it is working, to understand your changes.

This isna€™ t like system monitoring, where you check whether the machines are working. It is instead value
chain monitoring: metrics that are important to the team, to the users of the system, and to the business, e.g.,
checking conversion rate of browsers to buyers, dwell time, or clickthrough rates.

The reason for this is that highly effective Agile teams are constantly changing their product in response to
feedback. However, to optimize that cycle time, the organization needs to know what feedback to collect, and
more specifically, whether the work actually delivered any value.

Knowing that a team did 10, 100, or 1000 changes is pointless unless you can tie that work back to meaningful
work for the organization.

Indicators vary a lot by context and service, but common examples might include value for money, revenue per
transaction, conversion rates, dwell time, or mean time to activation. These values should be monitored and
displayed on the visible dashboards that enable the team to see historical and current values.

Knowing whether your software actually delivers business value, and makes a visible difference to business
metrics, helps you to understand that the only good code is deployed code .

The Only Good Code Is Deployed Code

Software engineering and Agile development is not useful in and of itself. It is only valuable if it helps your
company achieve its aims, whether that be profit or behavioral change in your users.

A line of code that isna€™ t in production is not only entirely valueless to the organization, but also a net
liability, since it slows down development and adds complexity. Both have a negative effect on the security of
the overall system.

Agile practices help us shorten the pathway to production, by recognizing that quick turnaround of code is the
best way to get value from the code that we write.

This of course all comes together when you consider security in your Agile process. Any security processes that
slow down the path to production, without significant business gains, are a net liability for the organization and
encourage value-driven teams to route around them.

Security is critically involved in working out what the Definition of Done is for an Agile team, ensuring that the
team has correctly taken security considerations into account. But security is only one voice in the discussion,
responsible for making sure that the team is aware of risks, and enable the business to make informed decisions
about these risks.

We hope that the rest of this book will help you understand how and where security can fit into this flow, and
give you ideas for doing it well in your organization.

Operating Safely and at Speed
What happens if you cana€™ t follow all of these practices?

There are some environments where regulations prevent releasing changes to production without legal sign-off,
which your lawyers wona€™ t agree to do multiple times per day or even every week. Some systems hold
highly confidential data which the developers are not expected or perhaps not even allowed to have access to,
which puts constraints on the roles that they can play in supporting and running the system. Or you might be
working on legacy enterprise systems that cannot be changed to support continuous delivery or continuous
deployment.

None of these techniques are fundamentally required to be Agile, and you dona€™ t need to follow all of them
to take advantage of the ideas in this book. But if you are arena€™ t following most of these practices to some
extent, you need to understand that you will be missing some levels of assurance and safety to operate at speed.

You can still move fast without this high level of confidence, but you are taking on unnecessary risks in the
short term, such as releasing software with critical bugs or vulnerabilities, and almost certainly building up
technical debt and operational risks over the longer term. You will also lose out on some important advantages,
such as being able to minimize your time for resolving problems, and closing your window of security exposure
by taking the human element out of the loop as much as possible.

[ta€™ s also important to understand that you probably cana€™ t implement all these practices at once in a
team that is already established in a way of working, and you probably shouldn&€™ t even try. There are many
books that will help you to adopt Agile and explain how to deal with the cultural and organizational changes
that are required, but we recommend that you work with the team to help it understand these ideas and
practices, how they work, and why they are valuable, and implement them iteratively, continuously reviewing
and improving as you go forward.

The techniques described in this chapter build on each other to create fast cycle times and fast feedback loops:

1. By standardizing and automating your build pipeline, you establish a consistent foundation for the other
practices.

2. Test automation ensures that each build is correct.

3. Continuous integration automatically builds and tests each change to provide immediate feedback to
developers as they make changes.

4. Continuous delivery extends continuous integration to packaging and deployment, which in turn requires
that these steps are also standardized and automated.

5. Infrastructure as code applies the same engineering practices and workflows to making infrastructure
configuration changes.

6. To close the feedback loop, you need metrics and monitoring at all stages, from development to production,

and from production back to development.

As you continue to implement and improve these practices, your team will be able to move faster and with
increasing confidence. These practices also provide a control framework that you can leverage for standardizing
and automating security and compliance, which is what we will explore in the rest of this book.

Chapter 3. Welcome to the Agile Revolution

For a number of years now, startups and web development teams have been following Agile software
development methods. More recently, wea€™ ve seen governments, enterprises, and even organizations in
heavily regulated environments transitioning to Agile. But what actually is it? How can you possibly build
secure software when you havena€™ t even fleshed out the design or requirements properly?

Reading this book, you may be a long-time security professional who has never worked with an Agile team.
You might be a security engineer working with an Agile or DevOps team. Or you may be a developer or team
lead in an Agile organization who wants to understand how to deal with security and compliance requirements.
No matter what, this chapter should ensure that you have a good grounding in what your authors know about
Agile, and that we are all on the same page.

Agile: A Potted Landscape

Agile (whether spelled with a small &€ eaid€ or a big A€ Aa€) means different things to different people.
Very few Agile teams work in the same way, partly because there is a choice of Agile methodologies, and partly
because all Agile methodologies encourage you to adapt and improve the process to better suit your team and
your context.

a€mAgiled€ is a catch-all term for a variety of different iterative and incremental software development
methodologies. It was created as a term when a small group of thought leaders went away on a retreat to a ski
lodge in Snowbird, Utah, back in 2001 to discuss issues with modern software development. Large software
projects routinely ran over budget and over schedule, and even with extra time and money, most projects still
failed to meet business requirements. The people at Snowbird had recognized this and were all successfully
experimenting with simpler, faster, and more effective ways to deliver software. The &€ e Agile Manifestoa€ is
one of the few things that the 17 participants could agree on.

MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT

We are uncovering better ways of developing software by doing it and helping others do it. Through this
work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

A© 2001, the Agile Manifesto authors

this declaration may be freely copied in any form, but only in its entirety through this notice.

http://agilemanifesto.org/

What is critical about the manifesto is that these are simply value statements. The signatories didna€™ t believe
that working software was the be-all and end-all of everything, but merely that when adopting a development
methodology, any part of the process had to value the first values more than the second ones.

For example, negotiating a contract is important, but only if it helps encourage customer collaboration rather
than replace customer collaboration.

Behind the value statements are 12 principles which form the backbone of the majority of Agile methodologies.

These principles tell us that Agile methods are about delivering software in regular increments, embracing
changes to requirements instead of trying to freeze them up front, and valuing the contributions of a team by
enabling decision making within the team, among others.

THE AGILE PRINCIPLES

The following principles are based on the Agile Manifesto.

1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

2. Welcome changing requirements, even late in development. Agile processes harness change for the
customera€™ s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a preference
to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support they need, and
trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a development team is
face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicitya€the art of maximizing the amount of work not donea€”is essential.
11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. Atregular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behavior accordingly.

So what does a€ e Agilea€ development look like?

Most people who say they are doing Agile tend to be doing one of Scrum, Extreme Programming, Kanban, or
Lean developmenta€”or something loosely based on one or more of these well-known methods. Teams often
cherry-pick techniques or ideas from various methods (mostly Scrum, with a bit of XP, is a common recipe),
and will naturally adjust how they work over time. Normally this is because of context, but also the kind of
software we write changes over time, and the methods need to match.

There are a number of other Agile methods and approaches, such as SAFe or LeSS or DAD for larger projects,
Cynefin, RUP, Crystal, and DSDM. But looking closer at some of the most popular approaches can help us to

https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/

understand how to differentiate Agile methodologies and to see what consistencies there actually are.

Scrum, the Most Popular of Agile Methodologies

Scrum is, at the time of writing, by far the most popular Agile methodology, with many Certified Scrum
Masters, and training courses continually graduating certified Scrum practitioners and trainers. Scrum is
conceptually simple and can integrate into many existing project and program management frameworks. This
makes it very popular among managers and senior executives, as they feel they can understand more easily
what a team is doing and when the team will be finished doing it.

Scrum projects are delivered by small, multidisciplinary product development teams (generally between 5 and
11 people in total) that work off of a shared requirements backlog. The team usually contains developers,
testers, and designers, a product manager or Product Owner , and someone playing the Scrum Master role, a
servant leader and coach for the team.

Sprints and Backlogs

The product backlog or Scrum backlog is a collection of stories, or very high-level requirements for the
product. The product manager will continually prioritize work in the backlog and check that stories are still
relevant and usable, a process called &€ ebacklog grooming.a€

Scrum teams work in increments called sprints , traditionally one month long, although many modern Scrum
teams work in shorter sprints that last only one or two weeks. Each sprint is time-boxed: at the end of each
sprint, the teams stop work, assess the work that they have done and how well they did it, and reset for the next
sprint.

At the beginning of a sprint, the team, including the product manager, will look through the product backlog
and select stories to be delivered, based on priority.

The team is asked to estimate the expense of completing each unit of work as a team, and the stories are
committed to the sprint backlog in priority order. Scrum teams can use whatever means of estimation they
chose. Some use real units of time (that work will take three days), but many teams use relative but abstract
sizing (e.g., t-shirt sizes: small, medium, and large; or animals: snail, quail, and whale). Abstract sizing allows
for much looser estimates: a team is simply saying that a given story is bigger than another story, and the Scrum
Master will monitor the teama€™ s ability to deliver on those stories.

Once stories are put into the sprint backlog, the Scrum team agrees to commit to delivering all of this work
within the sprint. Often in these cases the team will look at the backlog and may take some stories out, or may
select some extra stories. This often happens if there are a lot of large stories: the team has less confidence in
completing large stories, and so may swap for a few small stories instead.

The agreement between the team and the product manager is vital here: the product manager gets to prioritize
the stories, but the team has to accept the stories into the sprint backlog.

Scrum teams during a sprint generally consider the sprint backlog to be sacrosanct. Stories are never played
into the sprint backlog during the sprint. Instead, they are put into the wider product backlog so that they can be
prioritized appropriately.

This is part of the contract between the Scrum team and the product manager: the product manager doesna€™ t
change the Scrum backlog mid-sprint, and the team can deliver reliably and repeatedly from sprint to sprint.
This trades some flexibility to make changes to the product and tune it immediately in response to feedback, for
consistency of delivery.

Team members are co-located if possible, sitting next to one another and able to discuss or engage during the
day, which helps form team cohesion. If security team members are working with an Agile team, then it is also

important for them to sit with the rest of the team. Removing barriers to communication encourages sharing
security knowledge, and helps build trusted relationships, preventing an us versus them mentality.

Stand-ups

The teama€™ s day always starts with a stand-up: a short meeting where everybody addresses a whiteboard or
other record of the stories for the sprint and discusses the daya€™ s work. Some teams use a physical
whiteboard for tracking their stories, with the stories represented as individual cards that move through
swimlanes of state change. Others use electronic systems that present stories on a virtual card wall.

Each team organizes its whiteboard differently, but most move from left to right across the board from a
€®xReady to playa€ through a€cln developmenta€ to &€®Done.&€ Some teams add extra swimlanes for
tasks or states like design, testing, or states to represent stories being queued for the next state.

A pig and a chicken are walking down the road.

The chicken says, &€ eHey, pig, | was thinking we should open a restaurant!a€
Pig replies: &€ eHmm, maybe; what would we call it?a€

Chicken responds: &€eHow about ham-n-eggs 79€

The pig thinks for a moment and says, &€ ®No, thanks. [A€™ d be committed, but youd€™ d only be involved.a€

Each member of the team must attend the daily stand-up. We divide attendance into € cechickensd€ and a
€epigs,a€ where pigs are delivering team members, and any observers are chickens. Chickens are not allowed
to speak or interrupt the stand-up.

Most teams go around the team, one team member at a time, and they answer the following questions:

e What did you do yesterday?
e What are you going to do today?

e What is blocking you?

A team member who completed a story moves the story card to the next column, and can often get a clap or
round of applause. The focus for the team is on delivering the stories as agreed, and anything that prevents that
is called a blocker .

The Scrum Mastera€™ s principal job day-to-day is to remove blockers from the team. Stories can be blocked
because they werena€™ t ready to play, but most often are blocked by a dependency on a third-party resource
of some form, something from outside the team. The Scrum Master will chase these problems down and clear
them up for the team.

Scrum Feedback Loops

Scrum also depends on strong feedback loops. After each sprint, the team will get together, hold a retrospective
on the sprint, and look to see what it can do better in the next sprint.

These feedback loops can be a valuable source of information for security teams to be a part of, to both learn
directly from the development teams about a project, as well as to provide continuous security support during
the ongoing development process, rather than only at security-specific gating points or reviews.

One of the key questions to work out with Scrum teams is whether security is a chicken (a passive outside
observer) or a pig (an active, direct participant in team discussions and problem-solving). Having security
expertise as part of the regular life cycle is crucial to building trusted relationships and to open, honest, and
effective security-relevant dialog.

This core of Scruma€’team communication, ownership, small iterative cycles, and feedback loopsa€”’makes
Scrum simple for teams (and managers) to understand, and easy to adopt. However, keep in mind that many
teams and organizations deviate from pure Scrum, which means that you need to understand and work with
their specific interpretation or implementation of Scrum.

You also need to understand the limitations and restrictions that Scrum places on how people work. For
example, Scrum prevents or at least severely limits changes during a sprint time-box so that the team can stay
committed to meeting its sprint goals, and it tends to discourage engagement with the development team itself
by funneling everything through the Product Owner.

Extreme Programming

Extreme Programming (XP) is one of the earliest Agile methodologies, and is one of the most Agile, but it
tends to look the most different from traditional software development.

These days, teams using XP are comparatively rare, since ita€™ s incredibly disciplined and intense; but
because many of the technical practices are in active use by other Agile teams, ita€™ s worth understanding
where they come from.

The following are the core concepts of Extreme Programming:

e The team has the customer accessible to it at all times.
e It commits to deliver working code in regular, small increments.

e The team follows specific technical practices, using test-driven development, pair programming, refactoring,
and continuous integration to build high-quality software.

e The whole team shares the work to be done through collective code ownership, common coding standards,
and a shared design metaphor.

e People work at a sustainable pace to prevent team members from burning out.

The Planning Game

An Extreme Programming team, much like a Scrum team, tends to work from a product backlog and plays a
planning game each iteration to select and prioritize stories.

The team will group-estimate stories, ensuring that everyone agrees on an estimate and commits to it. This is
often done through a collaborative game called planning poker , where stories are sized using an abstract
scheme like story points.

Once the team agrees on the cost of each story and relative prioritization, it starts working in short increments,
usually one or two weeks long. Most teams will track and report progress to date using burn-up charts, which
show the total points completed so far in the project, or burn-down charts, which track the points remaining to
completion.

The On-Site Customer

XP teams generally sit together with their customer representative, who is responsible for answering their
questions and for making day-to-day decisions about the product feature set, and look and feel. A common

practice is for teams to agree that the € cestory card is just a placeholder for a conversationd€ with the
customer. These teams usually do not write down requirements or stories in detail; instead, each person
working on a story will demonstrate the work in progress to the on-site customer, potentially multiple times per
day.

The customer is encouraged to engage and actively change her mind about the story as she sees work delivered,
and the team is responsible for making clear the cost of change as this happens.

XP teams that struggle often do so because the on-site customer is not allowed to make decisions and has to
check with other members of the organization, killing the teama€™ s velocity.

Pair Programming

Unlike in Scrum, where the team is free to &€ einspect and adapta€ its way to finding technical practices that
its feel works best, XP teams commit to a highly disciplined approach to software development. Two of the best
known, and most commonly understood, of these practices are pair programming and test-driven development .

In pair programming, each story is picked up by a pair of developers who most commonly sit at a single
computer writing the code. The pair share a single keyboard, and they fall into roles of &€ ,eDrivera€ and a
€eNavigatora€:

Driver

The a€eDrivera€ is the person who has the keyboard, and he is responsible for typing the lines of code
himself.

Navigator

The a€eNavigatora€ is responsible for keeping the structure of what to write in her head, and for thinking
about the code structure, application contexts, and the other requirements.

Most pairs swap over pretty regularly, from every 15 minutes to every hour, so that they both get to change
context.

Pair programming allows the developers to easily keep the context separate from some of the minor
implementation details, such as language syntax and details of APIs. It also ensures that two pairs of eyes look
at every line of code, and ideally means that one of the pair is thinking about testability, maintainability, or
other nonfunctional qualities of the code, including security. Security engineers can (and should) pair up with
developers when they are working on security features, frameworks, and other security-sensitive or high-risk
code.

Test-Driven Development

In test-driven development, the key thing is to write an automated test before you start writing the code to
implement the test. Developers have long used automated testing, but XP and TDD really push this practice to
the extreme, advocating complete testability.

This is commonly done using an approach called d€@Red, Green, Refactor.a€ The developers write a test case
to outline what they want the code to do. Once complete, they create any stub methods needed to make the tests
compile, and run the tests, which should go red to indicate that they broke the build by adding a failing test.

The developers then write code in such a way as to cause the test to pass. Then they run the test again, creating
a green bar, proving that the test is now passing. Next, the developers look at the code they wrote to see if there
are opportunities to clean it up, eliminating duplication and simplifying the design.

This is called refactoring , changing the internals of the code without changing its behavior. Developers can
make structural changes to the code with confidence that it will continue to work as intended, by relying on
their test suite to catch any mistakes or incompatibilities.

TDD and pair programming work very well together, as this allows for a ping-pong style of development,
where one developer will write the test and pass it over to the other to implement the feature and write the next
test before passing it back.

Because the tests should focus on what the code should do, rather than how it does it, they allow conversations
around API design, method naming, and method invariants to happen at test creation time, and the tests to drive
those aspects of the code.

Shared Design Metaphor

XP includes other practices such as the concept of Shared Metaphor , which tells us that we should use a single
common language among the team to refer to the system, as that encourages shared code ownership and shared
understanding within the team.

Shared Metaphor manifested itself in the first XP project, where a payroll system was implemented as an
assembly line process, with various pay fields being stations on the line.

Today this practice is commonly dropped in favor of domain-driven design , where the development team is
required to use and understand the language of the business to build the software, increasing the understanding
of the business domain within the development team.

The big benefit of Extreme Programming is that it is very responsive to change, since the customer gets daily or
hourly views of the product as it is built. XPa€™ s relentless focus on technical discipline ensures a high level
of code quality: it is called Extreme Programming for good reason. Many of XPa€™ s technical practices
(including continuous integration, TDD, refactoring, and even pair programming) have reached the mainstream
and are commonly followed by teams who dona€™ t use XP, and even by teams who are still working in more
traditional development environments.

The big issues with Extreme Programming is that it is hard to predict the efficiency of the team or when a
product will be done, and that it has proven very difficult to scale up to large development projects or scale out
to multiple locations.

Kanban

Kanban is very different from Scrum or XP in that it is not a methodology for building a software product, but

is instead a method for running a high-functioning team. Kanban comes from W. Edwards Deminga€™ s work
with Toyota and the Toyota Production System, which revolutionized how work would move around a factory

floor.

Most of the ongoing work on a manufacturing floor is done at individual stations, and in most manufacturing
spaces, each station has an in-queue and an out-queue. Work is processed from the in-queue and results placed
into the out-queue.

Deming noted that work was often pushed through the system, so orders for specific parts of systems would be
pushed in at the front and make their way through the entire system. Critically, he identified that partially
complete work spends the majority of its time in one of the queues at a station or being transferred from one
station to another (or even worse, put into storage).

Instead, he proposed a system based on a just-in-time approach to each station, enabling each station to request
(or pull) work from the preceding station when it was ready for the next piece of work.

This means that work in progress at any given station is highly limited, which creates a more optimal flow
through the system. Deminga€™ s work was primarily about identifying waste in the system, where work was
partially done and turned out not to be needed, or done prematurely.

Kanban systems prioritize flow , or cycle time , which is a measure of how fast a piece of work can travel from

the beginning to the end of the system, and the number of touch points it has as it does so.

In IT processes there may be potentially dozens or even hundreds of touch points between an idea being
conceived and getting it into production. Many of these touch points have queues, where work waits until the
process can be achieved, each of which creates delays in flow.

A common example is a change control board for reviewing and approving changes to production systems.
Because it is inefficient for such a board to meet each day, they often meet only weekly or monthly. Work that
needs to be done must sit at the proposal stage waiting for the change control board to approve or process the
request.

Because of the number of changes that are queued up for the change control board, sometimes they cannot
review each change and have to postpone changes until the next board, which can cause even greater delays.
Once a change is approved, it then moves to the implementation team, who may receive many such changes,
which means they get queued there, and so on.

Kanban systems are based on three key practices, detailed in the following sections.

Kanban Board: Make Work Visible

Firstly, they use a Kanban board, with a column per &€ cestation,a€ which shows the in-queue, the in-process,
and the out-queue. In a software development team, you may have stations for analysis, development, test, and
deployment, for example. This enables easy visualization of the flow of the team, and ensures that we can see at
a glance where the work is clustered and any bottlenecks in the system.

Kanban strictly limits the work in progress at a station. If a station has more work in progress than it can
achieve, then it cannot start a new piece of work until it finishes another.

A station which has a full in-queue prevents the previous station from moving work to the out-queue. This
causes a ripple effect all the way down the stations. Equally, when the final station clears a piece of work, it can
start the next piece of work, and each station pulls a piece of work up to the next one.

Constant Feedback

This might sound horribly inefficient, but actually it means that the process doesna€™ t move any faster than
the slowest station in the system. It should be clear that any organization that is trying to move faster than that
station is actually just creating waste or delays elsewhere anyway.

This is the second practice of Kanban: constant feedback. By making the work in progress visible, the team gets
feedback on its flow and capability.

But Kanban goes further and encourages Kanban teams to rely on each other to give feedback. That radical
transparency ensures that sponsors and stakeholders can see the current state of the system and how long it will
take for new requests for work to flow through the system, and can prioritize work requests into the system
appropriately.

Continuous Improvement

This leads us to the third practice of Kanban: continuous improvement. The entire line, at every station, is
encouraged to identify improvements to the system to speed up process flow.

Since it is easy to identify where the bottleneck is in a Kanban process, each improvement should give an
immediate boost to the throughput of the entire system. This is obviously more effective than other approaches,
where people often attempt to improve the noisiest activities, which may give no real improvement if most of
the time is wasted elsewhere.

A significant side effect of Kanban is that most organizations get significantly more predictive processes. A

process where requesting a new feature could take anywhere from 7 days to 90 days, depending on how much
sponsorship you could get for your feature, becomes a predictive process whereby each feature takes a fairly
standard duration.

This means that people requesting features can do much more demand management of the features they request.
It enables delivery teams to push prioritization out to the consumers of the delivery function, where we tend to
see more horse-trading of features going on.

It is important to note that Kanban doesna€™ t advocate any actual development method itself. Kanban is about
team and activity management, and it is most commonly used by teams that look after multiple products, and
where the work is significantly less predictable.

This makes Kanban more common in IT support teams and operational teams (and security teams!) than
product development teams, but it has been used in full product development by a number of organizations.

Kanban shows that smaller batch sizes tend to increase throughput: any process goes faster with less to process,
which means more work can be pushed through faster. It is this understanding that drives DevOps teams to
deliver smaller changes, more often.

Lean

Lean development, and more recently Eric Riesd€™ s Lean startup model , are based, again, on Lean
manufacturing, which came out of Kanban and the Toyota Production System. However, Lean development has
gone a slightly different direction over time.

One of the key differences in Lean is the emphasis on analyzing what you have done and learning from it in
order to iterate.

Lean as a methodology prioritizes the principle cycle of build a1’ measure a1’ learn .

It suggests that iterative learning is the key to building a successful product, and that to iterate successfully, you
need to not just build and build again, but also take the time and effort to measure the impact of each change,
and then learn from measurements.

By explicitly calling out the measure and learn parts of this iteration, the focus for technical teams includes far
more emphasis on building measurable systems, and including monitoring and analytics in the design.

Lean teams tend to use Hypothesis Driven Development where instead of writing work units in terms of the
value it will deliver to the customer (like user stories), they state a hypothesis on how the change will affect a
business value measure.

Stories are not done simply when they are coded and deployed to production, but are instead only considered
done when the data has been gathered and analyzed to find out if the feature actually delivers the value
hypothesized.

Secondly, Lean teams tend to encourage the use of experimental models that can be statistically compared, such
as A/B testing frameworks, which allow multiple implementations of a feature to be put in front of customers
for evaluation.

An example of a Lean story might be &€ ceProviding customers a buy button on every page instead of once
added to the cart will encourage customers to make more purchases.A€ The story might be implemented by
showing the buy button on every page to just 20% of customers, with the other 80% seeing the current behavior
in an A/B test. Results will be gathered and compared to see if the work was worthwhile.

Lean also emphasizes early delivery of a Minimum Viable Product (MVP). The team starts by designing and
delivering only the minimum feature set necessary to start gathering data on what users want and are willing to
pay for, and then rapidly iterates and evolves the product based on real user feedback.

http://theleanstartup.com/

Agile Methods in General

Regardless of which Agile methodology your development team is usinga€”and many teams are using hybrid
methodologies, where they started with a well-known methodology but have adjusted it to fit their needsa€”’we
tend to find that all Agile teams value and practice the following:

Prioritizing feedback

Agile teams place a massive value on getting feedback on their products as soon as possible. This generally
means increasing the speed at which software is in a demonstrable state, as well as decreasing the barriers to
communication that prevent real decision makers from seeing the results of their decisions.

Agile teams also value feedback loops within their development methods, encouraging retrospectives each
iteration or continuous improvement capabilities that ensure that the process itself is adaptive and delivering
value.

Any mechanism to speed up feedback is the hallmark of Agile software. That can include practices such as
continuous integration, rapid deployment systems, and production testing facilities.

Minimizing the pathway to production is key to getting feedback as fast as possible.

Speedy delivery of small batches

Most Agile methods have some basis in the Lean manufacturing industry, or awareness of it, and the key
learning is about reducing batch size. Almost all Agile teams prefer to deliver software in small iterative
chunks rather than in single large batches of features.

In some cases, delivery may be into a pre-production or staging environment rather than directly to
production, but the team is able to concentrate on small numbers of features at a time, and to iterate on the
feedback given on the completed work.

Agile teams measure their effectiveness in terms of velocity , the number of features delivered to
production. Teams will invest time in automating their systems and tools if that will improve the teama€™ s
velocity.

Iterative development

Agile methods all aim to allow some form of iterationd€’the feedback gained from delivering features early
is only useful if it can be acted upon quickly. Most Agile methods have facilities to reduce the impact of
rework, and also give strong feedback to the decision makers as to the cost of the rework. For example, in a
Scrum team, rework is added to the product backlog, and the team then needs to estimate and prioritize this
work against other features.

Team ownership

Agile methods empower development teams, pushing decision making down to the team level, making the
team responsible and accountable for how to do its own work, and for its own success or failure. Teams are
also freea€”’and expecteda€”’to find ways to improve their processes and practices on their own.

Many Agile teams have a coach, an experienced person who can help them to understand the practice
framework and guide them through the rituals and retrospectives. Coaches are there to help the team self-
direct and orient toward high-functioning capability, not force people to work a specific way.

If it hurts, do it more often

Agile tends to force us to find the pain points in development processes; and where we find difficult or
painful areas, we encourage doing it more often.

While this may sound ridiculous and not at all sensible, we recognize that many actions that we find
awkward or difficult are often because of unfamiliarity. Deployment is the classic case. When a team

deploys its system only once every six months, we find processes that dona€™ t match the reality, and staff
members who may have done one or two deploys in their working lifetime. When teams deploy multiple
times per day, we find team members who are intimately familiar with the process and the context.

A process that is done rarely tends to be manual because the cost of automating it and maintaining the
automation is high compared to the number of executions. But once you start doing a process an order of
magnitude more often, automation can start to reduce the pain and can earn huge dividends in terms of
effort expended. Furthermore, automation increases repeatability and quality, giving further benefits to the
team that uses it.

Inspect and adapt

Agile methods require teams to iterate not only on the product or service that they are building, but also on
their methodology and internal processes. In order to do that, just as we monitor the effectiveness of the
product or service, we need to inspect our own processes and identify the value delivered.

Teams use concepts such as value stream mapping, time logs, velocity, and retrospectives to examine and
adjust the process. This continual learning culture and openness to changing the process enables teams to
adapt effectively to changing contexts of an organization.

What About DevOps?

If you are from security, a lot of what you will hear about the drivers behind DevOps might sound awfully
familiar. We recognize that the state of security today is very similar to the state of operations back in 2009 when
DevOps started.

We are starting to see a serious increase in interest in DevSecOps, DevOpsSec, or other monikers that combine
Agile, operations, and security. In the meantime, we think there is a lot that security teams can learn from the
history of DevOps and where it is going.

This Agile stuff is all well and good, providing it actually results in working software. As more and more
development teams across the world moved to this way of working, they started to encounter problems in
operations.

Agile teams are almost exclusively measured by the amount of working software delivered, the &€ ;evelocitya€
of the development team. However, most operations teams are valued and rewarded on the basis of system
stability. This can be measures of uptime or incidents.

Development and operations teams can end up almost at war with each other because of their opposing
priorities.

Developers often have to make decisions that trade off time to delivery, and cost of delivery against long-term
operability concerns. If developers dona€™ t share some accountability for operations and support, this creates
an externality, rewarding short-term thinking and encouraging developers to cut corners. While taking extra
time to think about improving operability means that stories are delivered slower, penalizing the development
team.

The DevOps movement came from the recognition of this as a problem, combined with a massive structural
shift in automation of large operations platforms, such as the move to cloud computing, virtualization, and
programmable automated tooling for operations teams.

Operations teams began to recognize that they were seen as a blocker to Agile development teams, and that in

many cases their jobs had to change from being the doers to being the enablers in the organization.

Organizations that practice DevOps tend to organize their infrastructure and operations teams into different
focus areas:

e Infrastructure teams that buy and manage infrastructure
e Tooling teams that build automated tooling for self-provisioning and management of said infrastructure

e Support teams that respond to incidents

Some companies have moved their infrastructure wholesale to large cloud providers, essentially outsourcing the
infrastructure teams, and putting most of their operations work into tooling teams that enable developers to self-
service in the provision, operation, and maintenance of the infrastructure.

Things like logging, monitoring, alerting, patching, and so forth tend to be problems that most organizations
should only need to solve once (per infrastructure provider), and then developers can be provided with the APIs
and tools to manage themselves.

Support is a much bigger problem, but some DevOps organizations moved quickly toward requiring
development teams to support their own applications. This de-siloization caused development teams to in-
source the operational pain that their decisions could cause, and removed the externalities, creating more robust
services as a result.

Enabling development teams to maintain and operate their own services requires a level of organizational
maturity that not all organizations are capable of. But organizations that succeed at this can reach incredible
levels of speed and efficiency.

Many DevOps teams are releasing code to production multiple times per day, with some organizations reaching
levels of hundreds or even thousands of deploys per day.

Looking back at Lean and Kanban, we can see that if the largest queue in your system is around waiting to get
the code into production to get feedback, eliminating this bottleneck can be a huge business enabler.

Improving feedback and reducing time to market arena€™ t the only benefits of this approach. We also see that
organizations that are capable of releasing more often are significantly more reliable.

Organizations that deploy infrequently tend to focus on mean time between failures (MTBF), which is a risk-
averse strategy, but means that they are much less prepared to deal with failures when they do happen. Instead,
the key metric that we start to look at is the mean time to recovery (MTTR) from operational failures.
Organizations that release smaller changes more often can identify the cause of problems much faster and are
significantly more capable of getting fixes out, which reduces their MTTR.

But the extreme velocity of change in DevOps does create major challenges for security and requires a new way
of thinking about security. This is something that we will look at throughout this book, especially in the
chapters on operations, risk management, compliance, and testing.

Agile and Security

Getting Agile teams to work well with security people has historically been quite difficult. Part of the problem
is that most security processes and practices have been built for large Waterfall projects with requirements set
up front, instead of for small teams working quickly and iteratively.

Many security professionals have a hard time adapting their existing practices to a world where requirements
can change every few weeks, or where they are never written down at all. Where design and risk-management
decisions are made by the team just in time, instead of being planned out and directed from top down. And
where manual testing and compliance checking cannot possibly keep up with the speed of delivery.

Worse still, too many security teams work with a worldview where their goal is to inhibit change as much as
possible, in an effort to minimize the change in risk profile of the application or environment: if there is no
change in risk, then the security team cannot be blamed for new security issues that may arise.

Security teams that try to reduce risk by minimizing change, rather than supporting development teams to
realize their ideas in a secure way, are doomed to be increasingly irrelevant in an Agile world, and will
therefore be bypassed. The result will be systems that are not secure, safe, or compliant, because security
becomes removed from the development process.

Despite all this, there are teams that are successfully following Agile methods to deliver secure software, and
the rest of this book is going to show you techniques and tools that can work well with Agile teams and
practices that we think can improve the entire process.

For this to work, everyone needs to do their part.

Agile teams need to understand and choose to adopt security practices, and take more responsibility for the
security of their systems.

Product Owners for these teams need to give the teams enough time to do this properly, and they need to
understand and prioritize security and compliance requirements.

Security professionals have to learn to accept change, to work faster and more iteratively, and be able to think
about security risks, and how to manage risks, in incremental terms. And most important, security needs to
become an enabler, instead of a blocker.

Agile and DevOps are not fads. The future of IT is going to be faster, more responsive, more collaborative, and
more automated.

Security has to face these challenges and ensure that the future is not only fast, but safe, too. In the next chapter,
wea€™] start by looking at how and where security can be added into the Agile development life cycle.

Chapter 4. Working with Your Existing Agile
Life Cycle

So you want to start building more secure software, but your security and compliance checklists require you to
have design review gates and penetration testing, and you cana€™ t work out where these fit in an Agile life
cycle.

Traditional Application Security Models

In a traditional application security model, the security touchpoints during software development are mostly
gates that the product must stop at and pass. Some security work is done in parallel with development, and the
gates are a chance to verify that the security work and development work havena€™ t diverged. The following
are common security gates:

Design or requirements review

The security team looks at the requirements list or early designs and adds any security requirements based
on threat models and attack trees.

Architecture review

The security team reviews the proposed architecture, such as infrastructure or information flows, and
proposes a set of security controls in order to minimize risk.

Code review

The security team reviews sensitive areas of code and confirms that the security requirements are met, and
that the code matches the architecture.

Security testing

The security team or an external team checks the test version of the product against a set of security
requirements to see if the system is safe and secure.

The idea behind these gates is that work is delivered in large batches. It is predicated on the old rule that the
earlier a defect is caught, the cheaper it is to fix; therefore we need to do a security review as early as possible
to catch security defects before they get too far.

Agile practitioners argue that while this rule is broadly speaking truea€ ’catching a defect later is more
expensive than catching one earliera€’the solution is not to attempt the impossible task of catching all defects
earlier, but instead to focus on reducing the cost of fixing defects by making change safer and easier.

The same is true of security features and controls. We want to reach a fine balance between finding and fixing
(or better, preventing) security problems up front where it makes sense to do so, and making sure that we can
fix them quickly and cheaply later if something gets by.

Some security defects fall into a special category of defects: design flaws that are critical showstoppers or
fundamental issues with the way a system works. While many bugs are relatively easy to fix at a later date and
may not drastically increase the risk to the system, correcting a fundamental security design flaw may require
you to start again from scratch, or force people to fix an endless stream of security bugs one-by-one.

For example, choosing the wrong language or framework, or relying too much on features of a PaaS platform
or on an infrastructure black box to take care of problems for you, can lead to serious security risks, as well as
fundamental run time reliability and scalability problems.

Therefore, even in an Agile environment, security needs to be involved at the early product direction stages and
in architecture discussions, not just in later parts of the development life cycle.

While in common speech, the terms &€ aebugi€ and a€,eflawa€ can be used interchangeably, in security, each
term is used to describe very different types of security issues.

A bug is a low-level implementation failure that results in a system operating in an unintended manner that gives
rise to a security issue. A generic example of a bug would be failing to sanitize user-supplied input that gets used
in a database call, leading to SQL injection.

A famous example of a security bug would be the Heartbleed vulnerability in OpenSSL (CVE-2014-0160), where
the server failed to check if the stated length of data sent in a heartbeat message was actually the length of the
data sent. This mistake allowed an attacker to cause a vulnerable server to send him excess data, which leaked
secrets.

A flaw is a design failure where a system operates exactly as intended but inherently causes a security issue to
arise. Flaws often come from systems that have been designed without security needs in mind. A generic example
of a flaw would be a client-server system that is designed to perform the authentication of a user on the client side
and to send the server the result of the authentication check, making the system vulnerable to man-in-the-middle
attacks.

A famous example of a security flaw would Dirty Cow (CVE-2016-5195), an issue that affected the GNU/Linux
kernel. The design of the copy-on-write (COW) and memory management systems had a race condition which
when triggered would allow an unprivileged user to write to a file owned by the root user, allowing that user to
escalate her privileges to those of root.

Why are these distinctions important? In general, fixing a bug is cheaper and easier than fixing a flaw, as a bug
usually only requires correcting a developera€™ s specific mistake, whereas a flaw can require a significant
restructuring of both the problematic code as well as code that is reliant on that code. Restructuring code within
an already implemented system can be highly complex and runs the risk of introducing new bugs and flaws.

In certain situations flaws are not fixable at all, and the system will remain vulnerable to security issues for the
rest of its life. The best way to prevent security flaws from being introduced into an application is to ensure
security is considered during its design. The earlier security architecture is included in the development life cycle,
the fewer security flaws are likely to be designed in.

Leta€™ s work backward from coding and testing (which are done simultaneously in Agile) to planning and
design, and discuss what security activities should happen at each stage.

Per-lteration Rituals

During a product development iteration, there are a number of rituals where security should be involved.

In an organization embracing Agile development, who exactly do we mean when we say &€ cesecuritya€?

The answer is going to depend on the size of your company and the focus of your team. If you are a startup or
small company, you may not have a dedicated security specialist available. Instead, someone on the team may
have to own that role, with occasional guidance and checkups from an outside expert (however, see ChapterA 14
for issues and risks with this model).

In a larger organization, you may have a dedicated specialist or team that owns security for the company.
However, most security teams cover physical security, network security, and compliance and audit
responsibilities, not necessarily application security advice and support.

Some organizations that take security and compliance seriously have a person on each Agile team who is
dedicated to the security role for that team. This might be a job share, 20% of the time for example; or it might be
a dedicated security person shared across multiple teams; or in some cases teams may have their own full-time
security specialist.

The key thing is that somebody on the team needs to be able to take on the role of &€ eesecurityd€ during each
iteration and ensure that security concepts and risks, and the perspectives of an attacker, are included in
requirements, design, coding, testing, and implementation. Whoever takes on this responsibility, as well as the
other members of the team, have to approach security as an enabler, and understand and agree that considering
security early on and throughout the process contributes to a more successful end product.

At the daily stand-up meeting, where the state of stories is reviewed, the team should be listening for any issues
raised that may affect security and privacy. If there are stories of security importance, then progress on those
stories needs to be monitored.

During development, having someone with a strong security background available to pair on security-sensitive
code can be worthwhile, especially on teams that follow pair programming as a general practice.

If your team does team code reviews (and it should) through pull requests or collaborative review platforms,
then having a security person reviewing code changes can help identify areas of the code base that need careful
attention and additional testing.

At the beginning of each iteration, at the kick-off or planning meeting, most teams walk through all the
potential stories for the iteration together. Somebody representing security should be present to ensure that
security requirements are understood and applicable to each story. This helps ensure that the team owns and
understands the security implications of each story.

At the end of each iteration, there are times when security should also be involved in the reviews and
retrospective meetings to help understand what the team has done and any challenges that it faced.

All of these points provide opportunities for security to engage with the development team, to help each other
and learn from each other, and to build valuable personal connections.

Making the barrier to interacting with the security team as low as possible is key to ensuring that security does
not get in the way of delivery. Security needs to provide quick and informal guidance, and answers to questions
through instant messaging or chat platforms, email, and wherever possible in person so that security is not seen
as a blocker. If those responsible for security are not reachable in an easy and timely manner, then it is almost
certain that security considerations will be relegated to the sidelines as development charges ahead.

Tools Embedded in the Life Cycle

The best way to assure yourself of the security of the system you are building is to perform an exhaustive set of
checks before it is allowed out.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch14.html#compliance

Advances in security technology allow us to use tools such as the following:

e Gauntlt

e BDD-Security

e Snyk

e InSpec

e Brakeman

o ZAP

e OSQuery

e TruffleHog

e Dependency-Check

e Error-Prone

These tools and others that we will look at in this book automate many of the assurance processes that manual
testers are traditionally responsible for. They dona€™ t obviate the need for any manual testing, but they can
help to prioritize time and effort in testing by removing the need to do detailed, routine, and time-consuming
work, and ensuring that testing is more repeatable and reliable.

The security team needs to own these tools, while the development team owns the implementation of the tools
in its pipeline.

This means that the development team cares about ensuring that the tool is in its pipeline, that it is correctly
configured for the project, and that the team can act on the results.

The security team is responsible for deciding what features the tool should have, for making it easy to embed in
the pipeline, and for ensuring that the tool or tools cover the areas that the team is most concerned about.

Pre-lteration Involvement

Most Agile teams not only have a product development team working in iterations, but a product designer or
design team working in advance of the development team, working on design problems, prototypes, and
architectural discussions. The output of this team feeds directly into the product backlog, ensuring that the
development team is primed with stories ready for the forthcoming iteration.

Wea€™ ve seen several ways this can work, from a separate design team working just one iteration ahead, to
monthly product design meetings that produce several sprintsa€™ worth of backlog in batches.

Security is critical in the design and architecture phase. It is at this point that instead of worrying about software
library patch levels or secure coding guidelines, you need to be thinking about secure service design, trust
modeling, and secure architecture patterns.

[ta€™ s important to note that design in this case is not about the look of the systema€”we arend€™ t talking
about Photoshop jockeys here. Design is about how the system works, the principal user interactions, APIs, and
the flow of data through the system.

The design team should have access to security training or security expertise to ensure that the service the team
1s designing enables security through the user experience. Examples of this work may include understanding
how or whether to obfuscate user details when displayed, how changes to information are gathered, and what
identification requirements are needed for specific actions.

The architecture team may also need access to a security architect for any complex architecture. Building an

architecture to be secure by design is very different than writing code that is secure or ensuring that there are no
defects in the product.

Architects need to think carefully about threat models (or threat reckons for teams that dona€™ t do formal
modeling) and about trust boundaries in their systems (something that weA€™ 11 explain later in ChapterA 8,
Threat Assessments and Understanding Attacks).

Tooling for Planning and Discovery

Security teams should be providing tooling, processes, and guidance that help product managers, architects, and
developers follow good security practice while designing a new system.

This might be as simple as a wiki with common security patterns already in use in the organization, or it might
be threat modeling tools, or technical risk assessment checklists or questionnaires that make it easy for
architects to understand security problems and how to deal with them up front.

Post-lteration Involvement

Agile teams that are adopting a DevOps culture need automated fast systems for building and deploying their
work into production reliably and repeatably.

Security matters during the build and deployment process for several different reasons:

1. Providing assurance that the correct thing was built and deployed
2. Assuring that the thing that was built and deployed is secure

3. Ensuring that the thing will be built and deployed in a secure way every time

Security checks that happen at this stage need to be automatable, reliable, repeatable, and understandable for a
team to adopt them.

Manual processes are the opposite of this: most are not reliable (in terms of consistently catching the same
errors), repeatable (in terms of repeating a finding), or understandable to the team.

Ideally the security team is already heavily involved in operations: it has to help define business continuity
plans, incident response plans, as well as monitor and audit suspicious activity on the systems.

But is that an effective use of the teama€™ s time? The security team should know what features have been
released in the last iteration and ensure that those new features are added to the logging, fraud detection,
analysis, and other security systems.

It should be clear that high-risk features need to be monitored more closely. One possible action during iteration
is to accept the risk temporarily, essentially assuming that the likelihood of the risk happening before a control
can be put in place in a few iterations time is very low.

But the security team needs to be aware of these risks and monitor them until they are mitigated. This means
that early on in system development, effective logging and auditing controls need to be put in place to ensure
that we can see this kind of thing.

Wea€™ 1 cover a lot more on this in ChapterA 12 under security in operations.

Tools to Enable the Team

As well as automated security testing tools that can be easily plugged into developer workflows, the security
team should look for ways to make the development teama€™ s job easier, that help the team develop and
deliver software fasterd€”and at the same time, more securely.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#threat_assessments
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch12.html#external_reviews

For example, the security team can help development create effective build and deployment pipelines, and
come up with a simple process and tools to compile, build, test, and automatically deploy the system in ways
that also include security checks all along the path.

The security team may also want to provide tools for internal training, such as OWASPa€™ s WebGoat Project
, the Damn Vulnerable Web Services project, or other intentionally vulnerable applications that developers can
explore and test, so that they can learn about how to find and remediate security issues safely.

