

ffirs.indd iiffirs.indd ii 2/11/09 9:12:06 AM2/11/09 9:12:06 AM

SCJP
Sun Certified Programmer

for Java® Platform, SE6
Study Guide

ffirs.indd iffirs.indd i 2/11/09 9:11:59 AM2/11/09 9:11:59 AM

ffirs.indd iiffirs.indd ii 2/11/09 9:12:06 AM2/11/09 9:12:06 AM

SCJP
Sun Certified Programmer

for Java® Platform, SE6
Study Guide

Richard F. Raposa

ffirs.indd iiiffirs.indd iii 2/11/09 9:12:06 AM2/11/09 9:12:06 AM

Acquisitions Editor: Jeff Kellum
Development Editor: Jennifer Leland
Technical Editor: James Nuzzi
Production Editor: Christine O’Conno
Copy Editor: Elizabeth Welch
Production Manager: Tim Tate
Vice President and Executive Group Publisher: Richard Swadley
Vice President and Publisher: Neil Edde
Media Project Manager 1: Laura Moss-Hollister
Media Associate Producer: Shawn Patrick
Media Quality Assurance: Angie Denny
Book Designer: Judy Fung, Bill Gibson
Proofreader: Nancy Bell
Indexer: Robert Swanson
Project Coordinator, Cover: Lynsey Stanford
Cover Designer: Ryan Sneed

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-41797-3

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Permission Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent
professional person should be sought. Neither the publisher nor the author shall be liable for damages arising
herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that
Internet Web sites listed in this work may have changed or disappeared between when this work was written and
when it is read.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data

Raposa, Richard F.
 SCJP Sun certified programmer for Java platform, SE6, study guide / Richard F. Raposa. — 1st ed.
 p. cm.
 ISBN 978-0-470-41797-3 (paper/cd-rom)
 1. Electronic data processing personnel — Certification. 2. Operating systems (Computers) —
 Examinations — Study guides. 3. Java (Computer program language) — Examinations — Study guides.
 I. Title.
 QA76.3.R357 2009
 005.13'3—dc22

2008054906

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. Java is a registered trademark of Sun Microsystems, Inc. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

10 9 8 7 6 5 4 3 2 1

ffirs.indd ivffirs.indd iv 2/11/09 9:12:07 AM2/11/09 9:12:07 AM

www.wiley.com/go/permissions

Dear Reader,

Thank you for choosing SCJP: Sun Certifi ed Programmer for Java Platform, SE6 Study
Guide. This book is part of a family of premium-quality Sybex books, all of which are
written by outstanding authors who combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than thirty years later, we’re still committed to
producing consistently exceptional books. With each of our titles we’re working hard to
set a new standard for the industry. From the paper we print on, to the authors we work
with, our goal is to bring you the best books available.

I hope you see all that refl ected in these pages. I’d be very interested to hear your comments
and get your feedback on how we’re doing. Feel free to let me know what you think
about this or any other Sybex book by sending me an email at nedde@wiley.com, or if you
think you’ve found a technical error in this book, please visit http://sybex.custhelp.com.
Customer feedback is critical to our efforts at Sybex.

 Best regards,

 Neil Edde
 Vice President and Publisher
 Sybex, an Imprint of Wiley

ffirs.indd vffirs.indd v 2/11/09 9:12:07 AM2/11/09 9:12:07 AM

 To Susan, Megan, Ryan, Katelyn, Emma and Sara.

ffirs.indd viffirs.indd vi 2/11/09 9:12:07 AM2/11/09 9:12:07 AM

Acknowledgments
 A lot of time and energy goes into a book like this, and my wife and kids will be the fi rst
ones to attest to that fact! I owe them many thanks for their patience and understanding
during the months that went into this project.

 I also want to thank Jennifer Leland, the Developmental Editor, for putting up with
my complete inability to learn when to use the appropriate styles. Everyone who reads
this book owes James Nuzzi a big thank you for his meticulous job as Technical Editor.
The text and sample questions involve a lot of code, and James did an amazing job fi nding
errors and typos. Thanks also to Jeff Kellum, Pete Gaughan, Christine O ’ Connor, and
everyone at John Wiley & Sons, Inc., who helped make this book a reality.

 And last but not least, I want to thank all of you who are reading this book in hopes of
learning Java and passing the SCJP Exam. I hope all of you fi nd this book informative and
indispensable wherever your Java adventures take you. Good luck!

About the Author
 Rich Raposa runs a Java training fi rm, JLicense, Inc., based out of Rapid City, SD. He is
a Sun Certifi ed Java Programmer as well as a Sun Certifi ed Java Instructor, and has spent
the past 11 years delivering Java training courses to businesses across the United States. He
has written dozens of Java courses ranging from introductory Java to advanced topics like
Enterprise JavaBeans, Java Web development, and Java Web Services. He enjoys playing
poker and playing the guitar (though he does not claim to be good at either).

ffirs.indd viiffirs.indd vii 2/11/09 9:12:08 AM2/11/09 9:12:08 AM

ffirs.indd viiiffirs.indd viii 2/11/09 9:12:08 AM2/11/09 9:12:08 AM

Contents at a Glance
Introduction xvii

Assessment Test xxiv

Chapter 1 Fundamentals 1

Chapter 2 Declarations, Initialization, and Scoping 77

Chapter 3 Flow Control 187

Chapter 4 API Contents 269

Chapter 5 Concurrency 341

Chapter 6 Object-Oriented Concepts 381

Chapter 7 Collections and Generics 425

Appendix 491

Glossary 495

Index 507

ftoc.indd ixftoc.indd ix 2/11/09 6:45:42 PM2/11/09 6:45:42 PM

ftoc.indd xftoc.indd x 2/11/09 6:45:43 PM2/11/09 6:45:43 PM

Contents
Introduction xvii

Assessment Test xxiv

Chapter 1 Fundamentals 1

Writing Java Classes 2
Packages 4

The package Keyword 5
The import Keyword 6
Package Directory Structure 9
The CLASSPATH Environment Variable 11

Running Java Applications 12
The -classpath Flag 17
JAR Files 17
Command-Line Arguments 19

Reference vs. Primitive Types 22
Primitive Types 22
Reference Types 23

Garbage Collection 28
The System.gc Method 32
The finalize Method 33

Call by Value 36
Java Operators 43

The Assignment Operators 44
The Arithmetic Operators 46
The Relational Operators 50
The instanceof Operator 51
The Bitwise and Logical Operators 53
The Conditional Operator 55
The Equality Operators 56

Equality of Objects 58
Summary 61
Exam Essentials 61
Review Questions 63
Answers to Review Questions 73

Chapter 2 Declarations, Initialization, and Scoping 77

Declaring Variables 78
Scoping 80

Instance Variables 80
Class Variables 83
Local Variables 86

ftoc.indd xiftoc.indd xi 2/11/09 6:45:43 PM2/11/09 6:45:43 PM

xii Contents

Declaring Arrays 88
Array References 89
Array Objects 90
Using Arrays 91
Multidimensional Arrays 93
Array Initializers 95

Declaring Classes 97
The Instantiation Process 100

Constructors 102
The Default Constructor 104
Using this in Constructors 105
Using super in Constructors 108
Instance Initializers 111
Static Initializers 114

Declaring Methods 116
Method Declarations 116
JavaBeans Naming Convention 118
Instance Methods 121
Static Methods 124
Variable-Length Arguments 126
Method Overloading 128
Method Overriding 131
Covariant Return Types 134
Method Hiding 135
Final Methods 137

Declaring Abstract Classes 138
Abstract Methods 140

Declaring Interfaces 143
Implementing Interfaces 144
Extending Interfaces 147

Declaring Enumerations 147
Using enums 149
Declaring enum Methods 150
Declaring enum Constructors 151

Declaring Nested Classes 152
Member Inner Classes 152
Local Inner Classes 158
Anonymous Inner Classes 159
Static Nested Classes 162

Summary 165
Exam Essentials 166
Review Questions 168
Answers to Review Questions 183

ftoc.indd xiiftoc.indd xii 2/11/09 6:45:44 PM2/11/09 6:45:44 PM

Contents xiii

Chapter 3 Flow Control 187

Overview of Flow Control 188
The if Statement 188
The switch Statement 192

Switching on an Enum 194
Final case Values 196

The for Statement 197
The Basic for Statement 197
The Enhanced for Statement 201

The while Statement 206
The do Statement 209
The break Statement 211
The continue Statement 215
Overview of Assertions 218

The assert Statement 219
Enabling Assertions 220
Using Assertions 221

Overview of Exceptions 224
The try Statement 227
Multiple catch Clauses 229
The Handle or Declare Rule 231
The finally Block 238

Java API Exceptions and Errors 242
ArrayIndexOutOfBoundsException 243
ClassCastException 244
IllegalArgumentException 245
IllegalStateException 245
NullPointerException 246
NumberFormatException 246
AssertionError 247
ExceptionInInitializerError 247
StackOverflowError 248
NoClassDefFoundError 249

Summary 249
Exam Essentials 250
Review Questions 251
Answers to Review Questions 265

Chapter 4 API Contents 269

The Primitive Wrapper Classes 270
Autoboxing and Unboxing 272
Strings 274

The String Class 275
The StringBuilder and StringBuffer Classes 278

ftoc.indd xiiiftoc.indd xiii 2/11/09 6:45:44 PM2/11/09 6:45:44 PM

xiv Contents

Input and Output 281
Streams vs. Readers and Writers 281
Low-Level vs. High-Level Streams 283

File Input and Output 285
The FileReader and FileWriter Classes 285
The File Class 287
The FileInputStream and FileOutputStream Classes 289
The DataInputStream and DataOutputStream Classes 291
The PrintWriter Class 294
The format and printf Methods 295
The Console Class 298

Object Serialization 301
The Serializable Interface 301
The ObjectOutputStream Class 303
The ObjectInputStream Class 304

Formatting and Parsing Data 306
Format and Parse Numbers and Currency 306
Format and Parse Dates 312

Regular Expressions 315
The Pattern and Matcher Classes 315
The String.split Method 320
The Scanner Class 322

Summary 324
Exam Essentials 325
Review Questions 326
Answers to Review Questions 337

Chapter 5 Concurrency 341

Overview of Threads 342
Writing a Thread 343

Implementing the Runnable Interface 344
Extending the Thread Class 346

Thread States 349
New Threads 349
Runnable Threads 351
Blocked Threads 353
Waiting and Timed-Waiting Threads 353
Terminated Threads 355

Thread Synchronization 355
The Monitor Lock 358

The wait, notify, and notifyAll Methods 363
Summary 368

ftoc.indd xivftoc.indd xiv 2/11/09 6:45:45 PM2/11/09 6:45:45 PM

Contents xv

Exam Essentials 369
Review Questions 370
Answers to Review Questions 378

Chapter 6 Object-Oriented Concepts 381

Encapsulation, Coupling, and Cohesion 382
Tight Encapsulation 382
Loose Coupling 385
High Cohesion 388

OO Design Relationships 390
The “is-a” Relationship 390
The “has-a” Relationship 392

Modifiers and Inheritance 393
The Access Modifiers 393
The abstract Modifier 397
The final Modifier 399

Polymorphism 401
Understanding Polymorphism 402
Casting Polymorphic References 405

Summary 409
Exam Essentials 410
Review Questions 412
Answers to Review Questions 423

Chapter 7 Collections and Generics 425

Overview of Collections 426
The Collections Interfaces 426
The Comparable Interface 432
The Difference Between == and equals 433

Using Generics 436
Limitations of Nongeneric Collections 436
Lists 438
Sets 441
Maps 445

Generic Types and Methods 449
Generic Classes 450
Generic Interfaces 451
Generic Methods 453
Bounded Generic Types 455
Generic Wildcards 458

Working with Lists 461
Sorting Lists 461
Searching Lists 467

ftoc.indd xvftoc.indd xv 2/11/09 6:45:45 PM2/11/09 6:45:45 PM

xvi Contents

Working with Arrays 470
Sorting Arrays 470
Searching Arrays 473

Summary 475
Exam Essentials 476
Review Questions 478
Answers to Review Questions 487

Appendix 491

Glossary 495

Index 507

ftoc.indd xviftoc.indd xvi 2/11/09 6:45:46 PM2/11/09 6:45:46 PM

 Introduction
 The Sun Certifi ed Programmer for Java Platform, Standard Edition 6 (Java SE 6)
certifi cation exam is for programmers experienced using the Java programming language.
Achieving this certifi cation provides clear evidence that a programmer understands
the basic syntax and structure of the Java programming language and can create Java
technology applications that run on server and desktop systems using Java SE 6.

 How Do You Become SCJP Certified?

 Pass the exam! You need to achieve a 65% (47 of 72 questions) or higher to pass the
SCJP exam, and once you pass it, then you are a Sun Certifi ed Java Programmer for the
particular version of the exam that you passed. The latest SCJP exam is for JavaSE 6.0,
which is the exam this book covers.

 The SCJP Exam

 The SCJP exam consists of 72 questions and you are given three and one - half hours to
complete it. You take the exam at an Authorized Worldwide Prometric Testing Center. You
take the SCJP exam on a computer using the mouse to display questions and answers. The
questions appear on the screen one at a time, and you can navigate forward and backward
at any time to view any question or modify your answer. Longer questions do not fi t on
the screen and require you to click on the scroll bar. You answer a question by clicking the
appropriate answer.

 You are not allowed to bring anything into the exam room, including a pen and paper.
Most testing centers do not allow scratch paper and instead provide a small white board
and a dry - erase marker. Most testing centers have security cameras as well, and it is likely
that other people will be in the exam room taking different exams.

 Types of Exam Questions

 The SCJP exam consists of the following types of questions:

 Multiple choice A majority of the questions are multiple choice. The number of answers
given varies for each question, but typically you are given fi ve to six answers. If a question
has more than one answer, the question specifi cally states exactly how many correct
answers there are for the question. For example, a question might have fi ve answers and
state that two of them are correct. The exam software only allows you to select two
answers for that particular question.

 Drag and drop About 10 to 15 of the exam questions involve fi lling in the blanks of a
question. The answers are given in a list or box on the screen, and you drag and drop an
answer into the blank. Some of the drag - and - drop questions have the exact same number of
blanks as answers, and some of them have more answers than blanks.

flast.indd xviiflast.indd xvii 2/11/09 6:44:54 PM2/11/09 6:44:54 PM

xviii Introduction

 When you navigate from one question to the next during the exam, the multiple choice
questions simply appear on the screen. If the question is drag and drop, you do not see the
actual question initially when you navigate to the question. Instead, you click a button that
displays the question and answers, and when you have fi nished answering the question, you
close the display and return to the navigation screen, where you can continue to the next
question.

 Tips for Taking the SCJP Exam

 The most important tip I can give you for passing the exam is to practice answering
questions. Study all of the sample questions that appear at the end of each chapter, as well
as the bonus exam questions and the Assessment Test later in this Introduction. I tried to
write questions that were indicative of the questions on the exam as far as knowledge and
diffi culty level. Between this book and its accompanying CD, you have over 400 questions
to prepare you for the exam. Try to answer the questions to the best of your ability without
 “ cheating ” and looking back through the chapters, and practice a group of questions at
a time without checking the answers right away. This will help simulate the taking of the
actual exam.

 Some questions on the SCJP exam are easier than others and require less time, while
other questions might take several minutes to answer. You should average about 30
questions an hour. This pace will leave you with an hour or so at the end to go back and
review your answers. If you start running out of time, make sure you at least answer every
question on the exam, even if you have to guess. There is no penalty for a wrong answer, so
do not leave a question blank.

 Do not underestimate the exam objectives or try to guess what will or won ’ t be on the
exam. Because the number of objectives outnumbers the exam questions, not every exam
objective has a corresponding exam question. Therefore, your best plan of action is to
understand every exam objective. If you fi nd yourself struggling with a particular topic,
then write some code! Writing code and making mistakes along the way are the best way to
understand any programming topic.

 Also, expect the newer concepts of the Java language to appear on the exam. For
example, I can guarantee that you will see a question on generics and enumerations. These
are newer concepts in the language and they separate the new SCJP exam from the previous
versions.

 One unpleasant issue that I ran into with the drag - and - drop questions is that you cannot
review the answer after you move on to the next question. If you go back to a drag - and -
 drop question and click the button to display the question and answers, your answer is
lost and you have to re - answer the question in its entirety. Some of these drag - and - drop
questions took some time to determine the answer, and I found that I did not always
remember what my initial answer was, so I had to rethink the question all over again! If
you are getting close to the end of your allotted time and you are trying to review all your
answers, you might want to be judicious about whether to rework through a drag - and - drop
question.

flast.indd xviiiflast.indd xviii 2/11/09 6:44:54 PM2/11/09 6:44:54 PM

Introduction xix

 If you have to retake the exam, keep in mind that there are several versions of the exam
and the questions will be different each time you take the exam.

 Exam Registration

 The price of the exam in the United State is $300 and you can purchase a voucher online
at http://www.sun.com/training/catalog/courses/CX-310-065.xml . This URL is for
the Java SE 6.0 exam. If you are taking a different version of the exam, you can fi nd the
corresponding registration page at http://www.sun.com/training/catalog/courses/ .
If you reside outside of the United States, visit http://www.sun.com/training/world_
training.html to purchase a voucher for the exam.

 After you purchase your exam voucher, you have up to one year from the date of
purchase to use it. Each voucher is valid for one exam and can only be used at an
Authorized Prometric Testing Center in the country for which it was purchased. Please be
aware that exam vouchers are nonrefundable for any reason.

 An exam voucher contains a unique number that you provide to Prometric when
scheduling the exam. To schedule the exam, contact Prometric at (800) 795 - 3926 (United
States and Canada). You can also visit the Prometric Web site at http://www.2test.com .

 When you arrive at the testing facility to take the exam, you need to bring two forms
of identifi cation. One must be a current, government - issued photo ID, such as a valid
passport or driver ’ s license, with a photo that looks like you. Be sure the names on your
ID are displayed the same way it is displayed on your exam record, and that both IDs have
a current signature that looks like yours. Examples of other pieces of ID are credit cards
and check cashing cards. The test will not be delivered without the appropriate form of
identifi cation. Prometric Test Center Administrators have the right to refuse seating you for
the exam if they are unable to properly identify you.

 Do not bring notes, pens, pencils, paper, large purses, or backpacks to the test center.
Supplies needed for taking the exam are provided by the testing center. Prometric
recommends that you arrive at the testing center at least 30 minutes before the test is
scheduled to begin to allow time to complete the sign - in process.

 Is This Book for You?
 If you want to become certifi ed as a Java programmer, this book is defi nitely for you. If
you want to acquire a solid foundation in Java and your goal is to prepare for the exam
by learning how to program and develop in Java, this book is for you. You ’ ll fi nd clear
explanations of the concepts you need to grasp and plenty of help to achieve the high level
of professional competency you need in order to succeed in your chosen fi eld.

 However, if you just want to attempt to pass the exam without really understanding
Java, this study guide is not for you. It is written for people who want to acquire hands - on
skills and in - depth knowledge of programming Java.

flast.indd xixflast.indd xix 2/11/09 6:44:55 PM2/11/09 6:44:55 PM

xx Introduction

 What ’ s in the Book?

 What makes a Sybex Study Guide the book of choice for hundreds of thousands of SCJPs?
We took into account not only what you need to know to pass the exam, but also what
you need to know to take what you ’ ve learned and apply it in the real world. Each book
contains the following:

 Objective - by - objective coverage of the topics you need to know Each chapter lists the
objectives covered in that chapter.

 The topics covered in this Study Guide map directly to Sun ’ s official exam
objectives. Each exam objective is covered completely.

Assessment Test Directly following this Introduction is an Assessment Test that you
should take. It is designed to help you determine how much you already know about the
Java Platform, Standard Edition 6. Each question is tied to a topic discussed in the book.
Using the results of the Assessment Test, you can fi gure out the areas where you need to
focus your study. Of course, we do recommend you read the entire book.

 Exam Essentials To highlight what you learn, you ’ ll fi nd a list of Exam Essentials at the
end of each chapter. The Exam Essentials section briefl y highlights the topics that need
your particular attention as you prepare for the exam.

 Glossary Throughout each chapter, you will be introduced to important terms and con-
cepts that you will need to know for the exam. These terms appear in italic within the
chapters, and at the end of the book, a detailed Glossary gives defi nitions for these terms,
as well as other general terms you should know.

 Review questions, complete with detailed explanations Each chapter is followed by a set
of Review Questions that test what you learned in the chapter. The questions are written
with the exam in mind, meaning that they are designed to have the same look and feel as
what you ’ ll see on the exam.

 Real World Scenarios Because reading a book isn ’ t enough for you to learn how to apply
these topics in your everyday duties, we have provided Real World Scenarios in special side-
bars. These explain when and why a particular solution would make sense, in a working
environment you ’ d actually encounter.

 Interactive CD Every Sybex Study Guide comes with a CD complete with additional
questions, fl ashcards for use with an interactive device, and the book in electronic format.
Details are in the following section.

 What ’ s on the CD?

 With this new member of our best - selling Study Guide series, we are including quite an
array of training resources. The CD offers bonus exams and fl ashcards to help you study

flast.indd xxflast.indd xx 2/11/09 6:44:55 PM2/11/09 6:44:55 PM

Introduction xxi

for the exam. We have also included the complete contents of the Study Guide in electronic
form. The CD ’ s resources are described here:

 The Sybex E - book for SCJP: Sun Certified Programmer for Java Platform,
SE6 Study Guide Many people like the convenience of being able to carry their whole
Study Guide on a CD. They also like being able to search the text via computer to fi nd
specifi c information quickly and easily. For these reasons, the entire contents of this Study
Guide are supplied on the CD, in PDF. We ’ ve also included Adobe Acrobat Reader, which
provides the interface for the PDF contents as well as the search capabilities.

 The Sybex Test Engine This is a collection of multiple - choice questions that will help you
prepare for your exam. There are three sets of questions:

 Two bonus exams designed to simulate the actual live exam.

 All the questions from the Study Guide, presented in a test engine for your review. You
can review questions by chapter, or you can take a random test.

 The Assessment Test.

 Here is a sample screen from the Sybex Test Engine:

�

�

�

flast.indd xxiflast.indd xxi 2/11/09 6:44:56 PM2/11/09 6:44:56 PM

xxii Introduction

 Sybex Flashcards for PCs and Handheld Devices The “ fl ashcard ” style of question offers
an effective way to quickly and effi ciently test your understanding of the fundamental con-
cepts covered in the exam. The Sybex Flashcards set consists of 100 questions presented in
a special engine developed specifi cally for this Study Guide series. Here ’ s what the Sybex
Flashcards interface looks like:

 Because of the high demand for a product that will run on handheld devices, we have also
developed, in conjunction with Land - J Technologies, a version of the fl ashcard questions
that you can take with you on your Palm OS PDA (including the PalmPilot and Hand-
spring ’ s Visor).

 How to Use This Book

 This book is loaded with valuable information, and you will get the most out of your
studying time if you understand how I put the book together. Here ’ s a list on how to
approach studying it so you get the most out of it:

 1. Take the Assessment Test immediately following this introduction. It ’ s okay if you
don ’ t know any of the answers — that ’ s what this book is for! Carefully read over the
explanations for any question you get wrong and make note of the chapters where that
material is covered.

flast.indd xxiiflast.indd xxii 2/11/09 6:44:56 PM2/11/09 6:44:56 PM

Introduction xxiii

 2. Study each chapter carefully, making sure that you fully understand the information
and the test objectives listed at the beginning of each one. Again, pay extra - close
attention to any chapter that includes material covered in questions you missed on the
Assessment Test.

 3. Answer all of the Review Questions related to each chapter. Specifically note any
questions that confuse you and study those sections of the book again. And don ’ t just
skim these questions — make sure you understand each answer completely!

 4. Try your hand at the bonus exams included on the companion CD. The questions in
these exams appear only on the CD.

 5. Test yourself using all the flashcards on the CD.

 If you follow the steps listed here and study and practice the Review Questions, bonus
exams, and the electronic fl ashcards, you should do fi ne.

flast.indd xxiiiflast.indd xxiii 2/11/09 6:44:56 PM2/11/09 6:44:56 PM

 Assessment Test
 1. The following code appears in a file named Book.java . What is the result of compiling

this source file? (Select one answer.)
1. public class Book {

2. private int pageNumber;

3.

4. private class BookReader {

5. public int getPage() {

6. return pageNumber;

7. }

8. }

9. }

 A. The code compiles successfully and one bytecode file is generated: Book.class .

 B. The code compiles successfully and two bytecode files are generated: Book.class and
 BookReader.class .

 C. The code compiles successfully and two bytecode files are generated: Book.class and
 Book$BookReader.class .

 D. A compiler error occurs on line 4.

 E. A compiler error occurs on line 6.

 2. Given the following TV class:
1. public class TV {

2. private String make;

3. private String model;

4.

5. public TV(String make, String model) {

6. this.make = make;

7. this.model = model;

8. }

9.

10. public boolean equals(TV other) {

11. return make.equals(other.make) & &

12. model.equals(other.model);

13. }

14.

15. public int hashCode() {

16. return make.length() * 10 + model.length();

17. }

18. }

flast.indd xxivflast.indd xxiv 2/11/09 6:44:57 PM2/11/09 6:44:57 PM

 what is the result of the following statements?
TV a = new TV(“Philips”, “42PFL5603D”);

TV b = new TV(“Philips”, “42PFL5603D”);

if(a.equals(b)) {

 System.out.println(“equal”);

} else {

 System.out.println(“not equal”);

}

 A. equal

 B. not equal

 C. Line 10 causes a compiler error.

 D. Line 11 causes a compiler error.

 E. Line 15 causes a runtime exception to occur.

 3. When does the String object “ hi ” instantiated on line 2 become eligible for garbage
collection?
1. public class Hello {

2. String greeting = “hi”;

3.

4. public static void main(String [] args) {

5. Hello h = new Hello();

6. h.greeting = null;

7. System.gc();

8. return;

9. }

10. }

 A. Immediately after line 5

 B. Immediately after line 6

 C. Immediately after line 7

 D. Immediately after line 8

 E. Immediately after line 9

 4. What is the result of the following code?
6. byte x = 23, y = 4;

7. int z = 23 % 4;

8. System.out.println(z);

 A. 3

 B. 4

 C. 4.75

Assessment Test xxv

flast.indd xxvflast.indd xxv 2/11/09 6:44:57 PM2/11/09 6:44:57 PM

 D. Compiler error on line 6

 E. Compiler error on line 7

 5. What is the result of the following program?
1. public class Vehicle {

2. public boolean used;

3. public String make;

4.

5. public static void main(String [] args) {

6. Vehicle v = new Vehicle();

7. if(v.used) {

8. System.out.println(v.make);

9. } else {

10. System.out.println(v.make.length());

11. }

12. }

13. }

 A. null

 B. 0

 C. Line 7 generates a compiler error.

 D. Line 8 generates an exception at runtime.

 E. Line 10 generates an exception at runtime.

 6. Given the following class definition:
1. public class PrintStrings {

2. public static void print(String... values) {

3. for(String value : values) {

4. System.out.print(value);

5. }

6. }

7. }

 which of the following statements are valid method calls to print ?

 A. PrintStrings.print();

 B. PrintStrings.print(“ abc “);

 C. PrintStrings.print(‘a’, ‘ b’, ‘ c’);

 D. PrintStrings.print(“ a ” , “ b ” , “ c “);

 E. PrintStrings.print(new java.util.Date());

xxvi Assessment Test

flast.indd xxviflast.indd xxvi 2/11/09 6:44:57 PM2/11/09 6:44:57 PM

 7. Given the following Football class definition:
1. package my.sports;

2.

3. public class Football {

4. public static final int teamSize = 11;

5. }

 and also the following FootballGame class:
1. package my.apps;

2.

3.

4.

5. public class FootballGame {

6. public int getTeamSize() {

7. return teamSize;

8. }

9. }

 which of the following statements can appear on line 3 so that the FootballGame class
compiles successfully?

 A. import static my.sports.Football;

 B. import my.sports.Football;

 C. import static my.sports.Football.*;

 D. import static my.sports.*;

 E. No import statement is necessary.

 8. What is the result of the following statements?
28. Integer i = 5;

29. switch(i) {

30. case 1: System.out.print(1); break;

31. case 3: System.out.print(3);

32. case 5: System.out.print(5);

33. case 7: System.out.print(7); break;

34. default: System.out.print(“default”);

35. }

 A. 5

 B. 57

 C. 57default

 D. Compiler error on line 28

 E. Compiler error on line 29

Assessment Test xxvii

flast.indd xxviiflast.indd xxvii 2/11/09 6:44:58 PM2/11/09 6:44:58 PM

 9. What is the result of the following code?

3. Boolean m = true;

4. int n = 14;

5. do {

6. n = n > > 1;

7. if(n < 4) {

8. m = new Boolean(false);

9. }

10. }while(m);

11. System.out.println(n);

 A. 0

 B. 2

 C. 3

 D. An infinite loop

 E. Line 10 generates a compiler error.

 10. Given the following class definition:

1. public class AssertDemo {

2. public static void main(String [] args) {

3. Integer x = 10;

4. assert x == null & & x > = 0;

5. System.out.println(x);

6. }

7. }

 and given the following command line, which one of the following statements is true?

java AssertDemo

 A. Line 3 generates a compiler error.

 B. Line 4 generates a compiler error.

 C. Line 4 throws an AssertionError at runtime.

 D. The output is 10 .

 11. Which of the following statements are true? (Select two.)

 A. All string literals are automatically instantiated into a String object.

 B. The StringBuilder and StringBuffer classes define the exact same public methods.

 C. In a multithreaded environment, use StringBuilder instead of StringBuffer .

 D. A StringBuilder object is immutable.

 E. A StringBuffer object cannot change its length once it is instantiated.

xxviii Assessment Test

flast.indd xxviiiflast.indd xxviii 2/11/09 6:44:58 PM2/11/09 6:44:58 PM

 12. Suppose you need to write data that consists of char values and String objects to a file
that maintains the format of the original data. The data needs to be buffered to improve
performance. Which two java.io classes can be chained together to best achieve this
result?

 A. FileWriter

 B. FileOutputStream

 C. BufferedOutputStream

 D. BufferedWriter

 E. PrintWriter

 F. PipedOutputStream

 13. What is the result of the following code?

14. DecimalFormat df = new DecimalFormat(“#,000.0#”);

15. double pi = 3.141592653;

16. System.out.println(df.format(pi));

 A. 3.141592653

 B. 0,003.14

 C. ,003.1

 D. 003.14

 E. 00.04

 14. What is the result of the following program?

1. public class PrintX implements Runnable {

2. private int count;

3.

4. public PrintX(int count) {

5. this.count = count;

6. }

7.

8. public void run() {

9. for(int i = 1; i < = count; i++) {

10. System.out.print(“x”);

11. }

12. }

13.

14. public static void main(String [] args) {

15. Thread t = new Thread(new PrintX(3));

16. t.start();

17. System.out.print(“y”);

Assessment Test xxix

flast.indd xxixflast.indd xxix 2/11/09 6:44:58 PM2/11/09 6:44:58 PM

18. t.start();

19. }

20. }

 A. xxxyxxx

 B. yxxxxxx

 C. Six x s and one y printed in an indeterminate order

 D. The code throws an exception at runtime.

 E. The code does not compile.

 15. What is the result of the following statements?

4. Thread t = new Thread() {

5. public void run() {

6. System.out.println(

7. Thread.currentThread().getState());

8. }

9. };

10. t.start();

 A. NEW

 B. RUNNABLE

 C. BLOCKED

 D. TERMINATED

 E. The state of the thread is indeterminate.

 16. Given the following class definitions:

1. public class Student implements java.io.Serializable {

2. private String name;

3.

4. public static void main(String [] args) {

5. ___________________ s = new Senior();

6. }

7. }

8.

9. class Senior extends Student {}

10.

11. class Junior extends Student {}

 which of the following answers can fi ll in the blank on line 5 and have the code com-
pile successfully? (Select three.)

xxx Assessment Test

flast.indd xxxflast.indd xxx 2/11/09 6:44:59 PM2/11/09 6:44:59 PM

 A. Object

 B. Junior

 C. Student

 D. String

 E. java.io.Serializable

 17. What is the result of the following program?

1. public abstract class Message {

2. public String recipient;

3.

4. public abstract final void sendMessage();

5.

6. public static void main(String [] args) {

7. Message m = new TextMessage();

8. m.recipient = “6055551212”;

9. m.sendMessage();

10. }

11. }

12.

13. class TextMessage extends Message {

14. public final void sendMessage() {

15. System.out.println(“TextMessage to “

16. + recipient);

17. }

18. }

 A. TextMessage to 6055551212

 B. TextMessage to null

 C. Compiler error on line 1

 D. Compiler error on line 4

 E. Compiler error on line 9

 18. Given the following Parent class definition:

1. public class Parent {

2. Object doSomething(int x) {

3. return null;

4. }

5. }

Assessment Test xxxi

flast.indd xxxiflast.indd xxxi 2/11/09 6:44:59 PM2/11/09 6:44:59 PM

 which of the following methods could appear in a child class of Parent ? (Select three
answers.)

 A. public void doSomething(int x)

 B. protected String doSomething(int x)

 C. private Thread doSomething(int x)

 D. private Thread doSomething(short x)

 E. public double doSomething(int y)

 19. What is the result of the following statements?

23. List < Number > data = new Vector < Number > ();

24. data.add(10);

25. data.add(“4.5F”);

26. data.add(new Double(56.7));

27. for(Number number : data) {

28. System.out.print(number);

29. }

 A. 104.556.7

 B. 104.5F56.7

 C. 10 followed by a ClassCastException

 D. Compiler error on line 25

 E. Compiler error on line 27

 20. Given the following Box class definition:

1. public class Box < T > {

2. T value;

3.

4. public Box(T value) {

5. this.value = value;

6. }

7.

8. public T getValue() {

9. return value;

10. }

11. }

 what is the result of the following statements?

15. Box < String > one = new Box < String > (“a string”);

16. Box < Integer > two = new Box < Integer > (123);

17. System.out.print(one.getValue());

18. System.out.print(two.getValue());

xxxii Assessment Test

flast.indd xxxiiflast.indd xxxii 2/11/09 6:44:59 PM2/11/09 6:44:59 PM

 A. Compiler error on line 1

 B. Compiler error on line 2

 C. Compiler error on line 16

 D. a string123

 E. The code compiles but throws an exception at runtime.

 21. Given the following statements:

30. Set < Object > objects = new HashSet < Object > ();

31. String one = “hello”;

32. int two = 2;

33. Boolean three = new Boolean(true);

34. objects.add(one);

35. objects.add(two);

36. objects.add(three);

37. objects.add(three);

38. for(Object object : objects) {

39. System.out.print(object);

40. }

 which of the following statements are true? (Select two.)

 A. The code compiles successfully.

 B. The output is hello , 2 and true in an indeterminate order.

 C. The output is hello , 2 , true and true in an indeterminate order.

 D. Line 35 generates a compiler error.

 E. Line 37 throws an exception at runtime.

 22. Suppose a class named com.mypackage.MyProgram contains the main method of a stand -
 alone Java application, and MyProgram.class is in the following directory:

\my\classes\com\mypackage

 Which of the following commands successfully executes MyProgram ? (Select two
answers.)

 A. java - classpath \my\classes com.mypackage.MyProgram

 B. java - classpath \my\classes\com\mypackage MyProgram

 C. java - classpath=\my\classes com.mypackage.MyProgram

 D. java - classpath \my\classes\com mypackage.MyProgram

 E. java - cp \my\classes com.mypackage.MyProgram

Assessment Test xxxiii

flast.indd xxxiiiflast.indd xxxiii 2/11/09 6:45:00 PM2/11/09 6:45:00 PM

 23. What is the result of the following program?

1. public class MathFunctions {

2. public static void addToInt(int x, int amountToAdd)

3. {

4. x = x + amountToAdd;

5. }

6.

7. public static void main(String [] args) {

8. int a = 15;

9. int b = 10;

10. MathFunctions.addToInt(a, b);

11. System.out.println(a);

12. }

13. }

 A. 25

 B. 15

 C. 10

 D. A compiler error occurs on line 4.

 E. A compiler error occurs on line 10.

 24. Given the following interface and class definitions:

1. //Readable.java

2. public interface Readable {

3. public void read();

4. public int MAX_LENGTH = 10;

5. }

1. //MyReader.java

2. public class MyReader implements Readable {

3. public void read() {

4. Readable.MAX_LENGTH = 25;

5. System.out.println(Readable.MAX_LENGTH);

6. }

7. }
 what is the result of the following statement?

new MyReader().read();

 A. 25

 B. 10

 C. Compiler error on line 3 of Readable.java

xxxiv Assessment Test

flast.indd xxxivflast.indd xxxiv 2/11/09 6:45:00 PM2/11/09 6:45:00 PM

 D. Compiler error on line 4 of Readable.java

 E. Compiler error on line 4 of MyReader.java

 25. Given the following enum declaration:

1. public enum Toppings {

2. PEPPERONI, SAUSAGE, ONION, OLIVES, CHEESE;

3. }

 what is the result of the following statements?

8. Toppings [] choices = Toppings.values();

9. System.out.println(choices[1]);

 A. PEPPERONI

 B. SAUSAGE

 C. The code compiles but the output is indeterminate.

 D. Line 8 generates a compiler error.

 E. Line 9 generates a compiler error.

 26. What is the result of the following code?

21. final byte b = 1;

22. int value = 2;

23. switch(value) {

24. case b : System.out.print(“A”);

25. break;

26. case 2 : System.out.print(“B”);

27. case 3 : System.out.print(“C”);

28. default : System.out.print(“D”);

29. break;

30. }

 A. Compiler error on line 24

 B. B

 C. BC

 D. BCD

 E. Compiler error on line 29

 27. Given the following class definition:

1. public class EchoInput {

2. public static void main(String [] args) {

3. if(args.length < = 3) {

4. assert false;

5. }

Assessment Test xxxv

flast.indd xxxvflast.indd xxxv 2/11/09 6:45:01 PM2/11/09 6:45:01 PM

6. System.out.println(args[0] + args[1]

7. + args[2]);

8. }

9. }

 what is the result of the following command line?

java EchoInput hi there

 A. hithere

 B. The assert statement on line 4 throws an AssertionError .

 C. Line 7 throws an ArrayIndexOutOfBoundsException .

 D. The code compiles and runs successfully, but there is no output.

 E. The code does not compile.

 28. What is the result of the following code?

46. NumberFormat nf =

47. NumberFormat.getCurrencyInstance(Locale.US);

48. double value = 123.456;

49. System.out.println(nf.format(value));

 A. $123.456

 B. $123.45

 C. $123.46

 D. 123.45

 E. 123.46

 29. Given the following code:

3. Pattern p = Pattern.compile(“.+es”);

4. String [] words = {“unless”, “guesses”,

5. “boxes”, “guest”};

6. for(String word : words) {

7. if(p.matcher(word).matches()) {

8. System.out.println(word);

9. }

10. }

 which of the following strings is output? (Select all that apply.)

 A. unless

 B. guesses

 C. boxes

 D. guest

 E. None of the above

xxxvi Assessment Test

flast.indd xxxviflast.indd xxxvi 2/11/09 6:45:01 PM2/11/09 6:45:01 PM

 30. What state can a NEW thread transition into? (Select all that apply.)

 A. WAITING

 B. RUNNABLE

 C. BLOCKED

 D. TIMED_WAITING

 E. TERMINATED

 31. What is the output of the following program?

1. public class Worker extends Thread {

2. public void run() {

3. System.out.print(“N”);

4. }

5.

6. public static void main(String [] args) {

7. Thread worker = new Worker();

8. worker.run();

9. System.out.print(“O”);

10. }

11. }

 A. The output is always NO .

 B. The output is always ON .

 C. The output varies and is either NO or ON .

 D. The code does not compile.

 32. Fill in the blank: When an object performs a collection of closely related tasks, this is
referred to as .

 A. The is - a relationship

 B. The has - a relationship

 C. Tight encapsulation

 D. Loose coupling

 E. High cohesion

 33. What is the result of the following code?

1. public class Beverage {

2. private void drink() {

3. System.out.println(“Beverage”);

4. }

5.

6. public static void main(String [] args) {

7. Beverage b = new Coffee();

Assessment Test xxxvii

flast.indd xxxviiflast.indd xxxvii 2/11/09 6:45:01 PM2/11/09 6:45:01 PM

8. b.drink();

9. }

10. }

11.

12. class Coffee extends Beverage {

13. public void drink() {

14. System.out.println(“Coffee”);

15. }

16. }

 A. Beverage

 B. Coffee

 C. Compiler error on line 2

 D. Compiler error on line 8

 E. Compiler error on line 13

 34. Given the following variable declaration:

Set < ? extends RuntimeException > set = ___________________;

 which of the following statements can appear in the blank line so that the statement
compiles successfully? (Select all that apply.)

 A. new HashSet < ? extends RuntimeException ()

 B. new TreeSet < RuntimeException > ()

 C. new TreeSet < NullPointerException > ()

 D. new LinkedHashSet < Exception > ()

 E. None of the above

xxxviii Assessment Test

flast.indd xxxviiiflast.indd xxxviii 2/11/09 6:45:02 PM2/11/09 6:45:02 PM

 Answers to Assessment Test
 1. C. The code compiles fi ne, so D and E are incorrect. The bytecode fi le for the outer

class Book is Book.class, and the bytecode fi le for the inner class BookReader is
Book$BookReader.class, so the answer is C. For more information, see Chapter 2.

 2. A. The code compiles fi ne, so C, D, and E are incorrect. Based on the defi nition of the
equals method, two TV objects are equal if they have the same make and model fi elds, so
the line a.equals(b) evaluates to true and equal is output, so the answer is A. For more
information, see Chapter 1.

 3. B. The String on line 2 is created in memory after line 5 executes, and the greeting ref-
erence points to it. After line 6, no references point to “hi“ anymore and it immediately
becomes eligible for garbage collection then, so the answer is B. For more information, see
Chapter 1.

 4. A. The code compiles fi ne, so D and E are incorrect. The value of z is the remainder of 23
divided by 4, which is 3. Therefore, the answer is A. For more information, see Chapter 1.

 5. E. The code compiles fi ne, so C is incorrect. The used fi eld initializes to false and the
make fi eld initializes to null for the new Vehicle v. Therefore, line 7 is false and
line 10 executes. Because v.make is a null reference, attempting to invoke its length
method results in a NullPointerException at runtime. Therefore, the answer is E. For
more information, see Chapter 2.

 6. A, B, and D. The print method can take in any number of String objects, including zero,
so A, B, and D are valid statements. C attempts to pass in chars, which is not valid and
generates a compiler error. D also generates a compiler error attempting to pass in a Date
object. For more information, see Chapter 2.

 7. C. The code does not compile without a proper import for the teamSize variable on line
7, so E is incorrect. A is not a valid statement. B is a valid statement but does not import
teamSize, so B is incorrect. D causes a compiler error because sports is not a class or
interface name. C is valid and imports all static members of the Football class, so C is the
correct answer. For more information, see Chapter 2.

 8. B. You cannot switch on an Integer, but because of Java’s autoboxing, i is converted to
an int, so lines 28 and 29 are valid, which means D and E are incorrect. The value of i
is 5, so the case on line 32 executes and prints 5. Because there is no break, 7 is printed.
The break on line 33 causes control to break out of the switch, so the output is 57 and the
answer is B. For more information, see Chapter 3.

 9. C. Line 10 compiles fi ne, so E is incorrect. Line 6 right shifts n by 1, which is equivalent to
integer division by 2. The fi rst time through the loop, n becomes 14/2 = 7;
the second time through n becomes 7/2 = 3. Because 3 < 4 is true, m is set to false
and the loop terminates. The value of n is 3, which is printed on line 11, so the answer is C.
For more information, see Chapter 3.

flast.indd xxxixflast.indd xxxix 2/11/09 6:45:02 PM2/11/09 6:45:02 PM

10. D. The code compiles, so A and B are incorrect. The command line does not enable asser-
tions, so C cannot happen. Line 5 executes and prints out 10, so the answer is D. For more
information, see Chapter 3.

11. A and B. String literals are automatically instantiated into String objects, so A is true. B is
also true; the two classes contain the same methods. The only difference between String-
Builder and StringBuffer is that StringBuffer is thread-safe, which is why C is false.
You should use StringBuffer if using mutable strings in a multithreaded application.
D is false; the StringBuilder and StringBuffer classes represent mutable character
sequences. E is false; a StringBuffer and StringBuilder can grow and shrink to match
the number of characters in the sequence. For more information, see Chapter 4.

12. A and D. The data to be output consists of strings and characters, so writer classes are the
best choice. FileWriter is needed to write to the fi le, and BufferedWriter is needed to
buffer the data, so the best choices are A and D. For more information, see Chapter 4.

13. D. The DecimalFormat object calls for at least three digits before the decimal point, so two
leading 0s appears before the 3. The format also calls for at least one digit past the decimal
but no more than two. Therefore, the output is 003.14 and the answer is D. For more infor-
mation, see Chapter 4.

14. D. The code compiles fi ne, so E is incorrect. However, a Thread object cannot be started
twice, so line 18 throws an IllegalThreadStateException and D is the correct answer.
For more information, see Chapter 5.

15. B. The state of the currently running thread must be RUNNABLE, so the answer is B. For
more information, see Chapter 5.

16. A, C, and E. A and C are valid because Object and Student are both parent classes of
Senior. B and D are not valid because Junior and String are not compatible with Senior.
E is valid because Senior is of type Serializable—a type inherited from Student. For
more information, see Chapter 6.

17. D. The code does not compile, so A and B are incorrect. The problem with this code is
the Message declares the sendMessage method as both abstract and final, which does
not make sense. An abstract method must be overridden, and a final method cannot be
overridden. Using abstract and final on the same method results in a compiler error, so
the answer is D. For more information, see Chapter 6.

18. B and D. A is incorrect because void is an incompatible return type with Object. (If the
return type is changed, it must be a subclass of the return type in the parent class.) B is a
valid overriding of doSomething in Parent because it is more accessible and String is a
subclass of Object. C is incorrect because it assigns a weaker access, which is not allowed.
D is valid because it is not overriding doSomething in Parent—it is overloading the method
instead. E is not valid because double is not a subclass of Object. Therefore, the answers
are B and D. For more information, see Chapter 6.

19. D. The code does not compile, so A, B, and C are incorrect. E is also incorrect; line 27
compiles fi ne because data contains Number objects. Line 25 does not compile because
data is instantiated using generics; only Number objects can be added to data and “4.5F” is
a String. Therefore, the answer is D. For more information, see Chapter 7.

xl Answers to Assessment Test

flast.indd xlflast.indd xl 2/11/09 6:45:02 PM2/11/09 6:45:02 PM

20. D. The compiles and runs fi ne, so A, B, C, and E are incorrect. The Box class uses a
generic type named T. For one, the generic type is a String. For two, the generic type
is an Integer. The two value fi elds are printed out on lines 17 and 18, which print a
string123, so the answer is D. For more information, see Chapter 7.

21. A and B. The code compiles and runs fi ne, so D and E are incorrect and A is true. Line
37 attempts to add the same object to the set, which does not alter the set. Therefore, C
is incorrect. The for loop on line 38 outputs the objects in an indeterminate order, so the
other correct answer is B. For more information, see Chapter 7.

22. A and E. A assigns the -classpath fl ag to the appropriate directory. E also sets the class
path correctly except -cp is used. C uses an equals sign, =, with the -classpath fl ag, which
is not the correct syntax. B and D set the class path to the wrong directory and also incor-
rectly refer to the MyProgram class without its fully qualifi ed name. Therefore, the answers
are A and E. For more information, see Chapter 1.

23. B. The code compiles successfully, so D and E are incorrect. The value of a cannot be
changed by the addToInt method, no matter what the method does, because only a copy of
a is passed into the parameter x. Therefore, a does not change and the output on line 11 is
15, so the answer is B. For more information, see Chapter 1.

24. E . The Readable interface compiles fi ne, so C and D are incorrect. However, the MyReader
class does not compile, so A and B are incorrect. Fields in an interface are implicitly final ,
so attempting to set MAX_LENGTH to 25 on line 4 of MyReader is not allowed and generates a
compiler error. Therefore, the answer is E. For more information, see Chapter 2.

25. B. The code compiles fi ne, so D and E are incorrect. The values method of an enum
returns an array containing the elements in the enum, in the order they are declared in the
enum. The element at index 1 is SAUSAGE , which is printed at line 9. Therefore, the answer
is B. For more information, see Chapter 2.

26. D. The code compiles fi ne, so A and E are incorrect. The case on line 26 is satisfi ed, so B is
printed. There is no break , so line 27 executes and C is printed. Because there is no break ,
the default block executes and D is printed on line 28. Therefore, the output is BCD and the
answer is D. For more information, see Chapter 3.

27. C. The code compiles fi ne, so E is incorrect. The command line has only two arguments,
so args.length is 2 and line 3 is true . However, because assertions are not enabled, line
4 does not throw an AssertionError , so B is incorrect. Line 7 attempts to print args[2] ,
which generates an ArrayIndexOutOfBoundsException , so the answer is C. For more
information, see Chapter 3.

28. C. The currency format rounds decimals up to two decimal places, so 123.456 is rounded
up to 123.46 and printed in the U.S. locale. The output is $123.46 , and therefore the
answer is C. For more information, see Chapter 4.

29. B and C. The regular expression .+es matches character streams that start with any number
of characters and end in es . Two of the strings in the array match this pattern: guesses and
 boxes . Therefore, the answers are B and C. For more information, see Chapter 4.

Answers to Assessment Test xli

flast.indd xliflast.indd xli 2/11/09 6:45:03 PM2/11/09 6:45:03 PM

30. B. A NEW thread can only transition into the RUNNABLE state, so the answer is B. For more
information, see Chapter 5.

31. A . The code compiles fi ne and runs fi ne, so D is incorrect. On line 8, the run method of
the new Worker thread is invoked. However, the run method does not start a new thread in
the process. (Only a call to start starts a new thread.) In other words, this program is not
multithreaded and the call to run occurs within the main thread. The output of this pro-
gram is always NO and therefore the answer is A. For more information, see Chapter 5.

32. E . The defi nition of high cohesion is when an object performs a collection of closely related
tasks, so the answer is E. For more information, see Chapter 6.

33. A. The code compiles fi ne, so C, D and E are incorrect. A private method cannot be over-
ridden, so drink in Coffee is not overriding drink in Beverage . The method call to drink
on line 8 is referring to the private method on line 2, and that is also the method that gets
invoked at runtime because it is not overridden. Therefore, the output is Beverage and the
correct answer is A. For more information, see Chapter 6.

34. B and C . The reference set declares an upper bound of RuntimeException on the generic,
so D is not valid because Exception is a parent class of RuntimeException . A is not valid
because a new statement cannot declare a wildcard in the generic type. B is valid because
 TreeSet implements Set . C is valid because TreeSet implements Set and NullPointerEx-
ception is a subclass of RuntimeException . Therefore, the answers are B and C. For more
information, see Chapter 7.

xlii Answers to Assessment Test

flast.indd xliiflast.indd xlii 2/11/09 6:45:04 PM2/11/09 6:45:04 PM

 SCJP: Sun Certified Programmer
for Java Platform, SE6 Study Guide
 CX - 301 - 065 Exam Objectives

 OBJECTIVE CHAPTER

 Section 1: Declarations, Initialization and Scoping

 Develop code that declares classes (including abstract and all forms of nested
classes), interfaces, and enums, and includes the appropriate use of package and
import statements (including static imports).

 2

 Develop code that declares an interface. Develop code that implements or
extends one or more interfaces. Develop code that declares an abstract class.
Develop code that extends an abstract class.

 2

 Develop code that declares, initializes, and uses primitives, arrays, enums, and
objects as static, instance, and local variables. Also, use legal identifi ers for
variable names.

 2

 Develop code that declares both static and non - static methods, and — if
appropriate — use method names that adhere to the JavaBeans naming standards.
Also develop code that declares and uses a variable - length argument list.

 2

 Given a code example, determine if a method is correctly overriding or
overloading another method, and identify legal return values (including covariant
returns), for the method.

 2

 Given a set of classes and superclasses, develop constructors for one or more of
the classes. Given a class declaration, determine if a default constructor will be
created, and if so, determine the behavior of that constructor. Given a nested or
non - nested class listing, write code to instantiate the class.

 2

 Section 2: Flow Control

 Develop code that implements an if or switch statement; and identify legal
argument types for these statements.

 3

 Develop code that implements all forms of loops and iterators, including the use
of for, the enhanced for loop (for - each), do, while, labels, break, and continue; and
explain the values taken by loop counter variables during and after loop execution.

 3

 Develop code that makes use of assertions, and distinguish appropriate from
inappropriate uses of assertions.

 3

perf.indd 1perf.indd 1 2/11/09 5:52:52 PM2/11/09 5:52:52 PM

 OBJECTIVE CHAPTER

 Develop code that makes use of exceptions and exception handling clauses
(try, catch, fi nally), and declares methods and overriding methods that throw
exceptions.

 3

 Recognize the effect of an exception arising at a specifi ed point in a code
fragment. Note that the exception may be a runtime exception, a checked
exception, or an error.

 3

 Recognize situations that will result in any of the following being thrown:
ArrayIndexOutOfBoundsException,ClassCastException, IllegalArgumentException,
IllegalStateException, NullPointerException, NumberFormatException,
AssertionError, ExceptionInInitializerError, StackOverfl owError or
NoClassDefFoundError. Understand which of these are thrown by the
virtual machine and recognize situations in which others should be thrown
programmatically.

 3

 Section 3: API Contents

 Develop code that uses the primitive wrapper classes (such as Boolean,
Character, Double, Integer, etc.), and/or autoboxing and unboxing. Discuss the
differences between the String, StringBuilder, and StringBuffer classes.

 4

 Given a scenario involving navigating fi le systems, reading from fi les, writing
to fi les, or interacting with the user, develop the correct solution using the
following classes (sometimes in combination), from java.io: BufferedReader,
BufferedWriter, File, FileReader, FileWriter, PrintWriter, and Console.

 4

 Develop code that serializes and/or de - serializes objects using the following
APIs from java.io: DataInputStream, DataOutputStream, FileInputStream,
FileOutputStream, ObjectInputStream, ObjectOutputStream and Serializable.

 4

 Use standard J2SE APIs in the java.text package to correctly format or parse
dates, numbers, and currency values for a specifi c locale; and, given a scenario,
determine the appropriate methods to use if you want to use the default locale or
a specifi c locale. Describe the purpose and use of the java.util.Locale class.

 4

 Write code that uses standard J2SE APIs in the java.util and java.util.regex
packages to format or parse strings or streams. For strings, write code that uses
the Pattern and Matcher classes and the String.split method. Recognize and use
regular expression patterns for matching (limited to: . (dot), * (star), + (plus), ?,
\d, \s, \w, [], ()). The use of *, +, and ? will be limited to greedy quantifi ers, and
the parenthesis operator will only be used as a grouping mechanism, not for
capturing content during matching. For streams, write code using the Formatter
and Scanner classes and the PrintWriter.format/printf methods. Recognize and
use formatting parameters (limited to: %b, %c, %d, %f, %s) in format strings.

 4

perf.indd 2perf.indd 2 2/11/09 5:52:53 PM2/11/09 5:52:53 PM

 OBJECTIVE CHAPTER

 Section 4: Concurrency

 Write code to defi ne, instantiate, and start new threads using both java.lang
.Thread and java.lang.Runnable.

 5

 Recognize the states in which a thread can exist, and identify ways in which a
thread can transition from one state to another.

 5

 Given a scenario, write code that makes appropriate use of object locking to
protect static or instance variables from concurrent access problems.

 5

 Given a scenario, write code that makes appropriate use of wait, notify, or notifyAll.
 5

 Section 5: OO Concepts

 Develop code that implements tight encapsulation, loose coupling, and high
cohesion in classes, and describe the benefi ts.

 6

 Given a scenario, develop code that demonstrates the use of polymorphism.
Further, determine when casting will be necessary and recognize compiler vs.
runtime errors related to object reference casting.

 6

 Explain the effect of modifi ers on inheritance with respect to constructors,
instance or static variables, and instance or static methods.

 6

 Given a scenario, develop code that declares and/or invokes overridden
or overloaded methods and code that declares and/or invokes superclass, or
overloaded constructors.

 6

 Develop code that implements “ is - a ” and/or “ has - a ” relationships.
 6

 Section 6: Collections/Generics

 Given a design scenario, determine which collection classes and/or interfaces
should be used to properly implement that design, including the use of the
Comparable interface.

 7

 Distinguish between correct and incorrect overrides of corresponding hashCode
and equals methods, and explain the difference between == and the equals method.

 7

 Write code that uses the generic versions of the Collections API, in particular,
the Set, List, and Map interfaces and implementation classes. Recognize the
limitations of the non - generic Collections API and how to refactor code to use
the generic versions. Write code that uses the NavigableSet and NavigableMap
interfaces.

 7

 Develop code that makes proper use of type parameters in class/interface
declarations, instance variables, method arguments, and return types; and
write generic methods or methods that make use of wildcard types and
understand the similarities and differences between these two approaches.

 7

perf.indd 3perf.indd 3 2/11/09 5:52:54 PM2/11/09 5:52:54 PM

 OBJECTIVE CHAPTER

 Use capabilities in the java.util package to write code to manipulate a list by
sorting, performing a binary search, or converting the list to an array. Use
capabilities in the java.util package to write code to manipulate an array by
sorting, performing a binary search, or converting the array to a list. Use the
java.util.Comparator and java.lang.Comparable interfaces to affect the sorting
of lists and arrays. Furthermore, recognize the effect of the “ natural ordering ” of
primitive wrapper classes and java.lang.String on sorting.

 7

 Section 7: Fundamentals

 Given a code example and a scenario, write code that uses the appropriate access
modifi ers, package declarations, and import statements to interact with (through
access or inheritance) the code in the example.

 1

 Given an example of a class and a command line, determine the expected
runtime behavior.

 1

 Determine the effect upon object references and primitive values when they are
passed into methods that perform assignments or other modifying operations on
the parameters.

 1

 Given a code example, recognize the point at which an object becomes eligible
for garbage collection, determine what is and is not guaranteed by the garbage
collection system, and recognize the behaviors of the Object.fi nalize() method.

 1

 Given the fully - qualifi ed name of a class that is deployed inside and/or outside a
JAR fi le, construct the appropriate directory structure for that class. Given a code
example and a classpath, determine whether the classpath will allow the code to
compile successfully.

 1

 Write code that correctly applies the appropriate operators including assignment
operators (limited to: =, +=, - =), arithmetic operators (limited to: +, - , *, /, %, ++, - -),
relational operators (limited to: < , < =, > , > =, ==, !=), the instanceof operator, logical
operators (limited to: & , |, ,̂ !, & & , ||), and the conditional operator (? :), to produce
a desired result. Write code that determines the equality of two objects or two
primitives.

 1

Exam specifications and content are subject to change at any time
without prior notice and at Sun Microsystems ’ sole discretion. Please
visit Sun ’ s website (www.sun.com/training) for the most current
information on their exam content.

perf.indd 4perf.indd 4 2/11/09 5:52:55 PM2/11/09 5:52:55 PM

 Fundamentals

 SCJP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

 Given a code example and a scenario, write code

that uses the appropriate access modifiers, package

declarations, and import statements to interact with

(through access or inheritance) the code in the example.

 Given an example of a class and a command line,

determine the expected runtime behavior.

 Determine the effect upon object references and primitive

values when they are passed into methods that perform

assignments or other modifying operations on the

parameters.

 Given a code example, recognize the point at which an

object becomes eligible for garbage collection, determine

what is and is not guaranteed by the garbage collection

system, and recognize the behaviors of the Object
.finalize() method.

 Given the fully - qualified name of a class that is deployed

inside and/or outside a JAR file, construct the appropriate

directory structure for that class. Given a code example

and a classpath, determine whether the classpath will

allow the code to compile successfully.

 Write code that correctly applies the appropriate

operators including assignment operators (limited to: = ,
+=, - =), arithmetic operators (limited to: +, - , *, /, %,
++, - -), relational operators (limited to: < , < =, > , > =, ==,
!=), the instanceof operator, logical operators (limited to:

 & , |, ^, !, & & , ||), and the conditional operator (? :),

to produce a desired result. Write code that determines

the equality of two objects or two primitives.