The security team should do everything that it can to ensure that the easiest way to build something inside the
organization is the safe and secure way, by providing teams with secure headers, hardened runtime
configuration recipes and playbooks, and vetted third-party libraries and images that are free from
vulnerabilities, which teams can grab and use right away. Wea€™ 1l look at how to do this in later chapters of
this book.

When security stops being the team that says no, and becomes the team that enables reliable code to ship, then
thata€™ s true Agile security.

Compliance and Audit Tools

How about once the system is in production? As well as tooling that does simple vulnerability testing, good
security teams know that they need to enforce compliance and do audits. Why not automate as much of the
process and give the development teams access to the same tooling?

Build a tool that checks the list of users authorized in a system against the company HR database to ensure that
leavers have had their credentials revoked.

How about a tool that confirms via APIs that all nodes in the cloud infrastructure are built from a secure base
image, have been patched within the current patch window, and are placed in security groups appropriately?

These audit and compliance tools help the security team as well as operations to detect mistakes when they
happen and ensure that a strong security person can focus her energy and time on actually auditing the really
interesting or tough problems.

Setting Secure Baselines

How do you know whether your tools are doing the right job? How can you tell if your product is actually
secure?

The real answer is that you cand€™ t ever be certain that your product is really secure, but you can have
confidence that your product meets a baseline of security.

By adding security touchpoints into your teama€™ s Agile life cycle, and using your tools and templates, it
should be possible to assert what baseline of security you want your product to meet and to be assured that each
build coming out of the team meets that level.

This should enable you to have confidence in writing a statement of assurance about your product and to know
not only that the build meets that level of assurance, but also that any future builds will continue to meet that
level.

What About When You Scale?

The model that we have outlined works well when you have a small number of development teams and a small
team of security engineers who can divide the work among themselves equally. This will work for most of the
readers of this book. For example, if you have six development teams and two security engineers, then you
should be able to scale your security teama€™ s time to handle most of the issues that will come up.

https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://github.com/snoopysecurity/dvws

But what if the number of products or services continues to grow?

If you follow Amazona€™ s two-pizza model, ! then a development organization of 200 might be made up of
30 or more teams, which means you need at least 10 security engineers to support them. If you follow Netflixa
€™ s model of two-person engineering teams, then this model of security wona€™ t scale for you at all. The
more development teams you have, the less likely that you can afford to dedicate a security specialist to work
with them.

In large organizations, you need to look at application security as a pipeline problem. Instead of trying to solve
the problem at the point where ita&€™ s no longer possible to cope with the amount of work, your security
engineers need to work further up the pipeline, ensuring that development teams are enabled to make security
decisions by themselves.

Building Security Teams That Enable

Instead of security teams that do security , you could envision a team that enables security . By this we mean
that the teama€™ s primary purpose is to build tools, document techniques, and build capability to develop and
deploy secure services. Truly Agile security teams measure themselves on what they can enable to happen,
rather than the security issues they have blocked from going out the door.

Creating an environment where the secure thing to do is the easiest thing to do is a great goal for any security
team to keep front of mind. It also has the additional positive impact whereby everyone involved is now
directly contributing to the security of the development process. This is the only scalable way in which a
security team can sustain, if not increase, its impact in a growing organization facing the unfortunate reality that
there are never enough funds or qualified practitioners to do all the security work that needs to be done.

Building Tools That People Will Use

By building tools, we mean developing security tooling that can be used by development teams to assure
themselves of the security of their products. This might mean looking at the risk management tooling, attack
tree analysis, and Agile story tracking tools. Or it might mean automating testing tools to fit into your build
pipeline, and automatic dependency inspection tools. Or security libraries or microservices that teams can take
advantage of to solve specific problems such as crypto, multifactor authentication, and auditing. It could also be
tooling that can safely audit and correct the configurations of your primary security systems, such as your
firewalls, or of third-party services, such as those provided by AWS or GCP.

[ta€™ s our experience that forcing a team to use a specific tool will produce a compliance or checklist culture,
where the tool is an alien artifact that is ill understood and used reluctantly. Development teams should be free

to choose appropriate tools based on their needs, and on the risk profile of the system that they are working on.
Tools that they understand, that fit into their workflows, and that they will take ownership of.

[ta€™ s important to note that these tools should not just identify security defects, but also enable teams to fix
problems easily. So a tool that simply does a security scan and dumps the output for someone to review wona
€™t help the average team unless you can link the results to common remediations that are known to work and
demonstrate that the tool adds value.

Tools that require significant effort on the part of developers will inevitably end up not being used. Examples of
such high user cost are things such as noisy output that requires a developer to actively tease out the parts she
cares about from a larger body of superfluous data, or where the actual determination of whether something is
important or not requires a developer to take a series of additional and external steps.

When building security tooling, it cannot be stressed enough how important it is to make it easily extensible
either through APIs or through the Unix principle of solving a single task and allowing the output to be passed
into another tool. View your security toolset as an extensible toolkit that you will continue to add to over time,

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch04.html#idm139712743616208

and where you can combine tools together in complimentary ways without having to rewrite them from scratch
every time.

Documenting Security Techniques

There isna€™ t a great deal written about good application security practices. Security is still viewed as a dark
art, practiced only furtively in shadowy corners by learned masters. For many developers, security is mostly
about obscure bugs and defensive coding techniques that they think are only needed in special cases.

Security engineers need to teach developers good techniques that are appropriate for your organization. These
could cover the steps to safely configure a base web application, usage guidance for working with your cloud
service provider in an effective and secure manner, secure coding guidelines and code review checklists for
their languages and frameworks, and common risk lists for the kind of application that they are working on.

The key thing is that these techniques need to be applicable, timely, and relevant. NIST guidelines or the UK
governmenta€™ s good practice guide and other common guidance from governments and regulators tend to be
so generic and bureaucratic as to be useless to most teams.

Because Agile development teams value working software over documentation, code always trumps paper.
Wherever possible, get security guidelines and checklists directly into code: secure headers, secure
configuration recipes and playbooks and cloud templates, frameworks with security features enabled by default,
and automated security tests and compliance checks that can be plugged into build pipelines and run in
production. Code that developers can pick up and use easily, without slowing down.

Key Takeaways

Agile development creates new challenges for security teams. The keys for a successful agile security program
are:

Involvement

There are frequent opportunities in an agile life cycle for security and developers to work together, learn
from each other, and help each other. Someone playing the role of security on the team (a security engineer
assigned to the team or a developer taking on security responsibilities) can be and should be involved in
planning sessions, stand-ups, retrospectives, and walkthroughs.

Enablement

Agile teams move fast and are continuously learning and improving, and security needs to help them keep
moving and learning and improving instead of blocking them from moving forward.

Automation

Security checks and tests must be automated in ways that they can be easily and transparently plugged into
developer workflows and build pipelines.

Agility

Security has to be Agile to keep up with Agile teams. Security has to think and act quickly and iteratively,
respond quickly, and keep learning and improving along with developers.

!'No team should be bigger than you can afford to feed with two pizzas, so between five and seven people,
depending on how hungry they are.

http://csrc.nist.gov/publications/PubsSPs.html
http://bit.ly/uk-gov-guidance
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch04.html#idm139712743616208-marker

Chapter 5. Security and Requirements

All systems start with requirements. And so does security.

In this chapter wea€™ 1l look at community-built tools such as the OWASP Application Security Verification
Standard (ASVS), which lists standard security mechanisms and controls for designing and reviewing
applications; and the SAFECode groupa€™ s list of security stories, which you can use to help make sure that
security is taken into account when the team is thinking about requirements or filling requirements in.

Wea€™ 1 also look at some simple techniques for defining security requirements in an Agile way, and at how
and where the security team needs to be engaged in building and managing requirements.

Dealing with Security in Requirements

Traditional Waterfall or V-model software development assumes that all the requirements for a system can be
captured, analyzed, and exhaustively defined up front, then handed off to the development team to design,
build, and test. Any changes would be handled as exceptions.

Agile software development assumes that requirements or needs can only be understood in person, because
many functional requirements are like art: &€ ela€™ 1l know it when I see it.a€

Specifically, Agile software practitioners believe that requirements are difficult for users or customers to
accurately specify, because language is a lossy communication mechanism, and because often what the users
say they want is not what they actually want.

Agile requirements are therefore done iteratively and concretely, relying heavily on personas and prototypes,
then delivered in small, frequent steps for demos and feedback.

Regardless of how you are specifying requirements, it is often hard to define the security attributes of the
software that you are designing and building.

Users are able to explain their needs for software to act in certain ways, but no user is ever going to know that
she needs secure tokens at the session layer for CSRF protectiond€’nor should the user be expected to know
this kind of thing.

Software development methodologies group requirements like this into sets of cross-functional or
nonfunctional requirements, taking into account security, maintainability, performance, stability, and other
aspects of a system that need to be accounted for as teams design, code, and test software.

But Agile methods have a difficult time dealing with nonfunctional and cross-functional requirements, but they
are difficult to associate with concrete user needs, and difficult for a customer or customer representative to
prioritize against delivering customer-facing features.

The security and reliability of a system often depends on fundamental, early decisions made in architecture and
design, because security and reliability cana€™ t be added later without having to throw away code and start
over, which nobody wants to do.

People who object to the Agile way of working point to this as where Agile falls down. A lack of forward
planning, up front requirements definition and design, and an emphasis on delivering features quickly can leave
teams with important nonfunctional gaps in the system that might not be found until itd&€™ s too late.

In our experience, Agile doesna€™ t mean unplanned or unsafe. Agile means open to change and
improvement, and as such we believe that it is possible to build software with intrinsic security requirements in
an Agile manner.

Leta€™ s start with explaining a bit about how requirements are done in Agile developmenta€”and why.

Agile Requirements: Telling Stories

Most requirements in Agile projects are captured as user stories : informal statements that describe what a user
needs and why. Stories are concrete descriptions of a need, or a specific solution to a problem, stating clearly
what the user needs to do and the goal the user wants to achieve, usually from the point of view of a user or
type of user in the system. They are written in simple language that the team and users can all understand and
share.

Most stories start off as an &€ eepica€: a large, vague statement of a need for the system, which will be
progressively elaborated into concrete stories, until the team members clearly understand what they actually
need to build, closer to when they need to build it.

Stories are short and simple, providing just enough information for the team to start working, and encouraging
the team to ask questions and engage the users of the system for details. This forces team members to work to
understand what the user wants and why, and allows them to fill in blanks and make adjustments as they work
on implementing the solution.

Unlike Waterfall projects, where the project manager tries to get the scope defined completely and exhaustively
up front and deal with changes as exceptions, Agile teams recognize that change is inevitable and expect
requirements to change in response to new information. They want to deliver working software quickly and
often so that they can get useful feedback and respond to it.

This is critical, since it means that unlike planned Waterfall projects, Agile teams tend not to create
interconnected requirements. Each user story or piece of functionality should stand on its own if the team
decides to stop delivering at any point. This fixed-time-and-budget, variable-scope approach is common in
Agile projects.

What Do Stories Look Like?

Most Agile teams follow a simple user story template popularized by Mike Cohn and others:
As a {type of user}
I want to {do something}
so that {I can achieve a goal}

Each story is written on a story card, an index card, or sticky note, or as an electronic representation of this.

Conditions of Satisfaction

For each story, the team works with the Product Owner to fill in details about the feature or change, and writes
up conditions of satisfaction , or acceptance criteria. If you are using written story cards, these details would be
recorded on the back of the card. The conditions of satisfaction are a list of specific functionality that the team
needs to demonstrate to prove that the story is done.

Conditions of satisfaction guide the team on designing a feature and make up the list of test cases that must pass
for a specific story. These criteria are statements of what the system must do under different circumstances:
what the usera€™ s choices will be, how the system should respond to the user, and any constraints on the usera
€™ actions.

Most of these statements will be positive, focused on the main success scenarios of a feature or interaction.
Which means that most of the tests that the team writes will be positive tests, intended to prove that these
scenarios pass.

https://www.mountaingoatsoftware.com/books/user-stories-applied
https://www.mountaingoatsoftware.com/blog/clarifying-the-relationship-between-definition-of-done-and-conditions-of-sa

When writing conditions of satisfaction, there is usually little attention paid to what should happen if an action
fails, or on exceptions or other negative scenarios. As wea€™ 1l see in ChapterA 11, Agile Security Testing
this is a serious problem when it comes to security, because attackers dona€™ t stay on the main success paths
through the system. They dona€™ t behave like normal users. They try to abuse the capabilities of the system,
looking for weaknesses and oversights that will give them access to features and information that they shouldna
€™t have.

Tracking and Managing Stories: The Backlog

As stories are written, they are added to a product or project backlog. The backlog is a list of stories in
prioritized order that defines all the features that need to be delivered, and changes or fixes that need to be made
to the system at that point in time. Teams pull stories from the backlog based on priority, and schedule them to
be worked on.

In Kanban or other continuous flow models, individual team members pull the highest priority story from the
top of the backlog queue. In Scrum and XP, stories are selected from the overall product backlog based on
priority and broken down into more detailed tasks for the team in its sprint backlog, which defines the set of
work that the team will deliver in its next time box.

In some Agile environments, each story is written up on an index card or a sticky note. The backlog of stories is
put up on a wall so that the work to be done is visible to everyone on the team.

Other teams, especially in larger shops, track stories electronically, using a system like Jira, Pivotal Tracker,
Rally, or VersionOne. Using an electronic story tracking system offers a few advantages, especially from a
compliance perspective:

1. An electronic backlog automatically records history on changes to requirements and design, providing an
audit trail of when changes were made, who approved them, and when they were done.

2. Other workflows can automatically tie back into stories. For example, code check-ins can be tagged with the
story ID, allowing you to easily trace all the work done on a story, including coding changes, reviews,
automated testing, and even deployment of the feature through build pipelines.

3. You can easily search for security stories, compliance requirements, stories that deal with private
information, or critical bug fixes, and tag them for review.

4. You can also tag security and compliance issues for bigger-picture analysis to understand what kinds of
issues come up and how often across projects, and use this information to target security education or other
proactive investments by your security team.

5. Information in online systems can be more easily shared across teams, especially in distributed work
environments.

Stories in the product backlog are continuously reviewed, updated, elaborated on, re-prioritized, or sometimes
deleted by the Product Owner or other members of the team, as part of what is called &€ cegrooming the
backlog.a€

Dealing with Bugs

Are bugs stories? How are bugs tracked? Some teams dona€™ t track bugs at all. They fix them right away, or
they dona€™ t fix them at all. Some teams only track the bugs that they werend€™ t able to fix right away,
adding them to the backlog as technical debt.

But what about security vulnerabilities? Are they tracked by the team as bugs? Or are they tracked by the
security team separately, as part of its vulnerability management program? Wea€™ Il look at this in more detail

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#agile_security_testing

in ChapterA 6, Agile Vulnerability Management .

Getting Security into Requirements

For security teams, the speed that decisions are made in Agile development environments and the emphasis on
a€c,eworking software over documentationd€ means that they need to stay close to development teams to
understand what the team is working on and recognize when requirements and priorities are changing.

As we discussed earlier in how to scale security across teams, you will need to work out how and when you can
afford to get the security team involveda€”and when you cana€™ t afford not to.

The security team should participate in release planning, sprint planning, and other planning meetings to help
review and fill in security-related and compliance-related stories, and other high-risk stories, as they come up.
Being part of the planning team gives security a better understanding of what is important to the organization,
and a chance to help the Product Owner and the rest of the team understand and correctly prioritize security and
compliance issues.

If possible, they also should participate in the development teama€™ s daily stand-ups to help with blockers
and to watch out for sudden changes in direction.

Security should also be involved in backlog reviews and updates (backlog grooming), and stay on the lookout
for stories that have security, privacy, or compliance risks.

Security doesnd€™ t always have to wait for the development team. They can write stories for security, privacy,
and compliance requirements on their own and submit them to the backlog.

But the best way to scale your security capability is to train the team members on the ideas and techniques in
this chapter and help them to create security personas and attack trees so that they can understand and deal with
security risks and requirements on their own.

Security Stories

How do security requirements fit into stories?

Stories for security features (user/account setup, password change/forgot password, etc.) are mostly
straightforward:

As a {registered user}
I want to {log on to the system}
so that {I can see and do only the things that I am authorized to see and do}

Stories for security features work like any other story. But, because of risks associated with making a mistake in
implementing these features, you need to pay extra attention to the acceptance criteria, such as the following
examples and test scenarios:

User logs on successfully

What should the user be able to see and do? What information should be recorded and where?

User fails to log on because of invalid credentials

What error(s) should the user see? How many times can the users try to log on before access is disabled,
and for how long? What information should be recorded and where?

User forgets credentials

This should lead to another story to help the user in resetting a password.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch06.html#agile_vulnerability_management

User is not registered

This should lead to another story to help the user get signed up and issued with credentials.

USING OWASP ASVS TO DEFINE ACCEPTANCE CRITERIA

OWASPa€™ s Application Security Verification Standard (ASVS) project is a valuable resource to help in
writing security stories, especially for web and mobile projects.

The ASVS is an open source resource designed for security auditors, but it can also be used by developers
and testers when defining requirements, and especially acceptance criteriad€”’just skip the up-front stuff
about auditing and go straight to the checklists.

ASVS checklists include information on how to make sure that you are doing user management correctly,
and what you need to check for when implementing access controls, auditing, logging, crypto, and other
security controls. We recommend that someone with good security knowledge reviews the checklists and
selects acceptance criteria that are appropriate for your project.

For the preceding user logon story, ASVS 3.0 lists 28 things that you should check to make sure that the
story is implemented correctly:

1. Verify all pages and resources by default require authentication except those specifically intended to be
public.

2. Verify that forms containing credentials are not filled in by the application. Pre-filling by the application
implies that credentials are stored in plain text or a reversible format, which is explicitly prohibited.

3. Verify all authentication controls are enforced on the server side.
4. Verify all authentication controls fail securely to ensure attackers cannot log in.

5. Verify password entry fields allow, or encourage, the use of passphrases, and do not prevent password
managers, long passphrases, or highly complex passwords from being entered.

6. Verify all account identity authentication functions (such as update profile, forgot password, disabled or
lost token, help desk, and IVR) that might regain access to the account are at least as resistant to attack
as the primary authentication mechanism.

7. Verify that the changing password functionality includes the old password, the new password, and a
password confirmation.

8. Verify that all authentication decisions can be logged, without storing sensitive session identifiers or
passwords. This should include requests with relevant metadata needed for security investigations.

9. Verify that account passwords are one-way hashed with a salt, and that there is sufficient work factor to
defeat brute-force and password hash recovery attacks.

10. Verify that credentials are transported using a suitable encrypted link, and that all pages/functions that
require a user to enter credentials are done so using an encrypted link.

11. Verify that the forgotten password function and other recovery paths do not reveal the current
password, and that the new password is not sent in clear text to the user.

12. Verify that information enumeration is not possible via login, password reset, or forgot account
functionality.

13. Verify there are no default passwords (such as &€ epassworda€) in use for the application framework
or any components used by the application.

14. Verify that anti-automation is in place to prevent breached credential testing, brute forcing, and account

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

lockout attacks.

Verify that all authentication credentials for accessing services external to the application are encrypted
and stored in a protected location.

Verify that forgotten password and other recovery paths use a TOTP or soft token, mobile push, or other
offline recovery mechanism. Use of a random value in an email or SMS should be a last resort and is
known to be weak.

Verify that account lockout is divided into soft and hard lock status, and these are not mutually
exclusive. If an account is temporarily soft locked out due to a brute-force attack, this should not reset
the hard lock status.

Verify that if shared knowledge-based questions (also known as &€ cesecret questionsa€) are required,
the questions do not violate privacy laws and are sufficiently strong to protect accounts from malicious
recovery.

Verify that the system can be configured to disallow the use of a configurable number of previous
passwords.

Verify that risk-based reauthentication, two-factor or transaction signing is in place for high-value
transactions.

Verify that measures are in place to block the use of commonly chosen passwords and weak
passphrases.

Verify that all authentication challenges, whether successful or failed, should respond in the same
average response time.

Verify that secrets, API keys, and passwords are not included in the source code or online source code
repositories.

Verify that if an application allows users to authenticate, they can authenticate using two-factor
authentication or other strong authentication, or any similar scheme that provides protection against
username + password disclosure.

Verify that administrative interfaces are not accessible to untrusted parties.

Browser autocomplete and integration with password managers are permitted unless prohibited by risk-
based policy.

Thata€™ s a lot of things to check for in what looked like a simple story! How many of these would you
have come up with on your own?

OWASPa€™ s ASVS has been built up over time by some of the smartest security people around. Make
sure to take advantage of it. Wed€™ 1] look at how to use it to help in code reviews in a later chapter.

Privacy, Fraud, Compliance, and Encryption

Besides security features, the following are other security requirements that may need to be considered:

Privacy

Identifying information that is private or sensitive, and that needs to be protected through encryption or
tokenization, access control, and auditing.

Fraud protection

Identity management, enforcing separation of duties, verification and approval steps in key workflows,

auditing and logging, identifying patterns of behavior, and thresholds and alerting on exceptions.

Regulatory compliance

What do you need to include in implementing controls (authentication, access control, auditing, encryption),
and what do you need to prove in development and operations for assurance purposes?

Compliance requirements will constrain how the team works, what reviews or testing it needs to do, and
what approvals or oversight it requires, as well as what evidence the team needs to keep of all these steps in
developing and delivering the system. We will look more into how compliance is handled in Agile and
DevOps environments in a separate chapter.

Encryption

There are two parts to encryption requirements:

1. Understanding what information needs to be encrypted

2. How encryption must be done: permitted algorithms and key management techniques

CRYPTO REQUIREMENTS: HERE BE DRAGONS

Encryption is an area where you need to be especially careful with requirements and implementation. Some of
this guidance may come from regulators. For example, the Payment Card Industry Data Security Standard (PCI
DSS) for systems that handle credit card data lays out explicit cryptographic requirements:

1. In Section 3, PCI DSS lists the information that needs to be tokenized, one-way hashed, or encrypted; and
requirements for strong cryptography and key management (generating and storing keys, distributing keys,
rotating and expiring them).

2. In the glossary, of all places, PCI DSS defines &€ cestrong cryptographya€ and lists examples of standards
and algorithms that are acceptable. It then points to € cethe current version of NIST Special Publication 800-
57 Part 1 for more guidance on cryptographic key strengths and algorithms.a€ In the glossary under a
€eCryptographic Key Generation,a€ it refers to other guides that lay out how key management should be
done.

This isna€™ t clear or simpled€”’but crypto is not clear or simple. Crypto is one area where if you dond€™ t
know what you are doing, you need to get help from an expert. And if you do know what you are doing, then you
should probably still get help from an expert.

Whatever you do when it comes to crypto: do not try to invent your own crypto algorithm or try to modify
somebody elseG€™ s published algorithm, ever .

Wea€™] look at compliance and privacy requirements (and at encryption again) in ChapterA 14, Compliance .

The team needs to find some way to track these requirements and constraints, either as part of the teama€™ s
guidelines for development or checklists in story writing or their Definition of Done : the teama€™ s contract
with one another and with the rest of the organization on what is needed before a story is complete and ready to
be delivered, and before the team can move on to other work.

Tracking and dealing with nonfunctional requirements like security and reliability is an unsolved problem in
Agile development. Experts disagree on a€ cethe right waya<€ to do this. But they do agree that it needs to be
done. The important thing is to make sure that the team comes up with a way to recognize and track these
requirements, and that the team sticks with it.

SAFECode Security Stories

http://csrc.nist.gov/publications/
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch14.html#compliance

SAFECode , the Software Assurance Forum for Excellence in Code, is an industry group made up of vendors
like Adobe, Oracle, and Microsoft which provides guidance on software security and assurance. In 2012, it
published a free list of &€ ePractical Security Stories and Security Tasks for Agile Development Environmentsa
€ , sharing some of their ideas on how to include security in Agile requirements planning and implementation.

There are SAFECode stories to prevent common security vulnerabilities in applications: XSS, path traversal,
remote execution, CSRF, OS command injection, SQL injection, and password brute forcing. Other stories
cover checks for information exposure through error messages, proper use of encryption, authentication and
session management, transport layer security, restricted uploads, and URL redirection to untrusted sites.

There are also stories that go into detailed coding issues, such as NULL pointer checking, boundary checking,
numeric conversion, initialization, thread/process synchronization, exception handling, and use of
unsafe/restricted functions. And there are stories which describe secure development practices and operational
tasks for the team: making sure that youd€™ re using the latest compiler; patching the runtime and libraries;
using static analysis, vulnerability scanning, and code reviews of high-risk code; tracking and fixing security
bugs; and more advanced practices that require help from security experts, like fuzzing, threat modeling, pen
tests, and environmental hardening.

Altogether this is a comprehensive list of security risks that need to be managed, and secure development
practices that should be followed on most projects. While the content is good, there are problems with the
format.

To understand why, leta€™ s take a look at a couple of SAFECode security stories:

As a(an) architect/developer, I want to ensure,
AND as QA I want to verify that
the same steps are followed in the same order to

perform an action, without possible deviation on purpose or not

As a(an) architect/developer, I want to ensure,

AND as QA I want to verify that

the damage incurred to the system and its data

is limited if an unauthorized actor is able to take control of a process or

otherwise influence its behavior in unpredicted ways

As you can see, SAFECodea€™ s security stories are a well-intentioned, but a-w-k-w-a-r-d attempt to reframe
nonfunctional requirements in Agile user story format. Many teams will be put off by how artificial and forced
this approach is, and how alien it is to how they actually think and work.

Although SAFECodea€™ s stories look like stories, they cana€™ t be pulled from the backlog and delivered
like other stories, and they cand€™ t be removed from the backlog when they are done, because they are never
a€cedone.a€ The team has to keep worrying about these issues throughout the project and the life of the
system.

Each SAFECode security story has a list of detailed backlog tasks that need to be considered by the team as it
moves into sprint planning or as it works on individual user stories. But most of these tasks amount to
reminding developers to follow guidelines for secure coding and to do scanning or other security testing.

Teams may decide that it is not practical or even necessary to track all these recurring tasks in the backlog.
Some of the checks should be made part of the teama€™ s Definition of Done for stories or for the sprint.

https://www.safecode.org/
http://safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf

Others should be part of the teama€™ s coding guidelines and review checklists, or added into the automated
build pipeline, or they could be taken care of by training the team in secure coding so that the team members
know know how to do things properly from the start.

SAFECode also provides free training and secure coding guidelines that teams can follow to build secure
systems.

This includes a free guide for secure development which is especially valuable for C/C++ developers, covering
common security problems and providing extensive links to tools, articles, and other guidance.

If you cana€™ t afford more comprehensive secure development training for your team, SAFECode offers a set
of introductory online training courses in secure coding for C/C++ and Java, crypto, threat modeling, security in
cloud computing, penetration testing, and how to defend against specific attacks like SQL injection.

SAFECodea€™ s Security Stories are not a tool that you should try to force onto an Agile team. But they are a
way to get security requirements on the table. Reviewing and discussing these stories will create a conversation
about security practices and controls with the team and encourage the team members to respond with ideas of
their own.

Security Personas and Anti-Personas

Personas are another tool that many Agile teams use when defining requirements and designing features.
Personas are fictional descriptions of different types of people who will use the system. For each persona, the
team writes a fictional biography, describing their background and experience, technical ability, goals, and
preferences. These profiles could be built up from interviews, market research, or in brainstorming sessions.

Personas help the team to get into the mindset of users in concrete ways, to understand how someone would
want to use a feature and why. They can be helpful in working out user experience models. Personas are also
used in testing to come up with different kinds of test scenarios.

For teams that are already using personas, it can be useful to ask the team to also consider anti-personas : users
of the system that wona€™ t follow the normal rules.

Designers and teams look for ways to make system features as simple and intuitive to use as possible. However,
security can require that a system put deliberate speed bumps or other design anti-patterns in place, because we

recognize that adversaries are also going to use our system, and we need to make it difficult for them to achieve
their goals.

When defining personas, the recommendation is to create a single persona for each &€ ecategoryad€ or a
€ceclassa€ of user. There is very little to gain from creating too many or complex personas when a few simple
ones will do.

For example, one system that an author worked on had 11 user personas, and only 5 anti-personas: Hacking
Group Member, Fraudulent User, Organized Criminal Gang, Malware Author, and Compromised Sysadmin.

When detailing an anti-persona, the key things to consider are the motivations of the adversary, their capability,
and their cutoff points. [taA€™ s important to remember that adversaries can include legitimate users who have
an incentive to break the system. For example, an online insurance claim system might have to consider users
who are encouraged to lie to claim more money.

Personas are used by the entire team to help design the entire system. They shouldna€™ t be constrained to the
application, so understanding how those users might attack business processes, third parties, and physical

https://www.safecode.org/publication/SAFECode_Dev_Practices0211.pdf
https://training.safecode.org/courses

premises can be important. [tA€™ s possible that the team is building a computer solution that is simply one
component of a large business process, and the personas represent people who want to attack the process
through the application.

Here are some examples of simple anti-personas:
e Brian is a semiprofessional fraudster

= He looks for a return on investment of attacks of at least A£10k
= Brian doesna€™ t want to get caught, and wona€™ t do anything that he believes will leave a trail

= Brian has access to simple hacking tools but has little computer experience and cannot write code on his
own

e Laurais a low-income claimant

= Laura doesna€™ t consider lying to the welfare system immoral and wants to claim the maximum she
can get away with

= Laura has friends who are experts in the benefits system

= [aura has no technical competence
e Greg is an amateur hacker in an online hacking group

= Greg wants to deface the site or otherwise leave a calling card
= QGreg is after defacing as many sites as possible and seeks the easiest challenges
= Greg has no financial acumen and is unaware of how to exploit security holes for profit

= QGreg is a reasonable programmer and is able to script and modify off-the-shelf tools

For more examples of anti-personas, and more on how to use attacker personas or anti-personas in security
requirements and threat modeling, check out Appendix C of Adam Shostacka€™ s book Threat Modeling:
Designing for Security (Wiley) .

Attacker Stories: Put Your Black Hat On

Another way to include security in requirements is through attacker stories or misuse cases (instead of use
cases). In these stories the team spends some time thinking through how a feature could be misused by an
attacker or by another malicious, or even careless, user. This forces the team to think about what specific
actions it needs to defend against, as the following example shows:

As {some kind of adversary}
I want to {try to do something bad}

so that {I can steal or damage sensitive information
or get something without paying for it
or disable a key function of the system

or some other bad thingd€}

These stories are more concrete, and more testable, than SAFECodea€™ s security stories. Instead of
acceptance criteria which prove out success scenarios, each attacker story has a list of specific &€ enegation

https://threatmodelingbook.com/

criteriad€ or a€ cerefutation criteriad€: conditions or scenarios that you need to disprove for the story to be
considered done.

Take a user story, and as part of elaborating the story and listing the scenarios, step back and look at the story
through a security lens. Dona€™ t just think of what the user wants to do and can do. Think about what you
dona€™t want them to do. Get the same people who are working on the story to &€ ceput their black hats ona€
and think evil for a little while, to brainstorm and come up with negative cases.

Thinking like an attacker isnA€™ t easy or natural for most developers, as we discuss in ChapterA 8, Threat
Assessments and Understanding Attacks . But it will get easier with practice. A good tester on your team should
be able to come up with ideas and test cases, especially if he has experience in exploratory testing; or you could
bring in a security expert to help the team to develop scenarios, especially for security features. You can also
look at common attacks and requirements checklists like SAFECodea€™ s security stories or the OWASP
ASVS, which we will look at later in this chapter.

Anti-personas can come in very useful for misuse cases. The As A can be the name or anti-persona in question,
and this can also help developers to build the so that .

Writing attacker stories or misuse cases overlaps in some ways with threat modeling. Both of these techniques are
about looking at the system from the point of view of an attacker or other threat actor. Both of these techniques
help you to plug security holes up front, but they are done at different levels:

e Attacker stories are done from the point of view of the user, as you define feature workflows and user
interactions, treating the system as a black box.

e Threat modeling is a white-box approach, done from the point of view of the developer or designer, reviewing
controls and trust assumptions from an insidera€™ s perspective.

Attacker stories can be tested in an automated fashion. This is particularly useful to teams that follow test-
driven development (TDD) or behavior-driven development (BDD) practices, where developers write
automated tests for each story before they write the code, and use these tests to drive their design thinking. By
including tests for attacker stories, they can ensure that security features and controls cannot be disabled or
bypassed.

Writing Attacker Stories

Attacker stories act as a mirror to user stories. You dona€™ t need to write attacker stories for every user story
in the system. But you should at least write them in the following scenarios:

e You write stories for security features, like the logon story.
¢ You write or change stories that deal with money, private data, or important admin functions in the system.

¢ You find that a story calls into other services that deal with money, private data, or important admin
functions so that your feature doesna€™ t become a back door.

These are the kinds of user stories that are most interesting to attackers or fraudsters. This is when you need to
take on the persona of an attacker and look at features in the system from an adversarial point of view.

As wea€™ ve seen, the adversary doesna€™ t have to be a hacker or a cyber criminal. The adversary could be
an insider with a grudge, a selfish user who is willing to take advantage of others, or a competitor trying to steal
information about your customers or your intellectual property. Or the adversary could just be an admin user

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#threat_assessments

who needs to be protected from making expensive mistakes, or an external system that may not always behave
correctly.

Challenge the scenarios in the user story, and ask some basic questions:

1. What could go wrong? What would happen if the user doesna€™ t follow the main success scenarios
through a feature? What checks do you need to add, and what could happen if a check fails? Look carefully
at limits, data edits, error handling, and what kind of testing you need to do.

2. Ask questions about the usera€™ s identity and the data that is provided in the scenario. Can you trust them?
How can you be sure?

3. What information could an adversary be looking for? What information can she already see, and what could
he do with this information?

4. Are you logging or auditing everything that you need to? When should you create an alert or other
notification?

Use this exercise to come up with refutation criteria (the user can do this, but cana€™ t do that; the user can see
this, but cana€™ t see that), instead of, or as part of, the conditions of satisfaction for the story. Prioritize these
cases based on risk, and add the cases that you agree need to be taken care of as scenarios to the current story or
as new stories to the backlog if they are big enough. !

Another way of writing attacker stories is to describe in the story what you dond€™ t want the attacker to be able
to do:

As {some kind of adversary}
I MUST NOT be able to {do something bad}
so thatd€..

This can be easier than trying to write a story from the attackera€™ s point of view, because you dond€™ t have
to understand or describe the specific attack steps that the adversary might try. You can simply focus on what you
dona€™ t want him to be able to do: you dona€™ t want him to see or change another usera€™ s information,
enter a high-value transaction without authorization, bypass credit limit checks, and so on.

The team will have to fill in acceptance criteria later, listing specific actions to check for and test, but this makes
the requirements visible, something that needs to be prioritized and scheduled.

Attacker stories or misuse cases are good for identifying business logic vulnerabilities, reviewing security
features (e.g., authentication, access control, auditing, password management, and licensing) and anti-fraud
controls, tightening up error handling and basic validation, and keeping onside of privacy regulations. And they
can help the team come up with more and better test cases.

Writing these stories fits well into how Agile teams think and work. They are done at the same level as user
stories, using the same language and the same approach. Ita€™ s a more concrete way of thinking about and
dealing with threats than a threat modeling exercise, and itd€™ s more useful than trying to track a long list of
things to do or not to do.

You end up with specific, actionable test cases that are easy for the team, including the Product Owner, to
understand and appreciate. This is critically important in Scrum, because the Product Owner decides what work
gets done and in what priority. And because attacker stories are done in-phase, by the people who are working
on the stories as they are working on the stories (rather than a separate review activity that needs to coordinated

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch05.html#idm139712743330784

and scheduled), they are more likely to get done.

Spending a half hour or so together thinking through a piece of the system from this perspective should help the
team find and prevent weaknesses up front. As new threats and risks come up, and as you learn about new
attacks or exploits, itaA€™ s important to go back and revisit your existing stories and write new attacker stories
to fill in gaps.

Attack Trees

A relatively new methodology for understanding the ways that systems can be attacked is to use an attack tree .

This approach was first described by Bruce Schneier in 1999, where he proposed a structured method of
outlining growing chains of attack .

To build an attack tree, you start by outlining the goals of an attacker. This might be to decrypt secrets, gain root
access, or make a fraudulent claim.

We then map all the possible ways that someone can achieve the action. The canonical example from Schneier
says that to open a safe, you might pick the lock, learn the combination, cut open the safe, or install it
improperly.

We then iterate on the attack tree, covering any points where we think that we are involved; so for example, to
learn the combination, one could find the combination written down, or one could get the combination from a
target.

Modern usage of these attack trees can result in very broad trees and very deep trees at times. Once we have
this tree, we can start looking at each node and determining properties such as likelihood, cost, ease of attack,
repeatability, chance of being caught, and total reward to the attacker. The properties you will use will depend
on your understanding of your adversaries and the amount of time and effort you want to go to.

For each node in the tree, you can easily identify which nodes are higher risk by calculating the cost-benefit
ratio for the attacker.

Once we have identified the highest risk areas, we can consider countermeasures, such as staff training,
patrolling guards, and alarms.

If done well, this can enable security to trace back controls and identify why they put a control in place, and
justify its value. If you get extra investment, would you be better off with a more expensive firewall or
installing a secrets management system? It can also help you identify replacement controls. So if a security
control is unacceptable to the use of the system, you can understand what the impact is to removing it and what
risks it opens up.

Advanced users of this attack tree method are able to build per-system attack trees as well as departmental, unit,
and even organization-wide attack trees. One of us used this method to completely change the security spending
of the organization toward real risks rather than the traditional security views of where to spend money (hint: it
meant spending a lot less on fancy firewalls than before).

Building an Attack Tree

Building an attack tree is an interesting experience. This technique is very powerful, but also very subjective.

Wea€™ ve found that it is best to build the trees over a series of workshops, each workshop containing a mix of
security specialists, technical specialists, and business specialists.

An initial workshop with a security specialist should be used to outline the primary goals of the trees that you
want to consider. For example, in one recent session looking at a federated login system, we determined that
there were only three goals that we cared about: logging in, stealing credentials, and denial of service.

https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Use the STRIDE acronym to review common threats:

e Spoofing user identity
e Tampering

e Repudiation

e Information disclosure
e Denial of service

e Elevation of privilege

Consider your system in the face of these threats, and come up with a set of goals.

Then call together workshops with a mix of security professionals, technical specialists, and business
specialists. Wed€™ ve found that the business specialists are the most valuable here. While the security and
technical professionals are good at creatively coming up with how to achieve a goal, the business professionals
tend to be much better at coming up with the goals themselves, and they tend to know the limits of the system
(somehow security and technical professionals seem to view computer systems as perfect and inviolate).
Business professionals tend to be far more realistic about the flaws and the manual workarounds in place that
make the systems work.

Once the trees are complete, security professionals can do a lot of the work gauging the properties, such as cost
and so forth.

Maintaining and Using Attack Trees

Once the trees are written and available to the teams, they will of course slowly become out of date and
incorrect as the context and situation change.

Attack trees can be stored in digital form, either in spreadsheets, or wea€™ ve found the mind map format to
work effectively.

They should be reviewed on a regular basis; and in particular, changes in security controls should be checked
with the attack trees to ensure that the risk profile hasna€™ t changed significantly.

Wea€™ ve had experience in at least one company where the attack trees are stored electronically in a wiki, and
all the controls are linked to the digital story cards, so the status of each story is recorded in a live view. This
shows the security team the current state of the threat tree, any planned work that might affect it, and allows
compliance officers to trace back from a work order to find out why it was requested and when it was
completed.

You should see what works for your teams and your security and compliance officers, but this kind of
interlinking 1s very valuable for high-performing and fast-moving teams to give them situational awareness to
help in making decisions.

Infrastructure and Operations Requirements

Because of the speed at which todaya€™ s Agilea€”and especially DevOpsa€”teams deliver systems to
production, and the rate that they make changes to systems once they are being used, developers have to be
much closer to operations and the infrastructure. There are no Waterfall handoffs to separate operations and
maintenance as developers move on to the next project. Instead, these teams work in a service-based model,
where they share or sometimes own the responsibility of running and supporting the system. They are in it for
the life of the system.

NOOPS AND A€CEYOU BUILD IT, YOU RUN ITA€

Netflix made the decision several years ago to outsource its IT operations and infrastructure to Amazon.
Today Netflix is one of the biggest users of cloud services and internet bandwidth. Netflixa€™ s position is
that data center management and infrastructure provisioning and network engineering are a
€ceundifferentiated heavy liftingd€: work that it is important and expensive to do properly (the &€ cheavy
liftingd€ part) but that can be better done by somebody else so that Netflix can focus on product and
service design and delivery.

Netflix has no operations engineering organization: it does all its operations through Amazona€™ s AWS
API. Netflix has some platform engineering teams that build common services shared by the other
engineering teams. But each engineering team is responsible for designing, building, delivering, and
supporting the code that it writes. Netflix calls this &€ ®NoOps.4€

At Amazon, like Netflix, systems are broken down into microservices that are designed and delivered by
small teams. This includes the Amazon AWS services that Netflix and other AWS customers use. And like
Netflix, Amazon teams are responsible for delivering, supporting, and operating their piece of the system.
At Amazon, they call this &€ You build it, you run it.a€

These are extreme examples of how the roles of operations and development are changing as organizations
adopt new technology architectures and new ways of delivering systems faster and cheaper.

The DevOps and NoOps movements are gaining speed and traction, and we expect that many more
traditional teams will start moving this way over time.

This means that they need to think not just about the people who will use the system, but also the people who
will run it and support it: the infrastructure and network engineers, operations, and customer service. All of
them become customers and partners in deciding how the system will be designed and implemented.

For example, while working on auditing and logging in the system, the team must meet the needs of the
following teams and requirements:

Business analytics

Tracking details on users and their activity to understand which features users find valuable, which features
they dona€™ t, how they are using the system, and where and how they spend their time. This information
1s used in A/B testing to drive future product design decisions and mined using big data systems to find
trends and patterns in the business itself.

Compliance

Requirements for activity auditing to meet regulatory requirements, what information needs to be recorded,
for how long, and who needs to see this information.

Infosec
What information is needed for attack monitoring and forensic analysis.
Ops
System monitoring and operational metrics needed for service-level management and planning.

Development

The development teama€™ s own information needs for troubleshooting and debugging.

Teams need to understand and deal with operational requirements for confidentiality, integrity, and availability,
whether these requirements come from the engineering teams, operations, or compliance. They need to
understand the existing infrastructure and operations constraints, especially in enterprise environments, where

the system needs to work as part of a much larger whole. They need answers to a lot of important questions:

e What will the runtime be: cloud or on-premises or hybrid, VMs or containers or bare metal servers?
e What OS?
e What database or backend data storage?

e How much storage and CPU and memory capacity?

How will the infrastructure be secured? What compliance constraints do we have to deal with?
Packaging and deployment

How will the application and its dependencies be packaged and built? How will you manage the build and
deployment artifacts? What tools and procedures will be used to deploy the system? What operational
windows do you have to make updatesa€* when can you take the system down, and for how long?

Monitoring
What information (alerts, errors, metrics) does ops need for monitoring and troubleshooting? What are the

logging requirements (format, time synchronization, rotation)? How will errors and failures be escalated?

Secrets management

What keys, passwords, and other credentials are needed for the system? Where will they be stored? Who
needs to have access to them? How often do they need to be rotated, and how is this done?

Data archival

What information needs to be backed up and kept and for how long to meet compliance, business continuity
or other requirements? Where do logs need to be stored, and for how long?

Availability

How is clustering handled -at the network, OS, database and application level? What are the Recovery Time
and Recovery Point Objectives (RTO/RPO) for serious failures? How will DDOS attacks be defended
against?

Separation of duties

Are developers permitted access to production for support purposes? Is testing in production allowed? What
can developers see or do, what cana€™ t they see or do? What changes (if any) are they allowed to make
without explicit approval? What auditing needs to be done to prove all of this?

Logging
As wea€™ ve already seen, logging needs to be done for many different purposes: for support and
troubleshooting, for monitoring, for forensics, for analytics. What header information needs to be recorded
to serve all of these purposes: date and timestamp (to what precision?), user ID, source IP, node, service
identifier, what else? What type of information should be recorded at each level (DEBUG, INFO, WARN,
ERROR)?

Should log messages be written for human readers, or be parsed by tools? How do you protect against
tampering and poisoning of logs? How do you detect gaps in logging? What sensitive information needs to
be masked or omitted in logs?

What system events and security events need to be logged? PCI DSS provides some good guidance for
logging and auditing. To comply with PCI DSS, you need to record the following information:

e All access to critical or sensitive data

All access by root/admin users

All access to audit trails (audit the auditing system)

e Access control violations

Authentication events and changes (logons, new users, password changes, etc.)

Auditing and logging system events: start, shutdown, suspend, restart, and errors

All operational requirements for security are mapped to one or more elements of the CIA (C: Confidentiality, I:
Integrity, A: Availability) triad:

Confidentiality

Ensuring that the information can only be read, consumed, or used by system users who are the appropriate
people.

Integrity

Ensuring that the information can only be modified or changed by system users who are supposed to change
it. That it is only changed in the appropriate way and that the changes are correctly logged.

Availability

Ensuring that the information is accessible to users who need it at the time when they need it.

Key Takeaways

Here are the key things that you need to think about to get security onto the backlog:

Security happens in the thought processes and design of stories, not just during coding. Be involved early
and educate everyone to think about security.

Pay attention to user stories as they are being written and elaborated. Look for security risks and concerns.

Consider building attack trees to help your team understand the ways that adversaries could attack your
system, and what protections you need to put in place.

Write attacker stories for high-risk user stories: a mirror of the story, written from an adversarya€™ s point
of view.

Use OWASPA€™ s ASVS and SAFECodea€™ s Security Stories as resources to help in writing stories, and
for writing conditions of satisfaction for security stories.

If the team is modeling user personas, help them to create anti-personas to keep adversaries in mind when
filling out requirements and test conditions.

Think about operations and infrastructure, not just functional needs, when writing requirements, including
security requirements.

!'This description of attacker stories is based on work done by Judy Neher, an independent Agile security
consultant. Watch a€eAbuser Stories - Think Like the Bad Guy with Judy Neher - at Agile 20153€ .

https://www.youtube.com/watch?v=hxQ1j_HQhGw
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch05.html#idm139712743330784-marker

Chapter 6. Agile Vulnerability Management

New vulnerabilities in software are found every day. Many organizations are not aware of vulnerabilities in
their systems until it is too late. Whata€™ s worse is that developers and their managers often ignore
vulnerabilities that they do know about. This means that attackers can continue to exploit software
vulnerabilities months or years after they were first reported, using automated scanners and exploit Kits.

One of the most important responsibilities of a security team is vulnerability management: ensuring that people
in your organization continuously check for known vulnerabilities, assess and understand the risks that these
vulnerabilities pose to the organization, and take appropriate steps to remediate them.

Security teams need to work with developers, operations, compliance, and management in order to get all of
this done, making vulnerability management an important touch point.

In this chapter, wea€™ 11 look at how to manage vulnerabilities and how to align vulnerability management
with Agile approaches to getting work done. Wed€™ 1] also look at how to fulfill the CYA paperwork aspect of
vulnerability management required for compliance, in a lightweight, efficient way.

Vulnerability Scanning and Patching

Setting up and scheduling vulnerability scans properly, making sure that scanning policies are configured
correctly and consistently enforced, reviewing and triaging the results based on risk, packaging up patches and
testing to make sure that patches dona€™ t introduce new problems, scheduling and deploying updates, and
keeping track of all of this work so that you can prove that it has been done is a huge operational responsibility
for an organization of any size.

Techniques and tools that we look at throughout this book, including automating configuration management in
code, and automating builds, testing, and delivery, can be used to help make this work safer and cheaper.

First, Understand What You Need to Scan

Your first step in understanding and managing vulnerabilities is to identify all the systems and applications that
you need to secure, both on premises and in the cloud. Getting an up-to-date and accurate inventory of what
you need to scan is difficult for most organizations and can be effectively impossible at enterprise scale;
whereas a small security team may be responsible for thousands of applications in multiple data centers.

One of the many advantages of using automated configuration management tools like Ansible, Chef, and
Puppet is that they are based on a central repository that describes all of your servers, how they are configured,
and what software packages are installed on them.

UpGuard automatically discovers configuration information about Linux and Windows servers, network devices,
and cloud services; identifies vulnerabilities and inconsistencies; and tracks changes to this information over time.

It continuously assesses vulnerability risks, automatically scanning systems or using information from other
scanners, and assigns a compliance score for all of your systems.

UpGuard also creates tests to enforce configuration policies, and can generate runbook code that you can use with
tools like Ansible, Chef, Puppet, Microsoft Windows PowerShell DSC, and Docker to apply updates and
configuration changes.

https://www.upguard.com/

You can use this information to understand the systems that you need to scan for vulnerabilities and to identify
systems that need to be patched when you receive a vulnerability alert. Then you can use the same tools to
automatically and quickly apply patches.

Then Decide How to Scan and How Often

Most vulnerability management programs run in a reactive, regularly scheduled scan-and-patch cycle, like
Microsofta€™ s € cePatch Tuesdaya€:

1.

Set up a scan of your servers and network devices using tools like Core Impact, Nessus, Nexpose, or
OpenVAS, or an online service like Qualys. These scanners look for known vulnerabilities in common OS
distributions, network devices, databases, and other runtime software, including outdated software packages,
default credentials, and other dangerous configuration mistakes.

. Review the vulnerabilities reported, filter out duplicates and false positives, and prioritize true positive

findings based on risk.

. Hand the results off to engineering to remediate by downloading and applying patches, or correcting the

configuration, or adding a signature to your IDS/IPS or WAF/RASP to catch or block attempted exploits.

Re-scan to make sure that the problems were actually fixed.

. Record what you did for auditors.

Rinse and repeat next month or next quarter, or however often compliance requires.

[ta€™ s not enough to scan systems once a month or once a quarter when you are making changes every week or
several times a day. You will never be able to keep up.

Youa€™ Il need to automate and streamline scanning so that it can be run much more often, every day if possible,
as part of your build pipelines.

To create an efficient feedback loop, youd€™ Il need to find a way to automatically remove duplicates and filter
false positives from scanning results, and return the results directly into the tools that teams use to manage their
work, whether itA€™ s a ticketing system like Jira, or an Agile backlog management system like Rally or
VersionOne, or a Kanban system like Trello.

Tracking Vulnerabilities

As we will see in this book, there are other important ways to get vulnerability information besides scanning
your network infrastructure:

Scanning applications for common coding mistakes and runtime vulnerabilities using automated security
testing (AST) tools that wea€™ 11 explore in ChapterA 11, Agile Security Testing

Penetration testing and other manual and automated security testing
Bug bounty programs (discussed in ChapterA 12)
Threat intelligence and vendor alerts

Software component analysis (SCA) scanning tools that check for known vulnerabilities in open source
components, something wed€™ Il look at in more detail later in this chapter

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#agile_security_testing
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch12.html#external_reviews

e Scanning runtime containers and container images for known vulnerabilities
e Scanning cloud instances for common vulnerabilities and unsafe configs using services like AWS Inspector
e Manual code reviews or code audits of application code and infrastructure recipes and templates

e Bug reports from partners, users, and other customers (which is not how you want to hear about a
vulnerability in your system)

To get an overall picture of security risk, all of this information needs to be consolidated, tracked, and reported
for all of your systems. And it needs to be evaluated, prioritized, and fed back to operations and developers in
ways that make sense to them and fit how they work so that problems can get fixed quickly.

Managing Vulnerabilities

Vulnerabilities in software or infrastructure are defects in requirements or design or coding or implementation.
They should be handled like any other defect in the system: fixed immediately, or added to the teama€™ s
backlog and prioritized along with other work, or dismissed because the team (including management) decides
that the problem is not worth fixing.

But vulnerabilities introduce risks that engineering teams, product managers, and other people in the
organization have a hard time understanding. [ta€™ s usually obvious to users and to the team when there is a
functional bug or operational problem that needs to be fixed, or if the systema€™ s performance is
unacceptable. These are problems that engineering teams know how to deal with. Security vulnerabilities arené
€™t as cut and dried.

As wea€™ 1] see in ChapterA 7, Risk for Agile Teams , to decide which security bugs need to be fixed and how
quickly this has to be done, you need to know the answers to several questions:

e What is the overall threat profile for your organization? What kind of threats does your organization face,
and what are the threat actors after?

e What is the risk profile of the system(s) where the vulnerability was found?

e How widespread is the vulnerability?

e How easy is it for an attacker to discover and to exploit?

e How effective are your existing security defenses in defending against attacks?

e What are the potential technical and business impacts to your organization of a successful attack?
e Can you detect if an attack is in progress?

e How quickly can you contain and recover from an attack, and block further attacks, once you have detected
it?
e What are the costs of fixing the vulnerability, and what is your confidence that this will be done correctly

and safely?

e What are your compliance obligations?

In order to understand and evaluate these risk factors, you need to look at vulnerabilities separately from the
rest of the work that the engineering teams are doing. Tracking and reporting vulnerabilities is a required part of
many organizationa€™ s GRC (governance, risk, and compliance) programs and is mandated by regulations
such as PCI DSS to demonstrate to management and auditors that due care and attention has been followed in
identifying and managing security risks.

Vulnerability management involves a lot of mundane, but important bookkeeping work:

https://aws.amazon.com/inspector/
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch07.html#risk_for_developers

e Recording each vulnerability, when and where and how it was found or reported

e Scanning or checking to see where else the vulnerability might exist

e Determining the priority in which it should be fixed, based on a recognized risk rating
e Assigning an owner, to ensure that the problem gets fixed

e Scheduling the fix

e Verifying that it was fixed properly and tracking how long it took to get fixed

e Reporting all of this, and highlighting exceptions, to auditors

This is a full-time job in large enterprises. [tA€™ s a job that is not done at all in many smaller organizations,
especially in startups.

Application vulnerability management tools like bugBlast , Code Dx , and Denim Groupa€™ s ThreadFix
consolidate vulnerabilities found by different scanners as well as problems found in pen testing or manual
reviews, and consolidate this information across multiple systems. This will help you to identify risks inside
and across systems by identifying which systems or components have the most vulnerabilities, which types of
vulnerabilities are the most common, and how long vulnerabilities have been left open.

You can assess which teams are doing the best job of remediation and whether teams are meeting their
compliance requirements, and you can also evaluate the effectiveness of tools by looking at which tools find the
most important vulnerabilities.

These tools simplify your job of managing findings by filtering out duplicate findings from multiple tools or
different test runs and by giving you a chance to review, qualify, and prioritize vulnerability findings before
asking developers to resolve them. Most vulnerability management tools have interfaces into popular
development tools, so that you can automatically update the teama€™ s backlog.

CVES, CWES, AND CVSSA€! OH, MY!

You can see how bad a job wea€™ ve been doing as an industry of dealing with security bugs by looking
at the extensive infrastructure and bureaucracy that has grown up around reporting, classifying, and
prioritizing security problems. Instead of: &€ eHey, herea€™ s a bug; fix it!a€, we have an alphabet soup
of CVEs, CWEs, CVSS, and CWSS to help keep track of all of these problems, why they happened, how
they were found, how important they are, how to look for them, and how to know whether you fixed them
or not.

CVE (Common Vulnerabilities and Exposures)

The CVE is a long list of thousands of specific vulnerabilities found in software, maintained by
MITRE for the US-CERT and US Department of Homeland Defense, and available to everybody else
for free.

CWE (Common Weakness Enumeration)

The CWE is a shorter, but still long, list that tries to describe and organize the mistakes that developers
made which led to reported vulnerabilities in the CVE database. It has been built up by analyzing the
CVEs to understand what the underlying cause or causes of each CVE was.

A CWE is a particularly dangerous mistake in programming or design that has been proven to lead to
an exploitable vulnerability in software. The National Vulnerability Database lists the different types of
CWE:s .

For each CWE, there is information that explains the type of bug, examples, how to find it in testing or
in code reviews and using static analysis tools, and how to fix it.

https://buguroo.com/products/bugblast-next-gen-appsec-platform
https://codedx.com/
http://www.threadfix.it/
https://cve.mitre.org/index.html
https://cwe.mitre.org/
https://nvd.nist.gov/cwe.cfm#cwes

MITRE and SANS have come up with a list of the 25 most dangerous mistakes called, unsurprisingly,
the A€ cCWE/SANS Top 25 Most Dangerous Software Errorsa€ .

NVD (National Vulnerability Database)

The NVD is a database sponsored by the same US government agencies, to track CVEs and what
versions of software are affected, who reported them and when, and then link to the other resources to
help people deal with them.

The vulnerability feeds from this database are used by tools (such as OWASP Dependency Check) to
track vulnerabilities in software packages.

CVSS and CWSS Scoring Systems

CVSS and CWSS are alternative scoring models for determining how serious a CVE or CWE is. The
score is based on balancing exploitability (how easy is it for an attacker to find the weakness and use
it) against the potential damage that the attacker could cause.

Heartbleed example
Leta€™ s look at an example: the Heartbleed OpenSSL vulnerability.

In the National Vulnerability Database, you will find Heartbleed reported under CVE-2014-0160.
Although it was a widespread and serious vulnerability that caused a lot of damage and received a lot
of attention from the general press, Heartbleed was initially only given a CVSS v2 score of 5.0 on a
scale of 1 to 10 . While the impact of Heartbleed was subsequently reassessed at 7.4 using the newer
CVSS v3 scoring model, it pales against the equally infamous ShellShock vulnerability, which scored a
perfect 10 .

To understand how the vulnerability occurred, we need to look at the CWE information for this bug.
Heartbleeda€™ s CWE is CWE-119 Buffer Errors: Improper restriction of Operations within the
Bounds of a Memory Buffer, or more specifically, CWE-126 Buffer Over-read. This is a bounds-check
violation in C/C++ caused by forgetting to validate an input value.

All of this trouble over a small and common coding mistake. Wea€™ 1l be looking more at the
Heartbleed bug in other chapters of this book, because it is so well known and has been extensively
analyzed to understand how and why it happened, and how we can stop problems like this from
happening againa€”which is what this book is about.

What does this mean to developers?

You will see reports of vulnerabilities by CVE. This is how infrastructure security scanners like Nessus
or OpenVAS work, and this is how IDS/IPS solutions like Snort, and application firewalls like
ModSecurity, detect and block specific attack signatures. And this is how security researchers report
and classify what they find.

You will also see bug reports with CWEs from static analysis tools and other scanning tools. This
information is used to compare findings from different tools and to evaluate their effectiveness,
although unfortunately, this isna€™ t as easy as it sounds, given that different tools may report
different, but related, CWEs for the same type of bug.

The CVE/CWE/CVSS/NVD ecosystem is interesting to know about. But unless you are writing a
security tool or want to do some security research on the side, you can get through your day and still
do a responsible job of building secure systems without worrying too much about CVEs, CWEs, and
the rest, unless and until somebody reports a CVE in software that youda€™ ve written or software that
you use.

http://cwe.mitre.org/top25/
https://nvd.nist.gov/home.cfm
https://www.first.org/cvss
https://cwe.mitre.org/cwss/
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://www.first.org/cvss/examples
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/126.html

Dealing with Critical Vulnerabilities

When a critical vulnerability like Heartbleed or ShellShock is found that must be fixed quickly, you need to be
able to rely on your vulnerability management program to ensure that:

e You are informed about the vulnerability through threat intelligence and vulnerability feeds, such as a CERT
alert , or sometimes even from the press. In the case of Heartbleed, this wasna€™ t that difficult, since, like
the Anna Kournikova virus or ShellShock, it received wide coverage in the popular press, mostly because of
its catchy name.

¢ You understand what the bug is and how serious it is, based on the risk score assigned to the CVE.
e You are confident that you can identify all the systems that need to be checked for this vulnerability.
® You can verify whether and where you have the vulnerability through scanning or configuration checks.

e You can quickly and safely patch or upgrade the vulnerable software package, or disable affected functions
or add a signature to your IDS/IPS or firewall to block attacks as a workaround.

e You can verify that the patch was done successfully, or that whatever other step that you took to mitigate the
risk of an attack was successful.

Vulnerability management ties security, compliance, development, and operations together in a continuous loop
to protect your systems and your organization.

Securing Your Software Supply Chain

An important part of managing vulnerabilities is understanding and securing your software supply chain: the
software parts that modern systems are built with. Todaya€™ s Agile and DevOps teams take extensive
advantage of open source libraries and frameworks to reduce development time and costs. But this comes with
a downside: they also inherit bugs and vulnerabilities from other peopled€™ s code.

According to Sonatype, which runs the Central Repository, the worlda€™ s largest repository for open source
software for Java developers: 80 to 90 percent of the code in todaya€™ s applications comes from open source
libraries and frameworks.

A lot of this code has serious problems in it. The Central Repository holds more than 1.36 million components
(as of September 2015), and almost 1,500 components are being added every day. More than 70,000 of the
software components in the Central Repository contain known security vulnerabilities. On average, 50 new
critical vulnerabilities in open source software are reported every day.

Sonatype looked at 31 billion download requests from 106,000 different organizations in 2015. It found that
large financial services organizations and other enterprises are downloading an average of more than 230,000 a
€ esoftware partsa€ each year. But keep in mind this is only counting Java components. The total number of
parts, including RubyGems, NuGets, Docker images, and other goodies, is actually much higher.

Of these 230,000 downloads, 1 in every 16 download requests was for software that had at least 1 known
security vulnerability.

In just one example, Sonatype reviewed downloads for The Legion of the Bouncy Castle, a popular crypto
library. It was downloaded 17.4 million times in 2015. But one-third of the time, people downloaded known
vulnerable versions of the library. This means that almost 14,000 organizations across the world unnecessarily
and probably unknowingly exposed themselves to potentially serious security risks while trying to make their
applications more secure.

Scared yet? You should be.

[ta€™ g clear that teams must ensure that they know what open source components are included in all their

https://www.us-cert.gov/ncas/alerts
https://www.sonatype.com/2016-state-of-the-software-supply-chain-report

applications, make sure that known good versions were downloaded from known good sources, and that these
components are kept up to date when vulnerabilities are found and fixed.

Luckily, you can do this automatically by using SCA tools like OWASPa€™ s Dependency Check project, or
commercial tools like Black Duck , JFrog Xray , Snyk , Sonatypea€™ s Nexus Lifecycle , or SourceClear .

OWASPa€™ s Dependency Check is a free scanner that catalogs all the open source components used in an
application and highlights vulnerabilities in these dependencies. It works for Java, .NET, Ruby (gemspec), PHP
(composer), Node.js, and Python, as well as some C/C++ projects. Dependency Check integrates with common
build tools, including Ant, Maven, and Gradle, and CI servers like Jenkins.

Dependency Check reports on any components with known vulnerabilities reported in NISTA€™ s National
Vulnerability Database and gets updates from the NVD data feeds.

Here are some other popular open source dependency checking tools:

e Bundler Audit for Ruby
e Retire.js for Javascript

o SafeNuGet for NuGet libraries

You can wire these tools into your build pipelines to automatically inventory open source dependencies,
identify out-of-date libraries and libraries with known security vulnerabilities, and fail the build automatically if
serious problems are found. By maintaining an up-to-date bill of materials for every system, you will be
prepared for vulnerabilities like Heartbleed or DROWN, because you can quickly determine if you are exposed
and what you need to fix.

These tools can also alert you when new dependencies are detected so that you can create a workflow to make
sure that they get reviewed.

Vulnerabilities in Containers

If you are using containers like Docker in production (or even in development and test), you will need to
enforce similar controls over dependencies in container images. Even though Docker scans images in official
repos to catch packages with known vulnerabilities, there is still a good chance that someone will download a &
€ epoisoned imaged€ containing out-of-date software or malware, or an image that is not safely configured.

You should scan images on your own, using an open source tool like OpenSCAP or Clair, or commercial
scanning services from Twistlock, Tenable, or Black Duck Hub; and then check these images into your own
secure repository or private registry, where they can be safely used by developers and operations staff.

Fewer, Better Suppliers

There are obvious maintenance costs and security risks to overextending your software supply chain. Following
Toyotaa€™ s Lean Manufacturing model, your strategic goal should be to move to &€ cefewer, better suppliersa
€ over time, standardizing on libraries and frameworks and templates and images that are proven to work, that
solve important problems for developers, and that have been vetted by security. At Netflix, they describe this as
building a paved road, because developersa€”and security and compliance staffa€”know that if they take
advantage of this code, the path ahead will be easier and safer.

https://www.blackducksoftware.com/solutions/application-security
https://www.jfrog.com/xray/
https://snyk.io/
http://www.sonatype.com/nexus-lifecycle
https://srcclr.com/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://github.com/rubysec/bundler-audit
http://retirejs.github.io/retire.js/
https://www.owasp.org/index.php/OWASP_SafeNuGet

Sonatype has developed a free calculator which will help developers and managers understand the cost and risks
that you inherit over time from using too many third-party components.

But you need to recognize that although it makes good sense in the long term, getting different engineering
teams to standardize on a set of common components wona€™ t be easy. [ta€™ s difficult to ask developers
supporting legacy apps to invest in making this kind of change. [ta€™ s equally difficult in microservices
environments where developers expect to be free to use the right tools for the job, selecting technologies based
on their specific requirements, or even on their personal interests.

One place to start is by standardizing on the lowest layers of software: the kernel, OS, and VMs, and on
general-purpose utility functions like logging and metrics collection, which need to be used consistently across
apps and services.

How to Fix Vulnerabilities in an Agile Way

A major problem that almost all organizations face is that even when they know that they have a serious
security vulnerability in a system, they cana€™ t get the fix out fast enough to stop attackers from exploiting
the vulnerability. The longer vulnerabilities are exposed, the more likely the system will be, or has already
been, attacked.

WhiteHat Security, which provides a service for scanning websites for security vulnerabilities, regularly
analyzes and reports on vulnerability data that it collects. Using data from 2013 and 2014, WhiteHat found that
35 percent of finance and insurance websites are A€ ealways vulnerable, &€ meaning that these sites had at least
one serious vulnerability exposed every single day of the year. The stats for other industries and government
organizations were even worse. Only 25 percent of finance and insurance sites were vulnerable for fewer than
30 days of the year.

On average, serious vulnerabilities stayed open for 739 days, and only 27 percent of serious vulnerabilities
were fixed at all, because of the costs and risks and overhead involved in getting patches out. !

There are many reasons that vulnerabilities take too long to fix, besides teams being too busy with feature
delivery:

e Time is wasted in bureaucracy and paperwork in handing off work between the security team and
engineering teams.

¢ Engineering teams dona€™ t understand the vulnerability reports, how serious they are, and how to fix
them.

e Teams are scared of making a mistake and breaking the system when putting in a patch because they dona
€™t have confidence in their ability to build and test and deploy updated software.

e Change management is expensive and slow, including all the steps to build, review, test, and deploy changes
and the necessary handoffs and approvals.

As wea€™ ve seen throughout this book, the speed of Agile development creates new security risks and
problems. But this speed and efficiency can also offer an important edge against attackers, a way to close
vulnerability windows much faster.

Agile teams are built to respond and react to new priorities and feedback, whether this is a new feature or a
problem in production that must be fixed. Just-in-time prioritization, incremental design and rapid delivery,
automating builds and testing, measuring and optimizing cycle timea€all of these practices are about making

http://www.sonatype.com/calculator/
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch06.html#idm139712743036928

changes cheaper, faster, and easier.

There are some factors that need to be considered in prioritizing the work to fix vulnerabilities:
Risk severity

Based on a score like CVSS.
Exploitability

The teama€™ s assessment of how likely this vulnerability can be exploited in your environment, how
widespread the vulnerability is, and what compensating controls you have in place.

Cost and risk of making the fix

The amount of work required to fix and test a vulnerability can vary widely, from rolling out a targeted minor
patch from a supplier or making a small technical fix to correct an ACL or a default config setting, to major
platform upgrades or overhauling application logic.

Compliance mandates

The cost/risk of being out of compliance.

DevOps practices and tools like automated configuration management, continuous delivery, and repeatable
automated deployment make it even cheaper and safer and faster to get changes and fixes to production.
DevOps shops rely on this capability to minimize their MTTR in responding to operations incidents, knowing
that they can get patches out quickly to resolve operational problems.

Leta€™ s look at how to take advantage of Agile practices and tools and feedback loops that are optimized for
speed and efficiency, to reduce security risks.

Test-Driven Security

One way to ensure that vulnerabilities in your applications get fixed is to write an automated test (e.g., unit test
or an acceptance test) which proves that the vulnerability exists, and check the test in with the rest of the code
so that it gets run when the code is built. The test will fail until the vulnerability gets fixed. This is similar to the
way that test-driven developers handle a bug fix, as we explain in ChapterA 11, Agile Security Testing .

In ChapterA 11 , we show how to write security tests using the Gauntlt test framework. Gauntlt comes packaged
with a set of sample attacks, including an example of a test specifically written to check for the Heartbleed
vulnerability, which you can use as a template for writing your own security checks for other vulnerabilities.

Of course for this approach to be accepted by the team, the person writing the test needs to be accepted as a
member of the team. This person needs the support of the Product Owner, who is responsible for prioritizing
work and wona€™ t be happy to have the team sidetracked with fixing something if she doesna€™ t understand
why it is important or necessary.

This person also needs to understand and respect the teama€™ s conventions and how the code and test suite
are structured, and he needs the technical chops to write a good test. The test must clearly show that a real
problem exists, and it has to conform with the approach that the rest of the team is following so that the team is

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#agile_security_testing
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#agile_security_testing
https://theagileadmin.com/2014/04/08/gauntlt-test-for-heartbleed/

willing to own the test going forward. All of this will likely require help from someone on the team, and it will
be much easier if the team is already heavily invested in test automation.

Writing tests like this gives you evidence that the vulnerability has been fixed properly. And it provides
insurance that the vulnerability wona€™ t come back. As wea€™ ve seen, ita€™ s a big step in the right
direction from dropping a vulnerability report on a developera€™ s desk.

Zero Bug Tolerance

Some Agile teams try to follow the ideal of &€ ezero bug tolerance. &€ They insist on fixing every bug that is
found before they can move forward and call a feature done, or before they can start on a new feature or story.
If a problem is serious enough, the team might all stop doing other work and swarm on it until it is fixed.

If you can explain to these teams that vulnerabilities are bugs, real bugs that need to be fixed, then they would
be obliged to fix them.

For the team to take this seriously, you need to do a few things:

1. Be ruthless in eliminating false positives, and focus on vulnerabilities which are important to the
organization, problems that are serious and exploitable.

2. Get these onto the Agile teamad€™ s backlog in a form that the team understands.

3. Spend some time educating the team, including the Product Owner, about what these bugs are and why they
are important.

4. Spend some more time helping the team understand how to test and fix each bug.

This approach is viable if you can start with the team early in development, to deal with vulnerabilities
immediately as they come up. I[ta€™ s not fair to the team or the organization to come back months or years
into development with a long list of vulnerabilities that were found from a recent scan and expect the team to
stop everything else and fix them right away. But you can start a conversation with the team and come up with a
plan that balances security risks with the rest of its work, and agree on a bar that the team can realistically
commit to meeting.

Collective Code Ownership

Another common idea in Agile teams is that the code is open to everyone on the team. Anyone can review code
that somebody else wrote, refactor it, add tests to it, fix it, or change it.

This means that if a security engineer finds a vulnerability, she should be able to fix it, as long as she is seen as
part of the team. At Google, for example, most of the code base is open to everyone in the organization, which
means that security engineers can fix vulnerabilities in any part of the code base, provided that they follow the
teama€™ s conventions, and take ownership of any problems that they might accidentally introduce.

This takes serious technical skills (not a problem for security engineers at Google of course, but it might be
more of a challenge in your organization) and confidence in those skills. But if you know that a bug is serious,
and you know where the bug is in the code, and how to fix it properly, and how to check the fix in, then doesna
€™t it make sense to go and do it, instead of trying to convince somebody else to stop what he is doing and fix
it for you?

Even if you lack confidence in your coding skills, a pull request or just marking code for review can be a good
way to move an issue closer to being fixed.

Security Sprints, Hardening Sprints, and Hack Days

Another way to get security problems corrected, especially if you have a lot of them to deal with, for example,
when you are going through a pen test or an audit, or responding to a breach, is to run a dedicated &€ cesecurity
sprinta€ or a€cchardening sprint.a€

For Agile teams, &€ cchardeninga€ is whatever you need to do to make the system ready for production. Ita
€™ s when you stop thinking about delivering new features, and focus most or all of your time on packaging,
deploying, installing, and configuring the system and making sure that it is ready to run. For teams following
continuous delivery or continuous deployment, all of this is something that they prepare for every time that they
check in a change.

But for many other teams, this can come as an ugly and expensive surprise, once they understand that what they
actually need to do is to take a working functional prototype that runs fine in development and make it into an
industrial grade system that is ready for the real world, including making sure that the system is reliable and
secure.

In a hardening sprint, the development team stops working on new features and stops building out the
architecture and instead spends a dedicated block of time together on getting the system ready to be released.

There is a deep divide between people who recognize that spending some time on hardening is sometimes
needed, especially in large programs where teams need to work through integration issues; and other people
who are adamant that allocating separate time for hardening is a sign that you are doing thingsa€”or
everythingd€”’wrong, and that the team is failing, or has already failed. This is especially the case if what the
team means by a€cehardeningd€ is actually a separate sprint (or sprints) for testing and bug fixing work that
should have been done as the code was written, in what is called an &€ e Agilefalla€ approach.

Hardening sprints are built into the SAFe (Scaled Agile Framework), an enterprise framework for managing
large Agile programs. SAFe makes allowances for work that can only really be done in a final hardening and
packaging phase before a big system is rolled out, including security and compliance checks. Disciplined Agile
Delivery (DAD), another enterprise Agile method originally created by Scott Ambler at IBM to scale Agile
practices to large projects, also includes a hardening phase before each release.

Planning a security sprint as part of hardening may be something that you have to do at some point, or several
points, in a project, especially if you are working on a legacy system that has a lot of technical and security debt
built up. But hardening sprints are expensive and hard to sell to the customer and management, who naturally
will want to know why the teamd€™ s velocity dropped to zero, and how it got into such a bad situation in the
first place.

Some organizations hold regular hack days , where teams get to spend time off from their scheduled project work
to learn new things, build or improve tools, prototype new ideas, and solve problems together.

Instead of hardening sprints, some teams have had success with security-focused hack days. In a hack day, which
often ends late in the hack night, the team brings in some expert help and focuses on finding and fixing a specific
kind of vulnerability. For example, you could get the team together, teach everyone all about SQL injection, how
to find it and how to fix it properly. Then everyone works together, often in pairs, to fix as many of these
vulnerabilities in the code as can safely get done in one day.

Hack days like this are obviously much cheaper and easier to make a case for than a dedicated sprint. They are
also safer: developers are less likely to make mistakes or introduce regressions if they are all trained on what to
do and focused on working on the same problem together for a short period of time. Hack days shine a light on
security risks, help educate the team (after a few hours of fixing a specific vulnerability, everyone should be able
to spot it and fix it quickly in the future), and they get important bugs fixed without slowing the team down too
much.

Relying on a separate hardening sprint to find and fix vulnerabilities and other bugs before releasing code is
risky, and over the long term, ita€™ s fighting a losing battle. Forcing teams to stop working on new
development and instead focus on security issues for weeks or months at a time was an early, and desperate,
part of Microsofta€™ s Trustworthy Computing Initiative. But it didna€™ t take Microsoft long to realize that
this was costing too much and wasna€™ t making a sustainable improvement in the security or reliability of its
software. This is when the company switched its emphasis to building security practices directly into its
development life cycle instead.

Taking On and Paying Down Security Debt

Agile teams have learned to recognize and find ways to deal with technical debt. Technical debt is the sum of
all the things that the team, or the people who came before them, should have done when building the system,
but didna€™ t have the time to do, or didna€™ t know that they should have done. These include shortcuts and
quick-and-dirty hacks, tests that should have been written or that broke and were left broken, bugs that should
have been fixed, code that wasna€™ t refactored but should have been, and patches that should have been
applied.

All of these things add up over time, making the system more brittle and harder to change, less reliable, and less
secure. Eventually, some of this debt will need to be paid back with interest, and usually by people who werena
€™t around when the debt was taken on: like children having to pay off their parentsa€™ mortgage.

When teams or their managers prioritize delivering features quickly over making sure that they are writing
secure code, dona€™ t invest in training, cut back on reviews and testing, dona€™ t look for security problems,
and dona€™ t take time to fix them early, they take on security debt. This debt increases the risk that the system
will be compromised, as well as the cost of fixing the problem, as it could involve redesigning and rewriting
parts of the system.

Sometimes this may be the right thing to do for the organization. For example, Lean startups and other teams
building out a Minimum Viable Product (MVP) need to cut requirements back to the bone and deliver a
working system as soon as possible in order to get feedback and see if it works. [ta&€™ s a waste of limited time
and money to write solid, secure code and go through all the reviews and testing to make sure that the code is
right if there is a good chance that they are going to throw the code out in a few days or weeks and start againa
€”or pack up and move to another project or find another job because the system was a failure or they ran out
of money.

There are other cases where the people paying for the work, or the people doing the work, need to cut corners in
order to hit an urgent deadlined€”’where doing things now is more important than doing things right.

What is key is that everybody involved (i.e., people doing the work of building the system, the people paying
for this work, and the people using the systems to do their work) must recognize and accept that they are taking
on real risks when they make these decisions.

This is how Microsoft and Facebook and Twitter achieved market leadership. ItA€™ s a high-risk/high-reward
strategy that can pay off and did pay off in these examples, but eventually all of these organizations were forced
to confront the consequences of their choices and invest huge amounts of time and talent and money in trying to
pay off their debts. [tA€™ s possible that they may never succeed in this: Microsoft has been fighting with
serious security problems since Bill Gates made &€ ;e Trustworthy Computinga€ the companya€™ s highest
priority back in 2002.

This is because just like credit card debt, security debt incurs interest. A little debt that you take on for a short
period of time is easy to pay off. But lots of debt left over a long time can leave the system, and the
organization, bankrupt.

Keep track of the security debt that you are taking on, and try to be deliberate and transparent about the choices
you are making. Make security debt and other technical debt, such as the following, visible to the owners of the

system when you are taking on risk:

Open vulnerabilities and outstanding patches (i.e., how big your window of vulnerability is and how long it
has been open)

Outstanding pen test or audit findings

High-risk code areas that have low automated test coverage
Gaps in scanning or reviews

Gaps in training

Time-to-detect and time-to-repair metrics (i.e., how quickly the team can identify and respond to
emergencies)

Write stories that explain what should be done to clean up the debt, and add these stories to the backlog so that
they can be prioritized with other work. And make sure that everyone understands the risks and costs of not
doing things right, right now and that it will cost more to make it right later.

Key Takeaways

Here are some of the keys to effectively dealing with vulnerabilities:

New vulnerabilities are found in software every day. Vulnerability assessment and management needs to be
done on a continuous basis.

Leverage tooling and APIs to get vulnerabilities out of reports and into the teama€™ s backlog so that they
can be scheduled and fixed as part of other work.

Help the team, especially the Product Owner and Scrum Master, understand vulnerabilities and why and
how they need to be fixed.

Watch out for vulnerabilities in third-party dependencies, including open source frameworks, libraries,
runtime stacks, and container images. Scan dependencies at build time, and stop the build if any serious
vulnerabilities are found. Cache safe dependencies in artifact repositories or private image registries, and
encourage developers to use them.

Automated configuration management and continuous delivery pipelines enable you to respond quickly and
confidently to serious vulnerabilities. Knowing that you can patch the software and push out a patch quickly
is a major step forward in dealing with vulnerabilities.

Security Hack Days can be an effective way to get the team focused on understanding and fixing security
vulnerabilities.

I'See the report by WhiteHat Security, &€ 02017 Application Security Statistics Report: The Case for
DevSecOpsa€ .

https://www.whitehatsec.com/press-releases/featured/2015/05/21/pressrelease.html
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch06.html#idm139712743036928-marker

Chapter 7. Risk for Agile Teams

Security professionals live and breathe risk management. But developers, especially developers on an Agile
team, can get happily through their day without thinking about risk much, if at all.

Leta€™ s look at whata€™ s involved in bringing these two different worldsa€”or ways of looking at the
worlda€’together.

Security Says, No

Before we get into how risk management is done, leta€™ s take a quick detour to the purpose of risk
management and security in general.

Security teams have a reputation for being the people who say &€ ®No4€ in many organizations. A project
team may be ready to deliver a new feature, but are using an approach or a technology that the security team
doesna€™ t understand, so it isna€™ t allowed to go out. The operations team needs a firewall change to
support a new system, but the security team owns the firewalls and cana€™ t coordinate the change in time, so
the implementation of the system is blocked.

All of this is done in the name of risk management. Risk management is about enumerating and quantifying the
unknown and attempting to control the risk. The easiest way to control the unknown and the risk is to prevent
changes so that nothing can go wrong. However this fundamentally misses the point, and when tried in a fast-
moving environment, results in a number of negative side effects to security overall.

Security should be about enabling the organization to carry out its goals in the most safe and secure manner
possible. This means that an effective risk management process should be about enabling people in the
organization to take appropriate risks in an informed manner. The key here being informed : risk management is
not all about avoidance, but the mindful understanding, reduction, sharing, and acceptance of risk as
appropriate.

Instead of saying a€®No,a€ security should be saying a€ceYes, but,a€ or even better A€ e Yes, and,4€ and
providing guidance and help to carry out the actions in the safest and most secure way possible.

But that aside, leta€™ s look at how risk management is commonly understood.

Understanding Risks and Risk Management
Risk management is central to security and compliance, helping ensure that systems are safe from attack.

The security industry has over the last few decades gone to a lot of effort to define and standardize methods for
understanding and controlling risks. Regulations like PCI DSS and SOX, and governance and control
frameworks like NIST SP 800-53 and COBIT, expect you to follow a recognized and proven risk management
approach, such as:

e SO 27005

NIST SP 800-30/39
OCTAVE

FAIR

AS/NZS 4360

These risk management methodologies are about dealing with uncertainties. All risk management approaches
start with identifying, rating, and ranking risks to help you to get some control over uncertainty.

Risk ratings take into account the likelihood of something bad happening, and the potential costs that your
organization could incur if it does happen. This is done by assigning a numeric rating (quantitative) or a relative
high-medium-low priority (qualitative) to each risk.

According to ISO 31010, the international standard for risk assessment, there are 31 different risk assessment
techniques that you could choose from. Formal risk assessment techniques can help you to make difficult trade-
offs and answer questions like, how much should you spend trying to protect your system your data, your
organization, and your customers from something that may or may not go wrong?

But even using formal methods, security risks in software can be difficult to evaluate. What is the negative cost
of a fully exploited XSS vulnerability in one of your web applications? And what is the chance of it occurring?
How should your product owner or program manager decide which risks need to be addressed, and in what
priority?

Compliance requirements often dictate how these decisions will be made. For example, PCI DSS requires that
all vulnerabilities with a certain risk rating must be remediated within specific time guidelines. Tools such as
OWASPa€™ s Top 10 Risk List can also help you to evaluate and decide how to deal with different security
risks.

OWASPa€™ s Top 10 Risk List identifies the most common and most serious software risks for web applications.
This includes risks like injection, broken authentication and session management, and cross-site scripting. For
each of these risks, it covers the following elements:

Threat agents
Which type of users to look out for.
Attack vectors and attack scenarios
What kind of attacks to expect.
Exploitability
How easy it is for attackers to exploit, and how widespread is the vulnerability.
Detectability
How easy it is for attackers to find.
Impacts
Technical and application-specific or business-specific impacts.

This information is a great first stop on your road to greater risk understanding and will help you to understand
where to focus your training, design and coding, reviews, and testing effort.

Risk management is not static: it will change in response to threat intelligence, regulatory changes, and changes
that you make to your system or your operations procedures. This is why regulations like PCI DSS also
mandate regular risk reviews.

Risks and Threats

We introduced the concepts of risk and threats earlier in this book, and wea€™ 1l talk more about threats and

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

how to deal with them in another chapter. Here we want to make clear the difference between threats and risks,
and how they interplay:

Threats

What and who you have to protect your system/data/customers from, what could go wrong, and what harm
could this cause to your system or the data. Threats are specific.

Risks

Your systema€™ s exposure to threats (probability and costs), what you can/should do to reduce this
exposure, and the cost trade-offs. Risks are abstract.

Security threats and risks are everywhere if you know where to look for them.

If your industry is under active attack, if your organization is holding a lot of valuable personal data or financial
data, and if your application is popping with SQL injection and XSS vulnerabilities when you scan it, then youa
€™ re in a lot trouble, and you need to do something about it.

But if your organization might be under attack, and you dona€™ t know what your threats are, and you arena
€™t testing your systems, and you dona€™ t know what vulnerabilities you have or how serious they are, then
you are probably in a lot more trouble. Sticking your head in the sand does not cause those risks or threats to
disappear.

Everyone is under a range of threats today, across every industry, in every geography. You cana€™ t pretend
that you dona€™ t have to worry about data security or software security because your organization is small or
just a startup or youd€™ re working in a legacy environment. That doesna€™ t cut it anymore.

As a starting point, you need to understand the threats that your organization and system face, and how serious
they are. This is the goal of threat intelligence and threat assessment, which we explain in ChapterA 8, Threat
Assessments and Understanding Attacks .

Then you need to look at how well prepared your system and your organization are to meet these threats, or
what you need to do to reduce the risks. Thata€™ s the point of this chapter.

What is important to regulators, your management, your customers, and other stakeholders is that you take a
serious and consistent approach to identifying, assessing, communicating, and addressing risks that could
impact the security of your systems.

Dealing with Risk
There are different strategies for handling risks:
Reducing

Implementing countermeasures or controls, compensating controls (such as activity auditing, or runtime IPS
or application firewalls), plans to manage risks, tools, training, testing, and scanning

Avoiding

Deciding not to do something, disabling or simplifying a feature or an interface, and not using unsafe or
unproven technology

Accepting

Recognizing that bad things will probably happen, and then preparing to deal with them: monitoring,
incident response, and continuous delivery (proven ability to deploy patches quickly)

Sharing or transferring

Outsourcing to third parties like data center operators or cloud services providers or managed security

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#threat_assessments

service providers (MSSPs) to share risk; or taking on an insurance policy

The key thing to be aware of is that any given risk mitigation technique or control has a cost associated with it.
That might be a financial cost, performance impact, delay in time to market, or loss of changeability or
usability. We need to be sure that the approach we select aligns with the organizationa€™ s needs and priorities,
and doesna€™ t hamper the organization beyond the value of what we are trying to protect.

Outsourcing responsibilities for coding, testing, or operations doesnd€™ t make your risks go away.

Outsourcing to a third party can make good business sense, as well as help to reduce operational and security
risks: a good example could be using an enterprise cloud services provider like AWS to host your application,
rather than trying to set up your own secure data center. However, you are still responsible for understanding and
managing these risks, as well as new ones that may arise from the act of outsourcing. Regulators and insurers will
insist on this.

You need to be confident that whoever is doing work on your behalf is taking responsible steps to protect your
data and your customera€™ s data, and has appropriate operational risk management and security capabilities in
place.

If you have enough leverage (your organization is large enough, or the size of the deal is big enough), you can
insist on specific requirements during contracting. Big and small firms should also do regular reviews on key
service providers as part of their operational risk management programs.

One tool that can help you with this is a Structured Information Gathering (SIG) questionnaire , available from
https://sharedassessments.org for a small fee, which will walk you through how to do a risk assessment of a
service supplier. It asks organizations to describe their IT, privacy, security, and risk management controls. You
can use it in RFP situations, as part of regular check-ups, or even as a self-assessment of your own controls.

The SIG guide is a standardized and comprehensive set of questions that is designed to help meet regulatory
requirements and guidelines such as PCI DSS, FFIEC, NIST, and ISO. You can customize it to meet specific
compliance or governance requirements. The SIG Lite is a smaller, simpler questionnaire that you can use for less
critical suppliers or for initial risk assessments.

You can gain some confidence that you have mitigated specific risks by testing the system against
vulnerabilities and other events that you anticipate. Traditionally, software development teams do this at point
of release with penetration testing or some other kind of security review.

Leaving these checks until the end means that risk owners are often forced to choose between inadequate
security solutions and not releasing on time. [ta€™ s this that results in security having a bad name in many
circles, and results in unusable and insecure systems in the wild.

Modern Agile teams have to follow a different approach, where they integrate risk management directly into
their design, development, testing, and deployment activities, and leverage automation and iteration and
feedback loops to maintain a high level of confidence in the face of high-velocity delivery. They need to do all
of this in ways that dona€™ t slow them down or add unnecessary cost.

Making Risks Visible

Of course it isna€™ t possible to mitigate every risk. You need to have have a good understanding of what risks
(the risks that you know about) you havena€™ t addressed yet or were only able to partially address.

On traditional software projects, this is done with a risk register maintained by the project manager, and by
reporting the 4€ ceresidual risks, A€ those risks that reside in the system after deployment.

https://sharedassessments.org/

Modern teams can track security risks in several ways:

Continuously scanning infrastructure and code, including open source libraries and frameworks, for out-of-
date packages and known vulnerabilities

Tracking vulnerabilities and metrics on how they are managed, as we described in ChapterA 6, Agile
Vulnerability Management

Measuring automated test coverage and code complexity in high-risk code areas
Watching for security stories and attacker stories in the backlog that have not been implemented

Measuring lead time for changes and MTTR (mean time to recovery) for problems in production, which tell
you how fast the team can respond to a severe vulnerability or security breach

Tracking technical debt on the backlog as stories, or using automated code analysis platforms like
SonarQube or Code Climate

Some Agile teams also maintain a risk register in the form of a risk backlog or a risk wall that lists risks that
theya€™ ve identified, their rating, and notes on how the team plans to deal with them. This risk backlog is
managed the same way as the teama€™ s story backlog: items are prioritized and scheduled depending on
priority and cost.