�

�

�

�

�

�

Chapter

1

c01.indd 1c01.indd 1 2/11/09 7:15:35 PM2/11/09 7:15:35 PM

 Java is an interpretive, object - oriented programming language
that Sun Microsystems developed. A considerable benefi t of
writing Java applications is that they run in a Java Runtime

Environment (JRE) that is well defi ned. As a Java programmer, you know your Java
program is going to run on a Java Virtual Machine (JVM), regardless of the device or
operating system. Consequently, you know an int is 32 bits and signed, a boolean is true
or false , method arguments are passed by value, and the garbage collector cleans up your
unreachable objects whenever it feels like it. (Okay, not every aspect of Java is an exact
science!) The point is that Java runs in a precise environment, and passing the SCJP exam
requires a strong knowledge of these well - defi ned Java fundamentals.

 This chapter covers the fundamentals of Java programming, including writing Java
classes, running Java applications, creating packages, defi ning classpath, and using the Java
operators. We will also discuss the details of garbage collection and call by value.

 Writing Java Classes
 The exam objectives state that you need to be able to “ write code that uses the appropriate
access modifi ers, package declarations, and imports statements. ” In other words, you
need to be able to write Java classes, which makes sense because Java is an object - oriented
programming (OOP) language and writing classes is an essential aspect of OOP. Your
executable Java code will appear within the defi nition of a class. A class describes an
object, which is a noun in your program. The object can either represent something
tangible, like a television or an employee, or it can represent something less obvious but just
as useful in your program, like an event handler or a stream of data being read from a fi le.

 An object is an instance of a class. Think of a class as a blueprint for a house, and the
object as the house. Another common analogy is to think of a class as a recipe for cookies,
and the objects are the cookies. (We will discuss the details of instantiating objects in
Chapter 2 , “ Declarations, Initialization, and Scoping. ”) Because classes are a fundamental
aspect of Java programming, the certifi cation exam assumes you are familiar with the rules
for writing them, and in this section we cover these details.

 For starters, a Java class must be defi ned in a text fi le with a .java extension. In
addition, if the class is declared public , then the name of the fi le must match the name of
the class. Consequently, a .java fi le can only contain at most one top - level public class.
For example, the following class defi nition must appear in a fi le named Cat.java :

c01.indd 2c01.indd 2 2/11/09 7:15:36 PM2/11/09 7:15:36 PM

public class Cat {

 public String name;

 public int weight;

}

 Compiled Java code is referred to as bytecode , and the name of the bytecode fi le matches
the name of the class. Compiling the Cat.java source fi le creates a bytecode fi le named
 Cat.class .

Line Numbers

Java source fi les do not contain line numbers. However, the classes on the exam display
line numbers. If the numbering starts with a 1, then the entire defi nition of a source fi le
is being displayed. If the numbering starts with some other value, then only a portion
of a source fi le is being displayed. You will see this explanation in the instructions at the
beginning of the SCJP exam.

 Java allows multiple classes in a single .java fi le as long as no more than one of the top -
 level classes is declared public . The compiler still generates a separate .class fi le for each
class defi ned in the .java fi le. For example, suppose a fi le named Customer.java contains
the following two class defi nitions:

1. public class Customer {

2. public String name;

3. public String address;

4. }

5.

6. class Order {

7. public int partNumber;

8. public int quantity;

9. public boolean shipped;

10. }

 Compiling Customer.java generates two fi les: Customer.class and Order.class . Note
that the Order class cannot be public because Customer is already public , nor can Order
be protected or private because Java does not allow top - level classes to be protected or
 private . Therefore, Order must have the default access, often referred to as friendly
or package - level access, meaning only classes within the same package can use the Order
class. (We discuss packages in the next section.)

Writing Java Classes 3

c01.indd 3c01.indd 3 2/11/09 7:15:37 PM2/11/09 7:15:37 PM

4 Chapter 1 � Fundamentals

Access Specifi ers for Top - Level Classes

A top - level class has two options for an access modifi er: public or package - level access
(often called the default access). Keep an eye out for exam questions that declare a top -
 level class as private or protected . For example, the following code will not compile:

//Generates a compiler error: “modifier private not allowed here”

private class HelloWorld {

 public static void main(String [] args) {

 System.out.println(args[1] + args[2]);

 }

}

 Multiple Classes in a Single File

 Java allows multiple top - level classes to be defi ned in a single fi le, but in the real world
this is rarely done. We typically want our classes to be public, and only top - level classes
can be public. That being said, the exam might contain questions that defi ne multiple
classes in a single source fi le because it is convenient and many questions on the exam
involve more than one class.

 Packages
 The exam objectives state that you need to be able to “ write code that uses the appropriate
package declarations and import statements, ” and I can assure you there will be more than
one question on the exam testing your knowledge of the package keyword and its effect
on a Java class. This section discusses the details you need to know about Java packages.
A package is a grouping of classes and interfaces. It can also contain enumerations and
annotated types, but because these are special types of classes and interfaces, I will refer
to items in a package as simply classes and interfaces for brevity. This grouping of classes
and interfaces is typically based on their relationship and usage. For example, the java.io
package contains classes and interfaces related to input and output. The java.net package
contains the classes and interfaces related to networking. There are two key benefi ts of
using packages in Java:

� Packages organize Java programs by grouping together related classes and interfaces.

� Packages create a namespace for your classes and interfaces.

 The Application Programming Interface (API) for the Java Platform, Standard Edition
(Java SE) contains hundreds of packages that you can use in any Java SE application. As

c01.indd 4c01.indd 4 2/11/09 7:15:37 PM2/11/09 7:15:37 PM

a Java programmer, you will create your own packages for the classes that you develop.
Packages are often drawn as tabbed folders, as shown in Figure 1.1 .

F IGURE 1.1 When designing a Java application, packages are drawn as tabbed folders.

String
Object
System
Thread

java.lang

File
InputStream

OutputStream
PrintWriter

java.io

JButton
JFrame
Timer

ImageIcon

javax.swing

Item
Order

ShippingAddress

my.company.inventory

 To view all of the packages in the Java SE API, visit the API documentation at
http://java.sun.com/javase/6/docs/api/ . This web page contains three frames. The upper -
 left frame is a list of all the packages. Clicking a package displays its classes and interfaces in the
lower - left frame. Clicking a class or interface in the lower - left frame displays its documentation
page in the main frame. You should spend time browsing the Java API documentation! I fi nd it
extremely useful, especially when using a Java class or interface for the fi rst time.

 If you are developing a Java program with hundreds of classes and interfaces, grouping
related types into packages provides a much - needed organization to the project. In
addition, the namespace provided by a package is useful for avoiding naming confl icts.

 This section discusses these two benefi ts of packages in detail. I will start with a
discussion on the package keyword and then cover the details of imports, the CLASSPATH
environment variable, and the directory structure required for packages.

 The package Keyword

 The package keyword puts a class or interface in a package, and it must be the fi rst line of
code in your source fi le (aside from comments, which can appear anywhere within a source
fi le). For example, the following Employee class is declared in the com.sybex.payroll package:

package com.sybex.payroll;

public class Employee {

 public Employee() {

 System.out.println(

 “Constructing a com.sybex.payroll.Employee”);

 }

}

Packages 5

c01.indd 5c01.indd 5 2/11/09 7:15:38 PM2/11/09 7:15:38 PM

6 Chapter 1 � Fundamentals

 Putting a class in a package has two important side effects that you need to know
for the exam:

 1. The fully qualified name of a class or interface changes when it is in a package. The
package name becomes a prefix for the class name. For example, the fully qualified
name of the Employee class shown earlier is com.sybex.payroll.Employee .

 2. The compiled bytecode file must appear in a directory structure on your file system
that matches the package name. For example, a .class file for any class or interface
in the com.sybex.payroll package must appear in a directory structure matching
\com\sybex\payroll\ . You can either create this directory structure yourself or use
the - d flag during compilation and the compiler will create the necessary directory
structure for you. We discuss the - d flag in detail later in this section.

 The fully qualifi ed name of the Employee class is com.sybex.payroll.Employee . Other
classes that want to use the Employee class need to refer to it by its fully qualifi ed name.
For example, the following program creates an instance of the Employee class:

public class CreateEmployee {

 public static void main(String [] args) {

 com.sybex.payroll.Employee e =

 new com.sybex.payroll.Employee();

 }

}

 Here ’ s the output of the CreateEmployee program:

Constructing a com.sybex.payroll.Employee

The Unnamed Package

 If a class is not specifi cally declared in a package, then that class belongs to the unnamed
package . Classes and interfaces in the unnamed package cannot be imported into a
source fi le. You should only use the unnamed package when writing simple classes and
interfaces that are not being used in a production application. In the real world, you will
rarely write a Java class or interface that is not declared in a package. Your classes will
appear in a package name that contains your company ’ s Internet domain name, which
the next section discusses.

 The import Keyword

 As you can see by the CreateEmployee program, using the fully qualifi ed name of a class
can be tedious and makes for a lot of typing! The import keyword makes your life as
a coder easier by allowing you to refer to a class in a source fi le without using its fully
qualifi ed name.

c01.indd 6c01.indd 6 2/11/09 7:15:38 PM2/11/09 7:15:38 PM

 The import keyword is used to import a single class or, when used with the wildcard (*),
an entire package. A source fi le can have any number of import statements, and they must
appear after the package declaration and before the class declaration. Importing classes
and packages tells the compiler that you are not going to use fully qualifi ed names for
classes. The compiler searches your list of imports to determine the fully qualifi ed names of
the classes referenced in the source fi le.

 Here is the CreateEmployee program again, except this time the com.sybex.payroll
.Employee class is imported, allowing the Employee class to be referred to without using its
fully qualifi ed name:

import com.sybex.payroll.Employee;

public class CreateEmployee2 {

 public static void main(String [] args) {

 Employee e = new Employee();

 }

}

 The output is the same as before:

Constructing a com.sybex.payroll.Employee

 In fact, the compiled bytecode fi les CreateEmployee.class and CreateEmployee2.class
are completely identical (except for the number 2 that appears in CreateEmployee2.class).
The import statement does not affect the compiled code. Behind the scenes, the compiler
removes the import statement and replaces each occurrence of Employee with com.sybex
.payroll.Employee .

 What Does Import Mean?

The term import sounds like something is being brought into your source fi le, but nothing
is physically added to your source code by importing a class or package. An import state-
ment is strictly to make your life as a programmer easier. The Java compiler removes all
 import statements and replaces all the class names in your source code with their fully
qualifi ed names. For this reason, you never need to use import statements. Instead, you
can use fully qualifi ed names throughout your source fi les. However, you will quickly
discover the benefi t of import statements, especially when you work with long package
names.

 The CreateEmployee and CreateEmployee2 programs both refer to the String class.
 String is defi ned in the java.lang package, but this package was not imported. The java
.lang package is unique in that the compiler automatically imports all the public classes and

Packages 7

c01.indd 7c01.indd 7 2/11/09 7:15:39 PM2/11/09 7:15:39 PM

8 Chapter 1 � Fundamentals

interfaces of java.lang into every source fi le, so there is never any need to import types from
 java.lang (although it is perfectly valid to do so).

 The following program demonstrates an import statement that uses the wildcard to
 import an entire package. The program uses the File , FileReader , BufferedReader , and
 IOException classes, all found in the java.io package. The program reads a line of text
from a fi le named mydata.txt .

1. import java.io.*;

2.

3. public class ReadFromFile {

4. public static void main(String [] args) {

5. File file = new File(“mydata.txt”);

6. FileReader fileReader = null;

7. try {

8. fileReader = new FileReader(file);

9. BufferedReader in = new BufferedReader(fileReader);

10. System.out.println(in.readLine());

11. }catch(IOException e) {

12. e.printStackTrace();

13. }

14. }

15. }

 Because nothing is actually included into your source fi le by the import keyword, using
the wildcard does not impact the size of your bytecode fi les. However, common practice
in Java is to avoid using the wildcard because it may lead to ambiguity when two packages
are imported that share a common class name. For example, the following code does not
compile because there is a class called AttributeList in both the javax.swing.text.html
.parser package and the javax.management package:

1. import javax.swing.text.html.parser.*;

2. import javax.management.*;

3.

4. public class ImportDemo {

5. public AttributeList a;

6. }

 The ImportDemo class generates the following compiler error:

reference to AttributeList is ambiguous, both class

 javax.management.AttributeList in javax.management and class

 javax.swing.text.html.parser.AttributeList in

 javax.swing.text.html.parser match

 public AttributeList a;

c01.indd 8c01.indd 8 2/11/09 7:15:39 PM2/11/09 7:15:39 PM

 If you ever are in a situation where you need to use two classes with the same name but
in different packages, then using imports does not work. You will need to refer to each class
by their fully qualifi ed name in your source fi le. The following code compiles successfully:

1. public class FullyQualifiedDemo {

2. public javax.management.AttributeList a1;

3. public javax.swing.text.html.parser.AttributeList a2;

4. }

 The FullyQualifiedDemo program demonstrates why packages are often referred to as
namespaces because package names are used to avoid naming confl icts. Without packages,
there is no way for the compiler or the JVM to distinguish between the two AttributeList
classes. However, because the two AttributeList classes are declared in different
packages, they can be referred to by their fully qualifi ed names to avoid any ambiguity.

 Naming Convention for Packages

 The namespace ambiguity situation can still occur if programmers happen to use the
same package names in different programs. If you and I both write a class called Dog and
we both defi ne Dog in a package named pets , then a naming confl ict still occurs. How-
ever, the standard Java naming convention for a package name is to use your company ’ s
domain name (in reverse) as a prefi x to your package names. For example, a class written
by an employee of Sybex uses a package name that starts with com.sybex .

 Subsequent components of the package name may include your department and project
name, followed by a descriptive name for the package. For example, com.sybex
.scjpbook.pets is a good package name for a class named Dog that appears in this book.
It is extremely unlikely that someone else would use this package name, although I am
sure there are other Dog classes in the world.

 If everyone who writes Java code follows this naming convention for package names,
then naming confl icts can only occur within a single company or project, making it easier
to resolve the naming confl ict.

 Package Directory Structure

 The exam objectives state that “ given the fully - qualifi ed name of a class that is deployed
inside and/or outside a JAR fi le, ” you need to be able to “ construct the appropriate
directory structure for that class. ” This objective refers to the required directory structure
that results from using packages. In addition to creating a namespace, packages organize
your programs by grouping related classes and interfaces together. One result of using
packages is that the bytecode of a class or interface must appear in a directory structure
that matches its package name. If you do not put your bytecode in the proper directory
structure, the compiler or the JVM will be unable to fi nd your classes.

Packages 9

c01.indd 9c01.indd 9 2/11/09 7:15:40 PM2/11/09 7:15:40 PM

10 Chapter 1 � Fundamentals

 Suppose we have the following class defi nition:

package com.sybex.payroll;

public class Employee {

 public Employee() {

 System.out.println(

 “Constructing a com.sybex.payroll.Employee”);

 }

}

 This Employee class is in the com.sybex.payroll package, so its compiled fi le Employee
.class must be in a directory with a pathname \com\sybex\payroll . This requires a
directory named \com , which can appear anywhere on your fi le system. Inside \com you
must have a \sybex subdirectory, which must contain a \payroll subdirectory.

 The \com directory can appear anywhere on your fi le system. A common technique is
to put your source fi les in a directory named \src and your bytecode fi les in a directory
named \build . For example, suppose the Employee source fi le is in the following directory:

c:\myproject\src\com\sybex\payroll\Employee.java

 Suppose you want the compiled code to be in the c:\myproject\build directory. You
can use the - d fl ag of the compiler to achieve this. The - d fl ag has two effects:

� The compiled code will be output in the directory specified by the - d flag.

� The appropriate directory structure that matches the package names of the classes is
created automatically in the output directory.

 Consider the following compiler command, executed from the c:\myproject\src
directory:

javac -d c:\myproject\build .\com\sybex\payroll\Employee.java

 The - d fl ag specifi es the output directory as c:\myproject\build . Assuming the class
compiles successfully, the compiler creates the fi le Employee.class in the following
directory:

c:\myproject\build\com\sybex\payroll\Employee.class

 Keep in mind the directory c:\myproject\build is arbitrary; we could have output the
bytecode into the directory of our choosing. After you start putting bytecode in arbitrary
directories on your fi le system, the compiler and the JVM need to know where to look to
fi nd it. They look for the bytecode fi les in your classpath, an important concept that the
next section discusses in detail.

c01.indd 10c01.indd 10 2/11/09 7:15:40 PM2/11/09 7:15:40 PM

 The CLASSPATH Environment Variable

 The exam objectives state that “ given a code example and a classpath, ” you need to be
able to “ determine whether the classpath will allow the code to compile successfully. ” The
 classpath refers to the path on your fi le system where your .class fi les are saved, and the
classpath is defi ned by the CLASSPATH environment variable. The CLASSPATH environment
variable specifi es the directories and JAR fi les where you want the compiler and the JVM to
search for bytecode. Using CLASSPATH allows your bytecode to be stored in the directory of
your choosing, as well as in multiple directories or Java archive (JAR) fi les.

 For example, suppose you have a class named com.sybex.payroll.Employee . The
compiler and the JVM look for the \com\sybex\payroll directory structure by searching
your CLASSPATH environment variable. For example, if Employee.class is in the following
directory:

c:\Documents and Settings\Rich\workspaces\build\com\sybex\payroll

 then your CLASSPATH needs to include the directory:

c:\Documents and Settings\Rich\workspaces\build

 The CLASSPATH environment variable can contain any number of directories and JAR
fi les. Setting CLASSPATH on Windows can be done from a command prompt using a
semicolon to separate multiple values:

set CLASSPATH=”c:\Documents and Settings\Rich\workspaces\build”;

 c:\myproject\build;c:\tomcat\lib\servlet.jar;.;

 In this example, the compiler and the JVM look for bytecode fi les in the two \build
directories specifi ed, the servlet.jar fi le in c:\tomcat\lib , and the current working
directory (represented by the dot). The double quotes are necessary in the fi rst directory
because of the spaces in the pathname.

 On Unix, you use the setenv command and colons to separate multiple values. For
example:

setenv CLASSPATH /usr/build:/myproject/build:/tomcat/lib/servlet.jar

 A common mistake new Java programmers make is to include part of the package
pathname in the CLASSPATH . If you are struggling with classes not being found, you might
be tempted to try the following command line:

set CLASSPATH=c:\myproject\build\com\sybex\payroll;

 Including \com\sybex\payroll in your CLASSPATH does not work! Do not add any of the
package directories to your CLASSPATH , only the parent directory. The compiler and the JRE
will look for the appropriate subdirectories.

 CLASSPATH plays a key role in compiling and running your Java applications, which
we discuss in the next section.

Packages 11

c01.indd 11c01.indd 11 2/11/09 7:15:41 PM2/11/09 7:15:41 PM

12 Chapter 1 � Fundamentals

 Running Java Applications
 The SCJP certifi cation exam tests your knowledge of running a Java program from the
command line using an appropriate CLASSPATH . If you are using Sun ’ s Java Development Kit
(JDK), then java.exe in the \bin folder of the JDK directory is the executable used to run
your Java applications. The sample commands in this book assume java.exe is in your path.

 The entry point of a Java program is main , which you can defi ne in any class. The
signature of main must look like this:

public static void main(String [] args)

 The only changes you can make to this signature are the name of the parameter args ,
which can be arbitrary, and the order of public and static . For example, the following
declaration is a valid signature of main :

static public void main(String [] x)

 In addition, you can specify the array of String objects using the syntax for variable -
 length arguments:

public static void main(String... args)

Variable - Length Arguments

As of Java 5.0, a method in Java can declare a variable - length argument list denoted by
the ellipsis (. . .). Variable - length arguments are discussed in detail in Chapter 2 .

 The args array contains the command - line arguments, discussed in detail later in this
section. The main method has to be public so that the JVM has access to it, and making it
 static allows the JVM to invoke this method without having to instantiate an instance of
the containing class.

 Let ’ s start with a simple example. Suppose the following class is saved in the
c:\myproject directory. First, does the following SaySomething class compile, and does it
successfully declare the main method?

1. public class SaySomething {

2. private static String message = “Hello!”;

3.

4. public static void main() {

5. System.out.println(message);

6. }

7. }

c01.indd 12c01.indd 12 2/11/09 7:15:41 PM2/11/09 7:15:41 PM

 The answers are yes and no. Yes, this class compiles, but no, it does not defi ne main
properly. A static method can access a static fi eld in the same class, so there is no
problem with the message fi eld. Also, you can write a method called main that does not
have an array of String objects, so the compiler will not complain about the main method
defi ned on line 4. However, this class cannot be executed as a Java application because it
does not successfully declare the proper main method for a Java application.

 Let ’ s try it again, this time with the following SayHello class. Does this class compile
and successfully declare the main method?

1. public class SayHello {

2. private static String message = “Hello!”;

3.

4. public static void main(String [] args) {

5. System.out.println(message);

6. }

7. }

 The answer is yes to both: SayHello compiles and declares the proper version of main so
that it can be executed as a stand - alone Java application. The following command line runs
the SayHello application:

java SayHello

 This command line assumes that you run the command from the directory that contains
the fi le SayHello.class , which in our case is c:\myproject . If you want to run this Java
application from any directory (instead of just c:\myproject), you need to include
c:\myproject in your CLASSPATH . Figure 1.2 shows SayHello being executed from
c:\myproject , and then being executed from c:\ after the CLASSPATH is correctly set.

F I GU R E 1. 2 Compiling and running the SayHello program from a command prompt

Running Java Applications 13

c01.indd 13c01.indd 13 2/11/09 7:15:42 PM2/11/09 7:15:42 PM

14 Chapter 1 � Fundamentals

 Specifying the Class Name

 The command line for java.exe requires the name of the class that contains main . Notice
that the name of the class is not the same as the name of the bytecode fi le, which in the
 SayHello example is SayHello.class . The following command line does not work:

java SayHello.class

 The JVM looks for a class named class in the SayHello package (which it will not fi nd)
and throws a NoClassDefFoundError . The JVM only needs the name of the class; it will
fi nd the corresponding bytecode fi le by scanning all the directories and JAR fi les set in
your CLASSPATH environment variable. If you do not set a CLASSPATH , the JVM looks in the
current working directory.

 The exam will likely test your knowledge with a more complex example where the class
containing main is in a package. Let ’ s look at another example, starting with a class called
 ColorChanger in the com.sybex.events package:

1. package com.sybex.events;

2.

3. import java.awt.Component;

4. import java.awt.Color;

5. import java.awt.event.*;

6.

7. public class ColorChanger implements ActionListener {

8. private Component container;

9.

10. public ColorChanger(Component c) {

11. container = c;

12. }

13.

14. public void actionPerformed(ActionEvent e) {

15. String color = e.getActionCommand();

16. if(color.equals(“red”)) {

17. container.setBackground(Color.RED);

18. } else if(color.equals(“blue”)) {

19. container.setBackground(Color.BLUE);

20. } else {

21. container.setBackground(Color.WHITE);

22. }

23. }

24. }

c01.indd 14c01.indd 14 2/11/09 7:15:42 PM2/11/09 7:15:42 PM

 The source fi le ColorChanger.java is saved in c:\myproject\src\com\sybex\events
and the class is compiled using the following command executed from c:\myproject\src :

javac -d c:\myproject\build .\com\sybex\events\ColorChanger.java

 This command line creates ColorChanger.class in the c:\myproject\build\com\sybex\
events directory. The following program contains main and tests the ColorChanger class:

1. package com.sybex.demos;

2.

3. import com.sybex.events.ColorChanger;

4. import java.awt.Button;

5. import java.awt.Color;

6. import java.awt.event.ActionEvent;

7.

8. public class TestColors {

9.

10. public static void main(String [] args) {

11. Button b = new Button(“Testing...”);

12. b.setBackground(Color.GREEN);

13. System.out.println(“Color is “ + b.getBackground());

14.

15. ColorChanger cc = new ColorChanger(b);

16. ActionEvent action = new ActionEvent(b,

17. ActionEvent.ACTION_PERFORMED,

18. “blue”);

19. cc.actionPerformed(action);

20. System.out.println(“Now the color is “

21. + b.getBackground());

22. }

23. }

 TestColors.java is saved in the c:\myproject\src\com\sybex\demos directory.
Because TestColors is not in the same package as ColorChanger , it imports the
 ColorChanger class. TestColors is compiled using the following command executed from
the c:\myproject\src directory:

javac -d c:\myproject\build .\com\sybex\demos\TestColors.java

 This command line creates TestColors.class in the directory c:\myproject\build\com\
sybex\demos . Figure 1.3 shows the directory structure after compiling the source fi les with - d .

Running Java Applications 15

c01.indd 15c01.indd 15 2/11/09 7:15:43 PM2/11/09 7:15:43 PM

16 Chapter 1 � Fundamentals

 A typical exam question at this point is to ask what the CLASSPATH needs to be for you to
run the TestColors program at the command prompt from any working directory. Do you
know the answer? I will reveal it in a moment, but fi rst here is the command prompt that
runs the TestColors application if you execute it from the c:\myproject\build directory:

java com.sybex.demos.TestColors

 Notice the fully qualifi ed class name of TestColors must be specifi ed to execute
properly. Using the fully qualifi ed name has nothing to do with CLASSPATH or the current
working directory. The following command does not work and results in a java.lang
.NoClassDefFoundError , no matter what directory you run it from or what your CLASSPATH
is set to :

java TestColors

 Why will this never work? Because there is no class called TestColors . Remember,
putting a class in a package changes the name of the class. Because TestColors is in the
 com.sybex.demos package, the name of the class is com.sybex.demos.TestColors , and that
name must be used on the command line.

 By the way, the answer to the question earlier about CLASSPATH is it needs to contain
 c:\myproject\build :

set CLASSPATH=c:\myproject\build;

 With this CLASSPATH , the command to run the TestColors program can be executed
from any directory.

• c:\myproject\
• +src\
• | +com\
• | +sybex\
• | +demos\
• | | +TestColors.java
• | +events\
• | +ColorChanger.java
• +build\
• +com\
• +sybex\
• +demos\
• | +TestColors.class
• +events\
• +ColorChanger.class

F I GU R E 1. 3 The source code and bytecode are typically stored in separate folders.

c01.indd 16c01.indd 16 2/11/09 7:15:43 PM2/11/09 7:15:43 PM

Don ’ t Panic During the Exam!

 The purpose of the ColorChanger and TestColors example is to demonstrate running
a Java application from a command line, so what the code does is not relevant in this
situation. If you are not familiar with the Container and ActionListener classes, a
 ColorChanger can listen to action events of a GUI component in Java because it
implements ActionListener . When an action event occurs, the actionPerformed
method is invoked, which changes the background color of the given GUI component.

 You might encounter a situation on the exam where you are not familiar with some of the
classes in the given code. Don ’ t panic! Focus on what the exam question is asking before
trying to fi gure out what the code is doing. You might discover that the behavior of the
code is irrelevant because the question is testing you on a different facet of the language.

 You can also set the classpath for the JVM on the command line using the - classpath
fl ag, which is discussed in the next section, followed by a discussion on running Java code
stored in JAR fi les.

 The - classpath Flag

 The java command that starts the JVM has a - classpath fl ag that allows the classpath to
be specifi ed from the command line. This is a common technique for ensuring the classpath
is pointing to the right directories and JAR fi les. Using the - classpath fl ag overrides the
 CLASSPATH environment variable.

 For example, we could run the TestColors program using the following command
prompt executed from any directory:

java -classpath c:\myproject\build com.sybex.demos.TestColors

 If you have multiple directories or JAR fi les, use a semicolon on a Windows machine to
separate them on the - classpath fl ag. For example, the following command line adds the
current directory to the classpath:

java -classpath c:\myproject\build;. com.sybex.demos.TestColors

 On a Unix machine, use a colon to separate multiple directories and JAR fi les:

java -classpath /myproject/build:. com.sybex.demos.TestColors

 The java command can also defi ne the classpath using the - cp fl ag, which is just a
shortcut for the - classpath fl ag.

 JAR Files

 Bytecode can be stored in archived, compressed fi les known as JAR fi les . JAR is short
for Java archive. The compiler and the JVM can fi nd bytecode fi les in JAR fi les without
needing to uncompress the fi les onto your fi le system. JAR fi les are the most common way

Running Java Applications 17

c01.indd 17c01.indd 17 2/11/09 7:15:43 PM2/11/09 7:15:43 PM

18 Chapter 1 � Fundamentals

to distribute Java code, and the exam tests your understanding of JAR fi les and how they
relate to CLASSPATH .

 The JDK comes with the tool jar.exe for creating and extracting JAR fi les. The
following command adds the bytecode fi les of the c:\myproject\build directory to a new
JAR fi le named myproject.jar :

C:\myproject\build > jar -cvf myproject.jar .

added manifest

adding: com/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/demos/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/demos/TestColors.class(in = 1209) (out= 671)(deflated 44%)

adding: com/sybex/events/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/events/ColorChanger.class(in = 883) (out= 545)(deflated 38%)

adding: com/sybex/payroll/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/payroll/Employee.class(in = 402) (out= 292)(deflated 27%)

 The - c fl ag is for creating a new JAR fi le. The - v fl ag tells the jar command to be
verbose while it is processing fi les. The - f fl ag is for denoting the fi lename of the new
JAR fi le, which in this example is myproject.jar . After the fi lename, you specify the
fi les or directories to include in the JAR. In our example, because all of our bytecode was
conveniently located in the \build directory, we simply added the entire contents of
c:\myproject\build , using the dot to represent the current directory.

 JAR Files and Package Names

 If a class is in a package, then the JAR fi le must contain the appropriate directory structure
when the .class fi le is included in the JAR. Notice in the verbose output of the jar
command shown earlier, the necessary \com directory and subdirectories matching our
package names are added to the JAR.

 You can add a JAR fi le to your CLASSPATH . In fact, it is common to have lots of JAR
fi les in your CLASSPATH . The following example demonstrates adding myproject.jar to
the CLASSPATH of a Windows machine, then running the TestColors program (which is in
 myproject.jar):

C:\ > set CLASSPATH=c:\myproject\build\myproject.jar;

C:\ > java com.sybex.demos.TestColors

Color is java.awt.Color[r=0,g=255,b=0]

Now the color is java.awt.Color[r=0,g=0,b=255]

c01.indd 18c01.indd 18 2/11/09 7:15:44 PM2/11/09 7:15:44 PM

The JVM
executable

The name of the class
that contains the main

method

args[0]

args[1]

args[2]

args[3]

args[4]

java com.sybex.demos.PrintGreetings hi goodbye see you later

F I GU R E 1. 4 This command line starts the JVM and invokes the main method in the
PrintGreetings class.

Running Java Applications 19

Separating Source Code and Bytecode Files

You might have been wondering why the examples in this chapter separated the source
fi les from the bytecode fi les. In general, when you distribute your code you do not want
the JAR fi les to include your source code. Having the bytecode separate makes it much
easier to create JAR fi les that only contain your bytecode.

You might have also noticed that the source code fi les in \src use the same directory
structure as their package names. This is not a requirement for your .java fi les; they can
be stored in any directory. In most development teams, you will be required to run the
javadoc tool on your source fi les to generate the HTML documentation for your classes
and interfaces. The javadoc tool requires that your source fi le directories match the pack-
age names. The exam does not contain any questions that involve the javadoc tool, but in
the real world you will quickly learn to appreciate the benefi ts of javadoc documentation!

In projects I work on, we put source code in the \src directory, using the package name
subdirectory structure. Bytecode goes in a subdirectory of \build depending on whether
or not the bytecode is in a JAR. JAR fi les appear in the \build\lib directory, and .class
fi les appear in the \build\classes subdirectory that matches the package name structure.

 Command - Line Arguments

 The java.exe executable starts the JVM, and on the command line you provide the name
of the class that contains the main method. The command - line arguments are passed into
the main method as a single array of String objects. For example, suppose PrintGreetings
is a class that contains main and it is executed with the command line in Figure 1.4 .

c01.indd 19c01.indd 19 2/11/09 7:15:44 PM2/11/09 7:15:44 PM

20 Chapter 1 � Fundamentals

 This command has fi ve command - line arguments, so the fi rst element in the String
array is “ hi ” , the second element in the array is “ goodbye ” , and so on. The following
 PrintGreetings class contains a for loop that iterates through the command - line
arguments and outputs them to the console:

1. package com.sybex.demos;

2. public class PrintGreetings {

3. public static void main(String [] args) {

4. for(int i = 0; i < args.length; i++) {

5. System.out.println(args[i]);

6. }

7. }

8. }

 If PrintGreetings is executed with the command line in Figure 1.4 , then the output
looks like this:

hi

goodbye

see

you

later

Command-Line Arguments on the Exam

Notice that the fi rst command-line argument in the array is args[0] because Java uses
zero-based indexes for arrays. The exam creators seem to like questions about arrays
and command-line arguments, so don’t be surprised if you see a question that tests both
topics at the same time. For example, what is the output of the DoSomething class when
executed with the following command?

java DoSomething one two

1. public class DoSomething {

2. public static void main(String args []) {

3. System.out.print(args[1]);

4. System.out.print(args[2]);

5. }

6. }

c01.indd 20c01.indd 20 2/11/09 7:15:45 PM2/11/09 7:15:45 PM

 All command - line arguments are treated as String objects, even if they represent
another data type. The wrapper classes in java.lang contain helpful methods for parsing
strings into other data types. Consider the following ParseDemo program:

1. public class ParseDemo {

2. public static void main(String [] args) {

3. System.out.println(“Processing “ + args.length +

4. “ arguments”);

5. int x = Integer.parseInt(args[0]);

6. System.out.println(x);

7. boolean b = Boolean.parseBoolean(args[1]);

8. System.out.println(b);

9. float f = Float.parseFloat(args[2]);

10. System.out.println(f);

11. char c = args[3].charAt(0);

12. System.out.println(c);

13. }

14. }

 Here is a command line that runs the ParseDemo program, followed by its output:

c:\myproject > java ParseDemo 34567 false 3.14159 R

Processing 4 arguments

34567

false

3.14159

R

 There is no need to parse a String into a char because the String already is an array
of characters. The ParseDemo program simply selects the fi rst character in the String to
 “ convert ” it to a char .

By the way, the square brackets following args instead of preceding args are perfectly
valid in Java, although not common practice. The output of this program is the string
“two” followed by an ArrayIndexOutOfBoundsException on line 4, as shown here:

twoException in thread “main” java.lang.ArrayIndexOutOfBoundsException: 2

 at DoSomething.main(DoSomething.java:4)

The length of args is two, so args[2] is beyond the end of the array.

Running Java Applications 21

c01.indd 21c01.indd 21 2/11/09 7:15:46 PM2/11/09 7:15:46 PM

22 Chapter 1 � Fundamentals

 We now turn our attention to a discussion on garbage collection, which fi rst requires an
understanding of the differences between reference types and primitive types.

 Reference vs. Primitive Types
 Java applications contain two types of data: primitive types and reference types . In this
section, we will discuss the differences between a primitive type and a reference type. The
differences are important when we discuss garbage collection later in this chapter.

 Primitive Types

 Java has eight built - in data types, referred to as the Java primitive types . These eight data
types represent the building blocks for Java objects, because all Java objects are just a
complex collection in memory of these primitive data types. The SCJP exam assumes you
are well versed in the eight primitive data types, their size, and what can be stored in them.
Table 1.1 shows the Java primitive types together with their size in bytes and the range of
values that each holds.

TA B LE 1.1 The Java Primitive Data Types

Primitive Type Size Range of Values (inclusive)

byte 8 bits –128 to 127

short 16 bits –32768 to 32767

int 32 bits –2147483648 to 2147483647

long 64 bits –9223372036854775808 to 9223372036854775807

float 32 bits 2–149 to (2 – 2–23) · 2127

double 64 bits 2–1074 to (2 – 2–52) · 21023

char 16 bits '\u0000' to '\uffff' (0 to 65535)

boolean unspecified true or false

c01.indd 22c01.indd 22 2/11/09 7:15:46 PM2/11/09 7:15:46 PM

Do I Need to Memorize These Sizes?

 Not all of them. Don ’ t try to memorize the range of values in a long , float , or double , but
it is important to know their size in bits. However, you should be able to state the range of
a byte exactly and recognize when a short or int has likely gone beyond its range. Expect a
question involving the size of a char , especially because a char in C/C++ is only 8 bits and
uses the ASCII format, while a Java char is 16 bits and uses the UNICODE format.

 Primitive types are allocated in memory by declaring them in your code. For example,
the following lines of code declare an int and a double :

int x;

double d;

 In memory, the compiler allocates 32 bits for the variable x and 64 bits for the variable d .
A primitive type can only store a value of that same type. For example, the variable x can
only hold an int and d can only hold a double . Suppose we assign values to x and d :

x = 12345;

d = 2.7e45;

 Figure 1.5 shows how these primitive types look in memory. The value 12345 is stored
in the memory where x is allocated. Similarly, the value 2.7e45 is stored in the memory
where d is allocated.

32 bits of memory

12345
x

64 bits of memory

2.7e45
d

F I GU R E 1.5 An int is 32 bits and a double is 64 bits.

 Reference Types

 Reference types are variables that are class types, interface types, and array types.
A reference refers to an object (an instance of a class). Unlike primitive types that hold their
values in the memory where the variable is allocated, references do not hold the value of
the object they refer to. Instead, a reference “ points ” to an object by storing the memory
address where the object is located, a concept referred to as a pointer . However, the Java
language does not allow a programmer to access a physical memory address in any way, so
even though a reference is similar to a pointer, you can only use a reference to gain access
to the fi elds and methods of the object it refers to. It is impossible to determine the actual
address stored in the memory of the reference variable.

Reference vs. Primitive Types 23

c01.indd 23c01.indd 23 2/11/09 7:15:47 PM2/11/09 7:15:47 PM

24 Chapter 1 � Fundamentals

 Let ’ s take a look at some examples that declare and initialize reference types. Suppose
we declare a reference of type java.util.Date and a reference of type String :

java.util.Date today;

String greeting;

 The today variable is a reference of type Date and can only point to a Date object. The
 greeting variable is a reference that can only point to a String object. A value is assigned
to a reference in one of two ways:

� A reference can be assigned to another reference of the same type.

� A reference can be assigned to a new object using the new keyword.

 For example, the following statements assign these references to new objects:

today = new java.util.Date();

greeting = “How are you?”;

 The today reference now points to a new Date object in memory, and today can be
used to access the various fi elds and methods of this Date object. Similarly, the greeting
reference points to a new String object, “ How are you? ” The String and Date objects
do not have names and can only be accessed via their corresponding reference. Figure 1.6
shows how the reference types appear in memory.

A Date reference

today

A Date object

29
day

7
month

2011
year

A String reference

greeting
A String object

How are you?

F I GU R E 1.6 An object in memory can only be accessed via a reference.

c01.indd 24c01.indd 24 2/11/09 7:15:47 PM2/11/09 7:15:47 PM

String Literals and the String Pool

The new keyword is not required for creating the String object “How are you?” because
it is a string literal. String literals get special treatment by the JVM. Behind the scenes,
the JVM instantiates a String object for “How are you?” and stores it in the string pool.
The greeting reference refers to this String object in the pool. Because String objects
in Java are immutable (which means they cannot be changed), the JVM can optimize the
use of string literals by allowing only one instance of a string in the pool. For example,
the following two String references actually point to the same string in the pool, as
shown in the following diagram:

String s1 = “New York”;

String s2 = “New York”;

s2

s1

“New York”

The String pool

You might think if the two references point to the same object, then changing one object
would inadvertently change the value of the other. But String objects are immutable, so
the following statement only changes s2:

s2 = “New Jersey”;

The reference s2 now points to “New Jersey”, but s1 still points to “New York”, as shown
in the following diagram:

s2

s1

“New York”

“New Jersey”

The String pool

Reference vs. Primitive Types 25

c01.indd 25c01.indd 25 2/11/09 7:15:48 PM2/11/09 7:15:48 PM

26 Chapter 1 � Fundamentals

 In addition, arrays in Java are objects and therefore have a reference type. The Java
language implicitly defi nes a reference type for each possible array type: one for each of the
eight primitive types and also an Object array. This allows for references of the following type:

int [] grades;

String [] args;

Runnable [] targets;

 The null Type

 There is a special data type in Java for null . The null type does not have a name, so it is
not possible to declare a variable to be the null type. However, you can assign any refer-
ence to the null type:

String firstName = null;

Runnable [] targets = null;

 Primitive types cannot be assigned to null , only references. The following statement is
not valid:

int x= null; //does not compile

 We can also assign a reference to another reference as long as their data types are
compatible. For example, the following code assigns two ArrayList references to each other:

java.util.ArrayList < Integer > a1 =

 new java.util.ArrayList < Integer > ();

java.util.ArrayList < Integer > a2 = a1;

 The references a1 and a2 both point to the same object, an ArrayList that contains
 Integer objects. (Two references pointing to the same object is a common occurrence in
Java.) The ArrayList object can be accessed using either reference. Examine the following
code and determine if it compiles successfully and, if so, what its output is:

a1.add(new Integer(12345));

a2.add(new Integer(54321));

for(int i = 0; i < a1.size(); i++) {

 System.out.println(a2.get(i));

}

 The code adds an Integer to the ArrayList using a1 , and then adds another Integer
using a2 . Because they point to the same ArrayList , the list now has two Integer objects
in it, as shown in Figure 1.7 .

c01.indd 26c01.indd 26 2/11/09 7:15:48 PM2/11/09 7:15:48 PM

 The for loop compiles successfully and the output looks like this:

12345

54321

 Let ’ s look at a different example. Examine the following code that assigns two
references to each other and determine if it compiles successfully:

java.math.BigDecimal bd = new java.math.BigDecimal(2.75);

String s = bd;

 The reference bd is of type BigDecimal , and s is of type String . These two classes are
not compatible, so assigning s to bd generates the following compiler error:

incompatible types

found : java.math.BigDecimal

required: java.lang.String

 String s = bd;

 Even using the cast operator does not fi x the problem. The following code generates a
similar compiler error, except this time the compiler complains the types are inconvertible:

java.math.BigDecimal bd = new java.math.BigDecimal(2.75);

String s = (String) bd;

a1

a2

12345

An Integer object
The ArrayList<Integer> object

54321

An Integer object

F I GU R E 1.7 The ArrayList object can be accessed using either a1 or a2.

Reference vs. Primitive Types 27

c01.indd 27c01.indd 27 2/11/09 7:15:49 PM2/11/09 7:15:49 PM

28 Chapter 1 � Fundamentals

 The compiler error looks like this:

inconvertible types

found : java.math.BigDecimal

required: java.lang.String

 String s = (String) bd;

 Even though s and bd are both references that behind the scenes are identical in terms
of memory consumption (most likely they are 32 - bit unsigned integers, but this is JVM -
 dependent), it is not possible to assign them to each other because there is no relationship
between a String object and a BigDecimal object. Two references are compatible only
when either the objects they point to are the same type or one of the objects is a child class
of the other. String and BigDecimal have no inheritance relationship.

 Hopefully you have a better understanding of the differences between references and
primitive types. References play a key role in understanding garbage collection, our next
topic.

 Garbage Collection
 All Java objects are stored in your program memory ’ s heap . The heap, which is also
referred to as the free store, represents a large pool of unused memory allocated to your
Java application. The heap may be quite large, depending on your environment, but there is
always a limit to its size. If your program keeps instantiating objects and leaving them on
the heap, eventually it will run out of memory.

 Garbage collection refers to the process of automatically freeing memory on the heap by
deleting objects that are no longer reachable in your program. Every JVM has a garbage
collector, and many different algorithms are used to determine the effi ciency and timing of
garbage collection. The SCJP exam does not test your knowledge of any individual garbage
collection algorithm. However, you do need to know “ what is and is not guaranteed by the
garbage collection system, ” as well as “ recognize the point when an object becomes eligible
for garbage collection. ” This section discusses both of these objectives in detail.

 The new keyword instantiates a new object on the heap and returns a reference to the
object. Typically you will save that object ’ s reference in a variable. An object will remain on
the heap until it is no longer reachable. An object is no longer reachable when one of two
situations occurs:

� The object no longer has any references pointing to it.

� All references to the object have gone out of scope.

c01.indd 28c01.indd 28 2/11/09 7:15:49 PM2/11/09 7:15:49 PM

Objects vs. References

 Do not confuse a reference with the object that it refers to. They are two different enti-
ties. The reference is a variable that has a name and can be used to access the contents
of an object. A reference can be assigned to another reference, passed to a method, or
returned from a method. All references are the same size, no matter what their type is.
A reference is most likely 32 bits, but their actual size depends on your JVM.

 An object sits on the heap and does not have a name. Therefore, you have no way to
access an object except through a reference. Objects come in all different shapes and
sizes and consume varying amounts of memory. An object cannot be assigned to another
object, nor can an object be passed to a method or returned from a method. It is the
object that gets garbage collected, not its reference.

A Reference

A reference may or may
not be created on the heap.
All references are the same
size, no matter what their
data type is, and are accessed
by their variable name. Objects are always on the heap.

They have no name and can only be
accessed via a reference. Objects vary in
size depending on their class definition.

name An Object

The Heap

 Realizing the difference between a reference and an object goes a long way toward
understanding garbage collection, call by value, the new operator, and many other facets
of the Java language.

 Consider the following program that instantiates two GregorianCalendar objects and
assigns them to various references. Study the code and see if you can determine when each
of the two objects either goes out of scope or all references to it are lost.

1. import java.util.GregorianCalendar;

2.

3. public class GCDemo {

4. public static void main(String [] args) {

5. GregorianCalendar christmas, newyears;

Garbage Collection 29

c01.indd 29c01.indd 29 2/11/09 7:15:50 PM2/11/09 7:15:50 PM

30 Chapter 1 � Fundamentals

6. christmas = new GregorianCalendar(2009,12,25);

7. newyears = new GregorianCalendar(2010,1,1);

8.

9. christmas = newyears;

10. GregorianCalendar d = christmas;

11. christmas = null;

12. }

13. }

 The two GregorianCalendar objects are created on lines 6 and 7, resulting in the
references and objects that Figure 1.8 shows.

christmas
25

day

12
month

2009
year

newyears
1

day

1
month

2010
year

F I GU R E 1. 8 Each GregorianCalendar object has a reference pointing to it.

 On line 9, the christmas reference is assigned to newyears , which results in no more
references pointing to the object from line 6, so this object immediately becomes available
for garbage collection after line 9. There is now only one GregorianCalendar object (from
line 7) reachable in memory, and after line 10 there are three references pointing to it, as
Figure 1.9 shows.

c01.indd 30c01.indd 30 2/11/09 7:15:50 PM2/11/09 7:15:50 PM

 Setting christmas to null on line 11 does not cause the object from line 7 to become
eligible for garbage collection because there are still two references pointing to it: d and
 newyears . However, after line 12 the main method ends and both d and newyears go out of
scope. Therefore, the object instantiated on line 7 becomes eligible for garbage collection
after line 12.

 Know When an Object Is Eligible for Garbage Collection

 The GCDemo program is typical of a question that you will encounter on the certifi cation
exam. Make sure you understand exactly when each of the two GregorianCalendar
objects becomes eligible for garbage collection.

 What does it mean to become eligible for garbage collection? Why not simply have the
garbage collector immediately free the memory instead? The answer is that there is no
guarantee in Java as to exactly when an object is actually garbage collected. The JVM

christmas
25

day

12
month

2009
year

newyears

d

1
day

1
month

2010
year

This object is eligible for
garbage collection.

F I GU R E 1. 9 One GregorianCalendar object has no references to it and the other now
has three.

Garbage Collection 31

c01.indd 31c01.indd 31 2/11/09 7:15:51 PM2/11/09 7:15:51 PM

32 Chapter 1 � Fundamentals

specifi cation does not defi ne how a garbage collector accomplishes the task of freeing
memory. The specifi cation only states that when an object is eligible for garbage collection,
the garbage collector must eventually free the memory.

 As a Java coder, you cannot specifi cally free memory on the heap. You can only ensure
that your objects that you no longer want in memory are no longer reachable. In other
words, make sure you don ’ t have any references to the object that are still in scope.

 The following section discusses the System.gc method, which provides a small amount
of control over freeing memory on the heap.

 The System.gc Method

 The java.lang.System class has a static method called gc that attempts to run the garbage
collector. System.gc is the only method in the Java API that communicates with the
garbage collector. Here is what the Java SE API documentation says about the System.gc
method:

 Calling the gc method suggests that the Java Virtual Machine expend
effort toward recycling unused objects in order to make the memory they
currently occupy available for quick reuse. When control returns from the
method call, the Java Virtual Machine has made a best effort to reclaim
space from all discarded objects.

 In other words, the gc method does not guarantee anything! The method might be
useful if you are familiar with the intricate details of your JVM and how it implements
this method. But the end result is that as a Java programmer you cannot free memory
specifi cally in your code. You can only ensure that your objects are eligible for garbage
collection, and then assume the garbage collector will do its job!

 Let ’ s look at another example typical of a question found on the exam. Examine
the following code and determine when the String objects become eligible for garbage
collection and when they actually get garbage collected:

1. public class GCDemo2 {

2. public static void main(String [] args) {

3. String one = “Hello”;

4. String two = one;

5. String three = “Goodbye”;

6.

7. three = null;

8. System.gc();

9. one = null;

10. System.gc();

11. two = null;

12. }

13. }

c01.indd 32c01.indd 32 2/11/09 7:15:51 PM2/11/09 7:15:51 PM

 The “ Goodbye ” object is created on line 5 and assigned to the reference three . Then
 three is set to null and the gc method is invoked. After line 7 the “ Goodbye ” object is
defi nitely eligible for garbage collection, but if the exam question asks you when the object
is garbage collected, the answer can only be “ unknown. ” The call to gc on line 8 might
have caused “ Goodbye ” to get garbage collected, but that is not guaranteed at all.

 Line 9 does not cause “ Hello ” to become eligible because the reference two points to
 “ Hello ” also. Only after line 11 does “ Hello ” become eligible for garbage collection, and
as already discussed we cannot know when the objects are actually garbage collected.

 The finalize Method

 According to the exam objectives, you need to be able to “ recognize the behaviors of
the Object.finalize() method. ” The garbage collector invokes the finalize method
of an object right before the object is actually garbage collected. The finalize method
is declared in Object , and any subclass can override finalize to perform any necessary
cleanup or dispose of system resources. The finalize method is only invoked on an object
once by the garbage collector.

 There won ’ t be any trick questions about finalize . Just remember it gets invoked once
and only when the object is in the process of being removed from memory. Be sure not
to do anything in the finalize method that might somehow cause the object ’ s reference
to come back into scope. It is also a good idea to call super.finalize because you are
overriding the behavior of finalize in the parent classes.

Calling super.finalize

 If you do call super.finalize , which is recommended, you need to declare the
java.lang.Throwable exception thrown by the parent class ’ s finalize method:

public class A extends Object {

 public void finalize() throws Throwable {

 System.out.println(“Finalizing A”);

 }

}

 Let ’ s look at an example. It is diffi cult to simulate garbage collection because you have little
control over the garbage collector, but I came up with an example that demonstrates when
the finalize method is called and also provides an extra level of complexity in

Garbage Collection 33

c01.indd 33c01.indd 33 2/11/09 7:15:52 PM2/11/09 7:15:52 PM

34 Chapter 1 � Fundamentals

determining when an object is eligible for garbage collection. Consider the following class
named Dog that contains a finalize method that prints out a simple message:

1. public class Dog {

2. private String name;

3. private int age;

4.

5. public Dog(String name, int age) {

6. this.name = name;

7. this.age = age;

8. }

9.

10. public void finalize() {

11. System.out.println(name + “ is being garbage collected”);

12. }

13. }

 The following program instantiates two Dog objects and stores them in a java.util
.Vector . Examine this program and see if you can determine when the two Dog objects
become eligible for garbage collection:

1. import java.util.Vector;

2. public class GCDemo3 {

3. public static void main(String [] args) {

4. Vector < Dog > vector = new Vector < Dog > ();

5. Dog one = new Dog(“Snoopy”, 10);

6. Dog two = new Dog(“Lassie”, 12);

7.

8. vector.add(one);

9. vector.add(two);

10.

11. one = null;

12. System.out.println(“Calling gc once...”);

13. System.gc();

14.

15. vector = null;

16. System.out.println(“Calling gc twice...”);

17. System.gc();

18.

19. two = null;

20. System.out.println(“Calling gc again...”);

c01.indd 34c01.indd 34 2/11/09 7:15:52 PM2/11/09 7:15:52 PM

21. System.gc();

22. System.out.println(“End of main...”);

23.

24. }

25. }

 The calls to gc are an attempt to force garbage collection so we can see when finalize
is invoked on the Dog objects. The fi rst step is determining when the objects are eligible for
garbage collection. Adding the two Dog objects to the Vector creates additional references
to the objects. On line 11 the reference one is set to null , but Snoopy is not eligible yet for
garbage collection because of line 8. The Vector still has a reference to the Snoopy object,
as shown in Figure 1.10 .

one null

0

vector

1

two
“Snoopy”

10

“Lassie”
12

Vector<Dog> object

F I GU R E 1.10 The Vector still has a reference to the Snoopy object.

 However, when you set vector to null on line 15, it causes the Snoopy object to
immediately become eligible for garbage collection. The Lassie object still has the
reference two pointing to it, so it does not become eligible until after line 19. Here is a
sample output of the GCDemo3 program. (I use the term “ sample output ” because the output
can change each time the program is executed depending on when the garbage collector
actually invokes the finalize method.)

Calling gc once...

Calling gc twice...

Snoopy is being garbage collected

Calling gc again...

Lassie is being garbage collected

End of main...

Garbage Collection 35

c01.indd 35c01.indd 35 2/11/09 7:15:52 PM2/11/09 7:15:52 PM

36 Chapter 1 � Fundamentals

 No objects are freed after the fi rst call to gc because no objects are eligible at that time.
After the second call to gc , the Snoopy object is eligible, but the call to finalize happens in
the thread of the garbage collector, so the output of Snoopy ’ s finalize method may or may
not appear before the third call to gc . The exact output of running the GCDemo3 program is
indeterminate. The previous output is just one possible result.

 The finalize Method Is Only Invoked Once

 Expect at least one question on the exam about the finalize method. Keep in mind
that it can only be called once on an object, and it only gets called by the garbage
collector after an object is eligible for garbage collection but before the object is
actually garbage collected.

 This ends our discussion on garbage collection, an important topic not just for the SCJP
exam but in our everyday programming of Java. Now we discuss another important topic
in Java: the concept of call by value.

 Call by Value
 The exam objectives state that you need to know “ the effect upon object references and
primitive values when they are passed into methods that perform assignments or other
modifying operations on the parameters. ” A variable that is passed into a method is called
an argument . Java simplifi es the concept of passing arguments into methods by providing
only one way to pass arguments: by value. Passing arguments by value means that a copy
of the argument is passed to the method. Method return values are also returned by value,
meaning a copy of the variable is returned. The SCJP exam requires an understanding of
what call by value means, and we will discuss the details now.

 An argument is passed into a corresponding method parameter. A parameter is the
name of the variable in the method signature that gets assigned the value of the argument.
Let ’ s look at an example. Suppose we have the following method defi nition:

21. public long cubic(int y) {

22. long longValue = (long) y;

23. y = -1;

24. return longValue * longValue * longValue;

25. }

c01.indd 36c01.indd 36 2/11/09 7:15:53 PM2/11/09 7:15:53 PM

 To invoke this method, you must pass in an int argument. For example, the following
code invokes the cubic method:

31. int x = 11;

32. long result = cubic(x);

 The value of x is copied into the parameter y . We now have two int s in memory that
have the value 11: x and y . Changing y to – 1 in cubic has no effect on x . In fact, it is
impossible to change x within the cubic function.

 Passing Primitives vs. Passing References

 Sun seems to enjoy questions on the exam regarding call by value and methods that
attempt to change the value of the argument. If the argument passed into a method
parameter is a primitive type, it is impossible in Java for the method to alter the value of
the original primitive.

 If the argument passed into a method parameter is a reference type, the same rule
applies: it is impossible for a method to alter the original reference . However, because the
method now has a reference to the same object that the argument points to, the method
 can change the object. This is an important difference to understand. Study the upcom-
ing StackDemo program for an example of this situation.

 The following example of call by value uses references. Suppose we have the following
method signature:

5. public int findByName(String lastName, String firstName) {

6. lastName = “Doe”;

7. firstName = “Jane”;

8. return -1;

9. }

 This method has two parameters, lastName and firstName . To invoke this method, two
 String objects must be passed in as arguments. For example, the following code invokes
the findByName method. What is the output of this code?

14. String first = “Albert”;

15. String last = “Einstein”;

16. int result = findByName(last, first);

17. System.out.println(first + “ “ + last);

Call by Value 37

c01.indd 37c01.indd 37 2/11/09 7:15:53 PM2/11/09 7:15:53 PM

38 Chapter 1 � Fundamentals

 The argument last is copied into the parameter lastName . The argument first is
copied into the parameter firstName . What gets copied? Well, because last and first are
references, they contain memory addresses, and that is what gets copied. The result is that
 lastName points to the same String object as last , which in this example is “ Einstein ” .
Similarly, firstName points to “ Albert ” , as shown in Figure 1.11 . The objects did not get
copied! There is still only one String object with the value “ Einstein ” in memory and only
one String object with the value “ Albert ” in memory.

first

last

firstName

lastName

The memory of the
call stack for main

The memory of the
call stack for findByName

Heap

“Albert”

“Einstein”

F I GU R E 1.11 The arguments from main are copied into the parameters of findByName.

 Because String objects are immutable, the parameters lastName and firstName cannot
change the objects “ Albert ” or “ Einstein ” . Setting the parameters equals to “ Jane ” and “ Doe ”
has no effect on first and last , as Figure 1.12 shows. Therefore, the output of that code is

Albert Einstein

first

last

firstName

lastName

The memory of the
call stack for main

The memory of the
call stack for findByName

Heap

“Albert”

“Einstein”

“Jane”

“Doe”

F I GU R E 1.12 String objects are immutable, so findByName cannot change
first and last.

c01.indd 38c01.indd 38 2/11/09 7:15:54 PM2/11/09 7:15:54 PM

 The only reason firstName and lastName could not change the objects is because the
example uses String types and String objects are immutable. Let ’ s look at an example
where the arguments passed in refer to objects that can be altered by the method. Examine
the following program and try to determine its output. If you are not familiar with the
 java.util.Stack class, the push method adds an element to the top of the stack and the
 pop method removes the top element from the stack.

1. import java.util.Stack;

2.

3. public class StackDemo {

4.

5. public static void modifyStacks(Stack < String > one,

6. Stack < Integer > two) {

7. two.push(50);

8. one.pop();

9. one = new Stack < String > ();

10. }

11.

12. public static void main(String [] args) {

13. Stack < String > names = new Stack < String > ();

14. names.push(“Kim”);

15. names.push(“Edward”);

16. names.push(“Jane”);

17.

18. Stack < Integer > grades = new Stack < Integer > ();

19. grades.push(95);

20. grades.push(87);

21.

22. modifyStacks(names, grades);

23.

24. for(String name : names) {

25. System.out.println(name);

26. }

27.

28. for(int grade : grades) {

29. System.out.println(grade);

30. }

31. }

32. }

 Within main , two Stack objects are instantiated. The reference names refers to a Stack
that contains String objects, and the reference grades refers to a Stack containing Integer

Call by Value 39

c01.indd 39c01.indd 39 2/11/09 7:15:54 PM2/11/09 7:15:54 PM

40 Chapter 1 � Fundamentals

objects. Three strings are pushed onto the names stack, and two ints are pushed onto
 grades . Then names and grades are passed into modifyStacks . The parameter one points
to the stack of Strings and two points to the stack of grades , as Figure 1.13 shows.

names

grades

one

two

The memory of the
call stack for main

The memory of the
call stack for modifyStacks

Heap

87
95

“Jane”
“Edward”

“Kim”

F I GU R E 1.13 The references from main are copied into the parameters of
modifyStacks.

 Pushing 50 onto two is the same as pushing it onto grades because the two references
point to the same stack. Similarly, popping a value off one removes “ Jane ” from the names
stack.

 Note that setting one equal to a new Stack does not affect the Stack that names points
to. We cannot modify the reference names within modifyStacks . Figure 1.14 shows the
references and objects just before the modifyStacks method returns.