The teama€™ s progress working through the risk backlog can be measured in the same way that they measure
their velocity delivering stories, and reported using tools like Risk Burndown Charts. !

Accepting and Transferring Risks

There are some risks that you cana€™ t manage effectively, at least not now, or that you may decide are not
worth trying to minimize because you believe that they are unlikely to occur, or because they are so low impact
that they wona€™ t cause a significant cost to the organization if they do occur.

In these cases, you have a couple of choices:

1.

Someone in the organization with the appropriate authority can accept the consequences of the risk, should it
trigger. In Agile teams this could be a decision made by the Product Owner or the entire team together, with
or without the security team or management involved.

[ta€™ s important to make sure that the whoever makes this decision has enough information to do it
responsibly. And it is important to understand that accepting a risk doesna€™ t make the risk go away. Each
time that you accept a risk, you are taking on a kind of debt, just like you do with financial debt, or technical
debt; and never forget that debt accrues interest.

You and your management should be prepared to pay off this debt some day.

One way to prepare is by making sure that you have a good incident response capability in place and
exercising it so that you know that you can deal with problems if they come up, something that we cover in
ChapterA 13, Operations and OpSec .

You can also transfer the risk or part of the risk on to another party, by outsourcing responsibilities to
another organization that is better prepared to deal with risk (for example, outsourcing your data center
facilities management to a high-quality cloud services provider), or you can take out insurance to cover
some of your risk.

An insurance policy is not a get out of jail free card. Insurers will check to ensure that youd€™ ve done a
responsible job of reducing your and their risks to an acceptable minimum; and they will use these to
determine premiums and deductibles, as well as to draw clear lines around what will and will not be
covered.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch06.html#agile_vulnerability_management
https://www.sonarqube.org/
https://codeclimate.com/
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch13.html#operational_security
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch07.html#idm139712742826160

Changing Contexts for Risks

If you decide to accept a risk with a system, then it is critical that you record that fact somewhere and review it
regularly, especially in an Agile team.

Risks are not just static concepts. Risks are the manifestation of threats and vulnerabilities in the system. This
means that the status, significance, and importance of risks will change over time; and in particular, they tend to
change as the system changes.

In traditional risk management, this isna€™ t necessarily a hard problem to manage. If the system is only
changed when significant projects are completed (e.g., say an annual basis), then the risk management process
may only need to be redone once a year or so.

But with an Agile team continuously changing the system in response to new information, the context in which
a risk 1s accepted can change dramatically in a fairly short time.

It is very difficult and therefore rare for traditional risk management processes to be managed at the same speed
as an Agile team, which means that risk decisions are often made within the context of individual changes.
However, risk accretes or compounds, and it can be difficult to model or catch this appropriately.

For example, one of us worked on a single sign-on system. The system had a bug in the password reset flow
that at the end of the process logged you into the system without needing to type your password again.

This created a vulnerability, because someone following a link in an email and not having to enter the old
password could potentially hijack an account. However the risk of somebody intercepting the email and
exploiting it was deemed low, and the risk was accepted by the team and added to a backlog of risks.

Fast forward 12 months, and the same issue was rediscovered in a security test. However, now it was a much
bigger deal, because in the preceding 12 months, the single sign-on system had been reused to provide login to
a number of other sensitive systems.

When those new systems were added, one of the agreed security practices was that the sign-on would require a
second factor, in this case a code from an OTP (one-time password) application, entered at login time in
addition to the password. This requirement was implemented, and the system was considered acceptable.

However, the password-reset-bypass bug now also bypassed the two-factor authentication, which was a much
more significant vulnerability.

The team was able to fix this issue and roll out the fix within hours of being identified. What they learned from
this incident was that while the decision to accept the risk was appropriate for the initial context, it was not easy
to recognize that this decision needed to be re-evaluated when they made other context-changing decisions such
as enrolling new sensitive systems or adding the two-factor requirement.

Risk Management in Agile and DevOps

Agile development and DevOps practices cause problems for traditional risk management practices. We are in
some fairly new territory without a clear set of rules. The community of risk management practitioners has not
yet agreed on a methodology of risk management that is compatible with Agile, and as such we can find a
number of culture clashes when trying to manage risk in a way that is acceptable to everyone within your
organization, as well as to your auditors.

In particular, Agile practices are commonly perceived to introduce whole new kinds of risk.

Speed of Delivery

The biggest new risk is that the Agile focus on speed of delivery leads to a rate of change that traditional
approaches to managing risks arena€™ t designed for.

Common change control practices, such as specified by ITIL or COBIT, are designed to deal with Waterfall
projects that push large change sets a handful of times per year and cannot possibly keep up with continuous
delivery or continuous deployment approaches.

Manual testing practices and quality gates, including penetration testing and compliance audits, are slow,
intensive processes that can take weeks to assess a single build. These processes need a fundamental shift in
thinking to cope with the speed of Agile delivery.

As such, risk practices tend to get left out, ignored, or bypassed for many Agile teams. This creates a new risk:
that the baby is thrown out with the bathwater, that risk controls are put aside completely instead of replacing
them with something that provides a similar, but simpler set of checks and balances at lower cost.

However, speed of delivery can also be an advantage in dealing with security risks.

Few organizations working in a traditional project delivery environment acknowledge that slow, closely
managed deployments are themselves a source of risk, because changes involve so many people and so many
moving parts, and because this forces emergency changes to bypass many of the control processes involved in
order to get things done in time.

Agile teams make changes on a regular and repeated basis, meaning that the risk of any individual change
affecting or damaging the systema€™ s security properties is much reduced, while the teama€™ s ability to
revert or roll back a change is much increased. Fast-moving Agile teams can also quickly respond to risks,
vulnerabilities, and issues when they recognize them.

Incremental Design and Refactoring

Traditional practices are highly reliant on development artifacts, such as written design specifications and
models, detailed requirements, and so forth.

The traditional practices tend to assume that when changes are made to the system, these artifacts will be
updated inline with the changes, enabling the risk management process to review changes to the system design
for security vulnerabilities and risks, and propose mitigations or changes.

Agile methodologies focus on incremental and iterative design, meaning that the design of the system is not
available to review before work starts, nor is there necessarily a set of artifacts that are updated with changes.

This approach increases the risk that teams will miss important compliance constraints or fail to anticipate
security requirements in design and planning in favor of focusing on feature delivery, and it eliminates
Waterfall control gates and review checkpoints that managers and regulators have come to rely on.

It can also mean a lack of auditable decision points and artifacts that can be traced later by auditors and
compliance officers. Instead they need to go to the code to find the history of design decisions.

Equally, security is very hard to add later to a system design, and Agile techniques do not naturally encourage
security thinking by default (if they did, this book would be unnecessary!).

Agile methods are optimized for the capability to change as the environmental context changes; so as the
security landscape emerges and threats change, the team is able to respond quickly, fixing design issues and
adjusting the behavior of the system.

Furthermore, Agile practitioners maintain that while they dond€™ t produce as much documentation, their
experience of projects is that the documentation rarely matches the reality of the system, meaning that the
configuration drift between what is understood in the documentation, and the way the system actually behaves,
can be enormous.

By pushing security, auditors, and compliance teams to look at the actual code, they encourage an
understanding of the reality of the system rather than the imagined reality of a design document.

Self-Organized, Autonomous Teams

Agile teams tend to work in a highly self-organized and autonomous manner. They have control over their
workload, the product backlog, and the manner of delivery.

This means that unlike in some more traditional software engineering shops, Agile teams may resist or avoid
review boards, design authorities, and other control mechanisms imposed from outside if they believe that these
outside forces will get in the way of delivery. This is a problem for security professionals who are used to
working with architecture review boards and other central authorities to set guiding principles and rules to
ensure the security of all systems.

Furthermore, this tends to mean that management has less insight into, and control over, each teama€™ s
detailed development processes and the bill of materials for the software: the libraries and frameworks used in
development. This can raise concerns for audit and compliance teams that want to know exactly how work was
done and which software products are using which versions of libraries.

Agile teams ask management to rely on the team to do the right thing, and on the individual capability and
competence of the Product Owner to ensure that quality is built in.

Agile advocates argue that top-down control and decision making in traditional engineering methodologies
often result in decisions that are inefficient for the individual team or product, and that changing those decisions
becomes harder and slower due to the larger blast radius of a decision.

For example, an individual product team deciding to upgrade a library to the latest version affects only that
team, but getting an architecture review board to approve the change might require understanding the impact on
every team in the organization.

Self-organized and autonomous teams reduce the risk of slow decision making and create firewalls between
distinct teams, meaning that vulnerabilities affecting a single team may not necessarily affect all the teams in
the organization. It also gives the organization the ability to respond in a more targeted and appropriate way
within each team.

Automation

Agile teams rely on automation heavily in order to get the speed, repeatability, and consistency that they need to
keep moving forward.

However automation itself comes with its own risks. The tools themselves can be the target of attack and an
attack vector in themselves, something we will look at in ChapterA 13, Operations and OpSec .

Automated systems can allow mistakes, errors, and attacks to be propagated and multiplied in far more
damaging ways than manual systems. As the DevOps comedy account @DevOpsBorat says, &€ 0eTo make
error is human. To propagate error to all server in automatic way is #devops.a€ 2

Furthermore, automated tooling is fallible; and as we know so well in the security world, it can be easy for
humans to begin to trust in the computer and stop applying sense or judgment to the results. This can lead to
teams trusting that if the tests pass, the system is working as expected, even if other evidence might indicate
otherwise.

Automated configuration management and build and deployment pipelines can help enforce separation of duties
by providing authenticated and audited systematic access for making system changes, minimizing or
eliminating the need for developers to log on directly to production systems. But automation can also interfere
with separation of duties, making it hard to define who actually has access to a system and who has the ability
to change the system. Wea€™ 11 explore this issue in detail in ChapterA 14, Compliance .

Agile Risk Mitigation

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch13.html#operational_security
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch14.html#compliance
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch07.html#idm139712742762096

Agile methods also provide some risk mitigations to existing practices.

Waterfall, V-model, and other traditional software engineering systems are known to be subject to cost, scope,
and schedule overruns. Agile projects are just as subject to overruns, but managers of Agile projects tend to
have greater awareness of overruns earlier, and the principles of YAGNI (you arena€™ t gonna need it), just-in-
time prioritization, and continuous delivery of working software with iterative improvement means that ita€™ s
easier to cancel a project and still deliver value to the organization.

Furthermore, frequent demos, shorter feedback loops, designing around a Minimum Viable Product, and the
ability to respond to change means that the business risks of delivering software that doesna€™ t actually meet
the user needs are significantly reduced.

Evidence has shown repeatedly over the decades that changes to the system later in the development cycle are
more expensive than changes early on. However, the traditional response to this has been to lengthen and ossify
the earlier stages in development, attempting to build more complete and comprehensive requirements and
designs, rather than focusing on minimizing the cost of change.

Even if a project is delivered well in a Waterfall or V-model system (as many are), systems are only being built
for a very short period of their active life and spend most of their life being in service and requiring
maintenance and change. Agile methods can help to reduce the costs and the risk to the business of
implementing these whole life cycle changes.

Finally, a symptom of this problem is that many systems build in large amounts of configurability and design
complexity to anticipate or minimize the cost of future changes. Some common examples are the use of a
€ceBusiness Rules Enginesa€ and a€eEnterprise Service Busa€ platforms to externalize the more frequently
changed components of the system and make them easier to change.

However, these approaches add further complexity and operational management overhead to the systems that
the organization needs to run. They also add huge complexity to testing and replication of the environments, as
changes need to be tested in the presence of many possible configurations.

Software developed following incremental Agile and Lean approaches should be simpler by design; and if the
organization is capable of writing and releasing code to change the system at speed, then it can be significantly
simpler. Simple systems contain far fewer moving parts and significantly less risk. They are easier to
understand and reason about, and this gives us better security properties.

Finally, the more often that you make changes, the more chances that you have to break things. Agile, and
especially DevOps teams, make changes much more frequently. Counterintuitively, research shows that
organizations that change the most often actually have lower failure rates and higher reliability. >

How do they do this?

e Releasing changes in smaller batches, and using dark launching and progressive canary releases to manage
the risk of deploying changes.

e Optimizing for MTTR (mean time to recovery) by anticipating failure and preparing to deal with it.
e Automating configuration management and deployment to ensure consistency and repeatability.

¢ Building feedback loops into production operations and from production into development to catch
problems quickly so that they can be fixed quickly, and building an effective incident response capability.

Agile and DevOps teams dond€™ t have to think too much about how to deal with these kinds of risks, as long
as they follow the patterns and use their tools properly. Their success depends a lot on the Product Owner
understanding the importance of minimizing technical and operational risks and agreeing to prioritize the work
necessary, and on the Scrum Master and the rest of the team to work responsibly, and on trust and open
collaboration at all levels to eliminate misunderstandings and to bring problems to the surface so that they can
be solved.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch07.html#idm139712742746528

For larger projects, enterprise Agile program management frameworks like SAFe (the Scaled Agile
Framework) and DAD (Disciplined Agile Development) take risk management beyond the team level. They
add explicit up front planning and design, reporting and integration checkpoints between teams, and additional
roles for architecture and program management to manage risks and dependencies between teams and
programs.

Many experienced Agile practitioners and experts are skeptical of these promises, since it has proven to be
incredibly difficult to reconcile traditional Waterfall and project management approaches with the principles of
Agile. These enterprise management frameworks may help your organization transition to Agile without
throwing away all the management best practice that it has built up over time, but we recommend that you tread
carefully and ensure you dond€™ t miss out on the full benefits of Agile in following them.

Handling Security Risks in Agile and DevOps

Security professionals often separate themselves from risk management professionals. They like to argue that
business risks are significantly different from security risks, that security is a special approach in software
development.

This is true to a certain extent. Security risks tend to be far less well understood than traditional business risks,
far more easily described as &€ ceunknown unknowns,4€ and far harder to measure in terms of loss or impact.

However, security is another quality of software, in the same way that performance, quality, efficiency, and
usability are qualities of the software.

Agile development techniques have sometimes struggled with these qualities, usually referred to as
nonfunctional requirements , because it is very difficult to write these into user stories in the same way that user
features can be described.

These qualities, including and especially security, have to become something that the team is aware of, owns,
and manages internally throughout every story that is delivered.

Security risks can be managed the same way as other risks, by building risk management into how you design,
develop, test, and deploy software, and how you run the system.

In a traditional software development life cycle, risk assessment is done based on the system requirements and
design specifications and models created up front. A risk analyst uses those documents to identify the risks that
will reside in the system and puts together a plan to monitor and mitigate these risks. Then audits are done to
ensure that the system built matches the documented design specifications and that the risk management plan is
still valid.

In iterative, incremental, Agile development environments, risk needs to be continuously reassessed and
continuously managed.

There are several opportunities in Agile methods, such as Scrum, where security and compliance risk
management activities can be wired in:

Sprint planning
Review and record risks.
Story writing

Watch out for stories that add security and privacy risks, and counter security and compliance risks by
writing security stories, attacker stories, and compliance stories.

Test writing

Add automated security tests and compliance checks.

http://www.scaledagileframework.com/
http://www.disciplinedagiledelivery.com/

Coding

Use vetted libraries and patterns.

Code reviews

Ensure that code (especially high-risk code) is reviewed for security risks and ensuring that all code is
scanned using automated static analysis tools.

Refactoring

Reduce technical complexity in code and design through disciplined refactoring.

Design

Conduct threat modeling when high-risk changes are made to the systema€™ s attack surface.

Retrospectives

When the team meets to look at improvement opportunities, consider security risks, compliance risks, and
other technical and operational risks, and how to manage them.

Postmortem reviews

Use feedback from a failure or incident to examine underlying risks and to come up with solutions.

Risk management also builds on and drives automation and standardization in testing and deployment through
continuous integration and continuous delivery. And risk management informs configuration management,
monitoring, and other operations practices.

Essentially, all the practices, tools, and methods described in this book are part of your risk management
program.

Key Takeaways

Most developers, especially in Agile environments, dona€™ t explicitly deal with risk management, because
they dona€™ t have to. Agile techniques and practices help developers take care of many basic project risks,
technical risks, and business risks.

Managing security risks, privacy risks, and compliance risks has to be integrated into how developers think and
work in the same way as other risks:

e Help the team to understand common security risks, such as the OWASP Top 10, and how they are
commonly managed.

e Make security risks and other risks visible to the team (and to management) in a risk register, or as security
stories or compliance stories in the backlog.

e Risks and risk management should be explicitly considered in the teama€™ s retrospectives and continuous
improvement feedback loops.

e By continuously making small, frequent changes, Agile teams reduce operational and security risks. Small
changes are easier to understand and test, safer to roll out, and easier to fix if something goes wrong.

e Risk management in Agile needs to be done on an interactive basis. Decisions to accept or otherwise
mitigate risks need to be re-evaluated over time as the design of the system changes.

e Take advantage of Agile and DevOps practices and built-in control points to add risk management controls
and provide evidence for auditors. We look at this in more detail in ChapterA 14, Compliance .

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch14.html#compliance
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch07.html#idm139712742826160-marker

I'See Mike Cohna€™ s article, 4€ ceManaging Risk on Agile Projects with the Risk Burndown Charti€ , April
8,2010.
2 https://twitter.com/DEVOPS_BORAT/status/41587168870797312

3 See Puppet Labsa€™ a€2016 State of DevOps Reporti€ .

https://www.mountaingoatsoftware.com/blog/managing-risk-on-agile-projects-with-the-risk-burndown-chart
https://twitter.com/DEVOPS_BORAT/status/41587168870797312
https://puppet.com/resources/white-paper/2016-state-of-devops-report
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch07.html#idm139712742826160-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch07.html#idm139712742762096-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch07.html#idm139712742746528-marker

Chapter 8. Threat Assessments and
Understanding Attacks

You cana€™ t defend yourself effectively against adversaries that you cana€™ t see and that you dona€™ t
understand. You need to understand the threats to your organization, your systems, and your customera€™ s
data, and be prepared to deal with these threats (see &€ e Threat Assessmenta€).

You need up-to-date, accurate threat information to aid in this understanding:

e Inform your security monitoring systems so that you know what to look for, and to arm your runtime
defenses so that you can protect organization and systems from attacks.

e Prioritize patching and other remediation work.

e Drive operational risk assessments so that you can understand how well prepared (or unprepared) your
organization is to face attacks.

e Help write security stories by modeling threat actors as anti-personas.

e Define test scenarios so that you can attack your own systems using tools like Gauntlt and find security
weaknesses before adversaries find them.

e (QGuide education and awareness.

e Assess your design for security risks through threat modeling.

Understanding Threats: Paranoia and Reality

If you read the news or follow security commentators, the world can seem like a fairly terrible place. A steady
stream of large-scale systems compromises and breaches are featured in the news each week: high-profile
organizations falling to a range of attacks and losing control of sensitive information.

It can be easy when reading these accounts to assume that these organizations and systems were exceptional in
some way. That they were unusual in the way that they were attacked or targeted, or perhaps they were
especially poorly configured or built. The reality is that all systems and networks connected to the internet are
under attack, all the time.

The internet is inhabited by an entire ecosystem of potentially harmful individuals, groups, and automated
entities that are continuously working to identify new vulnerable systems and weak points that can be exploited.
Attacks emanating from this diverse group can be targeted with a clear objective in mind, or can be
indiscriminate and opportunistic, taking advantage of whatever is stumbled across.

With so much hostile activity going on around us, we can easily become overwhelmed. While ita€™ s
dangerous to ignore threats, you cana€™ t be afraid of everything: you will only end up paralyzing your
organization.

So how do we look at these threats in a way that allows us to take action and make good decisions? Leta€™ s
begin by asking some basic questions: Who could attack your system? Why would they want to? How would
they go about succeeding? Which threats are most important to you right now? How can you understand and

defend against them most effectively?

Understanding Threat Actors

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#attack_driven_defense

In the security world, the phrase &€ cethreat actora€ is often used to describe people, organizations, or entities
that might pose risk (or threat) to your systems, organization, and people. One way we can begin to understand
these threat actors, their capabilities, and intentions is to start to profile and understand how they might behave
toward us, and subsequently how to identify and defend against them.

Before we dive into some of the common threat actor archetypes that exist, we should look at what each threat
actor has in common. We can break down each of these threat actors into the following five elements. These
elements line up with the questions we would want to ask about this person, group, or entity during our
analysis:

Narrative

Who is this person, group, or entity, and what is their background?
Motivation

Why would they wish to attack our organization, technology, or people?
Objective

What would they want to achieve by attacking us?

Resources

How skilled, funded, and capable are they? Do they have access to the tools, people, or funds to go through
with the attack?

Characteristics

Where in the world are they location? What is their typical attack behavior (if known)? Are they well
known?

Remember that threat modeling and defining attack stories are linked. Revisit ChapterA 5, Security and
Requirements to refresh how to build this thought pattern into your requirements capture.

Now that we have a structured way to think about these threat actors, leti€™ s use that structure to look at
some common profiles and attacker types.

Threat Actor Archetypes

There are many ways to split and sort the common threat actors faced by organizations. For simplicity we will
group them based on their relative position to our organization.

Insiders

Insiders have access and are operating from a trusted position. Here are insiders to look out for:

e Malicious or disenfranchised employees

¢ Former employees who might still have privileged access (e.g., to internal systems, cloud applications, or
hardware)

e Activists inside the organization: someone with insider access who has a grudge or a cause against the
organization or who wants to damage it for his own purposes

e Spies: corporate espionage or foreign intelligence moles (yes, this doesna€™ t just happen in the movies)

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch05.html#security_requirements

Puppets: employees who are being coerced or social engineered into using their privileged access on behalf
of someone else

Staff who make honest but expensive mistakes (especially admins with privileged system access)

Outsiders

Outsiders may choose to attack, but do so from an external, untrusted position. They can be:

Users who are sloppy or careless, or simply curious and might cause trouble by accident.
Fraudsters.

Bots that are automatically scanning everything everywhere all the time for common vulnerabilities.
Hackers and script kiddies: random jerks with limited skills out to show off.

Security researchers and &€ cesecurity researchersa€: skilled professionals who are out to show off.

Hacktivists: groups with a moral or political agenda that target your organization or industry for ideological
reasons. Such attacks can take a variety of forms ranging from denial of service and website defacement to
the leaking of sensitive (and potentially embarrassing) documents and data.

Organized criminals looking to steal data or IP, or to conduct ransomware attacks or DDOS attacks and other
blackmail.

Nation-state attack teams looking to steal data or IP, or conducting reconnaissance or sabotage for cyber
warfare (for a vast majority of situations, these will be well outside of your threat model and would not be
something you would likely be able to discover or prevent).

Taking our groupings a little further, we can also categorize these examples by motivation and objective. If we
disregard those threat actors who cause harm accidentally or through negligence, we can broadly group these
actors into the following five motivations:

Financial

Attackers aiming to increase their own wealth through theft of information, money, or assets (or the
manipulation of data or markets).

Political

Attackers looking to further a political or belief-based agenda.
Egotistical

Attackers who want to prove themselves or acting for self promotion.
Personal

Attackers motivated by personal grievances and emotional response.
Chaotic

Attackers who just want to cause as much damage and turmoil as possible because they can, for the lulz can
be all the motivation that such threat actors need.

While it is possible for threat actors to have multiple motivations from this list, normally one from the list will be
their primary focus and determine the resource, enthusiasm, and time given to an attack.

A few years ago, most organizations outside financial services could pretend that their systems were generally

safe from professional criminals and focus most of their attention on how to protect against insiders, script
kiddies, and other opportunistic hackers. But today, criminals, as well as hacktivist groups and other highly
motivated adversaries, have much easier access to the tools and information needed to conduct sophisticated
and damaging attacks, making it possible to scale their activities across more and more systems.

Given the current attack landscape of the internet, it would be prudent to assume that every system will be seen
as a valid target of attack. While it is important to be aware of the presence of indiscriminate opportunistic
attempts at compromise, it is also important to accept that more sophisticated and targeted threat actors will also
be looking at your systems. Even if you dona€™ t think youa€™ re important enough to hit their radar, the
range of motivations driving them will inevitably make you a more worthwhile target than you may think.

For those of us working in the government, critical infrastructure, or financial sectors, as well as those in
startups working on advanced technologies, we must also consider the more sophisticated threat actors. While
nation-state attackers are not the primary threat for the majority of businesses, in some industries, the threat
posed by these groups is very present.

Identifying the threat actors that are relevant to your organization is often not trivial, but is worth taking the
time to do if you want to be able to invest your limited resources in defenses that will actually make a
difference to your security when those actors come knocking. Considering the motivations of threat actors and
what they could gain by attacking your organization can give you a solid foundation to identify how you might
be attacked.

Threats and Attack Targets

Different organizations and systems face different threats, depending on their industry, size, type of data,
connectivity, and other factors. To begin to understand the threats you face, you need to answer questions like,
what could be the target of an attack?

Your organization

Because of your industry, brand, reputation, or your people.
Your data

Because of the value it holds and/or information it pertains to.
Your service

Because of the functionality that it provides.
Your resources

Because of the compute, storage, or bandwidth you have available.
Your ecosystem

Because of its connectivity with othera€™ s systems (can it be used as a launchpad to attack other systems
and organizations, like Targeta€™ s HVAC supplier?).

Data is the most common target of attack: people trying to steal it, compromise it, or destroy it. Here are some
data-related questions to ask:

1. What data does your system store, process, or have access to that is confidential or sensitive?
2. Who might want to steal it?

3. What would happen if they stole it? What could they do with it? Who would be hurt? How badly would they
be hurt?

4. How much data do they need to steal before it matters to customers, to competitors, to regulators, or law

enforcement?
5. Could you tell if they stole it?

6. What if they destroy it? What is the cost/loss? Ransomware attacks are rapidly changing how organizations
think about this threat.

7. What if they tamper with it? What is the cost/loss? Could you tell if it happened?

Threat Intelligence

There are different sources of information about threats to help you understand threat actors and the risks that
they pose to your organization. While this is an area of the security industry that is widely considered to be
hyped and to have not returned on the promises of value that have been made (see the &€ Threaty Threats a€
warning ahead), it can still have a place in your security program. The following are a few categories of threat
intelligence that you can take advantage of:

Information sharing centers

Closed, managed communities that allow government agencies and industry participants to share pertinent
threat intelligence and risk information, including indicators of compromise, as well as a forum for sharing
best practices and for voluntarily reporting incidents. Examples include FS ISAC for the US financial
industry, Auto ISAC for automakers, the US Defense Security Information Exchange (DSIE), the UK
Cybersecurity Information Sharing Partnership (CISP), and the Canadian Cyber Incident Response Centre
(CCIRC).

Government advisories

Threat and risk advisories from government services and law enforcement agencies such as US-CERT and
FBI Infragard.

Vendor-specific threat feeds

Updates on vulnerabilities reported by software and network vendors.

Internet whitelists and blacklists

Updated lists of valid or dangerous IP addresses which can be used to build network whitelists and
blacklists for firewalls, IDS/IPS, and monitoring systems.

Consolidated threat feeds

Open source and commercial threat feed services that consolidate information from multiple sources and
may offer value-add risk analysis.

Analyst studies and reports

In-depth analysis such as Mandianta€™ s M-Trends or Verizona€™ s Data Breach Investigation Report.

For more information, see 4€ A curated list of Awesome Threat Intelligence resourcesa€ .

These sources provide information about threats against your industry or industry sector, against customers or
suppliers including new malware or malware variants seen in the wild, new vulnerabilities that are actively
being exploited, known sources of malicious traffic, fraud techniques, new attack patterns, zero days and
compromise indicators, news about breaches, government alerts, and alerts from law enforcement.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#threaty_threats
https://github.com/hslatman/awesome-threat-intelligence

The following are platforms for reporting, detecting, collecting, and aggregating threat intelligence:

e Open Threat Exchange

OpenTPX

PassiveTotal

Critical Stack

Facebooka€™ s ThreatExchange

Threat information comes in many different forms, including reports, email notifications, and live structured
data feeds. Two open community projects help make it easier to share threat information between different
organizations and between tools by defining standards for describing and reporting threats.

STIX is a community project to standardize threat information using a common format that can be easily
understood and aggregated by automated tooling, in the same way that SCAP or CWE is used. It defines a
structured language to describe threats, including information about threat indicators (what other organizations
are seeing in the wild).

TAXII is another standards initiative to define common ways of sharing threat data and how to identify and

respond to threat information. HailaTaxii.com provides a repository of open source threat feeds available in
STIX format.

THREATY THREATS

For many in the security industry, threat intelligence has unfortunately evolved into something of a running joke,
with outlandish claims of value not being realized, and competition between suppliers seeming to focus on
information quantity, not quality or relevance. Visually fascinating but operationally questionable pew pew maps,
where threats are animated in ways taken straight from Hollywood, have done little to help the situation in terms
of demonstrable value. Such is the derision that this part of the industry attracts parody services like Threatbutt
have been created just to mock.

As with many parts of information security, you need to clearly understand and investigate the actual value the
various parts of threat intelligence can bring to your organization rather than jumping on the bandwagon just
because it looks cool.

Threat Assessment

Your next step is to determine which threats matter most to your organization and to your system: what threats
you need to immediately understand and prepare for.

https://www.alienvault.com/open-threat-exchange
https://www.opentpx.org/
https://www.passivetotal.org/
https://intel.criticalstack.com/
https://www.facebook.com/threatexchange
https://stixproject.github.io/
http://taxiiproject.github.io/
http://hailataxii.com/
http://threatbutt.com/

Most threat intelligence consists of updates on file signatures (to identify malware), alerts on phishing and DDOS
and ransomware attacks and fraud attempts, and network reputation information identifying potential sources of
attacks. This is information that is of interest to the security team, operations, and IT, but not necessarily to
developers.

Developers need to understand what types of threats they need to protect against in design, development, and
implementation. What kind of attacks are being seen in the wild, and where are they coming from? What third-
party software vulnerabilities are being exploited? What kind of events should they be looking for and alerting on
as exceptions, or trying to block?

The best source of this information is often right in front of developers: their systems running in production.
Depending on the solutions being developed, it may also be worth understanding whether there is any value that
can be realized from integrating threat intelligence data into the solution itself.

Threats that other organizations in your industry sector are actively dealing with should be a high priority. Of
course, the most urgent issues are the threats that have already triggered: attacks that are underway against your
organization and your systems.

Coming up, we talk about attack-driven defense , using information that you see about attacks that are
underway in production to drive security priorities. Information from production monitoring provides real,
actionable information about active threats that you need to understand and do something about: they arena
€™t theoretical; they are in progress. This isna€™ t to say that you can or should ignore other, less imminent
threats. But if bad guys are pounding on the door, you should make sure that it is locked shut.

Attack-driven defense creates self-reinforcing feedback loops to and from development and production:

1. Use live attack information to update your threat understanding and build up a better understanding of what
threats are your highest priority.

2. Use threat intelligence to help define what you need to look for, by adding checks in production monitoring
to determine if/when these attacks are active.

3. Use all of this information to prioritize your testing, scanning, and reviews so that you can identify
weaknesses in the system and find and remediate, or monitor for, vulnerabilities before attackers find them
and exploit them.

In order to make use of this, you will need the following:

1. Effective monitoring capabilities that will catch indicators of attack and feed this information back to
operations and developers to act on.

2. Investigative and forensics skills to understand the impact of the attack: is it an isolated occurrence that you
caught in time, or something that happened before that you just noticed.

3. A proven ability to push patches or other fixes out quickly and safely in response to attacks, relying on your
automated build and deployment pipeline.

Your Systema€™s Attack Surface

To assess the security of your system and its exposure to threats, you first need to understand the attack surface
, the parts of the system that attackers care about.

There are actually three different attack surfaces that you need to be concerned about for any system:

Network

All the network endpoints that are exposed, including all the devices and services listening on the network,
the OSes, VMs, and containers. You can use a scanning tool like nmap to understand the network attack
surface.

Application

Every way that an attacker can enter data or commands, and every way that an attacker could get data out of
the system, especially anonymous endpoints; and the code behind all of this, specifically any vulnerabilities
in this code that could be exploited by an attacker.

Human

The people involved in designing, building, operating, and supporting the system, as well as the people
using the system, who can all be targets of social engineering attacks. They could be manipulated or
compromised to gain unauthorized access to the system or important information about the system, or
turned into malicious actors.

Mapping Your Application Attack Surface

The application attack surface includes, among other things:

Web forms, fields, HTTP headers and parameters, and cookies

APIs, especially public network-facing APIs, which are easy to attack; and admin APIs, which are worth the
extra effort to attack

Clients: client code such as mobile clients present a separate attack surface
Configuration parameters

Operations tooling for the system

File uploads

Data stores: because data can be stolen or damaged once it is stored, and because you will read data back
from data stores, so data can be used against the system in Persistent XSS and other attacks

Audit logs: because they contain valuable information or because they can be used to track attacker activity
Calls out to services like email and other systems, services, and third parties

User and system credentials that could be stolen, or compromised to gain unauthorized access to the system
(this also includes API tokens)

Sensitive data in the system that could be damaged or stolen: PII, PHI, financial data, confidential or
classified information

Security controls: your shields to protect the system and data: identity management and authentication and
session management logic, access control lists, audit logging, encryption, input data validation and output
data encoding; more specifically, any weaknesses or vulnerabilities in these controls that attackers can find
and exploit

And, as we look at in ChapterA 11 , your automated build and delivery pipeline for the system.

Remember that this includes not only the code that you write, but all of the third-party and open source code
libraries and frameworks that you use in the application. Even a reasonably small application built on a rich
application framework like Angular or Ruby on Rails can have a large attack surface.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#agile_security_testing

Managing Your Application Attack Surface

The bigger or more complex the system, the larger the attack surface will be. Your goal should be to keep the
attack surface as small as possible. This has always been hard to do and keeps getting harder in modern
architectures.

USING MICROSERVICES EXPLODES THE ATTACK SURFACE

Microservices are one of the hot new ideas in application architecture, because they provide development teams
with so much more flexibility and independence. [t&€™ s hard to argue with the success of microservices at
organizations like Amazon and Netflix, but ita€™ s also worth recognizing that microservices introduce serious
operational challenges and security risks.

The attack surface of an individual microservice should be small and easy to review. But the total attack surface
of a system essentially explodes once you start using microservices at any scale. The number of endpoints and the
potential connections between different microservices can become unmanageable.

It is not always easy to understand call-chain dependencies: you cana€™ t necessarily control who calls you and
what callers expect from your service, and you cana€™ t control what downstream services do, or when or how
they will be changed.

In engineering-led shops that follow the lead of Amazon and Netflix, developers are free to choose to the best
tools for the job at hand, which means that different microservices could be written in different languages and
using different frameworks. This introduces new technology-specific risks and makes the job of reviewing,
scanning, and securing the environment much more difficult.

Containers like Docker, which are often part of a microservices story, also impact the attack surface of the system
in fundamental ways. Although containers can be configured to reduce the system attack surface and improve
isolation between services, they expose an attack surface of their own that needs to be carefully managed.

This seems like too much to track and take care of. But you can break down the problema<€”and the risk.

Each time that you make a change to the system, consider how the change impacts the attack surface. The more
changes that you make, the more risk you may be taking on. The bigger the change, the more risk that you may
be taking on.

Most changes made by Agile and DevOps teams are small and incremental. Adding a new field to a web form
technically increases the size of the attack surface, but the incremental risk that you are taking on should be
easy to understand and deal with.

However, other changes can be much more serious.

Are you adding a new admin role or rolling out a new network-facing API? Are you changing a security control
or introducing some new type of sensitive data that needs to be protected? Are you making a fundamental
change to the architecture, or moving a trust boundary? These types of changes should trigger a risk review (in
design or code or both) and possibly some kind of compliance checks. Fortunately, changes like this are much
less common.

Agile Threat Modeling

Threat modeling is about exploring security risks in design by looking at the design from an attackera€™ s
perspective and making sure that you have the necessary protection in place. In the same way that attacker
stories or misuse cases ask the team to re-examine requirements from an attackera€™ s point of view, threat
modeling changes the teama€™ s perspective in design to think about what can go wrong and what you can do
about it at the design level.

This doesna€™ t have to be done in a heavyweight, expensive Waterfall-style review. All that you need to do is
to build a simple model of the system, and look at trust, and at threats and how to defend against them.

Understanding Trust and Trust Boundaries

Trust boundaries are points in the system where you (as a developer) change expectations about what data is
safe to use and which users can be trusted. Boundaries are where controls need to be applied and assumptions
about data and identity and authorization need to be checked. Anything inside a boundary should be safe.
Anything outside of the boundary is out of your control and should be considered unsafe. Anything that crosses
a boundary is suspect: guilty until proven innocent.

TRUST IS SIMPLE. OR IS IT?

Trust is a simple concept. But this is also where serious mistakes are often made in design. [td€™ s easy to make
incorrect or naive assumptions about the trustworthiness of user identity or data between systems, between clients
(any kind of client, including browsers, workstation clients, mobile clients, and IoT devices) and servers, between
other layers inside a system, and between services.

Trust can be hard to model and enforce in enterprise systems connected to many other systems and services. And,
as wea€™ 11 see in ChapterA 9, Building Secure and Usable Systems , trust is pervasive and entangled in modern
architectures based on microservices, containers, and cloud platforms.

Trust boundaries become especially fuzzy in a microservices world, where a single call can chain across many
different services. Each service owner needs to understand and enforce trust assumptions around data and identity.
Unless everyone follows common patterns, it is easy to break trust relationships and other contracts between
microservices.

In the cloud, you need to clearly understand the cloud providera€™ s shared responsibility model : what services
they provide for you, and how you need to use these services safely. If you are trusting your cloud provider to do
identity management and access management, or auditing services, or encryption, check these services out
carefully and make sure that you configure and use them correctly. Then write tests to make sure that you always
configure and use them correctly. Make sure that you understand what risks or threats you could face from co-
tenants, and how to safely isolate your systems and data. And if you are implementing a hybrid public/private
cloud architecture, carefully review all data and identity passed between public and private cloud domains.

Making mistakes around trust is #1 on the IEEE&€™ s Top 10 Software Security Design Flaws. ! Their advice is:
a€ceEarn or Give, But Never Assume Trust.A€

How do you know that you can trust a usera€™ s identity? Where is authentication done? How and where are
authorization and access control rules applied? And how do you know you can trust the data? Where is data
validated or encoded? Could the data have been tampered with along the way?

These are questions that apply to every environment. You need to have high confidence in the answers to these
questions, especially when you are doing something that is security sensitive.

You need to ask questions about trust at the application level, as well as questions about the operational and
runtime environment. What protection are you relying on in the network: firewalls and proxies, filtering, and
segmentation? What levels of isolation and other protection is the OS or VM or container providing you? How
can you be sure?

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch09.html#building_secure_systems
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#idm139712742482688

TRUSTED VERSUS TRUSTWORTHY

The terms trusted and trustworthy are often used interchangeably, but when it comes to security their difference is
actually very important, and the widespread incorrect usage of them illustrates some deeper misunderstandings
that manifest across the space. It could well be that the seeds of confusion were planted by the famous Orange
Book (Trusted Computer System Evaluation Criteria) developed by the US Department of Defense in the early
1980s.

If something is trusted , then what is being said is that someone has taken the action of placing trust in it and
nothing more. However, if something is trustworthy , then a claim is being made that the subject is worthy of the
trust being placed in it. These are distinctly different and carry with them different properties in terms of security.

You will often see advice stating not to open untrusted attachments or click on untrusted links, when what is
really meant is not to open or click untrustworthy links or attachments.

When discussing users and systems in terms of threat models, itA€™ s important to understand the difference
between entities that are trusted (they have had trust placed in them regardless of worthiness) and entities that are
trustworthy (they have had their worthiness of trust evaluated, or better yet proven).

While this may all seem grammatical pedantry, the actual impact of understanding the differences that manifest
from trusted versus trustworthy actors can make a very real-world difference in your security approaches.

A great short video by Brian Sletten discussing this as it relates to browser security can be found at
https://www.oreilly.com/learning/trusted-vs-trustworthy and is well worth the 10-minute investment to watch.

Threats are difficult for developers to understand and hard to for anyone to quantify. Trust is a more
straightforward concept, which makes thinking about trust a good place to start in reviewing your design for
security weaknesses. Unlike threats, trust can also be verified: you can walk through the design or read the code
and write tests to check your assumptions.

Building Your Threat Model

To build a threat model, you start by drawing a picture of the system or the part of the system that you are
working on, and the connections in and out to show data flows, highlighting any places where sensitive data
including credentials or PII are created or updated, transmitted, or stored. The most common and natural way to
show this 1s a data flow diagram with some extra annotations.

Once you have the main pieces and the flows described, youda€™ 11 want to identify trust boundaries. A
common convention is to draw these as dotted lines demarcating the different trust zones, as we show in
FigureA 8-1 .

https://en.wikipedia.org/wiki/Trusted_Computer_System_Evaluation_Criteria
https://www.oreilly.com/learning/trusted-vs-trustworthy
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#fig0801

Scary Internet DMZ (Mostly Scary) Application

| EE— 1 —
quwser : Reverse : : Service...
Client | Proxy L
: L
| | |
Mobile : Web : :
(lient I Server ((
: L
| | |
External I AP| : :
System || Gateway | | |
| | |

Enterprise/Security

Figure 8-1. Simple trust/threat boundary model

Trust zones can be established between organizations, between data centers or networks, between systems,
between layers of an application, or between services or components inside a service, depending on the level

that you are working at.

Then mark out the controls and checks at these boundaries:

e Where is authentication done?
e Where are access control checks applied?

e Data validation

e Cryptoa€”what information is being encrypted and when/where

e Rate limiting

e Sensors and detectors

a€aeGood Enoughéa€ Is Good Enough

Dona€™ t spend a lot of time making pretty pictures. Your model can be rough, especially to start. Like any
Agile modeling, the point is to have just enough that everyone can understand the pieces and how they fit
together; anything more is waste. Version 0.1 could be nothing more than a whiteboard diagram that is captured

via a photo on a mobile phone.

Microsoft provides a free tool called Microsoft Threat Modeling Tool 2016 which will help you create threat
models and save them so that you can review and update the model as you make changes to the system.

As with all free tools, there are advantages and disadvantages to using this to help with your threat models. Using
a modeling tool like this will allow you to easily drag and drop components onto your diagram without having to
remember what the specific symbol should be at any stage. They also have a wide range of symbols and example
components available to choose from.

There are challenges to using this tool though. The very Microsoft-specific language and suggested components
can make it difficult to decide which items to use on your diagram. Often there are dozens of components which
share a symbol but have a different name in the menu.

Furthermore, this tool has a built-in report generation feature that will export a threat assessment based on your
model (and the attributes you completed for each component). While this can seem very impressive, it can turn
into hundreds of generic threats in HTML format that need to be triaged and assessed before they can be used.
These reports often take a lot longer to triage than a manual threat assessment would have taken; and without this
triage process, the assessment can be an impressive-looking distraction.

We recommend using tools for the modeling of systems, and conducting the threat assessment itself manually or
outside of the tool, preferably in a way that tightly integrates with your issue tracking and pipeline.

Once you have a good enough diagram drawn up, get the team together to walk through the diagram and do
some brainstorming about threats and attacks. Look carefully at information that crosses trust boundaries,
especially sensitive information. Be realistic when it comes to threats and attack scenarios. Use the threat
intelligence that youd€™ ve captured and attack patterns that youd€™ ve observed in production to focus your
attention. At this stage it would also be recommended to call out the things that are not in your threat model and
you are consciously placing out of scope, a clear articulation of what you wona€™ t be focusing on helps you
center on what you will be.

Threat modeling is more effective if you can get people with different viewpoints involved. Developers who
know the system or part of the system that you are reviewing, architects and developers who know other parts
of the system, testers who know how the system actually works, operations engineers and network engineers
who understand the runtime environment, and security specialists will all look for different problems and risks.

Try not to get bogged down in arguing about low-level details, unless you are already reviewing at a low level
and need to verify all of these assumptions.

Spend time identifying risks and design weaknesses before switching into solution mode. Then look at what
you could change to protect your system from these threats. Can you move responsibilities from outside of a
trust boundary to inside? Can you reduce the number of connections between modules, or simplify the design
or workflow to reduce the size of the attack surface? Do you need to pass information across a trust boundary,
or can you pass a secure key or token instead?

What changes can you, or must you, make now, and what changes can be added to the backlog and scheduled?

http://bit.ly/ms-threat-modeling-tool

SAFECode has a 45-minute free online course on Threat modeling that provides a good overview .

Microsoft popularized the practice of application threat modeling. For a quick introduction to how they do (or at
least used to do) threat modeling at Microsoft, read Peter Torra€™ s Blog, 4€ceGuerrilla Threat Modelling (or a
€ Threat Modelingd€™ if youa€™ re American)a€ .

If you really want to dig deep into everything about threat modeling, you should read Adam Shostackd€™ s book
Threat Modeling: Designing for Security (Wiley) .

Shostack was one of the leaders of Microsofta€™ s software security practice and helped to pioneer the threat
modeling approach followed in Microsofta€™ s SDL. His book covers threat modeling in detail, including
different techniques and games and tools for building threat models, as well as an analysis of the different types
of threats that you need to consider.

Thinking Like an Attacker

In ChapterA 5 , we asked developers to put on a black hat and think like an attacker when writing attacker
stories or negative scenarios. But how do you do that? How do you think like an attacker? What is it like to see
a system through an attackera€™ s eyes?

Adam Shostack, a leading expert on threat modeling, says that you cana€™ t ask someone to a€ cethink like an
attackera€ and expect them to be really effective at it if they havena€™ t actually worked as a pen tester or
done some serious hacking. [ta€™ s like being told to a€cethink like a professional chef.4€ You might know
how to cook at home for family and friends, and you might even be good at it. But this doesna€™ t mean that
you know what ita€™ s like to work in a Michelin star restaurant or work as a short-order cook in a diner
during the morning rush.?

You need real experience and context to understand how attackers think and work. You can learn something
over time from working with good pen testers (and from Red Teaming exercises and bug bounties) and through
training. Using pen testing tools like OWASP ZAP in your testing programs will open a small window into the
world of an attacker. Capture the Flag exercises and hands-on exploitation training systems can help people
become more familiar with the ways in which attackers think about the world. But at least in the short term
youa€™]l need to rely on a security expert (if you have one available) to play the role of the attacker.

STRIDE: A Structured Model to Understand Attackers

Even if you know how attackers work, ita€™ s a good idea to follow a structured model to help make sure that
you remember to review the design for different security threats and risks. One of the best known approaches
for this is Microsofta€™ s STRIDE .

STRIDE is an acronym that stands for the following:

https://training.safecode.org/course/threat_modelling_101
http://bit.ly/guerilla-threat-modelling
https://threatmodelingbook.com/
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch05.html#security_requirements
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#idm139712742201248

Threat

Spoofing Can you trust the usera€™ s identity?

. Can you trust the integrity of the data? Can someone

Tampering . .
change it on purpose, or accidentally?

Repudiation g{im you prove who did something and when they did

Information What is the risk of data theft or leaks?

disclosure
Denial of ~ Can someone stop authorized users from getting valid
service access to the systema€”’on purpose, or accidentally?

Elevation of Can an unprivileged user gain privileged system

Solution

Authentication and session management, digital
certificates.

Digital signatures, checksums, sequence accounting, access
control, auditing.

End-to-end auditing and logging, sequence accounting,
digital certificates and digital signatures, fraud prevention.

Access control, encryption, data tokenization, error
handling.

Rate limiting, boundary protection, elastic resourcing,
availability services.

Authorization, least privilege, type safety and

privilege access? parameterization to prevent injection attacks.

STRIDE is a simple way of thinking about the most common paths that attackers can take to get at systems and
data. There are other approaches that are just as effective, such as attack trees , which we looked at in
ChapterA 5 . Whata€™ s important is to agree on a simple but effective way to think about threats and how to
defend against them in design.

When you are thinking about what can go wrong, dona€™ t overlook accidents. Honest mistakes can cause very
bad things to happen to a system, especially mistakes by operations or a privileged application admin user. (See
the discussion of blameless postmortems in ChapterA 13 .)

Incremental Threat Modeling and Risk Assessments

Where does threat modeling fit into Agile sprints or Lean one-piece continuous flow? When should you stop
and do threat modeling where you are filling in the design as you go in response to feedback, where there are no
clear handoffs or sign offs because the design is &€ enever finished, A€ and where there may be no design
document to hand off because a€cethe code is the designa€?

Assess Risks Up Front

You can begin up front by understanding that even if the architecture is only roughed out and subject to change,
the team still needs to commit to a set of tools and a run-time stack to get started. Even with a loose or
incomplete idea of what you are going to build, you can start to understand risks and weaknesses in design and
what you will need to do about them.

At PayPal, for example, every team must go through an initial risk assessment, by filling out an automated risk
questionnaire, whenever it begins work on a new app or microservice. One of the key decision points is
whether the team is using languages and frameworks that have already been vetted by the security team in
another project. Or, is it introducing something new to the organization, technologies that the security team
hasnd€™ t seen or checked before? There is a big difference in risk between € cejust another web or mobile
appa<€ built on an approved platform, and a technical experiment using new languages and tools.

Here are some of the issues to understand and assess in an up-front risk review:

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch05.html#security_requirements
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch13.html#operational_security

1. Do you understand how to use the language(s) and frameworks safely? What security protections are offered
in the framework? What needs to be added to make it simple for developers to &€ eedo the right thingd€ by
default?

2. Is there good continuous integration and continuous delivery toolchain support for the language(s) and
framework, including static code analysis tooling, and dependency management analysis capabilities to
catch vulnerabilities in third-party and open source libraries?

3. Is sensitive and confidential data being used or managed in the system? What data is needed, how is it to be
handled, and what needs to be audited? Does it need to be stored, and, if so, how? Do you need to make
considerations for encryption, tokenization and masking, access control, and auditing?

4. Understanding trust boundaries between this app/service and others: where do controls need to be enforced
around authentication, access control, and data quality? What assumptions are being made at a high level in
the design?

Review Threats as the Design Changes

After this, threat modeling should be done whenever you make a material change to the systema€™ s attack
surface, which we explained earlier. Threat modeling could be added to the acceptance criteria for a story when
the story is originally written or when it is elaborated in sprint planning, or as team members work on the story
or test the code and recognize the risks.

In Agile and DevOps environments, this means that you will need to do threat modeling much more often than
in Waterfall development. But it should also be easier.

In the beginning of a project, when you are first putting in the architectural skeleton of the system and fleshing
out the design and interfaces, you will obviously be making lots of changes to the attack surface. It will
probably be difficult to understand which risks to focus on, because there is so much to consider, and because
the design is continuously changing as you learn more about the problem space and your technology.

You could decide to defer threat modeling until the design details become clearer and more set, recognizing that
you are taking on technical debt and security debt that will need to be paid off later. Or keep iterating through
the model so that you can keep control over the risks, recognizing that you will be throwing away at least some
of this work when you change the design.

Later, as you make smaller, targeted, incremental changes, threat modeling will be easier and faster because you
can focus in on the context and the impact of each change. It will be easier to identify risks and problems. And
it should also get easier and faster the more often the team goes through the process and steps through the
model. At some point, threat modeling will become routine, just another part of how the team thinks and works.

The key to threat modeling in Agile and DevOps is recognizing that because design and coding and deployment
are done in a tight, iterative loop, you will be caught up in the same loops when you are assessing technical
risks. This means that you can makea€”and you need to makea€’threat modeling efficient, simple, pragmatic,
and fast.

Getting Value Out of Threat Modeling

The team will need to decide how much threat modeling is needed, and how long to spend on it, trading off risk
and time. Like other Agile reviews, the team may decide to time box threat modeling sessions, holding them to
a fixed time duration, making the work more predictable and focused, even if this means that the review will
not be comprehensive or complete.

Quick-and-dirty threat modeling done often is much better than no threat modeling at all.

Like code reviews, threat modeling doesna€™ t have to be an intimidating, expensive, and heavyweight
process; and it cana€™ t be, if you expect teams to fit it into high-velocity Agile delivery. It doesna€™ t matter

whether you use STRIDE, CAPEC , DESIST (a variant of STRIDE; dispute, elevation of privilege, spoofing,
information disclosure, service denial, tampering), attack trees (which we looked at in ChapterA 5), Lockheed
Martina€™ s Kill Chain , or simply a careful validation of trust assumptions in your design. The important
thing is to find an approach that the team understands and agrees to follow, and that helps it to find real security
problemsa<€”and solutions to those problemsa€’during design.

In iterative design and development, you will have opportunities to come back and revisit and fill in your design
and your threat model, probably many times, so you dona€™ t have to try to exhaustively review the design
each time. Do threat modeling the same way that you design and write code. Design a little, then take a bite out
of the attack surface in a threat modeling session, write some code and some tests. Fill in or open up the design
a bit more, and take another bite. Youa€™ re never done threat modeling.

Each time that you come back again to look at the design and how it has been changed, youa€™ 1l have a new
focus, new information, and more experience, which means that you may ask new questions and find problems
that you didna€™ t see before.

Focus on high-risk threats, especially active threats. And make sure that you cover common attacks.

A common mistake we see when working with teams that are threat modeling for the first time is the focus on
documentation, paperwork, and process over outcomes.

It can be very tempting to enforce that every change be documented in a template and that every new feature have
the same a€ celightweighta€ threat assessment form completed. In fact, sometimes even our lightweight
processes distract us from the real value of the activity. If you find your team is more focused on how to complete
the diagram or document than the findings of the assessment, revisit your approach.

Even in heavy compliance environments, the process and documentation requirements for threat assessment
should be the minimum needed for audit and not the primary focus of the activity.

Remember, for the most part, we are engineers and builders. Use your skills to automate the process and
documentation so that you can spend your time on the assessment, where the real value lies.

Common Attack Vectors

Walking through common attack vectors, the basic kinds of attacks that you need to defend against and the
technical details of how they actually work, helps to make abstract threats and risks concrete and
understandable to developers and operations engineers. It also helps them to be more realistic in thinking about
threats so that you focus on defending against the scenarios and types of vulnerabilities that adversaries will try
first.

There are a few different ways to learn about common attacks and how they work:
Scanning

Tools like OWASP ZAP, or scanning services like Qualys or WhiteHat Sentinel, which automatically
execute common attacks against your application.

Penetration testing results

Take the time to understand what pen testers tried, why, what they found, and why.

Bug bounties

As wea€™] see in a€eBug Bountiesa€ , bug bounty programs can be an effective, if not always efficient,
way to get broad security testing coverage.

https://capec.mitre.org/
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch05.html#security_requirements
http://www.lockheedmartin.com/us/what-we-do/aerospace-defense/cyber/cyber-kill-chain.html
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch12.html#bug-bounties

Red Team/Blue Team games

Covered in ChapterA 13 , force defensive Blue Teams to actively watch for, and learn how to respond to,
real attacks.

Attack simulation platforms

AttackIQ , SafeBreach , and Verodin automatically execute common network and application attacks, and
allow you to script your own attack/response scenarios. These are black boxes that test the effectiveness of
your defenses, and allow you to visualize if and how your network is compromised under different
conditions.

Industry analyst reports

Reports like Verizona€™ s annual a€ eData Breach Investigations Reporta€ provide an overview of the
most common and serious attacks seen in the wild.

OWASPa€™ s Top 10

Lists the most serious risks and the most common attacks against web applications and mobile applications.
For each of the Top 10 risks, OWASP looks at threat agents (what kind of users to look out for) and
common attack vectors and examples of attack scenarios. Wea€™ 1l look at the OWASP Top 10 again in
ChapterA 14 because this list of risks has become a reference requirement for many regulations.

Event logs from your own systems
This will show indicators of real-world attacks and whether they are successful.

Common attacks need to be taken into account in design, in testing, in reviews, and in monitoring. You can use
your understanding of common attacks to write security stories, to script automated security tests, to guide
threat modeling sessions, and to define attack signatures for your security monitoring and defense systems.

Key Takeaways

To effectively defend against adversaries and their threats against your organization and system, you need to
take the following measures:

e Threat intelligence needs to be incorporated into Agile and DevOps feedback loops.

¢ One of the best sources of threat intelligence is what is happening to your production systems right now. Use
this information in attack-driven defense to find and plug holes before attackers find and exploit them.

e Although Agile teams often dona€™ t spend a lot of time in up-front design, before the team commits to a
technology platform and runtime stack, work with them to understand security risks in their approach and
how to minimize them.

e In Agile and especially DevOps environments, the systema€™ s attack surface is continuously changing. By
understanding the attack surface and the impact of changes that you are making, you can identify risks and
potential weaknesses that need to be addressed.

e Because the attack surface is continuously changing, you need to do threat modeling on a continuous basis.
Threat modeling has to be done a lightweight, incremental, and iterative way.

e Make sure that team understands common attacks like the OWASP Top 10, and how to deal with them in
design, testing, and monitoring.

'TEEE Center for Secure Design, A€ e Avoiding the Top 10 Software Security Design Flawsa€ , 2014,

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch13.html#operational_security
https://www.attackiq.com/
https://safebreach.com/
https://verodin.com/
http://www.verizonenterprise.com/verizon-insights-lab/dbir/
https://www.owasp.org/
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch14.html#compliance
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#idm139712742482688-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#idm139712742201248-marker

2 Read Bill Bufordi€™ s Heat: An Amateurd€™ s Adventures as Kitchen Slave, Line Cook, Pasta-Maker, and
Apprentice to a Dante-Quoting Butcher in Tuscany (Vintage) to get an appreciation of just how hard this is.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#idm139712742201248-marker

Chapter 9. Building Secure and Usable
Systems

What does it mean to build a secure system?

Building a secure system means designing and implementing a system that deals with the risks that you are
taking, and leaves only acceptable risks behind.

The level of security that you apply will depend on your organization, on your industry, on your customers, and
on the type of system. If you are building an online consumer marketplace, or a mobile game, youa€™ Il have a
very different set of security concerns than someone building an encryption device designed to be used in the
field by Marines in the advance guard.

However some patterns are common in most security-based situations.

Design to Resist Compromise

A secure system must be built to resist compromise, whether thati€™ s resisting remote SQL injection attacks,
being resistant to power differential attacks, or not leaking electromagnetic spectrum information. The point is
that you understand the operating environment and can build in protection against compromise.

You do this by changing your design assumptions.

We know from years of crypto research that you should assume that all user input is compromised, and that
attackers can repeatedly and reliably introduce whatever input they want. We should also assume that attackers
can reliably read all output from your system.

You can even go so far as to assume that the attackers know everything about your system and how it works. !
So where does that leave you?

Resisting compromise is about carefully checking all input data, and providing as little information on output as
you can get away with. Ita€™ s about anticipating failures and making sure that you handle them safely, and
detecting and recording errors and attacks. And making life as difficult as you can for an attacker, while still
making sure that the system is usable and understandable.

For almost all of us, we can assume that our attackers have bounded resources and motivation. That is, if we
can resist long enough, they will either run out of time and money, or get bored and move elsewhere. (If you
arena€™ t in that camp, then you need specialist help and probably shouldna€™ t be reading this book!) If a
nation state decides to attack you, they are probably going to succeed anywaya€ but you still want to make it
as difficult for them as possible, and try to catch them in the act.

Security Versus Usability

People often talk about security and usability being the opposite faces of the same coin. That security forces us
to build unusable systems and that usability experts want to remove the security features that we build in.

This is increasingly understood to be wrong. It shows a tunnel-vision view of security as a technical mission
rather than a holistic mission.

Systems that are not usable due to over-engineered security controls tend to push users to find unauthorized
workarounds that compromise the security of the system: passwords written on Post-it notes, to teams sharing
accounts because ita€™ s easier, to systems with default passwords so the administrators can sort things out

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch09.html#idm139712742072880

when they break.

We, as security, need to think holistically about the systems that we build, and ensure that the user is
encouraged and able to use the service in the most secure manner possible. Take whatever steps you need to
protect the system, but do this in ways that dona€™ t get in the way of what the system is designed to do or
how it is supposed to be used.

Technical Controls

When we think about securing a system, most people think of technical controls. These are solutions that
prevent an attacker (or user) from accessing unauthorized or unintended functionality or system control
functions.

Technical controls are often bolted on to the design of a system to solve security problems. They suffer from the
dual problem of being an attractive vendor space and being highly limited in scope.

[ta€™ s common for vendors to get excited about how amazing their technical black box is and how much it
will do to make your system safe. But ask yourself this: do you really think that all the organizations that
suffered intrusions last year were not running next-generation firewalls, intrusion detection systems, advanced
endpoint protection, or other magic black boxes?

Some natural skepticism is healthy when choosing technical controls and products. Although they are an
important part of most security architectures, in most cases they only address low-hanging fruit (common
vulnerabilities) or specific edge cases. Much as locking the door to your home wona€™ t protect it from all
thieves, technical controls and products wona€™ t protect your system from all threats. They must be
considered as part of a wider, more holistic approach.

We divide security controls in systems into a few different categories. Like all categorical systems, they overlap
and arend€™ t perfect, but it helps us start to talk about such things.

Deterrent Controls

Deterrent controls deter or make clear to people what will happen if they attack your system. These are the
technical equivalent of a signpost on your gate warning visitors to &€ ceBeware of the dogd€ or that &€ This
building is under surveillance.a€

In a physical sense, this can include other highly visible controls, so CCTV or electrified or barbed wire fences
are just as much a deterrent as they are a highly effective resistive control (see below).

In a digital system, this can include things like modifying service headers to include warnings, and warning
messages or customized error handling. The visible presence of such things makes it clear that you know what
you are doing, and makes it clear to attackers when they are crossing a legal line.

Resistive Controls

Resistive controls are designed to slow down an attacker, not stop them. Limiting the number of sign-in
attempts from a single address, or rate-limiting uses of the system are resistive. A clever attacker can get around
these controls, but they slow down attackers, increasing the chance that they will get caught or making them
want to look elsewhere.

As these controls aim to slow down and frustrate an attacker, we can also include simple steps like code
obfuscation, generic error messages, and responsive session management.

Code obfuscation has been an area of much debate as a resistive control and allows us to consider the cost of
such choices. Running your code through an obfuscation system renders it difficult to read and often makes it
difficult to review and understand. While this will slow down less skilled attackers, remember there is a cost to

this control. Obfuscated code is also difficult to debug and can cause frustration for support teams.

Resistive controls are useful but should be applied with care. Slowing down and frustrating attackers is rarely
acceptable if it means frustrating and causing confusion or friction for genuine system users.

Protective Controls

Protective controls actually prevent an attack from occurring. Most technical security controls are this kind of
control, so firewalls, access control lists (ACLs), IP restrictions, and so forth are all designed to prevent misuse
of the system.

Some protective controls, such as making systems only available for set time periods or from a finite set of
physical locations, may have a high impact on usability. While there may be strong business cases for these
controls, we must always consider the edge cases in our environments.

For example, controls that prevent users from logging in from outside office hours or location can prevent staff
from checking their emails when traveling to a conference.

People (including attackers) are like water when it comes to protective controls that get in their way. They will
work around them and come up with pragmatic solutions to get themselves moving again.

Detective Controls

Some controls are designed not to prevent or even slow the attackers, but merely to detect an intrusion. These
can vary from simple log auditing or security event tools to more advanced tools like honeypots, traffic flow
graphs, and even monitoring of CPU load for abnormalities.

Detective controls are widely applied and familiar to operations and infrastructure teams alike. The core
challenges with these controls are ensuring that they are tuned to detect the right things for your environment
and that someone is watching the logs and ready to respond if something is detected.

Compensating Controls

Finally, there are times when the control you want might not be available. So if you want to prevent staff from
accessing the login system from outside the country, but a significant proportion of your staff travels for work,
you might be stuck.

What you often do is apply other controls that you might not otherwise require to compensate for the lack of the
controls that you do have. For example, in that situation, you can instead use a physical, second-factor token on
authentication, and monitor any changes of location compared to staff travel records to detect misuse.

We take a look at several other examples of compensating controls in ChapterA 13, Operations and OpSec
where we cover controls such as WAFs, RASP, and runtime defense.

Security Architecture
So what does all this mean? How can we build a secure system?

We can use the controls, combined with some principles to build a system that resists and actively defends
against attack.

We need to be aware from the beginning what the system does and who is going to attack it. Hopefully, by
following the guidance in ChapterA 7 on threat assessments, you will understand who is likely to attack the
system, what they are after, and the most likely ways that they will attack you.

Next, you need to think about your system itself. We often talk about systems as being a single, monolithic

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch13.html#operational_security
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch07.html#risk_for_developers

black box. Thatd€™ s an artifact of traditional systems engineering thinking. Back in the old days , building a
system required buying sufficient computers to run the system, and the physical hardware might be a major
proportion of the cost.

These days, with containerization, microservices, virtual machines, and cloud-based compute being cheap, and
looking to get much cheaper, we can instead start to see more separation between the components of the
system.

From a security perspective, this appears to be much better. Each component can be reasoned about much more
easily and can be secured in its normal operation. Components are often smaller, more singular in their purpose,
and able to be deployed, changed, and managed independently.

However, this creates a new set of security risks and challenges.

The traditional model of security is to think of a system as being similar to an M&M or a Smartie (depending
on American or British upbringing, I guess), or in New Zealand, an armadillo (because apparently New
Zealanders have more wildlife than candy, or think that wildlife is candy). All of these things have a hard outer
shell, but a soft gooey interior.

Perimeterless Security

Historically, when we defined the architecture of an M&M (or armadillo) system, the system would only have a
few perimeters or trust boundaries. Anything outside of a trust boundary (such as third-party systems or users)
would be treated as untrusted, while all systems and entities within the trust boundary or hardened perimeter,
behind the DMZ and firewalls, would be considered to be safe.

As we saw in the previous chapter on threats and attacks, understanding trust and trust boundaries is relatively
simple in monolithic, on-premises systems. In this model, there are only a few entities or components inside the
perimeter, and no reason to consider them to be a risk.

But too much depends on only a few perimeters. Once an attacker breaches a perimeter, everything is open to
him.

As we separate and uncouple our architectures, we have to change this way of thinking. Because each entity is
managed separately and uncoupled, we can no longer simply trust that other components in the system are not
compromised. This also means that we cannot allow admin staff on internal networks to have unlimited access
across the system (absolutely no &€ eGod modea€ admins or support back doors).

Instead, systems should be built so that they do not assume that other points anywhere on the physical or virtual
network are trustworthy. In other words, a low-trust network, or what is now being called a zero trust network .

To learn more about how to design and operate a zero trust network, you should read up on what Google is doing
with its BeyondCorp initiative .

And read Zero Trust Networks: Building Trusted Systems in Untrusted Networks (O4€™ Reilly) by Evan Gilman
and Doug Barth.

In this environment, everything on the network needs to be protected against malicious insiders or attackers
who have breached your perimeter or other defenses:

e Reassess and audit-identity at every point. You must always know who you are dealing with, whether
through time-sensitive tokens issued by an authentication server, or cryptographically safe keys or similar
techniques to prove identity.

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43231.pdf

e Consider using TLS for secure network communications between services, at the very least when talking to
edge services, authentication services, and other critical services.

e Revalidate and check inputs, even from core services and platform services. This means validating all
headers, and every field of every request.

e Enforce access control rules on data and on API functions at each point. Make these rules as simple as you
can get away with, but ensure that they are consistently enforced, and that they follow the principle of least
privilege.

e Treat all sensitive data (any data that somebody might want to steal) as toxic. > Always know where it is and
who owns it, handle it safely, be careful with who you share it with and how you store it (if you must store
it), and keep it encrypted whenever possible.

e [og traffic at each pointa€”not just at the perimeter firewalla€”’so that you can identify when and where a
compromise actually occurred. Log records should be forwarded to a secure, central logging service to make
it possible to trace requests across services and to protect the logs if a service or node is compromised.

e Harden all runtimes (OS, VMs, containers, databases) just as you would if these boxes were in your DMZ.

e Use circuit breakers and bulkheads to contain runtime failures and to minimize the € ceblast radiusa€ of a
security breach. These are stability patterns from Michael Nygardsa€™ s book Release It! (Pragmatic
Bookshelf) , which explains how to design, build, and operate resilient online systems.

Bulkheads can be built around connections, thread pools, processes, and data. Circuit breakers protect callers
from downstream malfunctions, automatically detecting and recovering from timeouts and hangs when
calling other services. Netflixa€™ s Hystrix is a good example of how to implement a circuit breaker.

e Take advantage of containers to help manage and protect services. Although containers dona€™ t provide
the same level of runtime isolation as a VM, they are much lighter weight, and they can bea€”and should
bed€”’packaged and set up with only the minimal set of dependencies and capabilities required for a specific
service, reducing the overall attack surface of the network.

e Be very careful with handling private keys and other secrets. Consider using a secure key management
service like AWS KMS , or a general purpose secrets manager like Hashicorpa€™ s Vault , as we explain in
ChapterA 13, Operations and OpSec .

Assume Compromised

One of the key new mandates is to assume that all other external-facing services are compromised. That is to
say that if you have a layered architecture, then you should assume that the layer above is compromised at all
times.

You could treat services in the layer below as compromised; but in most cases, if the layer below you is
compromised, then ita€™ s game over. [ta€™ s incredibly difficult to defend from an attack from lower down
the call stack. You can and should try to protect your service (and the services above you) from errors and
runtime failures in layers below.

Any service or user that can call your service is at a higher level and is therefore dangerous. So it doesna€™ t
matter whether the requests are coming from the internet, from a staff terminal, another service, or from the
administrator of the system; they should be treated as if the thing sending the requests has been compromised.

What do we do if we think the layer above is compromised? We question the identity of the caller. We check all
input carefully for anything attempting to come down to our layer. We are careful about what information we
return back up: only the information needed, and nothing more. And we audit what happened at each point:
what we got, when we got it, and what we did with it.

Try to be paranoid, but practical. Good defensive design and coding, being careful about what data your

https://pragprog.com/book/mnee/release-it
https://github.com/Netflix/Hystrix
https://aws.amazon.com/kms
https://www.vaultproject.io/intro
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch13.html#operational_security
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch09.html#idm139712742001856

services need to share, and thinking about how to contain runtime failures and breaches will make your system
more secure and more resilient.

Complexity and Security

Complexity is the enemy of security. As systems become bigger and more complex, they become harder to
understand and harder to secure.

You cand€™ t secure what you dona€™ t understand.

—Bruce Schneier, A Plea for Simplicity

Agile and Lean development help to reduce complexity by trying to keep the design of the system as simple as
possible.

Incremental design starting with the simplest model that works, Leana€™ s insistence on delivering a working
Minimum Viable Product (MVP) to users as quickly as possible, and YAGNI (you arena€™ t gonna need it) ,
which reminds the team to focus on only whata€™ s needed now when implementing a feature instead of trying
to anticipate what might be needed in the future, are all forces against complexity and a€®eBig Design Up
Front.a€

Keeping the feature set to a minimum and ensuring that each feature is as simple as possible help to reduce
security risks by making the attack surface of the application small.

Complexity will still creep in over time. But iterative and continuous refactoring help ensure that the design is
cleaned up and stays simple as you go forward.

However thereA€™ s an important distinction between irreducibly simple and dangerously naA~ve.

A clean architecture with well-defined interfaces and a minimal feature set is not the same as a simplistic and
incomplete design that focuses only on implementing features quickly, without dealing with data safety and
confidentiality, or providing defense against runtime failures and attacks.

Thered€™ s also an important distinction between essential complexity and accidental complexity.

Some design problems, especially in security, are hard to solve properly: cryptography and distributed identity
management are good examples. This is essential complexity that you can manage by offloading the work and
the risk, using proven, trusted libraries or services instead of trying to figure out how to do this on your own.

But as wed€™ [l see in ChapterA 10, Code Review for Security , there are many cases of unnecessary
complexity that introduce unnecessary risks. Code that is difficult to understand and code that cannot be
thoroughly tested is code that you cannot trust to be secure or safe. Systems that you cannot build repeatably
and cannot deploy with confidence are not secure or safe.

Again, many of the Agile practices that wea€™ ve looked at in this book can help to drive down unnecessary
complexity and reduce risk:

e Test-driven development and behavior-driven design

e Shared code ownership following common code guidelines

e Automated code scanning to catch bad coding practices and code smells
e Pair programming and peer reviews

e Disciplined refactoring

e Continuous integration

These are all forces for making code simpler and safer. Automating build chains, automated deployment, and

https://martinfowler.com/bliki/Yagni.html
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#code_review_testing

continuous delivery reduces complexity and risk in delivering and implementing changes by standardizing steps
and making them testable, and by making it safer and cheaper to roll out small, incremental improvements and
fixes instead of big-bang upgrades.

Breaking large systems down into smaller parts with clear separation of concerns helps to reduce complexity, at
least at first. Small, single-purpose services are trivially easy to understand and test in isolation and safe to
deploy on their own. However, at some point as you continue to create more small services, the total
complexity in the system increases significantly and so does the security risk. >

There are no simple answers on how to deal with this kind of complexity. You will need to enforce consistent
patterns and design policies and controls across teams, provide deep visibility into the system and how it works,
and regularly reassess your architecture for gaps and weaknesses. And, as wea€™ ve explained, make sure that
each component is designed to work in a hostile, untrusting, and unpredictable environment.

Key Takeaways

Building a secure system requires that you change your design assumptions in the following ways:

e Design the system to resist compromise. Assume that attackers know everything about your system and how
it works. Build protection in against failures, mistakes, and attacks.

e Technical security controls can be bolted on to the architecture of the system to help deter, resist, detect, or
protect against attacks, or to compensate for weaknesses in your system. Or security controls can be
threaded through the architecture and design of the system as part of your code.

e Always assume that the system is compromised, and that you cannot rely on perimeter defenses or black
boxes.

e While security adds necessary complexity to design, unnecessary complexity is the enemy of security. Take
advantage of Agile principles and practices to reduce complexity in design and code. This will make the
system easier to change and safer to run.

! This idea goes back over 100 years, and is commonly known as ShannonA€™ s Maxim: 4€ cethe enemy
knows the system.a€

2 See Bruce Schneierd€™ s blog entry, A€ ceData Is a Toxic Assetd€ , March 4, 2016.

3 To understand more about these issues and how to deal with them, watch Laurad€™ s presentation on 4
€ cePractical Microservice Securitya€ , presented at NDC Sydney 2016.

https://www.schneier.com/blog/archives/2016/03/data_is_a_toxic.html
https://www.youtube.com/watch?v=EJ86JSFQVOE
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch09.html#idm139712741951760
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch09.html#idm139712742072880-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch09.html#idm139712742001856-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch09.html#idm139712741951760-marker

Chapter 10. Code Review for Security

Wea€™ ve looked at how to deal with security in planning, in requirements, and in design. Now ita€™ s time
to deal with security at the code level.

At least half of security vulnerabilities are introduced in coding, by developers making simple programming
mistakes, by not being careful, missing a requirement, or misunderstanding or misusing the language, libraries,
and frameworks.

There are two different basic approaches for catching problems, including security issues, in code:
Testing

Whether automated or manual, including black-box scanning for security vulnerabilities.

Code reviews

Including pair programming and peer reviews, code audits, and automated code scanning.

Wea€™ 11 look at the strengths and weaknesses of both approaches in the next two chapters. Leta€™ s start by
understanding how code reviews fit into Agile development, and how they can be used to find important
problems in development.

Why Do We Need to Review Code?

Code reviews are done for many different reasons:
Governance

Peer reviews can play an important step in change control by ensuring that at least one other person is aware
of and, implicitly or explicitly, approved the code change.

Transparency

Code reviews provide team members with information about what is happening in the project, creating
awareness of how the system works and how it is changing. By shining a light on every change, reviews
also minimize the threat of a malicious insider planting a logic bomb or back door or trying to commit
fraud.

Compliance

Code reviews are required by compliance regulations such as PCI DSS.

Consistency

Code reviews help reinforce coding conventions, style, and patterns across the team.

Learning

Code reviews provide an opportunity for less experienced developers to learn about good practices and
tricks of the trade. Both authors and reviewers can learn from each other.

Sharing

Reviewing each othera€™ s code creates a shared sense of ownership. If reviews are done regularly,
developers become less protective about their code, and more open to change and feedback.

Accountability

Knowing that somebody else is going to look closely and critically at your work encourages developers to
be more careful and thoughtful and take fewer shortcuts, which means better code.

But whata€™ s most important for our purposes is that code reviews are an effective way to find bugs, including
security vulnerabilities , as long as they are done properly.

Types of Code Reviews

There are many different ways to review code:

e Formal inspections

e Rubber ducking (self-review)
e Pair programming

e Peer code reviews

e External code audits

e Automated code reviews

Leta€™ s look at the strengths, weaknesses, and costs of each approach.

Formal Inspections

Formal code inspections are done in meetings by a review team (involving the author of the code, a code reader
who walks through the code, one or more reviewers, and a moderator or a coach) sitting around a table
carefully looking at code printouts or code projected onto the wall. They are still done by some teams,
especially in high-risk, life-critical systems development. But they are an expensive and inefficient way to find
problems in code.

There are several recent studies which prove that setting up and holding formal code inspection meetings
significantly adds to development delays and costs without adding significant value. While it can take hours to
do all the planning, paperwork, and follow up, and weeks to schedule a code inspection meeting, less than 5%
of defects are actually found in the meeting itself. The rest are all found by reviewers looking through code on
their own while preparing for the meeting. '

Rubber Ducking or Desk Checking

The term a€cerubber duckingd€ is based on the idea that if you dona€™ t have anyone else to review your
code, walking through the code and explaining it to an imaginary other person (or a rubber duck) is better than
not reviewing the code at all.

Self-reviews dona€™ t meet governance, compliance, transparency, and information sharing requirements. But
if they are done in a disciplined way, self-reviews can still be an effective way to find defects, including security
vulnerabilities.

In one study on code reviews at Cisco Systems, developers who double-checked their work found half of the
defects that other reviewers found, without any help.

If you can afford to wait a few days between coding and reviewing your own code, you will be more likely to see
your mistakes.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741903168

Pair Programming (and Mob Programming)

Pair programming , where two developers write code together, one at the keyboard driving, and the other
navigating and assisting (like a couple on a road trip), is a fundamental practice in Extreme Programming (XP).
Pair programming provides immediate, continuous code reviews: developers work together closely, share ideas,
look at problems, and help each other write better code. Organizations such as Pivotal Labs are famous for their
success with pair programming.

Pair programming is about joint problem-solving, driving, and navigating toward a solution. [ta€™ s a great
way to bring a new team member up to speed or to debug a tricky problem. Pairing tends to result in cleaner,
tighter code, with clearer abstractions, and fewer logical and functional errors. But unless you are pairing
developers with a security expert or a technically strong experienced developer, pair programming wona€™ t
necessarily result in more secure code.

Pair programming also comes with costs. While two heads are better than one, ita€™ s obviously more
expensive to have two developers working on the same piece of code together. Pairing is also an intensive,
highly disciplined practice, which many people find socially straining, mentally exhausting, and difficult to
sustain. Few developers pair up more than a few hours a day or a few days in a week.

A more extreme version of pair programming is mob programming , where an entire team works together on the
same piece of code, using a single computer. This approach emphasizes collaboration, team problem-solving,
and learning. Only a small number of organizations have had success working this way, but the benefits should
include complete transparency and even better quality code.

Peer Code Reviews

Lightweight, informal peer code reviews are common practice in many Agile and DevOps teams. Organizations
like Google, Microsoft, Facebook, and Etsy all encourage, or insist on, peer reviews before code can be
released to production. Code reviews are also a key part of the workflow for making changes in most large open
source projects, such as the Linux kernel, Apache, Mozilla, and Chromium.

Peer reviews are either done by people sitting side by side (in over-the-shoulder reviews), or by requesting a
code review through email, through a Git pull request, or using a collaborative code review tool like
Phabricator, Gerrit, Review Board, Code Collaborator, or Crucible. Using these tools, reviewersa€”’even in
distributed teamsa<€ ’can share feedback with the author and with each other, comment or annotate code that
should be changed, and open discussion threads. This automatically creates records that can be used for
governance and compliance.

Where peer code reviews are already part of the engineering culture and practices of a team, you can take
advantage of this in your security program by teaching the team to include checking for secure coding practices
and security-related risks and issues.

Code Audits

While pair programming and peer reviews are generally done as part of the day-to-day job of writing code,
code audits are separate and outside of development. In a code audit, an expert security reviewer (or a small
team of reviewers) from outside of the team examines the code base for security vulnerabilities, or at least as
much of the code base as they can within the time allowed. These reviews are often required for compliance
reasons or to manage important risks.

Code audits usually take several days of reviewer time, as well as time from the team to help the reviewer(s)
understand the design and context of the system and the structure of the code, and then more time from the
team to understand what the reviewers found (or think that they found) and to put together a plan to address the
findings.

http://mobprogramming.org/

Code auditors bring specialized security knowledge or other expertise that most developers wona€™ t have.
But because this work can be so mentally fatiguing, and because reviewers usually have limited time and
limited familiarity with the code, they may miss important issues. A successful audit depends on the reviewera
€™ g experience, understanding of the language and technology platform, ability to come up to speed with
what the system does and how it does it, and mental stamina.

Wea€™ [] look more at code audits in ChapterA 12, External Reviews, Testing, and Advice .

Automated Code Reviews

Code scanning tools can be used to automatically review code for bad coding practices, and common coding
mistakes and vulnerabilities. At a minimum, automated reviews using code scanning tools act as a backstop to
manual reviewers, by catching careless and often subtle errors that are hard to see in the code.

We will look at the strengths and weaknesses of automated code reviews in more detail later in this chapter.

What Kind of Review Approach Works Best for Your Team?

To be effective and sustainable in a fast-moving environment, code reviews need to be Agile: lightweight,
practical, inexpensive, and fast.

Formal inspections are rigorous, but they are expensive and too slow to be practical for most Agile teams.

As wea€™ ve seen, getting developers to carefully review their own work can catch bugs early. But self-
reviews do not meet compliance or governance requirements, they dona€™ t provide increased transparency
into changes or help with sharing information and ideas across the team, so this approach will not &€ cedo €
even if it is better than not doing a review at all. Unless of course thered€™ s only one of you.

Code audits sit outside of the development cycle: they are a point-in-time risk assessment or compliance
activity. You cana€™t rely on them as part of day-to-day development.

Pair programming isna€™ t for everyone. People who like it, like it a lot. People who dona€™ t like it, dona
€™t like it one bit. While pair programming is a great way for developers to share ideas and solve hard
problems together, mentor new team members, and refactor code on the fly, it is not necessarily an effective
way to find and prevent security issues.

This leaves peer reviews. Practiced properly, asking team members to review each othera€™ s code is probably
the most effective approach for Agile environments. This kind of review can be done often, in small bites,
without adding significant delays or costs. Wed€™ Il focus on how to incorporate peer reviews into
development, and how to include security checking into peer reviews, in this chapter.

When Should You Review Code?

There are different points in development where you can and should review code: before the code is committed
to the mainline, before code changes are released, and after problems are found.

Before Code Changes Are Committed

The most natural and the most valuable time for code reviews is before the change is committed to the code
mainline. This is how many Agile teams and open source teams, especially teams using collaborative code
review tools like Gerrit, work today.

Modern source code management systems such as Git make this easy to do. In Git, engineers create a pull
request when they want to push code changes to a source repo. The pull request tells the rest of the team about
the change and gives them an opportunity to review and discuss the change before it can be merged. Repo

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch12.html#external_reviews

administrators can enforce rules to require approvals and set other contributing guidelines.

In many environments, enforcing code reviews up front is the only way to ensure that reviews get done at all: it
can be difficult to convince developers to make code changes after they have already checked code in and
moved on to another piece of work.

This is also a good place to add some automated checking. For example, ThoughtWorks has built a pre-commit
tool for teams using Git, called Talisman , which looks for suspicious things in code, like secrets, and blocks the
code from being checked in. You could extend this tool (or build your own) to implement other checks that are
important in your environment.

Gated Checks Before Release

Security and compliance can insist that code reviews are completed at least for certain stories, or for high-risk
fixes before the the code can be considered done. This means that the team cannot move forward and cana€™ t
deploy changes until these reviews have been completed and any issues found during the reviews are resolved.

Your goal should be to work with the team and keep it moving in a safe way. Instead of leaving these checks to
the end as a final check before release, build steps into the teama€™ s workflow so that the security team is
immediately notified when these reviews are required and can do them as early as possible. Force the team to
stop work only when necessary to keep risks under control.

Postmortem and Investigation

Another important time to do code reviews is in a postmortem situation, after a security breach or outage, or if
nasty surprises are found in an external audit or a pen test. We will look more at postmortems and how to do
them properly in ChapterA 13, Operations and OpSec .

A postmortem code review is usually done by senior members of the team and may include outside experts,
depending on how bad the problem was. The goals of these reviews are to ensure that you understand what
went wrong, that you know how to fix it, and to help with root cause analysisa€’to dig deep into why the
problem happened and find a way to prevent problems like this in the future.

There will also be some kind of paperwork required, to prove to somebodya<€”’senior management, auditors,
regulatorsa€’that the code review was done properly, and to document follow-up actions. This can be
expensive, serious work. Make sure that people learn as much as they can from the &€ ccopportunityd€ that a
bad problem presents.

How to Review Code

The team, including security and compliance, the Product Owner, and management, needs to agree on how
code reviews are done.

This includes rules of conduct that guide the team on how to give and accept feedback constructively without
hurting people and pulling the team down.

Giving critical feedback isna€™ t easy for developers. Accepting critical feedback can be even harder. Even if
you are careful not to tell somebody they are stupid or did something stupid, they might take your feedback that
way. Enforce a &€ eeno asshole ruled€: be critical, but polite. Encourage reviewers to ask questions rather than
pass judgments whenever possible. Remember, you are reviewing the code, not the person. Instead of saying, a
€ ;e You should not do X A€ try, &€ e The code should do Y instead of X.a€

Another important rule of conduct is that reviewers must commit to responding to review requests in a
reasonable time frame. This is important in scheduling and to ensure that the team doesna€™ t lose momentum.

https://github.com/thoughtworks/talisman
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch13.html#operational_security

Take Advantage of Coding Guidelines

Coding guidelines are important in Agile teams to support collective code ownership , the principle that
anybody on the team should be able to take on any coding assignment or fix any bug (within his or her ability),
and everyone can refactor each othera€™ s code. In order to do this effectively, the code has to be consistent
and follow a common style and conventions.

The teama€™ s code guidelines should prescribe surface issues like element naming and code indentation and
formatting, as well as more important underlying issues: proper use of frameworks and libraries, auditing and
logging patterns that need to be followed, and banned practices and banned function calls.

There are some good freely available coding guidelines that you can use:

e Googlea€™ s coding guidelines for various languages

e CERT coding standards for C, C++, Java, Android, Java, and Perl
e Microsofta€™ s secure .NET coding guidelines

e Oraclea€™ s Java SE coding guidelines

e OWASP Secure Coding Practices

e Mozillaa€™ s Web Application Secure Coding Guidelines

Even if your team and your code are wildly outside compliance with these guides, ita€™ s worth picking one as
a target and defining a plan to iterate toward that target. This will be easier than trying to create your own guide
from scratch.

By following one of these guides, you should end up with cleaner, more consistent code that is easier to
understand and review, and code that is more secure by default.

Using Code Review Checklists

Code review checklists are an important tool in reviews. But these checklists can be, and should be, short and
focused.

You dona€™ t need a checklist item to tell the reviewer to check whether the code is understandable, or that it
actually does what it is supposed to do. Basic rules of programming or language-specific rules dona€™ t need
to be on a checklist. Automated static analysis tooling, including checkers in the developera€™ s IDE, should
catch these issues.

Checklists are used by airline pilots and ICU nurses and surgeons to remind them about small, but important
things that are easy to forget while they are trying to focus on the main task.

For more on checklists, read Dr. Atul Gawandea€™ s excellent book, The Checklist Manifesto (Metropolitan
Books) .

Use checklists to remind people to look for things that arena€™ t obvious. Remind reviewers to look out for
things beyond code clarity and correctnessa€”’for things that are important, but easy to overlook and forget, and
things that tools wona€™ t find for you. As wea€™ 1l see in this chapter, this should include things like correct
error handling, looking out for secrets in code and configuration, tracing the use of private or sensitive data, and
watching for debugging code or test code left in by accident. Build your checklists up from issues that you find
in production or in pen testing so that you dona€™ t repeat the mistakes of the past.

https://github.com/google/styleguide
http://bit.ly/cert-coding-standards
http://bit.ly/msdn-coding-standards
http://bit.ly/oracle-coding-standards
http://bit.ly/owasp-coding-standards
http://bit.ly/mozilla-coding-standards
http://atulgawande.com/book/the-checklist-manifesto

Dona€™t Make These Mistakes

There are some common mistakes and anti-patterns that you need to avoid when it comes to code reviews:

1. Believing that senior people dona€™ t need their code reviewed. Everyone on the team should follow the
same rules, regardless of seniority. In many cases, senior team members are the ones who take on the most
difficult coding tasks and problem-solving work, and this is the most important code to review.

2. Not reviewing legacy code. A study on the honeymoon effect in software development proves that there is a
honeymoon period after new software features and changes are deployed before attackers have the chance to
understand them and attack them. Most successful attacks are made against code that has been out long
enough for bad guys to identify vulnerabilities and to find a way to exploit them. This is especially the case
for popular third-party and open source libraries and platform code. Once attackers have found a
vulnerability in this code and learned to fingerprint it, the risk of compromise increases significantly. >

So while you need to review changes as they are being made, because it is much easier and cheaper to fix the
mistakes that you find right away, it is still important to look at older code, especially if you have code
written before the team got training on secure development.