F I GU R E 1.14 Assigning the one reference to a new Stack does not affect the names
stack.

names

grades

one

two

The memory of the
call stack for main

The memory of the
call stack for modifyStacks

Heap

87
95

50

“Edward”
“Kim”

c01.indd 40c01.indd 40 2/11/09 7:15:55 PM2/11/09 7:15:55 PM

 When modifyStacks returns, names still points to the Stack containing “ Kim ” and
 “ Edward ” , and grades now points to a Stack containing 95, 87, and 50. The output of
 StackDemo is

Kim

Edward

95

87

50

 Changing the reference one does not change the reference names . Although it is
impossible for the modifyStacks method to alter the names reference, it was quite easy for
the method to modify the object that names points to.

 The concept of call by value also applies to values returned by a method, as we will see
in the next section. As discussed earlier in this chapter, you need to be able to view code
and determine when an object becomes eligible for garbage collection. When does the
object on line 9 of StackDemo become eligible for garbage collection? Because the variable
 one is a parameter, it goes out of scope when the modifyStacks method returns on line 10.
Because one is the only reference pointing to the Stack object from line 9, the object is
eligible for garbage collection after line 10.

Passing References vs. Passing Objects

 You need to be able to distinguish the difference between a reference and an object.
When passing arguments to a method, it is the reference that gets passed, not the object.
It is impossible to pass an object to a method. In fact, the largest amount of data that can
be copied into a parameter (or returned from a method) is a long or a double , both of
which are 64 bits.

 Return values are also passed by value, meaning a copy of the data is sent to the calling
method. A method can return void , one of the eight primitive types, or a reference: there
are no other possibilities. (Of course, the reference can be of any class or interface type,
so the possible values you can return are actually endless, as long as you realize that a
reference is getting returned, never an actual object!)

 Let ’ s look at an example using primitive types. Suppose we have the following method
defi nition:

31. public int max(int a, int b) {

32. int response;

33. if(a < b) {

34. response = b;

35. } else {

Call by Value 41

c01.indd 41c01.indd 41 2/11/09 7:15:55 PM2/11/09 7:15:55 PM

42 Chapter 1 � Fundamentals

36. response = a;

37. }

38. return response;

39. }

 The max method returns a local variable named response . A copy of response is
returned to the calling method. Consider the following invocation of max :

45. public void go() {

46. int x = 20, y = 30;

47. int biggest = max(20, 30);

48. System.out.println(biggest);

49. }

 In this case, the parameter a is 20 and b is 30, resulting in a response of 30. A copy of
30 is passed back to the go method and stored in biggest . Because max is done executing,
its call - stack memory is freed and a , b , and response all get destroyed. It doesn ’ t make
sense to try to modify response in the go method because response no longer exists in
memory.

 The Call Stack

 Every method that gets invoked in a Java thread is pushed onto the thread ’ s method
call stack . The method at the top of the call stack is the currently executing method. Each
method on the call stack gets its own small amount of memory. When a method fi nishes
executing (by running to completion, returning a value, or throwing an exception), the
method gets popped off the call stack and its memory is freed. Any parameters and local
variables are destroyed and no longer exist in the program ’ s memory.

 The next example shows a method that returns a reference to an object. Examine the
code and see if you can determine when the File object instantiated on line 6 is eligible for
garbage collection:

1. import java.io.File;

2.

3. public class ReturnDemo {

4.

5. public File getFile(String fileName) {

6. File f = new File(fileName);

7. return f;

c01.indd 42c01.indd 42 2/11/09 7:15:56 PM2/11/09 7:15:56 PM

8. }

9.

10. public static void main(String [] args) {

11. ReturnDemo demo = new ReturnDemo();

12. File file = demo.getFile(args[0]);

13.

14. if(file.exists()) {

15. System.out.println(file.getName() + “ file exists”);

16. } else {

17. System.out.println(file.getName() + “ doesn’t exist”);

18. }

19.

20. file = null;

21. }

22. }

 The getFile method returns the reference f , which points to a new File object. Keep
in mind that this File object is on the heap, not in the method ’ s call stack memory, so the
 File object is not destroyed when getFile returns. The local variable file in main gets a
copy of f when getFile returns. The File object from line 6 does not become eligible for
garbage collection until after line 20.

 The ReturnDemo program demonstrates a method that instantiates an object and returns
a reference to that object. This is a common occurrence in Java. Just remember that the
object is on the heap (all objects are instantiated on the heap!) and a copy of the reference
is returned to the calling method. As with method arguments, the largest piece of data that
can be returned from any Java method is 64 bits (a long or double). The fact that Java only
allows call by value is an attempt to simplify the language. There is never any confusion
with arguments and parameters: the parameter is always a copy of the argument.

 Now that we have discussed the details of call by value, we turn our attention to another
objective in the “ Fundamentals ” section: the Java operators.

 Java Operators
 You need to be able to “ write code that correctly applies the appropriate operators. ” This
section discusses the Java operators that appear on the exam. Table 1.2 lists all of the 41
operators in Java 6.0, listed in their order of precedence . Order of operations in Java is well
defi ned, and the operators are guaranteed to be evaluated in the order shown. If operators
have the same level of precedence, Java guarantees evaluation in left - to - right order.

Java Operators 43

c01.indd 43c01.indd 43 2/11/09 7:15:56 PM2/11/09 7:15:56 PM

44 Chapter 1 � Fundamentals

 The SCJP exam objectives specifi cally mention the following operators:

� Assignment operators: =, += and - =

� Arithmetic operators: + , - , * , / , % , ++ , and - -

� Relational operators: < , < = , > , > = , = = , and !=

� The instanceof operator

� Bitwise and logical operators: & , | , ̂ , ! , & & , and ||

� The conditional operator (?:)

 The upcoming sections discuss each of these categories of operators and the details that
you need to know about the operators for the SCJP exam.

 The Assignment Operators

 Java has 12 assignment operators : the simple assignment = and 11 compound assignment
operators : += , - = , *= , and so on. An assignment stores the result of the right - hand side of

TA B LE 1. 2 The Java Operators

Operator Symbol and Precedence

Post-increment/post-decrement expression++, expression--

Pre-increment/pre-decrement ++expression, --expression

Unary operators +, -, ~, !

Multiplication/division/modulus *, /, %

Addition/subtraction +, -

Shift operators <<, >>, >>>

Relational operators <, >, <=, >=, instanceof

Equal to/not equal to ==, !=

Bitwise AND, exclusive OR, inclusive OR &, ^, |

Logical AND, OR &&, ||

Ternary operator ? :

Assignment operators = += -= *= /= %= &= ^= |= <<= >>= >>>=

c01.indd 44c01.indd 44 2/11/09 7:15:57 PM2/11/09 7:15:57 PM

the expression into the variable on the left - hand side. Here is an example using a simple
assignment:

4. byte b = 120;

5. int x = b;

 The byte b is assigned the literal value 120, and the int x is assigned the value of b ,
which is also 120. An assignment will not compile if the right - hand operand cannot be
converted to the data type of the left - hand variable. For example, the following line of code
does not compile:

7. int y = 12.5; //does not compile

 The literal 12.5 is a double , and a double cannot implicitly be converted to an int without
loss of data. For this code to compile, you would need to cast the right - side to an int :

8. int y = (int) 12.5; //compiles fine

 The value of y is 12 after this line of code executes. The decimal value is simply
truncated.

 The compound assignment operators perform the given operator fi rst between the left
and right sides of the operand, and then the result is stored in the left - hand variable. What
is the value of z after this line of code?

10. int x = 5;

11. int z = 10;

12. z *= x;

 The compound assignment operator is multiplication, so z is multiplied by x , which
evaluates to 50, and then z is assigned 50. The same result could have been evaluated using
a simple assignment:

13. z = z * x;

 However, sometimes the compound operator can save us from needing to cast a value
before the assignment. For example, the following statements generate a compiler error. Do
you see why?

15. long m = 1000;

16. int n = 5;

17. n = n * m; //compiler error here

 The expression n * m is an int times a long . Before the multiplication can be evaluated,
the int is promoted to a long . The result is therefore a long , so we need a cast to make the
compiler happy:

18. n = (int) (n * m);

Java Operators 45

c01.indd 45c01.indd 45 2/11/09 7:15:57 PM2/11/09 7:15:57 PM

46 Chapter 1 � Fundamentals

 The result is n equal to 5000. However, using the compound operator avoids the cast.
The following statements compile successfully and assign n to 5000:

19. long m = 1000;

20. int n = 5;

21. n *= m;

 In this case, the value of m is implicitly cast to an int before the multiplication occurs.
An int times an int results in an int , so no cast is needed.

 The Assignment Operators

 According to the SCJP exam objectives, knowledge of the assignment operators is
limited to = , += and – = . Of course, if you understand how += and – = work, you understand
how the other compound assignment operators work!

 The Arithmetic Operators

 The exam objectives specifi cally mention having working knowledge of the following
 arithmetic operators :

� + — : addition and subtraction

� * / : multiplication and division

� % : modulus

� ++ — — : increment and decrement

 We will now discuss each of these operators in detail.

 The Additive Operators

 The operators + and – are referred to as additive operators . They can be evaluated on any
of the primitive types except boolean . Additionally, the + operator can be applied to String
objects, which results in string concatenation.

 If the operands are of different types, the smaller operand is promoted to the larger. At a
minimum, the operands are promoted to int s. For example, the following innocent - looking
code does not compile. Can you see why?

short s1 = 10, s2 = 12;

short sum = s1 + s2; //does not compile!

 Because a short is smaller than an int , both s1 and s2 are promoted to int s before the
addition. The result of s1 + s2 is an int , so you can only store the result in a short if you

c01.indd 46c01.indd 46 2/11/09 7:15:58 PM2/11/09 7:15:58 PM

use the cast operator. The compiler complains about a possible loss of precision, but casting
fi xes the problem:

short s1 = 10, s2 = 12;

short sum = (short) (s1 + s2);

 The value of sum is 22 after this code executes.

A Note about Casting

 I want to take a moment to point out something subtle but important about the cast oper-
ator. The sole purpose of casting primitive types is to make the compiler happy. When
you assign a larger data type to a smaller one, the compiler complains about a possible
loss of precision.

 However, if you are aware and comfortable with the possible loss of precision at runtime,
then you simply cast the result, which tells the compiler you know what you are doing. At
runtime, the data may very well be invalid. For example, the following code compiles and
runs, but you might be surprised by the output:

byte b1 = 60, b2 = 60;

byte product = (byte) (b1 * b2);

System.out.println(product);

 This code outputs the number 16, clearly not the result of 60 times 60. The mistake lies in
the limitations of a byte , which can only store values up to 127. Because 60 * 60 = 3600,
the value of 16 is the lower 8 bits of the binary representation of 3600. The signifi cant bits
were lost in the runtime assignment of 3600 to the byte product.

 We will revisit this discussion of casting again when we talk about inheritance and cast-
ing references in Chapter 6 , “ OO Concepts, ” because casting reference types is a differ-
ent story altogether!

 The JVM ensures order of operations is evaluated left - to - right when operators share the
same precedence. For example, what is the value of x after this line of code executes?

String x = 12 - 6 + “Hello” + 7 + 5;

 Following the order from left to right, 12 – 6 is evaluated fi rst and results in 6. The
next + operator is not addition but string concatenation, so the 6 is promoted to a String
and the result is “ 6Hello ” . Following left to right, the next + is also string concatenation,
resulting in “ 6Hello7 ” , and fi nally the value of x after the last string concatenation is
 “ 6Hello75 ” .

Java Operators 47

c01.indd 47c01.indd 47 2/11/09 7:15:58 PM2/11/09 7:15:58 PM

48 Chapter 1 � Fundamentals

 The Multiplicative Operators

 The operators * , / , and % are referred to as the multiplicative operators . They have a higher
precedence of operation than additive operators. The multiplicative operators can only be
performed on the numeric primitive types; otherwise, a compiler error occurs.

 As with + and – , the multiplicative operators promote both operands to the data type of
the larger operand. If both operands are smaller than an int , both operands are converted
to int s before the multiplication occurs. For example, what is the result of the following
statements?

4. int a = 26, b = 5;

5. double d = a / b;

 The expression a / b is integer division, which results in the int 5. Therefore, the value
of d is 5.0. The fact that we store the result in a double does not affect the arithmetic
because the assignment takes place after the arithmetic is already performed.

 If one of the operands is a float or double , the expression is evaluated using fl oating -
 point arithmetic and the result will be a float or double depending on the operand types.
For example, what is the result of the following statements?

8. int a = 26;

9. float f = a / 5.0F;

 Because 5.0 is a float (by virtue of the “ F ” appended to it), the int a is promoted to
a float and fl oating - point division is performed. The value of f is 5.2 after this code
executes.

 The MODULUS Operator

 The modulus operator, also known as the remainder operator, evaluates the remainder
of two numbers when they are divided. For example, what is the result of the following
expression?

int x = 12 % 5;

 The remainder of 12 divided by 5 is 2, so x is 2.
 If the fi rst operand is negative, so is the result of the modulus. The value of y after the

following statement is – 1:

int y = -17 % 4;

 In Java you can evaluate the remainder of fl oating - point numbers as well. While not
as intuitive as integer modulus, there is still a remainder in fl oating - point division. For
example, what is the output of the following code?

System.out.println(12.4 % 3.2);

c01.indd 48c01.indd 48 2/11/09 7:15:59 PM2/11/09 7:15:59 PM

 The answer is 2.8. A calculator won ’ t help you on this one. You need to perform the
division longhand to see where the remainder of 2.8 comes from.

 The multiplication operators are evaluated left - to - right if the expression does not
contain parentheses. What is the value of result after this statement?

int result = 12 + 2 * 5 % 3 - 15 / 4;

 The expression evaluates to an int because all the literal values are int s. Here is how
the expression is evaluated one level of precedence at a time. The parentheses are added for
clarifi cation.

12 + (2 * 5) % 3 - (15 / 4)

 12 + (10 % 3) - 3

 (12 + 1) - 3

 13 - 3
 10

 Therefore the value of result is 10 after the statement executes.

 The Increment and Decrement Operators

 The operators ++ and – – are referred to as the increment and decrement operators because
they increment and decrement (respectively) a numeric type by 1. The operators can be
applied to an expression either prefi x or postfi x. These operators have the highest level of
precedence of all the Java operators. They can only be applied to numeric operands, and
the result is the same data type as the operand.

 For example, the following statements create an int and increment it using ++ . What is
the output of this code?

3. int x = 6;

4. System.out.println(x++);

5. System.out.println(x);

 Adding or subtracting 1 seems simple enough, but these operators can be confusing
because of when they are evaluated! The output of the previous statements is

6

7

 When the operator appears after the operand, the increment or decrement does not
occur until after the operand is used in the current expression. On line 3, x is printed out as
6, then incremented to 7, which is demonstrated by the output of line 5.

 When the increment operator appears before the operand, the operand is incremented
fi rst, and then the result is used in the current expression. The same is true for the
decrement operator.

Java Operators 49

c01.indd 49c01.indd 49 2/11/09 7:15:59 PM2/11/09 7:15:59 PM

50 Chapter 1 � Fundamentals

 Examine the following code and try to determine its output:

10. char c = ‘A’;

11. for(int i = 1; i < = 10; i++) {

12. System.out.print(c++ + “ “);

13. }

14. System.out.print(c);

 The fi rst value printed is ‘ A’ , then c is incremented, which results in ‘ B ’ printed on the
second iteration of the loop. In total, 11 char s are printed and the output is

A B C D E F G H I J K

 The following code demonstrates use of the decrement operator. Examine the code and
try to determine its output:

16. int y = 5;

17. int result = y-- * 3 / --y;

18. System.out.println(“y = “ + y);

19. System.out.println(“result = “ + result);

 I have to admit this is a tricky question! (I hope you never see code like this in the real
world.) Notice y is decremented twice, so the output of y is 3. The value of result is not
as obvious. Order of operations dictates that the multiplication is evaluated fi rst. The value
of y is 5, so 5 * 3 is 15. The multiplication is done, so the post - decrement occurs and y
becomes 4. Now the division is evaluated and y is pre - decremented to 3 before the division,
resulting in 15 / 3 , which is 5. The output of this code is

y = 3

result = 5

Make Sure You Understand the Increment and Decrement Operators

 The exam has plenty of questions that use the prefi x and postfi x increment and decre-
ment operators. In many situations, the exam question is testing a different Java concept,
not the incrementing or decrementing of variables. Make sure you have a good under-
standing of these fundamental (and sometimes tricky) operators.

 The Relational Operators

 The following operators are referred to as the relational operators :

� < : less than

� < = : less than or equal

c01.indd 50c01.indd 50 2/11/09 7:16:00 PM2/11/09 7:16:00 PM

� > : greater than

� > = : greater than or equal

 The relational operators can only be performed on numeric primitive types, and the
result of each relational operator is always a boolean . If the operands are not the same
primitive type, the smaller operand is promoted to the larger operand ’ s type before the
comparison is made.

 To demonstrate the relational operators, let ’ s take a look at some examples. What is the
result of the following statements?

5. int x = 10, y = 20, z = 10;

6. System.out.println(x < y);

7. System.out.println(x < = y);

8. System.out.println(x > z);

9. System.out.println(x > = z);

 Because x and z are the same value, x > z is false . The other statements evaluate to
 true . Therefore, the output of this code is

true

true

false

true

 The boolean Primitive Type

 The result of a relational operator is a boolean , which can only be the values true or
 false . The following line of code does not compile:

int result = x < y;

 The boolean primitive type in Java is not compatible with the int type. In other
languages like C and C++, numeric types are often used for Boolean expressions, where
0 is false and non - zero is true. In Java, a boolean can never be treated as a numeric type,
nor can a numeric type ever be treated as a true or false value.

 The instanceof Operator

 The instanceof operator compares a reference to a class or interface data type. The result
is true if the reference is an instance of the data type; otherwise, the result is false . The
syntax for the instanceof operator looks like this:

 reference instanceof ClassOrInterfaceName

Java Operators 51

c01.indd 51c01.indd 51 2/11/09 7:16:00 PM2/11/09 7:16:00 PM

52 Chapter 1 � Fundamentals

 Let ’ s take a look at an example. See if you can determine the output of the following
statements:

3. String s = “Hello, World”;

4. if(s instanceof String) {

5. System.out.print(“one”);

6. }

7. if(s instanceof Object) {

8. System.out.print(“two”);

9. }

10. if(s instanceof java.io.Serializable) {

11. System.out.print(“three”);

12. }

 The reference s points to a String object, so line 4 is true and “ one ” is printed on line 5.
Every object in Java is of type Object , so line 7 is true for any reference; therefore, “ two ”
is printed. The String class implements the Serializable interface, which makes String
objects Serializable objects as well. Therefore, line 10 is also true and the output of the
previous code is

onetwothree

 One of the main usages of the instanceof operator is when you cast a reference to a
subclass type. If you cast a reference to an invalid data type, a ClassCastException is
thrown by the JVM. For example, the following statements compile, but at runtime an
exception is thrown:

Object x = new String(“a String object”);

Date d = (Date) x;

 The output of this code is

Exception in thread “main” java.lang.ClassCastException:

 java.lang.String cannot be cast to java.util.Date

 Using the instanceof operator, you can avoid this situation:

17. Object x = new String(“a String object”);

18. if(x instanceof Date) {

19. Date d = (Date) x;

20. }

 Because x points to a String object and not a Date object, line 18 is false and the
invalid cast does not occur, avoiding the uncaught ClassCastException . We will see the
 instanceof operator again in Chapter 6 .

c01.indd 52c01.indd 52 2/11/09 7:16:01 PM2/11/09 7:16:01 PM

 The Bitwise and Logical Operators

 The following operators are referred to as the bitwise and logical operators :

� & : the AND operator

� ̂ : the exclusive OR operator

� | : the inclusive OR operator

� & & : the conditional AND operator

� || : the conditional OR operator

 The & , ̂ , and | operate on expressions where both operands are either primitive numeric
types or both are boolean expressions. When operating on numeric types, they are bitwise
operators. When operating on boolean types, they are logical operators. The & & and || operators
require both operands to be boolean expressions, so they are strictly logical operators.

 The term bitwise refers to the & , ̂ , and | operators performing a bitwise AND or OR
of the two operands. Table 1.3 shows the result of the possible outcomes for each of these
three operators.

TA B LE 1. 3 The Bitwise Operators

& (AND) ^ (exclusive OR) | (inclusive OR)

0 & 0 is 0 0 ^ 0 is 0 0 | 0 is 0

0 & 1 is 0 0 ^ 1 is 1 0 | 1 is 1

1 & 0 is 0 1 ^ 0 is 1 1 | 0 is 1

1 & 1 is 1 1 ^ 1 is 0 1 | 1 is 1

 Notice the & operator results in 1 only when both operands are 1, while the | operator
results in 0 only when both operators are 0. The exclusive OR ̂ is 1 when the two operands
are different; otherwise it is 0.

 The bitwise operators are evaluated on integer types. To compute the result, you need
to know the binary representation of the values. For example, what is the result of the
following expression?

int result = 12 ^ 45;

 Begin by converting the 12 and 45 to binary numbers and align them vertically. Then
perform the exclusive OR on each column, as Figure 1.15 shows.

Java Operators 53

c01.indd 53c01.indd 53 2/11/09 7:16:01 PM2/11/09 7:16:01 PM

54 Chapter 1 � Fundamentals

 The result is 00100001 in binary, which is 33 in decimal. Therefore, the value of result
is 33.

 The & , ̂ , and | are also logical operators, meaning they can operate on boolean types.
The result of each operator is identical to Table 1.2 if you were to replace each 0 with false
and each 1 with true . For example, the AND operator & is only true when both operands
are true . The inclusive OR operator | is only false when both operands are false . The
exclusive OR is only true when the two operands are different.

 What is the output of the following logical statements?

3. int a = 5, b = 10, c = 0;

4. boolean one = a < b & c != 0;

5. System.out.println(one);

6. boolean two = true | true & false;

7. System.out.println(two);

8. boolean three = (c != 0) & (a / c > 1);

9. System.out.println(three);

 The variable one on line 4 is the result of true & false , which is false . The result of
 two on line 6 might surprise you. The & operator has a higher precedence than | , so the
 true & false is evaluated fi rst, which results in false . Then true | false is evaluated,
which is true , so two evaluates to true .

 You might think that the Boolean on line 8 evaluates to false , but that line of code
actually throws an ArithmeticException when attempting to compute a / c . The value
of c is 0 and integer division by 0 is undefi ned in Java. Therefore, the last println never
executes.

 The example of a / c is a typical situation where a conditional operator comes in
handy. The conditional operators & & and || short - circuit, meaning the right operand may
not get evaluated if the left hand operand can determine the result.

 For example, when using & & , if the left operand is false , there is no need to check the
right operand. False AND anything is false . In this case, the right - hand expression is not
evaluated. Similarly, when using || , if the left operand is true , there is no need to check the
right operand because true OR anything is true .

 The following statements are a modifi cation of the previous example, except this
time the logical expression short - circuits. What is the value of three after the following
statements?

21. int a = 5, b = 10, c = 0;

22. boolean three = (c != 0) & & (a / c > 1);

12
45

12^45

0000 1100
0010 1101
0010 0001

�
�

�

F I GU R E 1.15 Computing the exclusive or expression12^45

c01.indd 54c01.indd 54 2/11/09 7:16:02 PM2/11/09 7:16:02 PM

 Because c is 0, the expression c != 0 is false and evaluation stops. The variable three
is false and this code does not throw an exception at runtime.

 Short - Circuit Behavior

 Watch for the short - circuit behavior on the exam. The exam question might alter a vari-
able in the right operand. For example, what is the output of the following code?

int x = 6;

boolean answer = (x > = 6) || (++x < = 7);

System.out.println(x);

 Because x > = 6 is true, the incrementing of x does not occur in the right operand, so the
output of this code is 6.

 The Conditional Operator

 Java contains a conditional operator ? : , often referred to as the ternary operator because
it is the only operator in Java that has three operands. The syntax for the conditional
operator is

 boolean_expression ? true_expression : false_expression

 The fi rst operand must be a boolean expression. If this boolean expression is true , then
the second operand is chosen; otherwise, the third operand is chosen. The second and third
operands can be any expressions that evaluate to a value, or any method calls that return a
value.

 The conditional operator is a condensed version of an if/else statement that can be handy
in a lot of different situations, especially when outputting or displaying data. For example,
what is the output of the following statements?

int x = 6;

System.out.println(x != 0 ? 10/x : 0);

 Because x is not 0, the output is the result of 10 / 6 , which is 1.
 Let ’ s look at another example. What is the output of the following statements?

double d = 0.36;

System.out.println(d > 0 & & d < 1 ? d *= 100 : “not a percent”);

 Because d is between 0 and 1, the output is 36.0. There is no requirement that the
second and third operands be the same data types (or even compatible types).

Java Operators 55

c01.indd 55c01.indd 55 2/11/09 7:16:02 PM2/11/09 7:16:02 PM

56 Chapter 1 � Fundamentals

 The Equality Operators

 The = = (equal to) and != (not equal to) operators are referred to as the equality operators.
The equality operators can be used in the following three situations, all of which return a
 boolean :

� The two operands are numerical primitive types.

� The two operands are boolean types.

� The two operands are references types or null types.

 This implies that you cannot compare a byte to a boolean , or an int to a reference type.
The two operands must be compatible. If one operand is a larger type, then the smaller
type is promoted before the comparison. For example, you can compare an int to a float ;
the int is promoted to a float and a fl oating - point comparison is made. You can compare
a char to an int : the char is promoted to an int and integer equality is performed.

 Let ’ s look at some uses of the equality operators. Examine the following code and try to
determine its output:

6. int x = 57;

7. float f = 57.0F;

8. double d = 5.70;

9. boolean b = false;

10.

11. boolean one = x == 57;

12. System.out.println(one);

13. boolean two = (f != d);

14. System.out.println(two);

15. boolean three = (b = true);

16. System.out.println(three);

 Lines 12 and 14 both print out true . The order of operations on line 11 ensures that x
is compared to 57 before the assignment to one , even though parentheses would have made
that statement easier to read (as in line 13). If you glanced over this code too quickly, you
may think that line 16 prints out false , but the actual output is true . On line 15,
(b = true) is an assignment, not a test for equality. Following the order of parentheses, b
is set to true fi rst, then three = b is evaluated, which sets three equal to true . The output
of these statements is

true

true

true

 The equality operators can also be evaluated on reference types. It is important to
understand that evaluating = = and != on two references compares the references, not the
objects they point to. Two references are equal if and only if they point to the same object
(or both point to null); otherwise, the two references are not equal.

c01.indd 56c01.indd 56 2/11/09 7:16:03 PM2/11/09 7:16:03 PM

 The following ReferenceDemo program demonstrates comparing references. Examine the
code and try to determine its output.

1. import java.io.File;

2. import java.util.Date;

3.

4. public class ReferenceDemo {

5. public static void main(String [] args) {

6. File f1 = new File(“mydata.txt”);

7. File f2 = new File(“mydata.txt”);

8. if(f1 != f2) {

9. System.out.println(“f1 != f210.

11. }

12. Date today = new Date();

13. Date now = today;

14. if(today == now) {

15. System.out.println(“today == now”);

16. }

17.

18. String s1 = “Hello”;

19. String s2 = “Hello”;

20. if(s1 == s2) {

21. System.out.println(“s1 == s2”);

22. }

23.

24. String x1 = new String(“Goodbye”);

25. String x2 = new String(“Goodbye”);

26. if(x1 == x2) {

27. System.out.println(“x1 == x2”);

28. }

29. }

30. }

 Let ’ s study this program. The references f1 and f2 point to two different File objects,
so the two references cannot be equal. It is irrelevant that the two File objects look the
same in memory; they are clearly two different objects so their references are not equal. On
the other hand, there is only one Date object in memory and today and now both point to
it, so today == now is true .

 Comparing String references in Java tends to be confusing because of how the JVM
treats string literals. Because String objects are immutable, the JVM can reuse string
literals for effi ciency and to save memory. Because “ Hello ” is a String literal known at
compile time, the JVM only creates one “ Hello ” object in memory, and s1 and s2 both

Java Operators 57

c01.indd 57c01.indd 57 2/11/09 7:16:03 PM2/11/09 7:16:03 PM

58 Chapter 1 � Fundamentals

refer to it. Therefore, s1 == s2 evaluates to true . On the other hand, x1 and x2 are not
literals but actual String objects created dynamically at runtime, making them distinct
objects. Therefore, x1 and x2 point to different objects and cannot be equal. The output of
the ReferenceDemo program is

f1 != f2

today == now

s1 == s2

 The important point to take from this discussion is that evaluating = = and != on reference
types only compares whether or not the two references point to the same object. If you want to
compare the actual contents of two objects, the equals method is used, which we discuss next.

 Equality of Objects
 The exam objectives address the ability to “ determine the equality of two objects or two
primitives. ” As we saw in the previous section, you use the = = operator to determine if
two primitives are equal. We also saw that two references are equal if and only if they
point to the same object. But what does it mean for two objects to be equal? (Don ’ t forget:
references and objects are different entities!) As a Java programmer, you get to decide what
it means for two objects to be equal. The java.lang.Object class contains an equals
method with the following signature:

public boolean equals (Object obj)

 The default implementation in Object tests for reference equality, which we can already
perform with = = . The general rule of thumb is to override equals in all your classes to
defi ne what it means for two objects of your class type to be equal. Equality should be
based on the business logic of your application.

 The equals Method

 Because the equals method is defi ned in Object , you can invoke equals on any object,
passing in any other object. For example, the following statements are valid:

String s = “Hello”;

java.util.Date d = new java.util.Date();

boolean b = s.equals(d);

The value of b is false . Logic would tell us that a String object and a Date object should
never be equal, and that is the case. Typically two objects have to be of the same class
type for them to be equal. However, that doesn ’ t stop you from comparing two objects of
different types, because the equals method can be invoked with any two objects.

c01.indd 58c01.indd 58 2/11/09 7:16:04 PM2/11/09 7:16:04 PM

 Let ’ s look at an example. Suppose we have the following class named Dog :

1. public class Dog {

2. private String name;

3. private int age;

4.

5. public Dog(String name, int age) {

6. this.name = name;

7. this.age = age;

8. }

9. }

 What does it mean for two Dog objects to be equal? Suppose in our application two Dog
objects are equal if they have the same name and age. Then Dog can override equals and
implement this business logic:

1. public class Dog {

2. private String name;

3. private int age;

4.

5. public Dog(String name, int age) {

6. this.name = name;

7. this.age = age;

8. }

9.

10. public boolean equals(Object obj) {

11. if(!(obj instanceof Dog))

12. return false;

13. Dog other = (Dog) obj;

14. if(this.name.equals(other.name) & &

15. (this.age == other.age)) {

16. return true;

17. } else {

18. return false;

19. }

20. }

21. }

 Within equals , we fi rst test to see if the class type of the other object is Dog . If the other
object is not a Dog object, we can quickly deduce the two objects are not equal. Otherwise,
the incoming reference is cast to a Dog reference and the name and age are checked for
equality. Because the name is a String object, we use the equals method of the String class
to compare the two name objects.

Equality of Objects 59

c01.indd 59c01.indd 59 2/11/09 7:16:04 PM2/11/09 7:16:04 PM

60 Chapter 1 � Fundamentals

 The following DogTest program creates three Dog objects and test them for equality.
Examine the code and try to determine its output:

1. public class DogTest {

2. public static void main(String [] args) {

3. Dog one = new Dog(“Fido”, 3);

4. Dog two = new Dog(“Fido”, 3);

5. Dog three = new Dog(“Lassie”, 3);

6.

7. if(one.equals(two)) {

8. System.out.println(“Fido”);

9. }

10.

11. if(one.equals(three)) {

12. System.out.println(“Lassie”);

13. }

14.

15. if(one == two) {

16. System.out.println(“one == two”);

17. }

18. }

19. }

 Because the Dog objects referred to by one and two have the same name and age ,
one.equals(two) is true and “ Fido ” is displayed. The “ Lassie ” object has a different
name, so one.equals(three) is false . The test for one == two is false because one and
 two point to different (but equal) objects.

The hashCode Method

The Object class contains a method named hashCode with the following signature:

public int hashCode()

This method is used by hash table data structures. The hashCode and equals methods
are related in the sense that two objects that are equal should generate the same hash

c01.indd 60c01.indd 60 2/11/09 7:16:05 PM2/11/09 7:16:05 PM

 Summary
 This chapter covered the “ Fundamentals ” objectives of the SCJP exam. Sun lists these
topics last in their offi cial list of objectives, but we needed to discuss these fundamentals
fi rst before tackling the more advanced topics of the exam.

 The goal of this chapter was to discuss the details of running Java applications, including
working with packages and using an appropriate classpath. You should also have a good
understanding of garbage collection and when an object becomes eligible for garbage collection.

 We also discussed the details of using the many operators in Java. As the title of the
chapter suggests, these topics are the “ fundamentals ” of Java that provide the building
blocks for the remainder of this book.

 Be sure to test your knowledge of these fundamentals by answering the Review Questions
that follow. I tried to write questions that refl ect the style and diffi culty level of questions
on the SCJP exam, so attempt to answer the questions seriously without looking back at the
pages of this chapter and do your best. Make sure you have a good understanding of the
following Exam Essentials before attempting the Review Questions, and good luck!

 Exam Essentials
 Understand the effect of putting a class in a package. In the real world, all classes are
declared within a package. Know how to run a Java class from a command prompt when
the class is in a package, and be sure to recognize what the CLASSPATH environment variable
needs to be.

 Get comfortable with looking at code and determining its output. Many of the exam
questions provide either a small program or a snippet of code and ask what the output is.
Practice reading code and determining what it does, including whether or not the given
code compiles successfully.

code. Therefore, any time you override equals in a class, you should also override
hashCode. In the Dog class, the following hashCode method maintains this required
relationship of equals and hashCode:

 public int hashCode() {

 return age;

 }

If two Dog objects are equal in our example, they have the same age and therefore will
have the same hash code.

Exam Essentials 61

c01.indd 61c01.indd 61 2/11/09 7:16:05 PM2/11/09 7:16:05 PM

62 Chapter 1 � Fundamentals

 Understand call by value. I can guarantee at least two or three questions on the exam that
have an argument passed into a method and the method alters the parameter. Understand
that a method cannot change the argument. The only effect a method can have on an argu-
ment is when the argument is a reference, in which case the method can alter the object
that the reference points to.

 Be able to determine when an object becomes eligible for garbage collection. Knowing
when an object is eligible for garbage collection demonstrates an important understanding
of Java and how it creates and destroys objects. You will see at least one question on the
exam that asks you when an object is eligible for garbage collection, and also at least one
question involving the Object.finalize() method.

 Understand the difference between = = and the equals method. Use the == comparison
operator to determine if two primitive types are equal and also to determine if two refer-
ences point to the same object. Use the equals method to determine if two objects are
 “ equal, ” which is whatever equality means in the business logic of the class.

 Familiarize yourself with the Java operators. The Java operators are a fundamental aspect
of the language, and almost all of the exam questions that contain sample code use one or
more of the Java operators.

c01.indd 62c01.indd 62 2/11/09 7:16:05 PM2/11/09 7:16:05 PM

 Review Questions
 1. The following code appears in a file named Plant.java . What is the result of compiling

this source file? (Select one answer.)
1. public class Plant {

2. public boolean flowering;

3. public Leaf [] leaves;

4. }

5.

6. class Leaf {

7. public String color;

8. public int length;

9. }

A. The code compiles successfully and two bytecode files are generated: Plant.class and
Leaf.class

B. The code compiles successfully and one bytecode file is generated: Plant.class .

 C. A compiler error occurs on line 1.

 D. A compiler error occurs on line 3.

 E. A compiler error occurs on line 6.

 2. Suppose a class named com.mycompany.Main is a Java application, and Main.class is in
the following directory:

\projects\build\com\mycompany

 Which of the following commands successfully executes Main ? (Select two answers.)

 A. java - classpath=\projects\build com.mycompany.Main

 B. java - classpath \projects\build\com\mycompany Main

 C. java - classpath \projects\build com.mycompany.Main

 D. java - classpath \projects\build\com mycompany.Main

 E. java - cp \projects\build com.mycompany.Main

 3. A class named Test is in the a.b.c package, defined in a file named Test.java and saved
in the following directory:

c:\abcproject\src\Test.java

 Assuming the code in Test.java uses only classes from java.lang and contains no com-
piler errors, what is the result of the following command line? (Select one answer).

c:\abcproject\src > javac -d c:\abcproject\deploy Test.java

Review Questions 63

c01.indd 63c01.indd 63 2/11/09 7:16:06 PM2/11/09 7:16:06 PM

64 Chapter 1 � Fundamentals

 A. A NoClassDefFoundError occurs.

 B. A ClassNotFoundException occurs.

 C. Test.class is generated in the c:\abcproject\deploy directory.

 D. Test.class is generated in the c:\abcproject\deploy\abc directory.

 E. Test.class is generated in the c:\abcproject\deploy\a\b\c directory.

 4. What is the outcome of the following code?
1. public class Employee {

2. public int employeeId;

3. public String firstName, lastName;

4. public java.util.GregorianCalendar hireDate;

5.

6. public int hashCode() {

7. return employeeId;

8. }

9.

10. public boolean equals(Employee e) {

11. return this.employeeId == e.employeeId;

12. }

13.

14. public static void main(String [] args) {

15. Employee one = new Employee();

16. one.employeeId = 101;

17.

18. Employee two = new Employee();

19. two.employeeId = 101;

20.

21. if(one.equals(two)) {

22. System.out.println(“Success”);

23. } else {

24. System.out.println(“Failure”);

25. }

26. }

27. }

 A. Success

 B. Failure

 C. Line 6 causes a compiler error.

 D. Line 10 causes a compiler error.

 E. Line 10 causes a runtime exception to occur.

c01.indd 64c01.indd 64 2/11/09 7:16:06 PM2/11/09 7:16:06 PM

 5. What is the result of compiling the following class?
1. public class Book {

2. private int ISBN;

3. private String title, author;

4. private int pageCount;

5.

6. public int hashCode() {

7. return ISBN;

8. }

9.

10. public boolean equals(Object obj) {

11. if(!(obj instanceof Book)) {

12. return false;

13. }

14. Book other = (Book) obj;

15. return this.ISBN == other.ISBN;

16. }

17. }

 A. The class compiles successfully.

 B. Line 6 causes a compiler error because hashCode does not return a unique value.

 C. Line 10 causes a compiler error because the equals method does not override the par-
ent method correctly.

 D. Line 14 does not compile because the ClassCastException is not handled or declared.

 E. Line 15 does not compile because other.ISBN is a private field.

 6. What is the outcome of the following statements? (Select one answer.)
6. String s1 = “Canada”;

7. String s2 = new String(s1);

8. if(s1 == s2) {

9. System.out.println(“s1 == s2”);

10. }

11. if(s1.equals(s2)) {

12. System.out.println(“s1.equals(s2)”);

13. }

 A. There is no output.

 B. s1 == s2

 C. s1.equals(s2)

 D. Both B and C

Review Questions 65

c01.indd 65c01.indd 65 2/11/09 7:16:07 PM2/11/09 7:16:07 PM

66 Chapter 1 � Fundamentals

 7. Suppose we have the following class named GC :
1. import java.util.Date;

2.

3. public class GC {

4. public static void main(String [] args) {

5. Date one = new Date();

6. Date two = new Date();

7. Date three = one;

8. one = null;

9. Date four = one;

10. three = null;

11. two = null;

12. two = new Date();

13. }

14. }

 Which of the following statements are true? (Select two answers.)

 A. The Date object from line 5 is eligible for garbage collection immediately following
line 8.

 B. The Date object from line 5 is eligible for garbage collection immediately following
line 10.

 C. The Date object from line 5 is eligible for garbage collection immediately following
line 13.

 D. The Date object from line 6 is eligible for garbage collection immediately following
line 11.

 E. The Date object from line 6 is eligible for garbage collection immediately following
line 13.

 8. What is the output of the following code?
1. private class Squares {

2. public static long square(int x) {

3. long y = x * (long) x;

4. x = -1;

5. return y;

6. }

7.

8. public static void main(String [] args) {

9. int value = 9;

10. long result = square(value);

11. System.out.println(value);

12. }

13. }

c01.indd 66c01.indd 66 2/11/09 7:16:07 PM2/11/09 7:16:07 PM

 A. This code does not compile.

 B. 9

 C. - 1

 D. 81

 9. What is the output of the following code?

1. public class TestDrive {

2.

3. public static void go(Car c) {

4. c.velocity += 10;

5. }

6.

7. public static void main(String [] args) {

8. Car porsche = new Car();

9. go(porsche);

10.

11. Car stolen = porsche;

12. go(stolen);

13.

14. System.out.println(porsche.velocity);

15. }

16. }

17.

18. class Car {

19. public int velocity = 10;

20. }

 A. 0

 B. 10

 C. 20

 D. 30

 E. This code does not compile.

 10. What is the output of the following code?

1. import java.util.*;

2.

3. public class DateSwap {

4.

Review Questions 67

c01.indd 67c01.indd 67 2/11/09 7:16:07 PM2/11/09 7:16:07 PM

68 Chapter 1 � Fundamentals

5. public static void swap(GregorianCalendar a, GregorianCalendar b)

6. {

7. GregorianCalendar temp = a;

8. a = new GregorianCalendar(2012, 1, 1);

9. b = temp;

10. }

11.

12. public static void main(String [] args) {

13. GregorianCalendar one = new GregorianCalendar(2010, 1, 1);

14. GregorianCalendar two = new GregorianCalendar(2011, 1, 1);

15.

16. swap(one, two);

17.

18. System.out.print(one.get(Calendar.YEAR));

19. System.out.println(two.get(Calendar.YEAR));

20. }

21. }

 A. 20112010

 B. 20102011

 C. 20122011

 D. 20122010

 E. 20102012

 F. This code does not compile.

 11. When does the String object instantiated on line 4 become eligible for garbage collection?

1. public class ReturnDemo {

2.

3. public static String getName() {

4. String temp = new String(“Jane Doe”);

5. return temp;

6. }

7.

8. public static void main(String [] args) {

9. String result;

10. result = getName();

11. System.out.println(result);

12. result = null;

13. System.gc();

14. }

15. }

c01.indd 68c01.indd 68 2/11/09 7:16:08 PM2/11/09 7:16:08 PM

 A. Immediately after line 4

 B. Immediately after line 5

 C. Immediately after line 10

 D. Immediately after line 12

 E. Immediately after line 13

 F. Immediately after line 14

 12. What is the output of the following code?

4. byte a = 40, b = 50;

5. byte sum = (byte) a + b;

6. System.out.println(sum);

 A. Line 5 generates a compiler error.

 B. 40

 C. 50

 D. 90

 E. An undefined value

 13. What is the output of the following code?

5. int x = 5 * 4 % 3;

6. System.out.println(x);

 A. Line 5 generates a compiler error.

 B. 2
 C. 3

 D. 5

 E. 6

 14. What is the output of the following code?

3. byte y = 14 & 9;

4. System.out.println(y);

 A. Line 3 generates a compiler error.

 B. 15

 C. 14

 D. 9

 E. 8

Review Questions 69

c01.indd 69c01.indd 69 2/11/09 7:16:08 PM2/11/09 7:16:08 PM

70 Chapter 1 � Fundamentals

 15. What is the output of the following code?

1. public class FinalTest {

2.

3. public static void main(String [] args) {

4. House h = new House();

5. h.address = “123 Main Street”;

6. h = null;

7. System.gc();

8. }

9. }

10.

11. class House {

12. public String address;

13.

14. public void finalize() {

15. System.out.println(“Inside House”);

16. address = null;

17. }

18. }

 A. There is no output.

 B. Inside House

 C. The output cannot be determined.

 D. The code generates a compiler error.

 16. Given the following class named House , which of the following statements is true? (Select
two answers.)

1. public class House {

2. public String address = new String();

3.

4. public void finalize() {

5. System.out.println(“Inside House”);

6. address = null;

7. }

8. }

 A. “ Inside House ” is displayed just before a House object is garbage collected.

 B. “ Inside House ” is displayed twice just before a House object is garbage collected.

 C. The finalize method on line 4 never actually gets called.

 D. There is no need to assign address to null on line 6.

 E. The String object from line 2 is guaranteed to be garbage collected after its corre-
sponding House object is garbage collected.

c01.indd 70c01.indd 70 2/11/09 7:16:08 PM2/11/09 7:16:08 PM

 17. Which of the following statements is true about the following BaseballTeam class?

1. public class BaseballTeam {

2. private String city, mascot;

3. private int numberOfPlayers;

4.

5. public boolean equals(Object obj) {

6. if(!(obj instanceof BaseballTeam)) {

7. return false;

8. }

9. BaseballTeam other = (BaseballTeam) obj;

10. return (city.equals(other.city)

11. & & mascot.equals(other.mascot));

12. }

13.

14. public int hashCode() {

15. return numberOfPlayers;

16. }

17. }

 A. The class does not compile.

 B. The class compiles but contains an improper equals method.

 C. The class compiles but contains an improper hashCode method.

 D. The class compiles and has proper equals and hashCode methods.

 18. What is the output of the following code?

3. int x = 0;

4. String s = null;

5. if(x == s) {

6. System.out.println(“Success”);

7. } else {

8. System.out.println(“Failure”);

9. }

 A. Success

 B. Failure

 C. Line 4 generates a compiler error.

 D. Line 5 generates a compiler error.

 19. What is the output of the following code?

3. int x1 = 50, x2 = 75;

4. boolean b = x1 > = x2;

5. if(b = true) {

Review Questions 71

c01.indd 71c01.indd 71 2/11/09 7:16:09 PM2/11/09 7:16:09 PM

72 Chapter 1 � Fundamentals

6. System.out.println(“Success”);

7. } else {

8. System.out.println(“Failure”);

9. }

 A. Success

 B. Failure

 C. Line 4 generates a compiler error.

 D. Line 5 generates a compiler error.

 20. What is the output of the following code?

5. int c = 7;

6. int result = 4;

7. result += ++c;

8. System.out.print(result);

 A. 8

 B. 11

 C. 12

 D. 15

 E. 16

 F. Line 7 generates a compiler error.

 21. Determine the output of the following code when executed with the command:

java HelloWorld hello world goodbye

1. public static class HelloWorld {

2. public static void main(String [] args) {

3. System.out.println(args[1] + args[2]);

4. }

5. }

 A. hello world

 B. world goodbye

 C. null null

 D. An ArrayIndexOutOfBoundsException occurs at runtime.

 E. The code does not compile.

c01.indd 72c01.indd 72 2/11/09 7:16:09 PM2/11/09 7:16:09 PM

Answers to Review Questions
1. A. The code does not contain any compiler errors. It is valid to defi ne multiple classes in a

single fi le as long as only one of them is public and the others have the default access.

2. C and E. C assigns the -classpath fl ag to the appropriate directory. E also set the class
path correctly except -cp is used. The -cp and -classpath fl ags are identical. A uses an
equals sign = with the -classpath fl ag, which is not the correct syntax. B and D set the
class path to the wrong directory and also incorrectly refer to the Main class without its
fully qualifi ed name, which is com.mycompany.Main.

3. E. The -d fl ag creates the appropriate directory structure that matches the package name.
In this case, that directory created is c:\abcproject\deploy\a\b\c. Therefore, C and D
are wrong. A NoClassDefFoundError occurs if the compiler cannot fi nd the source fi le, but
in this example the javac command is executed from the same directory that contains the
source fi le, so this error does not occur. A ClassNotFoundException is a runtime exception
that is not thrown by a compiler, so B is incorrect.

4. A. Based on the defi nition of the equals method, two Employee objects are equal if they
have the same employeeId fi eld, so line 21 evaluates to true and “Success” is output, so
B is incorrect. Line 6 successfully overrides hashCode, so C is incorrect. Line 10 is a valid
overriding of equals, so D and E are incorrect.

5. A. B is incorrect because hashCode does not have to return a unique value (not that the
compiler could determine if the value was unique anyway). C is incorrect because the
equals method correctly overrides equals in Object. D is incorrect because a ClassCast-
Exception does not need to be handled or declared. E is incorrect because although ISBN is
a private fi eld, the equals method is within the class and therefore has access to the pri-
vate fi eld. Therefore, the code compiles successfully and the answer is A.

6. C. The reference s1 points to a String object in the string pool because “Canada” is a
literal string known at compile time. The reference s2 points to a String object created
dynamically at runtime, so this object is created on the heap. Therefore B is incorrect
because s1 and s2 point to different objects. However, C is correct because s1 and s2 are
both String objects that equal “Canada”, so s1.equals(s2) evaluates to true. Because C
is correct, A and D must be incorrect.

7. B and D. The Date object from line 5 has two references to it — one and three —
and becomes eligible for garbage collection after line 10, so B is a true statement. The refer-
ence four is set to null on line 9, which does not affect the object from line 5. The Date
object from line 6 only has a single reference to it — two — and therefore becomes eligible
for garbage collection after line 11 when two is set to null, so D is a true statement.

8. A. A top-level class cannot be declared private, so line 1 causes a compiler error. This
is one of those exam questions where you might waste a couple of minutes if you do not
notice the compiler error right away. Don’t forget to keep an eye out for these subtle types
of compiler errors.

Answers to Review Questions 73

c01.indd 73c01.indd 73 2/11/09 7:16:09 PM2/11/09 7:16:09 PM

74 Chapter 1 � Fundamentals

9. D. The code compiles, so E is incorrect. The Car object on line 8 has an initial velocity of
10 from line 19. The call to go on line 9 changes its velocity to 20. The stolen reference
points to the same Car object, so calling go with the stolen argument changes the Car
object’s velocity to 30, so the correct answer is D.

10. B. The code compiles successfully, so F is incorrect. The two GregorianCalendar
references are passed to the swap method, which does not change either object. In fact, the
only thing swapped in the swap method is b getting assigned to a, but these changes do
not affect the references one and two. Because the objects that one and two refer to are not
changed in the swap method, the output is 20102011 and B is the correct answer.

11. D. The object on line 4 is referred to by the temp reference, which goes out of scope after
line 5. However, the result reference gets a copy of temp, so it refers to the “Jane Doe” object
until line 12 when result is set to null, at which point “Jane Doe” is no longer reachable
and becomes immediately eligible for garbage collection. Therefore, the answer is D.

12. A. Line 5 generates a possible loss of precision compiler error. The cast operator has the
highest precedence, so it is evaluated fi rst, casting a to a byte (which is fi ne). Then the
addition is evaluated, causing both a and b to be promoted to ints. The value 90, stored
as an int, is assigned to sum, which is a byte. This requires a cast, so the code does not
compile and therefore the correct answer is A. (This code would compile if parentheses
were used around (a + b).)

13. B. The * and % operators have the same level or precedence and are therefore evaluated
left-to-right. The result of 5 * 4 is 20 and 20 % 3 is 2 (20 divided by 3 is 18; the
remainder is 2). Therefore, the answer is B.

14. E. To evaluate the & operator, you need to express the numbers in binary and evaluate & on
each column, as shown here:

14 = 0000 1110

9 = 0000 1001

14 & 9 = 0000 1000

 The resulting binary number 00001000 is 8 in decimal, so the answer is E.

15. C. The code compiles successfully, so D is incorrect. Due to the unpredictable behavior of
System.gc, the output cannot be determined. The House object from line 4 is eligible for
garbage collection after line 6, and the call to System.gc may free its memory and cause
“Inside House” to be displayed from the finalize method. However, the System.gc
method may not free the memory of the House object, in which case there would be no
output. Because A or B may occur, the answer is C.

16. A and D. Just before an object is garbage collected, its finalize method is invoked once,
so A is true but B is incorrect. C is incorrect because it is just not a true statement. D is
correct; there is no need to assign address to null because it is about to be deleted from
memory. E is incorrect, though, because address may not be the only reference to the
String object that address refers to.

c01.indd 74c01.indd 74 2/11/09 7:16:10 PM2/11/09 7:16:10 PM

17. C. The class compiles successfully, so A is incorrect. B is incorrect because an equals
method can use any business logic you want to determine if two objects are equal. However,
the rule for proper overriding of equals and hashCode is that if two objects are equal, they
should generate the same hash code. The hashCode method does not properly follow this
rule. Two teams with the same city and mascot but different numberOfPlayers would be
equal but would generate different hash codes. Therefore, D is incorrect and the answer is C.

18. D. The variable x is an int and s is a reference. These two data types are incomparable
because neither variable can be converted to the other variable’s type.
The compiler error occurs on line 5 when the comparison is attempted, so the answer is D.

19. A. The code compiles successfully, so C and D are incorrect. The value of b after line 4 is
false. However, the if statement on line 5 contains an assignment, not a comparison. The
value of b is assigned to true on line 5, and the assignment operator returns true, so line 6
executes and displays “Success”.

20. C. The code compiles successfully, so F is incorrect. On line 7, c is incremented to 8 before
being used in the expression because it is a pre-increment. The 8 is added to result, which
is 4, and the resulting 12 is assigned to result and displayed on line 8. Therefore, the
answer is C.

21. E. The class declaration on line 1 contains the static modifi er, which is not a valid
modifi er for a top-level class. This causes a compiler error, so the correct answer is E.

Answers to Review Questions 75

c01.indd 75c01.indd 75 2/11/09 7:16:11 PM2/11/09 7:16:11 PM

c01.indd 76c01.indd 76 2/11/09 7:16:11 PM2/11/09 7:16:11 PM

 Declarations,
Initialization, and
Scoping

 SCJP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

 Develop code that declares classes (including abstract

and all forms of nested classes), interfaces, and enums,

and includes the appropriate use of package and import

statements (including static imports).

 Develop code that declares an interface. Develop code

that implements or extends one or more interfaces.

Develop code that declares an abstract class. Develop

code that extends an abstract class.

 Develop code that declares, initializes, and uses primi-

tives, arrays, enums, and objects as static, instance, and

local variables. Also, use legal identifiers for variable

names.

 Develop code that declares both static and non - static

methods, and — if appropriate — use method names that

adhere to the JavaBeans naming standards. Also develop

code that declares and uses a variable - length argument

list.

 Given a code example, determine if a method is correctly

overriding or overloading another method, and identify

legal return values (including covariant returns), for the

method.

 Given a set of classes and superclasses, develop construc-

tors for one or more of the classes. Given a class declara-

tion, determine if a default constructor will be created,

and if so, determine the behavior of that constructor.

Given a nested or non - nested class listing, write code to

instantiate the class.

�

�

�

�

�

�

Chapter

2

c02.indd 77c02.indd 77 2/11/09 6:15:34 PM2/11/09 6:15:34 PM

 These objectives are Section 1 of the SCJP exam objectives.
The exam tests your knowledge of all aspects of declaring a
Java class, including the details of declaring fi elds, methods,

and constructors. The exam also tests your knowledge of declaring interfaces, enums,
arrays, and nested classes. This chapter covers all of these topics in detail.

 Declaring Variables
 The exam objectives state that you need to be able to “ develop code that declares, initializes, and
uses primitives, arrays, enums, and objects. ” Declaring these various data types involves creating
a variable. A variable represents an allocated piece of memory for storing data. Java is a strongly
typed programming language, meaning every variable must be declared with a specifi c data type
before it can be used. Declaring a variable involves stating the data type and giving the variable
a name. For example, the following statements declare three variables; an int named channel , a
 double named diagonal , and a String reference named brand :

int channel;

double diagonal;

String brand;

 A variable is initialized when it is fi rst assigned a value. For example, the following
statements initialize our three variables:

channel = 32;

diagonal = 53.0;

brand = “Acme”;

 In Java, a variable must be initialized before you can use it. Variables that represent
fi elds in a class are automatically initialized to their corresponding “ zero ” value during
object instantiation. Local variables must be specifi cally initialized. The next section,
 “ Scoping, ” discusses the initializing of variables in detail.

 The name of a variable is referred to as its identifi er . (The names of your fi elds, classes,
methods, interfaces, and enums are also identifi ers.) The exam objectives include knowing
the “ legal identifi ers for variable names. ” Here are the rules for legal identifi ers:

 An identifier is a Unicode character sequence of Java letters and Java digits. These
include the ASCII characters A – Z and a – z , the digits 0 – 9 , the underscore character (_),
and the dollar sign ($).

 The first character of an identifier must be a Java letter, underscore, or dollar sign. (In
other words, the first character cannot be a digit.)

�

�

c02.indd 78c02.indd 78 2/11/09 6:15:35 PM2/11/09 6:15:35 PM

 An identifier must not be a Java keyword, true , false , or null .

 Table 2.1 contains a list of valid and invalid identifi ers to demonstrate these rules.
 Let ’ s take a look at the invalid identifi ers:

�

TA B LE 2 .1 Java Identifiers

Valid Identifiers Invalid Identifiers

x1 x 1

True true

7 me@company

_firstName 1stName

car$model x*y

$color seven#

 Java Tokens

 When your source code is compiled, the compiler breaks down your code into tokens
based on the spaces, line feeds, tabs and other separators in your code. There are fi ve
types of tokens in Java:

 Separators

 Keywords

 Literals

 Operators

 Identifi ers

 Because identifi ers are the names you come up with for your variables, classes, fi elds,
methods, interfaces (and so on), the compiler needs to be able to recognize them easily. This
is why Java needs a specifi c set of rules that must be followed for creating legal identifi ers.

�

�

�

�

�

 x 1 has a space in it, which is not allowed.

 true is a reserved word.

 me@company contains the @ symbol, which is not a Java letter or digit.

 1stName does not start with a Java letter. Identifiers cannot start with a digit.

 x*y contains the multiplication operator. Identifiers cannot contain any of the Java
operators.

 seven# contains the # symbol, which is also not a Java letter or digit.

�

�

�

�

�

�

Declaring Variables 79

c02.indd 79c02.indd 79 2/11/09 6:15:35 PM2/11/09 6:15:35 PM

80 Chapter 2 � Declarations, Initialization, and Scoping

 Scoping
 As mentioned previously, the exam objectives state that you need to be able to develop code
that uses “ static, instance, and local variables. ” Each of these three types of variables has a
different scope. Scope refers to that portion of code where a variable can be accessed. There
are three kinds of variables in Java, depending on their scope:

 Instance variables These variables represent the nonstatic fi elds of a class.

 Class variables These variables represent the static fi elds of a class.

 Local variables These variables are defi ned inside a method. Local variables are only
accessible within the method in which they are declared.

 This section discusses these three types of variables in detail, starting with a discussion
of instance variables.

 Instance Variables

 Instance variables are the nonstatic fi elds of your class, often referred to simply as fi elds .
These variables get allocated in memory when a new object is instantiated. Because the new
operator zeroes the memory for an object, all fi elds initially have their corresponding zero
value, which are as follows:

 Primitive numeric fields initialize to 0. This includes byte , short , int , long , float and
 double .

 boolean types initialize to false .

 char types initialize to the null character ‘ \u0000 ’ .

 Reference types initialize to null .

 Instance variables are always initialized during object instantiation, so you can use an
instance variable even if you do not specifi cally assign it a value.

 Let ’ s take a look at an example. Suppose we have the following class named Television :

1. public class Television {

2. public int channel;

3. public double diagonal;

4. public String brand;

5.

6. public Television() {

7. channel = 4;

8. }

9. }

�

�

�

�

c02.indd 80c02.indd 80 2/11/09 6:15:35 PM2/11/09 6:15:35 PM

 Examine the following statements and try to determine the output:

3. Television tv = new Television();

4. System.out.println(tv.channel + “ “ + tv.diagonal + “ “ + tv.brand);

 The preceding code compiles fi ne. The channel fi eld is initially 0 but is set to 4 in the
constructor. The diagonal fi eld is a double so its initial value is 0.0. The brand fi eld is a
reference so its value is null . The output is

4 0.0 null

 Figure 2.1 shows what this Television object looks like in memory.

tv

brand

Television reference Television object

4
channel

0.0
diagonal

null

F I GU R E 2 .1 A Television object has three fields in memory.

 The Lifetime of Instance Variables

 An instance variable does not exist in memory until an instance of the class is
instantiated. When an object is instantiated, its instance variables exist in memory until
the object is garbage collected.

 Explicit Initialization

 Java allows for the explicit initialization of instance variables. Explicit initialization
is when a fi eld is assigned a value at the same time that the fi eld is declared. The fi eld
therefore gets initialized before the constructor executes.

Scoping 81

c02.indd 81c02.indd 81 2/11/09 6:15:36 PM2/11/09 6:15:36 PM

82 Chapter 2 � Declarations, Initialization, and Scoping

 For example, the following Apple class uses explicit initialization to initialize its variety
fi eld:

1. public class Apple extends Fruit {

2. public String variety = “McIntosh”;

3.

4. public Apple(String variety) {

5. System.out.println(“Constructing an Apple”);

6. this.variety = variety;

7. }

8. }

 The variety fi eld is assigned the value “ McIntosh ” after the memory is zeroed by the
 new operator. That means that variety was actually null for a brief moment before it was
assigned “ McIntosh ” .

 Explicit initialization allows you to initialize a fi eld before a constructor is executed.
However, the most common reason for using explicit initialization is simply that sometimes
it is just easier to initialize a fi eld when you declare it, especially if the initialization is the
same for every instance of the class.

 In the previous example, setting the variety fi eld of all Apple objects to initially be
 “ McIntosh ” probably does not make sense in a real - world application. However, there are
plenty of situations where explicit initialization comes in handy. For example, the following
 Movie class has a Vector fi eld that contains Fan objects:

1. import java.util.Vector;

2.

3. public class Movie {

4. public Vector < Fan > fans = new Vector < Fan > ();

5. public String title;

6. public double boxOfficeTotal;

7.

8. public Movie(String title) {

9. this.title = title;

10. }

11.

12. public void addFan(Fan f) {

13. fans.add(f);

14. }

15.}

 Because the Vector has the same initial value for all instances of the Movie class, using
explicit initialization makes sense and simplifi es the constructor code. If the Movie class
had multiple constructors, we would have to make sure that the Vector gets instantiated
in each constructor. By using explicit initialization, we are ensured that the fans fi eld is

c02.indd 82c02.indd 82 2/11/09 6:15:36 PM2/11/09 6:15:36 PM

properly initialized for all instances of Movie , and the initialization takes place in a single
location (instead of in multiple constructors).

 The code on the exam uses a lot of explicit initialization. This is probably
because it makes the code shorter and simpler. Often the exam question
will likely be testing your knowledge of a topic not specifically related
to explicit initialization, so explicit initialization is one of those fundamental
concepts you are just expected to know.

 Class Variables

 A class variable is a fi eld within a class declared as static, often referred to as a static
variable or static fi eld . A static fi eld is unique in that the memory is allocated for the fi eld
when the class is loaded by the JVM ’ s class loader, and the variable remains in memory
until the class loader unloads the class. Because a program typically terminates before a
class is unloaded, the lifetime of a static fi eld is often the lifetime of the application.

 Static fi elds do not belong to instances of a class. You can access a static fi eld before any
instances of the class are created, and if you have 100 instances of the class, you still only
have one instance of the static fi eld.

 Global Variables in Java

 Java does not support the concept of global variables. All variables in Java appear within
a class or interface. Static fi elds are the closest thing you have in Java to global variables,
because a static fi eld has a lifetime beyond the life of the instances of the class and a
static fi eld can be accessed from any other class or object (depending on the access
specifi er).

 Consider the following class named House with a static int fi eld named counter :

1. package my.blueprints;

2. public class House {

3. private Room kitchen; //instance variable

4. public static int counter = 0; //class variable

5.

6. public House() {

7. kitchen = new Room();

8. }

Scoping 83

c02.indd 83c02.indd 83 2/11/09 6:15:36 PM2/11/09 6:15:36 PM

84 Chapter 2 � Declarations, Initialization, and Scoping

9.

10. public Room getKitchen() {

11. counter++;

12. return kitchen;

13. }

14. }

 The counter fi eld is a class variable. There is only one instance of counter in memory,
and it exists in memory before any House objects are instantiated.

 Access a class variable using the name of the class. For example, to access counter you
use the following syntax:

House.counter

 Notice on line 11 that counter was incremented and we did not use the name of the
class to reference it. Code within the class that contains the static fi eld does not need to use
the class name.

 Examine the following HouseTest program. Does it compile, and if so, what is its
output?

1. import my.blueprints.House;

2.

3. public class HouseTest {

4. public static void main(String [] args) {

5. System.out.println(“counter = “ + House.counter);

6. House one = new House();

7. House two = new House();

8. one.getKitchen();

9. two.getKitchen();

10. one.getKitchen();

11. System.out.println(“counter = “ + House.counter);

12. }

13. }

 On line 5 the counter variable displays before any House objects are created. This is a
valid statement and the value of counter is 0 at line 5. Two House objects are instantiated,
and calling getKitchen three times on the two House objects increments counter to 3. The
code compiles successfully and the output is

counter = 0

counter = 3

 Even though the HouseTest class creates two House objects (which in turn causes two
 Room objects to be instantiated for the kitchen fi eld), there is still only one counter in
memory and it exists until the program terminates.

c02.indd 84c02.indd 84 2/11/09 6:15:37 PM2/11/09 6:15:37 PM

 Understanding Static Fields

 I often refer to static fi elds as breaking the rules of object - oriented programming. I am
not implying that static should be avoided, because static fi elds are an important part
of the Java language and I use them all the time. However, it is important to understand
what it means for a fi eld to be static. It might seem odd that a fi eld of a class can exist
before the class is ever instantiated. Recall my analogy of a class being the blueprint of a
house, and an object being the house. If we make the kitchen static, that means we have
a kitchen before we ever build the house! In addition, if we build 100 houses from our
blueprint, we still only have one kitchen! Obviously a kitchen is not a good candidate for
static when it comes to building houses.

 We use static fi elds when the fi eld is shared among all classes and the fi eld is not unique
to any particular instance. For example, the House class can keep track of how many
times a particular method is invoked on all House objects. Because counter is shared
among all House objects, this is a perfect situation for using a static fi eld.

 Global variables are another common example of when to use static. For example, there
is only one standard input and standard output. Making them global variables allows
all objects in your program to access the standard input and output, so System.in and
 System.out are good candidates for static fi elds.

 Static Imports

 As of Java 5.0, a static variable can be imported into a source fi le, which allows the static
variable to be accessible without being prefi xed with its corresponding class or interface name.
Importing a static member is referred to as a static import and uses the following syntax:

import static packagenames.classname.variablename ;

 You can also use the asterisk as a wildcard, which allows you to import all of the static
variables from a class or interface. Static imports appear in the same location of a source
fi le as regular imports: after the package declaration and before the class declaration.

 The following program is the same code as the HouseTest program in the previous
example, except the static fi eld counter from House is imported on line 3. The class also
imports all static fi elds in java.lang.System on line 4, which includes the out fi eld.

1. import my.blueprints.House;

2.

3. import static my.blueprints.House.counter;

4. import static java.lang.System.*;

5.

6. public class StaticImportDemo {

Scoping 85

c02.indd 85c02.indd 85 2/11/09 6:15:37 PM2/11/09 6:15:37 PM

86 Chapter 2 � Declarations, Initialization, and Scoping

7. public static void main(String [] args) {

8. out.println(“counter = “ + counter);

9. House one = new House();

10. House two = new House();

11. one.getKitchen();

12. two.getKitchen();

13. one.getKitchen();

14. out.println(“counter = “ + counter);

15. }

16.}

 This code compiles successfully and has the same output as HouseTest . Notice the static
imports allow counter and out to be referenced by their simple names and not prefi xed
with their corresponding class name.

 Because static imports are a fairly new concept in Java, expect at least one
question on the exam to test your knowledge of how to properly declare
and use a static import.

 Local Variables

 A local variable is a variable defi ned within a method, which includes any method
parameters. A local variable gets created in memory on the call stack when the method
executes, and is deleted from memory when the method returns and the call stack memory
is destroyed. Local variables never appear on the heap, although a local variable that is a
reference can certainly refer to an object on the heap.

 Local variables must be initialized before use. They do not have a default value and
contain garbage data until initialized. The compiler enforces this rule. For example, the
following code generates a compiler error:

4. public int notValid() {

5. int y = 10;

6. int x;

7. int reply = x + y;

8. return reply;

9. }

 The ints y and x are local variables and y is initialized to 10. However, because x is not
initialized before it is used in the expression on line 7, the compiler generates the following
error:

Test.java:5: variable x might not have been initialized

 int reply = x + y;

 ^

c02.indd 86c02.indd 86 2/11/09 6:15:37 PM2/11/09 6:15:37 PM

 Until x is assigned a value, it cannot appear within an expression, and the compiler will
gladly remind you of this rule.

 The following Mouse class is another example of using local variables. Examine the code
and see if you can distinguish the local variables from the instance variables. Does the
 Mouse class compile successfully?

1. public class Mouse {

2. public boolean hasWheel;

3. private int clickCount;

4.

5. public int rightClick(double d) {

6. int response = (int) d;

7. return response;

8. }

9.

10. public String wheelClick() {

11. if(hasWheel) {

12. double pi = 3.14159;

13. String greeting = “The mouse ate the “ + pi;

14. return greeting;

15. } else {

16. String error = “No wheel found”;

17. return error;

18. }

19. }

20.

21. public void leftClick(int clickCount) {

22. System.out.println(“Left click “ + clickCount + “ times”);

23. this.clickCount = clickCount;

24. }

25.}

 Although there may be some confusion about clickCount in the leftClick method, this
class compiles fi ne. The Mouse class has two instance variables: hasWheel and clickCount .

 The rightClick method has two local variables: d and response . When the rightClick
method is invoked, d and response get allocated in memory. When response is returned on
line 7, a copy of response is sent to the calling method and both d and response go out of scope.

 The wheelClick method has three local variables: pi , greeting , and error . If hasWheel
is true, this method returns greeting , at which point pi and greeting go out of scope.
The String object “ The mouse ate the 3.14159 ” is on the heap, as shown in Figure 2.2 ,
so it is not destroyed when the method returns. The same scenario happens when error is
returned: error goes out of scope but the String “ No wheel found ” is on the heap and still
exists (for as long as it is reachable by a reference).

Scoping 87

c02.indd 87c02.indd 87 2/11/09 6:15:37 PM2/11/09 6:15:37 PM

88 Chapter 2 � Declarations, Initialization, and Scoping

 On line 21, the leftClick method has one local variable: clickCount . The clickCount
parameter just happens to match the identifi er of the clickCount fi eld. In these situations,
the local variable is seen fi rst by the method and you must use the this reference to
distinguish between the instance and local variable. The clickCount displayed on line 22 is
the value of the parameter. To assign the clickCount parameter to the clickCount fi eld, we
must use this.clickCount on line 23 to refer to the fi eld.

 Examine the following statements and try to determine the output:

4. Mouse m = new Mouse();

5. m.clickCount = 2;

6. System.out.println(m.wheelClick());

7. m.leftClick(1);

8. System.out.println(m.clickCount);

 The fi eld hasWheel initializes to false , so calling wheelClick on line 6 causes “ No
wheel found ” to be returned. Calling leftClick with 1 as the argument causes the 1 to be
displayed and also assigned to the fi eld clickCount . Therefore, the output is

No wheel found

Left click 1 times

1

 Declaring Arrays
 The exam objectives state that you should be able to “ develop code that declares, initializes,
and uses arrays. ” An array is a contiguous chunk of memory on the heap representing
a fi xed - size collection of values that all have the same data type. An array in Java is an

Call stack memory
for wheelClick.

Heap Memory

pi and greeting go out of
scope when wheelClick returns.

The String object remains on the
heap and wheelClick

returns a reference to it.

3.14159
pi

greeting
“The mouse ate the 3.14159”

F I GU R E 2 . 2 The local variable greeting points to an object on the heap.

c02.indd 88c02.indd 88 2/11/09 6:15:38 PM2/11/09 6:15:38 PM

object, so you can instantiate an array using the new keyword and assigning a reference
to it, just like any other object. Arrays are fi xed in size and cannot dynamically grow or
shrink. (If you need a dynamically sized data structure, use one of the classes in the Java
Collections API found in the java.util package discussed in Chapter 7 , “ Collections and
Generics. ”) This section discusses the details of declaring array references and instantiating
array objects, including the following topics:

 How to declare array references

 How to instantiate array objects

 How to access the elements of an array

 Multidimensional arrays

 Array initializers

 What arrays look like in memory

 Array References

 An array reference is a reference that denotes the data type of the values to be stored in the
array, using square brackets to denote the array reference. For example, the following code
declares three array references:

4. int [] finishTimes;

5. String lastNames [];

6. GregorianCalendar [] july;

 Notice lastNames demonstrates how the square brackets can appear after the identifi er.
This technique is not recommended, though, because the code is more readable when the
square brackets appear before the identifi er.

 The finishTimes reference can point to any array of ints . Similarly, lastNames
can point to any array of String references and july can point to any array of
 GregorianCalendar references. Notice I didn ’ t use the term “ objects ” when referring to
the elements of the array. The array is the object, but the contents of the array are either
primitive types or references, as we will see next.

�

�

�

�

�

�

 Declaring an Array Reference

 In Java it is not valid to declare a size for the array when declaring a reference. An array
reference can point to arrays of any length. The following code is not valid:

int [20] finishTimes; //not valid

String lastNames [100]; //not valid

 When declaring an array reference, we are only specifying the data type of the elements
of the array. The size of the array is determined only when the array object is instantiated.

Declaring Arrays 89

c02.indd 89c02.indd 89 2/11/09 6:15:40 PM2/11/09 6:15:40 PM

90 Chapter 2 � Declarations, Initialization, and Scoping

 Array Objects

 Because a Java array is an object, it should be no surprise that you use the new keyword to
instantiate an array. The new keyword requires the type of array being instantiated along
with the size of the array. For example, the following code instantiates three array objects:

5. int [] finishTimes = new int[20];

6. String lastNames [] = new String[100];

7. GregorianCalendar [] july;

8. july = new GregorianCalendar[31];

 The finishTimes reference now points to an array of 20 ints . Because this array of
 ints is a new object, its memory is zeroed on the heap, so all 20 ints are initially 0 . The
 lastNames reference points to an array of 100 String references (not String objects!).
Each of the 100 String references is null . Similarly, july points to an array of 31 null
GregorianCalendar references. Arrays in Java are zero - based indexed, meaning the fi rst
element in the array is index 0, the second element is index 1, and so on. For example, the
following code is valid and initializes some of the values in the arrays:

10. finishTimes[0] = 1002892;

11. finishTimes[1] = 1004830;

12. lastNames[99] = “Washington”;

13. july[0] = new GregorianCalendar(2010, 7, 1);

 Figure 2.3 shows what the finishTimes and lastNames arrays look like in memory;
Figure 2.4 shows what the july array looks like in memory.

array references

finishTimes

lastNames

1002892

0

0

0

.

.

0

0

1

2

3

.

.

19

0

1

2

3

.

.

99

null

null

null

null

“Washington”

array object of 100
String references

A String Object

array object of
20 ints

F I GU R E 2 . 3 Examples of array references pointing to array objects.

c02.indd 90c02.indd 90 2/11/09 6:15:40 PM2/11/09 6:15:40 PM

 Using Arrays

 Every array has an attribute named length that is the size of the array. The length
attribute is particularly useful when using a for loop to iterate through the elements of the
array. For example, the following for loop initializes the 31 GregorianCalendar references
in the july array:

13. GregorianCalendar [] july;

14. july = new GregorianCalendar[31];

15. int year = 2010, month = 7;

16. for(int i = 0; i < july.length; i++) {

17. july[i] = new GregorianCalendar(year, month, i+1);

18. }

array reference

july

0

1

2

3

.

.

30

null

null

null

null

A GregorianCalendar
object

array object of 31
GregorianCalendar

references

year

day

month

2010

1

7

F I GU R E 2 . 4 The july reference points to array of 31 GregorianCalendar references.

Declaring Arrays 91

c02.indd 91c02.indd 91 2/11/09 6:15:40 PM2/11/09 6:15:40 PM

92 Chapter 2 � Declarations, Initialization, and Scoping

 The Enhanced for Loop

 In Java 5.0, a new for loop was introduced called the enhanced for loop (also called
a for - each loop). The following code demonstrates the syntax of a for - each loop
by iterating through the july array and displaying each of the 31 GregorianCalendar
objects:

for(GregorianCalendar day : july) {

 System.out.print(day.get(Calendar.MONTH) + “/”

 + day.get(Calendar.DAY_OF_MONTH) + “/”

 + day.get(Calendar.YEAR) + “ “);

}

 This enhanced for loop is read “ for each day in july ” , where day is of type
 GregorianCalendar . The enhanced for loop can also be used for iterating through many
of the data structures found in the java.util package. We discuss these data structures
along with the enhanced for loop in more detail in Chapter 3 , “ Flow Control. ”

 Let ’ s look at an example to demonstrate some of the details of working with arrays.
Study the following ArrayDemo program and determine if it compiles and what its output is.
In addition, try to determine when the array object on line 3 becomes eligible for garbage
collection.

1. public class ArrayDemo {

2. public static void main(String [] args) {

3. double [] cubics = new double[10];

4. for(int i = 0; i < cubics.length; i++) {

5. int value = i + 1;

6. cubics[i] = value * value * value;

7. }

8.

9. double [] temp = cubics;

10. temp[5] = -1;

11. System.out.println(cubics[5]);

12. cubics = null;

13. for(double a : temp) {

14. System.out.print(a + “ “);

15. }

16.

17. temp = new double[20];

18. }

19.}

c02.indd 92c02.indd 92 2/11/09 6:15:40 PM2/11/09 6:15:40 PM

 While perhaps confusing, this code compiles successfully. The cubics and temp
references are of the same type (a reference to an array of doubles), so they can be assigned
to each other as on line 9. There is still only one array object in memory, so setting temp[5]
to - 1 is the equivalent of setting cubics[5] to - 1 . Figure 2.5 shows the state of the array
before line 12.

cubics temp0

1

2

3

4
5

6

7

8

9

1

8

27

64

125

-1

343

512

729

1000

F I GU R E 2 .5 The array of cubic values has two references to it: cubics and temp.

 Here is the output of the ArrayDemo program:

-1.0

1.0 8.0 27.0 64.0 125.0 -1.0 343.0 512.0 729.0 1000.0

 Setting cubics to null on line 12 still leaves temp pointing to the array. The array object
is not eligible for garbage collection until immediately after line 17 when temp is assigned
to a different array. By the way, the cubic values are lost at this point and temp refers to an
array with 20 new doubles , each of value 0.0 .

 Multidimensional Arrays

 Java allows for multidimensional arrays, up to as many dimensions as you require.
Declaring a reference to a multidimensional array consists of denoting a set of square
brackets for each dimension of the array. For example, the following values reference can
point to any two - dimensional array of chars , and names can refer to any three - dimensional
array of String references:

5. char [][] values;

6. String [][][] names;

Declaring Arrays 93

c02.indd 93c02.indd 93 2/11/09 6:15:41 PM2/11/09 6:15:41 PM

94 Chapter 2 � Declarations, Initialization, and Scoping

 To instantiate a multidimensional array, you denote the size of each dimension in the
 new statement. For example:

7. values = new char[4][3];

8. names = new String[10][5][20];

 To access an element in a multidimensional array, specify an index for each dimension.
For example, the following statement stores an ‘ A ’ in the fi rst column of the fi rst row of
 values , and “ George Washington ” in the twentieth level of the second column of the fi rst
row of names :

9. values[0][0] = ‘A’;

10. names[0][1][19] = “George Washington”;

 The following nested for loops are typical when working with two - dimensional arrays.
These particular nested loops fi ll the values array with chars starting with ‘ A ’ . (Similarly,
you could use three nested loops to iterate through the names array.)

11. char current = ‘A’;

12. for(int row = 0; row < values.length; row++) {

13. for(int col = 0; col < values[row].length; col++) {

14. values[row][col] = current++;

15. }

16. }

 Figure 2.6 shows what the values array looks like in memory. The values array consists
of 4 arrays, each containing 3 chars for a total of 12 chars .

values

‘A’
‘B’
‘C’

‘D’
‘E’
‘F’

‘G’
‘H’
‘I’

‘J’
‘K’
‘L’

0

1

2

3

An array of four
char[] references

Four char arrays

A char[][] reference

F I GU R E 2 .6 The values array is a double array of chars.

c02.indd 94c02.indd 94 2/11/09 6:15:41 PM2/11/09 6:15:41 PM

 Figure 2.7 shows the memory of the names array. The names array consists of 10 array
references, each pointing to an array of 5 array references, each pointing to an array of 20
 String references for a total of 1,000 String references.

1
0

2
3
4

1
0

2
3
4

1
0

2
3
4

A String[][][] reference

Fifty arrays of
String references,
each of length 20

names
0

1

2

.

.

.

.

.

.

9

0

1

.

.

.

.

.

.

19

An array of 10
String[][] references Ten arrays of String[]

references, each of
length 5

null

null

null

0

1

.

.

.

.

.

.

19

null

null

“George
Washington”

F I GU R E 2 .7 Multidimensional arrays in Java.

 As you can see in Figure 2.7 , the structure of multidimensional arrays in Java allows for
various column lengths. For example, the following statements are valid:

4. GregorianCalendar [][] months = new GregorianCalendar[12][];

5. months[0] = new GregorianCalendar[31];

6. months[1] = new GregorianCalendar[29];

7. months[3] = new GregorianCalendar[30];

 The months array has 12 rows, the fi rst row is length 31, the second row is length 29, and
the fourth row is length 30. The rest of the rows could be initialized in this same fashion.

 Array Initializers

 An array initializer is a shorthand notation for declaring an array and fi lling it with values,
all in a single statement. Array initializers are convenient for quickly creating smaller
arrays. Instead of using the new keyword, you list the elements of the array in curly braces
separated by commas.

Declaring Arrays 95

c02.indd 95c02.indd 95 2/11/09 6:15:41 PM2/11/09 6:15:41 PM

96 Chapter 2 � Declarations, Initialization, and Scoping

 The following statement uses an array initializer to create a new array of length 5 and
initializes the ints with the values listed:

int [] amps = {5, 10, 20, 30, 50};

 The value of amps[0] is 5 , amps[1] is 10 , and so on. Notice the semicolon at the end of
the line. It ’ s a common mistake to forget it, but the compiler will gladly remind you if it is
missing!

 You will definitely see array initializers on the exam, probably in several
questions. Some of the questions will be testing your knowledge of array
initializers, but expect to see array initializers on questions that are testing
your knowledge of some other exam objective.

 If the array contains objects instead of primitives, you can use the new keyword in the
list of array elements. For example, the following statement creates an array referencing
three File objects:

File [] files = {new File(“input.txt”),

 new File(“output.txt”),

 new File(“error.txt”)};

 The files array consists of three File references, with files[0] pointing to “ input.
txt ” , files[1] pointing to “ output.txt ” , and files[2] pointing to “ error.txt ” .

 Notes on Array Initializers

 To use the array initializer syntax, the array must be declared in the same statement that
declares the reference. For example, the following code generates a compiler error:

int [] amps;

amps = {5, 10, 20, 30, 50};

 An array initializer can also be used to create a multidimensional array. For example, the
following statements create a two - dimensional array of fl oats:

float [][] results = {{2.0F, 1.5F},{-5.1F, 9.2F, 6.7F}};

 The value of results[0][0] is 2.0 , results[1][0] is - 5.1 , results[1][2] is 6.7 , and so on.

c02.indd 96c02.indd 96 2/11/09 6:15:41 PM2/11/09 6:15:41 PM

 Declaring Classes
 According to the exam objectives, you need to be able to “ develop code that declares
classes. ” A class is a description of an object and is one of the fundamental building blocks
of object - oriented programming. A Java class is defi ned in a .java source fi le and its
corresponding compiled bytecode is in a .class fi le. The name of the .class fi le matches
the name of the class, and the .class fi le must be saved in a directory structure that
matches the package name of the class. In this section, we discuss the elements that make
up a Java class.

 A Java class can contain the following elements:

 Instance variables Also referred to as fi elds, instance variables represent the attributes of
the object being described and are used to store the state of the object.

 Class variables These are the static fi elds of the class and represent global variables and
data that is shared among instances of the class.

 Methods The methods of a class represent the behaviors of the object being described. We
will discuss methods in detail later in this chapter.

 Constructors These are special methods that get invoked during the instantiation process
and allow for the object to initialize its state.

 Nested classes A Java class can contain within it the defi nition of another class. We will
discuss nested classes in detail later in this chapter.

 Instance initializers These are blocks of code that execute during the instantiation
process.

 Static initializers These are blocks of code that execute when the class is loaded by the
class loader.

 We have already discussed instance and class variables earlier in this chapter and we will
see an example of the other elements now. Examine the ColorChanger class in Listing 2.1
and see if you can determine its instance and class variables, methods, constructors, nested
classes and instance and static initializers. The class displays a window with three buttons
in it, and clicking a button changes the background color of the window.

 Listing 2.1: The ColorChanger Class

1. package com.sybex.demos;

2.

3. import java.awt.*;

4. import java.awt.event.*;

5. import static java.awt.BorderLayout.*;

6.

7. public class ColorChanger extends Frame {

Declaring Classes 97

c02.indd 97c02.indd 97 2/11/09 6:15:42 PM2/11/09 6:15:42 PM

98 Chapter 2 � Declarations, Initialization, and Scoping

8. private Button redBtn, whiteBtn, blueBtn;

9. {

10. redBtn = new Button(“Red”);

11. whiteBtn = new Button(“White”);

12. blueBtn = new Button(“Blue”);

13. }

14.

15. private static final Color RED, WHITE, BLUE;

16.

17. static {

18. RED = new Color(255,0,0);

19. WHITE = new Color(255,255,255);

20. BLUE = new Color(0,0,255);

21. }

22.

23. private class MyButtonListener implements ActionListener {

24. public void actionPerformed(ActionEvent e) {

25. String label = e.getActionCommand();

26. if(label.equals(redBtn.getLabel())) {

27. ColorChanger.this.setBackground(RED);

28. } else if(label.equals(whiteBtn.getLabel())) {

29. ColorChanger.this.setBackground(WHITE);

30. } else if(label.equals(blueBtn.getLabel())) {

31. ColorChanger.this.setBackground(BLUE);

32. }

33. }

34. }

35.

36. public static Color [] getColors() {

37. Color [] colors = {RED, WHITE, BLUE};

38. return colors;

39. }

40.

41. public Button [] getButtons() {

42. Button [] buttons = {redBtn, whiteBtn, blueBtn};

43. return buttons;

44. }

45.

46. public ColorChanger(String title) {

47. super(title);

c02.indd 98c02.indd 98 2/11/09 6:15:42 PM2/11/09 6:15:42 PM

48. layoutButtons();

49. initializeEvents();

50. this.setSize(200, 200);

51. this.setVisible(true);

52. }

53.

54. private void initializeEvents() {

55. MyButtonListener m = new MyButtonListener();

56. redBtn.addActionListener(m);

57. whiteBtn.addActionListener(m);

58. blueBtn.addActionListener(m);

59. }

60.

61. protected void layoutButtons() {

62. this.setLayout(new BorderLayout());

63. this.add(redBtn, NORTH);

64. this.add(whiteBtn, SOUTH);

65. this.add(blueBtn, WEST);

66. }

67.

68. public static void main(String [] args) {

69. new ColorChanger(“Click a button”);

70. }

71.}

 Here is a breakdown of each of the elements within the ColorChanger class:

 Line 8 declares three instance variables, each of type java.awt.Button : redBtn ,
 whiteBtn , and blueBtn .

 Line 15 declares three class variables, each of type java.awt.Color : RED , WHITE , and
 BLUE .

 The class has five methods. The main method is static and the other methods are
instance methods: getColors , getButtons , initializeEvents , and layoutButtons .

 This class has one constructor defined on line 46. It takes in a single argument of type
 String that appears in the title bar of the window.

 The ColorChanger class declares one nested class, MyButtonListener , on line 23. This
nested class contains one method, actionPerformed , which gets invoked whenever one
of the three buttons is clicked.

 The class declares one instance initializer, which is the block of code on lines 9 to 13.

 The class declares one static initializer, which is the block of code on lines 17 to 21.

�

�

�

�

�

�

�

Declaring Classes 99

c02.indd 99c02.indd 99 2/11/09 6:15:43 PM2/11/09 6:15:43 PM

100 Chapter 2 � Declarations, Initialization, and Scoping

 Notice ColorChanger contains the main method, so it can be executed as a Java
program. Figure 2.8 shows what the ColorChanger program looks like when it is executed.

F I GU R E 2 . 8 The ColorChanger program.

 Do not get hung up on the details of the graphical user interface (GUI)
code in the ColorChanger example. The SCJP exam no longer requires
knowledge of GUI programming. However, whether or not you understand
what the code does, you should definitely be able to identify the various
elements of the ColorChanger class.

 All of these different elements of a class are listed in the exam objectives. If you have not
seen some of these concepts before, do not worry as I cover all of these topics in detail. We
start with a discussion on object initialization, which covers the details of constructors and
the instance and static initializers. Then we discuss the details of writing Java methods and
nested classes.

 The Instantiation Process
 Initialization is one of the main exam objectives and refers to the details of initializing
the various data types of Java. We have discussed the initialization of primitive types and
arrays. This section discusses the initialization of objects and the instantiation process.

 As a Java programmer, you write classes and instantiate them to create objects. The new
operator is the typical way to instantiate a class. For example, the following line of code
instantiates a new java.text.DecimalFormat object:

DecimalFormat df = new DecimalFormat(“#,###.00”);

 This is a fairly straightforward statement, as you have seen the new operator countless
times before. The new operator instantiates the DecimalFormat object on the heap and
returns a reference to the object. The assignment operator = stores this reference in the
variable df . The new operator also has to specify which constructor is invoked on the class.
In the previous statement, a String is passed in, so the DecimalFormat constructor that
takes in a String is invoked.

c02.indd 100c02.indd 100 2/11/09 6:15:43 PM2/11/09 6:15:43 PM

 Behind the scenes, the instantiation of an object is a fairly involved process that involves
several steps that occur in a well - defi ned order. The events that occur during the creation of
a new object are referred to as the instantiation process . The following list of events takes
place when a new object is instantiated:

 1. The JVM determines the amount of memory needed for the new object, allocates the
memory on the heap, and zeroes the memory so that it does not contain any garbage data.

 2. Explicit initialization of instance variables is performed.

 3. The appropriate constructor is invoked, depending on the arguments specified in the
 new statement.

 4. Before the constructor executes, one of the immediate parent class constructors is
executed.

 5. Any instance initializers are executed. If a class has multiple instance initializers, they
are executed in the order they appear in the source file.

 6. The body of the constructor executes.

 7. The new operator returns a reference to the new object.

 Even though the new operator looks like it directly invokes a constructor, the execution
of that constructor occurs at the end of the instantiation process.

 Let ’ s look at an example. Examine the following Fruit and Apple class defi nitions
(defi ned in separate source fi les) and see if you can determine the output of executing main
in Apple .

1. public class Fruit {

2. public String color;

3.

4. public Fruit() {

5. System.out.println(“Constructing a Fruit”);

6. }

7. }

8. public class Apple extends Fruit {

9. public String variety = “McIntosh”;

10.

11. public Apple(String variety) {

12. System.out.println(“Constructing an Apple”);

13. this.variety = variety;

14. }

15.

16. {

17. System.out.println(“Inside the instance initializer”);

The Instantiation Process 101

c02.indd 101c02.indd 101 2/11/09 6:15:43 PM2/11/09 6:15:43 PM

102 Chapter 2 � Declarations, Initialization, and Scoping

18. System.out.println(“The variety is “ + variety);

19. }

20.

21. public static void main(String [] args) {

22. Apple apple = new Apple(“Granny Smith”);

23. System.out.println(“Variety is “ + apple.variety);

24. }

25.}

 The main method instantiates a new Apple object, passing in “ Granny Smith ” . The JVM
allocates memory for an Apple (which includes the memory for the Fruit parent object)
and zeroes the memory. Then explicit initialization occurs, which in this example assigns
 variety to “ McIntosh ” on line 9. Then the Apple constructor on line 11 is invoked, but
before it executes the Fruit constructor on line 4 is invoked and executes. After the Fruit
constructor completes, the instance initializer on lines 16 to 19 is invoked, then the body of
the Apple constructor on line 11 executes. The output of running main looks like this:

Constructing a Fruit

Inside the instance initializer

The variety is McIntosh

Constructing an Apple

Variety is Granny Smith

 Now that you have seen the order of events that occur when a new object is instantiated,
we will next look at the details of declaring and using constructors in Java.

 Constructors

 The exam objectives state that “ given a set of classes and superclasses, ” you should be
able to “ develop constructors for one or more of the classes. Given a class declaration,
determine if a default constructor will be created, and if so, determine the behavior of that
constructor. ” This section discusses these topics in detail.

 A constructor is a special method within a class that gets invoked during the
instantiation process. The purpose of a constructor is to allow you to “ construct ” your
object, ensuring that all of the fi elds are properly initialized. Constructors also can take in
arguments, allowing you to initialize the state of the object.

 A constructor has the following properties:

 The name of a constructor must match the name of the class.

 A constructor does not declare a return value.

 A constructor is only invoked one time during the instantiation process.

 A constructor can have any of four levels of access: public , private , protected , or the
default.

 A constructor can throw any number of exceptions.

�

�

�

�

�

c02.indd 102c02.indd 102 2/11/09 6:15:43 PM2/11/09 6:15:43 PM

 The following Camera class has two constructors: one that takes in an int and one that
takes in no arguments.

1. public class Camera {

2. public int imageCount;

3.

4. public Camera() {

5. System.out.println(“Inside no-arg constructor”);

6. }

7.

8. public Camera(int imageCount) {

9. this.imageCount = imageCount;

10. }

11.}

 Each constructor introduces a different way to invoke new on the class. For example,
because the Camera class has two constructors, we can instantiate Camera objects two
different ways, either passing in an int or passing in no arguments:

Camera one = new Camera(1024); //invokes the constructor on line 8

Camera two = new Camera(); //invokes the constructor on line 4

 A constructor does not declare a return value. If it did, it would just be a method in the
class. For example, the following code contains a compiler error. Can you see what the
problem is?

1. public class Camera {

2. public int imageCount;

3.

4. public Camera() {

5. System.out.println(“Inside no-arg constructor”);

6. }

7. //The following is not a constructor. It is a method.

8. public void Camera(int imageCount) {

9. this.imageCount = imageCount;

10. }

11.

12. public static void main(String [] args) {

13. Camera c = new Camera(60);

14. }

15.}

 You might think the compiler error is on line 8, but line 8 compiles fi ne because it is
valid for a class to have a method named Camera . However, because it declares void for

The Instantiation Process 103

c02.indd 103c02.indd 103 2/11/09 6:15:44 PM2/11/09 6:15:44 PM

104 Chapter 2 � Declarations, Initialization, and Scoping

a return value, it is not a constructor. This Camera class does not have a constructor that
takes in an int , so the compiler generates the following error:

Camera.java:13: cannot find symbol

symbol : constructor Camera(int)

location: class Camera

 Camera c = new Camera(60);

 ^

1 error

 The Default Constructor

 Every class has a constructor. If you do not explicitly defi ne a constructor for a class, then
the Java compiler inserts a default constructor for you. The default constructor takes in no
arguments and has an empty method body.

 For example, suppose we have a class named Tomato with the following defi nition:

1. public class Tomato extends Fruit {

2. private double weight;

3. private boolean ripe;

4.

5. public void setWeight(double w) {

6. weight = w;

7. }

8.

9. public double getWeight() {

10. return weight;

11. }

12.

13. public void setRipe(boolean b) {

14. ripe = b;

15. }

16.

17. public boolean isRipe() {

18. return ripe;

19. }

20.}

 Because the Tomato class does not explicitly defi ne a constructor, the compiler generates
one that looks like the following:

public Tomato() {

}

c02.indd 104c02.indd 104 2/11/09 6:15:44 PM2/11/09 6:15:44 PM

 Notice the default constructor does not do anything at all. However, it does allow us to
instantiate Tomato objects using new with empty parentheses:

Tomato roma = new Tomato();

 Because the Tomato class does not contain any explicit initialization and the default
constructor does not do anything, the values of the fi elds will be their corresponding
default value, which is 0.0 for the double weight and false for the boolean ripe .

 Know When a Class Gets a Default Constructor

 Keep in mind that you only get a default constructor if you do not explicitly include one in
your class. Suppose we modify the Tomato class and explicitly declare a constructor:

public class Tomato extends Fruit {

 public Tomato(double weight, boolean ripe) {

 this.weight = weight;

 this.ripe = ripe;

 }

 //The remainder of the class definition remains the same

}

 Because this Tomato class has a constructor, the compiler does not add a default
constructor. With only one constructor, that means there is only one way to instantiate a
new Tomato , and that is by passing in a double and a boolean . For example:

Tomato beefsteak = new Tomato(10.45, false);

 The following line of code will not compile with this Tomato class:

Tomato t = new Tomato(); //Generates a compiler error

 Because knowing when a class gets a default constructor is a specifi c exam objective,
expect at least one question to test your knowledge of this topic.

 Using this in Constructors

 The this keyword in Java represents the reference that every object has to itself. The this
keyword also has another use within constructors that is unrelated to the this reference.
You can use the this keyword to invoke another constructor in the same class, allowing
you to avoid repeating code in multiple constructors.

The Instantiation Process 105

c02.indd 105c02.indd 105 2/11/09 6:15:44 PM2/11/09 6:15:44 PM

106 Chapter 2 � Declarations, Initialization, and Scoping

 For example, the following Employee class has two constructors that perform similar
tasks. Line 10 sets the hireDate fi eld to the current date, while line 16 sets hireDate to a
supplied Date . Otherwise, the two constructors are identical.

1. import java.util.Date;

2.

3. public class Employee {

4. private String firstName, lastName;

5. private Date hireDate;

6.

7. public Employee(String fn, String ln) {

8. firstName = fn;

9. lastName = ln;

10. hireDate = new Date();

11. }

12.

13. public Employee(String fn, String ln, Date hd) {

14. firstName = fn;

15. lastName = ln;

16. hireDate = hd;

17. }

18.}

 There are many good reasons to avoid repeating code like these two Employee
constructors do. It would be nice if we could pass the arguments from one constructor
to another and perform all the necessary initialization in one place. By using the this
keyword, we can invoke another constructor in the same class. You use this like a method
call, passing in the arguments to the other constructor.

 Let ’ s look at an example that fi xes our issue of repeated code in the Employee class. The
following modifi cation has one Employee constructor invoking the other constructor:

1. import java.util.Date;

2.

3. public class Employee {

4. private String firstName, lastName;

5. private Date hireDate;

6.

7. public Employee(String fn, String ln) {

8. this(fn, ln, new Date());

9. System.out.println(“Inside first constructor”);

10. }

11.

c02.indd 106c02.indd 106 2/11/09 6:15:44 PM2/11/09 6:15:44 PM

12. public Employee(String fn, String ln, Date hd) {

13. System.out.println(“Inside second constructor”);

14. firstName = fn;

15. lastName = ln;

16. hireDate = hd;

17. }

18.}

 Notice how there is no repetition of code in the constructors. Study this Employee class
and try to determine the output of the following statement:

Employee e = new Employee(“Beetle”, “Bailey”);

 This statement results in the following sequence of events:

 1. The Employee constructor on line 7 is invoked because we are passing in two String
objects.

 2. Line 8 invokes the constructor on line 12.

 3. This second constructor actually executes first, and when it is finished, control jumps
back to line 9.

 Therefore, the output of instantiating this new “ Beetle Bailey ” Employee is

Inside second constructor

Inside first constructor

 Invoking Another Constructor Using this

 The call to this must be the fi rst line of code in the constructor or a compiler error
occurs. For example, the following Employee constructor does not compile:

public Employee(String fn, String ln) {

 System.out.println(“Inside first constructor”);

 this(fn, ln, new Date());

}

 The compiler generates the following error:

Employee.java:9: call to this must be first statement in constructor

 this(fn, ln, new Date());

 ^

 We will revisit this rule in the next section on using the super keyword in constructors.

The Instantiation Process 107

c02.indd 107c02.indd 107 2/11/09 6:15:45 PM2/11/09 6:15:45 PM

108 Chapter 2 � Declarations, Initialization, and Scoping

 Using super in Constructors

 Similar to how you can use the this keyword to invoke another constructor in the same
class, you can use the super keyword to invoke a constructor in the parent class. Using
 super allows the child class to choose which parent class constructor gets executed. As
with the this keyword, any calls to super must be the fi rst line of code in your constructor
or the code will not compile.

 The super Keyword

 Don ’ t confuse the use of super in a constructor with the super keyword that represents
the reference to an object ’ s parent. Using super in a constructor is a different, unrelated
use of the super keyword.

 Let ’ s look at an example. The following NonFictionBook class is a child of the Book class
and invokes one of the constructors in Book using the super keyword on line 6:
1. //Book.java

2. public class Book {

3. public String title;

4. public Person author;

5. public String ISBN;

6.

7. public Book(String ISBN) {

8. this.ISBN = ISBN;

9. }

10.

11. public Book() {

12. title = “Unknown”;

13. author = null;

14. ISBN = “-1”;

15. }

16.}

1. //NonFictionBook.java

2. public class NonFictionBook extends Book {

3. public String subject;

4.

c02.indd 108c02.indd 108 2/11/09 6:15:45 PM2/11/09 6:15:45 PM

5. public NonFictionBook(String subject, String ISBN) {

6. super(ISBN);

7. this.subject = subject;

8. }

9.

10. public NonFictionBook(String subject) {

11. this.subject = subject;

12. }

13. }

 These two class definitions are not numbered sequentially because they
cannot be defined in the same source file.

 The call to super on line 6 of NonFictionBook.java invokes the Book constructor on line
7 of Book.java , passing in a String that gets stored in a fi eld of Book . Study the following
code and try to determine its output:

4. NonFictionBook x = new NonFictionBook(“American History”, “123-45”);

5. NonFictionBook y = new NonFictionBook(“Greek Mythology”);

6. System.out.println(x.ISBN);

7. System.out.println(y.ISBN);

 Executing this code results in the following sequence of events:

 1. The string “ 123 - 45 ” in the new statement is passed into the constructor on line 5 of
 NonFictionBook .

 2. On line 6 of NonFictionBook , the call to super passes the String to line 7 of Book .

 3. On line 8 of Book , the String is assigned to the ISBN field declared on line 5. Therefore,
 x.ISBN is “ 123 - 45 ” .

 4. The new statement for y invokes the NonFictionBook constructor on line 10 of
 NonFictionBook .

 5. Because no explicit call to super appears in that constructor, the no - argument
constructor of Book on line 11 is invoked, which assigns the ISBN field to “ - 1 ” .
Therefore, y.ISBN is “ - 1 ” .

 6. The println statements output the following:

123-45

-1

The Instantiation Process 109

c02.indd 109c02.indd 109 2/11/09 6:15:45 PM2/11/09 6:15:45 PM

110 Chapter 2 � Declarations, Initialization, and Scoping

 Why does the no - argument constructor get invoked on Book within the NonFictionBook
constructor declared on line 10? The instantiation process requires that the parent class
constructor execute before any child class constructor executes. There are two important
rules of using super in a constructor that enforce this behavior:

 Any call to super must be the first line of code in a constructor or the code will not
compile.

 If a constructor does not explicitly have a call to super or this as its first line of code,
the compiler inserts the statement super(); as the first line of code in the constructor.

 In other words, if you write a constructor and do not call super , the compiler does it for
you. In the NonFictionBook constructor on line 10, the constructor actually looks like the
following:

 public NonFictionBook(String subject) {

 super(); //Compiler adds this statement

 this.subject = subject;

 }

 If you want, you can explicitly add the call to super to make your code more readable.
The behavior of your code does not change by adding super(); because the compiler
adds it for you anyway. With the call to super explicitly declared, it becomes clear which
constructor in the parent is being invoked.

�

�

 Default Constructors and super

 Watch out on the exam for a question that tests your knowledge of the default call to
 super . It is an important concept in Java and this default line of code (that you don ’ t
even write) generates a compiler error if the parent class does not have a no - argument
constructor. For example, suppose we have the following Book class:

public class Book {

 public String ISBN;

 public Book(String ISBN) {

 this.ISBN = ISBN;

 }

}

 This version of Book only has one constructor. A String must be passed into any new
 Book being instantiated. (Recall that you do not get a default constructor in a class that

c02.indd 110c02.indd 110 2/11/09 6:15:45 PM2/11/09 6:15:45 PM

explicitly defi nes its own constructor.) Using this version of the Book class, the following
 FictionBook class does not compile:

public class FictionBook extends Book {

 public String mainCharacter;

 public FictionBook(String m) {

 mainCharacter = m;

 }

}

 The following compiler error is generated:

FictionBook.java:4: cannot find symbol

symbol : constructor Book()

location: class Book

 public FictionBook(String m) {

 ^

 To fi x this compiler error, a call to super that passes in a String must explicitly appear
on the fi rst line of code in the constructor of FictionBook , even if it is not clear what
value to pass to the Book constructor. The following constructor in FictionBook compiles
successfully:

 public FictionBook(String m) {

 super(“-1”);

 mainCharacter = m;

 }

 Instance Initializers

 An instance initializer is a block of code declared in a class that executes for each new
instance of the class. An instance initializer executes immediately after the parent class
constructor fi nishes and before the body of the class constructor executes. A class can have
multiple instance initializers and they are executed in the order they appear in the source
fi le. Instance initializers are not members of a class like fi elds and methods are. You cannot
explicitly invoke an instance initializer because it does not have a name.

 The following Book class contains an instance initializer on lines 11 to 15:

1. public class Book {

2. public String title;

3. public Person author;

The Instantiation Process 111

c02.indd 111c02.indd 111 2/11/09 6:15:46 PM2/11/09 6:15:46 PM

112 Chapter 2 � Declarations, Initialization, and Scoping

4. public String ISBN;

5.

6. public Book(String ISBN) {

7. System.out.println(“Inside Book constructor”);

8. this.ISBN = ISBN;

9. }

10.

11. {

12. System.out.println(“Inside instance initializer”);

13. title = “Unknown”;

14. author = null;

15. }

16.}

 The only syntax for an instance initializer is the curly braces. It is simply a block of code
located in a class defi nition with no name or special keyword to declare it. What is the
output of the following statement that instantiates a new Book object?

Book b = new Book(“888-999-7777”);

 Because the instance initializer is invoked before the constructor, line 12 is displayed
before line 7 and the output is

Inside instance initializer

Inside Book constructor

 Let ’ s look at another example of an instance initializer. Study the following Vehicle and
 Car class and try to determine the output of main in Car :

1. //Vehicle.java

2. public class Vehicle {

3. public int numOfWheels;

4.

5. public Vehicle(int n) {

6. System.out.println(“Inside Vehicle constructor”);

7. numOfWheels = n;

8. }

9. }

1. //Car.java

2. public class Car extends Vehicle {

c02.indd 112c02.indd 112 2/11/09 6:15:46 PM2/11/09 6:15:46 PM

3. public String make, model, color;

4.

5. {

6. System.out.println(“Inside Car instance initializer”);

7. color = “Red”;

8. }

9.

10. public Car(String make, String model) {

11. super(4);

12. System.out.println(“Inside Car constructor”);

13. this.make = make;

14. this.model = model;

15. }

16.

17. public String toString() {

18. return make + “ “ + model + “ “ + color;

19. }

20.

21. public static void main(String [] args) {

22. Car ford = new Car(“Ford”, “Mustang”);

23. }

24. }

 Running the Car program results in the following sequence of events:

 1. The new Car statement executes on line 22 of Car.java , which invokes the constructor
on line 10 of Car .

 2. The call to super(4) on line 11 passes control to the Vehicle constructor on line 5,
which displays the message “ Inside Vehicle constructor ” .

 3. After the Vehicle constructor returns, the instance initializer in Car on line 5 is
invoked, displaying the message “ Inside Car instance initializer ” .

 4. The body of the Car constructor executes last, displaying “ Inside Car constructor ” .

 Therefore, the output of main is

Inside Vehicle constructor

Inside Car instance initializer

Inside Car constructor

The Instantiation Process 113

c02.indd 113c02.indd 113 2/11/09 6:15:46 PM2/11/09 6:15:46 PM

114 Chapter 2 � Declarations, Initialization, and Scoping

 Why Use an Instance Initializer?

 You can write lots of Java classes that do not use instance initializers. A constructor can
always be used to initialize any fi elds of an object. Some developers like to use instance
initializers for code readability, because you can put an instance initializer in the vicinity
of your fi eld declarations. For example, the following Button objects in the ColorChanger
class do not rely on constructor arguments to be initialized:

7. public class ColorChanger extends Frame {

8. private Button redBtn, whiteBtn, blueBtn;

9. {

10. redBtn = new Button(“Red”);

11. whiteBtn = new Button(“White”);

12. blueBtn = new Button(“Blue”);

13. }

 In this scenario, it really does not matter if the Button objects are instantiated in a
constructor or an instance initializer, so using an instance initializer might make the code
more readable, especially if this is a large source fi le with multiple constructors.

 Static Initializers

 A static initializer is a block of code that executes once when a class is loaded by the class
loader. The syntax for a static initializer is the static keyword followed by a set of curly
braces:

static {

 //a static initializer

}

 A class can contain multiple static initializers. They are executed in the order they
appear in the source fi le. The purpose of a static initializer is to perform any complex
initialization of static fi elds in the class or to perform any tasks that need to be performed
only once. For example, a common use of static initializers is to load system libraries:

1. public class MyLibrary {

2. static {

3. System.loadLibrary(“mylibrary”);

4. }

5.

6. //remainder of class definition

7. }

c02.indd 114c02.indd 114 2/11/09 6:15:46 PM2/11/09 6:15:46 PM

 If a system library is loaded more than once by a class loader, an exception occurs. Therefore,
calling loadLibrary for “ mylibrary ” is something you only want to perform once during the
lifetime of this class, and a static initializer is the perfect place for such a task.

 What Is a Class Loader?

 Every JVM has a built - in class loader object of type java.lang.ClassLoader that is
responsible for the loading of classes into the memory of a Java program. When you
refer to a class in your Java program, the class loader searches the class path for the
appropriate .class fi le and loads the bytecode into memory. For each class that is
loaded, the class loader instantiates a java.lang.Class object.

 The class loader loads a class only once, so there is only one Class object for each class
that your program uses. It is here in a Class object that the static fi elds and methods of
your class are stored in memory. The class loader also invokes any static initializers in
a class after the class is loaded. These static initializers allow you to initialize any static
fi elds or perform any onetime tasks for the class.

 You can write your own class loader, but the built - in class loader is suffi cient for most
Java applications.

 The following MyNumberFormatter class demonstrates a static fi eld getting initialized
in a static initializer. The initialization of the static fi eld involves more than a single
statement, so this is another good example of when to use a static initializer.

1. import java.text.NumberFormat;

2. import java.text.DecimalFormat;

3. import java.util.Locale;

4.

5. public class MyNumberFormatter {

6. public static DecimalFormat df;

7.

8. static {

9. Locale locale = new Locale(“de”); //German

10. NumberFormat nf = NumberFormat.getInstance(locale);

11. df = new DecimalFormat(“#,###.00”);

12. }

13.}

 Now that we have seen how static initializers work, we will change topics and discuss
one of the most important elements of a class: methods.

The Instantiation Process 115

c02.indd 115c02.indd 115 2/11/09 6:15:47 PM2/11/09 6:15:47 PM

116 Chapter 2 � Declarations, Initialization, and Scoping

 Declaring Methods
 A Java class contains fi elds that represent the attributes of the object and methods that
represent the behaviors of the object. We have already discussed fi elds in detail. The exam
objectives state that you should be able to “ develop code that declares both static and non -
 static methods, and — if appropriate — use method names that adhere to the JavaBeans
naming standards. Also develop code that declares and uses a variable - length argument
list. ” This section discusses everything you need to know about declaring and using Java
methods, including the JavaBeans naming convention, static methods, variable - length
arguments, method overloading, method overriding, and covariant return types.

 Method Declarations

 The defi nition of a method in Java is referred to as a method declaration . A method
declaration in Java has the following syntax:

 accessspecifier otherspecifier returnvalue methodName(parameterlist) throws
exceptionlist {

 methodbody

}

 Figure 2.9 shows the elements of the sleep method declared in the Thread class.

public static void sleep(long millis, int nanos) throws InterruptedException {
 //The method body goes here
}

Access
specifiers

Other
specifiers

Return type
(required)

Method
name

Parentheses are required here. “throws” appears
only with an

exception list.

Optional list of exceptions
(separated by commas)

List of parameters
(separated by commas)

F I GU R E 2 . 9 The elements that comprise a method declaration.

 Like any member of a class, a method has an access specifi er, which is one of the
following four values:

 public The method is accessible to any other class.

 private The method is only accessible from within the class.

 protected Only classes in the same package and child classes can access the method.

 Default access Only classes in the same package can access the method.

c02.indd 116c02.indd 116 2/11/09 6:15:47 PM2/11/09 6:15:47 PM

 The other specifi ers are Java keywords from the following list:

 static This modifi er declares a static method, also known as a class method.

 final The method cannot be overridden by a child class.

 abstract This modifi er declares an abstract method that must be overridden by any non-
abstract child classes.

 native The Java method maps to a method written in a different language, usually C or
C++. The SCJP exam does not require knowledge of the native keyword.

 synchronized The calling thread must obtain the object ’ s lock before the method exe-
cutes. We will discuss synchronized methods in Chapter 5 , “ Concurrency. ”

 A method might not declare any of these modifi ers, or a method might declare more
than one of these. For example, you can have a final synchronized method.

 A Java method must declare a return value. (A method declares void if it does not
actually return anything.) A list of the possible return values of a method follows:

 void The method does not return anything.

 Primitive type A method can return a byte , short , int , long , float , double , boolean ,
or char .

 Reference type A method can return any reference, meaning a method can return any
data type.

 The name of a method must be a valid Java identifi er. The name of a method should be a
verb starting with a lowercase letter using the mixed uppercase notation. For example, the
following list of method names is found in the Java API:

toString

run

getStackTrace

isEmpty

 setTimeZone

 The parameter list is a comma - separated list of variable declarations placed within the
parentheses. Use empty parentheses for a method that does not take in any arguments.
Here are some sample parameter lists:

 yield() : No parameters.

 read(byte [] b, int off, int len) : Three parameters — an array of bytes and two
 ints .

 connect(SocketAddress endpoint, int timeout) : Two parameters — a
 SocketAddress and an int .

 displayErrors(OutputStream out, String ... errors) : An OutputStream followed
by any number of String references.

�

�

�

�

�

�

�

�

�

Declaring Methods 117

c02.indd 117c02.indd 117 2/11/09 6:15:47 PM2/11/09 6:15:47 PM

118 Chapter 2 � Declarations, Initialization, and Scoping

 Variable - Length Argument List

 As of Java 5.0, a method in Java can declare a variable - length argument list by using
the ellipsis (. . .) after the data type of the variable - length parameter. For example, the
following method can take in any number of String references:

public void displayErrors(OutputStream out, String... errors)

 Behind the scenes, the errors variable is actually implemented as an array of String
references. We will discuss the details of variable - length arguments later in this section.

 The exception list is a throws clause that lists the exceptions the method declares. Separate
multiple exceptions by commas. The throws clause is not needed if the method does not
throw any checked exceptions. Here are some examples of methods with a throws clause:

readLine() throws IOException

forName(String n) throws ClassNotFoundException

clone() throws CloneNotSupportedException

getResponse(int x) throws IOException, RMIException

 We will discuss exceptions in detail in Chapter 3 , “ Flow Control. ”

�

�

�

�

 Method Signatures

 A method signature consists only of a method ’ s name and parameter types. The
modifi ers, return type, exception list, and method body are not considered a part
of a method ’ s signature. The concept of a method signature is important in method
overriding, which we discuss later in this chapter.

 JavaBeans Naming Convention

 JavaBeans is a technology for developing software components in Java. Knowledge of
developing JavaBeans is not required for the SCJP exam. However, the exam objectives
specifi cally state knowledge of the JavaBeans naming convention for methods. The methods
in the Java API use this naming convention, as do most Java developers.

c02.indd 118c02.indd 118 2/11/09 6:15:47 PM2/11/09 6:15:47 PM

 JavaBeans have properties that are determined by the public methods in the class. These
special methods have the following properties:

 The property methods begin with “ set ” and “ get, ” or “ set ” and “ is ” for boolean data
types. The set methods are referred to as mutator methods because they change the
property, and get methods are referred to as accessor methods because they return a
property.

 The letter following the set or get is capitalized.

 The property name is the name of method minus the set or get, with the first letter in
lowercase.

 For example, suppose a class contains the following two methods:

public void setLastName(String s)

public String getLastName()

 The name of the JavaBean property resulting from these two methods is lastName , and
the data type of the property is String . The parameter of the set method has to be the same
data type as the return value of the get method.

 Let ’ s take a look at the following Employee class example and see if you can determine
its JavaBeans properties:

1. import java.util.GregorianCalendar;

2.

3. public class Employee implements java.io.Serializable {

4. private String first, last;

5. private GregorianCalendar hireDate;

6. public double salary;

7. private boolean fullTime;

8.

9. public String getFirstName() {

10. return first;

11. }

12.

13. public void setLastName(String s) {

14. last = s;

15. }

16.

17. public String getLastName() {

18. return last;

19. }

20.

21. public GregorianCalendar getHireDate() {

22. return hireDate;

�

�

�

Declaring Methods 119

c02.indd 119c02.indd 119 2/11/09 6:15:48 PM2/11/09 6:15:48 PM

120 Chapter 2 � Declarations, Initialization, and Scoping

23. }

24.

25. public void setHireDate(GregorianCalendar hd) {

26. hireDate = hd;

27. }

28.

29. public void setFullTime(boolean fullTime) {

30. this.fullTime = fullTime;

31. }

32.

33. public boolean isFullTime() {

34. return fullTime;

35. }

36.}

 Read and Write JavaBeans Properties

 A class does not need to contain matching set and get methods for each property. A read - only
property would only have a get method and a write - only property would only have a set method.

 I should also point out that the names of the fi elds in a class have nothing to do with
JavaBean properties. For example, line 6 of the Employee class declares a public fi eld
named salary , but salary is not a JavaBean property of the Employee class.

 Here are the JavaBean properties that the Employee class does have:

 firstName : A read - only String property

 lastName : A String property

 hireDate : A GregorianCalendar property

 fullTime : A boolean property

�

�

�

�

 JavaBean Event Methods

 The JavaBean specifi cation also defi nes event handler methods that have the
following naming convention:

public void addXxxxListener(XxxxListener a)

public void removeXxxxListener(XxxxListener a)

c02.indd 120c02.indd 120 2/11/09 6:15:48 PM2/11/09 6:15:48 PM

 For example, the java.awt.Button class declares the following methods:

public void addActionListener(ActionListener a)

public void removeActionListener(ActionListener a)

 According to the JavaBeans method naming convention, the Button class is therefore
a source of events of type ActionEvent , and another object can register and unregister
itself with the Button to listen to the ActionEvent by calling the appropriate add and
remove method.

 The exam objectives do not specifi cally state that you need to know the event listener
methods, so you may or may not see this topic on the exam. However, it is useful
information that is worth knowing as a Java developer because JavaBeans show up in all
sorts of Java technologies.

 Instance Methods

 An instance method is a nonstatic method of a class. They are referred to as instance
methods because they represent the behaviors of each instance of the class. Instance
methods are also referred to as member methods, member functions, or simply methods.

 An instance method can only be invoked on an instance of the class. Without an
instance of the class, the method does not exist and it does not make sense to attempt to
invoke it. You can ’ t drive a car until you manufacture the car. You can ’ t cook in the kitchen
until you build the house. Methods are behaviors of the objects, so the objects need to exist
before they can perform their desired behaviors.

 You use the dot operator on a reference to invoke an instance method. Let ’ s look at an
example. The following Customer class contains one constructor and fi ve instance methods:

1. public class Customer {

2. private String name;

3. private int id;

4.

5. public Customer(int id, String name) {

6. setId(id);

7. this.setName(name);

8. }

9.

10. public void setName(String name) {

11. this.name = name;

12. }

13.

Declaring Methods 121

c02.indd 121c02.indd 121 2/11/09 6:15:48 PM2/11/09 6:15:48 PM

122 Chapter 2 � Declarations, Initialization, and Scoping

14. public String getName() {

15. return name;

16. }

17.

18. public int getId() {

19. return id;

20. }

21.

22. private void setId(int id) {

23. if(id > 0) {

24. this.id = id;

25. }

26. }

27.

28. public void processOrder(String itemName) {

29. System.out.println(this.getName() + “ is ordering a “

30. + itemName);

31. }

32.}

 Invoking an Instance Method Requires a Reference

 Notice that every instance method call in Java requires a reference. Even within a class
we have to use the this reference to invoke another method in the same class, although
the this reference is not required because the compiler adds it implicitly when you leave
it off. For example, in the Customer class the this reference is explicitly denoted on lines
7 and 29, while on line 6 the this reference is implied and the compiler adds it behind the
scenes, resulting in this.setId(id) .