3. Relying only on automated code reviews. Automated code scanning tools can help you to find problems in
code and identify where code needs to be cleaned up, but as wea€™ 1l show later, they are not a substitute
for manual code reviews. This is a case of AND, not OR.

Avoiding these fundamental mistakes will help you improve the security and quality of your code.

Review Code a Little Bit at a Time

Another common mistake is forcing team members to review large change sets. Experience backed up by
research proves that the effectiveness of code reviews negatively correlates with the amount of code reviewed.
The more files and lines of code that a reviewer has to look at, the more tired he will get, and the less he will be
able to find.

A reviewer who is forced to look at 1,000 lines of code changes might comment on how hard it is to understand
or how something might be made simpler. But she wond€™ t be able to see all the mistakes that are made. A
reviewer who only has to look at 50 or 100 lines of code will have a much easier job of finding bugs, especially
subtle mistakes. And he will be able to do this much faster.

In fact, research shows that the effectiveness of code reviews starts to drop off after around 200 lines of code,
and that the number of real defects that reviewers find falls off sharply when they are asked to review code for
more than an hour (see the &€ eModern Code Reviewa€ chapter of Making Software [Oa€™ Reilly]).

This is an unavoidable problem in code audits, where auditors need to scan through thousands of lines of code
each day, often for several days at a time. But it should be much less of a concern for Agile teams, especially
teams following continuous integration, because they tend to make small, iterative changes, which can be
reviewed immediately on each check-in.

What Code Needs to Be Reviewed?

The team needs to agree on what code has to be reviewed, and who needs to be involved in code reviews.

In a perfect world, all code changes should be reviewed for maintainability, for correctness, and for security.
This demands a high level of engineering discipline and management commitment.

If you arena€™ t ready for this yet, or cana€™ t convince your management or your customer to give you the
time to review all code changes across the board, you can still get a lot of benefit by taking a pragmatic, risk-
based approach. Most changes in continuous integration are small and incremental, and carry limited security
risk, especially code that will be thrown away quickly when the team is experimenting and iterating through

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741797840

design alternatives.

For many of these changes, you can lean on automated code scanning tools in the developera€™ s IDE and in
continuous integration to catch common coding mistakes and bad coding practices. As wea€™ 1] see later in
this chapter, there are limitations to what these tools can find, but this might be good enough to contain your
risks and help you to meet your compliance requirements (regulations like PCI DSS require all changes to be
reviewed, but also allow for automating code reviews).

But some code, such as the following, needs to be looked at more closely and carefully, because the risk of
making and missing a mistake is too high:

Security features like authentication and access control, crypto functions, and code that uses crypto functions
Code that deals with money, or with private or confidential data

APIs with other systems that deal with money or with private or confidential data

Web and mobile Uls (i.e., big changes or new workflows)

Public network-facing APIs and file imports from external sources (i.e., code that is frequently exposed to
attack)

Framework code and other plumbing

First-of code using a new framework or design approach, until the team gets comfortable with how to do this
properly

Code written by new team members (at least if they arena€™ t pairing up with a more experienced team
member) to make sure that they follow the teama€™ s coding patterns and guidelines

Changes to frameworks or security features or public APIs should also be reviewed in design, as part of threat
modeling, which is discussed in ChapterA 8, Threat Assessments and Understanding Attacks .

HIGH-RISK CODE AND THE 80:20 RULE
The 80:20 rule reminds us that most problems in a system tend to cluster in specific parts of the code:
80% of bugs are found in 20% of the code

Some studies have found that half of your code might not have any bugs at all, while most bugs will be found in
only 104€“20% of the code, likely the 104€“20% of the code that is changing most often. >

Tracking bugs can help you to understand where to focus your reviews and testing. Code with a history of bugs
should also be a strong candidate for careful refactoring or rewriting.

Although it will usually be obvious to the team what code changes carry risk, here are some steps to identify
and track code that should be reviewed carefully:

Tagging user stories for security features or business workflows which handle money or sensitive data.
Grepping source code for calls to dangerous function calls like crypto functions.
Scanning code review comments (if you are using a collaborative code review tool like Gerrit).

Tracking code check-in to identify code that is changed often: code with a high rate of churn tends to have
more defects.

Reviewing bug reports and static analysis to identify problem areas in code: code with a history of bugs, or

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#threat_assessments
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741768656

code that has high complexity and low automated test coverage.

e [ooking out for code that has recently undergone large-scale a€ ceroot canala€ refactoring. While day-to-
day, in-phase refactoring can do a lot to simplify code and make it easier to understand and safer to change,
mayjor refactoring or redesign work can accidentally change the trust model of an application and introduce
regressions.

Netflix has an interesting way to identify high-risk code. It wrote a tool called Penguin Shortbread, which maps
out call sequences for microservices. Services that are called by many other services or that fan out to many
other services are automatically tagged as high-risk dependencies that need to be reviewed.

At Etsy, as soon as high-risk code is identified through code reviews or scanning, its developers hash the code
and create a unit test that automatically alerts the security team when the code hash value has been changed
through a check-in.

Finally, you can make the team responsible for watching out for risks in code, and encourage developers to ask
for a code review whenever they think they need help.

Who Needs to Review Code?

Once you agree on what code needs to be reviewed and when reviews should be done, you need to decide who
needs to be involved in code reviews, and how many reviewers need to be involved.

Can anyone on the team act as a reviewer, or do you need to include somebody who has worked on the code
before, or a subject matter expert? When do you need to get more than one person to review the code?

How Many Reviewers?

Reviews (and pair programming) are based on the reasonable principle that two people will find more problems
than one person can on her own. So if two heads are better than one, why not have more reviewers, and get
even more eyes on the code?

At Google and Microsoft, where theya€™ ve been doing code reviews successfully for a long time, experience
shows that two reviewers seems to be the magic number. Most teams in these organizations require two
reviews, although there are times when an author may ask for more input, especially when the reviewers dona
€™t agree with each other.

Some teams at Microsoft specifically ask for two different kinds of reviews to get maximum value from each of
the reviewers:

1. A review before the code is checked in, focused more on readability and clarity and maintainability

2. A second review (done before or after check-in) to look for risks and bugs

Studies have found that a second reviewer will only find half as many new problems as the first reviewer.
Beyond this point, you are wasting time and money. One study showed no difference in the number of problems
found by teams of three, four, or five individuals, while another showed that two reviewers actually did a better
job than four.

This is partly because of overlap and redundancy. More reviewers means more people looking for, and finding,
the same problems (and more people coming up with false positive findings that the author has to waste time
sifting through). You also encounter a &€ cesocial loafingd€ problem. Complacency and a false sense of security
set in as you add more reviewers: because each reviewer knows that somebody else is looking at the same code,
they are under less pressure to find problems on their own.

But whata€™ s even more important than getting the right number of reviewers is getting the right people to

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741743760

review your code.

What Experience Do Reviewers Need?

A new team member will learn a lot by having an experienced team member review his code, reinforcing his
understanding of how the system and the team work. By reviewing code for other people on the team, a new
developer will gain exposure to more of the code base and learn something about the system. But this is an
inefficient way to learn. And it misses the main point of asking for a code review, which is to find and correct as
many problems with the code as early as possible.

Research backs up what should be obvious: effective code reviews depend heavily on the reviewera€™ s skill
and familiarity with the problem domain and platform, and her ability to understand the code. A study on code
reviews at Microsoft found that reviewers from outside of the team, or who were new to the team and didna
€™t know the code or the problem area, could only do a superficial job of finding formatting issues or simple
logic bugs. Like other areas in software development, the range of individual performance can be huge: top
performers are 10 times more effective in finding problems and providing valuable feedback.

This means that your best, most experienced developers will spend a lot of time reviewing code, and they
should. You need reviewers who are good at reading code and good at debugging, and who know the language,
frameworks, and problem area. They will do a much better job of finding problems and can provide much more
valuable feedback, including suggestions on how to solve the problem in a simpler or more efficient way, or
how to make better use of the language and frameworks. And they can do all of this much faster.

Regulations may also dictate how much experience reviewers require. For example, PCI DSS 6.3.2 requires that
reviewers must be &€ ccknowledgeable in code review techniques and secure coding practices.a€

If you want new developers to learn about the code and coding conventions and architecture, it will be much
more effective to partner them up with an experienced team member in pair programming or pair debugging
exercises than asking them to review somebody elsea€™ s code. If you have to get inexperienced developers to
review code, lower your expectations. Recognize that you will need to depend a lot more on automated static
analysis tools and testing to find real problems in the code.

Automated Code Reviews

Automated static analysis scanning tools should be part of your code review program for the following reasons:

e Automated code scanning is the only practical way to ensure coverage on a large legacy code base and to
provide a level of insight into the security and quality of this code.

e Static scanning can be done on a continuous basis against all of your code. The tools never get sick or tired
of looking for the same kinds of problems and are much more consistent than manual reviewers.

e Unlike human reviewers, good static analysis tools wona€™ t get held up by bad element naming or
indentation or other cosmetic issues.

e While as wea€™ 1] see, automated code scanners may miss finding many important vulnerabilities, they are
good at finding certain bugs that are important for reliability and security. This is especially valuable if you
dona€™ t have strong security skills in-house to do effective manual reviews.

e Automated code review tools are an accepted alternative to manual code reviews in regulations such as PCI

DSS. For many teams this is a practical and cost-effective way to meet compliance requirements.

Some static analysis tools scan byte code or binaries. These are the easiest to set up and get started with,
because you can point the scanner at a deployed package and run it, or upload binaries to a scanning service
like Veracode and let them scan the code for you. This approach is especially useful for checking code that you
dona€™ t have source for.

Other tools scan source code directly, which means that you dona€™ t need to wait to compile the code before
you scan it, and you can scan individual pieces of code or change sets. But in order to get a complete scan of
the system, you need to understand the applicationd€™ s library structures and all the code dependencies.

Automated tools will usually point you to the specific line of code where problems are found (and often
showing you how this statement was reached). Some tools do simple pattern matching or linting, while other
tools build up an abstract model of the application, map out data flows, and walk code execution paths to find
vulnerabilities like SQL injection and cross-site scripting. Because this can take a long time for large code
bases, some analysis engines will save the abstract model, scan only the code that has been changed, and update
the model incrementally.

Code analysis tools can catch common but important coding mistakes and can help enforce good coding
practices, so that reviewers can focus on other important problems. They are generally good at finding the
following issues:

e Sloppy code, including code that is poorly structured, dead or unreachable code, copy-and-pasted code
sections, and code that violates recognized good coding practices.

e Subtle coding mistakes that compilers should catch but dona€™ t: the kind of mistakes that are hard to find
in testing and in manual code reviews, like errors in conditional logic, buffer overflows and memory
corruption problems in C/C++, null pointers in Java.

e Missed data validation and injection vulnerabilities, where programmers fail to check the length of input
strings or pass unsanitized a€cetainted datad€ on to an interpreter such as a SQL database engine or a
browser.

e Common mistakes in security functions like applied crypto (weak ciphers/hash functions, weak keys, weak
random number generators).

e Common configuration problems such as insecure HTTP headers or cookie flags.
These tools should be a part of your code review program, but they shouldnd€™ t be the only part of your code

review program. To understand why, leta€™ s start by looking at the different types of tools and what they are
good for.

Different Tools Find Different Problems

For most environments you have a choice of static analysis tools, designed to look for different problems.

Compiler warnings

Static code analysis should start with checking for compiler warnings. The compiler writers put these warnings
in for a reason. You dona€™ t need to buy a tool to tell you something that your compiler will already find for
you up front. Turn the warning levels up, carefully review the findings, and clean them up.

Code style and code smells

Tools that check for code consistency, maintainability, and clarity (PMD and Checkstyle for Java, Ruby-lint for
Ruby) help developers to write code that is easier to understand, easier to change, easier to review, and safer to
change. They can help to make sure that all of your code is consistent. They will also point out areas where you

could have bad code, including code that doesna€™ t follow safe conventions, and common mistakes in copy-
and-paste, or merge mistakes that could be serious.

But unless you are following a recognized style guide from the beginning, you will need to customize some of
the coding style rules to match your teama€™ s coding conventions.

Bug patterns

Tools that look for common coding bugs and bug patterns (tools like FindBugs and RuboCop) will catch subtle
logic mistakes and errors that could lead to runtime failures or security vulnerabilities.

Security vulnerabilities (SAST)

Tools that identify security vulnerabilities through control flow and data flow analysis, heuristics, pattern
analysis, and other techniques (Find Security Bugs, Brakeman, Fortify) can find common security issues such
as mistakes in using crypto functions, configuration errors, and potential injection vulnerabilities.

These tools are sometimes referred to as A€ @SASTA€ for A€ eStatic Analysis Security Testing, A€ a
classification popularized by Gartner, to differentiate them from black-box &€ ®DASTA<€ tools like ZAP or
Burp, which are used to dynamically scan a running application. We will look at DAST scanning tools in the
next chapter.

Custom greps and detectors

Simple, homemade tools that grep through code looking for hardcoded credentials, unsafe or banned function
or library calls (such as gets and strcpy and memcpy in C/C++, or eval in PHP and Javascript), calls to crypto
libraries, and other things that the security team or the development team want to watch out for.

You can also write your own custom checks using extensions provided by other tools, for example, writing your
own bug detector in FindBugs, or your own PMD coding rule, although only a few teams actually do this.
Catching mistakes as you are coding

You can catch some issues automatically in a developera€™ s IDE, using plug-ins for Eclipse or Visual Studio
or IntelliJ, or the built-in code checkers and code completion features that come with most modern development
toolsets.

These tools cana€™ t do deep data flow and control flow checking, but they can highlight common mistakes
and questionable code as you are working on it, acting like a security spell-checker.

The following are free IDE plug-ins:

e Eclipse plug-ins for FindBugs and Find Security Bugs for Java

e Puma Scan , a Visual Studio plug-in for C#

Other IDE plug-ins for tools like HPE Fortify take results from batch scans done previously and present them to
the developer in the IDE as they are working on those areas of code. This makes it easier for developers to see
existing problems, but they wona€™ t immediately catch any new mistakes.

Vulnerable dependencies

Tools like OWASPAa€™ s Dependency-Check, Bundler-Audit for Ruby projects, or Retire.JS for JavaScript will
inventory your build dependencies and check to make sure that they do not contain any known vulnerabilities.

You can decide to automatically fail the build if the checks find a serious security vulnerability or other issue.
We reviewed these tools in more detail in ChapterA 6, Agile Vulnerability Management .

Code complexity analysis and technical debt metrics

https://marketplace.eclipse.org/content/findbugs-eclipse-plugin
http://find-sec-bugs.github.io/
https://www.pumascan.com/
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch06.html#agile_vulnerability_management

Other tools can be used to report on metrics such as code complexity or other measurements of technical debt,
identifying problem areas in the code (hot spots and clusters) or trends. Mapping code complexity against
automated test coverage, for example, is a way to identify potential risks in the code base.

SonarQube , a popular code quality and security analysis platform, includes a technical debt cost calculator as
well as other code quality and security measurements in its dashboard. It calculates technical debt by assigning
weightings to different static analysis findings (coding best practices, dead code, code complexity, bugs, and
security vulnerabilities) and gaps in test coverage, and calculates the cost of remediating all of these issues in
dollars. Even if you dond€™ t agree with SonarQubea€™ s costing model, the dashboard is useful for tracking
technical debt over time.

What Tools Are Good For, and What Theya€™re Not Good For

Make sure that you and the team members understand what they are getting out of a static analysis tool and
how much they can rely on them.

Some tools are much better at finding some problems than others, and this can depend a lot on your use of
language, frameworks, and design patterns.

There are several good open source and commercial static analysis tools available today for mainstream
languages like Java, C/C++, and C#, using common frameworks like Struts and Spring and .NET, and for other
popular development environments like Ruby on Rails.

But ita€™ s difficult to find good tool support for hot new languages such as Golang or Swift or F# or Jolie,
and ita€™ s especially difficult to find tools that can catch real problems in dynamically typed scripting
languages like Javascript, PHP, and Python, which is where you need the best checking. Most code analyzers
(at least the open source ones) for these languages are still limited to linting and basic checking for good
practices, which helps to make for better code, but wona€™ t ensure that your code is secure or even that it will
run without crashing.

IAST (Interactive or Instrumented Application Security Testing) and RASP (Runtime Application Self-
Protection) are new technologies that offer an alternative to static code analysis. These tools instrument the
runtime environment (for example, the Java JVM) and build a model of the application as it is executing,
inspecting the call stack and variables to identify vulnerabilities in running code.

However, like static code analysis tools, language and platform support varies widely, and so does the
effectiveness of the rules. The quality of coverage from these tools also depends on how thoroughly you exercise
the code in your tests.

A static analysis tool can tell you when code makes unsafe library calls, but it cana€™ t tell you if somebody
forgot to make a call that he should have. Tools can tell you if you made a basic mistake in applied crypto, but
cana€™t tell you if you forgot to encrypt or tokenize sensitive data, or forgot an ACL check, or if the code
accidentally exposes sensitive data in exception handling. Only an experienced human reviewer can do this.

There is important research that can help us to understand the effectiveness, and limits, of automated static
analysis tools.

In one study, researchers ran 2 different commercial static analysis tools against a large application that
contained 15 known security vulnerabilities (found earlier in a structured manual audit done by security
experts). The tools together found less than half of the known security bugs: only the simplest problems, the
bugs that didnA€™ t require a deep understanding of the code or the design. >

http://www.sonarqube.org/
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741660272

The tools also reported thousands of other issues that needed to be reviewed and qualified, or thrown away as
false positives. Some of these findings included runtime correctness problems, null pointers, and resource leaks
that probably needed to be fixed, and code quality issues (dead code, unused variables), but they did not
uncover any other security vulnerabilities.

NIST has run a series of benchmarks to assess the effectiveness of static analysis tools called SAMATE . In its
most recent analysis (2014) NIST tested 14 different static analysis tools on C/C++ and Java code with known
vulnerabilities. This is what was found:

1. Over half of the vulnerabilities were not detected by any of the tools.

2. As the complexity of code increased, the ability of tools to find problems decreased significantly. Many tools
simply gave up. This was also shown in the case of the Heartbleed bug in OpenSSL, which could not be
found by any of the automated code analysis tools available, partly because the code was too complex.

3. NIST also found a significant and disappointing lack of overlap between tools: less than 1% of the
vulnerabilities were found by all the tools. ©

More recently, OWASPa€™ s Benchmark Project was started to create a test suite with known security
vulnerabilities, designed to evaluate the effectiveness of different static analysis and application scanners. This
project scores tools by subtracting false positive findings from true positives. The average score for the
commercial SAST tools that they evaluated was only 26%.

While tools continue to get bettera€’more accurate, faster, easier to understand, and with better support for
more languages and frameworksa€’they cana€™ t replace reviews done by smart people. But they can act as
an effective backstop to manual reviews by catching common mistakes; and, by enforcing good coding
practices and consistency, they can make manual reviews easier and more effective.

Getting Developers to Use Automated Code Reviews

You want to reach a point where engineering teams treat static analysis findings like they do unit tests: when
they check in a change, and a tool reports something wrong, they will fix it immediately, because they have
learned to trust the tool and know that they can rely on it to find important problems for them.

It should be easier to introduce static analysis checking for security vulnerabilities into teams that have already
had good experience with static analysis tools for code quality and have learned to depend on them. Start with
getting the team to use a good bug-finding tool, and the team has accepted it and successfully made it part of its
day-to-day work, introduce security checking.

Dropping off a report on a developera€™ s desk with thousands of static analysis warnings 1sna€™ t going to
get buy in from the team. Try taking an incremental, low-friction approach.

Take some time to understand how the tool works and how to configure the rules and checkers properly. Many
teams rely on the default setup, which is almost never the right thing to do. Some tools come with conservative
defaults, which means that they dona€™ t apply rules and checkers that could be important for your
application. Many other tools want to be as thorough as possible, enforcing checks that arena€™ t relevant and
flooding developers with false positives.

Install the tool and run a set of scans with different rules and settings. Measure how long the scans take, and
how much CPU and memory the tool uses. Review the results, and look for the sweet spot between maximizing
true positive findings and minimizing false positives. Find the rules and checkers that have the highest
confidence. Turn the other rules off, at least to start.

https://samate.nist.gov/Main_Page.html
https://www.owasp.org/index.php/Benchmark
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741652960

CHECK THE RULES IN

Make sure to check in the rules and settings that you are using to a repo so that you can review the rules that were
in effect at any point in time. You may need to show this to an auditor to prove that you arena€™ t just
performing security theater, by trying to get away with checks that are too easy on developers and that miss too
many real problems in the code.

Establish a baseline. Run a complete scan, go over the results with the team, or maybe just a couple of the
strongest developers to start, to explain what the tool can do and show that it works. Then mark everything that
the tool found so that these findings wona€™ t show up in future scans by default. This is security debt that you
will pay off later.

Get the team agree to take a zero bug tolerance approach to any findings moving forward: from this point on, if
the tool finds any serious problems, the team will agree to review them and fix all true positives.

Instead of having to sift through pages of review results, team members will see only a handful of findings each
day, or each time that they check in coded€’however often you decide to run the scanner. This shouldna€™ t
add much to their work, and eventually will become just another part of their day-to-day workflow.

After the team has gained confidence in the tool and learned how to work effectively with the results, it can
schedule time to go back and review and fix the problems found in the baseline scan.

Because of the limited overlap between what each tool finds, to get effective coverage, youda€™ 1l have to use
more than one static analysis tool. This means you youd€™ Il need to go through all of these steps more than
once. While it should get easier each time, be prepared for the costs.

Of course if you take this approach, you will be leaving some bugs in the system and vulnerabilities open for
attack, at least for a while. But now at least you know what the problems are and where they are, and you can
work with the Product Owner and the team and management on a plan to reduce the risks.

Self-Service Scanning

In many large enterprises, code scanning is done by the security team, in what Dr. Gary McGraw at Cigital calls
a a€ escanning factorya€ model. The security team schedules and runs scans across different projects, reviews
and triages the results, and reports the results back to development.

Working this way introduces unnecessary delays in feedback to the team. It can take days to complete the scans,
review the results, and prepare reports. By the time that developers learn about problems, they may have
already moved on to other features, which means that they have to stop what they are working on, switch back
to their earlier work, restore the context, find the problem, fix it, test it, build it, and then switch back again.
This is the kind of waste that Agile and Lean methods are intended to avoid.

Another disadvantage of this model is that it makes scanning &€ cesomebody elsea€™ s problem,a€ taking
away any sense of ownership from the developers.

A more effective, more scalable, and more Agile way of working is to make code scanning available to
developers on a self-service basis while they are working, in ways that make natural sense to them.

Instead of choosing standardized tools that are convenient for the security team to use across multiple projects,
let the team choose tools that work best for its specific needs and that fit into its workflows.

The first place to include self-service scanning is in each developera€™ s IDE, using plug-ins or the IDEA€™ s
built-in rules to check for problems as they are coding, or when they save changes or compile code in their IDE.
[ta€™ s especially important to have high-confidence, high-impact rules in place here, rules that highlight real
problems; otherwise developers will quickly learn to ignore all alerts and highlighting.

But keep in mind that therea€™ s no visibility to the rest of the team at this point into what problems were
found, and no way to prove that developers are fixing these problems up front. So you will still need to add
incremental code analysis and fast code scanning each time that the code is built, to catch any problems that
might get past.

Most scanning tools have APIs that you can use to push results directly back into each developera€™ s IDE or
automatically create bug reports in backlog tracking tools like Jira or VersionOne. Or you can use one of the
application vulnerability management tools that we looked at in ChapterA 6 to help with this.

If you want developers to take the results of scanning seriously, you have to provide them with actionable
feedback, highlighting real problems that they need to fix. Any time that a developer spends chasing down false
positives or findings that arena€™ t relevant to her project is time wasted. If too much time gets used up this way,
you will lose her cooperation, and her managera€™ s support.

Try to be ruthless when making trade-offs between completeness against speed and accuracy of results. Keeping
the feedback loop tight and high fidelity is generally more important than completeness in continuous integration
or continuous delivery.

As part of the feedback loop, make it simple for developers to report back when they see false positives or noise.
Twitter provides a &€ cebullshita€ button which allows developers to report and suppress false positive findings.

Self-service, fast-feedback scanning requires tools that run quickly, and that provide clear context for each
finding so that developers dona€™ t need a security experta€™ s help to understand what the problem is, how
serious it is, where it was found, how it was found, or how to fix it.

If you have the resources, you can still run deep, full code scans out of band in your security scanning factory,
review and qualify the results, and feed them into the development backlog to get fixed. While this could take
hours or days to run on large code bases, these scans should only pick up a small number of important
exceptions that make it through the earlier, faster, high-certainty checking in development. So the cost of
reviewing these issues and the impact on the teama€™ s velocity to come back and deal with them should be
minimal, and the risk of missing an important problem should be low.

Reviewing Infrastructure Code

Todaya€™ s systems are built using automated programmable configuration management tools like Ansible,
Chef, Docker, and Puppet. Chef recipes, Puppet manifests, Ansible playbooks, Dockerfiles, and AWS
CloudFormation templates should follow the same life cycle as your other code, from check-in, manual review,
automated build checks, lint checks and other static analysis checks, and automated unit and integration and
acceptance testing.

Code reviews for recipes and playbooks are done for many of the same reasons as application code:

¢ Ensure that all changes to system configuration have been checked by at least one person (governance).
e Check for maintainability and compliance with code conventions.

e Check for correctness.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch06.html#agile_vulnerability_management

e Make sure that test configurations are not accidentally pushed to production.

¢ Enforce operational and security policies.

Reviewers can use the same code review methods, workflows, and code review tools that application
developers use, such as Gerrit or Review Board. They should pay attention to style and structure problems,
proper separation of code and data, reuse, and readability. Reviewers should also check to make sure that there
are good tests written for each module. But most important, they should be on the lookout for configuration
mistakes and oversights that could leave the system vulnerable to attack.

Engineers cana€™ t lean too heavily on static analysis tools for this type of code. Tools like Foodcritic for Chef
or Puppet-lint for Puppet do basic syntax checks and look for common coding mistakes, which is important in
these scripting languages, where you want to find problems before runtime. Out of the box they wona€™t find
serious security issues for you. You will need to write your own custom rules to do this. ’

Wea€™ 11 look more at how and where security comes in when working with these tools in ChapterA 13,
Operations and OpSec .

Code Review Challenges and Limitations

There are a lot of coding problems that a good reviewer will catch, if she has the skills and time. A good
reviewer will find logical mistakes and oversights that automated code scanning tools and testing will often
miss, such as the following:

¢ Inconsistencies (the author changed a , b , and d , but forgot to change c).
e Common coding mixups, like using < instead of < = or sometimes even > in comparisons.
e Off-by-one errors.

e Using the wrong variables in calculations or comparisons (buyer when they should have used seller).

Code reviewers can also find mistakes or weaknesses in design as they read through the codea€”if they know
the system design well. But as we discussed in ChapterA 8, Threat Assessments and Understanding Attacks ,
separate reviews should be done at the design level to examine trust assumptions, threats, and protection against
threats.

[ta€™ s easy for code reviewers to find test or debugging code left in by accident, and they are likely to trip on
redundant code and checks that dona€™ t seem to be necessary, and other signs of copy-and-paste or merge
mistakes.

Code reviews are probably the best way to find concurrency and timing problems (threading, locking, time of
check/time of use), and mistakes in cryptography. As wea€™ 1l see later, theya€™ re probably the only way to
find back doors and time bombs.

But experience and research show that instead of finding bugs, reviewers end up spending most of their time
finding and reporting problems that make the code harder to understand and harder to maintain. They get held
up on things like poor element naming, misleading or missing comments, poorly structured code, and dead and
unused code. ®

There are some good reasons that code reviews dona€™ t find as many bugs as they should:

e Reviews take time to do properly.

e Understanding somebody elsea€™ s code is hard (especially in complex or diverse technical environments,
or large code bases).

¢ Finding security vulnerabilities in somebody elsea€™ s code is even harder.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch13.html#operational_security
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch08.html#threat_assessments
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741599408
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741578128

Leta€™ s look at each of these issues in some more detail.

Reviews Take Time

First, it takes time to review code properly. The team, including and especially the Product Owner, as well as
management, all need to understand that code reviews will take up a significant part of each developera€™ s
day, and that waiting for code reviews will slow down delivery.

At an organization like Microsoft, developers spend on average between two and six hours a week reviewing
code changes. Developers wait a day on average for code review feedback. But in some cases, reviewers may
take days, or even weeks, to get back with their findings. These code changes cana€™ t be checked in to the
mainline, cana€™ t be tested, and cana€™ t be factored into delivery timelines.

So it is critical that teams build up the discipline and a collaborative and supportive culture, ensuring that
everyone is prepared to step up and help other team members by getting their reviews done. And it is even more
important that they have the discipline to take reviews seriously, and are willing to put the necessary work in to
do a good job. Because, as wea€™ 1l see, doing code reviews properly isna€™ t easy.

Understanding Somebody Elsea€™s Code Is Hard

One of the main reasons that reviewers dona€™ t find as many bugs as they should or could is because in order
to find problems, they need to understand what the code does and how and why it was changed.

Understanding all of this takes most of a reviewera€™ s time, which is why most review comments are about
readability (naming, commenting, formatting) and how to make code simpler or clearer, instead of about more
fundamental problems.

This is where code analysis tools that focus on enforcing coding style and conventions can help, by making code
cleaner and more consistent.

If reviewers arena€™ t familiar with the code, they will also need to read more code to establish context, which
means that they may run out of time before they can find anything materially wrong.

This is another reason why ita€™ s important to have code reviews done by experienced team members. People
who have worked with the code beforea€”’changed it themselves or reviewed it previouslya€”’have a clear edge
over someone who has never seen the code before. They can work much faster, and provide more effective
feedback.

Finding Security Vulnerabilities Is Even Harder

Finding functional or logical defects in somebody elsed€™ s code is hard, as wea€™ ve seen. A reviewer has to
understand the purpose of the change, the context, and understand the code well enough to find mistakes in
implementation or logic errors.

Finding security vulnerabilities is even harder. You start off with the same challengesa€”’the need to understand
the purpose and context, the structure and the coding style, and so ond€”and the reviewer also needs to
understand secure coding and what to look out for.

Leta€™ s look at some more research to see how hard reviewing for security vulnerabilities really is.

In a 2013 study, 30 PHP developers (including some security experts) were hired to do independent manual

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741563344

security code reviews of a small web app with 6 known vulnerabilities. The reviewers were given 12 hours to
complete the reviews, and were not allowed to use static analysis tools.

None of the reviewers found all the known bugs (although several found a new XSS vulnerability that the
researchers hadnd€™ t known about), and 20% of the reviewers didna€™ t find any vulnerabilities at all.
Reviewers with more coding experience didna€™ t necessarily find more security bugsa€”’because even

experienced developers donA€™ t always understand what to look for in a security code review. '

We can see how difficult, and how important, code reviews are in security by looking closely at one of the most
high-profile security vulnerabilities of the past few years: the OpenSSL Heartbleed vulnerability. This critical
weakness in SSL handshaking was caused by not checking for a buffer over-read in C, a simple, low-level
coding mistake.

What was surprising was that even though the original change was reviewed by someone who had worked on
the OpenSSL code before, and the code was open source and available to anyone to read, it took more than two
years before a security team at Google found the bug in a code audit. !

The author of the change, the original reviewer, several static analysis tools, and almost everyone in the open
source community who downloaded and used the code all missed the bug because the code was simply too
complicated to understand, which also meant that it was too complicated to change safely. This should never be
the case for security-critical code.

Understanding code, making it simpler and cleaner and clearer, emphasizing coding guidelines and continuous
refactoring, isna€™t just about making code easier to change for the next person. [ta€™ s also about making
the code more secure.

Adopting Secure Code Reviews
What should you expect from secure code reviews? How can you make them effective?

Introduce secure code reviews into a team in a low-overhead, incremental way. Work inside of Agile practices,
and work in an Agile way. Start with small steps and keep reinforcing good ways of working. Continuously
learn and improve. It takes time to change the way that people think and worka€”’but this is what Agile and
Lean development is all about.

Build on What the Team Is Doing, or Should Be Doing

If the team is already doing pair programming or peer reviews, help it understand how to include security in
reviews, using the guidance in this book. Work with managers and the teama€™ s Product Owner and Scrum
Master to make sure that the team members are given enough time to learn, and time to learn about security as
they are working.

Make sure developers are trained in the fundamentals of secure coding, so that they will write safer code, and
so that they know what kinds of problems to look for when they are reviewing code. Take advantage of
SAFECodea€™ s free training courses and public information from OWASP. Be practical when it comes to
training. You dona€™ t need to train everyone on the team on the low-level details of how to do encryption
properly. But everyone needs to understand when and how to correctly call crypto functions.

Dona€™ t rely on reviews by inexperienced team members. Insist on experienced, qualified reviewers,
especially for high-risk code.

If the team isn@€™ t doing pair programming Or peer reviews:

¢ Find people that the team trusts and respects, senior developers who care about writing good code and who
like to take on challenges.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741556928
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741552624

e Do everything you can to convince these people (and their managers) that it is an important and valuable use
of their time to review code, starting with high-risk framework code and security features.

e Make sure that they have the information and training to know what problems to look for.

e If you work in a regulated industry, use compliance as a stick, if you have to.

Make code reviews as easy as possible

Introduce static analysis into the team, using some of your security budget, to help developers write better code.
If you dona€™ t have a budget for tools, take advantage of the open source alternatives mentioned earlier.
Follow the guidelines that wea€™ ve already laid out on how to get engineers to use these tools effectively.

If the team is using a collaborative code review platform like Gerrit or Review Board, take advantage of the
teama€™ s workflows and the data that collected, to:

e Ensure that high-risk code is being reviewed.
e Spot-check reviews to ensure that they are being done responsibly.
e Use the comment information as an audit trail for compliance.

e Feed static analysis results back into code reviews as comments, to help reviewers find more problems.

Build on collective code ownership in Agile

If the code is open to anyone on the team to review or work on, make your security people part of the team.
This means that they shouldna€™ t need a reason to look at code to find problems. And, if they know what they
are doing and are trusted by the rest of the team, they shouldna€™ t need permission to fix vulnerabilities
either, as long as they follow the teama€™ s conventions and workflows.

Make sure that reviewers also look at tests, especially for high-risk code. Code without tests is dangerous code
that could be broken. If you care about the reliability and security of code, you need to check on the quality and
coverage of automated tests, and ensure that negative tests are being written. Wea€™ Il look at this more in

ChapterA 11, Agile Security Testing .

And if you care about the long-term sustainability of the system, you should also review tests to make sure that
they are reasonably well-written, understandable, and maintainable.

Refactoring: Keeping Code Simple and Secure

Code that is clean and clear and consistent is less likely to have bugs (including security bugs) and easier and
safer to change and fix. And much easier to review: if reviewers cana€™ t understand the code, they will waste
time trying to figure out what is going on. And they will miss the opportunity to find bugs.

This is why, for example, post-Heartbleed, the OpenSSL team spent months reformatting the code and deleting
unused code and doing other simple cleanup work. The team needed to do this before it could take on more

important, and more fundamental improvements. 1>

Fortunately, many Agile teams, especially teams following Extreme Programming, understand the importance
of writing clean code and enforcing consistent coding guidelines. If you are working on one of these teams,
your job as a reviewer will be much easierd€”and more valuable.

If not, you should encourage the team to take advantage of refactoring, another common Agile practice.
Refactoring a€”a well-defined, consistent set of patterns and practices for cleaning up and restructuring code in

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#agile_security_testing
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741519616

small, incremental stepsa€”is built in to most modern IDEs. Developers can rename fields and methods and
classes, extract methods and classes, change method signatures, and make other, more fundamental structural
changes safely and predictablya€”especially if they have a good regression test safety net in place, something
we will look at more in the next chapter.

For more on writing clean code and how to do refactoring, there are a few important books that all developers
should read:

1. Clean Code, a Handbook of Agile Software Craftsmanship by Bob Martin (Prentice Hall)

2. Refactoring: Improving the Design of Existing Code by Kent Beck and Martin Fowler (Addison-Wesley
Professional)

3. Working Effectively with Legacy Code by Michael Feathers (Prentice Hall)

Using refactoring tools in their IDEs, reviewers can do their own quick-and-dirty, throwaway a€ cescratch
refactoringd€ until they understand the code better, suggest refactorings in review comments, or submit
refactoring changes in a separate patch back to the author. But if reviewers need to reformat code in their IDE
or refactor the code before they can review it, the team is doing something wrong.

Fundamentals Will Take You a Long Way to Secure, Safe Code

If you can get past the point of understanding, either because the code is clean, or because you cleaned it up
yourself, or because you have worked with it enough that you can make sense of it, then you can start to review
what the code actually doesa€or doesna€™ t do.

As part of code reviews, even without a strong understanding of secure coding, reviewers can also look out for:

1. Hardcoded passwords or other credentials, hardcoded paths, hardcoded magic numbers, and other hardcoded
things which could be dangerous.

2. Test code or debugging code left in by accident.

3. Ensuring that sensitive data is encrypted or tokenized or otherwise handled safelya€”whether encryption is
done properly is a security specialist problem, but whether it is done at all is a business problem that can be
handled by anyone on the team who is familiar with the requirements.

4. Mistakes in error handlingd€”good error handling is another part of defensive programming, and because
error handling is hard to test and rarely tested, it is important to check that errors will be handled properly
during code reviews.

5. Access control checks, making sure that they are applied and maintained correctly and consistently. Who can
do what or see what in the system are business rules, not a security problem for expensive pointy-hat
security wizards.

6. Consistent auditing for add/change/delete actions.

7. Consistent use of approved frameworks and standard librariesa€ especially when dealing with security
functions like crypto or output encoding.

8. Thread safety, including time-of-check/time-of-use and deadlocks: these problems are hard to find in testing,
so it is particularly important to look out for concurrency and timing and locking problems in code reviews.

None of the things in the list requires specialized security knowledge. You dond€™ t need to bring in a security
auditor to make sure that your team is writing clean, solid, and safe defensive code.

ALL INPUT IS EVIL

When it comes to security, the most important thing that reviewers need to look out for is making sure that data is
safe to be used. Michael Howard at Microsoft, coauthor of Writing Secure Code (Microsoft Press), said that if
there was one rule that developers should follow, it is to understand that &€ ceall input is evil.a€

Checking that data is validated for type, length, and range of values is part of defensive programming. [ta€™ s
tedious, but every developer should have learned how important it is, either in school or through painful
experience when he had to troubleshoot a crash or a breach. Luckily, this is one of the areas where static analysis
tools can help: tools that do taint analysis and data-flow checking can catch missing validation checks.

But data validation isnd&€™ t enough to make modern web or mobile applications secure, because the fundamental
technology that we rely on to get things done, web browsers and database engines and XML interpreters, have
problems clearly differentiating between instructions and data. This is something that attackers have learned to
take advantage of in cross-site scripting attacks and SQL injection and other dangerous attacks.

In addition to data validation, you also need to encode or escape data, or otherwise template it, to make it safe for
a browser or before writing it to a database. Using Prepared Statements in SQL will prevent SQL injection by
clearly laying out the commands from the data variables. Modern web frameworks like Angular.js, Ember, React,
Rails, and Play provide some built-in protection for XSS and other injection attacks, as long as you use them
properlya€”and as long as you make sure to keep the frameworks up to date if vulnerabilities are reported.

For defense-in-depth protection, you can also take advantage of secure HTTP headers such as Content Security
Policy (CSP). Check out the Secure Headers that Twittera€™ s engineering team has contributed at:
https://github.com/twitter/secureheaders .

Reviewing Security Features and Controls

Reviewing security features and controls is much harder than reviewing the rest of the application code. To find
problems, reviewers need to understand the nuts and bolts and screws of security, as well as how to read the
code. Luckily, this is code that isna€™ t changed much, and if you are doing things properly, most of this
should be done using the built-in security capabilities of your web framework or mobile framework, or special-
purpose security libraries like Apache Shiro or Googlea€™ s KeyCzar crypto toolkit .

Probably the best reference for a security code review checklist is OWASPa€™ s ASVS project . Although
ASVS is designed as an auditing tool, you can pull checks from it to ensure that reviewersa€”and codersa
€”have covered all of the important bases, especially for security controls. Skip the boring parts up front about
auditing yadda yadda and go straight to the checklists.

Leta€™ s look at how to use the ASVS to guide code reviews for important security functions and
considerations. In the authentication section, ASVS lists a number of things to look out for, including the
following:

e All pages and other resources require authentication by default, except for those made public to anonymous
users.

e Password fields do not echo the usera€™ s password when entered.
e All authentication controls are enforced on the server, not just on the client.

e Authentication code fails securely to ensure that attackers cannot log in if there is an error (i.e., that access is
denied by default, and only granted if all the steps pass).

https://github.com/twitter/secureheaders
http://shiro.apache.org/
https://github.com/google/keyczar
http://bit.ly/owasp-asvs

e All suspicious authentication decisions are logged.

ASVS covers session management, access control, handling of malicious input, cryptography at rest, error
handling and logging, data protection, communications security, and more.

Reviewing Code for Insider Threats

The threat of a malicious insider planting a time bomb or a Trojan or some other malcode into your system, or
tampering with application logic to commit fraud, is relatively low, but it is still real.

Fortunately, reviewing code to prevent honest mistakes can also help you to catch and contain many insider
threats. Whether it is accidental and foolish, or deliberate and evil, you look for many of the same things, what
Brenton Kohler at Cigital calls &€ cered flagsa€: '3

1. Small, accidental or (accidental-seeming) mistakes in security functions, including authentication and
session management, access control, or in crypto or secrets handling.

As Bruce Schneier points out, trivial, but highly damaging mistakes, like Applea€™ s a€cegoto faila€ bug
in SSL, could be a cause for concern:

a€,eWas this done on purpose? I have no idea. But if I wanted to do something like this on purpose, this is
exactly how I would do it.a€ '4

2. Support back doors (or things that could be used as back doors), such as hardcoded URLSs or IPs or other
addresses, hardcoded user IDs and passwords or password hashes or keys in the code or in configuration.
Hidden admin commands, hidden parameters, and hidden runtime options.

While code like this is often intended for production support and troubleshooting purposes (or left in
accidentally after debugging and testing), it could also be used for malicious purposes. In any case, back
doors are potentially dangerous holes that could be exploited by attackers;

3. Test code or debugging code or diagnostics.
4. Embedded shell commands.

5. Logic errors in handling money (for example, penny shaving), or mistakes in risk limits or managing credit
card details, or in command and control functions, or critical network-facing code.

6. Mistakes in error handling or exception handling that could leave the system open.
7. Missing logging or missing audit functions, and gaps in sequence handling.

8. Code that is overly tricky, or that just doesna€™ t seem to make sense, especially if it involves time-based
logic, crypto, or any high-risk functions. A malicious insider is likely to take steps to obfuscate what they are
trying to do. It should be obvious by now that even if code like this isna€™ t intentionally malicious, you
dona€™ t want it in your system.

9. Self-modifying codea€for the same reasons as above.

If you are concerned about potential collusion between developers, you can regularly rotate reviewers, or assign
them randomly, and spot-check reviews to make sure that the team is taking this seriously. If the stakes are high
enough, you could hire eyes from outside to audit your code, like the Linux Foundation Core Infrastructure
Initiative is doing, paying experts to do a detailed audit of OpenSSL, NTP, and OpenSSH.

You also need to manage all the steps from check-in through build and test to deployment, to ensure that you
are deploying exactly what developers checked in and built and tested, and that nothing has been tampered with
along the way. Take the steps that we outlined in ChapterA 13, Operations and OpSec to lock down your repos
and build pipelines. Carefully manage secrets and keys. Use checksums or digital signatures and change

https://en.wikipedia.org/wiki/Salami_slicing
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch13.html#operational_security
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741461936
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741457168

detection tools like OSSEC to watch out for unexpected or unauthorized changes to important configs and code.

But you should be doing all of this anyway. These controls will minimize the risk of insider attacks, and will
also help you to catch attackers who somehow compromised your network and your development or build
environment.

Key Takeaways

Code reviews can be a powerful tool for catching security vulnerabilities early, as long as they are done
properly:

Code reviews need to be done in ways that dona€™ t hold the team up. Forcing reviews through the security
team will create a bottleneck that developers will try to work around.

Peer reviews before code is checked in to the mainline, using Git pull requests or a similar workflow, are
probably the most effective way to ensure that code reviews actually get done.

The security team only needs to get involved in reviewing high-risk security functions and framework codea
€”code that should rarely change.

Code review tools like Gerrit or Review Board or Phabricator can automatically enforce consistent
workflows, and make reviews easier and more transparent, especially in distributed teams. Team members
can see and build on each othera€™ s feedback, and the electronic record that these tools create will make
auditors happy.

Reviewing code takes time and is mentally exhausting. Reviews are more effective if they are done in small,
frequent bitesa€ ’luckily, this is the way that most changes are made by Agile teams.

Train developers in secure coding and provide brief checklists so that they understand what to avoid in
coding, and what to look for in code reviews.

Developers need to feel safe in reviews: safe to ask for feedback, safe to provide feedback, safe to ask
questions when they dond€™ t understand. Make sure reviewers focus on the code, not the coder.

Code reviews are a powerful opportunity for continuous learning and improvement. Use feedback from code
reviews to improve the teama€™ s coding guidelines and templates, and share what they learn in code
reviews during team retrospectives.

Everyonea€™ s code should be revieweda€ ”including, and especially, senior team members, because they
most often take on the harder, and riskier, coding problems.

Help the team to identify high-risk code (tag high-risk stories in Jira or Pivotal Tracker or other story
tracking tools), and make sure that this code is carefully reviewed by one or more experienced developers.

Code needs to be reviewed even if it was developed through pair programming, because reviews tend to find
different problems than pairing.

Automated static code analysis tools are not a substitute for manual reviews. This is a case of AND , not OR
. Take advantage of static analysis tools to enforce good coding guidelines, and to catch insecure
dependencies and dangerous functions and common coding mistakes. Running these checks before
reviewers see the code will make code reviews easier, faster, and much more effective.

While automated static analysis tools look like a cheap and easy way to ensure that code gets reviewed (at
least if you are using open source tools), they are not plug and play. You need to implement them carefully
and correctly, and work with developers so that they understand what the tool does and buy in to using it
consistently.

Because these tools all look for different problems or work in different ways, to get good coverage you will

need to run more than one tool against the code.

e Developers hate false positives. Take time to understand and tune static analysis tools so that they provide
efficient and reliable feedback.

e Make static analysis checking available to developers on a self-service basis. Provide static analysis on the
desktop so that developers can catch problems in the IDE as they are coding, and wire static analysis
checking into CI/CD build pipelines.

e Dona€™ t forget to review configuration directives and tests: this is an important part of your code base, and
needs to be treated like other code.

Code reviews and static analysis checking need to be part of the teama€™ s Definition of Done: the contract
between team members that determines when features or fixes are complete before they can move on to the next
piece of work. The team needs to agree on what code will be reviewed (all code changes, or only high-risk
code), how many reviewers need to be involved, when code reviews are done (before the code is checked in or
after), what automated code review tools will be run in continuous integration, and how to deal with the
findings.

I'See the article by Lawrence G. Votta, Jr., A€ eDoes every inspection need a meeting?4€ , 1993.

2 See the report by Rebecca Gelles, #4€eThe Unpredictable Attacker: Does the 4 Honeymoon Effecta€™
Hold for Exploits?a€ , 2/6/2012.

3 See the report by Forrest Shull, et al., A€ eWhat We Have Learned About Fighting Defectsi€ .

* Chris Sauer, D. Ross Jeffery, Lesley Land, and Philip Yetton, &€ eThe Effectiveness of Software
Development Technical Reviews: A Behaviorally Motivated Program of Researchd€ , IEEE Transactions on
Software Engineering , Vol 26, Issue 1, January 2000: 1-14.

> James A. Kupsch and Barton P. Miller, #4€eManual vs. Automated Vulnerability Assessment: A Case Studya
€ (2009).

6 Aurelien Delaitre, Delaitre, AurA©lien, Bertrand Stivalet, Elizabeth Fong and Vadim Okun. &€ eEvaluating
Bug Findersa€%0a€”a4€ %o Test and Measurement of Static Code Analyzers.a€ , 2015 IEEE/ACM st
International Workshop on Complex Faults and Failures in Large Software Systems (COUFLESS) (2015): 14-
20.

7 For an example of security checks that you could add, see this plug-in for puppet-lint:
https://github.com/floek/puppet-lint-security-plugins .

8 Mika V. Mantyla and Casper Lassenius, 4€ceWhat Types of Defects Are Really Discovered in Code Reviews?
a€ , IEEE Transactions on Software Engineering , Volume 35, Issue 3, May 2009: 430-448.

) Amiangshu Bosu, Michaela Greiler, and Christian Bird, € ceCharacteristics of Useful Code Reviews: An
Empirical Study at Microsofta€ , Proceedings of the International Conference on Mining Software
Repositories, May 1, 2015.

10 Anne Edmundson, et al., A€ e An Empirical Study on the Effectiveness of Security Code Reviewa€ , ESSoS
(2013).

""David A. Wheeler, A€ ceHow to prevent the next Heartbleeda€ , 2017-01-29.
12 Matt Caswell, a€eCode Reformat Finisheda€ , OpenSSL Blog, Feb 11th, 2015.

13 Brenton Kohler, &€ eHow to eliminate malicious code within your software supply chaind€ , Synopsys,
March 9, 2015.

14 Bruce Schneier, A€ Was the 10S SSL Flaw Deliberate?a€ , Schneier on Security, February 27, 2014.

http://dl.acm.org/citation.cfm?id=167070
http://dreuarchive.cra.org/2011/Gelles/rdreureport.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7165&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=331521
http://pages.cs.wisc.edu/~kupsch/va/ManVsAutoVulnAssessment.pdf
http://bit.ly/eval-bug-finders
https://github.com/floek/puppet-lint-security-plugins
http://dl.acm.org/citation.cfm?id=1592371
https://www.microsoft.com/en-us/research/publication/characteristics-of-useful-code-reviews-an-empirical-study-at-microsoft
https://www.cs.princeton.edu/~annee/pdf/coderev-essos13.pdf
http://www.dwheeler.com/essays/heartbleed.html
https://www.openssl.org/blog/blog/2015/02/11/code-reformat-finished/
https://www.synopsys.com/blogs/software-security/eliminate-malicious-code-from-software-supply-chain
https://www.schneier.com/blog/archives/2014/02/was_the_ios_ssl.html
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741903168-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741797840-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741768656-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741743760-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741660272-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741652960-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741599408-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741578128-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741563344-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741556928-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741552624-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741519616-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741461936-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch10.html#idm139712741457168-marker

Chapter 11. Agile Security Testing

One of the most fundamental changes in Agile development is in how testing is done. Because Agile teams
move so fast, testing relies heavily, and often exclusively, on automation. If you are delivering working
software every week, or if youd€™ re pushing each change to production immediately in continuous
deployment, manual testing isna€™ t a viable option.

Throwing code over to an independent test team at the end of a sprint is an anti-pattern in Agile. Testing has to
be done in phase as changes are made. Hardening sprints, where the team blocks off time to focus on testing,
debugging, and patching the code before it can be deployed to production, is another practice that most modern
teams avoid.

Organizations that depend on independent test teams for quality assurance, and on manual penetration testing
gates or scheduled scans or audits for security, need to change the way that they think and work.

How Is Testing Done in Agile?

In many Agile and DevOps teams, there are no testers. Developers take on the responsibility for testing their
own code, because they have to. The Product Owner or someone else on the team playing the role of the &

€ cecustomera€ may write acceptance test scenarios using tools supplied by the team. But developers are
responsible for writing all the other tests and making sure that they pass. Testing becomes an integral part of
coding, instead of a separate Waterfall phase.

HOW ROLES AND RULES ARE CHANGING IN AGILE TESTING

The roles of developers and testers have changed significantly with rapid, incremental Agile developmenta
€”and are continuing to change as teams adopt continuous delivery and other DevOps practices.

If you are interested in learning more about these changes and what they mean to developers, project
managers and especially to testers, and how to get the most out of testing in Agile environments, read
Agile Testing: a Practical Guide for Testers and Agile Teams and More Agile Testing: Learning Journeys
for the Whole Team , both by Lisa Crispin and Janet Gregory (Addison-Wesley Professional).

Because developers are constantly making iterative changes to code as they run experiments, refactor, and
respond to feedback, they need to protect themselves from accidentally breaking existing system behavior. They
do this by building up a safety net of automated regression tests which they will run several times each day.
These tests must be:

e Cheap and easy for the team to run often
e Fast and efficient so that the team will run them often

e Repeatable and predictable so that the team can rely on the results

The same requirements apply to security testing. Security tests need to be fast, repeatable, efficient, and
automated as much as possible. As much as possible, security testing should fit into engineering workflows like
the other testing that the team is doing, without causing unnecessary delays or adding unnecessary costs.

If You Got Bugs, Youa€™Il Get Pwned

We know that there is a strong connection between code quality and security. The more bugs you have, the
more security problems you will have.

Research has found that up to half of software security vulnerabilities are caused by simple coding mistakes.
Not design oversights or misunderstanding security black magic. Just silly, sloppy things like copy-and-paste or
merge errors, not checking input parameters, bada€”’or noa€ error handling, brackets in the wrong spot.

Carnegie Mellona€™ s Software Engineering Institute has found that between 1% and 5% of all software
defects are security vulnerabilities. ! This means that you can get a good idea of how secure your application is,
based on how many bugs there are in your code.

Given that most software has somewhere between 15 and 50 bugs in every 1,000 lines of code (this is even
after the code has been reviewed and tested), a small mobile application or web application with, say, 50,000
lines of code could easily have over 100 vulnerabilities. > Remember that almost all modern applications
contain a lot of open source code, so even if you are doing everything right when it comes to writing secure
code, you cana€™ t be sure that all the open source contributors were as careful, so you should lean toward an
even higher number of vulnerabilities. Software quality problemsa€”’and security riska€ ”increase significantly
with the size of the code base. Large systems have much higher defect densities, which means these systems are
increasingly more vulnerable.

Many high-profile security vulnerabilities, including Heartbleed and the Apple € ;egoto faila€ (EX1-A) SSL
bugs, were caused by coding mistakes that could have and should have been caught in code reviews or through
disciplined unit testing. No security wizardry required. Just solid defensive coding and close attention to
testing.

Example 11-1. Apple Goto Faild€ ican you spot the bug?

static
0SStatus

SSLVerifySignedServerKeyExchange
SSLContext
*
ctx

bool
isRsa

SSLBuffer
signedParams
uint8_t
*

signature

UIntié
signaturelLen

)

0SStatus
err

((

err

SSLHashSHA1

update

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#idm139712741390544
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#idm139712741388224

fail

goto
if

goto

goto
if

goto
SSLFreeBuffer

(
&

hashCtx

E

&
serverRandom

).
)
)

fail

3

((

err

SSLHashSHA1

update

(
&

hashCtx

s

&
signedParams

i
)
)

fail

3

fail

3

((

err

SSLHashSHA1

%inal

(

&
hashCtx

3

&
hashOut

).
]
)

fail

3

(
&

signedHashes

);

SSLFreeBuffer

(
&

hashCtx
)s

returm
err

[ta€™ s clear that your teama€™ s security program needs to build on its quality program, on the reviews and
testing that are already in place, or that should be put into place. Leta€™ s look at the structure of how testing is
done in Agile development, and where security needs to be considered.

The Agile Test Pyramid

We introduced the Agile Test Pyramid earlier in this book. Now letai€™ s drill down into how it actually works,
as shown in FigureA 11-1 :

LAP
InSpec
Selenium

Acceptance

BDD-Security
Gautlt
Fuzzing API/File

Service

Negative unit tests in Cl
RSpec-Puppet
ChefSpec

Code Scanning and Linting (SAST)

Figure 11-1. Security testing mapped to the Agile Test Pyramid

The test pyramid emphasizes lots (thousands, or tens of thousands) of low-level, automated unit tests at the
base. These are white-box tests at the method or function level, written by developers to ensure that the code
does what they expect it to do, using a test framework like xUnit (JUnit for Java) or TestNG.

Unit tests are the cheapest tests to write, the cheapest to run, and the easiest to change (which is good, because
these are the tests that need to be changed most often).

http://martinfowler.com/bliki/TestPyramid.html
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#secuirty-pyramid

To create unit tests, developers write test code for each method or function, and create test fixtures or test
doublesa€’mocks and stubsd€”’to swap out dependencies with test implementations.

A stub simply replaces an existing dependency for the function being tested. It returns hardcoded responses, and
might record what it receives from the function being tested. There may be more than one stub for each test.

A mock is a smart, fake object that decides whether the unit test passes or fails. It checks whether the function
under test did what was expected and will fail the test if results dona€™ t meet expectations.

The middle of the pyramid is made up of black-box API and integration tests , &€ cesubcutaneousa<€ tests that
assert behavior at the service level and that test published APIs between services. These tests may be written
using frameworks like FitNesse or Cucumber or JBehave.

Because tools like Cucumber can also drive higher-level acceptance tests through the user interface, the
boundaries between layers can sometimes be blurred. The key thing to think about here is that this level of
testing doesna€™ t focus on the user experience, but rather on interaction between services and on testing
service APIs and domain logic at higher levels of abstraction than unit tests.

At the top of the pyramid are Ul-level acceptance tests : fat, high-value user-facing tests that check the
important features and key use scenarios in the application. Acceptance tests are end-to-end tests that
demonstrate to users and owners of the system that it is ready and working. These are the most expensive tests
to write and run, and the most brittle (because they test so many different moving parts), so you want to keep
the number of these tests to a minimum.

Some teams will script acceptance tests using a test tool like Selenium WebDriver, Sahi, or Watir. These scripts
may be written by the Product Owner or a business analyst, or by a tester, and implemented by the development
team. Acceptance tests may also be done manually, in demos with the customer, especially where the tests are
expensive or inconvenient to automate.

The Agile Test Pyramid is a different way of thinking about where and how to focus your testing effort, as
opposed to the traditional &€ e Test Ice Cream Cone,a€ which depends on a lot of manual or record/playback
tests at the Ul level executed by an independent test team, and few or no automated tests written by developers
at lower levels.

Leta€™ s look at how to include security testing in each one of these layers.

Unit Testing and TDD

Starting at the base of the pyramid, we need to understand how and why developers write unit tests, and what
this means to system security.

Developers write unit tests to prove to themselves that the code does what they thought it was supposed to do.

They usually write these tests after they make coding changes, and run the tests before checking their code in.

The tests are checked in along with the code so that they can be shared with the teama€”and run in continuous
integration.

Many developers will write one or more unit tests as a first step in fixing a bug: write the test to duplicate the
bug, run the test to prove that the test catches the bug, fix the bug, and run the test again to prove that the fix
worked (and to catch the bug if comes back again by accident, as part of your regression testing going forward).

Some teams (especially XP teams) are a€ cetest obsesseda€ and take this approach further in what is called test-
first, or test-driven development (TDD). Before writing any code, they write tests that specify what the code is
supposed to do. They run the tests, prove that the tests fail, then write the code and run the tests again, filling in

the code until the tests pass, switching back and forth between incrementally writing tests and writing code. The
tests guide their thinking and their coding.

They can then rely on this testing safety harness to catch mistakes later as they refactor the code, restructure and
clean it up, or make other changes.

Teams working this way naturally end up with higher levels of automated unit testing coverage than teams who
work a€ cetest last, A€ and there is evidence that test-first development can result in better quality code that is
easier to understand and change. >

What Unit Testing Means to System Security

But even in test-obsessed environments, there are limits to what unit testing can do for security. This is because
unit testing tests what the developer knows to look for: they assert, or reassert, expected behavior. Security
problems, like the Spanish Inquisition, are rarely, if ever, expected.

There are some security vulnerabilities that can be caught in unit testingd€”if you take unit testing seriously
enough.

For example, both the OpenSSL Heartbleed bug and Applea€™ s Goto Fail vulnerabilities could have been
caught by careful unit testing, as Mike Bland, a former Test Mercenary at Google, explained in a post about
testing culture on Martin Fowlera€™ s blog.

These high-profile vulnerabilities were caused by small, careless, low-level coding mistakes in security-
sensitive code that got past smart developers, including the entire open source community. They were caused by
not checking the length of a data parameter for Heartbleed, and a copy-and-paste or merge error in the case of
Goto Fail. Bland wrote a set of straightforward but well-thought-out unit tests which showed how these
problems could be caught, and that also helped to make the code simpler and easier to follow by refactoring the
code to make it testable.

Unfortunately, as wea€™ 1l see, unit testing is rarely done this thoroughlya€”and certainly wasna€™ t done
thoroughly at Apple or by the OpenSSL team.

Other security vulnerabilities are caused by fundamental oversights or ignorance. You missed implementing a
control completely because you didna€™ t know you were supposed to include it in the first place. Forgetting
an access control check, trusting data when you shouldna€™ t have, not parameterizing database queries to
prevent SQL injection.

You cand€™ t find these mistakes through unit testing. Because if you dona€™ t know you are supposed to do
something, you wona€™ t write a test to check for it. You will have to depend on somebody else who knows
more about secure coding to find these mistakes in a code review, as we discussed in the previous chapter, or
hope that they will get caught by a scanner or in pen testing.

Get Off the Happy Path

Most (if not all) tests that developers write are positive, &€ cehappy patha€ tests , because developers want to
prove to themselves, and to the user, that the code works. And the best way to do that is to write a test that
shows just this.

QA (if there is QA) in most organizations often works the same way, spending most of their time writing and
running through acceptance test checklists which prove to themselves, and the customer, that the features work
as specified.

So we end up with a set of tests covering at least some of the main success scenarios through the application,
and not much else.

The problem is that attackers dona€™ t stay on the happy path. They hack their way in by purposefully trying

http://martinfowler.com/articles/testing-culture.html
http://www.sei.cmu.edu/library/assets/happy.pdf
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#idm139712733215296

to step around, over, and into parts of the code in ways that developers did not expect.

It is really, really hard to get developers to think and work like attackers, because they arena€™ t trained to do
this, and they dona€™ t get paid to do this. Developers have enough of a challenge understanding and
visualizing what the system is supposed to do and getting the code to do that. Unlike hackers, they dona€™ ta
€”and cana€™ t afford toa€”’spend hours thinking about how to abuse or break the system and look for small
mistakes or inconsistencies. Most of the time, developers barely have time to write tests to prove that the code
works.

This has serious consequences for security. Leta€™ s go back to Dr. David Wheelera€™ s paper on &€ eHow
to Prevent the Next Heartbleeda€ to look at unit testing from a security point of view:

Many developers and organizations almost exclusively create tests for what should happen with correct input. This
makes sense, when you think about it; normal users will complain if a program doesnd@€™ t produce the correct
output when given correct input, and most users do not probe what the program does with incorrect input. If your
sole goal is to quickly identify problems that users would complain about in everyday use, mostly-positive testing
works.

Even test-driven development or test-first development emphasizes writing tests that describe what the function
should doa€”not what it should not do. With TDD, developers will end up writing a lot of tests, but almost all
of these tests will be around success cases, and possibly some basic exception checking.

High levels of test coverage for positive tests arena€™ t good enough to provide assurance. To meet security
requirements, we also need to do negative testing (more from Wheeler):

Mostly-positive testing is practically useless for secure software...You should include invalid values in your
regression test suite to test each input field (in number fields at least try smaller, larger, zero, and negative), each
state/protocol transition, each specification rule (what happens when this rule is not obeyed?), and so on.

As a security professional, or a developer or tester who cares about security, ita€™ s important to ensure that
comprehensive negative testing like this is done for security libraries (such as crypto code), and other important
platform code and high-risk features, if you want to have confidence in your tests.

Now leta€™ s move up the testing pyramid, and think about other places where security testing can and should
be added in continuous integration or continuous delivery.

Service-Level Testing and BDD Tools

In addition to low-level unit tests, we want to have a set of meaningful integration tests and service-level tests
that exercise the APIs of the system. These are black-box tests that check the important functions to ensure that
they work under real-world conditions.

A common way to write these kinds of tests is using a behavior-driven development framework. Behavior-
driven development (BDD) starts with specifications written in high-level English-like language: business
stories that are understandable to the customer and testable.

There are a couple of BDD frameworks written specifically for security testing that can be run in CI or CD
pipelines to execute automated tests and checks every time that a change to code or configuration is made.

Gauntlt (3€cBe Mean to Your Codea<€)

Gauntlt is a Ruby-based BDD test framework that makes it easy to write security tests and checks against your
application and its configuration. It comes packaged with attack adaptors that wrap the details of using security
pen testing tools, and several sample attack files:

e Checking your SSL configuration using sslyze

http://gauntlt.org/

Testing for SQL injection vulnerabilities using sqlmap

Checking network configuration using nmap

Running simple web app attacks using curl

Scanning for common vulnerabilities using arachni and dirb and garmr

Checking for specific serious vulnerabilities like Heartbleed

You can extend or customize these attacks, or use them as examples to build new attacks. Gauntlt also includes
a generic attack adaptor that can be used to execute any command-line-driven tool that uses stdin/stdout. This
makes it relatively easy to create new custom attacks of your own.

BDD-Security

BDD-Security is another open source high-level automated security testing framework, written in Java. It
includes a predefined set of tests for SSL checking (again using sslyze) and scanning for runtime infrastructure
vulnerabilities using Nessus.

But one of the most powerful capabilities of BDD-Security is that it integrates nicely with Selenium
WebDiriver, a popular tool for automating functional tests. It includes templates and sample code that you can
use to create your own automated tests for authentication and access control, and to automatically scan web
applications using OWASP ZAP as part of your automated functional testing.

Leta€™s Look Under the Covers

Both Gauntlt and BDD-Security use Cucumber , an automated testing tool, under the covers. In Cucumber, you
write tests in a Ruby DSL (Domain Specific Language) called Gherkin, following this syntax:

Given {preconditions}
When {execute test steps}

Then {results should/not be}

Each test returns a clear pass/fail result, which makes it easy to plug these tests into your CI or CD pipelines.
Now leta€™ s look at how Gauntlt attacks work in a bit more detail.

A Gauntlt attack file is any file with an .attack suffix. Each attack file contains one or more scenarios, each
consisting of multiple Given/When/Then steps:

Feature:
Attack/Check description

Background:
set up tests for all scenarios

Scenario: specific attack logic in Given/When/Then format

Given
a€retoola€ is installed

Whemn
I launch a a€w®toolad€ attack with:

https://github.com/continuumsecurity/bdd-security
https://cucumber.io/

d€raka€

whatever steps

it should pass with/should contain/and should not contain:

results

d€raka€

The command;

gauntlt a€“-steps

lists the pre-built steps and attack aliases for common scenarios that you can use in your attacks:

launch a/an a€mxxxxxa€ attack with:

the file should (not) contain

Output parsing is done using regex to determine pass/fail status.

Gauntlt and BDD-Security help security teams and developers work together by providing a common and
simple language to describe tests and easy-to-use tools. For teams that are already following behavior-driven
development, these tools should be a natural fit.

Other teams that have already invested in their own tooling and test frameworks, or that dona€™ t buy in to the
BDD approach and prefer to stay closer to the technical details, can write their own scripts to do the same kind
of things. The goal should be to come up with a set of automated tests that probe and check security
configurations and runtime system behavior for security features that will execute every time the system is built
and every time it is deployed.

Acceptance Testing

Acceptance tests are generally done at the Ul level by driving a browser or mobile client to execute a set of
tests which exercise the key features of the application. Automated acceptance tests need to be written for
security features such as authentication and user and password management, as well as for key functional
workflows that handle money or private data. These are features that must work every time, which means that
they need a high level of test coverage. They are also features which should rarely change, which makes them
good candidates for automated acceptance testing.

This can be done with a test tool like Selenium WebDriver , PhantomJS , or Sahi . These tools allow you to
programmatically launch and control a browser or web client, navigate to pages, locate elements on the UI,
perform UI actions like entering data or clicking on buttons, and ask questions about the state of the UI objects
or data.

http://www.seleniumhq.org/
http://phantomjs.org/
http://sahipro.com/

Functional Security Testing and Scanning

Application pen testers use a variety of tools to understand and attack a system, including the following:

e Proxies to intercept traffic between a browser or mobile client and the application, letting them examine and
tamper with the requests and responses

e Web spiders to crawl the application and search out all the links, mapping out the attack surface

e Application vulnerability scanners which use this information to attack the application by injecting
malicious payloads against every parameter and field, trying out common attacks

Penetration testing tools like Arachni or Burp , or on-demand scanning services from companies like WhiteHat
or Qualys, are good at finding vulnerabilities like SQL injection or XSS, as well as other kinds of vulnerabilities
that static code analysis scanners cana€™ t find. These include weaknesses in session management such as
CSREF, serious runtime configuration mistakes, and access control violations.

You dona€™ t need to be a pen tester to take advantage of these tools as part of your own security testing
program. But you will need to find tools that can be easily automated, that are simple to set up and use, and that
will provide fast feedback to developers on security problems.

ZAP Tutorial

A good place to start with is the OWASP Zed Attack Proxy, aka ZAP , a popular open source security testing
tool.

Although ZAP is powerful enough to be used by professional pen testers, it was originally written for
developers and testers who dona€™ t have security expertise. Which means that it is simple to understand and
rund€ ’at least for a security tool.

Wea€™ 1] look at ZAP and how it fits into rapid testing cycles, because it will illustrate the challenges of trying
to use scanning in continuous integration and continuous delivery, and because the patterns that wea€™ 11
describe can be used with other tools.

The simplest way to try out ZAP and see how it works is its &€ eQuick Startd€ mode. ZAP will ask for a URL,
spider the application, and run basic canned attacks against what it finds. This will attack only the publicly-
exposed attack surface of the systema€”’it wona€™ t be able to attack any functions that require the user to be
authenticated. The Quick Start will give you a taste of what ZAP can do. If it finds any serious vulnerabilities at
this early stage of testing, you need to fix them immediately: if it was this easy for ZAP to find them, you can
bet that an attacker can find them too, or already has.

If you want to get a better understanding of ZAP and do a better job of testing your application, you can
configure ZAP as an intercepting proxy, and then run some functional tests against the application: log in to the
application and navigate through some of the key forms and functions of the application.

ZAP will record what you do and build up a model of the application and how it works. While it is doing this, it
will inspect responses from the application and look for common, simple mistakesa€”’this is called passive
scanning . Once you have finished your set of manual tests, you can tell ZAP to run an active scan against the
pages that youda€™ ve just tested. ZAP will try to inject malicious payloads into every field and parameter that
it has seen, and observe how the system responds to these canned attacks.

As ZAP finds problems, it will report alerts, showing the request and response as proof of a successful attack,
an explanation of the attack scenario, and other information to help you understand what happened and how to
fix the problem.

The steps to do this are relatively straightforward:

1. Make sure that you have a recent version of ZAP so that you can take advantage of the latest capabilities and

http://www.arachni-scanner.com/
https://portswigger.net/burp
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

scanning rulesa€”ZAP is updated weekly, so you can decide to take the weekly build (and try out the alpha
or beta rules), or you can stick with the most recent official, stable release.

2. Start ZAP.

3. Fiddle a bit with the browser configuration to set up ZAP as a proxy (the ZAP user guide will help you with
this).

4. Log in to the application and navigate to where you want to test, then walk through test scenarios for that
form. If the feature that you want to test supports multiple user types, you will want to repeat these steps for
each type of user.

5. Review the passive scanning results. ZAP will check HTTP headers, cookies, and parameter return values
for common security mistakes.

6. Run an active scan and review the alerts. ZAP will execute a set of canned attacks against the fields and
parameters that it has seen.

7. Compare the alerts against previous findings to identify anything new, and filter out false positives.

8. If you want to go further, you can try to spider the rest of the application, and run active scanning against
those pages as well. You can also look at using some of the more advanced pen testing and fuzzing features
in ZAP, to dig deeper.

But all of this takes time: time to set up ZAP and the browser configuration, time to run the manual scenarios,
time to review the results and filter out the noise. This is time that developers, especially developers on Agile
teams, do not have.

ZAP in Continuous Integration

A better way to run ZAP is automatically, in your continuous integration or continuous delivery pipeline.

Start with a simple set of smoke tests, using the ZAP Baseline Scan . The Baseline Scan is a Docker container
that comes pre-packaged with the latest version of ZAP and the latest rules, set up to execute an abbreviated
Quick Start test of your application. By default it spiders your app for one minute, runs passive scans, and
reports back the results in a few minutes at most.

The Baseline Scan is designed to act as a health check that you can run frequently in your build and deployment
pipeline (and even in production) to make sure that the application is configured safely, including HTTP
headers and other security policies. This is how it is used at Mozilla, for example, where it was developed.

You can also include security checks as part of automated acceptance testing, following the same approach as
you would in manual testing. Take a set of automated functional acceptance tests written using a tool like
Selenium WebDriver, and proxy the test run through a ZAP instance running in headless mode.

This will give you confidence that at least the main user functions of your application dona€™ t have any
obvious security problems.

All of these steps can be scripted and automatically executed by your CI/CD server.

You can use Javascript or ZAPa€™ s ZEST scripting language, its command-line interface, or its REST API to
instruct ZAP to report passive scan findings, optionally spider the application and wait for the spider to finish,
set scanning policies and alert thresholds, and run active attacks.

ZAP can report the results in HTML, XML, or JSON format, which means you can write scripts to examine the
results, filter out false positives, and compare the results to previous runs to identify new findings.

If you are using Jenkins, for example, you can take advantage of ZAPa€™ s Official Jenkins plug-in , which
makes it easy to execute ZAP commands directly from Jenkins and to check the results in your build pipeline.

https://github.com/zaproxy/zaproxy/wiki/ZAP-Baseline-Scan
https://wiki.jenkins-ci.org/display/JENKINS/zap+plugin

BDD-Security and ZAP Together

Or you can use a higher-level test framework like BDD-Security, which we have already looked at briefly.
BDD-Security wraps execution of ZAP scans and Selenium tests inside a behavior-driven design framework.
Using BDD-Security, you write security stories in Cucumbera€™ s high-level Given/When/Then format. The
test framework takes care of the details of setting up and running the test tools, parsing the results, filtering
results, and determining pass/fail status.

ExampleA 11-2 is a sample story included with BDD-Security for executing a scan with ZAP and checking for
SQL injection.

Example 11-2. BDD-Security Story

@app_scan
Feature:
Automated Application Security Scanning

Run automated application level tests against the application using OWASP ZAP

Background:

Given
a new scanning session
And
a scanner with all policies disabled
And
all existing alerts are deleted
And
the application is navigated
And
the application is spidered
@cwe-89
Scenario:
The application should not contain SQL injection
vulnerabilities
And

the SQL-injection policy is enabled

And
the attack strength is set to High

And
the alert threshold is set to Low

Whemn
the scanner is run

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#EX1-B

And
the following false positives are removed

url
parameter

cweld

wascId

And
the XML report is written to the file
build/zap/sql_injection.xml

Themn
no medium- or higher-risk vulnerabilities should be present

BDD-Security comes with stories for different kinds of scans as well as SQL injection, server-side include and
server-side injection attacks, remote OS command injection, CRLF injection, external redirect, LDAP injection,
xpath injection, and generic padding oracle attacks.

BDD-Security, together with Selenium, can be used to write and execute acceptance-level tests for
authentication features to check that authentication is properly set up and to test negative error handling cases.
It can also write access control checks to ensure that users can only see or do what they are authorized for. To
do this youA€™ 1] need to modify the sample Java code that comes packaged with BDD-Security. *

OWASP ZAP and BDD-Security (with a bit of custom coding to extend some test plumbing classes) can also be
used to scan REST APIs. The approach is roughly the same as testing a web app, using ZAP as an intercepting
proxy while you exercise API functions with other tools, and running passive and active scans against the
exposed surface of your APIs.

A more comprehensive and accurate approach to scanning APIs would be to take advantage of ZAP add-ons for
SOAP and OpenAPI/Swagger to import API definitions and help ZAP understand and explore your API.

Another option is to use use Tinfoil , a commercial application security scanner which automatically builds up a
complete model of your REST APIs using Swagger or similar frameworks, and then does deep scanning and
smart fuzzing of your APIs and authentication scheme to find security bugs and other runtime problems.

Challenges with Application Scanning
How much you get out of scanning depends on the following factors:
e How good the tool is, and whether you have set it up correctly

e How much of the application your automated acceptance tests cover, or how well the spider works (if you
invoke it to crawl for other links)

e What rules you choose

e How much time that you have to run the tests

It can take a long time to crawl an application, trying to identify all the pages and parameters, and then more

https://zaproxy.blogspot.com/2017/04/exploring-apis-with-zap.html
https://www.tinfoilsecurity.com/
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#idm139712732926608

time to run attacks against the entry points that the scanner finds. It may not be practical or even possible to
automatically spider and actively scan large web applications as part of your build pipeline. Automated tools
can often lose their way, hang or time out, or even crash during long scans.

As wea€™ ve already described, targeting scans against the key parts of the application that youa€™ ve
explored with automated functional testing is more efficient and probably more effective than brute-force
spidering and scanning. But even these tests can take a long time to run.

There are some obvious steps that you can take to speed up scanning:

1. Scanning requires lots of CPU and memory. The more machine power you can throw behind the scanner and
the system under test, the faster your scans will run.

2. Adjust the rule set. For example, by default, ZAP will run its full set of active scanning rules against every
parameter, with medium strength. This may not always be necessary. For example, if your application does
not use a SQL database, therea€™ s no reason to run SQL injection attacks.

3. Break scans down and run them in parallel. Take advantage of rapid provisioning to stand up multiple
instances of the application and run scans using different rules or targeting different functions.

4. Run incremental scans only against new or changed URLSs, rather than scanning code that hasna€™ t been,
or at least shouldna€™ t have been, changed.

Another problem that you need to solve is accuracy. Black-box application scanners, like static analysis
scanners, will often report hundreds or thousands of false positive findings and other warnings that you will
need to review and filter out.

Some scanners still have problems today with complex Javascript code or other dynamic content in the UI, and
get lost or dona€™ t find problems when they should.

You may need to try out a few different scanners before you find the tool and plug-ins that work best for your
project. Spend time understanding the scanning tool and how it works, and make sure that it is set up correctly,
before you try to wire it into your build pipeline.

Modern testing tools like ZAP are flexible and extensible through APIs, scripting languages, and plug-ins. Lots
of people have taken advantage of this flexibility to implement automated scanning in different ways, which is
reassuring, but also confusing. There is no &€ ,ebest practicea€ for scanning your apps. Youa€™ Il need to
Google for ideas and examples and run some experiments to see what works best for you.

GET YOUR PIPELINE WORKING FIRST

Getting security scanning set up and working correctly in an automated pipeline isna€™ t easy. You need success
with setting up your CI/CD server and build workflows, and experience automating functional testing, before you
should consider introducing security scanning.

Another tricky problem that youd€™ 1l need to solve is getting the tool to automatically authenticate with your
application, especially if you want to try and take advantage of spidering or if you want to test access controls.
An unauthenticated scan will only hit the publicly exposed features or pages of your application, which are not
usually the most interesting or valuable parts to youd€”or to attackers.

Most tools have different authentication modes to help with this. ZAP, for example, supports common
authentication methods and a script-based method to support complex or custom authentication schemes and
reauthentication steps. You can also manually walk through authentication steps in ZAP and save the resulting
session information to your code repository to be reused in later automated scans.

Understand that automated scanning like this is not the same as pen testing . Tools like ZAP run through a canned
set of well-known attacks and look for well-known vulnerabilities and common mistakes.

This is just one of the first, and one of the easiest, things that a good pen tester will do.

But passing a set of automated scans should add to your level of confidence, and it will make pen testersa€”and
attackersa€”work harder to find real problems in your system.

If you want to learn about pen testing, a good place to start is OWASPa€™ s Testing Guide .

This guide explains how to set up and conduct a pen test. It provides checklists and techniques for
reconnaissance, mapping the environment and the application, and fingerprinting the technology stack. It also
offers tests for identity management, authentication functions, session management, authorization, different kinds
of injection attacks, and how to find holes in business logic.

Testing Your Infrastructure

New tools such as Docker and Vagrant and Packer and Ansible make it fast and easy for developers to package
up and provision their own development and test environments. Instead of waiting days or weeks for sys
admins to build a system, developers can pull down community-built Chef cookbooks or Ansible playbooks or
public Docker images, and spin up temporary instances in private or public clouds, with the complete runtime
stack and all the tools that they need, ready to run, in minutes.

The advantages to an Agile development team of being able to self-provision development and test
environments like this are obvious. They get control over how their environments are set up and when it gets
done. They dona€™ t have to wait days or weeks to hear back from ops. They can try out new tools or
platforms easily and cheaply, run technical experiments and iterate quickly. And they can eliminate the a
€ceceworks on my machinea€ problem by making sure that development and testing are done using the same
runtime configurations.

But this also introduces a new set of risks that need to be managed:

e Like any other open source code, Docker images or other configuration recipes or templates, especially ones
downloaded from community hubs, can contain mistakes, outdated packages, and other vulnerabilities,
which developers can easily miss.

¢ To save timeda€”and because they may not understand the technical details or dona€™ t care about thema
€7 developers will often take advantage of default configurations, which is almost never the safe thing to do.

e When developers self-provision their infrastructure, ops and security are taken out of the loop on purpose,
which means that changes happen without their oversight or understanding.

e These insecure configurations can potentially become a target for attackers, and worse, can find their way
into production.

The configuration specifications for these toolsa€ ’Dockerfiles, Ansible playbooks, Chef recipes, and cloud
templatesa€’are code. Which means that infrastructure configuration can be automatically scanned and tested
like any other code.

You can scan configuration code or images to look for common mistakes and vulnerabilities, and for
compliance risks. There are a range of tools, for example, that you can use to statically scan Docker images and
containers, including the following:

e Docker Bench for Security scans Docker containers for compliance with the CIS Benchmark for Docker.

https://www.owasp.org/index.php/OWASP_Testing_Project
https://github.com/docker/docker-bench-security/

e Docker Security Scanning is an add-on service from Docker to scan images in private repos for known
vulnerabilities.

e Clair is an open source vulnerability scanner for Docker images from CoreOS.
You can also write your own tests to do the following:

e Help guide your design in test-driven infrastructure: defining the end state of configuration in tests before
writing the configuration code, in the same way that developers working in test-driven development write
tests before they write code.

e (Catch coding mistakes early: syntax checking and unit testing is important for configuration code with
dynamic content, because many mistakes cana€™ t otherwise be caught until runtime.

e Catch regressions as engineers refactor (clean up and restructure) the code, update to new versions of tools,
or move to new platforms.

e Check the health of system configurations, ensure consistency between systems and environments, and catch
snowflakes (one-off setups).

e Act as documentation for the configuration.

¢ Enforce policies and guidelines: operational policies, compliance policies, security policies, and hardening
guidelines.

And just like the application testing pyramid, there are tools and approaches for different levels of testing
infrastructure code.

Linting
Linting tools perform syntax checking, and checking for formatting and good coding practices. These tools help
ensure that your code runs correctly, and are particularly important for dynamic scripting languages:

e Puppet parser validate, Puppet-lint
e Foodcritic, Rubocop for Chef

e Ansible-lint

Code checking is of minimal value from a security perspective.

Unit Testing

By mocking or stubbing out the runtime environment in unit tests, you can check that the logic is consistent
through fast dry runs. This helps to make code safer to change.

e RSpec-Puppet
o Chefspec

Like syntax checking, unit tests are not likely to catch any serious security problems.

Acceptance Testing

Acceptance tests are the best place to add security and compliance checks. Spin up a clean test environment,
execute the recipe or playbook code, and compare the actual results to expected results. Like application
acceptance tests, these tests are more expensive to run, providing slower, but more complete feedback:

https://docs.docker.com/docker-cloud/builds/image-scan/
https://github.com/coreos/clair/

e Batsa€”Bash Automated Testing System

e Beaker for Puppet

e Goss

e Serverspec

e InSpeca€”Tests which can explicitly trace back to compliance requirements

e RSpeca€”Roll your own test framework instead of using Serverspeca€™ s DSL

Leta€™ s look at some popular tools that can be used to test different configuration languages or specifications
on a range of platforms. This is especially useful in larger enterprises where teams may use many different
configuration management approaches, because they can all standardize on the same testing framework; and it
also makes it easier to transition from one configuration management stack to another.

Test Kitchen

Test Kitchen is a pluggable test management framework that you can use to set up and run tests for
infrastructure code. From the A€ cekitchend€ name, it was obviously built to test Chef recipes, but it can be
extended through plug-ins to test code for Puppet, Ansible, SaltStack, or other configuration management tools.

Test Kitchen allows you to write tests using different test frameworks, including Serverspec, RSpec, Bats, and
Cucumber. It also allows you to run tests on Linux and Windows, supporting Vagrant, Docker, and most cloud
platforms.

Serverspec

Serverspec is an extension of Rubya€™ s RSpec testing framework, with specific support for testing
infrastructure state. Using Serverspec you can write high-level acceptance tests which validate that the state of
the system configuration (e.g., files, users, packages, services, and ports) match expectations. These tests can be
run before or after changes are made.

Because Serverspec checks the end state, it doesna€™ t matter what tool or tools you use to make configuration
changes.

ServerSpec connects to each system using SSH, runs a set of passive checks on the configuration, and returns
the results for comparison. This means that it can be safely run in test, as well as to audit production to help
meet compliance requirements. Here is a simple example of Serverspec check:

describe package('httpd'), :i1f => os[:family] == 'redhat' do
it { should be_installed }
end

There is a Serverspec variant called AW Spec designed to execute similar tests on Amazona€™ s AWS.

Wea€™ 11 look more at how to use tools like Serverspec to write security tests and runtime checks in
ChapterA 13, Operations and OpSec .

Creating an Automated Build and Test Pipeline

The velocity at which Agile and DevOps teams deliver keeps increasing. Scrum teams that used to work in one-
month sprints now commonly deliver working code every week. DevOps teams following continuous
deployment can make changes directly to production several times a day. At the extreme edge of this, at
Amazon, thousands of developers working in small, &€ cetwo pizzad€ teams continuously and automatically
push out thousands of changes to their systems every day.

http://kitchen.ci/
http://serverspec.org/
https://github.com/k1LoW/awspec
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch13.html#operational_security

Working at this speed requires a different approach to designing systems and ways of building code and
deploying changes that are optimized for rapid, incremental change. But all of this still builds on Agile and
Lean ideas and fundamentals.

Leta€™ s look at the steps involved in moving toward rapid or continuous deployment, and what this means
from a testing and security perspective.

Nightly Build

In order to move faster, teams will find that they need to build the system on a frequent basis: the longer
between merges and builds, the more risk of conflicts and misunderstandings.

Back in the 1990s, Microsoft popularized the practice of a &€ cenightly build.a€ Developers were encouraged
to check in changes each day, and each night a job would run to build the software so that the latest changes
were available for everyone on the team to use the next morning. Over time, teams added tests after the build
steps to catch common mistakes. Anyone who a€ cebroke the builda€ with a bad check-in would have to buy
pizza or serve some other punishment, including babysitting the build until somebody else broke it.>

A lot of work can be required to get a system, especially a large legacy system, to build without mistakes. Being
able to do this every day is a big step forward. A regular working build of the system provides a heartbeat for
the team, increasing visibility into the state of development and confidence in the teama€™ s ability to deliver.
And it gives everyone on the team a chance to catch mistakes and incorrect assumptions early.

Continuous Integration

The next step to improving visibility and velocity is continuous integration.

Developers learn to check in small changes frequently, often several times a day, to ensure that everyone on the
team can always see and work with everyone elsea€™ s changes. Each time that code is checked in, a
continuous integration server (like Jenkins or Travis) is triggered and automatically builds the code and checks
to make sure that the developera€™ s change hasna€™ t broken the build.

This is done by executing a suite of automated tests, mostly unit tests. These tests have to run quickly: the faster
they run, the more often that developers will check in changes.

The following steps outline an example of a continuous integration workflow:

e Code inspections done inline in the developera€™ s IDE

e Manual code review before check-in or merge to mainline

e Compile and check warnings

e Build checks

e Incremental static analysis checking executed by the CI server
e Unit testing

e Tag the build artifacts in an artifact repository such as Apache Archiva, Artifactory, or Sonatype Nexus

These steps should be enough to provide confidence that the changes are safe and the build is sound. Then we
need to check that system is in a releasable state.

Continuous Delivery and Continuous Deployment

DevOps teams build on continuous integration practices and tools to implement continuous delivery, or
continuous deployment, pipelines.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#idm139712732794704

In continuous delivery, changes are pushed from development to testing and then finally to production in a
sequence of automated steps, using a consistent set of tools and providing an end-to-end audit trail. At any
point in time, the system is proven to be production ready.

Continuous deployment takes this all the way to production: developers check in a fix or a change, and if it
passes the automated steps and checks in the pipeline, it is deployed immediately to production. This is how
teams at Netflix, Amazon, and Etsy work.

Each change to code or configuration automatically kicks off continuous integration, building the code and
running through the fast set of automated tests. If the build is good, the build artifacts are automatically
packaged up and then deployed to a test environment for integration and acceptance testing.

If these tests pass, the code is promoted to staging to rehearse deployment in a production-like environment,
and for system testing:

e Execute through the preceding continuous integration steps.
e Take the latest good build from the artifact repository, and package it.

e Provision a test environment (using an automated tool like Chef or Puppet, Vagrant, Docker or
CloudFormation).

e Deploy to test (rehearse deployment steps).

e Start the application (check for errors).

e Run smoke tests and environment health checks.
e Run acceptance tests.

e Run integration tests.
If these steps all pass:

e Provision a staging environment.
e Deploy to staging (rehearse deployment and release steps in production-like environment).
e Repeat steps to start the application, smoke tests, acceptance tests, and integration tests.

e [oad tests and operational tests.