 Examine the following statements. Do they compile and, if yes, what is the result?

41. Customer c = null;

42. c.setName(“Sherlock Holmes”);

43. System.out.println(c.getName());

 You might be surprised to fi nd out that this code compiles fi ne, even though it does
not make sense to invoke setName and getName because no Customer objects have been
instantiated yet. Without any Customer objects in memory, there are no setName and
 getName methods to invoke. Because c is null and does not point to an actual Customer
object, the statement on line 42 generates a NullPointerException .

c02.indd 122c02.indd 122 2/11/09 6:15:48 PM2/11/09 6:15:48 PM

 Now look at the following statements and determine if they compile and what their result is:

45. Customer y = new Customer(101, “Dr. Watson”);

46. System.out.println(y.getName());

47. Customer z = new Customer(202, “Mr. Rattigan”);

48. z.processOrder(“Widget #4”);

49. System.out.println(z.getName());

 The code compiles fi ne. Two Customer objects are instantiated in memory, as shown in
Figure 2.10 . The output of the code is

Dr. Watson

Mr. Rattigan is ordering a Widget #4

Mr. Rattigan

y

Customer
reference

Customer object

name

setName
getName
setld
getld
processOrder

101
id

“Dr. Watson”

z

Customer
reference

Customer object

name

setName
getName
setld
getld
processOrder

202
id

“Mr. Rattigan”

F I GU R E 2 .10 Each Customer object has its own instance fields and methods in
memory.

Declaring Methods 123

c02.indd 123c02.indd 123 2/11/09 6:15:49 PM2/11/09 6:15:49 PM

124 Chapter 2 � Declarations, Initialization, and Scoping

 Static Methods

 A static method , also referred to as a class method , is declared using the static
keyword. A static method is just like a static fi eld in that it belongs to the class, not the
instances. A static method is invoked without any instances of the class. Instead, use
the name of the class to invoke one of its static methods.

 For example, the java.lang.Math class has a static method named sqrt that computes
the square root of a double :

public static double sqrt(double a)

 To invoke sqrt , you prefi x it with the class name Math :

double x = 49.0;

double response = Math.sqrt(x);

 Methods Behind the Scenes

 From an object - oriented point of view, each instance of a class gets each fi eld and
method of the class in memory when the object is instantiated. For fi elds, this is exactly
what happens on the heap. Every object must have its own memory for each nonstatic
fi eld of the class because the values of the fi elds are unique for each object.

 However, from a practical point of view, each object does not need its own copy of
the methods because methods do not have any state and the implementation of each
method is the exact same for every instance. To save memory, the JVM instead stores the
method implementations in the Class object of the class, and each object accesses these
implementations by storing a corresponding function pointer for each method in the
class. In other words, instance methods are actually shared among all instances.

 However, it is important to understand that from a theoretical point of view every object
has its own copy of each fi eld and each method in memory. If no Customer objects exist
in memory, then neither do any fi elds or methods of the Customer class. If there are
100 Customer objects in memory, then there are 100 name references and 100 ints
named id . In theory, there are also 100 setName methods, 100 getName methods, 100
 processOrder methods, and so on.

 These behind - the - scenes details of how Java stores instance methods in the Class object
to save memory are not a topic on the SCJP exam.

c02.indd 124c02.indd 124 2/11/09 6:15:49 PM2/11/09 6:15:49 PM

 Compare Static to Global

 Java does not allow global methods; all methods must be defi ned within a class.
A static method is the closest thing we have in Java to creating a global function. They
are utility methods that perform their task only with the arguments passed in or with
other “ global ” data like static fi elds.

 The following class contains a static method. Examine the code and see if it compiles
and what its output is when incrementCounter is invoked:

1. public class StaticProblem {

2. public static int counter = 0;

3. public String message;

4.

5. public static void incrementCounter() {

6. counter++;

7. System.out.println(message + counter);

8. }

9. }

 There is a problem with this class. Keep in mind that incrementCounter can be invoked
with or without any instances of StaticProblem . Let ’ s assume there are no instances of
 StaticProblem in memory when incrementCounter is invoked. That means there are no
 message references in memory, so displaying message on line 7 does not make any sense.
Suppose we have 10 instances in memory. Then we would have 10 different message
references in memory, and it is totally unclear which message we are attempting to display.

 The StaticProblem class generates a compiler error on line 7. A static method does not
have access to the nonstatic fi elds in a class because a static method does not have a this
reference. Remember, accessing a fi eld in a class implicitly uses the this reference if you do
not explicitly denote it. Line 7 actually looks like:

7. System.out.println(this.message + counter);

 Because a static method does not have an object associated with it, using the this
reference does not make sense and causes the following compiler error:

StaticProblem.java:7: non-static variable message cannot be

referenced from a static context

 System.out.println(message + counter);

 ^

Declaring Methods 125

c02.indd 125c02.indd 125 2/11/09 6:15:49 PM2/11/09 6:15:49 PM

126 Chapter 2 � Declarations, Initialization, and Scoping

 I can safely bet that you will be asked a question on the exam regarding a
static method attempting to access a nonstatic field. Static methods cannot
reference the nonstatic fields of the class and do not have access to a this
reference. Understanding this rule implies your understanding of static
methods, and static methods are a fundamental aspect of the Java language,
so expect your knowledge of this subject to be tested on the exam.

 Variable - Length Arguments

 As of Java 5.0, a method can allow for a variable - length list of arguments to be passed
in to the method. The syntax for declaring a variable - length argument list is to use three
dots, referred to as an ellipsis, following the data type of the parameter. A method can
only declare one parameter as variable length, and it must appear at the end of the list of
parameters.

 For example, the following method declaration allows for a variable number of String
references to be passed in:

public void logErrors(Date timeStamp, String... errors)

 To invoke logErrors , the fi rst argument must be a java.util.Date object followed by
any number of String objects. Examine the following statements and determine if they are
valid method invocations of logErrors :

31. Date now = new Date();

32. m.logErrors(now);

33. m.logErrors(now, “Problem #1”);

34. m.logErrors(now, “a”, “b”, “c”, “d”, “e”, “f”);

35. String [] array = {“does”, “this”, “work?”};

36. m.logErrors(now, array);

 Java treats a variable - length parameter as an array whose elements are the data type
of the parameter. The errors parameter in logErrors is actually an array of String
references, so each of the previous calls to logErrors is valid. The array is empty with the
method call on line 32. Line 33 creates an array with one String : “ Problem #1 ” , and line
34 creates a String array containing six String objects. Line 36 already passes in an array,
so the compiler does not need to create a new one.

 The following example shows the logErrors method in a class named MyErrorLog .
Notice on line 18 the logErrors method uses a for - each loop to iterate through the
variable - length parameter errors and write each one to a text fi le. Examine the code and
see if you can determine its result.

1. import java.io.*;

2. import java.util.Date;

3.

4. public class MyErrorLog {

c02.indd 126c02.indd 126 2/11/09 6:15:49 PM2/11/09 6:15:49 PM

5.

6. private PrintWriter out;

7.

8. public MyErrorLog(String fileName) {

9. try {

10. out = new PrintWriter(new FileWriter(fileName));

11. }catch(IOException e) {

12. e.printStackTrace();

13. }

14. }

15.

16. public void logErrors(Date timeStamp, String... errors) {

17. out.print(timeStamp + “:”);

18. for(String error : errors) {

19. out.print(error + “, “);

20. }

21. out.println();

22. out.flush();

23. }

24.

25. public void finalize() {

26. out.close();

27. }

28.

29. public static void main(String [] args) {

30. Date now = new Date();

31. MyErrorLog m = new MyErrorLog(“errors.txt”);

32. m.logErrors(now);

33. m.logErrors(now, “Problem #1”);

34. m.logErrors(now, “a”, “b”, “c”, “d”, “e”, “f”);

35. String [] array = {“does”, “this”, “work?”};

36. m.logErrors(now, array);

37. }

38.}

 The new MyErrorLog statement on line 31 invokes the constructor on line 8, which
creates a new text fi le named errors.txt for writing to. The logErrors method is invoked
four times, and after running this program the errors.txt fi le looks something like this:

Tue Aug 04 14:32:56 MDT 2009:

Tue Aug 04 14:32:56 MDT 2009:Problem #1,

Tue Aug 04 14:32:56 MDT 2009:a, b, c, d, e, f,

Tue Aug 04 14:32:56 MDT 2009:does, this, work?,

Declaring Methods 127

c02.indd 127c02.indd 127 2/11/09 6:15:52 PM2/11/09 6:15:52 PM

128 Chapter 2 � Declarations, Initialization, and Scoping

 As with any new feature of the language, expect variable - length
arguments to be on the exam. Remember that a method can only declare
one parameter as variable - length, and it must appear at the end of the
parameter list.

 Variable - length arguments can sometimes lead to ambiguities in method overloading
when the compiler cannot determine which method to invoke. For example, a class could
legally declare the following two methods named average :

public static int average(int... values)

public static double average(double... values)

 Invoking average with a list of doubles works fi ne:

average(12.5, -4.78, 39.04); //works fine

 However, any attempt to invoke the average method with a list of ints generates a
compiler error:

average(6, 10, 14, 20); //does not compile

 Here is the compiler error from this statement:

MyMath.java:12: reference to average is ambiguous, both method average(int...)
in MyMath and method average(double...) in MyMath match

 average(6, 10, 14, 20);

 The same compiler error occurs when you attempt to invoke average with no
arguments:

average(); //ambiguous!

 When using variable - length arguments and method overloading, you need to ensure that
the data types of your parameter lists are unique enough to avoid any ambiguities.

 Method Overloading

 Method overloading is when a class contains multiple methods with the same name but
different parameter lists. Constructors can also be overloaded. We use method overloading
all the time in Java. It is easier than trying to come up with different names for methods
that perform similar tasks but require different types of data to be passed in. This section
discusses the details of method overloading.

c02.indd 128c02.indd 128 2/11/09 6:15:52 PM2/11/09 6:15:52 PM

 The rules that apply to method overloading follow:

 The parameter lists must be unique, either in the number of parameters or their data type.

 The return value can be different (as long as the parameter lists are unique).

 The list of declared exceptions can be different (as long as the parameter lists are unique).

 For example, suppose a class has the following methods. Do these method declarations
follow the rules for valid method overloading?

public void send(String recipient, String message)

public boolean send(String recipient, StringBuffer message)

public void send(int id) throws UnknownHostException

public void send(float f)

public int send(String [] headers)

 Because the parameter lists for these fi ve send methods are unique and unambiguous,
these methods do follow the rules for proper method overloading and could appear in the
same class. The key in overloading is that the parameter lists are unique enough that the
compiler can resolve the appropriate method.

 The method signatures must be different for valid method overloading. The return
values and declared exceptions are irrelevant if the method signatures are unique. For
example, the following two method declarations are not valid method overloading because
they have the same signature:

public boolean send(String name, String address)

public void send(String recipient, String message)

 Changing the return type is not suffi cient, and the names of the parameter does not help
the compiler resolve anything, so these two send methods could not appear in the same class.

�

�

�

 Method Overloading and Data Type Promotion

 There can be some confusion when the parameter types of overloaded methods are
related either by inheritance or promotion. For example, suppose we have the following
overloaded methods:

12. public String convert(int x) {

13. return “int”;

14. }

15. public String convert(short b) {

16. return “short”;

17. }

Declaring Methods 129

c02.indd 129c02.indd 129 2/11/09 6:15:55 PM2/11/09 6:15:55 PM

130 Chapter 2 � Declarations, Initialization, and Scoping

 Now consider the following statements and try to determine which convert method is
invoked at runtime:

byte b = -41;

System.out.println(convert(b));

 The compiler looks for a convert method with a byte parameter. Because one doesn ’ t
exist, it looks for a convert method with a compatible parameter that a byte can be
promoted to, starting with the smallest promotion, which in this example is a short .
Therefore, the convert method on line 15 is invoked when a byte is the argument. The
output of the previous two lines of code is “ short ” .

 Let ’ s look at an example. The following Email class has four overloaded send methods.
Study the code carefully and try to determine its output.

1. public class Email {

2. public void send(float f) {

3. System.out.println(“float parameter”);

4. }

5.

6. public void send(Object x) {

7. System.out.println(“Object parameter”);

8. }

9.

10. public void send(String s) {

11. System.out.println(“String parameter”);

12. }

13.

14. public void send(int id) {

15. System.out.println(“int parameter”);

16.

17. }

18.

19. public static void main(String [] args) {

20. Email email = new Email();

21. email.send(12.5);

22. email.send(123456);

23. email.send(new String(“Hello”));

24. email.send(new java.util.Date());

25. }

26. }

c02.indd 130c02.indd 130 2/11/09 6:15:55 PM2/11/09 6:15:55 PM

 Within main , the following sequence of events occurs:

 1. The call to send on line 21 has a double argument, so the next largest compatible data
type of send parameters is Object on line 6. (Note that as of Java 5.0, primitive types
are autoboxed into their equivalent Object type, which for the literal 12.5 is
java.lang.Double .)

 2. Line 22 invokes the send method on line 14 because 123456 is an int .

 3. Line 23 invokes the send method on line 10 because the argument is a String .

 4. Line 24 invokes the send method on line 6 because Date is a child of Object .

 Therefore, the output of running main in the Email class is

Object parameter

int parameter

String parameter

Object parameter

 Autoboxing of Primitive Types

 Primitive types are automatically boxed into their corresponding wrapper class object
whenever necessary, and they are also unboxed automatically whenever necessary. We
discuss the wrapper classes and autoboxing and unboxing in Chapter 4 , “ API Contents. ”

 Method Overriding

 The exam objectives state that you should be able to “ determine if a method is correctly
overriding another method, and identify legal return values (including covariant returns),
for the method. ” Method overriding means writing a child class that contains the same
method signature as its parent class. At runtime the child method executes, not the parent
method. The child method takes the place of the parent method, thereby overriding the
behavior of the parent. Method overriding is an important capability of object - oriented
programming, and this section discusses the details of overriding methods in Java.

 The rules for overriding an instance method follow:

 The method in the child has to have the same signature (name and parameter list) as
the method in the parent.

 The access to the child method has to be at least the same or more accessible than the
parent method. For example, if the method is public in the parent class, then it has
to be public in the child class. A method with default access in the parent could be
 public or protected , or have the default access in the child class.

�

�

Declaring Methods 131

c02.indd 131c02.indd 131 2/11/09 6:15:56 PM2/11/09 6:15:56 PM

132 Chapter 2 � Declarations, Initialization, and Scoping

 The child method cannot throw a greater exception than the parent. In other words,
any exception thrown by the child method must be a subclass of one of the exceptions
thrown by the parent method.

 The return type of the method in the child class has to be the same or a subclass of the
parent method ’ s return type.

�

�

 Private Methods and Overriding

 Method overriding refers to a child class overriding an instance method that it inherits
from its parent. A private method is not accessible outside of the class it is defi ned
in, and private methods are not inherited by child classes. Therefore, any discussion
on method overriding implies we are talking about the nonprivate instance methods of
a class. (We discuss overriding nonprivate static methods in the upcoming section on
method hiding.)

 The following example demonstrates a child class Lion overriding the eat method in its
parent class Mammal :

//Mammal.java

public class Mammal {

 protected int eat(String something) {

 System.out.println(“Inside Mammal”);

 return -1;

 }

}

//Lion.java

public class Lion extends Mammal {

 public int eat(String something) {

. System.out.println(“Inside Lion”);

. return something.length();

. }

}

 Notice the eat method in Lion has the same name and parameter type as eat in Mammal .
The eat method is protected in Mammal and public in Lion , which is valid because public
is more accessible than protected , so Lion successfully overrides the eat method in Mammal .
What is the output of the following statements?

c02.indd 132c02.indd 132 2/11/09 6:15:56 PM2/11/09 6:15:56 PM

20. Mammal mammal = new Mammal();

21. Lion lion = new Lion();

22. mammal.eat(“food”);

23. lion.eat(“warthog”);

 Because the eat method in Lion hides the eat method in Mammal , calling eat on line 23
results in only the eat method of the Lion class executing. The output of these four lines of
code is

Inside Mammal

Inside Lion

 There are situations in method overriding where you might not want to hide the parent
class method, but just add some behavior to it in the child class. You can use the super
keyword to invoke the parent method from the child method, as shown in Figure 2.11 and
demonstrated in the following modifi ed Lion class:

1. public class Lion extends Mammal {

2. public int eat(String something) {

3. System.out.println(“Inside Lion”);

4. return super.eat(something);

5. }

6. }

Mammal

protected int eat(String)

Lion

public int eat(String)

Use the super
keyword to

invoke the eat
method in the

Mammal class. lioness.eat(“zebra”)
invokes eat in the Lion
class.

F I GU R E 2 .11 A child can invoke a parent’s overridden method using the super
keyword.

 Using the same Mammal class from the previous example, what would be the output of
the following statements?

29. Lion lioness = new Lion();

30. lioness.eat(“zebra”);

Declaring Methods 133

c02.indd 133c02.indd 133 2/11/09 6:15:56 PM2/11/09 6:15:56 PM

134 Chapter 2 � Declarations, Initialization, and Scoping

 The following sequence of events occurs:

 1. The eat method in Lion is invoked, which prints “ Inside Lion ” .

 2. The eat method in Mammal is called on line 4 using the super reference, which causes
 “ Inside Mammal ” to be displayed.

 Therefore, the output is

Inside Lion

Inside Mammal

 The super Reference

 Just like every object has a reference to itself via the this keyword, every object has a
reference to its parent object via the super keyword. A child object can actually use the
 this reference to access parent class members, but there are situations where the child
class must use super to access a parent fi eld or method.

 For example, suppose in the Lion class we had the following eat method:

10. public class Lion extends Mammal {

11. public int eat(String something) {

12. System.out.println(“Inside Lion”);

13. return this.eat(something);

14. }

15. }

 The call to this.eat on line 13 is a recursive call that causes control to jump to line 11,
which creates an infi nite recursion eventually resulting in a stack overfl ow error. In this
example, if the Lion wants to call eat in Mammal , it must use the super reference.

 Covariant Return Types

 Before Java 5.0, it was required that the overriding method in the child have the same
return type as the overridden method in the parent. Java 5.0 introduced covariant return
types , which allows the overriding method to return a data type that is a child of the return
type in the parent class.

 For example, the following Child class successfully overrides the doSomething method
in Parent because FileOutputStream is a child of OutputStream :

//Parent.java

public class Parent {

 public OutputStream doSomething(int x, String s) {

 //do something

 }

c02.indd 134c02.indd 134 2/11/09 6:15:56 PM2/11/09 6:15:56 PM

}

//Child.java

public class Child extends Parent {

 public FileOutputStream doSomething(int y, String s) {

 //do something else

 }

}

 Covariant return types are not allowed for primitive types, only Object types. The
following code does not compile:

//Parent.java

public class Parent {

 public int doNothing() {

 return 0;

 }

}

//Child.java

public class Child extends Parent {

 public short doNothing() { //not valid!

 return 1;

 }

}

 The following compiler error is generated:

Child.java:2: doNothing() in Child cannot override doNothing() in

 Parent; attempting to use incompatible return type

found : short

required: int

 public short doNothing() {

 ^

 Covariant return types are yet another new concept introduced in Java 5.0,
so expect at least one question on the exam that involves understanding
how they work.

 Method Hiding

 Method hiding occurs when a child class contains a static method that is also defi ned in
its parent, using the same rules of instance method overriding discussed earlier. If a static
method in a child class contains the same static method as its parent class, then the method
in the child class hides the method in the parent class but does not override it.

Declaring Methods 135

c02.indd 135c02.indd 135 2/11/09 6:15:57 PM2/11/09 6:15:57 PM

136 Chapter 2 � Declarations, Initialization, and Scoping

 Method hiding is subtly different than method overriding. When a method is
overridden, the child version of the method always executes at runtime. Technically, a static
method cannot be overridden because you can still invoke the static method in the parent
class.

 For example, the following FictionBook class contains the same static method
 getCounter that is declared in its parent class Book :

1. //Book.java

2. public class Book {

3. private static int counter = 0;

4. public static int getCounter() {

5. System.out.println(“Inside Book”);

6. return ++ counter;

7. }

8. }

1. //FictionBook.java

2. public class FictionBook extends Book {

3. public static int getCounter() {

4. System.out.println(“Inside FictionBook”);

5. return -1;

6. }

7.

8. public static void main(String [] args) {

9. System.out.println(Book.getCounter());

10. System.out.println(FictionBook.getCounter());

11. }

12. }

 Inside main , getCounter is invoked using both Book and FictionBook . If getCounter was
truly overridden, then the output would be “ Inside FictionBook ” for both method calls.
However, as you can see by the output here, the getCounter method in Book executes from
line 9:

Inside Book

1

Inside FictionBook

-1

 The getCounter method in Book is referred to as a hidden method, which is probably
not the best term to use because the method is not really hidden at all. You can invoke
 getCounter in Book at any time using the syntax Book.getCounter , as shown in Figure 2.12 .

c02.indd 136c02.indd 136 2/11/09 6:15:57 PM2/11/09 6:15:57 PM

 Nonetheless, method hiding is the term used to describe this situation.

Book

public static int getCounter()

FictionBook

public static int getCounter()

Book.getCounter()
invokes the method
in Book.

FictionBook.getCounter()
invokes the method
in FictionBook.

F I GU R E 2 .12 The static getCounter method in FictionBook does not override
getCounter in Book.

 Overridden vs. Hidden

 When a child class contains the same instance method as a parent class instance method
(assuming all the rules of method overriding are followed), the child class method
 overrides the parent class method. When a child class contains a static method that is the
same as a static method in the parent, this child method hides the parent class method.

 In simpler terms, instance methods are overridden and static methods are hidden.

 A child class cannot contain a nonstatic version of a static method in its parent class.
Neither can a child class contain a static method with the same version of a nonstatic
method in the parent. Either of these situations generates a compiler error.

 Final Methods

 A method in Java can be declared fi nal using the final keyword. A fi nal method cannot be
overridden. You might make a method fi nal if it has a critical implementation that should
not be changed, or you might just want a child class not to have the option of overriding
a particular method. Whatever the motivation, an attempt to override a fi nal method
generates a compiler error.

 The following Lion class has a fi nal method named breathe :

1. public class Lion {

2. public void eat(String something) {

3. System.out.println(“Lion is eating”);

4. }

Declaring Methods 137

c02.indd 137c02.indd 137 2/11/09 6:15:57 PM2/11/09 6:15:57 PM

138 Chapter 2 � Declarations, Initialization, and Scoping

5.

6. public final void breathe() {

7. System.out.println(“Lion is breathing”);

8. }

9. }

 No subclass of Lion can override the breathe method, but let ’ s try it anyway and see
what happens. The following MountainLion class extends Lion and declares a breathe
method:

1. public class MountainLion extends Lion {

2. public void breathe() {

3. System.out.println(“MountainLion is breathing”);

4. }

5. }

 As expected, this does not compile. Here is the compiler error that it generates:
MountainLion.java:2: breathe() in MountainLion cannot override breathe() in
Lion; overridden method is final

 public void breathe() {

 ^

 Declaring Abstract Classes
 The exam objectives state that you should be able to “ develop code that declares classes
(including abstract classes). ” An abstract class is a class that cannot be instantiated. Use the
 abstract keyword to declare a class as abstract, as demonstrated by the following Mammal
class:

1. public abstract class Mammal {

2. public boolean hasFur;

3.

4. public Mammal() {

5. hasFur = false;

6. }

7.

8. public Mammal(boolean hasFur) {

9. this.hasFur = hasFur;

10. }

11.

12. public void breathe() {

13. System.out.println(“Mammal is breathing”);

14. }

15.

c02.indd 138c02.indd 138 2/11/09 6:15:58 PM2/11/09 6:15:58 PM

16. public void eat(String something) {

17. System.out.println(“Mammal is eating “ + something);

18. }

19. }

 The Mammal class seems like a typical class with one fi eld, two constructors, and two
 public methods. However, adding the abstract keyword to line 1 makes the Mammal class
abstract and it cannot be instantiated. The following line of code does not compile:

21. Mammal m = new Mammal();
 This statement generates the following compiler error:

Mammal.java:21: Mammal is abstract; cannot be instantiated

 Mammal m = new Mammal();

 ^

 So how do we take advantage of this abstract class if we cannot instantiate it? The
answer is to subclass it! A child class of Mammal will inherit all the public fi elds and methods
of Mammal , as well as the ability to invoke its constructors. The Mammal class is still very
useful; we just can ’ t create any instances of it. From a design point of view, this actually
makes sense because no animal is just a mammal. The concept of mammal is abstract in
the real world, so making it abstract in a Java application seems like a good design.

 Why Use Abstraction?

 The objective of this section is to discuss the details of declaring abstract classes and
abstract methods. The reason for using abstraction is discussed in detail in Chapter 6 ,
 “ OO Concepts, ” where we revisit our discussion on abstract classes and explain the
benefi ts and usefulness of abstraction in object - oriented programming.

 The following Platypus class extends Mammal . Examine the code, determine if it
compiles successfully, and try to fi gure out the output of running the main method:
1. public class Platypus extends Mammal {

2. public int eggCount;

3.

4. public void layEggs() {

5. System.out.println(“Platypus is laying eggs”);

6. }

7.

8. public void eat(String something) {

9. System.out.println(“Platypus is eating “ + something);

10. }

11.

Declaring Abstract Classes 139

c02.indd 139c02.indd 139 2/11/09 6:15:58 PM2/11/09 6:15:58 PM

140 Chapter 2 � Declarations, Initialization, and Scoping

12. public Platypus(boolean hasFur) {

13. super(hasFur);

14. eggCount = 1;

15. }

16.

17. public static void main(String [] args) {

18. Platypus p = new Platypus(false);

19. p.eat(“leaves”);

20. p.breathe();

21. p.layEggs();

22.

23. }

24.}

 The code compiles fi ne. The Platypus class correctly overrides the eat method in Mammal
and also declares a new method, layEggs , and a fi eld, eggCount . Inside main , the following
sequence of events occurs:

 1. A new Platypus is instantiated on line 18, which is valid because Platypus is not
abstract. The constructor on line 12 is invoked.

 2. Line 13 passes the hasFur boolean up to the Mammal constructor. Line 14 sets the
 eggCount field to 1.

 3. Invoking the eat method on line 19 executes the overridden eat method on line 8.

 4. Invoking breathe on line 20 executes the breathe method in Mammal .

 5. Invoking layEggs on line 21 invokes the layEggs method on line 4.

 Therefore, the output is

Platypus is eating leaves

Mammal is breathing

Platypus is laying eggs

 We use abstract parent classes all the time in Java to represent the common attributes
and behaviors of child objects. Now that you have seen how to declare an abstract class, we
can discuss the concept of an abstract method in Java.

 Abstract Methods

 An abstract method is an instance method of a class that does not contain a method body
and must be overridden by any nonabstract child classes. Use the abstract keyword to
declare a method as abstract. Instead of a method body, an abstract method simply has a
semicolon at the end of its declaration. For example, the java.io.InputStream declares the
following method:

public abstract int read() throws IOException;

c02.indd 140c02.indd 140 2/11/09 6:15:58 PM2/11/09 6:15:58 PM

 Notice there are no curly braces — not even empty braces. An abstract method does not contain
a method body. Declaring a method as abstract in a class has the following consequences:

 The enclosing class must be declared abstract .

 Any concrete subclass must override all the abstract methods inherited from the parent
class.

 If a subclass does not override its parent ’ s abstract methods, the subclass must also be
declared abstract .

�

�

�

 Concrete Subclasses

 Because an abstract method does not have any implementation, its class must be
abstract. Otherwise, instances of the class could attempt to invoke the abstract method,
which doesn ’ t make sense because the abstract method does not contain any code. The
term concrete subclass refers to a subclass that is not abstract. Child classes that do
not want to be abstract must override the abstract methods in the parent or be abstract
classes themselves.

 Let ’ s look at an example. The following Mammal class is similar to the previous version,
with the addition of an abstract method named walk :
1. public abstract class Mammal {

2. public boolean hasFur;

3.

4. public Mammal() {

5. hasFur = false;

6. }

7.

8. public Mammal(boolean hasFur) {

9. this.hasFur = hasFur;

10. }

11.

12. public void breathe() {

13. System.out.println(“Mammal is breathing”);

14. }

15.

16. public void eat(String something) {

17. System.out.println(“Mammal is eating “ + something);

18. }

19.

20. public abstract void walk();

21. }

Declaring Abstract Classes 141

c02.indd 141c02.indd 141 2/11/09 6:15:58 PM2/11/09 6:15:58 PM

142 Chapter 2 � Declarations, Initialization, and Scoping

 All the other methods of the class have not changed and can still be called just like
before. However, this time Mammal must be declared abstract because of the walk method
on line 20. Without the abstract keyword on line 1, the Mammal class would not compile.

 The following two classes shown in Figure 2.13 are valid child classes of Mammal . The
 Buffalo class successfully overrides the walk method. The Feline class does not override
 walk , but it is declared abstract .

1. //Buffalo.java

2. public class Buffalo extends Mammal {

3. public void walk() {

4. System.out.println(“Buffalo is walking”);

5. }

6. }

7. //Feline.java

8. public abstract class Feline extends Mammal {

9. public void sleep() {

10. System.out.println(“Feline is sleeping”);

11. }

12. }

abstract Mammal

public abstract void walk()

abstract HouseCat

Buffalo

public void walk()

abstract Feline

Mammal is an
abstract class.

Buffalo is a concrete
subclass of Mammal.

HouseCat needs to
be abstract if it does
not override walk().

Feline is an
abstract subclass
of Mammal.

F I GU R E 2 .13 Buffalo is a concrete subclass and Feline is an abstract subclass of
Mammal.

c02.indd 142c02.indd 142 2/11/09 6:15:59 PM2/11/09 6:15:59 PM

 Does the following HouseCat class compile?

1. public class HouseCat extends Feline {

2. public void eat() {

3. System.out.println(“HouseCat is eating”);

4. }

5.

6. public void breathe() {

7. System.out.println(“HouseCat is breathing”);

8. }

9. }

 Because HouseCat extends from Feline and Feline inherits the abstract walk method
from Mammal , HouseCat must either override walk or declare itself abstract . Because it does
neither, the class does not compile and generates the following error:

HouseCat.java:1: HouseCat is not abstract and does not override

 abstract method walk() in Mammal

public class HouseCat extends Feline {

 ^

 Declaring Interfaces
 An interface is a collection of abstract methods. A class implements an interface, inheriting
all the abstract methods declared in the interface. Therefore, a class that implements an
interface must either override the interface methods or the class must be declared abstract.

 An interface has the following properties:

 An interface is defined in a .java file. If the interface is public , the name of the file
must match the name of the class. If the interface has the default access, it is only
accessible from within its package.

 The bytecode file for a compiled interface is a .class file that matches the name of the
interface. All the rules of package names and subdirectories that apply to classes also
apply to interfaces.

 All the methods in an interface are abstract, whether or not the abstract keyword is
explicitly denoted.

 All the methods in an interface are public, whether or not they are explicitly declared public .

 The fields of an interface are public , static , and final .

 An interface cannot declare static methods.

 An interface has some similarities to a class, but an interface is not a class. For example,
an interface cannot be instantiated, and it cannot contain any instance fi elds.

�

�

�

�

�

�

Declaring Interfaces 143

c02.indd 143c02.indd 143 2/11/09 6:15:59 PM2/11/09 6:15:59 PM

144 Chapter 2 � Declarations, Initialization, and Scoping

 Let ’ s look at an example. Suppose we have the following interface named Drawable :

1. import java.awt.Rectangle;

2.

3. public interface Drawable {

4. int MAX_WIDTH = 1024;

5.

6. public void draw();

7. abstract Rectangle getDimensions();

8. void resize(int w, int h);

9. }

 The Drawable interface declares one fi eld, MAX_WIDTH , and three methods. Note that MAX_
WIDTH is public , static , and final , even though these specifi ers were omitted. Similarly,
the draw method is abstract , the getDimensions method is public , and the resize method
is both public and abstract .

 Implementing Interfaces

 A class implements an interface using the implements keyword in the declaration of the
class. A class can implement multiple interfaces by separating the interface names with
commas. For example,

public class Picture implements Drawable

public class Flower implements Plant, Drawable

 A class that implements an interface must do one of the following:

 Override all the methods of the interface.

 Declare itself as abstract.

 Let ’ s look at an example. The following Picture class implements the Drawable
interface. Study the code and determine if it compiles successfully.

1. import java.awt.Rectangle;

2.

3. public class Picture implements Drawable {

4. private Rectangle dimensions;

5. private String artist;

6.

7. public Picture(String artist, int width, int height) {

8. this.artist = artist;

9. dimensions = new Rectangle(width, height);

10. }

11.

12. public void draw() {

�

�

c02.indd 144c02.indd 144 2/11/09 6:15:59 PM2/11/09 6:15:59 PM

13. System.out.println(“Drawing a Picture”);

14. }

15.

16. public Rectangle getDimensions() {

17. return dimensions;

18. }

19.

20. public String getArtist() {

21. return artist;

22. }

23.

24. public void resize(int width, int height) {

25. if(width < Drawable.MAX_WIDTH) {

26. dimensions = new Rectangle(width, height);

27. }

28. }

29. }

 Because Picture is not declared asbstract , Picture must implement all the methods of
 Drawable for it to compile, which it does. Notice the Picture class can have any number of
fi elds and methods in addition to the methods of Drawable . But one thing is certain: if you
have an instance of Picture , then you can invoke draw , resize , and getDimensions on it
because Picture implements Drawable .

 What Is the Purpose of Interfaces?

 An interface can contain abstract method declarations but no method implementations.
Why would we create such an entity? Well, one of the main uses of interfaces is to
provide a communication contract between two objects. In other words, two objects that
need to “ interface ” with each other use an interface. If you know a class implements an
interface, then you know that class contains concrete implementations of the methods
in that interface, and you are guaranteed to be able to invoke those methods safely and
know the object has implemented them.

 For example, the java.lang.Runnable interface contains a single method:

public void run();

 If you give me an object whose class implements Runnable , then I can invoke run(); on that
object, even though I might not know or care about any other methods and fi elds of the object.

 This is a very powerful feature of the Java language used throughout the Java API, and
any well - designed application will use interfaces extensively.

Declaring Interfaces 145

c02.indd 145c02.indd 145 2/11/09 6:15:59 PM2/11/09 6:15:59 PM

146 Chapter 2 � Declarations, Initialization, and Scoping

 If a class implements multiple interfaces, then an implementing class must override the
methods of all the interfaces it implements. Suppose we have the following interface named Plant :

1. public interface Plant {

2. public void photosynthesize();

3. }
 The following Flower plant successfully implements both Plant and Drawable :

1. import java.awt.Rectangle;

2.

3. public class Flower implements Plant, Drawable {

4. public int numOfLeaves;

5.

6. public void photosynthesize() {

7. System.out.println(“Plant is photosynthesizing”);

8. }

9.

10. public void draw() {

11. System.out.println(“Drawing a Plant”);

12. }

13.

14. public Rectangle getDimensions() {

15. return new Rectangle(0,0);

16. }

17.

18. public void resize(int w, int h) {

19. System.out.println(“Resizing a Plant?”);

20. }

21. }

 I can understand drawing a fl ower, but resizing a fl ower probably doesn ’ t make any
sense. There are defi nitely situations in Java where I have implemented an interface and
have been forced to write methods that I did not want to implement. It is not unusual to
have empty method bodies in these situations, which might apply here to the resize and
 getDimension methods of Flower .

 Interfaces and Data Types

 If a class implements an interface, objects from that class are also the data type of the
interface. For example, the Picture and Flower classes, which seem like two totally
unrelated classes, actually share a common data type because both classes implement
 Drawable . Objects of type Picture and Flower are also objects of type Drawable . An
object taking on the form of different data types is referred to as polymorphism, and we
discuss the effects of interfaces on polymorphism in detail in Chapter 6 .

c02.indd 146c02.indd 146 2/11/09 6:16:00 PM2/11/09 6:16:00 PM

 Extending Interfaces

 An interface can extend another interface. In fact, an interface can extend multiple
interfaces. (Don ’ t accuse Java of not allowing multiple inheritance!) Use the extends
keyword to declare that an interface extends another interface. For example, the following
interface extends the Drawable interface:

1. public interface Paintable extends Drawable {

2. public void paint();

3. }

 A class that implements Paintable must override paint and also the three methods in
 Drawable .

 Let ’ s look at an example of multiple interface inheritance. The following Image interface
extends both java.lang.Runnable and Drawable :

1. public interface Image extends Runnable, Drawable {

2. public String getFormat();

3. }

 A class that implements Image must implement the getFormat method, as well as the run
method from Runnable and the three methods from Drawable .

 Multiple Inheritance with Interfaces

 While valid, writing an interface that extends multiple interfaces is not a common
occurrence in Java. There are situations where the multiple inheritance makes sense, but
this is not something you will do every day.

 Declaring Enumerations
 Java 5.0 introduced the concept of enumerations to the Java language, along with a new
keyword: enum . An enumeration is a fi xed set of constants. An enum is a Java class that
represents an enumeration. You use enumerations whenever you have a set of items whose
values are known at compile time. Common uses of enumerations include days of the
week, months of the year, the planets in the solar system, the directions on a compass, or
your favorite fl avors of ice cream. The possibilities for enums are endless, and you should
use them in your Java applications whenever applicable because they provide a type - safe
representation of constant data in your application.

Declaring Enumerations 147

c02.indd 147c02.indd 147 2/11/09 6:16:00 PM2/11/09 6:16:00 PM

148 Chapter 2 � Declarations, Initialization, and Scoping

 Use the enum keyword to declare an enumeration. Just like classes, an enum is defi ned
in a source fi le with a .java extension, and all the rules of package names and directory
structures apply. For example, the following enumeration represents the four seasons:

1. public enum Season {

2. WINTER, SPRING, SUMMER, FALL

3. }

 The Season enum is saved in a source fi le named Season.java , and the compiled
bytecode is in a fi le named Season.class . Enumerations have the following properties:

 The enum keyword actually defines a class behind the scenes that extends java.lang
.Enum . Therefore, an enum cannot extend any other class or enum.

 You do not instantiate an enum. The constants defined in an enum are all implicitly
 public , final , and static , so there is no reason to create instances of the enum class.

 The enum can declare methods and additional fields. These additional fields and
methods must appear after the enum list, and the enum list must end with a semicolon
in this situation.

 Because the elements of an enum are static, you can access them using the name of the
enum. Behind the scenes, the compiler writes a class that extends Enum and creates an
instance of the class for each element in the enum. This generated class contains a static
fi eld for each element in the enum.

 The following code demonstrates the syntax for accessing enum elements. Study the
code and try to determine its output:

5. Season now = Season.WINTER;

6. switch(now) {

7. case WINTER :

8. System.out.println(“It is cold now”);

9. break;

10. case SUMMER :

11. System.out.println(“It is hot now”);

12. break;

13. default:

14. System.out.println(“It is nice now”);

15. }

 You can declare variables of an enum type. The now variable on line 5 is of type Season
and is assigned to Season.WINTER . The case on line 7 is true, so the output of the preceding
code is

It is cold now

�

�

�

c02.indd 148c02.indd 148 2/11/09 6:16:00 PM2/11/09 6:16:00 PM

 Using enums in a switch Statement

 A unique feature of enums is that when you switch on a variable of an enum type, you
do not prefi x the case statements with the enum type and the case statements must be
values from the enum. For example, the following switch statement does not compile if
 now is of type Season :

switch(now) {

 case 0 :

 System.out.println(“It is cold now”);

 break;

 case 1 :

 System.out.println(“It is hot now”);

 break;

 default:

 System.out.println(“It is nice now”);

}

 This code generates the following compiler error:

EnumTest.java:5: an enum switch case label must be the unqualified

 name of an enumeration constant

 case 0 :

 ^

 Using enums

 The compiler generates a special method named values when it generates the class for your
enum declaration. The values method returns an array of the enum values. For example,
suppose we have the following Direction enum:

1. public enum Direction {

2. NORTH, SOUTH, EAST, WEST

3. }

 The following for - each loop iterates through the array returned by the values method
and displays each value using the toString method of the enum:

10. for(Direction d : Direction.values()) {

11. System.out.print(d.toString() + “ “);

12. }

Declaring Enumerations 149

c02.indd 149c02.indd 149 2/11/09 6:16:00 PM2/11/09 6:16:00 PM

150 Chapter 2 � Declarations, Initialization, and Scoping

 The output of this loop is

NORTH SOUTH EAST WEST

 If you ever need the integer value of an enum element, you can use the static method
 ordinal inherited from java.lang.Enum . Can you determine the output of the following
 for - each loop?

14. for(Direction d : Direction.values()) {

15. System.out.print(d.ordinal() + “ “);

16. }

 The integer values of an enum start at 0 and Direction has four values, so the output is

0 1 2 3

 The static valueOf method, inherited from java.lang.Enum , is used to convert a String
value to its corresponding enum value. Examine the following statements and try to
determine the output:

23. Direction home = Direction.valueOf(“SOUTH”);

24. System.out.println(“Heading “ + home);

25. Direction nowhere = Direction.valueOf(“NORTHWEST”);

26. System.out.println(“Going “ + nowhere);

 The home variable equals Direction.SOUTH , so line 24 displays

Heading SOUTH

 However, line 25 throws an exception at runtime because NORTHWEST is not an element
of Direction . The stack trace looks like this:

Exception in thread “main” java.lang.IllegalArgumentException:

No enum const class Direction.NORTHWEST

 at java.lang.Enum.valueOf(Enum.java:192)

 at Direction.valueOf(Direction.java:1)

 at EnumTest.main(EnumTest.java:25)

 Declaring enum Methods

 An enum can declare methods and constructors, as well as other fi elds that are not a part
of the enumerated list of elements. The enumeration list must be declared fi rst in the enum,
followed by a semicolon.

c02.indd 150c02.indd 150 2/11/09 6:16:01 PM2/11/09 6:16:01 PM

 Let ’ s look at an example. The following version of the Direction enum overrides the
 toString method, converting the uppercase enum name to lowercase:

1. public enum Direction {

2. NORTH, SOUTH, EAST, WEST;

3.

4. public String toString() {

5. return this.name().toLowerCase();

6. }

7. }

 The name method is inherited from Enum and returns the corresponding element name.
Try to determine the output of the following statements:

10. for(Direction d : Direction.values()) {

11. System.out.print(d + “ “);

12. }

 Printing the Direction variable d invokes toString behind the scenes, and the output of
this for - each loop is

north south east west

 Declaring enum Constructors

 An enum can also defi ne constructors, useful for enums that contain additional fi elds. For
example, suppose the following enum represents the types of ice cream cones a store sells,
and the number of scoops for each cone is also a constant. Because all of this information
regarding ice cream cones is known at compile time, this is a good scenario for using an enum.

1. public enum IceCream {

2. PLAIN(2),

3. SUGAR(3),

4. WAFFLE(5);

5.

6. private IceCream(int scoops) {

7. this.scoops = scoops;

8. }

9.

10. public final int scoops;

11. }

Declaring Enumerations 151

c02.indd 151c02.indd 151 2/11/09 6:16:01 PM2/11/09 6:16:01 PM

152 Chapter 2 � Declarations, Initialization, and Scoping

 When each element of the enum is declared, you have to denote the argument for the
constructor within parentheses. This invokes the constructor on line 6, which stores the
value in the scoops fi eld of each element in the IceCream enum.

 Study the following code and determine its output:

IceCream cone1 = IceCream.PLAIN;

IceCream cone2 = IceCream.WAFFLE;

System.out.println(cone1 + “ needs “ + cone1.scoops + “ scoops.”);

System.out.println(cone2 + “ needs “ + cone2.scoops + “ scoops.”);

 The output is shown here:

PLAIN needs 2 scoops.

WAFFLE needs 5 scoops.

 Declaring Nested Classes
 The exam objectives state that you need to be able to “ develop code that declares classes
(including all forms of nested classes). ” A nested class is a class defi ned within another
class. A nested class that is nonstatic is referred to as an inner class . There are four types of
nested classes in Java:

 A member inner class is a nonstatic nested class that is declared at the member level of
a class.

 A local inner class is defined within a method. Because it appears within a method,
making it static does not make sense.

 An anonymous inner class is a special case of a local inner class that does not have a
name.

 Top - level inner classes are static inner classes that are nested at the member level of a
class.

 The concept of inner classes was introduced in Java 1.1. There are several benefi ts of
using inner classes, including making your code more readable, allowing for utility classes
to be encapsulated within the class using it, and simplifying the process of writing a class,
thereby actually encouraging developers to be more object oriented. (The easier it is to
write a class, the more likely you are to use classes!) This section discusses the details of
declaring and using the four different types of nested classes.

 Member Inner Classes

 A member inner class is defi ned at the member level of a class (the same level as fi elds,
methods and constructors). Member inner classes have the following properties:

�

�

�

�

c02.indd 152c02.indd 152 2/11/09 6:16:01 PM2/11/09 6:16:01 PM

 A member inner class can be declared public , private , protected or have the default
access.

 A member inner class can extend any class and implement any number of interfaces.

 A member inner class can be abstract or final .

 An inner class cannot declare static fields or methods.

 Most importantly, a member inner class has access to the members of the outer class,
even the private members.

 That last property is what makes inner classes so useful and benefi cial. A member inner
class has access to its outer class members without using any special syntax.

 Let ’ s look at a simple example to get started. Here is a class named Outer that contains a
protected member inner class named Inner :

1. public class Outer {

2. private String greeting;

3.

4. protected class Inner {

5. public int repeat = 3;

6. public void go() {

7. for(int i = 1; i < = repeat; i++) {

8. System.out.println(greeting);

9. }

10. }

11. }

12.}

 An inner class declaration is like any other top - level class. It can declare fi elds, methods,
constructors, and so on. The Inner class has a fi eld named repeat and a method named go .
However, what makes Inner unique is it can access the members of Outer .

 The important line of code here to focus on is line 8 when the Inner class displays the
private greeting fi eld of the Outer class. For line 8 to make sense, there has to be a unique
 greeting associated with the instance of Inner . Otherwise, it is not clear which greeting
reference to display. What makes this possible are the following properties of inner classes:

 An inner class object is associated with exactly one outer class object. This association
is made when the inner object is instantiated with the new keyword.

 You cannot instantiate an instance of an inner class without a corresponding outer
class instance.

 The syntax for instantiating an inner class is to use a reference with the new operator.
For example:

Outer a = new Outer();

Outer.Inner b = a.new Inner();

�

�

�

�

�

�

�

Declaring Nested Classes 153

c02.indd 153c02.indd 153 2/11/09 6:16:01 PM2/11/09 6:16:01 PM

154 Chapter 2 � Declarations, Initialization, and Scoping

 Notice the data type of the Inner reference is Outer.Inner . You only use this syntax in
situations where you are instantiating an inner class from somewhere else other than inside
its outer class, something not commonly done. Typically you instantiate inner objects from
within the enclosing class, using the this reference with the new operator:

Inner x = this.new Inner();

 The Inner object that x refers to is associated with the Outer object that the this
reference refers to. The this reference is implied and can be omitted, but your code might
be clearer if you explicitly denote it.

 Study the following Outer class and see if you can determine the output of its main
method:

1. public class Outer {

2. private String greeting;

3.

4. protected class Inner {

5. public int repeat = 3;

6. public void go() {

7. for(int i = 1; i < = repeat; i++) {

8. System.out.println(greeting);

9. }

10. }

11. }

12.

13. public void displayGreeting() {

14. Inner x = this.new Inner();

15. x.repeat = 2;

16. x.go();

17. }

18.

19. public static void main(String [] args) {

20. Outer y = new Outer();

21. y.greeting = “Hello, Outer”;

22. y.displayGreeting();

23. }

24.}

 Running main causes the following sequence of events to occur:

 1. An Outer object is instantiated within main and its displayGreeting method is
invoked from line 22.

 2. One line 14, an Inner object is instantiated that is associated with the Outer object
from line 20.

c02.indd 154c02.indd 154 2/11/09 6:16:02 PM2/11/09 6:16:02 PM

 3. The repeat field of x is set to 2 on line 15.

 4. Line 16 invokes the Inner object ’ s go method, which prints out the greeting field of y
twice.

 Therefore, the output is

Hello, Outer

Hello, Outer

 Inner Classes Behind the Scenes

 Something interesting to know about inner classes is that a JVM does not have a concept
of inner classes. They are a compile - time feature, and the compiler actually writes a top -
 level class for every inner class that you declare. This new top - level class needs some
special fi elds and methods so that it can access all the members of its enclosing class.
For example, the inner class contains an implicit reference to its outer class object.

 When the Outer class example from this section is compiled, two bytecode fi les are
created: Outer.class and Outer $ Inner.class . (Inner classes are one of the only
times you will ever see a dollar sign in an identifi er.) The compiler wrote a class named
 Outer $ Inner to represent our inner class. You cannot instantiate an Outer $ Inner object
explicitly. You have to use the appropriate inner class syntax.

 Inner classes also have a special syntax for accessing a fi eld in the outer class that you
need to use if the outer class shares a name with a fi eld or method from the inner class. The
following contrived example demonstrates this syntax. Study the code carefully and see if
you can determine the output:

1. public class A {

2. private int x = 10;

3.

4. public class B {

5. private int x = 15;

6.

7. public class C {

8. private int x = 20;

9.

10. public void go() {

11. System.out.println(x);

12. System.out.println(this.x);

Declaring Nested Classes 155

c02.indd 155c02.indd 155 2/11/09 6:16:02 PM2/11/09 6:16:02 PM

156 Chapter 2 � Declarations, Initialization, and Scoping

13. System.out.println(B.this.x);

14. System.out.println(A.this.x);

15. }

16. }

17. }

18.

19. public static void main(String [] args) {

20. A a = new A();

21. A.B b =a.new B();

22. A.B.C c = b.new C();

23. c.go();

24. }

25.}

 Nested Inner Classes

 Notice in the A class it has a nested class B that also has a nested class C. This is
perfectly valid but probably not something you will ever see in the real world.

 A breakdown of the code in the A class follows:

 1. An object of type C is instantiated using an instance of A and B , and its go method is
invoked.

 2. The x on line 11 is implicitly referring to this.x , so 11 and 12 display the same value,
which is 20 . (The this reference inside the C class refers to the C object.)

 3. To access the x field of the B object, prefix the this keyword with the B class name:
 B.this.x . Line 13 displays 15 .

 4. Similarly, the x in A is A.this.x , which is displayed on line 14.

 Keep in mind the syntax A.this and B.this is unique to inner classes only. The output
of running main is

20

20

15

10

c02.indd 156c02.indd 156 2/11/09 6:16:02 PM2/11/09 6:16:02 PM

 Inner Classes as Event Handlers

 A common use of inner classes is for event handlers. An event handler is the type of
object that often needs access to the members of its outer class but likely won ’ t be
reused by another class, making it a good candidate for an inner class. The ColorChanger
class discussed in Listing 2.1 earlier in this chapter declared a member inner class named
 MyButtonListener :

7. public class ColorChanger extends Frame {

8. private Button redBtn, whiteBtn, blueBtn;

23. private class MyButtonListener implements ActionListener {

24. public void actionPerformed(ActionEvent e) {

25. String label = e.getActionCommand();

26. if(label.equals(redBtn.getLabel())) {

27. ColorChanger.this.setBackground(RED);

28. } else if(label.equals(whiteBtn.getLabel())) {

29. ColorChanger.this.setBackground(WHITE);

30. } else if(label.equals(blueBtn.getLabel())) {

31. ColorChanger.this.setBackground(BLUE);

32. }

33. }

34. }

54. private void initializeEvents() {

55. MyButtonListener m = new MyButtonListener();

56. redBtn.addActionListener(m);

57. whiteBtn.addActionListener(m);

58. blueBtn.addActionListener(m);

59. }

60. //Remainder of class definition...

71. }

 Notice the MyButtonListener class uses the special this syntax for accessing the
 setBackground method that ColorChanger inherits from Frame . The inner class also
references the three private Button fi elds of the outer class.

Declaring Nested Classes 157

c02.indd 157c02.indd 157 2/11/09 6:16:02 PM2/11/09 6:16:02 PM

158 Chapter 2 � Declarations, Initialization, and Scoping

 Local Inner Classes

 A local inner class is a nested class defi ned within a method. Like local variables, a local
inner class declaration does not exist until the method is invoked, and it goes out of scope
when the method returns. That means if you defi ne an inner class locally, you can only
create instances from within the method. Local inner classes have the following properties:

 Local inner classes do not have an access specifier.

 Local inner classes cannot be declared static , nor can they declare static fields or
methods.

 Local inner classes have access to all the fields and methods of its enclosing class.

 A local inner class does not have access to the local variables of method unless those
variables are final .

 It might seem odd that a local inner class cannot access a local variable, but recall that
the compiler generates a top - level class from your inner class declaration. It is not possible
for a top - level class to have access to a local variable from a method in another class.
However, if the local variable is final , then a copy of the local variable can be stored in the
generated top - level class, which is exactly what the compiler does behind the scenes.

 The following class demonstrates a local inner class. Examine the code and see if you
can determine what its output is:

1. public class LocalInner {

2.

3. public double radius;

4.

5. public void doSomething() {

6. final double pi = 3.1415;

7.

8. class Circle {

9. public double area() {

10. return pi * radius * radius;

11. }

12. }

13.

14. Circle c = new Circle();

15. System.out.println(c.area());

16. }

17.

18. public static void main(String [] args) {

19. LocalInner x = new LocalInner();

�

�

�

�

c02.indd 158c02.indd 158 2/11/09 6:16:02 PM2/11/09 6:16:02 PM

20. x.radius = 10;

21. x.doSomething();

22. }

23.}

 The doSomething method contains a local inner class named Circle . The Circle class
declares a method named area that refers to the pi variable from line 6, which is only valid
because pi is final . Circle also refers to radius on line 10, which is valid because radius is a
fi eld of the outer class. The code compiles fi ne, the value of radius is 10, so the output is

314.15000000000003

 By the way, compiling LocalInner.java creates two bytecode fi les: LocalInner.class
and LocalInner $ 1Circle.class . The compiler adds a 1 to the name of the Circle class
because it is possible that a different method in the class defi nes another local class named
 Circle .

 Precision of Doubles

 I didn ’ t mean for the local inner class example to demonstrate an issue with the precision
of doubles, but because the output of LocalInner is slightly unusual, I probably
should clarify the result. The product of 3.1415 * 10 * 10 is 314.15 , but the output is
 314.15000000000003 . This is because double values are not exact. They are stored in
64 bits using the IEEE standard 754, which is an accurate technique for representing a
fl oating - point number as a sequence of 1s and 0s, but the values are not entirely exact.
You won ’ t see a question about this on the exam, but it is good information to know. Visit
the IEEE website at www.ieee.org if you are interested in delving into this topic further.

 Anonymous Inner Classes

 An anonymous inner class is a local inner class that does not have a name. It is declared
and instantiated all in one statement using the new keyword. Anonymous inner classes
either extend an existing class or implement an existing interface.

 For example, the following statement declares and instantiates a new class that is a child
of Thread . The anonymous inner class defi nition starts on line 6 and ends with the right
curly brace on line 12. The semicolon on line 12 denotes the end of the new statement.

Declaring Nested Classes 159

c02.indd 159c02.indd 159 2/11/09 6:16:03 PM2/11/09 6:16:03 PM

160 Chapter 2 � Declarations, Initialization, and Scoping

Notice that the anonymous inner class has access to the fi eld x and also the final local
variable s . Study the code and try to determine its output.

1. public class AnonInner {

2. public int x = 10;

3.

4. public void printX() {

5. final String s = “x = “;

6. Thread t = new Thread() {

7. public void run() {

8. while(true) {

9. System.out.println(s + x);

10. }

11. }

12. };

13. t.start();

14. }

15.

16. public static void main(String [] args) {

17. new AnonInner().printX();

18. }

19.}

 You might not be familiar with threads in Java, but invoking start on a Thread object
causes its run method to execute in a new thread of the process. Here is the sequence of
events that occurs within main :

 1. A new outer object is instantiated on line 17 and its printX method on line 4 is
invoked.

 2. An anonymous inner class that extends Thread is declared and instantiated on
lines 6 to 12.

 3. The start method is invoked on this Thread object on line 13, which causes the run
method on line 7 to execute.

 4. The run method contains an infinite loop and prints out “ x = 10 ” until the JVM is
terminated manually (press Ctrl+C in Windows).

 Because the anonymous inner class does not have a name, the compiler assigns it a
number. When AnonInner is compiled, two bytecode fi les are generated: AnonInner.class
and AnonInner $ 1.class .

c02.indd 160c02.indd 160 2/11/09 6:16:03 PM2/11/09 6:16:03 PM

 Anonymous Inner Classes and Interfaces

 An anonymous inner class must either extend an existing class or implement an
existing interface. When implementing an interface, the syntax almost looks like you are
attempting to instantiate an interface, which of course would not be valid. For example,
the following anonymous inner class implements the java.awt.event.ActionListener
interface:

ActionListener x = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 System.out.println(“Action occurred”);

 }

};

 The above inner class declaration is valid because we are not instantiating a new
 ActionListener interface (which wouldn ’ t be valid), but instead we are instantiating an
anonymous class that implements ActionListener .

 Because anonymous inner classes are also local inner classes, all the same rules apply
to both. The difference with anonymous inner classes is that you can create multiple
instances of a local inner class within the method, but an anonymous inner class can only
be instantiated one time.

 Inner Classes as Event Handlers

 Inner classes were introduced to the Java language in JDK 1.1, which coincided with the
Java language introducing the delegation model for event handling. In the real world, an
inner class is an easy option for handling simple events.

 To demonstrate, the following SimpleWindow class defi nes two inner classes: an
anonymous WindowAdapter that terminates the JVM when a user closes the window, and
an ActionListener that changes the background color of the window to red:

import java.awt.*;

import java.awt.event.*;

public class SimpleWindow {

 private Frame frame;

 public SimpleWindow() {

 frame = new Frame(“Click the button”);

Declaring Nested Classes 161

c02.indd 161c02.indd 161 2/11/09 6:16:03 PM2/11/09 6:16:03 PM

162 Chapter 2 � Declarations, Initialization, and Scoping

 frame.setSize(250,200);

 frame.setLayout(new FlowLayout());

 frame.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 System.exit(0);

 }

 });

 Button red = new Button(“Red”);

 red.addActionListener(new RedHandler());

 frame.add(red);

 frame.setVisible(true);

 }

 private class RedHandler implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 frame.setBackground(Color.RED);

 }

 }

 public static void main(String [] args) {

 new SimpleWindow();

 }

}

 Notice both of the inner classes perform simple tasks that require the private frame fi eld,
making them good candidates for inner classes.

 You should be aware, however, that inner classes go against some of the fundamental
OOP concepts, such as reuse of classes and high cohesion (discussed in Chapter 6).
Therefore, make sure inner classes make sense in your program ’ s design and do not
unnecessarily add complexity to your top - level classes.

 Static Nested Classes

 A static nested class is a static class defi ned at the member level of an enclosing class. Static
nested classes are not inner classes. They do not have access to the fi elds and methods of the
enclosing class, and they can be instantiated without a corresponding instance of the outer class.

c02.indd 162c02.indd 162 2/11/09 6:16:04 PM2/11/09 6:16:04 PM

 In other words, a static nested class is not really much different than a top - level class
except for a few subtle benefi ts:

 The nesting creates a type of namespace. To denote a nested class from outside its
enclosing class, the nested class is prefixed with the name of the enclosing class (similar
to how static fields and methods are accessed).

 Access to the nested class can be controlled by an access specifier. For example, a
nested class declared as private can only be used within its enclosing class, in effect
hiding it from any other classes.

 The enclosing class has access to the fields and methods of the nested class, even the
 private ones.

 Let ’ s look at an example. The following Box class is nested within Shipment :

1. import java.awt.Dimension;

2.

3. public class Shipment {

4. public static class Box {

5. public Dimension dimension;

6. public int depth;

7.

8. public Box(Dimension d, int x) {

9. dimension = d;

10. depth = x;

11. }

12.

13. public int getVolume() {

14. return dimension.height * dimension.width * depth;

15. }

16. }

17.

18. public Box box;

19.}

 Even though Box is defi ned inside Shipment , because Box is static it can be used like
any other top - level class. The syntax for referring to Box outside of Shipment is Shipment
.Box . The following Shoe class declares a fi eld of type Shipment.Box and initializes the fi eld
in its constructor. See if you can determine the output of running the main method in Shoe :

1. import java.awt.Dimension;

2.

3. public class Shoe {

4. public Shipment.Box box;

5.

�

�

�

Declaring Nested Classes 163

c02.indd 163c02.indd 163 2/11/09 6:16:04 PM2/11/09 6:16:04 PM

164 Chapter 2 � Declarations, Initialization, and Scoping

6. public Shoe() {

7. Dimension dim = new Dimension(6, 10);

8. box = new Shipment.Box(dim, 4);

9. }

10.

11. public static void main(String [] args) {

12. Shoe sandal = new Shoe();

13. System.out.println(“Volume = “

14. + sandal.box.getVolume());

15. }

16.}

 Here is a breakdown of main :

 1. A Shoe object is instantiated on line 12, invoking the constructor on line 6.

 2. A new Box is instantiated on line 8 with dimensions 6 by 10 by 4, which has a volume
of 240.

 3. The volume is printed out on line 14.

 Therefore, the output of this program is

Volume = 240

 Importing a Nested Class

 Because a static nested class is a static member of a class, it can be imported using a
 static import . For example, suppose Shipment is in the com.sybex.demos package. Then
we can import the Box class using the following static import :

import static com.sybex.demos.Shipment.Box;

 You might be surprised to fi nd out that you can also import the Box class using a regular
 import statement. For example, the following Cereal class is valid and compiles
successfully:

import com.sybex.demos.Shipment.Box;

public class Cereal {

 Box box;

}

 Being able to use an import statement like the one in Cereal is an example of how
declaring a static nested class is like creating a namespace.

c02.indd 164c02.indd 164 2/11/09 6:16:04 PM2/11/09 6:16:04 PM

 Summary
 This chapter covered the “ Declarations, Initialization, and Scoping ” section of the SCJP
exam objectives. Topics discussed include declaring variables, methods, classes, nested
classes, interfaces and enums, as well as the initialization and scoping of variables and
objects.

 Declaring a variable involves stating the data type and giving the variable a name.
Variables that represent fi elds in a class are automatically initialized to their corresponding
 “ zero ” value during object instantiation. Local variables must be specifi cally initialized.
Make sure you know the rules for declaring a valid identifi er in Java.

 Scope refers to that portion of code where a variable can be accessed. There are three
kinds of variables in Java, depending on their scope: instance variables, class variables and
local variables. Instance variables are the nonstatic fi elds of your class. Class variables are
the static fi elds within a class. Local variables are declared within a method.

 An array is a contiguous chunk of memory on the heap representing a fi xed -
 size collection of values that all have the same data type. Arrays are Object types in
Java instantiated using the new keyword or with an array initializer. Java allows for
multidimensional arrays.

 A Java class is defi ned in a .java source fi le and its corresponding compiled bytecode is
in a .class fi le. A class contains instance variables, class variables, methods, constructors,
nested classes, and instance and static initializers. We discussed the events that occur
during the creation of a new object, referred to as the instantiation process, which is
memory allocation, explicit initialization, parent class construction, instance initializers,
then the class constructor executes.

 A constructor is a special method within a class that gets invoked during the
instantiation process. Every class has a constructor: the compiler adds a default constructor
if you do not explicitly defi ne one. Use the this keyword to invoke another constructor in
the same class and the super keyword to invoke a parent class constructor.

 An instance initializer is a block of code declared in a class that executes for each
new instance of the class. An instance initializer executes immediately after the parent
class constructor fi nishes and before the body of the class constructor executes. A static
initializer is a block of code that executes once when a class is loaded by the class loader.

 A method declaration contains an access specifi er, return value, method name,
parameter list, and a throws clause. A method can also be declared static, fi nal, abstract,
native, or synchronized. Use the ellipsis (...) to declare a variable - length argument list.
Classes typically use the JavaBeans naming convention for declaring a property ’ s accessor
and mutator methods. A static method belongs to the class and is invoked using the name
of the class.

 Method overloading is when a class contains multiple methods with the same name
but different parameter lists. Method overriding means writing a child class that contains
the same method signature as its parent class. At runtime the child method executes,
not the parent method. Covariant return types allow the overriding method to return a
data type that is a child of the return type in the parent class. A fi nal method cannot be

Summary 165

c02.indd 165c02.indd 165 2/11/09 6:16:04 PM2/11/09 6:16:04 PM

166 Chapter 2 � Declarations, Initialization, and Scoping

overridden. Method hiding occurs when a child class contains a static method that is also
defi ned in its parent.

 An abstract class is a class that cannot be instantiated. An abstract method is an
instance method of a class that does not contain a method body and must be overridden
by any nonabstract child classes. An interface is a collection of abstract methods. A class
implements an interface, inheriting all the abstract methods declared in the interface.

 An enum is a Java class that represents an enumeration. Use the enum keyword to declare
an enumeration. The constants defi ned in an enum are all implicitly public , final , and
 static . The compiler generates a special method named values that returns an array of the
enum values.

 A nested class is a class defi ned within another class. A nested class that is nonstatic
is referred to as an inner class. A member inner class is defi ned at the member level of
a class. A local inner class is a nested class defi ned within a method. An anonymous inner
class is a local inner class that does not have a name. It is declared and instantiated all in
one statement using the new keyword. A static nested class is a static class defi ned at the
member level of an enclosing class.

 Be sure to test your knowledge of declarations, initialization, and scoping by answering
the Review Questions that follow. Make sure you have a good understanding of the
following Exam Essentials before attempting the Review Questions.

 Exam Essentials

 Be able to read and understand a class definition. A large percentage of questions on the
exam show you a class defi nition or a snippet of a class and ask you to determine the result
of the code. You need to understand the concepts of instance variable, static variables,
methods, constructors, nested classes.

 Recognize the difference between method overloading and method overriding. A method
is overloaded when the class contains two methods with the same name but different
parameter lists. A child class can overload a method that is defi ned in the parent, but that
is not the same as method overriding. A child class overrides a parent class method when it
contains a method with the same signature as a parent method.

 Understand the difference between static and instance. An instance variable or method
is associated with the instances (objects) of the class. They do not exist in memory until
an object is instantiated, and each object has its own instance members in memory. A
static variable belongs to the class and is accessed using the class name. A static variable
or method exists when the class is loaded and there is only one instance of the variable or
method in memory.

 Understand the use of this and super in constructors. The this keyword is used to
invoke another constructor in the same class. The super keyword invokes a parent class
constructor. A constructor must contain either a call to this or a call to super on the fi rst

c02.indd 166c02.indd 166 2/11/09 6:16:05 PM2/11/09 6:16:05 PM

line of the constructor. If you write a constructor and do not explicitly call this or super
on the fi rst line, the compiler inserts super() .

 Know how to declare and use an enumeration. An enumeration is declared using the enum
keyword. Expect a question on the exam that uses an enum in a switch statement.

 Recognize the different types of nested classes. There are four types of nested classes:
member, local, anonymous and static. Member, local and anonymous nested classes are
referred to as inner classes because they have access to all the fi elds and methods of their
corresponding outer class. Local inner classes can only access local variables that are fi nal.

 Understand how to instantiate and use arrays. Arrays are a common occurrence in the
exam questions. Remember that an array is fi xed in size and accessing an index outside of
the array ’ s range results in an ArrayIndexOutOfBoundsException. All array objects have a
length attribute. Arrays can be in a single statement using an array initializer.

 Exam Essentials 167

c02.indd 167c02.indd 167 2/11/09 6:16:05 PM2/11/09 6:16:05 PM

168 Chapter 2 � Declarations, Initialization, and Scoping

 Review Questions
 1. What is the result of the following code?

1. public class Shape {

2. private String color;

3.

4. public Shape(String color) {

5. System.out.print(“Shape”);

6. this.color = color;

7. }

8.

9. public static void main(String [] args) {

10. new Rectangle();

11. }

12. }

13.

14. class Rectangle extends Shape {

15. public Rectangle() {

16. System.out.print(“Rectangle”);

17. }

18. }

 A. ShapeRectangle

 B. RectangleShape

 C. Rectangle

 D. Line 4 generates a compiler error.

 E. Line 15 generates a compiler error.

 2. Given the following class definitions:
1. public class Parent {

2. public Parent() {

3. System.out.print(“A”);

4. }

5. }

6.

7. class Child extends Parent {

8. public Child(int x) {

9. System.out.print(“B”);

10. }

11.

c02.indd 168c02.indd 168 2/11/09 6:16:05 PM2/11/09 6:16:05 PM

12. public Child() {

13. this(123);

14. System.out.print(“C”);

15. }

16.}

 what is the output of the following statement?
new Child();

 A. ABC

 B. ACB

 C. AB

 D. AC

 E. This code does not compile.

 3. Which of the following identifiers are valid Java identifiers? (Select three.)

 A. A $ B

 B. _helloWorld

 C. transient

 D. java.lang

 E. Public

 F. 1980_s

 4. What is the output of the following program?
1. public class WaterBottle {

2. private String brand;

3. private boolean empty;

4.

5. public static void main(String [] args) {

6. WaterBottle wb = new WaterBottle();

7. if(!wb.empty) {

8. System.out.println(“Brand = “ + wb.brand);

9. }

10. }

11.}

 A. Line 6 generates a compiler error.

 B. Line 7 generates a compiler error.

 C. Line 8 generates a compiler error.

 D. There is no output.

 E. Brand = null

Review Questions 169

c02.indd 169c02.indd 169 2/11/09 6:16:05 PM2/11/09 6:16:05 PM

170 Chapter 2 � Declarations, Initialization, and Scoping

 5. Given the following class definition:
1. public class Television {

2. private int channel = setChannel(7);

3.

4. public Television(int channel) {

5. this.channel = channel;

6. System.out.print(channel + “ “);

7. }

8.

9. public int setChannel(int channel) {

10. this.channel = channel;

11. System.out.print(channel + “ “);

12. return channel;

13. }

14.}

 what is the output of the following statement?
new Television(12);

 A. 12

 B. 12 7

 C. 7 12

 D. 7

 E. The code does not compile.

 6. Given the following my.school.ClassRoom and my.city.School class definitions:
1. //ClassRoom.java

2. package my.school;

3. public class ClassRoom {

4. private int roomNumber;

5. protected String teacherName;

6. static int globalKey = 54321;

7.

8. ClassRoom(int r, String t) {

9. roomNumber = r;

10. teacherName = t;

11. }

12. }

//School.java

c02.indd 170c02.indd 170 2/11/09 6:16:06 PM2/11/09 6:16:06 PM

1. package my.city;

2. import my.school.ClassRoom;

3. public class School {

4. public static void main(String [] args) {

5. System.out.println(ClassRoom.globalKey);

6. ClassRoom room = new ClassRoom(101, “Mrs. Anderson”);

7. System.out.println(room.roomNumber);

8. System.out.println(room.teacherName);

9. }

10. }

 which of the following line numbers in main generate a compiler error? (Select all
that apply.)

 A. None; the code compiles fine.

 B. Line 5

 C. Line 6

 D. Line 7

 E. Line 8

 7. Suppose we have the following class named ClassRoom :
1. package my.school;

2. public class ClassRoom {

3. public static int globalKey = 54321;

4. }

 Now suppose we have the following class named Administrator:
1. package my.city;

2.

3. public class Administrator {

4. public int getKey() {

5. return globalKey;

6. }

7. }

 Which one of the following statements inserted at line 2 of the Administrator class
will make the Administrator class compile successfully?

 A. import my.school.ClassRoom;

 B. import static my.school.ClassRoom.*;

 C. import static my.school.ClassRoom;

 D. import static my.school.*;

 E. Nothing — the class compiles.

Review Questions 171

c02.indd 171c02.indd 171 2/11/09 6:16:06 PM2/11/09 6:16:06 PM

172 Chapter 2 � Declarations, Initialization, and Scoping

 8. What is the output of the following program?
1. public class ScorePrinter {

2. public static void printScores(int... scores) {

3. for(int x : scores) {

4. System.out.print(x + “,”);

5. }

6. }

7.

8. public static void main(String [] args) {

9. int [] x = {198, 247, 152, 207};

10. printScores(x);

11. }

12.}

 A. Compiler error on line 2

 B. Compiler error on line 9

 C. Compiler error on line 10

 D. 198,247,152,207

 E. 198,247,152,207,

 9. Given the following class definition:

1. public class Test {

2. public void print(byte x) {

3. System.out.print(“byte”);

4. }

5. public void print(int x) {

6. System.out.print(“int”);

7. }

8. public void print(float x) {

9. System.out.print(“float”);

10. }

11. public void print(Object x) {

12. System.out.print(“Object”);

13. }

14.}

 what is the result of the following statements?

20. Test t = new Test();

21. short s = 123;

22. t.print(s);

c02.indd 172c02.indd 172 2/11/09 6:16:06 PM2/11/09 6:16:06 PM

23. t.print(12345L);

24. t.print(6.789);

 A. bytefloatObject

 B. intfloatObject

 C. byteObjectfloat

 D. intObjectfloat

 E. intObjectObject

 F. byteObjectObject

 10. Given the following interface and class defined in a file named Traceable.java , what is
the result of compiling this code?

1. public interface Traceable {

2. public static int MAX_TRACE;

3. public void trace();

4. }

5.

6. class Picture implements Traceable {

7. public void trace() {

8. System.out.println(“Tracing a picture”);

9. }

10. }

 A. Two bytecode files: Traceable.class and Picture.class

 B. One bytecode file: Traceable.class

 C. Compiler error on line 2

 D. Compiler error on line 3

 E. Compiler error on line 6

 F. Compiler error on line 7

 11. Given the following class definition:

1. public class Browser {

2. public static void addToFavorites(int id, String... urls) {

3. for(String url : urls) {

4. System.out.println(url);

5. }

6. }

7. }

 which of the following statements are valid method calls to addToFavorites ?

 A. Browser.addToFavorites(101);

 B. Browser.addToFavorites();

Review Questions 173

c02.indd 173c02.indd 173 2/11/09 6:16:06 PM2/11/09 6:16:06 PM

174 Chapter 2 � Declarations, Initialization, and Scoping

 C. Browser.addToFavorites(102, “ a “);

 D. Browser.addToFavorites(103, 104, 105);

 E. Browser.addToFavorites(106, “ x ” , “ y ” , “ z “);

 12. Suppose we have the following class definition:

1. public class Outer {

2. private int x = 5;

3.

4. protected class Inner {

5. public static int x = 10;

6.

7. public void go() {

8. System.out.println(x);

9. }

10. }

11.}

 Given the following code:

15. Outer out = new Outer();

16. Outer.Inner in = out.new Inner();

17. in.go();

 which of the following statements are true?

 A. The output is 10.

 B. The output is 5.

 C. Line 16 generates a compiler error.

 D. Line 5 generates a compiler error.

 13. Given the following class definitions:

1. class Parent {

2. public void printResults(String... results) {

3. System.out.println(“In Parent”);

4. }

5. }

6.

7. class Child extends Parent {

8. public int printResults(int id) {

9. System.out.println(“In Child”);

10. return 0;

11. }

12.}

c02.indd 174c02.indd 174 2/11/09 6:16:06 PM2/11/09 6:16:06 PM

 what is the result of the following statement?

new Child().printResults(0);

 A. In Parent

 B. In Child

 C. 0

 D. Line 2 generates a compiler error.

 E. Line 8 generates a compiler error.

 14. Given the following enum declaration:

1. public enum Flavors {

2. VANILLA, CHOCOLATE, STRAWBERRY

3. }

 what is the result of the following statement?

System.out.println(Flavors.CHOCOLATE.ordinal());

 A. 0

 B. 1

 C. CHOCOLATE

 D. 9

 E. The statement will not compile.

 15. What is the result of the following program?

1. class Parent {

2. public float computePay(double d) {

3. System.out.println(“In Parent”);

4. return 0.0F;

5. }

6. }

7.

8. public class Child extends Parent {

9. public double computePay(double d) {

10. System.out.println(“In Child”);

11. return 0.0;

12. }

13.

14. public static void main(String [] args) {

15. new Child().computePay(0.0);

16. }

17. }

Review Questions 175

c02.indd 175c02.indd 175 2/11/09 6:16:06 PM2/11/09 6:16:06 PM

176 Chapter 2 � Declarations, Initialization, and Scoping

 A. In Parent

 B. In Child

 C. 0.0

 D. null

 E. The code does not compile.

 16. Given the following class definition:

1. import java.awt.Dimension;

2. public class Shipment {

3. public static class Box {

4. public Dimension dimension;

5. public int depth;

6.

7. public Box(Dimension d, int x) {

8. dimension = d;

9. depth = x;

10. }

11.

12. private int getVolume() {

13. return dimension.height * dimension.width * depth;

14. }

15. }

16.

17. public Box box;

18.

19. public void go() {

20. System.out.println(box.getVolume());

21. }

22.}

 what is the result of the following code (assuming all types are properly imported)?
Dimension dim = new Dimension(10,10);

Box b = new Box(dim, 10);

Shipment s = new Shipment();

s.box = b;

s.go();

 A. 1000

 B. Compiler error on line 3

 C. Compiler error on line 13

 D. Compiler error on line 17

 E. Compiler error on line 20

c02.indd 176c02.indd 176 2/11/09 6:16:07 PM2/11/09 6:16:07 PM

 17. Given the following enum definition:

1. public enum Flavors {

2. VANILLA, CHOCOLATE, STRAWBERRY

3. }

 what is the output from the following code?

9. Flavors f = Flavors.STRAWBERRY;

10. switch(f) {

11. case 0:

12. System.out.println(“vanilla”);

13. case 1:

14. System.out.println(“chocolate”);

15. case 2:

16. System.out.println(“strawberry”);

17. break;

18. default:

19. System.out.println(“missing flavor”);

20. }

 A. vanilla

 B. chocolate

 C. strawberry

 D. missing flavor

 E. The code does not compile.

 18. Given the following class definition:

1. import java.awt.*;

2. import java.awt.event.*;

3.

4. public class MyWindow {

5. private Frame frame = new Frame();

6.

7. public void registerEvents() {

8. WindowAdapter wa = new WindowAdapter() {

9. public void windowClosing(WindowEvent e) {

10. frame.setVisible(false);

11. frame.dispose();

12. }

13. };

14. frame.addWindowListener(wa);

15. }

16.}

Review Questions 177

c02.indd 177c02.indd 177 2/11/09 6:16:07 PM2/11/09 6:16:07 PM

178 Chapter 2 � Declarations, Initialization, and Scoping

 which of the following statements are true? (Select two.)

 A. Lines 10 and 11 generate a compiler error.

 B. Lines 8 to 13 are an anonymous inner class declaration.

 C. The object instantiated on line 8 does not have access to the frame field on line 5
because frame is private .

 D. The method on line 9 never executes because its definition goes out of scope after line 15.

 E. The anonymous inner class on line 8 is a child of WindowAdapter .

 19. Suppose a method in a class has the following method declaration:

public java.io.OutputStream createStream(String fileName) {

 //method body here...

}

 Which of the following methods could appear in a child class and override
createStream ? (Select two.)

 A. public java.io.OutputStream createStream(String f)

 B. public java.io.OutputStream createStream(char c)

 C. public java.io.FileOutputStream createStream(String f)

 D. public void createStream(String c)

 E. public java.io.OutputStream createStream(StringBuffer fileName)

 F. protected java.io.OutputStream createStream(String fileName)

 20. Given the following class definitions, what is the output of the statement new Child(); ?

1. class Parent {

2. {

3. System.out.print(“1”);

4. }

5.

6. public Parent(String greeting) {

7. System.out.print(“2”);

8. }

9. }

10.

11. class Child extends Parent {

12. static {

13. System.out.print(“3”);

14. }

15.

16. {

17. System.out.print(“4”);

18. }

19. }

c02.indd 178c02.indd 178 2/11/09 6:16:07 PM2/11/09 6:16:07 PM

 A. 1234

 B. 3123

 C. 3142

 D. 3124

 E. The code does not compile.

 21. Given the following enum declaration:

1. public enum Fruit {

2. APPLE(“red”),

3. BANANA(“yellow”),

4. ORANGE(“orange”),

5. PLUM(“purple”);

6.

7. private Fruit(String color) {

8. this.color = color;

9. }

10.

11. public String color;

12. }

 what is the result of the following program?

15. public class FruitStore {

16. public static void main(String [] args) {

17. Fruit one = Fruit.PLUM;

18. System.out.println(“a “ + one.name() + “ is “ + one.color);

19. }

20. }

 A. a PLUM is purple

 B. a Fruit.PLUM is purple

 C. The Fruit enum does not compile.

 D. Compiler error on line 17

 E. Compiler error on line 18

 22. Given the following class definition:

1. class Outer {

2. private int x = 24;

3.

4. public int getX() {

5. String message = “x is “;

6. class Inner {

7. private int x = Outer.this.x;

8. public void printX() {

Review Questions 179

c02.indd 179c02.indd 179 2/11/09 6:16:07 PM2/11/09 6:16:07 PM

180 Chapter 2 � Declarations, Initialization, and Scoping

9. System.out.println(message + x);

10. }

11. }

12. Inner in = new Inner();

13. in.printX();

14. return x;

15. }

16.}

 what is the result of the following statement?
new Outer().getX();

 A. x is 24

 B. x is 0

 C. Compiler error on line 7

 D. Compiler error on line 9

 E. Compiler error on line 12

 23. Given the following class definitions:

1. class Parent {

2. public void print(double d) {

3. System.out.print(“Parent”);

4. }

5. }

6.

7. class Child extends Parent {

8. public void print(int i) {

9. System.out.print(“Child”);

10. }

11.}

 what is the result of the following code?

15. Child child = new Child();

16. child.print(10);

17. child.print(3.14);

 A. ChildParent

 B. ChildChild

 C. ParentParent

 D. Line 8 generates a compiler error.

 E. Line 17 generates a compiler error.

c02.indd 180c02.indd 180 2/11/09 6:16:08 PM2/11/09 6:16:08 PM

 24. Given the following interface definitions:

1. //Readable.java

2. public interface Readable {

3. public abstract void read();

4. }

1. //SpellCheck.java

2. public interface SpellCheck extends Readable {

3. public void checkSpelling();

4. }

 which of the following statements are true? (Select all that apply.)

 A. The SpellCheck interface does not compile.

 B. A class that implements Readable must override the read method.

 C. A class that implements SpellCheck inherits both the checkSpelling and read
methods.

 D. A class that implements SpellCheck only inherits the checkSpelling method.

 E. An interface cannot extend another interface.

 25. Given the following class definitions:

1. class Pet {

2. {

3. System.out.print(“A”);

4. }

5. public Pet() {

6. System.out.print(“B”);

7. }

8. {

9. System.out.print(“C”);

10. }

11.

12.}

13.

14. class Cat extends Pet {

15. public Cat() {

16. System.out.print(“D”);

17. }

18. static {

19. System.out.print(“E”);

20. }

21.}

Review Questions 181

c02.indd 181c02.indd 181 2/11/09 6:16:08 PM2/11/09 6:16:08 PM

182 Chapter 2 � Declarations, Initialization, and Scoping

 what is the result of the following statement?

new Cat();

 A. ABCDE

 B. ACBED

 C. EACBD

 D. EBACD

 E. The output may vary.

c02.indd 182c02.indd 182 2/11/09 6:16:08 PM2/11/09 6:16:08 PM

Answers to Review Questions
 1. E. If a constructor does not call this or super on its fi rst line of code, the compiler inserts

the statement super();, which occurs in the Rectangle class just after line 15. A call to
super() in Rectangle invokes a no-argument constructor in Shape, but Shape does not
have a no-argument constructor. The compiler error occurs at line 15, so the answer is E.

2. A. The statement new Child() invokes the constructor on line 12. The call to this(123)
invokes the constructor on line 8, which calls super() implicitly before line 9. The call to
super() invokes the constructor on line 3, where A is printed. Control jumps back to line 9
and B is printed. Control jumps back to line 14 and C is printed.

3. A, B, and E. A is valid because you can use the dollar sign in identifi ers. B is valid because
the underscore is a valid Java character. C is not a valid identifi er because transient is
a Java keyword. D is not valid because the dot (.) is not allowed in identifi ers. E is valid
because Java is case sensitive, so Public is not a keyword and therefore a valid identifi er.
F is not valid because the fi rst character is not a letter.

4. E. The code compiles fi ne, so A, B, and C are incorrect. Boolean fi elds initialize to false
and references initialize to null, so empty is false and brand is null. Therefore, line 7 is
true and Brand = null is output. Therefore, D is incorrect and the answer is E.

5. C. The code compiles fi ne, so E is incorrect. Because explicit initialization occurs before
a constructor is invoked, line 2 executes before the Television constructor on line 4 is
executed. The 7 is output on line 11, then the constructor is invoked and 12 is output.
Therefore, the output is 7 12, so the answer is C.

6. B, C, D, and E. The code does not compile, so A is incorrect. Line 5 is not valid because
globalKey has the default access and School is in a different package than ClassRoom.
Line 6 is not valid for the same reason: the ClassRoom constructor has default access so
School does not have access to it. Line 7 is not valid because roomNumber is private and
therefore not accessible outside of ClassRoom. Line 8 is not valid because teacherName
is protected and School is neither in the same package nor a subclass of ClassRoom.
Therefore, the answers are B, C, D, and E.

7. B. E is incorrect. Without any imports, the Administrator class will not compile because
line 5 of Administrator refers to globalKey, a static fi eld in ClassRoom.
A imports the ClassRoom class, which is a valid import but does not import globalKey.
B imports all static fi elds of ClassRoom, so B is a correct answer. C and D are not valid
statements and generate compiler errors. Therefore, the only correct answer is B.

8. E. The printScores method takes in a variable-length argument on line 2 and it is
correctly declared, so A is incorrect. Line 9 is a valid array initializer statement, so B is
incorrect. A variable-length parameter is an array behind the scenes and can accept an
array argument, so line 10 is valid and C is incorrect. The code compiles and the for-each
loop displays each number in the array followed by a comma, so D is incorrect and E is the
correct answer.

Answers to Review Questions 183

c02.indd 183c02.indd 183 2/11/09 6:16:08 PM2/11/09 6:16:08 PM

184 Chapter 2 � Declarations, Initialization, and Scoping

 9. B. The argument on line 22 is a short. It can be promoted to an int, so print on line 5
is invoked. The argument on line 23 is a long. It can be promoted to a float, so print on
line 8 is invoked. The argument on line 24 is a double. It can be promoted to a java.lang.
Double, so print on line 11 is invoked. Therefore, the output is intfloatObject and the
correct answer is B.

10. C. This is a tricky question. The code does not compile, so A and B are incorrect. All fi elds
in an interface are implicitly fi nal, and static fi nal fi elds must be initialized. Line 3 compiles
fi ne, as do lines 6 and 7, so D, E, and F are incorrect. Because MAX_TRACE is not initialized,
line 2 generates a compiler error. Therefore, the answer is C.

11. A, C, and E. The urls parameter is variable length, so any number of Strings can be
passed in after the int argument. A has no Strings, C has one String, and E has three
Strings, so these answers are correct. B does not pass in the required int and generates a
compiler error. D passes in three ints, which also generates a compiler error.

12. D. The class does not compile, so A and B are incorrect. Line 16 compiles and is the proper
syntax for instantiating a new Inner object outside of the Outer class, so C is incorrect. An
inner class cannot declare static fi elds or methods, so line 5 generates a compiler error and
the answer is D.

13. B. The code compiles fi ne, so D and E are incorrect. The printResults method in Child
is overloading printResults in Parent, not overriding. In method overloading, the return
type can be any data type, so printResults in Child returning an int is not a problem.
Invoking printResults with an int argument calls the method on line 8, which displays
In Child. Therefore, the answer is B.

14. B. The ordinal method of an enum element returns its corresponding int value. Enums
are zero-based, so VANILLA is 0, CHOCOLATE is 1, and STRAWBERRY is 2. Therefore, the
answer is B.

15. E. The return type of an overridden method must either be the same or a child class of the
return type of the parent method. Because double is not a child class of float (they are
primitive types), line 8 generates a compiler error. Therefore, the answer is E.

16. A. The code compiles fi ne. A class can contain a static nested class, so B is incorrect. Line
13 can access only fi elds of Box which it does, so C is incorrect. Shipment can use the Box
class without any special syntax or prefi xes, so line 17 is valid and D is incorrect. Shipment
has access to the private methods of Box, so line 20 is valid and E is incorrect. The volume
of the Box is 10*10*10 = 1000, so the output is 1000 and the answer is A.

17. E. A case statement on an enum data type must be the unqualifi ed name of an
enumeration constant. You cannot use their ordinal values in a case. Therefore, a compiler
error occurs on lines 11, 13, and 15, so the answer is E.

18. B and E. The code compiles fi ne, so A is incorrect. B is a true statement. C is incorrect
because inner classes have access to all private fi elds of the enclosing class. D
is incorrect because the scope of a method declaration is really not relevant. (The method can
still be invoked at any time.) E is a true statement. Therefore, the correct answers are B and E.

c02.indd 184c02.indd 184 2/11/09 6:16:08 PM2/11/09 6:16:08 PM

19. A and C. A has the same signature and return type, and C has the same signature and
a covariant return type, so A and C are valid overriding declarations. B and E are valid
methods for a child class, but they are examples of method overloading, not overriding.
D has an incompatible return type. F is a weaker access than public, which is not allowed.

20. E. The Child class gets the default constructor because it does not defi ne a constructor
explicitly. The default constructor contains the line super(); which does not compile
because Parent does not have a no-argument constructor. Therefore, the correct answer is E.

21. A. All the code compiles fi ne, so C, D, and E are incorrect. The name method of an enum
element returns its unqualifi ed name, which for the one reference is PLUM. The color fi eld
for PLUM is purple, so the output is a PLUM is purple. Therefore, the answer is A.

22. D. The code does not compile, so A and B are incorrect. Line 7 uses the proper syntax for
an inner class accessing a fi eld in the enclosing class, so C is incorrect. Line 12 is fi ne, so E
is incorrect. On line 9, the local inner class Inner is attempting to access a non-fi nal local
variable, which generates a compiler error. Therefore, the answer is D.

23. A. The code compiles fi ne, so D and E are incorrect. The child class is overloading print,
not overriding it. The method call on line 16 invokes print in the child, and the method
call on line 17 invokes print in the parent, so the output is ChildParent. Therefore, the
answer is A.

24. C. The SpellCheck interface compiles fi ne, so A is false. B is false; a class that implements
Readable can be declared abstract and not override read. C is a true statement; a class
that implements SpellCheck must either override both checkSpelling and read or declare
itself as abstract. Because C is true, D must be false. E is false; an interface can actually
extend multiple interfaces. Therefore, the only answer is C.

25. C. Executing new Cat() means the Cat class must be loaded fi rst by the class loader,
which causes its static initializer on line 18 to execute fi rst, displaying E. The Pet instance
initializers are next, in the order they appear, so A and C are displayed. Then the Pet
constructor is invoked, displaying B, and fi nally the Cat constructor is invoked, displaying D.
The output is EACBD, so the answer is C.

Answers to Review Questions 185

c02.indd 185c02.indd 185 2/11/09 6:16:09 PM2/11/09 6:16:09 PM

c02.indd 186c02.indd 186 2/11/09 6:16:09 PM2/11/09 6:16:09 PM

 Flow Control

 SCJP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

 Develop code that implements an if or switch statement;

and identify legal argument types for these statements.

 Develop code that implements all forms of loops and

iterators, including the use of for, the enhanced for loop

(for - each), do, while, labels, break, and continue; and

explain the values taken by loop counter variables during

and after loop execution.

 Develop code that makes use of assertions, and

distinguish appropriate from inappropriate uses of

assertions.

 Develop code that makes use of exceptions and exception

handling clauses (try, catch, finally), and declares

methods and overriding methods that throw exceptions.

 Recognize the effect of an exception arising at a specified

point in a code fragment. Note that the exception may be

a runtime exception, a checked exception, or an error.

 Recognize situations that will result

in any of the following being thrown:

ArrayIndexOutOfBoundsException, ClassCastException,

IllegalArgumentException, IllegalStateException,

NullPointerException, NumberFormatException,

AssertionError, ExceptionInInitializerError,

StackOverflowError or NoClassDefFoundError.

Understand which of these are thrown by the virtual

machine and recognize situations in which others should

be thrown programmatically.

�

�

�

�

�

�

Chapter

3

c03.indd 187c03.indd 187 2/11/09 6:17:29 PM2/11/09 6:17:29 PM

 The exam tests your knowledge of all aspects of fl ow control,
including decision making, loop control structures, assertions, and
exception handling. This chapter covers all of these topics in detail.

 Overview of Flow Control
 Flow control refers to the order in which the statements in your Java program execute.
The starting point of a Java program is the main method, and the statements of your Java
program generally execute in the order they appear. However, we often need to alter
this fl ow of control by making decisions or looping through statements to repeat a task.
Problems might arise at runtime that might justify a method immediately terminating, or
you might have trouble fi nding a bug so you make various assertions in your code. Each
of these situations changes the order of execution (and therefore the fl ow of control) of the
statements in your program.

 Section 2 of the SCJP exam tests your knowledge of the various aspects of Java that
affect the fl ow of control of a Java program. For example, Java contains the following
typical control structures that most programming languages defi ne for making decisions
and repetition:

 Decision Making: The if - else and switch statements are the two control structures
in Java for making decisions.

 Repetition: for loops, enhanced for loops, while loops, and do - while loops are the
control structure for performing repetition.

 This chapter discusses the proper syntax and usage of these control structures. We also
examine the details of Java assertions, which are helpful in detecting and fi xing bugs in your
Java programs. In addition, we cover exception handling in detail, including when exceptions
need to be caught and when they can be ignored. We start with the control structures,
beginning with the most basic of decision - making structures: the if - else statement.

 The if Statement
 The exam objectives state that you should be able to “ develop code that implements an if
statement and identify legal argument types. ” An if statement , also referred to as an if -
 else or if - then - else statement, is the most basic of decision - making control structures in
Java. Figure 3.1 shows the syntax of an if statement.

�

�

c03.indd 188c03.indd 188 2/11/09 6:17:30 PM2/11/09 6:17:30 PM

 The following rules apply to an if - else statement:

 The expression in parentheses must evaluate to a boolean . Otherwise, a compiler error
is generated.

 If the boolean expression evaluates to true , the block of code following the if executes.

 If the boolean expression evaluates to false , the else block executes.

 The else block is optional.

 The curly braces are not required in either the if or else block if the block of code is a
single statement. However, for readability it is a good idea to always use the curly braces.

 An else block can contain an additional if statement.

 The following simple example of an if statement demonstrates the syntax:

8. int x = (int) (Math.random() * 10 + 1);

9. if(x < = 5) {

10. System.out.println(“Under five”);

11. }

 The value of x is assigned a random number between 1 and 10 . If the value of x is less
than or equal to 5 , then Under five displays on line 10. If x is greater than 5 , the block of
code that contains line 10 is skipped.

 An else can be added to any if statement. The following if - then - else statement
outputs either Under five or Over five :

8. int x = (int) (Math.random() * 10 + 1);

9. if(x < = 5) {

10. System.out.println(“Under five”);

11. } else {

12. System.out.println(“Over five”);

13. }

�

�

�

�

�

�

if(boolean_expression) {

 //if block

} else {

 //else block

}

The if keyword

Parentheses (required)

Executes when boolean_expression is true.

Executes when boolean_expression is false.

The else statement and subsequent
else block is optional.

F I GU R E 3 .1 The syntax of an if statement

The if Statement 189

c03.indd 189c03.indd 189 2/11/09 6:17:30 PM2/11/09 6:17:30 PM

190 Chapter 3 � Flow Control

 if Statements and boolean Expressions

 The expression in parentheses of an if statement must evaluate to a boolean
expression. The following code does not compile:

int y = 12;

if(y) {

 //This does not work

}

 The following compiler error occurs:

If Then.java:11: incompatible types

found : int

required: boolean

 if(y) {

 In other languages like C and C++ that do not have primitive Boolean types, any
non - zero value is considered true and any zero value is false. This concept does not
translate in Java. All the control structures that we discuss in this chapter require
 boolean expressions that evaluate to either true or false .

 An if - then - else statement can contain any number of else if blocks. For example,
study the following code and see if you can determine its output:

1. public class Grades {

2. public static void showGrade(int grade) {

3. if(grade > = 90) {

4. System.out.print(“A”);

5. } else if(grade > = 80) {

6. System.out.print(“B”);

7. } else if(grade > = 70) {

8. System.out.print(“C”);

9. } else if(grade > = 60) {

10. System.out.print(“D”);

11. } else {

12. System.out.print(“F”);

13. }

14. System.out.println(“ is your grade”);

15. }

16.

c03.indd 190c03.indd 190 2/11/09 6:17:31 PM2/11/09 6:17:31 PM

17. public static void main(String [] args) {

18. showGrade(77);

19. showGrade(54);

20. }

21.}

 After an if expression evaluates to true and its corresponding block of code executes,
control leaves the if - then - else statement. For example, when grade equals 77 , line 7 is
 true and line 8 executes, printing C . Line 9 is also true , but it is not evaluated because
control jumps out of the if statement to line 14.

 When grade equals 54 , none of the if statements are true , so the else on line 11
executes and an F displays. The output of the Grades program is

C is your grade

F is your grade

 Note that at most one block of code in an if - then - else control structure executes. The
last else block is always optional. When no else block appears, no block of code executes
if all the boolean expressions are false . Otherwise, when an if - then - else does contain
an ending else block, exactly one block of code in the control structure executes: either the
fi rst if condition to evaluate to true , or the else block if all if conditions are false .

 Be Careful with boolean Comparisons

 Watch out for assignment statements that look like boolean expressions. For example,
look at the following code and see if you can determine its output:

12. boolean b = false;

13. if(b = true) {

14. System.out.println(“true”);

15. } else {

16. System.out.println(“false”);

17. }

 This code compiles fi ne. On line 13, b = true is an assignment, not a comparison. The
result of this boolean assignment is the value of b after the assignment, which is true .
Therefore, the output of this code is

true

 Keep an eye out for this type of question on the exam.

The if Statement 191

c03.indd 191c03.indd 191 2/11/09 6:17:32 PM2/11/09 6:17:32 PM

192 Chapter 3 � Flow Control

 Next we discuss the other decision - making control structure in Java: the switch
statement.

 The switch Statement
 The exam objectives state that you should be able to “ develop code that implements a
 switch statement and identify legal argument types. ” A switch statement is a decision -
 making control structure based on testing an integer value for equality to a list of
case statements. A switch is similar to an if - then - else statement, except that a switch
statement can only test for equality and it is possible for multiple blocks of code in a
 switch to execute. Figure 3.2 shows the syntax of a switch statement.

switch(integer_variable) {
case constantexpression :

statements;
case constantexpression :

statements;
...
default :

statements;
}

The switch keyword
Parentheses (required)

The body of a
switch consists
of one or more
case statements.

Beginning curly brace

Ending curly brace

The default
block is optional
and must
appear at the
end.

F I GU R E 3 . 2 The syntax of a switch statement

 The following rules apply to using switch statements:

 The integer_variable must be compatible with an int , which means you can only
switch on a byte , short , char , int , Byte , Short , Character , Integer , or an enum type.

 Any number of case statements can appear.

 The constantexpression of a case must be a literal value or a final variable.

 The default block is optional and must appear at the end of all the case statements. If
none of the case statements equal the expression, the default block executes.

 When a case is true, no other case statements are tested for equality, and all
statements following the case execute until a break occurs or the end of the switch
statement is reached.

�

�

�

�

�

c03.indd 192c03.indd 192 2/11/09 6:17:32 PM2/11/09 6:17:32 PM

 The last rule is what makes a switch statement unique. The value being switched on is
compared for equality to each case statement in the order that they appear. Once a case
statement is true , no subsequent case statements are tested. All statements following a true
 case execute, even if control “ falls through ” other case statements, until a break occurs.

 Let ’ s look at an example. The following code switches on an int . See if you can
determine the output:

6. int x = 0;

7. switch(x) {

8. case 0 :

9. case 1 :

10. System.out.println(“0 or 1”);

11. break;

12. case 2 :

13. System.out.println(“2”);

14. case 3 :

15. System.out.println(“2 or 3”);

16. break;

17. default :

18. System.out.println(“default”);

19.}

20.System.out.println(“After switch”);

 Here is the fl ow of control that occurs when this code executes:

 1. The int x is declared and assigned the value 0 .

 2. The case 0 is true on line 8, so no more cases are tested for equality.

 3. x does not equal 1 on line 9, but x is not compared to 1 on line 9. Instead, control just
falls through to line 10.

 4. 0 or 1 is printed on line 10.

 5. The break is hit on line 11, causing control to jump out of the switch statement down
to line 20 and After switch is printed.

 Therefore, the output of this switch is

0 or 1

After switch

 Using the same switch statement, the following output displays when x equals 2 :

2

2 or 3

After switch

The switch Statement 193

c03.indd 193c03.indd 193 2/11/09 6:17:33 PM2/11/09 6:17:33 PM

194 Chapter 3 � Flow Control

 Notice if x is 2 , the case on line 12 is true, so all statements after line 12 execute until
the break on line 16. Therefore, lines 13 and 15 both execute, resulting in the preceding
output.

 Switching on a Reference

 Because Java autoboxes and unboxes the primitive types, you can switch on a reference
of type Byte , Short , Character , or Integer . For example, the following switch variable is
a Character reference:

Character value = ‘C’;

switch(value) {

 case ‘A’ :

 case ‘B’ :

 System.out.println(“Nice job!”);

 break;

 case ‘C’ :

 System.out.println(“Not bad.”);

 break;

 default :

 System.out.println(“Not good.”);

}

 The wrapped Character value is unboxed to a char in the switch statement. If the
reference happens to be null at runtime, a NullPointerException is thrown.

 Switching on an Enum

 A switch statement can be executed on integer - compatible types, which includes enums.
When the variable being switched on is an enum, the following rules apply:

 The case statements must be one of the elements of the enumeration. A compiler error
occurs if one of the case statements is not one of the values in the enum.

 You cannot use an enum value ’ s ordinal value for a case ; you can only use the name of
the enum element.

 The enum element in the case is not prefixed with the enum name.

�

�

�

c03.indd 194c03.indd 194 2/11/09 6:17:33 PM2/11/09 6:17:33 PM

 The following class contains a switch statement on an enum named Console . Study the
code and see if you can determine its output:

1. public class EnumSwitch {

2. public enum Console {

3. XBOX, WII, PLAYSTATION

4. }

5.

6. public static void main(String [] args) {

7. Console myConsole = Console.WII;

8. switch(myConsole) {

9. case XBOX :

10. System.out.println(“XBox console”);

11. break;

12. case WII :

13. System.out.println(“WII console”);

14. break;

15. case PLAYSTATION :

16. System.out.println(“PlayStation console”);

17. break;

18. default :

19. System.out.println(“Not here”);

20. }

21. }

22.}

 The switch variable on line 8 is a Console reference, so the only valid case statements
are elements of the Console enum. The myConsole reference points to WII , so line 12 is true
and the output is

WII console

 Because the three case statements are every possible value of myConsole and each case
contains a break, the default block of code in this example should never execute. Even
though it appears to be unreachable, the compiler does not complain. (This is a good place
for an assertion, discussed later in the section “ Overview of Assertions. ”)

 The following switch statement would not be valid:

25. Console yourConsole = Console.XBOX;

26. switch(yourConsole) {

27. case 0 : //not valid

28. System.out.println(“XBox console”);

29. break;

The switch Statement 195

c03.indd 195c03.indd 195 2/11/09 6:17:34 PM2/11/09 6:17:34 PM

196 Chapter 3 � Flow Control

30. case Console.WII : //not valid

31. System.out.println(“WII console”);

32. break;

33. }

 Line 27 attempts to use the ordinal value of XBOX , which is not allowed. Line 30 uses the
fully qualifi ed name of the WII element, which is also not allowed. The following compiler
errors occur:
EnumSwitch.java:27: an enum switch case label must be the unqualified

 name of an enumeration constant

 case 0 :

 ^

EnumSwitch.java:30: an enum switch case label must be the unqualified

 name of an enumeration constant

 case Console.WII :

 ^

 Final case Values

 A case value must be a constant expression. The examples in this chapter have been either
literals or enum constants, but you can also use final variables. Examine the following
code and try to determine its output:
public class FinalSwitch {

 public static final char UPPER_A = ‘A’;

 public static final char UPPER_B = ‘B’;

 public static final char UPPER_C = ‘C’;

 public static String convertGrade(char grade) {

 String response = “”;

 switch(grade) {

 case UPPER_A :

 case UPPER_B :

 System.out.println(“Nice job!”);

 break;

 case UPPER_C :

 System.out.println(“Not bad.”);

 break;

 default :

 System.out.println(“Not good.”);

 }

c03.indd 196c03.indd 196 2/11/09 6:17:34 PM2/11/09 6:17:34 PM

 return response;

 }

 public static void main(String [] args) {

 System.out.println(convertGrade(‘C’));

 }

}

 The value being switched on is the parameter grade . Because each case statement uses a
 final variable, the code compiles fi ne and the output is

Not bad.

 The for Statement
 The exam objectives state that you should be able to “ develop code that implements all
forms of loops and iterators, including the use of for and the enhanced for loop (for - each),
and explain the values taken by loop counter variables during and after loop execution. ”
This section discusses these details of for and for - each loops. A for statement is a
repetition control structure that is useful for repeating a block of code a fi xed number of
times. There are two types of for statements in Java:

 The basic for statement

 The enhanced for statement

 This section discusses the details of both types of for statements, starting with the basic
 for statement.

 The Basic for Statement

 A basic for statement has the following properties:

 The two semicolons are required and create three sections: an initialization
statement, a boolean expression, and an update statement.

 The initialization step occurs once at the beginning of the loop.

 The boolean_expression must evaluate to true or false .

 The initialization and update_statement sections can contain multiple statements,
separated by commas.

�

�

�

�

�

�

The for Statement 197

c03.indd 197c03.indd 197 2/11/09 6:17:34 PM2/11/09 6:17:34 PM

198 Chapter 3 � Flow Control

 Let ’ s look at an example. The following for loop displays the numbers 1 to 10:

for(int x = 1; x < = 10; x++) {

 System.out.print(x + “ “);

}

 The following sequence of events occurs during this loop:

 1. The int x is allocated in memory and initialized to 1 .

 2. The boolean expression is evaluated. x is less than or equal to 10 so the body of the
loop executes.

 3. The print statement displays 1 and a space.

 4. The end of the for loop is reached on line 7, so control jumps to the update statement
 x++ , incrementing x to 2 .

 5. The boolean is checked again. x is still less than or equal to 10 , so steps 3 and 4 repeat
until x is the value 11 .

 6. The boolean is now false, so the for loop terminates and x goes out of scope.

 The output of this loop is

1 2 3 4 5 6 7 8 9 10

for(initialization; boolean_expression; update_statement) {

}

The for keyword

Parentheses (required)
Semicolons (required)

1. The initialization
statement
executes

2. The boolean is checked.

3. If the boolean is true, the
body of the loop executes.

4. The update statement
executes each time
after the body.

5. The boolean is checked
each time after the update
statement. Steps 3–5 repeat
until the boolean is false.

F I GU R E 3 . 3 The syntax of a basic for statement

 Figure 3.3 shows the syntax and order of execution of the basic for statement.

c03.indd 198c03.indd 198 2/11/09 6:17:35 PM2/11/09 6:17:35 PM

 The Scope of for Loop Variables

 Any variables declared in the initialization step are local variables in the for loop and go
out of scope when the loop fi nishes. For example, the following code attempts to display
 k after it goes out of scope:

for(int k = 10; k > = 1; k--) {

 System.out.print(k);

}

System.out.print(k);

 The following compiler error occurs:

For.java:19: cannot find symbol

symbol : variable k

location: class For

System.out.println(k);

 ^

 Watch for a question that tests your knowledge of this subject. By the way, if you need
to use k outside the loop, declare it outside the loop. For example, the following code is
valid:

int k = 10;

for(k = 10; k > = 1; k--) {

 System.out.print(k);

}

System.out.print(k);

 The output of this code is

109876543210

 There will be questions on the SCJP exam that test your knowledge of the syntax
and behavior of basic for statements. The exam seems to favor nested for statements,
something along the lines of the following example:

4. for(char one = ‘a’; one < = ‘f’; one++) {

5. for(int i = 1; i < = 3; i++) {

6. System.out.print(“ “ + one + i);

7. }

8. System.out.println();

9. }

The for Statement 199

c03.indd 199c03.indd 199 2/11/09 6:17:35 PM2/11/09 6:17:35 PM

200 Chapter 3 � Flow Control

 Be sure to check the syntax fi rst to make sure the code compiles, which it does in this
example. The outer loop has a char loop control variable that goes from ‘ a ’ to ‘ f’ ,
totaling six iterations. The inner loop has an int loop control variable that goes from 1 to
3 and prints something, so the output will be 6 * 3 = 18 values. The println call on line
8 occurs after the inner loop, so a line break occurs after every three values are printed.
If you carefully go through the steps of displaying the fi rst couple of rows, you will quickly
deduce the remaining rows. The output of these nested loops is

 a1 a2 a3

 b1 b2 b3

 c1 c2 c3

 d1 d2 d3

 e1 e2 e3

 f1 f2 f3

 Let ’ s look at another example. Examine the following code and determine if it compiles
and what the output is:

12. for(int a = 1, b = 10; a < b; a++, b = b - 2) {

13. System.out.println(a + b);

14. }

 Again, be sure to look for compiler errors fi rst. This code compiles fi ne. You can
initialize two variables in the initialization step, and you can have multiple update
statements as long as they are separated by commas. If you see a loop like this on the exam,
my advice is to carefully step through each iteration. This example might look confusing,
but it actually only iterates three times:

 1. a is 1 and b is 10 : Because 1 < 10 is true, 11 displays and the update statement
 executes, incrementing a to 2 and decrementing b to 8 .

 2. a is 2 and b is 8 : Because 2 < 8 is true, 10 displays and we go back to the update
 statement.

 3. a is 3 and b is 6 : Because 3 < 6 is true, 9 displays and the updates execute again.

 4. a is 4 and b is 4 : Because 4 < 4 is false, we are finished.

 Therefore, the output of this example is
11

10

9

c03.indd 200c03.indd 200 2/11/09 6:17:36 PM2/11/09 6:17:36 PM

 Some for Statement Notes

 All of the three sections of a for statement are optional. If you don ’ t need to initialize
a variable or update anything, you can leave those sections blank. For example, the
following for loop does not contain an update statement:

for(int i = 1; i < = 10;) {

 System.out.print(i++ + “,”);

}

 The output of this loop is

1,2,3,4,5,6,7,8,9,10,

 Updating the loop control variable within the loop defeats the purpose of the update
statement and makes your code more diffi cult to read, so this example is not something I
recommend using in the real world.

 Also, the boolean expression of a for statement defaults to true if it is left blank. For
example, the following for statement is an infi nite loop:

for(; ;) {

 System.out.print(“Hi”);

}

 This particular loop will run until the JVM is terminated.

 The Enhanced for Statement

 Java 5.0 introduced a new looping control structure called the enhanced for statement , also
referred to as a for - each loop . An enhanced for statement is designed for iterating through
arrays and collections. The syntax is simpler than a basic for loop and makes your code
more readable. Figure 3.4 shows the syntax of an enhanced for statement.

for(datatype iterator : collection) {
//body of the loop

}

The for keyword

Parentheses (required)

The data type
of the iterator

The iterator
automatically
initializes to the
next item in the
collection for each
iteration.

The array or iterable
collection being iterated
over

F I GU R E 3 . 4 The syntax of an enhanced for statement

The for Statement 201

c03.indd 201c03.indd 201 2/11/09 6:17:36 PM2/11/09 6:17:36 PM

202 Chapter 3 � Flow Control

 An enhanced for statement has the following properties:

 The data type of the iterator must be compatible with the data type of the collection.

 The scope of the iterator is the body of the loop.

 The number of iterations of the loop equals the size of the collection. If the collection is
empty, the body of the loop does not execute.

 The collection must be an array or an object of type java.lang.Iterable , an interface
introduced in Java 5.0 exclusively for for - each loops.

 Let ’ s start with a simple example to demonstrate how it looks. Examine the following
enhanced for statement and try to determine its output:

3. char [] grades = {‘A’, ‘B’, ‘C’, ‘D’, ‘F’};

4. for(char grade : grades) {

5. System.out.print(grade + “ “);

6. }

 The collection in this example has fi ve elements, so the loop executes fi ve times. The
 grade iterator is initially ’ A’ , then ’ B’ , and so on. The output is

A B C D F

 You must declare the iterator within the enhanced for statement; it cannot be a variable
that is already declared. For example, the following code does not compile:

9. char grade;

10. for(grade : grades) { //does not compile!

11. System.out.print(grade + “ “);

12. }

 The compiler complains that grade on line 10 is not a statement and that a semicolon is
expected. The compiler thinks I am trying to declare a basic for loop on line 10 because
the declaration of the iterator does not include a data type.

�

�

�

�

 The Scope of Enhanced for Loop Variables

 The scope of the iterator in an enhanced for loop is only within the body of the loop.
To demonstrate, study the following code and see if you can determine its result:

15. String [] replies = {“Hello”, “Hi”, “How are you?”};

16. String s = “Bye”;

17. for(String reply : replies) {

18. s = reply;

19. }

20. System.out.println(s);

21. System.out.println(reply);

c03.indd 202c03.indd 202 2/11/09 6:17:37 PM2/11/09 6:17:37 PM

 The variable reply is out of scope at line 21, so the following compiler error occurs:

EnhancedFor.java:21: cannot find symbol

symbol : variable reply

location: class EnhancedFor

System.out.println(reply);

 ^

 By the way, if we comment out line 21 and run this code, what is the output of s on line
20? If you are unsure, try typing in this code and running it yourself to verify the result.

 I will now discuss two common uses of the nested for statements: iterating over
collections and nesting enhanced for statements.

 Enhanced for Loops and Collections

 Let ’ s look at an example of an enhanced for loop that iterates over a collection. The
collection must be an object whose class implements java.lang.Iterable , which includes
most of the Collections API classes in the java.util package. The following code iterates
through a java.util.ArrayList . Examine the code and see if you can determine its output:

1. import java.util.ArrayList;

2.

3. public class Favorites {

4. private ArrayList < String > urls = new ArrayList < String > ();

5.

6. public void showFavorites() {

7. for(String url : urls) {

8. if(url.startsWith(“http://”)) {

9. System.out.println(url);

10. } else {

11. System.out.println(“http://” + url);

12. }

13. }

14. }

15.

16. public void addFavorite(String url) {

17. urls.add(url);

18. }

19.

20. public static void main(String [] args) {

21. Favorites f = new Favorites();

The for Statement 203

c03.indd 203c03.indd 203 2/11/09 6:17:38 PM2/11/09 6:17:38 PM

204 Chapter 3 � Flow Control

22. f.addFavorite(“sybex.com”);

23. f.addFavorite(“wiley.com”);

24. f.addFavorite(“http://google.com”);

25. f.addFavorite(“yahoo.com”);

26. f.showFavorites();

27. }

28.}

 The sequence of events of the Favorites program follows:

 1. A Favorites object is instantiated in main and four String objects are added to the
 urls field.

 2. The showFavorites method is invoked, which executes the enhanced for loop on line 7.

 3. The first time through the loop the iterator url is “ sybex.com ” and “ http://sybex.com ”
displays.

 4. The loop iterates three more times until all four String objects are output.

 The output of main in Favorites is

http://sybex.com

http://wiley.com

http://google.com

http://yahoo.com

 When to Use — or Not Use — Enhanced for Loops

 The enhanced for statement was added to the Java language to simplify your code in
those common situations where you need to iterate over an array or collection of objects.
You will use enhanced for loops all the time when iterating over arrays and collections.

 Notice that the enhanced for loop hides the index variable when iterating over arrays,
and it hides the actual iterator when iterating over collections. For example, suppose you
need to iterate over an array and change each element. You won ’ t be able to do that with
an enhanced for loop because you won ’ t have the index variable of the array. Similarly,
suppose you want to delete the element in a collection represented by the current
iterator. You may not be able to do this (depending on the collection) because the iterator
does not know of its location in the collection. In these situations, you can simply use a
basic for loop for iterating over the array or collection.

c03.indd 204c03.indd 204 2/11/09 6:17:38 PM2/11/09 6:17:38 PM

 However, this situation does not diminish the usefulness of enhanced for statements. In
many programming situations, you iterate over a collection of data and do not need to
modify or delete elements in the collection, making an enhanced for loop the preferred
solution. They can also make your code more readable when iterating over nested
collections, as shown in the next section. The general rule of thumb is to use enhanced
 for loops whenever you can!

 Nested Enhanced for Loops

 You really start to see the benefi t of the enhanced for syntax when iterating over tabular
data (with rows and columns) using nested loops. The following example uses nested
enhanced for loops to display a multiplication table of the numbers 1 to 9 . Examine the
code and see if you can determine its output:

3. int [] digits = {1,2,3,4,5,6,7,8,9};

4. for(int x : digits) {

5. for(int y : digits) {

6. System.out.print(x * y + “\t”);

7. }

8. System.out.println();

9. }

 The digits array has nine elements, so the outer loop on line 4 iterates nine times and
so does the inner loop on line 5. Therefore, line 6 executes 9 * 9 = 81 times. The fi rst time
through the outer loop, x is 1 and y goes from 1 to 9 , printing 1*1 , 1*2 , 1*3 , and so on up
to 1*9 . This process repeats for x equal to 2 , printing 2*1 , 2*2 , 2*3 , and so on up to 2*9 .
The process keeps repeating until the following multiplication table displays:

1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18

3 6 9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36

5 10 15 20 25 30 35 40 45

6 12 18 24 30 36 42 48 54

7 14 21 28 35 42 49 56 63

8 16 24 32 40 48 56 64 72

9 18 27 36 45 54 63 72 81

 I could have just as easily written this example using basic for loops, and before Java 5.0
it would have been the only option! But I like the enhanced for loop for its simplicity and
readability. Make sure you understand the details of the enhanced for statement. As I have
mentioned before, the newer Java topics tend to be emphasized on the SCJP exam.

 Next we discuss another popular looping control structure: the while statement.

The for Statement 205

c03.indd 205c03.indd 205 2/11/09 6:17:39 PM2/11/09 6:17:39 PM

206 Chapter 3 � Flow Control

 The while Statement
 The exam objectives state that you should be able to “ develop code that implements all
forms of loops and iterators, including while ” . A while statement is a repetition control
structure that is useful for repeating a block of code an indeterminate number of times.
Figure 3.5 shows the syntax of a while statement.

while (boolean_expression) {
//body of loop

}

The while keyword Parentheses (required)

Curly braces are
required if the body
is more than one
statement.

The body of the loop executes
while the boolean expression is
true.

F I GU R E 3 .5 The syntax of a while loop

 The following rules apply to a while statement:

 The value in parentheses must evaluate to a boolean expression, either true or false.

 If the boolean expression is true , the body of the loop executes and the boolean is
checked again.

 If the boolean expression is false , the loop does not execute and control jumps to the
next statement following the end of the loop.

 The body of the loop executes until the boolean expression is false .

 Let ’ s start with a simple example. The following while statement prints the char s ‘ A ’ to
 ‘ H ’ on the same line:

3. char c = ‘A’;

4. while(c < = ‘H’) {

5. System.out.print(c++);

6. }

 The loop executes eight times, and the output is

ABCDEFGH

�

�

�

�

c03.indd 206c03.indd 206 2/11/09 6:17:39 PM2/11/09 6:17:39 PM

 The following program demonstrates a better example of when to use a while loop
because it executes an indeterminate number of times. Examine the code and see if you can
determine the result:

1. public class RollDice {

2. public static int rollDice() {

3. return ((int) (Math.random() * 6)) + 1;

4. }

5.

6. public static void main(String [] args) {

7. int one = rollDice();

8. int two = rollDice();

9. System.out.print(“You rolled a “ + (one + two));

10. while(one + two != 11) {

11. one = rollDice();

12. two = rollDice();

13. System.out.print(“, “ + (one + two));

14. }

15. }

16.}

 The while loop on line 10 executes until the two variables one and two add up to 11 .
Because they are randomly generated, this could happen right away or it could take a while.
A sample output follows:

You rolled a 7, 8, 9, 6, 11

 The output changes every time you run RollDice because it uses randomly generated
numbers.