This proves that the change is safe and that all the steps to deploy the change are working correctly.

Out-of-Band Testing and Reviews

Some tests and reviews have to be done outside of the continuous delivery pipeline because they take too long,
or require manual handoffs, or both. The results of these tests and checks can be checked and fed back into the
teama€™ s backlog. Some tests and reviews must be done outside of the continuous delivery pipeline because
they take too long, or require manual handoffs, or both. Any findings need to be fed back into the teama€™ s
backlog, creating another, larger feedback for the team. Out-of-band tests and reviews include:

e Manual exploratory testing and usability testing

e Deep scanning (static analysis or application scanning) will need to be done out of band for large systems,
and the results reviewed and triaged manually

e Penetration testing

e Maybe API or file fuzzing

FUZZING IN CI/CD

Fuzz testing , or fuzzing, is a brute-force automated reliability testing technique. It takes negative testing to
the extreme, automatically generating semi-random data values to test APIs or file import functions for
problems in data validation, and to see what happens behind the code when bad data values get passed
through (buffer overflows, integer overflows, memory corruption bugs, and so on).

Fuzzing is commonly done to test embedded software and network protocols. Fuzzing has also been an
important part of the application security programs at Microsoft and Adobe and Google (especially in the
Chrome team). Security researchers often use fuzzing to hunt for weaknesses in code, and fuzzers are used
under the covers in the application vulnerability scanning tools that wea€™ ve looked at.

To wire fuzz testing into an automated build pipeline, youda€™ 1l need to limit how long the tests execute,
and find a way to automatically feed results back. Fuzzing tools like Peach provide options to time box or
limit test runs, and plug in to popular continuous integration servers like Jenkins. Like ZAP, Peach can
also be used as a proxy between your tests and the API being tested, to automatically fuzz data elements in
the tests by running the same tests over and over.

But fuzzing has a number of downsides. To get confidence, you need to run through an awful lot of test
cases, which could take several hours or even days. The system or service under test may crash, and will
need to be restarted and reset. Fuzzing doesna€™ t always provide clear feedback, especially when a crash
happensa€”’someone may need to manually review the tests and stack traces and error messages to
confirm what failed, where, and why.

Because of these issues, fuzzing is unlikely to be a high-value starting point for test automation for most
organizations.

Promoting to Production

Once the build, test, and deployment steps and checks pass, your latest changes are ready to be promoted to
production. This step is done automatically in continuous deployment, or after manual approvals and other
checks are completed if you are following continuous delivery.

Either way, you want to use the same artifacts, the same tools, and the same steps that youd€™ ve used in the
previous stages to deploy to production, because you have rehearsed them, debugged them, and proven that
they work many times before you finally use them in production. This takes most of the pain and risk out of
deployment.

Guidelines for Creating a Successful Automated Pipeline

Pipeline stages build on each other, moving progressively from simple tests and checks in simple environments
to more real-world tests and checks done in more real-world environments.

You build and package a release candidate once early in the pipeline, store the build artifacts in a safe place,
and promote this candidate through subsequent steps until youd€™ ve overcome the objections to releasing it.

Even if you arena€™ t ready for continuous integration or continuous delivery yet, you should design your
testing program so that tests can be run automatically. This means that tests need to be repeatable and
deterministic: they need to provide the same results each time that they are run. And they need to provide
unambiguous pass/fail results that can be checked at runtime.

To save time, stack the sequence of tests so that you run the the most important tests as early as possible: tests
that check important functions and tests that break often. If you have tests that are flakey or that have
intermittent timing issues or other problems, isolate them so that they dona€™ t break the build.

http://www.peachfuzzer.com/

As you add more tests and scanning steps, youd€™ 1l need to start breaking them out into parallel streams and
fan them out, taking advantage of public or private clouds to create test farms and scanning grids, so that you
can execute a few hours worth of tests and checks in minutes of elapsed time.

Where Security Testing Fits Into Your Pipeline

Wea€™ ve already looked at how security testing can be automated. Once automated, these tests can be wired
into different stages of your CI/CD pipeline.

Checks and tests to conduct before continuous integration:

e [DE static code inspections before code is checked in, using built-in code checkers or tool plug-ins
e Pre-merge check-in scanning for secrets

e Code reviews
Security tests and checks in continuous integration:

e Build checks, including detecting new components and components with known vulnerabilities (something
we already looked at in ChapterA 6, Agile Vulnerability Management).

e Unit testing, especially negative unit tests for key functions.

e Incremental static analysis, linting, and custom code checks for banned functions and other dangerous
practices.

e Security smoke testing: fast, simple, security sanity checks, scripted using a tool like Gauntlt.
Security tests and checks in continuous delivery:

e Targeted application scanning (using ZAP, Arachni, or another DAST tool).
e Automated attacks with Gauntlt.

e Automated acceptance tests for security features (authentication, access control, identity management,
auditing, and crypto) using BDD-Security and/or Selenium WebDriver.

Before adding security testing into your pipeline, make sure that the pipeline is set up correctly and that the
team is using it correctly and consistently.

e All changes are checked into the code repository.
e Team members check in frequently.
e Automated tests run consistently and quickly.

e When tests fail, the team stops and fix problems immediately before making more changes.

If the team isna€™ t already relying on the automated build pipeline when it pushes changes out, and if it doesna
€™t respond seriously to test failures in the pipeline, then adding security checks to the pipeline wona€™ t
accomplish much.

As you automate security scans and tests, start by running them in a separate stream of the pipeline so that test
failures wona€™ t cause the teama€™ s build to fail right away. Review the test results to set failure thresholds,

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch06.html#agile_vulnerability_management

and tune the tools so that they dona€™ t slow down the build too much and so that the team wona€™ t waste
time chasing down false positive findings. Once this is working, then you can make these security checks a
blocking factor to the main pipeline.

A Place for Manual Testing in Agile

Although Agile and especially DevOps emphasize automated testing because of the need for fast feedback and
rapid cycling, there is still an important place for manual testingd€”and manual testersa€”’in Agile
development, especially when it comes to security.

Manual regression testing doesna€™ t scale in high-velocity Agile environments and is a waste of peoplea€™ s
time. In Agile development, waste is something that must be eliminated. But there are other cases where
manual testing adds value. For example, usability testing needs to be done by real people: testers, or developers
dog-fooding, or beta users in production.

Another kind of manual testing that can provide a lot of value is exploratory testing .

Exploratory testing is about learning how the application works and finding where its breaking points are.
Exploratory testers try to push the system to its limits, to find bugs before usersa€”or attackersa€”do.

[ta€™ s not scripted, or perhaps only loosely scripted. Exploratory testers might start with walking through the
acceptance criteria for a story, but then they will take off along paths that they think are interesting or important.

They may try to do steps out of order, push buttons that they maybe shouldna€™ t push, fiddle with links and
data, go backward and forward again to see what happens. Exploratory testers play and improvise as they test,
and as they build up their understanding of how the system works. And all along the way they record what they
did, what they found, and what went wrong so that they can report defects.

To understand more about exploratory testing, itA€™ s worth reading James Bachd&€™ s seminal essay, a
€xExploratory Testing Explaineda€ .

James Whittakera€™ s books How to Break Software (Pearson), How to Break Web Software (Addison-Wesley
Professional), and How to Break Software Security (Addison Wesley) will teach you how to take an adversarial
approach to testing your applications.

While some of the specific tools may be out of date, the approach and attack models that Whittaker describes are
still relevant. URL jumping attacks in web apps, for example, are a simple way to test out controls in key
workflows. Jump into, around, or over steps by browsing directly to a page. Try moving backward, skip over
approval steps. If the application doesna€™ t catch you, youd€™ ve found an important bug that attackers or
fraudsters can exploit.

Penetration testing is an extreme and specialized form of exploratory testing, where the tester takes on the role
of an attacker. Pen testers use intercepting proxies and scanners and other tools to identify vulnerabilities, and
then try to exploit them. This requires specific technical skills and experience to do effectively.

While most teams wona€™ t have good penetration testing skills in-house, they can still get a lot from
adversarial exploratory testing. It can be done in an informal, lightweight way, with developers paired up with
testers or with each other to explain the feature and to look into problems as they come up.

Exploratory testing should be done on security features like login and forgot password, and important business
workflows like online shopping and online banking or payments handling.

And as we saw in the ZAP tutorial, manual exploratory testing is a useful and necessary first step in test

http://www.satisfice.com/articles/et-article.pdf

automation, in order to understand the application and tools, and to identify important scenarios to be
automated.

Adversarial exploratory testing, asking testers and developers to think out of the box, or trying to hack into your
own systems, provides information that you cana€™ t get from structured, repetitive, automated testing. You
can find serious usability and reliability and security bugs by testing this way. But whata€™ s more important is
that it can tell you where you have weaknesses in the system and in your processes. When you find serious
security and reliability bugs through exploratory testing, you need to look closer at the code and the design, and
at the rest of your reviews and testing work to understand what else you could be missing, and what else might
need to be fixed.

This kind of testing is expensive and cand€™ t scale. It takes time to do right, and it is highly dependent on the
individual skills, experience, and instincts of the testers. Take advantage of it as much as you can, but recognize
that you cana€™ t depend on manual testing to keep your system safe and secure.

How Do You Make Security Testing Work in Agile and DevOps?

To make security testing work, you need to recognize the limitations and constraints that Agile development
and continuous delivery force on you.

Thered€™ s not enough time to do exhaustive gate-based testing and audits. You need to break testing down
into small steps that can be automated so that they can be run every time a change is made. Focus on tests that
will catch common and important mistakes early.

Test automation is hard to do right. You need to understand the domain and the design of the system and the
runtime platform, and how to build and configure them correctly in order to stand up the system for security
testing. You need to understand testing tools and continuous integration, and how to code and script tests, work
out how to respond to test failures when they happen, and how to rule out false positives.

All of this has to be done at high velocity to keep up with the team members and with the changes that they are
continuously making.

You need a strong combination of technical and testing and security skills to do this, which requires bringing
the security team, developers, and testers together in the following ways:

e The security team can help developers write acceptance criteria and test scenarios for security stories.
e Security can review unit tests for high-risk code and automated tests for infrastructure playbooks.

e Try a test-driven security approach: have security engineers write tests for the team before they write the
code, and make these tests part of the teama€™ s acceptance goals.

e Security can help the team to implement black-box application scanning and infrastructure scanning in the
build pipeline.

e Security can participate in exploratory testing, especially on security features, and show the team how to
turn an exploratory testing session into a security test, by introducing an attack proxy like ZAP into the test.

Look for ways to simplify and share tests. Take advantage of templates provided by tools like Gauntlt and
BDD-Security to create standard tests that can be shared across teams and across systems.

Look for ways to get developers involved in writing security tests and owning the outcome. Make security
testing self-service, something simple that developers can spin up and run on their own. Nothing flakey, no
warnings that need an expert to decide whether there is a real problem or not.

Review and improve as you go. Fill in gaps in your testing as you need to: when you find vulnerabilities; when
the team makes a change in direction, arrives at a new design, or upgrades the technology; or when the threat

landscape changes.

Key Takeaways

In Agile teams, developers are effectively responsible for testing their own work, and rely heavily on test
automation and continuous integration to catch problems quickly:

e Most developer testing is done along &€ cchappy patha€ success scenarios to demonstrate that features work.
However, adversaries step off of this path to find edge cases and weaknesses in design and coding that can
be exploited.

Developers need to understand the importance of negative testing, especially for security libraries and other
high-risk code.

e Black-box dynamic scanning using tools like OWASP ZAP can be wired into continuous delivery pipelines
to catch common security vulnerabilities in web applications and mobile apps. But this is not easy.

e Start small. Run some experiments. Learn how your tools work inside out before you push them onto a
development team.

e Test-driven development (writing automated tests before writing the code) can be followed by security
teams to start injecting security into testing for the application and for infrastructure.

e Automated security test frameworks like Gauntlt and BDD-Security provide test templates that can be used
to build security smoke tests, and shared across multiple teams and systems.

e Test your infrastructure as well as your application. Tools like Serverspec and InSpec can be used to check
that infrastructure is set up properly and safely.

e Automated tests, including scanning, have to be implemented so that the tests run quickly and provide clear
pass/fail feedback to developers.

e Manual acceptance testing wona€™ t scale in Agile environments. But manual exploratory testing and pen
testing can find important problems that automated tests may miss, and provide valuable information to the
team members about weaknesses and risks in the system and in their processes.

Security testing needs to be part of the teama€™ s Definition of Done: the contract that the team has with one
another and with the organization to deliver working software in each release. The team needs to understand its
compliance and security obligations, and agree on what testing needs to be done to meet these obligations.
What kinds of security tests and scans need to be run, and how often? What kind of findings will break the
build? What level of automated test coverage is needed for security libraries and other high-risk code?

I'carol Woody, Ph.D.; Robert Ellison, Ph.D.; and William Nichols, Ph.D.; a€cePredicting Software Assurance
Using Quality and Reliability Measuresa€ Software Engineering Institute, Technical Note, December 2014.

2 Vinnie Murdico, a€®Bugs per lines of codeda€ , Testera€™ s World, April 8, 2007.

3 Laurie Williams, Gunnar Kudrjavets, and Nachiappan Nagappan, 4€eOn the Effectiveness of Unit Test
Automation at Microsofta€ , 2009 20th International Symposium on Software Reliability Engineering (2009):
81-89.

* For more on how to use BDD-Security and ZAP together, watch Michael Brunton-SpallA€™ s presentation, 4
€ceBuilding securely with agilea€ .

> Joel Spolsky, A€ The Joel Test: 12 Steps to Better Coded€ , Joel on Software, August 9, 2000.

http://resources.sei.cmu.edu/asset_files/TechnicalNote/2014_004_001_428597.pdf
http://amartester.blogspot.com/2007/04/bugs-per-lines-of-code.html
http://collaboration.csc.ncsu.edu/laurie/Papers/Unit_testing_cameraReady.pdf
https://www.youtube.com/watch?v=jkxCLW0x650
http://bit.ly/joel-test-12-steps
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#idm139712741390544-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#idm139712741388224-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#idm139712733215296-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#idm139712732926608-marker
file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#idm139712732794704-marker

Chapter 12. External Reviews, Testing, and
Advice

There is a global shortage of information security skills, especially in application security. This means that you
may have to go outside for help in setting up your security program and keeping it on track.

Pen tests, bug bounties, vulnerability assessments, and other external reviews can provide your organization
with access to a wide community and its experience, creativity, expertise, and energy.

As your security capabilities grow, your reliance on external consultants may diminish; but you should not plan
for it to ever disappear entirely. Even if you have strong technical security capabilities in-house, there is still
value in bringing in external expertise to backstop your organizationa€”and to keep you honest.

Many common regulations that your operating environment may be subject to include requirements for external
security testing or audits of some kind to provide an independent verification that you have shown due diligence
in protecting your systems, customers, and data.

For example, PCI DSS mandates that the systems and applications that comprise the environment covered by
the standard are reviewed by certified testers (called Qualified Security Assessors or QSAs in the case of PCI)
both annually and any time that you make a significant change to the environment. These testers must follow
recognized industry standards and methodologies, and produce a detailed report of their findings. You, as the
party being assessed, must take action to rectify any significant findings.

There is an entire section of the security industry dedicated to providing compliance assessment services and to
supporting your organization in navigating the different aspects of regulatory compliance. This is an example of
where security support from external parties is not only beneficial but actually required.

Getting external reviews can be a daunting process. Getting good value from these reviews can be even more
challenging. This chapter aims to help you understand how to go about engaging with external security
practitioners and, perhaps more importantly, how to ensure you get the most out of the investments you make in
them.

DISCLAIMER

All opinions and guidance in this section are intended to set direction and should not be taken as endorsement of
any approach, company, or technique for external assurance.

To put it simply, wed€™ re not trying to sell you anything, or telling you to spend money on consultants. But in
our experience, there can be real value in getting expert help from outside of your organization, and we believe
that external reviews play an important part in mature application security programs.

Why Do We Need External Reviews?

External security reviews serve a number of different purposes besides compliance:
Independence

Outsiders dona€™ t have a stake in making your team or organization look good. In fact, their interest is
opposed to this: they want to find serious problems so that you will bring them in again, or so that you will
ask for their help in fixing these problems. From a penetration testera€™ s perspective, the worst
engagement imaginable is one where they dona€™ t find any meaningful issues, and they are incentivized

to work hard to avoid that situation!

Expertise

Hiring specialist security testers and auditors is not only challenging but expensive. There is a global skills
shortage, and many tests need specific or niche skills that suit the technology or context. Keeping these on
the team may not be an option for your organization, and therefore seeking such expertise from outside
parties can make the most practical and financial sense.

Management support and escalation

Spending real money on external reviews can be an effective tool for ensuring that management and the
executive team understand the risks faced by the organization. Problems identified by an outside party will
often be given more visibility than issues found during internal reviews, and can be easier to escalate. Your
organizationa€™ s leadership has an obligation to steer the company safely and reduce riska€ ’external
reviews can be a valuable tool to help them meet this obligation as well as helping them demonstrate that
they have taken that responsibility seriously.

Learning and improvement

In order to understand if your approach to security is working, you need some way to measure its
effectiveness. External reviews cannot provide a perfectly complete assessment of all aspects of your
security program, but do provide both quantitative and qualitative data that you can feed back into your
program to identify strengths and weaknesses and use to improve over time.

Objectivity

Outsiders will never understand your environment as well as you do. While this lack of contextual
knowledge can sometimes provide challenges when engaging external parties, the objectivity they provide
can be invaluable. They will not have the same biases, assumptions, and predispositions as an internal team,
and can be considered to be in the truest sense fresh eyes . These eyes may see issues that you would not
consider or expect, despite the outside partya€™ s lack of familiarity with your business and systems.

Customer expectations

Finally, if you are building a product or service for others to use (and probably pay you for), your customers
may well have the expectation that you have sought outside expertise in assessing the security of the thing
itself and the environment it operates in. It is increasingly common during a procurement process for
customers to ask for access to the full or executive summary of third-party assessment reports, along with
the remediation actions you took to any findings. If you are not able to provide customers with such
evidence, there is a very real chance you will lose out on business due to a diminished trust in your solution.

PROVING A NEGATIVE

Something worth being completely comfortable with before investing in any form of security testing
(either internal or external) is that no matter how much money you decide to throw at the testing process,
youa€™ re not going to be able to prove it is secure, only that the process and testers you had look at it
could find no more issues. Proving a negative, that your application is not insecure, is not possible outside
of some very specific cases using formal proofs and specially designed languages (which are all very much
beyond the scope of this book!).

It is also worth recognizing that your applications and the environment in which they operate are dynamic,
and so any assessment of their security may only be valid for a period, or even point, in time. This goes
even more so in Agile environments where the code base may be being updated continually, and perhaps
even being deployed continuously.

Dona€™t let this discourage you! Assessing the security of any application or environment is about doing
your best to validate the design and implementation against your threat model and getting outside
perspectives and expertise to challenge your own. The goal is rarely to prove the target is 100% secure;
rather, it&€™ s to prove that you have done your due diligence to see whether it is secure enough.

There are a range of security assurance services available, and ita€™ s important to choose the services that
will meet your needs. This means balancing the aim of the exercise, the cost, and the depth of the evaluation.

Leta€™ s look at the common types of assessment and reviews available and their aims, as well as their
limitations and common misunderstandings of what they can provide you.

Vulnerability Assessment

Vulnerability assessment is usually the cheapest of the external assessment options at your disposal, and as such
tends to give you a broad view of your environmenta€™ s security, but one that lacks the depth of other
approaches. In these assessments you hire an outside party to run a series of tools such as vulnerability scanners
that look for common mistakes in configuration, unpatched software with known problems, default credentials,
and other known security risks. Once the scans are complete, they will summarize the results in a report that
you can give to your auditors, which should include an overall assessment of risk and a high-level remediation
plan.

Even if you do have access to a set of tools that can perform automated security scans and you are running them
on your own, there can still be value in having someone with broader experience running scans and evaluating
the results. Vulnerability assessment tools in themselves are rarely complicated to run, but someone who does
this for a living can make sure that they are configured correctly for a given environment, and help your
organization understand the results and how best to remediate them.

VULNERABILITY ASSESSMENT TOOLS AND SCANNERS

There are a number of vulnerability assessment tools available that you can use to check different layers of
your technology stack. These range from open source tools to commercial scanners and testing platforms.

We look at vulnerability scanning and compliance scanning tools in more detail in ChapterA 13,
Operations and OpSec .

A professional who has used these tools many times before should know how to make sure that the tools and
scans are set up and configured to run properly, and what policies and plug-ins will provide the most value,
instead of relying on defaults.

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch13.html#operational_security

A common downside of automated security scanning tools is the volume of results they produce, the lack of
context surrounding the results, and the number of false positives. With this in mind, having someone familiar
with vulnerability scanning and their tooling can pay dividends in terms of having the results analyzed to
reduce excess volume, remove false positives, and provide environment-specific context that the tooling is just
unable to.

One of your key expectations when employing an outside expert to run a vulnerability assessment for you is
that the expert will filter and prioritize the results correctly, so you can maximize your ROI when you remediate
the findings. Your own system administrators and operations engineers may be too dismissive of findings (4

€ cethat will never happena€), but an objective outsider can help you to understand what risks actually need to
be addressed.

Furthermore, some vulnerabilities on their own may appear to be low risk and easily dismissed. But a skilled
professional who is familiar with chaining vulnerabilities together to achieve complex compromises might
recognize when low severity vulnerabilities, aggregated with other risks in your environment, could pose a
higher risk to your organization.

[ta€™ s important to make a distinction between vulnerability assessments and other forms of more involved
assessment. By its very design, a vulnerability assessment will only be able to provide you with a list of
(potential) vulnerabilities and misconfigurations. It is a great way to identify low-hanging fruit and get a general
perspective as to the overall security health of your environment, but it is not going to be either exhaustive or
imaginative in the way in which an environmenta€™ s security posture is exercised. Getting a clean bill of
health from a vulnerability assessment is certainly a positive, but dona€™ t mistake this for a declaration that
the environment is therefore free of defects and is secure .

Penetration Testing

We looked briefly at penetration testing and whata€™ s involved in having a skilled white-hat security tester try
to hack his way into your network or your application. Penetration testing is one of the most common security
assessments, and unfortunately one of the least understood.

Good penetration testing combines a range of factors:

A disciplined and structured approach to scoping and managing the testing itself.

Testers with access to appropriate tooling that supports efficient and deep assessment.

Experience and expertise with the systems and languages being assessed.

The ability to build on first principles and adapt to novel environments quickly and creatively.

It may sound clichA©d, but you get what you pay for with penetration testing, and cutting corners or going
with inexperienced or low-skilled testers may result in an assessment that is little more than a vulnerability
assessment.

PENETRATION TESTING IS ABOUT SCOPE

Penetration testing is a scoped review. This means that typically you have engaged a team to test a certain
component or level of your technology stack, and given them a fixed time period in which to do it.

Penetration testing can be scoped to any aspect of your application deployment, and itA€™ s important that
you check this scope in when you are purchasing.

Tests can be scoped to:
Network

The deployed infrastructure for your application, including the exposed software and services.

Application

The complete application and its deployed components, excluding the operating system and host level.

Mobile app

The testing of mobile application components, normally separated by target operating system.

Integration

Testing the integration points between deployed components, sometimes including third-party systems
and crossing trust boundaries in the architecture.

API

Testing exposed APIs separately from the user interface components. This may or may not include
testing the configuration of any API gateway or orchestration components.

Scoping also comes into play when you are considering the length of time that will be allocated to the
assessment, as well as the focus that will be given to the underlying design and architecture versus the
implementation.

Penetration testing is most often done as a final security check before pushing a major new release of a system
to the final production environment. Most organizations hire a recognized penetration testing firm, let them
hack for a couple of weeks, get the report, and because they left the test to so late in their project, try to fix
whatever they can before they run out of time. In many cases the shipping date has already been set in stone, so
fixes and mitigations may not even make it into the initial release itself.

These organizations miss the real value of a penetration test: to learn about how attackers think and work and
use this information to improve their systems and the way that they design, build, and test their systems. A good
term to keep in mind that captures this value well is attack-driven defense , the use of an attackera€™ s
perspective on your environment or application to drive a continual prioritization and improvement of the
defense you choose to put in place.

Your goal shouldna€™ t be to &€ cepass the test.4€ Organizations that look at penetration testing this way may
stack the deck against the pen testers, containing their work and feeding them limited information so that the
number of problems they can find is minimized. They often justify this by stating that black-box tests are more
realistic, because the pen tester and an outside attacker both start with the same limited information.

But the more information that you provide to pen testers, the better job they can do, and the more that you can
learn. Gray-box testing, where the tester knows how the system works, just not as well as your team does, beats
black-box testing hands down. White-box testing is the next step in terms of making information available to
the pen testers by giving them full source code access and allowing them to combine code analysis,
architectural review, and dynamic hands-on testing during their assessment.

A number of different attack scenarios can be built around the constraints and allowances provided to an

external pen testing team. The reality is that it takes a fairly mature security organization to be able to actually
make real use of those differing perspectives. Far more common is the situation where the external assessment
is the first time the solution in question will have been through an offensive security assessment, and it will be
conducted on a limited budget. In these cases, one of your primary motivations should be to get out of the way
of the testers and to allow them to put their experience to best use in identifying the parts of the solution that
raise the most flags for them so that they can dig in and demonstrate successful attack scenarios and their
impact.

In this regard, a white-box assessment will allow the testers to avoid wasting time understanding the limitations
of the system and any security controls it may have, and go directly to the source to answer those questions.
Typically for a one-to-two week assessment, a white-box test will return you far more coverage, as well as more
fully exercised attack pathways, than a gray- or black-box test. It will often also provide more specific guidance
in terms of remediation, as the testers will have seen the code and may well be able to identify the exact
deficiency behind any finding. This makes it much easier for the team responsible for working with the results
to get remediations in place in a timely fashion.

As we looked at in detail in ChapterA 11 , manual testing, including penetration testing, cana€™ t keep up with
rapid Agile development or continuous delivery in DevOps. To meet compliance requirements (like PCI DSS)
and governance, you may still need to schedule penetration testing activities on a regular basis, typically at least
once per year. But instead of treating pen testing as a gate, think of it more as a validation and valuable learning
experience for the entire team.

Red Teaming

Red Teaming is running an active attack against your operations to test not only the security of your
environment as it actually works together in the day-to-day, but more importantly your incident detection and
response and other defensive capabilities.

The goals and approach are different than a pen test. Instead of trying to uncover and prioritize vulnerabilities
for you to fix, Red Teams actively exploit a vulnerability (or a chain of vulnerabilities) or use social engineering
techniques to infiltrate the network and see how long it takes for your operations or security teams to discover
what they are doing and react to them. Such an approach where you invite an external team to target your
environment as a real group of attackers is also known as an attack simulation or a goal-oriented attack . The
scope of Red Team engagements is very broad by definition or even no holds barred , with everything on the
table.

TIME AND SCOPE VERSUS GOAL-ORIENTED TESTING

[ta€™ s important to understand when you are scoping your external testing or review activities that you
can choose how to structure the engagement.

Typically, penetration testing is a time-bounded exercise where the team will spend x number of days or
weeks testing the in-scope systems and deliver its analysis.

Alternatively, Red Team testing can be objective focused instead of time or system scoped. In an
objective-focused test, you set the team a challenge, such as Alter a transaction or Gain root access on the
production environment . There are significantly fewer restrictions about how the team will get there, and
this can yield more representative results.

In terms of time frame, Red Team engagements that the authors of this book have been involved with have
lasted anywhere from six weeks to six months, with open-ended engagements where it takes as long as it
takes not being unheard of.

Red Teams will find important vulnerabilities in systems. It is not uncommon for such engagements to produce

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch11.html#agile_security_testing

zero-day vulnerabilities in both internal applications as well as commercial applications in use at an
organization.

But their real value is helping your security and operations teams to learn and improve how to deal with real-
world attack scenarios, conducted by highly motivated and skilled adversaries.

The deliverables that result from Red Team exercises are generally quite different from what you get from a pen
test. Red Team reports often present findings in the form of attacker diaries, attack trees containing the
pathways taken through an environment that led to a realized goal, and detailed descriptions of custom tools
and exploits written specifically for the engagement. This offers more insight into the attacker mindset, with
discussions covering the why as much as the what .

Failed attack pathways , things the testers tried and didna€™ t succeed, are also incredibly important, as they
provide a measure of effectiveness of security controls that may be in place and offer some qualitative measures
of the defensive investments you have made.

Red Team engagements are not cheap, and to get the most from them, the security posture of an organization
needs to be fairly mature. Early on in an organizationa€™ s security journey, money may be better spent on a
larger or more frequent set of penetration tests rather than opting for the much sexier goal-oriented-attack
approach.

However, when you do feel you are in a position to benefit from working with a Red Team, then it can be one
of the most enlightening and humbling experiences you, and your security program, can undergo. It can provide
you some very insightful qualitative data that can answers questions that the more quantitative pen test and
vulnerability assessment approaches cannot.

Again, the focus on learning should be paramount. Gaining a deep and nuanced insight into how a group of
skilled and motivated adversaries traversed your environment should be used to inform your approaches to both
defensive and detection measures.

Some organizations, especially large financial services and cloud services providers, have standing Red Teams
that continuously run tests and attack simulations as a feedback loop back to security and incident response.
Wea€™ 11 look at this approach some more in ChapterA 13, Operations and OpSec .

Bug Bounties

If therea€™ s one type of external assessment that has ridden the hype-train over the 184€24 months that
preceded the writing of this book, ita€™ s bug bounties. Inevitably, and unfortunately, with the hype have come
misconceptions, misunderstandings, as well as plain-and-simple misinformation. Rest assured that despite what
the internet may tell you, youd€™ re not grossly negligent if you dond€™ t currently run a bug bounty. In fact,
youd€™ re more likely to be considered negligent if you enter into the world of bug bounties and your security
program overall isna€™ t in a mature enough place to be able to handle it. If you dona€™ t have a solid
AppSec program in place, then you should invest in getting that up to scratch before even thinking bug bounties
,1f you dona€™ t, you will find things accelerating off ahead of you and quickly be in a place where it will be
hard to cope.

With all of that said, bug bounties are definitely an option as your security program progresses. What follows is
an effort to help you cut through the hype and view the value you may get back from a bug bounty.

How Bug Bounties Work

First, before we jump into all the ways in which bug bounties can support your security program, as well as the
ways it cana€™ t, leta€™ s define what a bug bounty really is.

Bug bounties stem from the reality check that every internet-facing system or application is constantly under

file:///Users/bonifacekayodealese/Library/Containers/com.iysoft.epubtopdf/Data/Library/Application%20Support/Epub%20to%20PDF%20Ultimate/agile-application-security-enabling-security-in-a-continuous-delivery-pipeline.9781491938843.74322%20(3)/OEBPS/ch13.html#operational_security

attack, whether you like that idea or not. Some of those attacks will be automated in nature and be the result of
all sorts of scans and probes that constantly sweep the internet, and some of them will be more targeted in
nature and have an actual human in the drivera€™ s seat. Regardless of the source, get comfortable with the
fact that active attempts are being made to find vulnerabilities in your systems even as you read these words.

Bug bounties are the rational extension of this acceptance, where you are taking the next step from accepting
this reality and actually encouraging people to probe your production systems, and most importantly to invite
them to let you know what they find.

Furthermore, you make a public commitment that for issues brought to you that you can validate (or that meet
some stated criteria), you will reward the submitter in some way. While this seems an entirely logical and
rational approach to take when written out like this, it wasna€™ t that long ago that a majority of organizations
defaulted to sending the lawyers after anyone who brought to their attention issues that had been found.
Unfortunately, there are still organizations that lawyer up when someone makes them aware of a security
vulnerability rather than engaging, understanding, and rewarding them. It would be fair to say that this is
increasingly considered an antiquated view and one that if youd€™ re reading this book, we hope you do not
subscribe to.

The range of people running a bug bounty has grown considerably in a short time, with now everyone from big
players like the Googles, Facebooks, and Microsofts of the world running them, to atypical candidates like the
US Army, alongside a multitude of other players from all across the web. Bug bounties can clearly provide
value even to those organizations with highly skilled internal teams staffed by the best and brightest.

Setting Up a Bug Bounty Program

With all that being said, deciding to run a bug bounty and engage with the vibrant communities that have built
up around them is not a decision to be taken without due consideration.

First and foremost, you must understand that above all else, running a bug bounty is about engaging with a
community, and such engagement requires the investment of time and money in some way, shape, or form.
Viewing bug bounties as cheap pen tests is missing the point: you are building relationships between your
organizationa€™ s brand, the security practitioners you employ, and the wider security community. Seeing that
community as a way to sidestep the costs involved with engaging with a dedicated pen testing team, or as a way
to tick a box that shows you really do care about security, is going to inevitably backfire.

What follows is a list of quickfire tips, tricks, and things to keep in mind as you think about establishing a bug
bounty program, derived from learning the hard way about this relatively new player in the assessment space:

In-house or outsource?

One of the first decisions you will need to make is whether you are going to run your own bug bounty or
use a third-party service to help run one for you. In-house programs give you ultimate control of your
bounty, allowing you to design it exactly as you need. If you already have an established technical security
team, it may work out cheaper than paying a third party to do what your internal security team is already
being paid to do in terms of bug qualification and analysis.

Third-party programs, however, have established communities of researchers ready to tap into, can act as a
filtering function to reduce the noise you see compared to the signal of submissions, and will enable you to
get up and running with a bounty in a short space of time. At the time of writing, the two most popular bug
bounty services are Hackerone and Bugcrowd . Third parties cana€™ t do everything, and there will always
be a point at which people familiar with the application will have to determine the validity of a submission
against your threat model as well as the way in which it needs to be addressed.

Rules of engagement

While the real attacks against your systems follow no set of rules, ita€™ s reasonable (and expected) that a
bug bounty will have some ground rules for participation. Typically, things covered in rules of engagements

https://hackerone.com/
https://bugcrowd.com/

will be domains or applications that are considered to be in-scope, types of vulnerabilities that rewards will
be given for as well as types of vulnerabilities that will not be rewarded, types of attacks that are off-limits
(e.g., anything to do with denial of service is typically excluded). There may also be some legalease in these
rules to satisfy your companya€™ s or geographya€™ s legal requirements. [ta€™ s definitely worth
checking in with your legal eagles on what they need to see in any bug bounty rules page.

The internet has plenty of examples of bug bounty rules of engagement to use as inspiration for your own,
but a good starting place would be to look at &€ eGoogle Vulnerability Reward Program (VRP) Rulesa€ ,
as they have a well established and respected bounty program.

Rewards

Stating up front the rewards that researchers can expect if they were to find a vulnerability is also a good
practice to follow. Setting expectations clearly starts off the relationship with the community in an open and
honest way. Rewards can be hard cash, swag such as t-shirts and stickers (if a successful bounty submission
is the only way to get that swag, all the better, exclusivity carries value), or public recognition of the finding
itself.

Many programs will have scales associated with the rewards given, depending on the severity of the issues
found. Some programs also increase the reward if the submitter has successfully found a vulnerability
previously, in an effort to keep those people engaged with finding bugs in their apps and to become more
deeply familiar with them. While most bug bounty programs will offer a range of rewards, it is worth noting
that your program will be taken more seriously if you are paying in hard cash rather than just t-shirts and
stickers (though you should definitely send t-shirts and stickers!).

Bounty pool size

Most companies will not have an open-ended budget for bug bounties, so you need to decide how much will
be available to pay the participating researchers in the coming quarter or year. Different organizations will
have different requirements and constraints, but a rule of thumb from one of the authors of this book was to
allocate the cost of one single penetration test as the yearly bug bounty pool. In this way, the cost of the bug
bounty becomes simple to budget for and can easily be justified as an extension of the existing pen test
program.

Hall of fame

While it may seem trivial, a hall of fame or some other way of recognizing the people who have contributed
to your bug bounty program and help make your application more secure is a very important aspect to the
community you engage with. Names, twitter handles, or website links, along with the date and type of
finding, are all typical aspects of a bug bounty hall of fame. Some programs go further and gamify the hall
of fame, with repeat submitters being given special ranking or denotations. A great example of a fun and
engaging hall of fame is the one put together by Github . Get inventive with the way you recognize the
contributions from researchers, and it will pay you back in terms of participation and kudos.

Provide some structure for submissions

Free-form submissions to a bug bounty program bring with them a few niggles that can be best to iron out
at the very beginning. Providing some kind of form or way for your bountiers to make you aware of the
issue they have found in a structured manner can be really helpful in making sure that you are getting all the
information you need from the outset to be able to do timely and efficient analysis and triage. Not all of
your submitters will be seasoned security researchers, and asking them clearly for the information you need
will help them get all the relevant information across to you. This isna€™ t to say you should deny free-
form input altogether, just that you should attempt to provide some guardrails to your submitters.

An example of one such submission form can be seen on Etsya€™ s bug bounty page . There are many
advantages to this approach, beyond reducing some of the manual back-and-forth communication with a
submitter as you try and get the details about the issue you actually want. One big advantage is the ability to

https://www.google.com/about/appsecurity/reward-program/index.html
https://bounty.github.com/
https://www.etsy.com/bounty

more accurately track metrics relating to your program in terms of the kind of issues you are seeing, their
frequency, and how the trends are evolving over time. Another advantage is that it helps keep one issue per
submission rather than multiple issues being discussed at once, which is ripe for confusion. Single issues
can be assigned tickets and responders and their time to resolution tracked.

Timely response, open, and respectful communication

As has already been said, fostering relationships with the community of researchers who engage in bug
bounties is key to the success of your program. Often the first step in that is responding in a timely manner
to people providing you with candidate vulnerabilities and keeping them in the loop as to where in the
validation or fixing process their submission is.

[ta€™ s also important to recognize that your first language, or English as the lingua franca of the internet,
may not be the submittera€™ s mother tongue, which may mean a few rounds of communication have to
take place to establish exactly what is being discussed. This can sometimes be frustrating for everyone
involved, but polite clarification, along with the assumption of best intent, will go a long way to building
trust and respect with your community.

On a related note, politely saying, &€ cethanks, but no thanksa€ for those submissions that are incorrect or
that show a lack of understanding for the topic at hand (or computers in general!) is a skill that must be
developed, as you are sure to get some plain crazy things sent your way.

Pay on time

This is pretty self-explanatory, but once a submission has been validated as a real issue that meets the rules,
getting payment to the researcher in a timely fashion is very important. Planning ahead of time the
mechanism by which you are going to make payment of any monetary reward is something you need to do.
Different programs take different approaches here. Some send pre-paid credit cards (some even using cards
with a custom design printed on them). Others send funds electronically using PayPal or wire transfers.

Payment can sometimes be challenging with the combination of different countries and tax laws. For
example, at the time of writing, PayPal cannot be used to send funds to either India or Turkey, two countries
from which you will likely see a good volume of submissions. Finding good methods to pay researchers
from these and other countries is something you should look into up front so as to not have unexpected
delays when trying to pay out your bountiers. Payment is one of the areas using a third-party bug bounty
service will help take off of your plate, as it will be the one interfacing with the researchers and getting
them their money, so dona€™ t underestimate the value that adds.

[ta€™ s kind of a one-way door

Once you start a public bug bountys, it is going to be pretty hard to roll it back at a future date. So if youa
€™ re moving forward, realize that this is a lifestyle choice you expect to stick to, not a fad that you can
walk away from when itA€™ s not as cool any more.

Dona€™ t underestimate the initial surge

When you start your bounty, realize youa€™ re in some senses opening the flood gates. Be prepared to meet
the initial demand, as this is when you are building your relationship with the community. First impressions
count. The first two weeks will likely see a dramatically higher volume of submissions than your program
will see on average, so ensure you set aside time and resources to validate, investigate, and triage the flow
of submissions as they come in. Depending on the size of the team that will be fielding the submissions, it
may get little else done for a couple of weeks. Make sure you time your program to open at a point in your
calendar when this makes sense.

There will be duplicate, cookie-cutter, and just plain terrible submissions

Accept from the outset that there will always be some people looking to game the system and to get paid for
doing as little as possible, or even to make money off nonissues. Be comfortable with the fact that out of the

total number of submissions your program will receive, a majority of them will not result in a bounty and
will just be noise.

Also realize that as soon as a new general vulnerability or issue is discovered and made public, the bug
bounty community will hunt across every site trying to find instances of it that they can claim a bounty for.
Have a clear plan of how you handle duplicate submissions of a valid vulnerability (often the first
submission wins and is the only person who will receive a reward), as well as how you handle submissions
that focus on a risk that you have accepted or that is an intended feature of the system itself.

USING BUG BOUNTIES TO GET MORE FROM PEN TESTERS

As useful as bug bounties may be, they will never replace an experienced penetration testing team. They
can, however, be used to make penetration tests more effective. The rationale is that if youd€™ re paying
testers to pen test your environment, they will want to have some results to show. If they return to you
empty-handed, their chances of being asked back will likely be reduced. If critical findings are hard to
come by, pen testers will often resort to padding out a report with lower-impact or trivial issues just so they
have something so show to you. This isna€™ t a good use of your money or their time.

If you are running a bug bounty, your apps will be undergoing a constant sweep for the lower-hanging
fruit, with smaller bounties being paid out for these less critical issues when they are found. This leaves
little to no easy pickings for pen testers to pad out their reports with. In these cases, the pen testing
company is likely to throw additional testers or more senior testers at the engagement as they start to near
the completion date, so that they can have something to show you. Desperate pen testers often get mighty
inventive and can discover some of the more obscure bugs when pressed.

In this way, bug bounties can give you not only the continual assessment and discovery of vulnerabilities,
but also make the more expensive external engagements you invest in work harder for you and return
better value.

Are You Sure You Want to Run a Bug Bounty?

The whirlwind tour of the world of bug bounties is almost complete, so why might you not want to run one
when all you hear about them is that they are the greatest thing ever? Well, first consider who might be telling
you about them. A lot of the promotion is coming from people with vested interests in the widest adoption of
bug bounties, hopefully on their platform. Outside the marketing side of the hype cycle, there are aspects of
bounties that may result in you deciding they are not the right thing for you:

You need to have a fairly well-established response capability.

While your systems are being attacked all the time, opening your window to the internet and shouting, &
€eCome at me, brod€ takes things to the next level. You need to be confident in your ability to evaluate,
respond, and fix issues that are raised to you in a timely manner. If you are not able to perform these
functions, then a bounty program can do more harm than good.

The always-on nature of a bug bounty is both a strength and a weakness. Scheduled engagements allow you
to set aside time for triage and response. New bounties still come in at any time day or night and may
require immediate response (even to nonissues). This leads into the potential danger of burnout for your
team, the cost of which can manifest in multiple ways, none of which are good.

The signal to noise is low.

If you think that once you have a bug bounty program you will be receiving round-the-clock, high-quality
pen testing, then think again. Most of the submissions will be false positives. For those that are real issues, a
majority will be low-value, low-impact vulnerabilities. All will require investigation, follow up, and
communication, none of which is free. You can partner with a bug bounty provider to help, but that leads to

the next point.

Outsourcing your bug bounty program means others will be representing your security brand.

Partnering with a third-party bounty platform provider means that you are also outsourcing your security
brand, which, as discussed in ChapterA 15, Security Culture , i1s something that is hard fought and easily
lost. Having a third party represent the security of your applications and environments means that you are
placing them in a position where they can directly impact the trust that your customers and the wider public
have with your products and organization. This is not something to do lightly.

The line between bounty and incident is a fuzzy one.

When does a bounty attempt blur into becoming a real security incident? This is a question thati€™ s hard
to answer in an absolute sense, and is likely one that you dond€™ t have much control over aside from
publishing a set of rules. Bountiers are incentivized to maximize the severity and impact of their findings, as
they get paid more the worse something is (unlike a pen testing contract that normally pays a set rate
regardless of findings).

This has resulted in situations where an overeager (to put it politely) bountier trying to demonstrate the
severity of his finding, or one who is dissatisfied with the response or bounty you gave him, crosses the line
into actually causing a security incident that impacts real customer data and that needs to be responded to in
a formal and complete way. The cost of managing and responding to just one such incident, alongside the
PR fallout, will dwarf the cost of the bug bounty program.

Bug bounties can result in bad PR.

Be comfortable that some of the folks in the community you are engaging with will not be happy with how
you classify, respond, or pay out for an issue, and will seek leverage by going public with their side of the
story. Threats of publishing this on my blog or I will tweet about this will be a regular occurrence and may
now and again result in PR that is not overly positive. An additional word of caution will be that you should
assume that all communications with the bug bounty community will appear publicly at some point, and so
author them accordingly, however troublesome or annoying the submitter may be.

The return will likely diminish over time, and t