 You can easily write an infi nite loop with a while statement:

13. while(true) {

14. System.out.println(“This could take a while.”);

15. }

 In this example, line 14 will print This could take a while. until the user terminates
the JVM.

The while Statement 207

c03.indd 207c03.indd 207 2/11/09 6:17:40 PM2/11/09 6:17:40 PM

208 Chapter 3 � Flow Control

 A Note on Unreachable Code

 It is possible to have a while loop whose body never gets executed:

8. int x = 0;

9. while(x > 0) {

10. System.out.println(“Not here”);

11. }

 However, you cannot write code that is unreachable or a compiler error is generated. For
example, the following code does not compile:

17. while(false) {

18. System.out.println(“Not here.”);

19. }

 The difference between these two while loops is that the compiler knows on line 17 that
line 18 will never execute. The compiler cannot make the same assumption about the
 while loop on line 9 because x is a variable. Line 17 generates the following compiler
error:

WhileLoop.java:17: unreachable statement

while(false) {

 ^

 While we are on the subject, an if - then statement can contain unreachable code. For
example, the following statements compile fi ne:

21. if(false) {

22. System.out.println(“Unreachable”);

23. }

 Java allows you to write unreachable if statements to simplify debugging code. I could
easily change the statement on line 21 to if(true) to test something and then change
it back to if(false) in production. Better yet, I could use a static final boolean that
could be defi ned in one place and used anywhere in my program.

 You can write infi nite while loops and while loops that never execute.
 Next we discuss do statements, which are similar to while loops except the body of a

 do - while loop is guaranteed to execute at least one time.

c03.indd 208c03.indd 208 2/11/09 6:17:40 PM2/11/09 6:17:40 PM

 The do Statement
 The exam objectives state that you should be able to “ develop code that implements all
forms of loops and iterators, including do. ” A do statement , also referred to as a do -
 while loop, is a repetition control structure that is useful for repeating a block of code an
indeterminate number of times, but at least once. A do - while loop is declared using the do
keyword. Figure 3.6 shows the syntax of a do statement.

do {
//body of loop

} while(boolean_expression);

The do
keyword

Parentheses (required)

Curly braces are
required if the body
is more than one
statement.

The body of the loop
executes while the
boolean expression
is true.

The while keyword

Semicolon

F I GU R E 3 .6 The syntax of a do statement

 The following rules apply to a do statement:

 The body of the loop executes once before the boolean expression is tested.

 The value in parentheses must evaluate to a boolean expression, either true or false .

 If the boolean expression is true , the body of the loop executes again, and then the
 boolean is checked again.

 If the boolean expression is false , the loop does not execute again and control jumps
to the next statement following the end of the loop.

 Just like a while loop, the body of the do loop executes until the boolean expression is
 false .

 Don ’ t forget the semicolon after the boolean expression — it ’ s easy to miss!

 The following simple example prints out the numbers 1 to 10 :

3. int y = 1;

4. do {

5. System.out.print(y++ + “ “);

6. }while(y < = 10);

�

�

�

�

�

�

The do Statement 209

c03.indd 209c03.indd 209 2/11/09 6:17:41 PM2/11/09 6:17:41 PM

210 Chapter 3 � Flow Control

 The output is

1 2 3 4 5 6 7 8 9 10

 You cannot write a do - while loop whose body never executes because the body executes
before the boolean expression is tested. For example, try to determine the output of the
following example:

8. char c = ‘a’;

9. do {

10. System.out.println(c++);

11. }while(false);

12. System.out.println(c);

 An ‘ a ’ is printed on line 10, and then the boolean expression on line 11 is tested.
Because it is false , the loop terminates. Line 12 prints out a ‘ b’ , so the output is

a

b

 In the section on the while statement, I wrote a program that simulated the rolling of
two dice until an 11 is rolled. That example is actually better suited for a do - while loop
because we have to roll the dice at least once. The same loop rewritten using a do statement
follows:

7. int one = 0, two = 0;

8. System.out.print(“You rolled a “);

9. do {

10. one = rollDice();

11. two = rollDice();

12. System.out.print(one + two + “ “);

13. }while(one + two != 11);

 The two dice are rolled fi rst, and then we check to see if an 11 was rolled. If not, the
dice are rolled again and again until they add up to 11 . The output looks something like the
following:

You rolled a 7 2 8 5 8 7 5 9 10 10 9 7 8 8 5 11

 The output is different each time you run the program because of the use of random
numbers, but the dice are always rolled at least once.

c03.indd 210c03.indd 210 2/11/09 6:17:41 PM2/11/09 6:17:41 PM

 Scope of do Variables

 A variable declared within the block of a do statement only has scope within that block.
Be aware that the boolean expression of a do statement is outside the block, so the
following code does not compile:

17. do {

18. int one = rollDice();

19. int two = rollDice();

20. System.out.println(“You rolled a “ + (one + two));

21. }while(one + two != 11);

 The variables one and two are out of scope on line 21. For this loop to work, one and two
need to be declared outside of the do statement.

 Now that we have discussed the various looping control structures in Java, I want to discuss
two important keywords that affect the fl ow of control of loops: break and continue . Let ’ s
start with a discussion of the break statement.

 The break Statement
 The exam objectives state that you should be able to “ develop code that implements
all forms of loops and iterators, including the use of break. ” A break statement transfers
fl ow of control out of an enclosing statement. A break statement can appear within the
following control structures:

 switch

 for

 while

 do

 Figure 3.7 shows the syntax for a break statement within a while statement. (The
syntax is similar for the other control structures.)

�

�

�

�

The break Statement 211

c03.indd 211c03.indd 211 2/11/09 6:17:42 PM2/11/09 6:17:42 PM

212 Chapter 3 � Flow Control

 We saw an example of using an unlabeled break in the earlier section on switch
statements. A break statement within one of the repetition control structures causes the
loop to immediately complete. For example, see if you can determine the effect of the break
in this loop:

3. for(int k = 1; k < 10; k++) {

4. System.out.print(k + “ “);

5. if(k % 3 == 0)

6. break;

7. }

 If the loop control variable k is divisible by 3 on line 5, then the break executes on line 6
and fl ow of control jumps down to the next statement after line 7. The output of this loop is

1 2 3

 Let ’ s look at a more complex example. The following Vacation class uses an enhanced
 for loop to iterate over an enum named Days . Examine the code and see if you can
determine the output of running main :

1. public class Vacation {

2. public enum Days {

3. SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

4. THURSDAY, FRIDAY, SATURDAY

5. }

6.

7. public void workUntil(Days dayOff) {

8. for(Days day : Days.values()) {

9. if(day != dayOff) {

optional_label : while (boolean_expression) {
//anywhere within the loop:
break optional_label;

}

When using a label, a colon is required.

When the break statement
executes, control immediately
jumps to the next statement
following the control structure.

F I GU R E 3 .7 The syntax of a break statement.

c03.indd 212c03.indd 212 2/11/09 6:17:42 PM2/11/09 6:17:42 PM

10. System.out.println(“Working on “ + day);

11. } else {

12. break;

13. }

14. }

15. }

16.

17. public static void main(String [] args) {

18. Vacation v = new Vacation();

19. v.workUntil(Days.THURSDAY);

20. }

21.}

 The enhanced for loop on line 8 iterates through the values of the enum and displays
a message on line 10 if the dayOff argument doesn ’ t match the current day . Once line 9 is
 false , the break occurs on line 12 and the loop terminates. The number of times this loop
iterates varies depending on the value of dayOff . The main method invokes workUntil with
 Days.THURDAY as the argument, so the output of main is

Working on SUNDAY

Working on MONDAY

Working on TUESDAY

Working on WEDNESDAY

 A break statement can contain a label denoting which control structure to break out of.
An unlabeled break statement terminates the immediately enclosing control structure. If
you need to break out of an outer loop or switch, you need to use a labeled break .

 A label is a prefi x that appears before a statement and is followed by a colon:

 label_name : statement

 A label can be any valid identifi er, as long as it is does not hide a label being used by an
enclosing statement. The following while loop contains a label named myloop and a break
statement that refers to the myloop label. See if you can determine the output:

4. int count = 1;

5. int sum = 0;

6. myloop : while(count < = 100) {

7. sum += count++;

8. if(sum > 10) {

9. break myloop;

10. }

11.}

12.System.out.println(“sum = “ + sum);

13.System.out.println(“count = “ + count);

The break Statement 213

c03.indd 213c03.indd 213 2/11/09 6:17:43 PM2/11/09 6:17:43 PM

214 Chapter 3 � Flow Control

 Here is the sequence of events for this while loop:

 1. count is 1 and sum is 0, so the first time through the loop sum is 0 + 1 = 1 and count
gets incremented to 2.

 2. Line 8 is false , the body of the loop is complete, and control jumps back up to the
 boolean expression on line 6.

 3. The loop executes again, sum is now 1 + 2 = 3, and count is now 3, so the loop executes
again.

 4. sum is 3 + 3 = 6, count is 4, and the loop executes again.

 5. sum is 6 + 4 = 10, count is 5, and the loop executes again.

 6. sum is 10 + 5 = 15, count is 6, and line 8 is finally true .

 7. Line 9 executes, causing myloop to terminate and control jumps to line 12.

 Therefore, the output of this code is

sum = 15

count = 6

 Using Labels

 Note that the myloop label is not required in the previous example, but you can still use
a label even when it is unnecessary. You might use a label for clarifi cation if a loop is
long and it is unclear what is being affected by a break statement. You might also use
a label to ensure that modifi cations to the code later do not affect your use of the break
statement.

 There are also situations where a label is required, as we will see in the next example.

 The myloop label is not needed in the previous example, but there are situations where a
label is necessary (especially in nested loops) to obtain the desired behavior of a break. To
demonstrate this type of situation, let ’ s start with a nested loop that does not use labels. See
if you can determine the behavior of the following loops:

15. int x = 1;

16. while(x < = 10) {

17. System.out.print(x++ + “ “);

18. for(int y = 10; y > = 1; y--) {

19. System.out.print(y + “ “);

20. if(y == 8)

21. break;

22. }

23. }

c03.indd 214c03.indd 214 2/11/09 6:17:43 PM2/11/09 6:17:43 PM

 The break on line 21 refers to its enclosing loop, which is the for loop on line 18. The
 while loop executes 10 times, and for each value of x the for loop executes three times
(when y is 10 , 9 , and 8). The output is

1 10 9 8 2 10 9 8 3 10 9 8 4 10 9 8 5 10 9 8 6 10 9 8 7 10 9 8 8 10 9

 8 9 10 9 8 10 10 9 8

 If we want the outer while loop to break on line 21 instead of the inner for loop, we
need to use a label as shown here:

25. int x = 1, y = 10;

26. loopx : while(x < = 10) {

27. System.out.print(x++ + “ “);

28. for(; y > = 1; y--) {

29. System.out.print(y + “ “);

30. if(y == 8)

31. break loopx;

32. }

33. }

 The break statement on line 31 refers to the while loop on line 26. The while loop
terminates during its fi rst iteration when y becomes 8 , so the output of this code is

1 10 9 8

 You can also use labels with the continue keyword, which we discuss next.

 The continue Statement
 The exam objectives state that you should be able to “ develop code that implements all
forms of loops and iterators, including the use of continue. ” A continue statement within
a repetition control structure transfers fl ow of control to the loop - continuation point of
the loop. The control structures that can contain a continue statement together with their
corresponding continuation point follow:

 for : Control transfers to the update expression of the for statement.

 while : Control transfers to the boolean expression.

 do : Control transfers to the boolean expression.

 Figure 3.8 shows the syntax for the continue statement within a for loop.

�

�

�

The continue Statement 215

c03.indd 215c03.indd 215 2/11/09 6:17:45 PM2/11/09 6:17:45 PM

216 Chapter 3 � Flow Control

 Here ’ s a simple for loop with an unlabeled continue statement. See if you can determine
its output:

3. for(char c = ‘m’; c < = ‘p’; c++) {

4. if(c == ‘n’) {

5. continue;

6. }

7. System.out.print(c);

8. }

 The sequence of events for this loop follows:

 1. c is initialized to ’ m’ , which is less than ‘ p’ , so the loop body executes.

 2. Line 4 is false and ’ m ’ displays on line 7. The loop body is done, so control jumps to
the update statement and c is incremented to ‘ n’ .

 3. The loop body executes again, but this time line 4 is true so the continue executes on
line 5, causing control to jump immediately to the update statement c++ . No output
displays because line 7 is skipped.

 4. The loop body executes two more times with c equal to ‘ o ’ and c equal to ‘ p’ .

 Therefore, the output is

mop

 Let ’ s look at an example with a nested loop. Study the following code and see if you can
determine what the output is:

10. for(int a = 1; a < = 4; a++) {

11. for(char x = ‘a’; x < = ‘c’; x++) {

12. if(a == 2 || x == ‘b’)

13. continue;

14. System.out.print(“ “ + a + x);

15. }

16. }

optional_label : for (initialization; booleanexpression; update_statement) {
//anywhere within the loop:
continue optional_label;

}

When using a label, a colon is required.

When the continue statement
executes, control immediately
jumps to the update_statement.

F I GU R E 3 . 8 The syntax of the continue statement

c03.indd 216c03.indd 216 2/11/09 6:17:45 PM2/11/09 6:17:45 PM

 The previous nested for loop is obviously a contrived example, but it
is the type of example you will find on the exam. My advice is to write
down the values of each variable through each iteration of the loop. Take
your time and step through the loops carefully.

 Here is a breakdown of each iteration through the loop:

 1. a equals 1 the first time through the outer loop, and x equals ‘ a ’ the first time
through the inner loop, so ‘ 1a ’ is output on line 14. Then x equals ‘ b’ , so the con-
tinue executes and control jumps to the x++ update statement on line 11. x equals ‘ c ’
 and ‘ 1c ’ displays.

 2. a equals 2 the second time through the outer loop. The inner loop executes three times,
but line 12 is true on each iteration so the continue executes each time and the print
statement is skipped. No output occurs when a equals 2 .

 3. a equals 3 on the next iteration, which is similar to the case when a was 1 .
The continue executes when x is ‘ b’ , so the output is ‘ 3a ’ and ‘ 3c’ .

 4. Similarly, when a equals 4 the output is ‘ 4a ’ and ‘ 4c’ .

 Therefore, the output of the code is

 1a 1c 3a 3c 4a 4c

 As with break statements, a continue statement can declare a label denoting the loop
to continue on. The following nested loops demonstrate a labeled continue statement.
Examine the code and see if you can determine its output:

19. char row = ‘A’;

20. rowlabel : while(row < = ‘D’) {

21. System.out.print(row++);

22. for(int i = 1; i < = 5; i++) {

23. if(i%2 == 0)

24. continue;

25. if(i%3 == 0) {

26. System.out.println();

27. continue rowlabel;

28. }

29. System.out.print(i);

30. }

31. }

The continue Statement 217

c03.indd 217c03.indd 217 2/11/09 6:17:46 PM2/11/09 6:17:46 PM

218 Chapter 3 � Flow Control

 Here is a breakdown of what this code does:

 1. The first time through the outer while loop on line 20, row equals ‘ A ’ and it is printed
on line 21 and incremented to ‘ B’ . i equals 1 during the first iteration of the inner
loop. Line 23 and 25 are false, so line 29 executes and ‘ 1 ’ is printed.

 2. When i equals 2 , line 23 is true and the continue statement on line 24 executes.
Because it is an unlabeled continue , it applies to the for loop, so control jumps to the
update statement i++ and i now equals 3 .

 3. When i equals 3 , line 25 is true, a newline is printed and the continue statement on
line 27 executes. This continue refers to the while loop, so control jumps to the bool-
ean expression on line 20.

 4. row equals ‘ B ’ the second time through the outer loop and is printed on line 21. The
inner loop behaves the same, printing only ‘ 1 ’ because of the continue statements.

 5. When row equals ‘ C ’ and row equals ‘ D’ , the result is similar.

 Therefore, the output of this code is

A1

B1

C1

D1

 Line 24 of this example could have been clearer if we had used a label on the for loop
on line 22, but I wanted to demonstrate that it wasn ’ t required.

 We now turn our attention to two other aspects of Java that affect fl ow control:
assertions and exceptions.

 Overview of Assertions
 The exam objectives state that you should be able to “ develop code that makes use of
assertions, and distinguish appropriate from inappropriate uses of assertions. ” This section
addresses these objectives. An assertion in Java is a boolean expression placed at particular
points in your code where you think something should always be true. (The defi nition of
the word “ assert ” is to insist that something is true and to affi rm your claim with certainty.)
For example, I am certain that in the following code, the value of x is greater than 0 :

int a = 3, b = 5;

int x = a * b;

assert x > 0;

 An assertion allows me to check for bugs in my code that might otherwise go unnoticed.
You can place assertions throughout your code, turn them on for testing and debugging
purposes, and then turn them off when your program is in production.

c03.indd 218c03.indd 218 2/11/09 6:17:46 PM2/11/09 6:17:46 PM

 Why assert something if you are sure it is true? Well, in the world of computer
programming, asserting that something is true and verifying it at runtime are two different
things. During the coding phase, I might be certain that a value is positive, but it would be
nice to verify at runtime that the value actually is positive, and the assertion allows me to
do that.

 In the next section, we discuss the details of writing and using assertions in Java and
how they affect the fl ow of control of your application.

 The assert Statement

 An assert statement inserts an assertion at a particular point in your code. The syntax for
an assert statement has two forms:

assert boolean_expression ;

assert boolean_expression : error_message ;

 The boolean expression must evaluate to true or false . The optional error message
is a String used as the message for the AssertionError that is thrown. The two possible
outcomes of an assert statement are

 If the boolean expression is true , then our assertion has been validated and nothing
happens. The program continues to execute in its normal manner.

 If the boolean expression is false , then our assertion was invalid and a java.lang
.AssertionError is thrown, causing our program to terminate at this line of code.

 The AssertionError is typically not handled by your code, so your program terminates
and the stack trace displays at the standard output. For example, the following assertion fails:

1. public class Asserts {

2. public static void main(String [] args) {

3. int x = 10;

4. assert x < 0;

5. System.out.println(“x = “ + x);

6. }

7. }

 Because the assert statement on line 4 is false, line 5 does not execute. Assuming
assertions are enabled, the program terminates at line 4 and the following stack trace
displays:

Exception in thread “main” java.lang.AssertionError

 at Asserts.main(Asserts.java:4)

 The next section discusses how to enable assertions in your Java programs.

�

�

Overview of Assertions 219

c03.indd 219c03.indd 219 2/11/09 6:17:47 PM2/11/09 6:17:47 PM

220 Chapter 3 � Flow Control

 Enabling Assertions

 By default, assert statements are ignored by the JVM at runtime. To enable assertions, use
the - enableassertions fl ag on the command line:

java -enableassertions Rectangle

 You can also use the shortcut - ea fl ag:

java -ea Rectangle

 Using the - enableassertions fl ag without any arguments enables assertions in all
classes except system classes. You can also enable assertions for a specifi c class or package.
For example, the following command enables assertions only for classes in the com.sybex
.demos package and any subpackages:

java -ea:com.sybex.demos... my.programs.Main

 If the classes are in the unnamed packaged, then simply use the three dots:

java -ea:... Rectangle

 You can also enable assertions for a specifi c class:

java -ea:com.sybex.demos.TestColors my.programs.Main

 You can disable assertions using the - disableassertions (or - da) for a specifi c class
or package that was previously enabled. For example, the following command enables
assertions for the com.sybex.demos package, but disables assertions for the TestColors
class:

java -ea:com.sybex.demos... -da:com.sybex.demos.TestColors my.programs.Main

 Enabling assertions is an important aspect of using them, because if
assertions are not enabled, assert statements are ignored at runtime.
Assertions were added to the Java language in the J2SE 1.4 release, as
was the new assert keyword. This was a fairly major addition to the Java
language, and you can expect at least one question on the syntax and
flow of control of an assertion, as well as at least one question on how to
enable assertions at runtime. Keep an eye out for a question that contains
an assert statement but that is not executed with assertions enabled; the
 assert statement is ignored in that situation.

c03.indd 220c03.indd 220 2/11/09 6:17:48 PM2/11/09 6:17:48 PM

 Using Assertions

 We use assertions for many reasons, including the following:

 Internal invariants You assert that a value is within a certain constraint. assert x < 0 is
an example of an internal invariant.

 Class invariants You assert the validity of an object ’ s state. Class invariants are typically
private methods within the class that return a boolean . The upcoming Rectangle class
demonstrates a class invariant.

 Control flow invariants You assert that a line of code you assume is unreachable is never
reached. The upcoming TestColors class demonstrates a control fl ow invariant.

 Preconditions You assert that certain conditions are met before a method is invoked.

 Post conditions You assert that certain conditions are met after a method executes
successfully.

 The following example demonstrates a control fl ow invariant. Suppose we have the
following enum declaration:

1. public enum Colors {

2. RED, GREEN, BLUE

3. }

 The following TestColors class contains a switch statement that switches on a Colors
object. Because there are only three possible outcomes, the default statement on line 11
should never execute:

1. public class TestColors {

2. public static void testColor(Colors c) {

3. switch(c) {

4. case RED :

5. case GREEN :

6. System.out.println(“Red or green”);

7. break;

8. case BLUE :

9. System.out.println(“Blue”);

10. break;

11. default :

12. assert false : “Invalid color”;

13. }

14. }

15.}

Overview of Assertions 221

c03.indd 221c03.indd 221 2/11/09 6:17:48 PM2/11/09 6:17:48 PM

222 Chapter 3 � Flow Control

 Because the value of c on line 2 can only be RED , GREEN , or BLUE and the switch statement
has a case for all three of these outcomes, you can assert that line 12 is not reachable. This
example is typical of when to use an assertion. I insist with all certainty that line 12 will not
execute. Notice that if it does, an AssertionError is thrown because the boolean is false .

 The only way this assertion would fail is if somehow the enum is modifi ed. Suppose you
are working on a project that uses the Colors enum, and during the development phase it is
discovered that yellow needs to be added to the list of colors. The assertion can help uncover
the ripple effect of such a change. Suppose the new version of Colors looks like this:

1. public enum Colors {

2. RED, GREEN, BLUE, YELLOW

3. }

 See if you can determine the output of the following main method added to the
 TestColors class:

public static void main(String [] args) {

 Colors c = Colors.YELLOW;

 testColor(c);

}

 Because YELLOW is a new color and not one of the cases, the default block executes and
the assert fails. (It has to fail because it uses false for the boolean expression.) Assuming
assertions are enabled, an AssertionError is thrown and the following stack trace displays:

Exception in thread “main” java.lang.AssertionError: Invalid color

 at TestColors.testColor(TestColors.java:12)

 at TestColors.main(TestColors.java:18)

 A control fl ow assertion is a common use of assert statements. When possible, place an
 assert statement at any location in your code that you assume will not be reached.

 Assertions Should Not Alter Outcomes

 Because assertions can and probably will be turned off in a production environment, your
assertions should not contain any business logic that affects the outcome of your code.
For example, the following assertion is not a good design because it alters the value of a
variable:

int x = 10;

assert ++x > 10; //Not a good design!

 When assertions are turned on, x is incremented to 11 , but when assertions are turned
off, the value of x is 10 . Therefore, the outcome of the code will be different, and assert
statements should have no effect on your application if they are turned off, so this is not
a good use of assertions.

c03.indd 222c03.indd 222 2/11/09 6:17:48 PM2/11/09 6:17:48 PM

 The following example demonstrates a class invariant. A Rectangle object is not
considered valid if either its width or height is negative. Examine the following Rectangle
class, and assuming assertions are turned on, determine the output of running the main
method:

1. public class Rectangle {

2. private int width, height;

3.

4. public Rectangle(int width, int height) {

5. this.width = width;

6. this.height = height;

7. }

8.

9. public int getArea() {

10. assert isValid() : “Not a valid Rectangle”;

11. return width * height;

12. }

13.

14. private boolean isValid() {

15. return (width > = 0 & & height > = 0);

16. }

17.

18. public static void main(String [] args) {

19. Rectangle one = new Rectangle(5,12);

20. Rectangle two = new Rectangle(-4,10);

21. System.out.println(“Area one = “ + one.getArea());

22. System.out.println(“Area two = “ + two.getArea());

23. }

24.}

 The isValid method is an example of a class invariant. It is a private method that
tests the state of the object. Line 10 invokes isValid in an assertion statement before
computing the area. Within main , Rectangle one is valid and its area is output. Rectangle
two has a negative width so the assertion fails on line 10. The output is shown here:

Area one = 60

Exception in thread “main” java.lang.AssertionError: Not a valid Rectangle

 at Rectangle.getArea(Rectangle.java:10)

 at Rectangle.main(Rectangle.java:22)

Overview of Assertions 223

c03.indd 223c03.indd 223 2/11/09 6:17:49 PM2/11/09 6:17:49 PM

224 Chapter 3 � Flow Control

 Validating Method Parameters

 Do not use assertions to check for valid arguments passed in to a method. Use an
 IllegalArgumentException instead. For example, the constructor of Rectangle should
throw an IlllegalArgumentException when either the width or height is negative:

public Rectangle(int width, int height) {

 if(width < 0 || height < 0) {

 throw new IllegalArgumentException();

 }

 this.width = width;

 this.height = height;

}

 This constructor greatly improves the reliability of the Rectangle class because there
is no way to change the fi eld ’ s width and height except in the constructor. Remember,
assertions are for situations where you are certain of something and you just want to
verify it. You cannot be certain that someone instantiating a Rectangle will pass in
positive values. However, with the Rectangle constructor defi ned here, I should be able
to assert with a great deal of certainty that invoking isValid on any Rectangle object
will return true .

 Assertions are used for debugging purposes, allowing you to verify that something you
think is true during the coding phase is actually true at runtime. The next section covers
exceptions, which affect the fl ow of control of your application similar to failed assertions.
Unlike assertions, exceptions are situations that arise at runtime that cannot be predicted
during the coding phase.

 Overview of Exceptions
 This section addresses the exam objectives that state you should be able to “ develop code
that makes use of exception handling clauses (try, catch, fi nally), and declares methods and
overriding methods that throw exceptions, ” as well as “ recognize the effect of an exception
arising at a specifi ed point in a code fragment. ” An exception is an event that occurs during
the execution of a program that disrupts the normal fl ow of control. In Java, an exception
is an object that a method “ throws ” down the method call stack by handing it to the JVM
and letting the JVM search for a handler. As the exception object travels down the methods
on the call stack, any method along the way has the opportunity to catch the exception.
Once caught, the method can obtain information about the problem and attempt to fi x it,
log the error in a fi le, or simply ignore the exception altogether. A caught exception can
also be rethrown, or a method can throw a different type of exception.

c03.indd 224c03.indd 224 2/11/09 6:17:49 PM2/11/09 6:17:49 PM

 I want to start with a simple example to demonstrate how an exception affects the
fl ow of control of an application. The following ExceptionDemo class generates an
 ArithmeticException on line 15 when 5 is divided by 0 . Study the code and see if you can
determine its output.

1. public class ExceptionDemo {

2. public void method1() {

3. System.out.println(“Inside method1”);

4. method2();

5. }

6.

7. public void method2() {

8. System.out.println(“Inside method2”);

9. method3();

10. }

11.

12. public void method3() {

13. System.out.println(“Inside method3”);

14. int x = 5, y = 0;

15. int z = x/y; //throws an ArithmeticException

16. System.out.println(“z = “ + z);

17. }

18.

19. public static void main(String [] args) {

20. System.out.println(“Inside main”);

21. new ExceptionDemo().method1();

22. System.out.println(“End of main”);

23. }

24.}

 Here is the sequence of events that occurs in this program:

 1. Running the program puts the main method on the bottom of the call stack. (Figure 3.7
shows the method call stack.) Inside main displays on line 19 and method1 is invoked
on a new ExceptionDemo object.

 2. method1 is pushed on the call stack. Inside method1 displays on line 3 and method2
is called.

 3. method2 is pushed on the call stack. Inside method2 displays on line 8 and method3
is called.

 4. method3 is pushed on the call stack. Inside method3 displays, and then line 15 causes
an ArithmeticException to be thrown.

Overview of Exceptions 225

c03.indd 225c03.indd 225 2/11/09 6:17:50 PM2/11/09 6:17:50 PM

226 Chapter 3 � Flow Control

 5. Because method3 does not catch the exception, it is immediately popped off the call
stack. Notice that line 16 does not execute.

 6. Because method2 does not catch the exception, it also pops off the call stack. The same
happens with method1 and main .

 7. Because the exception was not caught, the program terminates and the JVM dumps the
following stack trace:

Inside main

Inside method1

Inside method2

Inside method3

Exception in thread “main” java.lang.ArithmeticException: / by zero

 at ExceptionDemo.method3(ExceptionDemo.java:15)

 at ExceptionDemo.method2(ExceptionDemo.java:9)

 at ExceptionDemo.method1(ExceptionDemo.java:4)

 at ExceptionDemo.main(ExceptionDemo.java:21)

 Figure 3.9 shows the exception being thrown down the method call stack of ExceptionDemo .

method3

method2

method1

main

method3 causes an ArithmeticException
to be thrown down the call stack.ArithmeticException

object

F I GU R E 3 . 9 The ArithmeticException is thrown down the call stack.

 Notice that an unhandled exception terminates your program, which obviously is not
good if you don ’ t want your program terminating every time an exception occurs.

 We now look at how to catch an exception so it does not terminate the application using
a try statement.

c03.indd 226c03.indd 226 2/11/09 6:17:50 PM2/11/09 6:17:50 PM

 The try Statement

 A try statement is a block of code that contains one or more statements that may throw
an exception. A try statement can be followed by one or more catch clauses , also called
exception handlers. Figure 3.10 shows the syntax of a try statement.

try {
//The try block is also referred to
//as protected code

} catch (exception_type identifier) {
//exception handler

}

The try keyword

Curly braces are
required.

If an exception is thrown in a try
statement, the catch clauses
attempt to catch it.

The catch keyword

The type of
exception you are
trying to catch

The identifier refers to
the caught exception
object.

F I GU R E 3 .10 The syntax of a try statement

 A try statement can declare any number of catch clauses. A catch clause must have
exactly one parameter: the data type of the exception trying to be caught. If an exception
is thrown within a try block, the JVM searches for a handler by checking the exception
types of its catch clauses in the order they appear. If the exception type of a catch clause
matches the data type of the thrown exception, fl ow of control jumps to that catch block
and the catch ’ s identifi er receives a copy of the reference to the exception object (similar to
an argument copied into a method parameter).

 For example, the following try statement catches the ArithmeticException thrown in
 method3 of the ExceptionDemo class from the previous section. See if you can determine the
output of running main in ExceptionDemo if method3 is modifi ed as follows:

12. public void method3() {

13. System.out.println(“Inside method3”);

14. int x = 5, y = 0;

15. try {

16. int z = x/y; //throws an ArithmeticException

17. System.out.println(“z = “ + z);

18. }catch(ArithmeticException e) {

19. System.out.println(“Something went wrong: “

20. + e.getMessage());

21. }

23. }

Overview of Exceptions 227

c03.indd 227c03.indd 227 2/11/09 6:17:51 PM2/11/09 6:17:51 PM

228 Chapter 3 � Flow Control

 Here is the sequence of events that occurs when method3 executes:

 1. “ Inside method3 ” displays and x and y are initialized.

 2. Flow of control enters the try block on line 15, and line 16 causes an
 Arithmetic Exception to be thrown.

 3. The JVM searches the associated catch clauses for one that catches an
 ArithmeticException , which line 18 does. Flow of control jumps to line 18.
(Line 17 does not execute.)

 4. The catch block executes, displaying an error message.

 5. Because the exception was handled, execution resumes as normal. method3 finishes
successfully and is popped off the method call stack. The remaining methods
 complete successfully, and the output is

Inside main

Inside method1

Inside method2

Inside method3

Something went wrong: / by zero

End of main

 Because the exception was handled, the program did not terminate prematurely, as
shown by the display of End of main .

 The Throwable Class

 The java.lang.Throwable class is the parent class of all objects that can be thrown
(either by the JVM or by using the throw keyword). Only objects of type Throwable or
subclasses of Throwable can appear in a catch clause.

 When you catch an exception, a common task is to display the stack trace or log it to a
fi le. The following methods defi ned in Throwable provide information about the stack
trace and the exception thrown:

 public void printStackTrace()

 This method prints the stack trace to System.err .

 public void printStackTrace(PrintStream s)

 This method prints the stack trace to the specifi ed PrintStream .

 public void printStackTrace(PrintWriter s)

 This method prints the stack trace to the specifi ed PrintWriter .

c03.indd 228c03.indd 228 2/11/09 6:17:51 PM2/11/09 6:17:51 PM

 public String getMessage()

 This method returns the detail message of the Throwable object. The message is set in
the Throwable constructor.

 public String toString()

 This method returns a short description of the Throwable object that includes the type of
exception and its message.

 You can fi nd examples of printing the stack trace throughout this section. Here is a simple
example to demonstrate the difference between getMessage and toString :

try {

 throw new NullPointerException(“Be careful!”);

}catch(NullPointerException e) {

 System.out.println(“getMessage: “ + e.getMessage());

 System.out.println(“toString: “ + e.toString());

}

 The output of this code is

getMessage: Be careful!

toString: java.lang.NullPointerException: Be careful!

 Multiple catch Clauses

 Let ’ s look at a more realistic example and one that contains multiple catch clauses. The
following MyFileReader class opens a fi le for reading and reads in a single character. The
 FileReader constructor invoked on line 6 throws a FileNotFoundException if the specifi ed
fi le cannot be found. Study the code and see if you can determine the output when the fi le is
not found on line 6.

1. import java.io.*;

2.

3. public class MyFileReader {

4. public void readFromFile(String fileName) {

5. try {

6. FileReader fis = new FileReader(fileName);

7. System.out.println(fileName + “ was found”);

Overview of Exceptions 229

c03.indd 229c03.indd 229 2/11/09 6:17:52 PM2/11/09 6:17:52 PM

230 Chapter 3 � Flow Control

8. char data = (char) fis.read();

9. System.out.println(“Just read: “ + data);

10. } catch(FileNotFoundException e) {

11. System.out.println(“Oops - file not found: “ +

12. e.getMessage());

13. } catch(IOException e) {

14. System.out.println(“Something went wrong”);

15. e.printStackTrace();

16. }

17. System.out.println(“End of readFromFile”);

18. }

19.

20. public static void main(String [] args) {

21. MyFileReader reader = new MyFileReader();

22. reader.readFromFile(“mydata.txt”);

23. System.out.println(“End of main”);

24. }

25.}

 Here is the fl ow of control of main when no fi le is found:

 1. Line 21 instantiates a new MyFileReader object and its readFromFile method is
invoked on line 22 with the filename mydata.txt .

 2. The try block is entered on line 5.

 3. The FileReader constructor invoked on line 6 throws a java.io
.FileNotFoundException .

 4. Flow of control jumps to the first catch block on line 10. The FileNotFoundException
is caught and e refers to it. Line 11 displays a message.

 5. The catch on line 13 is skipped because the exception has already been caught. Line 17
executes and the readFromFile method completes its execution.

 6. Control jumps to line 23. End of main displays and the program finishes successfully.

 The output of running MyFileReader is

Oops - file not found: mydata.txt (The system cannot find the file specified)

End of readFromFile

End of main

c03.indd 230c03.indd 230 2/11/09 6:17:52 PM2/11/09 6:17:52 PM

 The Order of catch Clauses

 catch clauses are checked in the order they appear. If an exception is caught in
a catch clause, any subsequent catch blocks are ignored. Watch for invalid try - catch
statements that contain unreachable code and therefore do not compile. For example, do
you see what is wrong with the following try - catch statement?

5. try {

6. FileReader fis = new FileReader(fileName);

7. System.out.println(fileName + “ was found”);

8. char data = (char) fis.read();

9. System.out.println(“Just read: “ + data);

10. } catch(IOException e) {

11. System.out.println(“Something went wrong”);

12. e.printStackTrace();

13. } catch(FileNotFoundException e) {

14. System.out.println(“Oops - file not found: “ +

15. e.getMessage());

16. }

 FileNotFoundException is a child class of IOException . If a FileNotFoundException is
thrown within this try block, it will be caught on line 10. Therefore, it is not possible for
the catch block on line 13 to ever execute. This code does not compile and generates the
following compiler error:

MyFileReader.java:13: exception java.io.FileNotFoundException has

 already been caught

 } catch(FileNotFoundException e) {

 ^

 A catch clause of a try statement cannot catch an exception that is a child class of an
earlier catch clause.

 The Handle or Declare Rule

 According to the exam objectives, you should know “ that the exception may be a runtime
exception, a checked exception, or an error. ” These different types of exceptions are
important because of the Handle or Declare Rule, which this section discusses. Exceptions
fi t into three categories:

 Runtime exceptions An exception is referred to as a runtime exception if its data type is
 java.lang.RuntimeException or a subclass of RuntimeException .

Overview of Exceptions 231

c03.indd 231c03.indd 231 2/11/09 6:17:53 PM2/11/09 6:17:53 PM

232 Chapter 3 � Flow Control

 Checked exceptions An exception is referred to as a checked exception if its data type is a
child class of java.lang.Exception , but not a child class of RuntimeException .

 Errors An exception is referred to as an error if its data type is a child class of java
.lang.Error . An error is associated with problems that arise outside of your application,
and you typically do not attempt to recover from errors.

 Figure 3.11 shows the class hierarchy of the three types of exceptions along with
some examples of errors, checked exceptions, and runtime exceptions. You can always
determine what category an exception fi ts into by whether it subclasses RuntimeException ,
 Exception , or Error .

java.lang.Throwable

java.lang.Exception java.lang.Error

java.lang.RuntimeException

java.lang.ClassNotFoundException

java.io.IOException

java.sql.SQLException

java.lang.InterruptedException

java.lang.ArithmeticException

java.lang.ClassCastException

java.lang.NullPointerException

java.lang.AssertionError

java.lang.LinkageError

java.lang.VirtualMachineError

java.io.IOError

F I GU R E 3 .11 The three categories of exceptions.

 You might wonder why there is such a distinct categorizing of exceptions. The categories
are important because the compiler enforces a rule known as the Handle or Declare Rule
that only applies to checked exceptions. The Handle or Declare Rule states that if any
statement might throw a checked exception, it must do one of the following:

 Handle the exception by enclosing the statement in a try block that provides a
corresponding handler for the exception.

 The method that contains the statement must declare the checked exception in the
 throws clause of the method declaration.

�

�

c03.indd 232c03.indd 232 2/11/09 6:17:53 PM2/11/09 6:17:53 PM

 In other words, checked exceptions cannot be ignored. You must write code to either
catch and handle a checked exception, or declare that you are not catching the exception,
which means it must be handled by some other method down the call stack. Either way,
eventually a checked exception must be handled.

 The throws Keyword

 A method uses the throws keyword to declare that it might throw an exception. For
example, the following method named readFromFile declares that it might throw a
 java.io.IOException :

public void readFromFile(String fileName) throws IOException {

 FileReader fis = new FileReader(fileName);

 System.out.println(fileName + “ was found”);

 char data = (char) fis.read();

 System.out.println(“Just read: “ + data);

 System.out.println(“End of readFromFile”);

}

 Because IOException is a checked exception, any method that invokes readFromFile
must either handle or declare the IOException .

 Why Not Catch Errors or Runtime Exceptions?

 Checked exceptions must be handled or declared, while errors and runtime exceptions
can be ignored. This does not imply that you cannot try to catch an error or exception.
You can try to catch any object of type Throwable , which includes errors and runtime
exceptions.

 However, catching an error is often pointless because recovering from an error is diffi cult
and often impossible. On the other hand, you could catch a runtime exception and
recover from the problem, but in general this is considered poor programming design.
Believe it or not, the preferred technique for runtime exceptions is to let them crash your
program, because, in general, runtime exceptions can be avoided with better code. For
example, if a NullPointerException occurs at runtime, modify your code so that it tests
the corresponding reference for null before trying to use it.

 Be glad that errors and runtime exceptions do not need to handled or declared. They can
occur in so many situations that if you had to handle or declare them, you would quickly
become irritated with Java!

Overview of Exceptions 233

c03.indd 233c03.indd 233 2/11/09 6:17:54 PM2/11/09 6:17:54 PM

234 Chapter 3 � Flow Control

 To demonstrate the Handle or Declare Rule, let ’ s look at an example similar to
the ExceptionDemo earlier in this section. (By the way, ExceptionDemo threw an
 ArithmeticException , which is a runtime exception, so the Handle or Declare Rule did
not apply to its method3 .) In the following CheckedDemo class, line 14 calls the static method
 Class.forName , which declares the checked exception ClassNotFoundException . Study the
following code and see if it compiles:

1. public class CheckedDemo {

2. public void method1() {

3. System.out.println(“Inside method1”);

4. method2();

5. }

6.

7. public void method2() {

8. System.out.println(“Inside method2”);

9. method3();

10. }

11.

12. public void method3() {

13. System.out.println(“Inside method3”);

14. Class c = Class.forName(“java.lang.String”);

15. System.out.println(“class name: “ + c.getName());

16. }

17.}

 Because line 14 invokes a method that declares a checked exception, the Handle
or Declare Rule applies. Because the ClassNotFoundException is neither handled nor
declared, this code does not compile and the following compiler error is generated:

CheckedDemo.java:14: unreported exception java.lang.ClassNotFoundException; must
be caught or declared to

be thrown

 Class c = Class.forName(“java.lang.String”);

 ^

 There are two options for method3 : either include a try - catch statement around line
14 that catches a ClassNotFoundException , or declare the exception using the throws
keyword. Let ’ s have method3 declare the exception instead of handling it:

12. public void method3() throws ClassNotFoundException {

13. System.out.println(“Inside method3”);

14. Class c = Class.forName(“java.lang.String”);

15. System.out.println(“class name: “ + c.getName());

16. }

c03.indd 234c03.indd 234 2/11/09 6:17:54 PM2/11/09 6:17:54 PM

 Declaring the exception fi xes the compiler error on line 14, but the CheckedDemo class
still does not compile. We have simply moved the compiler error up to line 9:

CheckedDemo.java:9: unreported exception java.lang.ClassNotFoundException; must
be caught or declared to be thrown

 method3();

 ^

 Because method3 now declares a checked exception, method2 needs to handle or declare
the ClassNotFoundException . Notice how declaring a checked exception does not mean
we can ignore that exception; it simply pushes the responsibility to the calling method.
 method2 now has two options: catch the ClassNotFoundException or declare it. Let ’ s
declare it again:

7. public void method2() throws ClassNotFoundException {

8. System.out.println(“Inside method2”);

9. method3();

10. }

 Again, this fi xes the compiler error on line 9, but the CheckedDemo class still does not
compile. Now the error message is on line 4:

CheckedDemo.java:4: unreported exception java.lang.ClassNotFoundException; must
be caught or declared to be thrown

 method2();

 ^

 method1 must either handle or declare the ClassNotFoundException . Let ’ s handle it this
time, which should take care of the compiler error. See if you can determine the output of
the following version of CheckedDemo :

1. public class CheckedDemo {

2. public void method1() {

3. System.out.println(“Inside method1”);

4. try {

5. method2();

6. }catch(ClassNotFoundException e) {

7. e.printStackTrace();

8. }

9. }

10.

11. public void method2() throws ClassNotFoundException {

12. System.out.println(“Inside method2”);

Overview of Exceptions 235

c03.indd 235c03.indd 235 2/11/09 6:17:55 PM2/11/09 6:17:55 PM

236 Chapter 3 � Flow Control

13. method3();

14. }

15.

16. public void method3() throws ClassNotFoundException {

17. System.out.println(“Inside method3”);

18. Class c = Class.forName(“java.lang.String”);

19. System.out.println(“class name: “ + c.getName());

20. }

21.

22. public static void main(String [] args) {

23. System.out.println(“Inside main”);

24. new CheckedDemo().method1();

25. System.out.println(“End of main”);

26. }

27.}

 I should point out that although the Class.forName method might throw a
 ClassNotFoundException , it is not thrown in this example on line 18 because the String
class is found by the JVM ’ s class loader. The output of running this program is

Inside main

Inside method1

Inside method2

Inside method3

class name: java.lang.String

End of main

 Suppose we modify line 18 so that it attempts to load a class that is not found. A simple
typo can cause the exception to be thrown. Try and determine the output of CheckedDemo if
line 18 is the following:

18. Class c = Class.forName(“java.lang.string”);

 Here is the sequence of events that occurs in this case:

 1. main is called, which invokes method1 .

 2. method1 invokes method2 .

 3. method2 invokes method3 .

 4. Line 18 throws a ClassNotFoundException , which is not caught in method3 . method3 is
immediately popped off the call stack and the exception is thrown to method2 .

 5. method2 does not catch the exception, so it is immediately popped off the call stack
and the exception is thrown to method1 .

c03.indd 236c03.indd 236 2/11/09 6:17:55 PM2/11/09 6:17:55 PM

 6. method1 catches the exception on line 6. The catch block executes and the stack trace
is printed. Flow of control now continues normally for the remainder of this program.

 7. method1 finishes executing normally, so control jumps back to main and End of main
displays. The program successfully runs to completion.

 Here is the output of CheckedDemo when a ClassNotFoundException occurs:

Inside main

Inside method1

Inside method2

Inside method3

java.lang.ClassNotFoundException: java.lang.string

 at java.net.URLClassLoader$1.run(URLClassLoader.java:200)

 at java.security.AccessController.doPrivileged(Native Method)

 at java.net.URLClassLoader.findClass(URLClassLoader.java:188)

 at java.lang.ClassLoader.loadClass(ClassLoader.java:306)

 at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:276)

 at java.lang.ClassLoader.loadClass(ClassLoader.java:251)

 at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:319)

 at java.lang.Class.forName0(Native Method)

 at java.lang.Class.forName(Class.java:169)

 at CheckedDemo.method3(CheckedDemo.java:18)

 at CheckedDemo.method2(CheckedDemo.java:13)

 at CheckedDemo.method1(CheckedDemo.java:5)

 at CheckedDemo.main(CheckedDemo.java:24)

End of main

 Exceptions on the Exam

 Watch for questions on the exam that specifi cally test your knowledge of the Handle or
Declare Rule. Remember that declaring a checked exception does not magically take care
of the exception. It simply pushes the responsibility of handling that exception to some
other method, which means somewhere down the call stack a try statement is needed to
handle the exception and the compiler enforces this rule.

 You should also know which common exceptions are runtime or checked exceptions.
For example, you should know that ArithmeticException and NullPointerException
are runtime exceptions, while IOException , ClassNotFoundException , and
 InterruptedException are checked exceptions.

Overview of Exceptions 237

c03.indd 237c03.indd 237 2/11/09 6:17:56 PM2/11/09 6:17:56 PM

238 Chapter 3 � Flow Control

 Now that we have discussed the details of the try statement, we can discuss the finally
keyword, which we use to create an optional block of code at the end of a try statement
that always executes after the code in the try block.

 The finally Block

 A try statement can be followed by a fi nally block . A finally block is a unique feature of
Java: it executes after a try statement, regardless of whether an exception occurs within the
 try block. A finally block can only appear after a try statement and must appear at the
end of the catch clauses. Figure 3.12 shows the syntax for a finally block.

try {
//protected code

} catch (exceptiontype identifier) {
//exception handler

} finally {
//finally block

}

A finally block can only
appear as part of a try
statement.

The finally keyword

The finally block
always executes,
whether or not an
exception occurs
in the try block.

F I GU R E 3 .12 The syntax of a finally block

 A finally block allows you to perform any cleanup tasks that need to execute regardless
of what happens during the try block. For example, the following code closes a fi le after
attempting to read from it, whether or not the read is successful. Study the code carefully
and see if you can determine the output when no exception occurs:

1. import java.io.*;

2.

3. public class FinallyDemo {

4. public void readFromFile(String fileName) {

5. System.out.println(“Inside readFromFile”);

6. FileReader fis = null;

7. try {

8. fis = new FileReader(fileName);

9. char data = (char) fis.read();

10. System.out.println(“Just read: “ + data);

c03.indd 238c03.indd 238 2/11/09 6:17:56 PM2/11/09 6:17:56 PM

11. }catch(IOException e) {

12. System.out.println(“Handler for IOException”);

13. System.out.println(e.getMessage());

14. return;

15. }finally {

16. System.out.println(“Inside finally block”);

17. try {

18. if(fis != null) {

19. fis.close();

20. }

21. }catch(IOException e) {}

22. }

23. System.out.println(“End of readFromFile”);

24. }

25.

26. public static void main(String [] args) {

27. FinallyDemo reader = new FinallyDemo();

28. reader.readFromFile(“mydata.txt”);

29. System.out.println(“End of main”);

30. }

31. }

 Here is the sequence of events when main executes:

 1. A new FinallyDemo object is instantiated and its readFromFile is invoked on line 28.

 2. Line 5 displays Inside readFromFile , then line 6 declares a FileReader refer-
ence named fis . Notice that the finally block uses the fis reference, so it must be
declared outside the try block. This situation is common when writing try statements.

 3. We are assuming the try block executes successfully, so line 10 displays the first char-
acter from the file mydata.txt .

 4. Control jumps to the finally block on line 15. Inside finally block displays and
the file is closed on line 19. Notice the close method declares an IOException , so our
 finally block contains another try statement, a common situation in Java.

 5. Line 23 executes and readFromFile is popped off the method call stack.

 6. Control returns to main and End of main displays.

 When no exceptions occur, the output of the FinallyDemo program is

Inside readFromFile

Just read: H

Inside finally block

End of readFromFile

End of main

Overview of Exceptions 239

c03.indd 239c03.indd 239 2/11/09 6:17:57 PM2/11/09 6:17:57 PM

240 Chapter 3 � Flow Control

 Suppose we change line 28 to the following statement:

28. reader.readFromFile(“mydat.txt”);

 Note that the fi lename is changed to mydat.txt . Assuming this fi le does not exist, a
 FileNotFoundException is thrown on line 8. Study the FinallyDemo program carefully
and try to determine its output when a FileNotFoundException is thrown on line 8. This
scenario is exactly the type of question that you will see on the certifi cation exam, and here
is the sequence of events that occurs:

 1. Line 5 displays Inside readFromFile .

 2. Line 8 throws a FileNotFoundException . Lines 9 and 10 do not execute.

 3. The exception is caught on line 11. Lines 12 and 13 execute. Line 14 also executes, but
the method does not immediately return.

 4. Control jumps to line 15 and the finally block executes.

 5. The return from line 14 now executes and the readFromFile method is popped off the
method call stack. Notice that line 23 does not execute.

 6. Control returns to main and line 28 executes.

 Here is the output of the FinallyDemo program when a FileNotFoundException occurs:

Inside readFromFile

Handler for IOException

mydat.txt (The system cannot find the file specified)

Inside finally block

End of main

 As you can see, a finally block is an interesting feature of Java. Typically, a return like
the one on line 14 of the FinallyDemo causes a method to immediately get popped off the
method call stack. However, because a finally block always executes, the return gets put
on hold until the finally block fi nishes.

 A try - finally Statement

 A try statement can contain a finally block without any catch clauses, as the following
class demonstrates. See if you can determine its output:

public class TryFinally {

 public String go() {

 System.out.println(“Inside go”);

 String message = null;

 try {

c03.indd 240c03.indd 240 2/11/09 6:17:57 PM2/11/09 6:17:57 PM

 message.toUpperCase();

 System.out.println(“End of try”);

 }finally {

 System.out.println(“Inside finally”);

 }

 System.out.println(“End of go”);

 return message;

 }

 public static void main(String [] args) {

 System.out.println(“Inside main”);

 TryFinally test = new TryFinally();

 System.out.println(test.go());

 System.out.println(“End of main”);

 }

}

 The statement message.toUpperCase() throws a NullPointerException . Here is the
output of running the code:

Inside main

Inside go

Inside finally

Exception in thread “main” java.lang.NullPointerException

 at TryFinally.go(TryFinally.java:6)

 at TryFinally.main(TryFinally.java:18)

 Even though an uncaught exception is thrown within the try block, the finally block
still executes before the exception is actually thrown and go is popped off the method call
stack.

 There are situations where a finally block might not execute. For example, if an error
is thrown and the JVM is no longer able to run properly, a finally block probably might
not execute. Calling System.exit in a catch block terminates the JVM, which means the
corresponding finally block cannot execute.

 Now that we have discussed the details and syntax of handling and declaring
exceptions, I want to go over some of the common types of exceptions and errors that
arise in Java. The following section discusses the details of various exceptions and errors
specifi cally listed in the certifi cation exam objectives.

Overview of Exceptions 241

c03.indd 241c03.indd 241 2/11/09 6:17:58 PM2/11/09 6:17:58 PM

242 Chapter 3 � Flow Control

 Java API Exceptions and Errors
 The exam objectives state that you should be able to “ recognize situations that will
result in any of the following being thrown, ” and also “ understand which of these are
thrown by the virtual machine and recognize situations in which others should be thrown
programmatically ”

 This section covers the details of each of the following Throwable types, all declared in
the java.lang package:

 ArrayIndexOutOfBoundsException This exception is thrown by the JVM when your code
uses an illegal index to access an array.

 ClassCastException This exception is thrown by the JVM when an attempt is made to
cast an object reference to a subclass of which it is not an instance.

 IllegalArgumentException This exception is thrown programmatically to indicate that a
method has been passed an illegal or inappropriate argument.

 IllegalStateException This exception is thrown programmatically when a method has
been invoked while the program is in an inappropriate state.

 NullPointerException This exception is thrown by the JVM when an attempt is made to
use a null reference where an object is required.

 NumberFormatException This exception is thrown programmatically when an attempt
is made to convert a string to a numeric type, but the string does not have the appropriate
format.

 AssertionError This exception is thrown by the JVM when an assert statement fails.

 ExceptionInInitializerError This exception is thrown by the JVM when an unex-
pected exception occurs in a static initializer.

 StackOverflowError This exception is thrown by the JVM when the method call stack
overfl ows.

 NoClassDefFoundError This exception is thrown by the JVM or ClassLoader when a
class needs to be loaded but no defi nition of the class can be found.

 Note that you can programmatically throw any of these exceptions and errors, even
if an exception is typically thrown by the JVM. For example, if your code is aware
of a situation where an illegal array index is being used, you can instantiate a new
 ArrayIndexOutOfBoundsException object and throw it using the throw keyword. However,
this is not something commonly done in Java.

 The following section briefl y discusses each of these types of exceptions and
demonstrates situations where they might be thrown.

c03.indd 242c03.indd 242 2/11/09 6:17:58 PM2/11/09 6:17:58 PM

 ArrayIndexOutOfBoundsException

 Arrays have a fi xed size in Java, and the JVM throws an ArrayIndexOutOfBoundsException
when any attempt is made to access an array element outside of the bounds of the array.
For example, the following statements compile but cause an exception at runtime. Do you
see why?

3. int [] scores = {10, 21, 14, 35};

4. int total = 0;

5. for(int i = 0; i < = scores.length; i++) {

6. total += scores[i];

7. }

8. System.out.println(total);

 The problem is that the for loop executes fi ve times with i incrementing from 0 to 4 , but
the array only contains 4 elements. When i equals 4 , an ArrayIndexOutOfBoundsException
occurs on line 6. Here is the output:

Exception in thread “main” java.lang.ArrayIndexOutOfBoundsException: 4

 at ApiExceptions.main(ApiExceptions.java:6)

 As with most situations where this exception occurs, proper code can eliminate the
exception from being thrown. With arrays, take advantage of the new for - each loop
whenever possible to avoid accessing an illegal array element:

for(int score : scores) {

 total += score;

}

 Using the length Attribute Properly

 A common mistake beginning Java programmers make is to write a for loop that steps
off the end of the array:

for(int i = 0; i < = scores.length; i++)

 The proper syntax is to use < instead of < = when using the length attribute of the array:

for(int i = 0; i < scores.length; i++)

 This scenario makes a good exam question, so keep an eye out for loops that generate an
 ArrayIndexOutOfBoundsException .

Java API Exceptions and Errors 243

c03.indd 243c03.indd 243 2/11/09 6:17:58 PM2/11/09 6:17:58 PM

244 Chapter 3 � Flow Control

 ClassCastException

 A ClassCastException is thrown by the JVM when an object is cast to a data type
that the object is not an instance of. Note that the compiler often helps you avoid a
 ClassCastException because you cannot attempt to cast an object to an incompatible data
type. For example, the following code does not compile:

Integer x = new Integer(10);

String y = (String) x;

 The reference x is of type Integer and the compiler complains about x being
inconvertible to a String . However, there are situations where the compiler is unable to
determine whether or not a cast is convertible. For example, the following statements do
compile:

Object x = new Integer(10);

String y = (String) x;

 The difference here is that x is a reference of type Object , and an Object reference can
be converted to a String reference. The code compiles, but at runtime you will have a
problem because x is not a String . Here is the stack trace generated by the previous two
lines of code:

Exception in thread “main” java.lang.ClassCastException: java.lang.Integer cannot
be cast to java.lang.String

 at ClassCastDemo.main(ClassCastDemo.java:6)

 Avoiding a ClassCastException

 You might wonder why you would ever cast a parent reference down to one of its child
types, but this situation is actually quite common in the real world. A lot of the methods in
the Java API return Object types that need to be cast to their appropriate child class type.

 The instanceof operator is used in Java to avoid the ClassCastException , as
demonstrated in the following code:

6. Object x = new Integer(10);

7. if(x instanceof String) {

8. String y = (String) x;

9. }

 The cast on line 8 is avoided in this example because line 7 evaluates to false . We will
see the instanceof operator again in Chapter 6 , “ OO Concepts. ”

c03.indd 244c03.indd 244 2/11/09 6:17:59 PM2/11/09 6:17:59 PM

 IllegalArgumentException

 An IllegalArgumentException is thrown programmatically if an argument passed into a
method is not valid, where validity is based on the business logic of your application and
the specifi c behavior of the method. For example, the following HomeForSale class declares
a constructor with a parameter of type double that needs to be a percentage between 0 and
 1 . The constructor throws an IllegalArgumentException on line 7 when the argument is
out of this range:

1. public class HomeForSale {

2. private String agent;

3. private double commission;

4.

5. public HomeForSale(String agent, double commission) {

6. if(commission < 0.0 || commission > 1.0) {

7. throw new IllegalArgumentException(

“commission must be between 0 and 1”);

8. }

9. this.agent = agent;

10. this.commission = commission;

11. }

12. }

 Be careful not to use an assertion in this situation. We may want the commission to
be between 0 and 1 , but we cannot assert this because the argument passed in can be any
value. Throwing an IllegalArgumentException is a good way to communicate to the
calling method that the data they provided is not valid.

 IllegalStateException

 An IllegalStateException is thrown programmatically when a method is invoked and the
program is not in an appropriate state for that method to perform its task. This typically
happens when a method is invoked out of sequence, or perhaps a method is only allowed to
be invoked once and an attempt is made to invoke it again.

 For example, suppose you develop an order processing system and an attempt is made
to ship an order before the shipping address has been input. The shipOrder method could
throw an IllegalStateException , as the following code demonstrates:

1. public class CustomerOrder {

2. private String address;

3.

4. public void shipOrder() {

5. if(address == null) {

6. throw new IllegalStateException(

Java API Exceptions and Errors 245

c03.indd 245c03.indd 245 2/11/09 6:17:59 PM2/11/09 6:17:59 PM

246 Chapter 3 � Flow Control

7. “address must be set first”);

8. }

9. System.out.println(“Shipping order...”);

10. }

11. }

 Invoking shipOrder on a CustomerOrder object with a null address fi eld results in the
following exception:

Exception in thread “main” java.lang.IllegalStateException: address must be set
first

 at CustomerOrder.shipOrder(CustomerOrder.java:6)

 at CustomerOrder.main(CustomerOrder.java:12)

 NullPointerException

 A NullPointerException is thrown when a null reference is used in situations where an
actual object is required. This exception is one that is thrown frequently by both the JVM
and programmatically. For example, the JVM throws a NullPointerException in the
following code:

3. Integer x = null;

4. System.out.println(x.intValue());

 The reference x is null, so attempting to invoke any method on it results in a
 NullPointerException . The stack trace looks like:
Exception in thread “main” java.lang.NullPointerException

 at NullPointerDemo.main(NullPointerDemo.java:4)

 Programmatically, you can throw a NullPointerException if you know a reference is
 null . For example, the following method throws a NullPointerException if the argument
passed in is a null reference:

public void printMessage(String message) {

 if(message == null) {

 throw new NullPointerException(“message cannot be null”);

 }

 System.out.println(message);

}

 NumberFormatException

 A NumberFormatException is thrown when a string is parsed into a numeric value and the
string does not have the appropriate format. The exception is thrown by the parsing and

c03.indd 246c03.indd 246 2/11/09 6:18:00 PM2/11/09 6:18:00 PM

 valueOf methods of all the wrapper classes in java.lang . For example, the following code
generates a NumberFormatException :

3. String s = “hello”;

4. int x = Integer.parseInt(s);

 The string “ hello ” is clearly not an integer, so attempting to parse it into an int
generates the following stack trace:

Exception in thread “main” java.lang.NumberFormatException: For input string:
“hello”

 at java.lang.NumberFormatException.forInputString(NumberFormatException.

java:48)

 at java.lang.Integer.parseInt(Integer.java:447)

 at java.lang.Integer.parseInt(Integer.java:497)

 at NumberFormatDemo.main(NumberFormatDemo.java:4)

 AssertionError

 An AssertionError is thrown to indicate an assertion has failed. You do not throw an
 AssertionError programmatically. The JVM throws one when assertions are enabled and
the boolean expression of an assert statement is false .

 ExceptionInInitializerError

 An ExceptionInInitializer is thrown by the JVM when an unexpected exception occurs
during a static initializer or the initializer of a static variable. Here is a simple example that
demonstrates this exception:

1. public class ExceptionInInitializerDemo {

2. static {

3. Integer x = null;

4. x.intValue();

5. }

6.

7. public static void main(String [] args) {

8. System.out.println(“Inside main”);

9. }

10. }

 A NullPointerException occurs on line 4, which causes an ExceptionInInitializerError
to be thrown. Running this program generates the following stack trace:

Exception in thread “main” java.lang.ExceptionInInitializerError

Caused by: java.lang.NullPointerException

 at ExceptionInInitializerDemo. < clinit > (ExceptionInInitializerDemo.java:4)

Java API Exceptions and Errors 247

c03.indd 247c03.indd 247 2/11/09 6:18:00 PM2/11/09 6:18:00 PM

248 Chapter 3 � Flow Control

 As with most errors in Java, you cannot recover from an ExceptionInInitializerError
because there is no way to catch it.

 StackOverflowError

 A StackOverflowError is thrown by the JVM when the method call stack overfl ows,
typically due to method recursion that does not end. The following example causes a
 StackOverflowError due to its infi nite recursion:

1. public class StackOverflowDemo {

2. private int x = 0;

3.

4. public void go() {

5. System.out.println(++x);

6. go();

7. }

8. public static void main(String [] args) {

9. new StackOverflowDemo().go();

10. }

11. }

 The go method invokes itself recursively on line 6, so eventually the method call stack
will consume all of its allotted memory, causing a StackOverflowError . Running the
previous program generates the following stack trace:

Exception in thread “main” java.lang.StackOverflowError

 at sun.nio.cs.SingleByteEncoder.encodeArrayLoop(SingleByteEncoder.
java:91)

 at sun.nio.cs.SingleByteEncoder.encodeLoop(SingleByteEncoder.java:130)

 at java.nio.charset.CharsetEncoder.encode(CharsetEncoder.java:544)

 at sun.nio.cs.StreamEncoder.implWrite(StreamEncoder.java:252)

 at sun.nio.cs.StreamEncoder.write(StreamEncoder.java:106)

 at java.io.OutputStreamWriter.write(OutputStreamWriter.java:190)

 at java.io.BufferedWriter.flushBuffer(BufferedWriter.java:111)

 at java.io.PrintStream.newLine(PrintStream.java:495)

 at java.io.PrintStream.println(PrintStream.java:687)

 at StackOverflowDemo.go(StackOverflowDemo.java:5)

 at StackOverflowDemo.go(StackOverflowDemo.java:6)

 at StackOverflowDemo.go(StackOverflowDemo.java:6)

 The output actually displays the last line (the call to go on line 6) in the stack trace for
each time the method is invoked, which is several thousand calls to go . You can catch a
 StackOverflowError and recover from it, but that would be an unusual situation because
the error is typically avoided by using proper code.

c03.indd 248c03.indd 248 2/11/09 6:18:01 PM2/11/09 6:18:01 PM

 NoClassDefFoundError

 A NoClassDefFoundError is thrown by the JVM or class loader when the defi nition of a
class cannot be found. You might have seen this error before when attempting to run a Java
program and the JVM cannot fi nd your class:
java NotThere

 If there is no class named NotThere in the classpath, the following output displays:

Exception in thread “main” java.lang.NoClassDefFoundError: NotThere
Caused by: java.lang.ClassNotFoundException: NotThere

 at java.net.URLClassLoader$1.run(Unknown Source)

 at java.security.AccessController.doPrivileged(Native Method)

 at java.net.URLClassLoader.findClass(Unknown Source)

 at java.lang.ClassLoader.loadClass(Unknown Source)

 at sun.misc.Launcher$AppClassLoader.loadClass(Unknown Source)

 at java.lang.ClassLoader.loadClass(Unknown Source)

 at java.lang.ClassLoader.loadClassInternal(Unknown Source)

 Summary
 This chapter covered the “ Flow Control ” objectives of the SCJP exam. The goal of this
chapter was to discuss the details of various entities in Java that alter the fl ow of control.

 The decision - making control structures in Java are the if and switch statements. An if
statement is the most basic of decision - making control structures in Java, and the switch
statement is useful when comparing an integer value to a fi xed number of cases.

 The repetition control structures in Java are the for , enhanced for , while , and do loops.
The for loop is useful for repeating something a fi xed number of times. The enhanced for
is designed for iterating through arrays and collections. The while and do - while loops are
used when repeating a task an indeterminate number of times; the difference is that a do -
 while loop executes at least once. We also discussed the effect of the break and continue
keywords on a loop.

 This chapter discussed assertions in detail. An assertion is a boolean expression placed
at particular points in your code where you think something should always be true. A
failed assertion throws an AssertionError , and we explored how to enable assertions at
runtime.

 We also explained the details of exceptions in Java, including the differences between
errors, runtime exceptions, and checked exceptions. We saw the effect the Handle or
Declare Rule has on your code and the use of the try , catch , finally , throw , and throws
keywords.

Summary 249

c03.indd 249c03.indd 249 2/11/09 6:18:01 PM2/11/09 6:18:01 PM

250 Chapter 3 � Flow Control

 The SCJP exam objectives specifi cally list ten exceptions, and we examined the details
of each one, including which ones are thrown by the JVM and which ones are thrown
programmatically.

 Be sure to test your knowledge of fl ow control by answering the Review Questions that
follow. Make sure you have a good understanding of the following Exam Essentials before
attempting the Review Questions, and good luck!

 Exam Essentials

 Understand the if and switch decision control structures. The if and switch statements
show up on a lot on the exam. The questions are usually testing your knowledge of some
other aspect of Java, so it is important to be very familiar with if and switch .

 Understand the looping control structures. Make sure you know the syntax and behavior
of for , while , and do loops, including the enhanced for loop. Expect at least one exam
question testing your basic understanding of one of the loops, along with at least one ques-
tion involving nested loops.

 Know how to enable assertions. Assertions are a new concept in Java, and they are
enabled by default. Watch for a question that uses assertions but does not enable them, or a
question that tests your knowledge of how assertions are enabled from the command line.

 Understand the flow of control of a try - catch - finally block. Exception handling is an
important concept in Java programming. You need to understand the fl ow of control of all
aspects of a try - catch - finally statement, whether or not an exception occurs.

c03.indd 250c03.indd 250 2/11/09 6:18:01 PM2/11/09 6:18:01 PM

 Review Questions
 1. What is the result of the following code?

3. int x = 10, y = 3;

4. if(x % y == 2)

5. System.out.print(“two”);

6. System.out.print(x%y);

7. if(x%y == 1)

8. System.out.print(“one”);

 A. two

 B. two1

 C. two2

 D. one

 E. 1one

 2. What is the result of the following code?
4. int x = 5, y = 10;

5. boolean b = x < 0;

6. if(b = true) {

7. System.out.print(x);

8. } else {

9. System.out.print(y);

10. }

 A. Compiler error on line 5.

 B. Compiler error on line 6.

 C. 5

 D. 10

 E. The code compiles but there is no output.

 3. What is the output of the following program?
1. public class Question3 {

2. public static void main(String [] args) {

3. String year = “Senior”;

4. switch(year) {

5. case “Freshman” :

6. case “Sophomore” :

7. case “Junior” :

8. System.out.print(“See you next year”);

9. break;

10. case “Senior” :

Review Questions 251

c03.indd 251c03.indd 251 2/11/09 6:18:02 PM2/11/09 6:18:02 PM

252 Chapter 3 � Flow Control

11. System.out.print(“Congratulations”);

12. default :

13. System.out.print(“Invalid year”);

14. }

15. }

16. }

 A. See you next year

 B. Congratulations

 C. CongratulationsInvalid year

 D. Invalid year

 E. The code does not compile.

 4. Given the following class definition:
1. public class PickAColor {

2. enum Color {RED, BLUE, GREEN}

3.

4. public static void go(Color c) {

5. switch(c) {

6. case RED :

7. System.out.print(“red”);

8. case BLUE :

9. System.out.print(“blue”);

10. break;

11. case GREEN :

12. System.out.print(“green”);

13. default :

14. assert false;

15. }

16. }

17.

18. public static void main(String [] args) {

19. go(Color.RED);

20. }

21. }

 what is the result of the following command line?
java -ea PickAColor

 A. red

 B. redblue

 C. redblue , followed by an AssertionError

 D. Compiler error on line 5

 E. Compiler errors on line 6, 8, and 11

c03.indd 252c03.indd 252 2/11/09 6:18:02 PM2/11/09 6:18:02 PM

 5. What is the result of the following code?
4. final char a = ‘A’, d = ‘D’;

5. char grade = ‘B’;

6. switch(grade) {

7. case a :

8. case ‘B’ :

9. System.out.print(“great”);

10. case ‘C’ :

11. System.out.print(“passed”);

12. break;

13. case d :

14. case ‘F’ :

15. System.out.print(“not good”);

16. }

 A. great

 B. greatpassed

 C. Compiler error on line 4

 D. Compiler error on line 7

 E. Compiler errors on lines 7 and 13

 6. What is the result of the following code?
4. char c = a;

5. for(int i = 1; i < = 3; i++) {

6. for(int j = 0; j < = 2; j++) {

7. System.out.print(c++);

8. }

9. }

 A. abcdefghi

 B. bcdefghij

 C. abcdef

 D. abcabcabc

 E. The code does not compile.

 7. What is the result of the following code?
10. String [] values = {“one”, “two”, “three”};

11. for(int index = 0; index < values.length; index++) {

12. System.out.print(values[index]);

13. }

14. System.out.print(index);

Review Questions 253

c03.indd 253c03.indd 253 2/11/09 6:18:03 PM2/11/09 6:18:03 PM

254 Chapter 3 � Flow Control

 A. onetwothree

 B. onetwothree2

 C. onetwothree3

 D. onetwothree4

 E. The code does not compile.

 8. What is the output of the following program?
1. public class Average {

2. public static void main(String [] args) {

3. int [] scores = {2,4,5,5,6,8};

4. int sum = 0;

5. for(int x : scores) {

6. sum += x;

7. }

8. System.out.println(sum / scores.length);

9. }

10. }

 A. 30

 B. 6

 C. 4

 D. 5

 E. The code does not compile.

 9. What is the output of the following code?

5. int count = 0;

6. rowloop : for(int row = 1; row < = 3; row++) {

7. for(int col = 1; col < = 2; col++) {

8. if(row * col % 2 == 0)

9. continue rowloop;

10. count++;

11. }

12. }

13. System.out.println(count);

 A. 1

 B. 2

 C. 3

 D. 4

 E. 6

c03.indd 254c03.indd 254 2/11/09 6:18:03 PM2/11/09 6:18:03 PM

 10. What is the result of the following code?

5. int m = 9, n = 1;

6. int x = 0;

7. while(m > n) {

8. m--;

9. n += 2;

10. x += m + n;

11. }

12. System.out.println(x);

 A. 11

 B. 13

 C. 23

 D. 36

 E. 50

 11. Given the following class definition:

1. public class Forever {

2. public void run() {

3. while(true) {

4. System.out.println(“Hello”);

5. }

6. System.out.println(“Goodbye”);

7. }

8. }

 what is output of the following statement?

new Forever().run();

 A. Prints Hello indefinitely

 B. Prints Hello until an error occurs

 C. Prints Hello until an error occurs, then prints Goodbye

 D. Compiler error on line 3

 E. Compiler error on line 6

 12. What is the result of the following code?

7. int y = 1;

8. do {

9. System.out.print(y + “ “);

10. }while(y < = 10);

Review Questions 255

c03.indd 255c03.indd 255 2/11/09 6:18:03 PM2/11/09 6:18:03 PM

256 Chapter 3 � Flow Control

 A. The code does not compile.

 B. 1 2 3 4 5 6 7 8 9

 C. 1 2 3 4 5 6 7 8 9 10

 D. 1 2 3 4 5 6 7 8 9 10 11

 E. ‘ 1 ‘ an infinite number of times

 13. What is the result of the following code?

7. do {

8. int y = 1;

9. System.out.print(y++ + “ “);

10. }while(y < = 10);

 A. The code does not compile.

 B. 1 2 3 4 5 6 7 8 9

 C. 1 2 3 4 5 6 7 8 9 10

 D. 1 2 3 4 5 6 7 8 9 10 11

 E. ‘ 1 ‘ an infinite number of times.

 14. What is the result of the following code?

5. Boolean keepGoing = true;

6. int result = 1;

7. int i = 10;

8. do {

9. i--;

10. if(i == 5) {

11. keepGoing = false;

12. }

13. result < < = 1;

14. }while(keepGoing);

15. System.out.println(result);

 A. 8

 B. 16

 C. 32

 D. 64

 E. Line 14 generates a compiler error.

 15. Given the following class definition:

1. public class Question15 {

2. public static void main(String [] args) {

c03.indd 256c03.indd 256 2/11/09 6:18:04 PM2/11/09 6:18:04 PM

3. int x = 7;

4. assert x > = 1 & & x < = 6;

5. System.out.println(x);

6. }

7. }

and given the following command line, which of the following statements are true?
(Select two.)

java Question15

 A. Line 4 generates a compiler error.

 B. Line 4 throws an AssertionError .

 C. The output is 7 .

 D. Line 5 does not execute.

 E. The assert statement on line 4 is ignored.

 16. Given the following class definition:

1. public class PrintTen {

2. private int x = 10;

3.

4. public void go() {

5. assert x == 10;

6. System.out.println(x);

7. }

8.

9. public static void main(String [] args) {

10. PrintTen pt = new PrintTen();

11. pt.x = 5;

12. pt.go();

13. }

14. }

and given the following command line, which of the following statements are true?
(Select two.)

java -ea PrintTen

 A. Line 11 generates a compiler error.

 B. The assert statement on line 5 throws an AssertionError .

 C. The assert statement on line 5 is ignored.

 D. The output is 5 .

 E. Line 6 does not execute.

Review Questions 257

c03.indd 257c03.indd 257 2/11/09 6:18:04 PM2/11/09 6:18:04 PM

258 Chapter 3 � Flow Control

 17. Which of the following exceptions are thrown by the JVM? (Select three.)

 A. java.io.IOException

 B. NullPointerException

 C. ExceptionInInitializerError

 D. NumberFormatException

 E. ArrayIndexOutOfBoundsException

 18. Given the following class definition:

1. import java.io.*;

2.

3. public class MyFileReader2 {

4. public void readFromFile(String fileName) throws IOException {

5. FileReader fis = new FileReader(fileName);

6. System.out.println(fileName + “ was found”);

7. char data = (char) fis.read();

8. System.out.println(“Just read: “ + data);

9. System.out.println(“End of readFromFile”);

10. }

11.

12. public static void main(String [] args) {

13. MyFileReader2 reader = new MyFileReader2();

14. reader.readFromFile(“greeting.txt”);

15. System.out.println(“End of main”);

16. }

17. }

 and given that the fi le greeting.txt has one line of text:

Welcome

 which one of the following statements is true?

 A. The code compiles and the output is “ W ” .

 B. Line 4 generates a compiler error.

 C. Line 5 generates a compiler error.

 D. Line 7 generates a compiler error.

 E. Line 14 generates a compiler error.

 19. Given the following class definition:

1. public class DoSomething {

2. public void go() {

3. System.out.print(“A”);

c03.indd 258c03.indd 258 2/11/09 6:18:04 PM2/11/09 6:18:04 PM

4. try {

5. stop();

6. }catch(ArithmeticException e) {

7. System.out.print(“B”);

8. }finally {

9. System.out.print(“C”);

10. }

11. System.out.print(“D”);

12. }

13.

14. public void stop() {

15. System.out.print(“E”);

16. Object x = null;

17. x.toString();

18. System.out.print(“F”);

19. }

20.

21. public static void main(String [] args) {

22. new DoSomething().go();

23. }

24. }

what is printed before the stack trace caused by the NullPointerException thrown on
line 17 displays?

 A. AE

 B. AECD

 C. AEC

 D. AEBCD

 E. No output appears before the stack trace displays.

 20. What is the output of the following program?

1. public class MathProblem {

2. public static int divide(int a, int b) {

3. try {

4. return a / b;

5. }catch(RuntimeException e) {

6. return -1;

7. }catch(ArithmeticException e) {

8. return 0;

9. }finally {

10. System.out.print(“done”);

Review Questions 259

c03.indd 259c03.indd 259 2/11/09 6:18:05 PM2/11/09 6:18:05 PM

260 Chapter 3 � Flow Control

11. }

12. }

13.

14. public static void main(String [] args) {

15. System.out.print(divide(12, 0));

16. }

17. }

 A. - 1

 B. 0

 C. done0

 D. done - 1

 E. The code does not compile.

 21. What is the output of the following program?

1. public class Vowels {

2. public static int countVowels(String input) {

3. int count = 0;

4. int length = input.length();

5. int i = 0;

6.

7. String lowercase = input.toLowerCase();

8. while(i < length) {

9. switch(lowercase.charAt(i)) {

10. case ‘a’:

11. case ‘e’:

12. case ‘i’:

13. case ‘o’:

14. case ‘u’:

15. count++;

16. }

17. i++;

18. }

19. return count;

20. }

21.

22. public static void main(String [] args) {

23. int x = countVowels(“Supercalifragilisticexpialidocious”);

24. System.out.print(x);

25. }

26. }

c03.indd 260c03.indd 260 2/11/09 6:18:05 PM2/11/09 6:18:05 PM

 A. 0

 B. 16

 C. 34

 D. 35

 E. The code does not compile.

 22. What is the output of the following program?

1. public class Laptop {

2. public void start() {

3. try {

4. System.out.print(“Starting up”);

5. throw new Exception();

6. }catch(Exception e) {

7. System.out.print(“Problem”);

8. System.exit(0);

9. }finally {

10. System.out.print(“Shutting down”);

11. }

12. }

13.

14. public static void main(String [] args) {

15. new Laptop().start();

16. }

17. }

 A. Starting up

 B. Starting upProblem

 C. Starting upProblemShutting down

 D. Starting upShutting down

 E. The code does not compile.

 23. What is the output of the following program?

1. public class Dog {

2. public String name;

3.

4. public void parseName() {

5. System.out.print(“1”);

6. try {

7. System.out.print(“2”);

8. int x = Integer.parseInt(name);

9. System.out.print(“3”);

Review Questions 261

c03.indd 261c03.indd 261 2/11/09 6:18:05 PM2/11/09 6:18:05 PM

262 Chapter 3 � Flow Control

10. }catch(NumberFormatException e) {

11. System.out.print(“4”);

12. }

13. }

14.

15. public static void main(String [] args) {

16. Dog fido = new Dog();

17. fido.name = “Fido”;

18. fido.parseName();

19. System.out.print(“5”);

20. }

21. }

 A. 1235

 B. 124

 C. 1245

 D. 1234

 E. 12

 24. What is the output of the following program?

1. public class Cat {

2. public String name;

3.

4. public void parseName() {

5. System.out.print(“1”);

6. try {

7. System.out.print(“2”);

8. int x = Integer.parseInt(name);

9. System.out.print(“3”);

10. }catch(NullPointerException e) {

11. System.out.print(“4”);

12. }

13. System.out.print(“5”);

14. }

15.

16. public static void main(String [] args) {

17. Cat felix = new Cat();

18. felix.name = “Felix”;

19. felix.parseName();

20. System.out.print(“6”);

21. }

22. }

c03.indd 262c03.indd 262 2/11/09 6:18:06 PM2/11/09 6:18:06 PM

 A. 1256 , followed by a stack trace for a NumberFormatException

 B. 12456

 C. 1256

 D. 12 , followed by a stack trace for a NumberFormatException

 E. 124 , followed by a stack trace for a NumberFormatException

 25. What is the result of the following code?

3. int x = 10;

4. if(x < 0)

5. System.out.print(“anywhere”);

6. else if(x < 5)

7. if(x == 10)

8. System.out.print(“here”);

9. else if(x > = 5)

10. System.out.print(“there”);

11. else

12. System.out.print(“somewhere”);

13. else

14. System.out.print(“nowhere”);
 A. anywhere

 B. here

 C. there

 D. somewhere

 E. nowhere

 F. The code does not compile.

 26. What is the result of the following code?

String city = null;

if(city.equals(“Boston”)) {

 System.out.print(“true”);

}else {

 System.out.print(“false”);

}finally {

 System.out.print(“finally”);

}

 A. false

 B. falsefinally

 C. finally

 D. finally , followed by the stack trace from a NullPointerException

 E. The code does not compile.

Review Questions 263

c03.indd 263c03.indd 263 2/11/09 6:18:06 PM2/11/09 6:18:06 PM

264 Chapter 3 � Flow Control

 27. What gets printed in the following program? (Select four answers.)

1. public class Mouse {

2. public String name;

3.

4. public void run() {

5. System.out.print(“1”);

6. try {

7. System.out.print(“2”);

8. name.toString();

9. System.out.print(“3”);

10. }catch(NullPointerException e) {

11. System.out.print(“4”);

12. throw e;

13. }

14. System.out.print(“5”);

15. }

16.

17. public static void main(String [] args) {

18. Mouse jerry = new Mouse();

19. jerry.run();

20. System.out.print(“6”);

21. }

22. }

 A. 1

 B. 2

 C. 3

 D. 4

 E. 5

 F. 6

 G. Stack trace for a NullPointerException

c03.indd 264c03.indd 264 2/11/09 6:18:06 PM2/11/09 6:18:06 PM

Answers to Review Questions
1. E. 10%3 equals 1 , so line 4 is false , which results in line 5 being skipped. I intentionally

omitted the curly braces from the if on line 4 and indented line 6 to throw you off. Line
6 executes and 1 is printed regardless because it is not a part of the if statement. Line 7 is
 true , so one is also printed. Therefore, the answer is E.

2. C. The code compiles fi ne, so A and B are incorrect. In an if - else statement, either the
true block or false block executes, so either x or y must be printed, which implies E is incor-
rect. On line 5, the boolean variable b is assigned to false because 5 is not less than 0 .
Line 6 is an assignment, not a comparison. b is assigned to true on line 6 and the result of
the assignment is true , so line 7 executes and a 5 is printed. Therefore, the answer is C.

3. E. You cannot switch on a String . Line 4 generates a compiler error, so the correct answer
is E.

4. B. The code compiles fi ne, so D and E are incorrect. Assertions are enabled, but the
 default case on line 13 does not execute, so C is incorrect. The Color is RED , so the case
on line 6 is satisfi ed and red is printed on line 7. There is no break , so line 9 executes and
 blue is printed, so A is incorrect. Line 10 breaks out of the switch and the program is
done. The output is redblue , so the answer is B.

5 B. The code compiles fi ne, so C, D, and E are incorrect. The case on line 8 is satisfi ed, so
line 9 executes and great is printed. There is no break , so line 11 executes and passed is
printed and therefore A is incorrect. The switch breaks at line 12, so the fi nal output is
 greatpassed and the answer is B.

6. A. The outer loop executes 3 times and the inner loop executes 3 times, so 9 characters
are printed starting with ‘ a ‘ , then ‘ b ’ and so on up to ‘ i ’ . Therefore, the output is
 ‘ a bcdefghi ’ and the answer is A.

7. E. The int variable index is declared within the for statement, so its scope is only within
the for loop. Line 14 generates a compiler error because index is out of scope, so the
answer is E.

8. D. The code compiles fi ne, so E is incorrect. Line 3 creates an array of six int s. The
enhanced for loop adds the six int s together, so sum is 2+4+5+5+6+8=30 . scores.length
is 6 and 30/6 equals 5 , which is printed on line 8. Therefore, the answer is D.

9. B. The expression on line 8 is true when row * col is an even number. Let ’ s step through
each iteration:

 row = 1 and col = 1 : Line 8 is false , the continue is skipped, and count is
incremented to 1 .

 row = 1 and col = 2 : Line 8 is true , the continue executes, and control jumps to
the next iteration of the outer for loop.

 row = 2 and col = 1 : Line 8 is true again, so we jump to the next iteration of the
outer loop.

�

�

�

Answers to Review Questions 265

c03.indd 265c03.indd 265 2/11/09 6:18:07 PM2/11/09 6:18:07 PM

266 Chapter 3 � Flow Control

 row = 3 and col = 1 : Line 8 is false so count gets incremented to 2 .

 row = 3 and col = 2 : Line 8 is true , the continue executes, and the outer loop is done.

 Therefore, the output is 2 and the answer is B.

10. D. You need to tackle these types of questions by analyzing one iteration through the loop
at a time. Let ’ s analyze each step:

 m = 9 and n = 1 : m > n is true , m is decremented to 8 , n is incremented to 3 , and x is
 8 +3 = 11 .

 m = 8 and n = 3 : m > n is true , m is decremented to 7 , n is incremented to 5 , and x is
11 + 7 + 5 = 23 .

 m = 7 and n = 5 : m > n is true , m is decremented to 6 , n is incremented to 7 , and x is
23 + 6 + 7 = 36 .

 m = 6 and n = 7 : m > n is false , so the loop terminates.

 The fi nal value of x is 36 , so the answer is D.

11. E. This is a tough question. The code does not compile, so A, B, and C are incorrect. Line
3 is fi ne — you can declare an infi nite while loop. The compiler is aware that line 3 is an
infi nite loop and that line 6 is an unreachable statement, so the compiler generates an error
at line 6. Therefore, the answer is E.

12. E. The loop control variable y equals 1 and does not change in this do - while loop.
Because 1 <= 10 is always true , this is an infi nite loop and 1 followed by a space displays
indefi nitely, so the answer is E.

13. A. The variable y is declared within the do statement on line 8, so it is out of scope of line
10. Therefore, line 10 generates a compiler error and the answer is A.

14. C. Line 14 compiles fi ne. A control structure that requires a boolean expression can also
use java.lang.Boolean values. The loop control variable i goes from 10 down to 5 , then
the loop stops executing. Shifting result to the left 1 on line 13 is the equivalent of mul-
tiplying by 2, so result takes on the successive values 2 , 4 , 8 , 16 , and 32 through the fi ve
iterations. Therefore, the answer is C.

15. C and E. The code compiles, so A is incorrect. The command line does not enable
 assertions, so E is true and B is false even though the assertion is false . Because no
 AssertionError is thrown, line 5 executes and outputs 7 , so C is true and D is false.
Therefore, the answer is C and E.

16. B and E. The code compiles fi ne, so A is false. The command line enables assertions, so
C is false. Line 11 changes x to 5 , so the assert on line 5 fails and an AssertionError is
thrown, so B is true. The AssertionError causes line 6 to not execute, so D is false and E
is true. Therefore, the answer is B and E.

17. B, C, and E. A java.io.IOException is thrown by many methods in the java.
io package, but it is always thrown programmatically. The same is true for
 NumberFormatException ; it is thrown programmatically by the wrapper classes of java
.lang . The other three exceptions are all thrown by the JVM when the corresponding
problem arises; therefore, the answer is B, C, and E.

�

�

�

�

�

�

c03.indd 266c03.indd 266 2/11/09 6:18:07 PM2/11/09 6:18:07 PM

18. E. The code does not compile, so A is incorrect. The readFromFile method compiles fi ne
because it properly declares the IOException that might be thrown on lines 5 and 7, so B,
C, and D are incorrect. The main method invokes readFromFile and needs to handle or
declare the IOException . Because it does neither, line 14 generates a compiler error and the
answer is E.

19. C. The main method invokes go and A is printed on line 3. The stop method is invoked
and E is printed on line 15. Line 17 throws a NullPointerException , so stop is imme-
diately popped off the method call stack and line 18 does not execute. The exception is
not caught in go , so the go method is popped off the call stack, but not before its finally
block executes and C is printed on line 9. Because main does not catch the exception, the
stack trace displays and no further output occurs, so “ AEC ” was the output printed before
the stack trace. Therefore, the answer is C.

20. E. The order of catch blocks is important because they are checked in the order
they appear after the try block. Because ArithmeticException is a child class of
 RuntimeException , the catch block on line 7 is unreachable. (If an ArithmeticException
is thrown in the try block, it will be caught on line 5.) Line 7 generates a compiler error
because it is unreachable code, so the answer is E.

21. B. The code compiles fi ne, so E is incorrect. The while loop iterates through the String
one character at a time and increments count if the character is a vowel. Because the given
word has 16 vowels, the output is 16 and the answer is B.

22. B. The code compiles fi ne, so E is incorrect. The main method invokes start on a new
 Laptop object. Line 4 prints Starting up , then line 5 throws an Exception . Line 6 catch-
es the exception, line 7 prints Problem , and then line 8 calls System.exit , which termi-
nates the JVM. The finally block does not execute because the JVM is no longer running,
so the answer is B.

23. C. The parseName method is invoked within main on a new Dog object. Line 5 prints 1 .
The try block executes and 2 is printed. Line 8 throws a NumberFormatException , so
line 9 does not execute. The exception is caught on line 10 and line 11 prints 4 . Because
the exception is handled, execution resumes normally. parseName runs to completion and
line 19 executes, printing 5 . That is the end of the program, so the output is 1245 and the
answer is C.

24. D. The parseName method is invoked on a new Cat object. Line 5 prints 1 . The try block
is entered and line 7 prints 2 . Line 8 throws a NumberFormatException . It is not caught, so
 parseName is popped off the method call stack. main does not catch the exception either,
so the program terminates and the stack trace for the NumberFormatException is printed.
Therefore, the answer is D.

25. E. Believe it or not, the code compiles fi ne, so F is incorrect. The best way to explain the
answer is by reformatting the code so the lines are indented properly, as follows:
3. int x = 10;

4. if(x < 0)

5. System.out.print(“anywhere”);

Answers to Review Questions 267

c03.indd 267c03.indd 267 2/11/09 6:18:08 PM2/11/09 6:18:08 PM

268 Chapter 3 � Flow Control

6. else if(x < 5)

7. if(x == 10)

8. System.out.print(“here”);

9. else if(x > = 5)

10. System.out.print(“there”);

11. else

12. System.out.print(“somewhere”);

13. else

14. System.out.print(“nowhere”);

 The x < 0 comparison on line 4 is false , as is x < 5 on line 6. The else on line 13
matches up with the if on line 5, so line 14 executes and nowhere is printed. Therefore,
the answer is E.

26. E. A finally block can only appear at the end of a try statement. Therefore, this code
does not compile and the answer is E.

27. A, B, D, and G. The main method invokes run on a new Mouse object. Line 5 prints 1 and
line 7 prints 2 , so A and B are correct. Line 8 throws a NullPointerException which
causes line 9 to be skipped, so C is incorrect. The exception is caught on line 10 and line 11
prints 4 , so D is correct. Line 12 throws the exception again, which causes run to immedi-
ately get popped off the method call stack, so line 14 does not execute and E is incorrect.
The main method does not catch the exception either, so line 20 does not execute and F is
incorrect. The uncaught NullPointerException causes the stack trace to be printed, so G
is correct. Therefore, the answers are A, B, D, and G.

c03.indd 268c03.indd 268 2/11/09 6:18:09 PM2/11/09 6:18:09 PM

 API Contents

 SCJP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

 Develop code that uses the primitive wrapper classes

(such as Boolean, Character, Double, Integer, etc.), and/or

autoboxing and unboxing. Discuss the differences between

the String, StringBuilder, and StringBuffer classes.

 Given a scenario involving navigating file systems, read-

ing from files, writing to files, or interacting with the

user, develop the correct solution using the following

classes (sometimes in combination), from java.io: Buff-

eredReader, BufferedWriter, File, FileReader, FileWriter,

PrintWriter, and Console.

 Develop code that serializes and/or de - serializes objects

using the following APIs from java.io: DataInputStream,

DataOutputStream, FileInputStream, FileOutputStream,

ObjectInputStream, ObjectOutputStream and Serializable.

 Use standard J2SE APIs in the java.text package to cor-

rectly format or parse dates, numbers, and currency val-

ues for a specific locale; and, given a scenario, determine

the appropriate methods to use if you want to use the

default locale or a specific locale. Describe the purpose

and use of the java.util.Locale class.

 Write code that uses standard J2SE APIs in the java.util

and java.util.regex packages to format or parse strings

or streams. For strings, write code that uses the Pattern

and Matcher classes and the String.split method. Rec-

ognize and use regular expression patterns for matching

(limited to: . (dot), * (star), + (plus), ?, \d, \ s, \w, [], ()). The

use of *, +, and ? will be limited to greedy quantifiers, and

the parenthesis operator will only be used as a grouping

mechanism, not for capturing content during matching.

For streams, write code using the Formatter and Scanner

classes and the PrintWriter.format/printf methods. Recog-

nize and use formatting parameters (limited to: %b, %c,

%d, %f, %s) in format strings.

�

�

�

�

�

Chapter

4

c04.indd 269c04.indd 269 2/11/09 6:20:03 PM2/11/09 6:20:03 PM

 These objectives are Section 3 of the SCJP exam objectives. The
exam tests your knowledge of the primitive wrapper classes,
input and output streams, the java.text package, formatting
and parsing data using locales, and regular expressions. This

chapter covers these topics in detail, starting with a discussion of the wrapper classes.

 The Primitive Wrapper Classes
 Data in a Java application is either an object or a primitive data type. There are situations
in Java where only an object can be used and primitive types do not work. For example, the
classes in the Collections API can only hold Object references. The wrapper classes provide
the ability to treat primitive types as objects by wrapping the primitive in an Object . This
section discusses how to wrap a primitive type into its corresponding wrapper class.

 The exam objectives state that you should be able to “ develop code that uses the primitive
wrapper classes. ” The wrapper classes are defi ned in the java.lang package and are used in
situations where an object is required but the data is a primitive type. The primitive type is
 “ wrapped ” into an object and can be “ unwrapped ” whenever the primitive value is needed.
There is a wrapper class in the java.lang package for each of the eight primitive types:

 Byte This type wraps a byte .

 Short This type wraps a short .

 Integer This type wraps an int .

 Long This type wraps a long .

 Float This type wraps a float .

 Double This type wraps a double .

 Character This type wraps a char .

 Boolean This type wraps a boolean .

 Wrapper classes have the following properties:

 Each of the wrapper classes contains a single field that holds the value it is wrapping.

 The value of the wrapped primitive type cannot be changed.

 Each class has a constructor that takes in the data type it wraps.

 Except for Character , each class has a constructor that takes in a String that is
automatically parsed into the corresponding primitive type.

�

�

�

�

c04.indd 270c04.indd 270 2/11/09 6:20:06 PM2/11/09 6:20:06 PM

 Each wrapper class has a “ value ” method that unwraps the primitive type. For
example, the Float class has a floatValue method that returns the float .

 Let ’ s look at an example. The following code wraps an int into an Integer object:

int x = 357;

Integer w = new Integer(x);

 The Integer class has a method named intValue that unwraps the int :

int y = w.intValue();

�

 Let ’ s look at an example where a wrapper class is necessary. The following class con-
tains a method named addScore with an Object parameter. Because a primitive type is not
an Object , a primitive type needs to be wrapped before it can be passed into addScore .
Study the following code and try to determine its output:

1. public class ScoreKeeper {

2. public java.util.ArrayList < Object > scores =

3. new java.util.ArrayList < Object > ();

4.

5. public void addScore(Object score) {

6. scores.add(score);

7. }

8.

9. public void printScores() {

10. for(Object score : scores) {

11. System.out.println(score);

12. }

13. }

14.

15. public static void main(String [] args) {

16. ScoreKeeper keeper = new ScoreKeeper();

17. Integer one = new Integer(50);

18. Double two = new Double(23.4);

19. Float three = new Float(18.5);

20. keeper.addScore(one);

Autoboxing

As of Java 5.0, primitive types can be automatically boxed and unboxed into their
 corresponding wrapper classes, eliminating the need for instantiating a new wrapper
type to box a primitive, or using a value method to retrieve the wrapped primitive.

The Primitive Wrapper Classes 271

c04.indd 271c04.indd 271 2/11/09 6:20:07 PM2/11/09 6:20:07 PM

272 Chapter 4 � API Contents

21. keeper.addScore(two);

22. keeper.addScore(three);

23. keeper.printScores();

24. }

25. }

 Within main , an int , double , and float are wrapped into their corresponding wrapper
class and passed into the addScore method of a new ScoreKeeper object. The code com-
piles because Integer , Double , and Float are subclasses of Object . Each object is saved in
the ArrayList , and invoking printScores generates the following output:

50

23.4

18.5

Parsing Strings Using the Wrapper Classes

Each wrapper class (except for Character) contains a useful method for parsing String
objects into primitive types. The name of the method is parse Xxx, where Xxx is the data
type being parsed to. For example, parseInt in the Integer class parses a String to an
int, parseShort in the Short class parses a String to a short, and so on. The following
statements parse a String into a double:

String s = ”123.4”;

double d = Double.parseDouble(s);

double twice = d * 2;

System.out.println(twice);

The String ”123.4” is parsed into a double, multiplied by 2, and the output is

246.8

Each parse method throws a NumberFormatException if the given String does not
contain a value that is parseable to the appropriate type.

 The wrapper classes are used whenever a primitive type needs to be treated as an
 Object . Java 5.0 introduced an autoboxing feature that hides the wrapper classes behind
the scenes. The next section discusses autoboxing and unboxing in detail.

 Autoboxing and Unboxing
 As of Java 5.0, you no longer need to write the code to wrap primitive types into their cor-
responding wrapper class; the compiler now does this for you behind the scenes. The term

c04.indd 272c04.indd 272 2/11/09 6:20:07 PM2/11/09 6:20:07 PM

 autoboxing refers to the compiler automatically converting a primitive type into its corre-
sponding wrapper class. The term unboxing refers to the compiler automatically unwrap-
ping a primitive type from its wrapper object. Autoboxing and unboxing do not require
any special syntax. The compiler realizes situations where primitives need to be boxed or
unboxed. For example, if an int needs to be treated as an object, it automatically becomes
an Integer . Similarly, an Integer automatically becomes an int whenever necessary.

 Before autoboxing, you would wrap a primitive by instantiating a new wrapper object:

Integer w = new Integer(10);

 With autoboxing, you simply assign a wrapper class reference to a primitive type:

Integer w = 10;

 Behind the scenes, the compiler instantiates a new Integer object for the int 10 .
 Similarly, the compiler unboxes a wrapped primitive whenever necessary. The following

statements are valid:

5. Double pi = 3.14159;

6. double radius = 10.0;

7. double area = pi * radius * radius;

 The Double object on line 5 is automatically instantiated and wraps the value 3.14159 .
On line 7, pi is automatically unwrapped into a double before the multiplication occurs.
Before unboxing, we would have used the doubleValue method:

double area = pi.doubleValue() * radius * radius;

 The autoboxing occurs whenever the compiler realizes that a primitive needs to be
wrapped in its corresponding wrapper class. For example, the ScoreKeeper class from the
previous section contains the following method:

public void addScore(Object score) {

 scores.add(score);

}

 The following statements are valid method invocations of addScore :

keeper.addScore(50);

keeper.addScore(23.4);

keeper.addScore(18.5F);

 Behind the scenes, the 50 is converted to an Integer , 23.4 is converted to a Double , and
 18.5F is converted to a Float .

Autoboxing and Unboxing 273

c04.indd 273c04.indd 273 2/11/09 6:20:08 PM2/11/09 6:20:08 PM

274 Chapter 4 � API Contents

Testing for Equality Using Autoboxing

With the introduction of autoboxing, your code can essentially ignore the distinction
between a primitive type and its wrapper. One situation where you might need to make
the distinction is when you test for equality. When using ==, wrapped types are not
unboxed. For example, see if you can determine the output of the following code:

13. Integer one = new Integer(128);

14. Integer two = new Integer(128);

15. if(one == two)

16. System.out.println(“true”);

17. else

18. System.out.println(“false”);

19.

20. int three = 128;

21. if(one == three)

22. System.out.println(“true”);

23. else

24. System.out.println(“false”);

Line 15 is comparing two references that do not point to the same object, so the result is
false. On line 21, the Integer is unboxed to an int, so the comparison is made between
two equal ints, resulting in true. The output of the previous code is

false

true

 Autoboxing and unboxing eliminates the tedious code of instantiating wrapper objects
using the new keyword and unwrapping the primitive types using the corresponding value
methods. Autoboxing is a new feature of Java, so there will certainly be a question or two
on the exam about it.

 Strings
 A string is a sequence of characters. Strings are not primitive types in Java; they are
objects. The Java API has three classes to represent string objects, each one declared in
the java.lang package: String , StringBuilder , and StringBuffer . The exam objectives

c04.indd 274c04.indd 274 2/11/09 6:20:08 PM2/11/09 6:20:08 PM

state that you need to be able to “ discuss differences between the String , StringBuilder ,
and StringBuffer classes. ” The main differences between these classes are as follows:

 String String represents an immutable sequence of characters. The string literals in your
code are of type String .

 StringBuilder StringBuilder represents a mutable sequence of characters. String-
Builder is like String except the individual characters can be modified and the length can
change. The methods in this class are not synchronized, so do not use an instance of this
class in a situation where multiple threads can access the instance.

 StringBuffer StringBuffer represents a thread - safe, mutable sequence of characters. The
methods in this class are exactly identical to the methods of StringBuilder . The only dif-
ference between the two classes is that the methods in StringBuffer are synchronized.

 The simplest class to use is String , but it tends to be ineffi cient when working with
character sequences that need to be changed often because a String object is immutable.
Use StringBuilder and StringBuffer in situations where you need to manipulate strings,
because they contain methods like append , insert , and concat that change the string with-
out creating a new object each time.

 This section discusses each of these classes in detail, starting with the String class.

 The String Class

 The String class represents an immutable array of characters. String literals are automati-
cally instantiated into String objects. For example, ” Hello ” in the following statement is a
 String object:

String s = “Hello”;

 You can also instantiate a String dynamically using one of the String constructors:

char [] abc = {‘a’, ‘b’, ‘c’};

String s2 = new String(abc);

 The JVM stores string literals in a special memory called the string pool. Because
 String objects are immutable, instances in the string pool can be shared. For example, the
following two String references point to the same instance, and the output is ” true “ :

String one = “today”;

String two = “today”;

if(one == two)

 System.out.println(“true”);

else

 System.out.println(“false”);

Strings 275

c04.indd 275c04.indd 275 2/11/09 6:20:09 PM2/11/09 6:20:09 PM

276 Chapter 4 � API Contents

 One nice feature of using String objects is the simple way they are concatenated using
the + operator. For example, the following statements create a ” Tooth Fairy ” string:

String first = “Tooth”;

first += “ “ + “Fai” + “ry”;

 It is valid to concatenate a String to any primitive type or Object . Primitive types are
converted to a String object internally by the JVM. Object types have their toString
method invoked automatically. For example, the following statements are valid. See if you
can determine their output:

String prefix = “x = “;

int x = 123;

System.out.println(prefix + x);

java.util.Date d = new java.util.Date();

System.out.println(“The date is “ + d);

 The int x is converted to a String before the concatenation occurs. Similarly, the
 toString method is invoked on d before concatenating to the String object “ The date is “ .
The output of the code is

x = 123

The date is Mon Oct 06 08:26:47 MDT 2008

 You should be aware that String objects tend to be ineffi cient when they are concate-
nated. Remember, a String object is immutable, meaning it cannot be changed. Therefore,

Use equals to Compare Strings

You should use the equals method when comparing if two String objects are identi-
cal because not all String objects appear in the string pool. For example, see if you can
determine the output of the following code:

String one = “today”;

String three = new String(“today”);

if(one == three)

 System.out.println(”true”);

else

 System.out.println(“false”);

The one reference points to a String object in the string pool while the three reference
points to a dynamically created String object on the heap, so one and three do not point
to the same instance and the output of the previous code is ”false”.

c04.indd 276c04.indd 276 2/11/09 6:20:09 PM2/11/09 6:20:09 PM

concatenating two String literals involves creating a new String object and having the old
ones get garbage collected. For example, concatenating ” “ , ” Fai ” , and ” ry ” results in four
 String objects being instantiated and three of them eligible for garbage collection immedi-
ately, as Figure 4.1 shows.

" "�"Fai"�"ry"

" Fai"

" Fairy"

Initial expression

Intermediate String object

Final result

The circled String objects are eligible for garbage
collection once the result is evaluated.

F I GU R E 4 .1 String concatenation can result in multiple String objects created and
garbage collected.

Optimizing String Concatenation

It is possible that a Java implementation optimizes String concatenation to minimize the
number of intermediate String objects created. The Java Language Specifi cation con-
tains the following statement:

An implementation may choose to perform conversion and
concatenation in one step to avoid creating and then discarding an
intermediate String object. To increase the performance of repeated
string concatenation, a Java compiler may use the StringBuffer class
or a similar technique to reduce the number of intermediate String
objects that are created by evaluation of an expression.

In other words, a JVM may or may not optimize String concatenation. Even if the JVM
does optimize this step, a temporary StringBuffer object is created behind the scenes.
Either way, you should avoid the overuse of String concatenation because it can be inef-
fi cient, especially when building strings or modifying them regularly. In these situations,
a StringBuffer or StringBuilder object is a better choice, which we discuss in the next
section.

 See if you can determine how many String objects appear in memory from the follow-
ing statements:

10. String alpha = “”;

11. for(char current = ‘a’; current < = ‘z’; current++) {

12. alpha += current;

13. }

14. System.out.println(alpha);

Strings 277

c04.indd 277c04.indd 277 2/11/09 6:20:10 PM2/11/09 6:20:10 PM

278 Chapter 4 � API Contents

 The empty String on line 10 is instantiated, and then line 12 appends an ” a ” . However,
because the String object is immutable, a new String object is assigned to alpha and the
 ” ” object becomes eligible for garbage collection. The next time through the loop, alpha
is assigned a new String object ” ab ” and the ” a ” object becomes eligible for garbage col-
lection. The next iteration assigns alpha to ” abc ” and the ” ab ” object becomes eligible for
garbage collection, and so on.

 This sequence of events continues, and after 26 iterations through the loop, a total of 27
objects are instantiated, 26 of which are immediately eligible for garbage collection. A bet-
ter technique in this situation would be to use the StringBuffer or StringBuilder classes,
which I discuss in detail in the next section.

 The StringBuilder and StringBuffer Classes

 The java.lang package contains two classes for representing strings as a mutable sequence
of characters: StringBuilder and StringBuffer . The StringBuffer class has been around
since the fi rst version of Java, while StringBuilder was added in J2SE 5.0. The two classes
have the exact same method signatures and constructor parameters. The only difference
between them is that StringBuffer is thread - safe and StringBuilder is not. If you are
working with arrays of characters in a multithreaded application, use the StringBuffer
class. Otherwise, if threads are not an issue for your particular situation, use the String-
Builder class.

 Let ’ s look at an example. The following for loop is similar to the example in the previ-
ous section, except it uses a single StringBuilder object instead of 27 String objects:

15. StringBuilder alpha = new StringBuilder(26);

16. for(char current = ‘a’; current < = ‘z’; current++) {

17. alpha.append(current);

18. }

19. System.out.println(alpha);

 The StringBuilder class contains a constructor that takes in an int to represent the ini-
tial capacity. On line 15, a new StringBuilder object is instantiated with an initial capac-
ity of 26. This does not mean only 26 characters can appear in alpha . The capacity merely
specifi es an initial buffer. If the capacity of a StringBuilder object is reached, the length
of the StringBuilder object is automatically increased. We can improve performance if we
give a StringBuilder a capacity, but it does not affect the behavior of the object.

 The call to append on line 17 increases the size of the StringBuilder object by one
each time through the for loop and appends the value of current to the end of alpha .
The StringBuilder object grows as needed, but there is only one instance in memory, as
Figure 4.2 shows.

c04.indd 278c04.indd 278 2/11/09 6:20:11 PM2/11/09 6:20:11 PM

 The output of the code is

abcdefghijklmnopqrstuvwxyz

 The principal methods of the StringBuilder and StringBuffer classes are their append
and insert methods. The append and insert methods are overloaded to accept any of the
primitive types, Object , String , or StringBuffer . To demonstrate the method signatures, here
are the append and insert methods in StringBuilder for appending and inserting a float :

 public StringBuilder append(float f) appends the given float to the end of the
character sequence.

 public StringBuilder insert(int offset, float f) inserts the given float at the
value of the offset. The first index of the sequence is 0, the second index is 1, and so on.

 The overloaded methods for the other data types take on the same form as the methods
above. The append and insert methods are identical in StringBuffer , except that the
return values are of type StringBuffer :

 public StringBuffer append(float f)

 public StringBuffer insert(int offset, float f)

 The append method appends the data to the end of the character sequence, while the
 insert method inserts the data at the given offset. Notice that the return value of append
and insert is the original StringBuilder or StringBuffer object, which allows for the
chaining of method calls. For example, see if you can fi gure out the character sequence that
the following code generates:

24. StringBuffer sb = new StringBuffer();

25. sb.append(“cet”).insert(2,”ntra”).insert(0,”con”).append(“ing”);

26. System.out.println(sb);

 Let ’ s break this code down step by step:

 1. The initial StringBuffer object instantiated on line 24 is empty.

 2. On line 25, the methods are executed left to right, so the first append call puts ” cet ”
 in the sequence.

�

�

�

�

alpha

‘a’ ‘b’ ‘c’ ‘d’ ‘e’ . . .

String Builder object

alpha.append (‘e’)j

F I GU R E 4 . 2 The sequence of characters increases by one each time through the loop.

Strings 279

c04.indd 279c04.indd 279 2/11/09 6:20:11 PM2/11/09 6:20:11 PM

280 Chapter 4 � API Contents

 3. The insert of ” ntra ” occurs after the second character (because the offset is 2), so the
 StringBuffer now contains ” centrat ” .

 4. The ” con ” is inserted at the beginning of the sequence, resulting in ” concentrat ” .

 5. The ” ing ” is appended to the sequence.

 Therefore, the output of the code is

concentrating

 As I mentioned earlier, the append and insert methods are overloaded for all the Java
primitive types. For example, the following statements insert an int and append a double
to a StringBuffer object:

StringBuffer numbers = new StringBuffer(“ * 5.0 = “);

numbers.insert(0, 100).append(500.0);

System.out.println(numbers);

 The output of the statements is

100 * 5.0 = 500.0

 The StringBuilder and StringBuffer classes also contain other string manipulation
methods, including the following ones:

 public StringBuffer delete(int start, int end) removes the characters at
the specified start and end indexes, excluding the end character, and shortens the
sequence accordingly.

 public StringBuffer deleteCharAt(int index) removes the character at the
specified index and shortens the sequence by one.

 public StringBuffer reverse() replaces the character sequence with the reverse of
itself.

 With public StringBuffer replace(int start, int end, String str) , the
characters from start to end - 1 are replaced with the characters of the given String .

 To demonstrate these methods, see if you can determine the result of the following code:

12. StringBuilder x = new StringBuilder(“starter”);

13. x.deleteCharAt(6).reverse().replace(0,2,”d”);

14. System.out.println(x);

 Here is what the code does:

 1. The initial sequence of characters is ” starter ” .

 2. On line 13, deleteCharAt removes the ” r ” at the end, resulting in ” starte ” .

 3. The reverse method reverses the sequence, resulting in ” etrats ” .

�

�

�

�

c04.indd 280c04.indd 280 2/11/09 6:20:12 PM2/11/09 6:20:12 PM

 4. The call to replace deletes the first two characters (the character at the end position is
not deleted), so ” et ” is replaced with a ” d ” , resulting in ” drats ” .

 Therefore, the outcome of the code is

drats

 As far as the SCJP exam goes, focus on understanding the insert or append methods of
 StringBuilder and StringBuffer because they are the most commonly used methods in
the two classes. Now we change topics and discuss the various classes in Java for perform-
ing input and output.

 Input and Output
 The java.io package contains a variety of classes that can perform just about any type of
input or output you might need to perform in your Java applications. The trick to master-
ing the java.io package is to understand the difference between stream classes and reader
and writer classes, as well as the difference between low - level and high - level streams. This
section discusses these differences together with the specifi c classes of the java.io package
that you need to know for the SCJP exam.

 Let ’ s start with a discussion on streams vs. readers and writers. If you look at the
classes in the java.io package, you will notice a set of classes whose names end in
 ” InputStream ” or “ OutputStream ” , together with a set of classes that end in “ Reader ” and
 “ Writer ” . There is a difference between the two:

 The stream classes are used for inputting and outputting all types of binary data.

 The reader and writer classes are used exclusively for inputting and outputting
character and string data.

 For example, the DataInputStream class is a useful input stream that can read all the
primitive types, as well as strings and other binary types. The FileReader class is a reader
that can only read a character or an array of characters from a fi le.

 Most of the input classes have a corresponding output class for writing the data. For
example, DataOutputStream writes data that can be read by a DataInputStream , and a
 PipedWriter outputs characters to a stream that a PipedReader can read from in a differ-
ent thread.

 Now let ’ s discuss the differences between the stream classes and the readers and writers.

 Streams vs. Readers and Writers

 The stream classes work with raw bytes of data. The parent class of all input streams is the
abstract class InputStream and the parent class of all the output streams is OutputStream .
Figure 4.3 shows the input stream classes in the java.io package, and Figure 4.4 shows the
output streams.

�

�

Input and Output 281

c04.indd 281c04.indd 281 2/11/09 6:20:12 PM2/11/09 6:20:12 PM

282 Chapter 4 � API Contents

 If you are dealing with data that includes other types than just strings or characters, use
the input and output streams shown in Figures 4.3 and 4.4. However, if the data you are
streaming is either characters or strings, use the reader and writer classes shown in Figures
4.5 and 4.6. Notice the readers subclass, the abstract Reader class, and the writers subclass,
the Writer class.

InputStream

ByteArrayInputStream
FileInputStream
ObjectInputStream
PipedInputStream
SequenceInputStream
StringBufferInputStream
FilterInputStream

BufferedInputStream
DataInputStream
PushbackInputSteam

F I GU R E 4 . 3 The input streams of the java.io package

OutputStream

ByteArrayOutputStream
FileOutputStream
ObjectOutputStream
PipedOutputStream
FilterOutputStream

BufferedOutputStream
DataOutputStream
PrintStream

F I GU R E 4 . 4 The output streams of the java.io package

Reader

BufferedReader
CharArrayReader
PipedReader
StringReader
InputStreamReader

FileReader
FilterReader

PushbackReader

F I GU R E 4 .5 The reader classes of the java.io package

c04.indd 282c04.indd 282 2/11/09 6:20:13 PM2/11/09 6:20:13 PM

 To demonstrate how the classes work, let ’ s look at an example of a program that reads
characters from a fi le. The following code reads in a single character at a time from a fi le
named alphabet.txt , which contains the 26 characters of the alphabet in lowercase:

FileReader in = new FileReader(“alphabet.txt”);

int c = 0;

while((c = in.read()) != -1) {

 System.out.print((char) c);

}

 The output of the code is

abcdefghijklmnopqrstuvwxyz

 In the real world, reading one character from a fi le is not done because it is ineffi cient
and typically the data in the fi le represents data types beyond characters. Typically, you
take a FileReader and attach a high - level stream to it to buffer and fi lter the data, which
we discuss in the next section.

 Low - Level vs. High - Level Streams

 Another important concept to understand about the java.io package is the difference
between a low - level stream and a high - level stream (where stream in this context also refers
to reader and writer streams):

 Low - level input and output streams connect to the source of the data.

 High - level input and output streams are chained to an existing stream. Most high - level
streams filter the data and convert it into Java data types.

 For example, a FileReader is a low - level stream because it connects to a fi le on your fi le
system. The purpose of FileReader is not to fi lter the data or format it any way. Its purpose
is strictly to communicate with the fi le. If you want to read the characters from the fi le in a
more useful manner than one character at a time, you can attach a high - level stream to the
low - level stream. For example, BufferedReader is a high - level stream that can be chained to
a FileReader and read in lines of characters at a time, converting the line of characters to a
 String . The next section, “ File Input and Output, ” contains an example that demonstrates
this technique.

�

�

Writer

BufferedWriter
CharArrayWriter
PipedWriter
PrintWriter
StringWriter
OutputStreamWriter

FileWriter
FilterWriter

F I GU R E 4 .6 The writer classes of the java.io package

Input and Output 283

c04.indd 283c04.indd 283 2/11/09 6:20:15 PM2/11/09 6:20:15 PM

284 Chapter 4 � API Contents

 Table 4.1 lists the low - level and high - level streams from the java.io package.

TA B LE 4 .1 The Low-Level and High-Level Streams in the java.io Package

Low-level Streams High-level Streams

FileReader FileInputStream BufferedReader BufferedInputStream

FileWriter FileOutputStream BufferedWriter BufferedOutputStream

ByteArrayInputStream CharArrayWriter DataInputStream ObjectInputStream

StringReader StringWriter PipedInputStream OutputStreamWriter

InputStream OutputStream PipedOutputStream InputStreamReader

PushbackInput
Stream

LineNumberReader

PushbackReader

PushbackReader

Determining Low-level vs. High-level Streams

If you ever need to determine whether a java.io stream is a high-level or low-level
stream, just look at the constructors of the class. If the constructors take in an
existing stream object, then it is a high-level stream; otherwise, it is a low-level stream.

For example, the DataInputStream class has only one constructor:

public DataInputStream(InputStream is)

You cannot instantiate a DataInputStream unless you already have an existing stream to
pass in to the constructor. Therefore, DataInputStream must be a high-level stream.

Compare DataInputStream to FileInputStream, which has three constructors:

public FileInputStream(File file)

public FileInputStream(FileDescriptor fdObj)

public FileInputStream(String name)

Each constructor takes in some variation of a fi le, which is the source of the data and not
another stream class. Therefore, FileInputStream is a low-level stream.

c04.indd 284c04.indd 284 2/11/09 6:20:17 PM2/11/09 6:20:17 PM

 Now that we have discussed the differences between input and output streams versus
readers and writers and also the difference between low - level and high - level streams, let ’ s
see how to put this information to good use by demonstrating how to read and write from
fi les.

 File Input and Output
 The exam objectives state that “ given a scenario involving navigating fi le systems, reading
from fi les, writing to fi les, or interacting with the user, develop the correct solution using
the following classes (sometimes in combination), from java.io : BufferedReader ,
BufferedWriter , File , FileReader , FileWriter , PrintWriter , and Console . ” This section
discusses the details of these classes and how to use them to read and write data from fi les.
We start with the FileReader and FileWriter classes.

 The FileReader and FileWriter Classes

 The FileReader and FileWriter classes are used for reading and writing character data
from fi les. Let ’ s look at an example. Suppose you want to read the data from the following
text fi le named states.txt :

New York

Alabama

South Dakota

Nevada

 Because the data is in a fi le, we need to use either FileInputStream or FileReader to read
the data. Because the fi le only contains characters, FileReader is the better choice here. The
states are separated by the linefeed character, so we need to read the text in line by line, not
a built - in capability of the FileReader class. However, if we chain a BufferedReader object
to the FileReader , we can use the readLine method of BufferedReader to easily read in each
state in the fi le, as the following program shows:

1. import java.io.*;

2.

3. public class States {

4. public static void main(String [] args) {

5. try {

6. FileReader fileReader = new FileReader(“states.txt”);

7. BufferedReader in = new BufferedReader(fileReader);

8. String currentState = in.readLine();

File Input and Output 285

c04.indd 285c04.indd 285 2/11/09 6:20:17 PM2/11/09 6:20:17 PM

286 Chapter 4 � API Contents

9. while(currentState != null) {

10. System.out.println(“State: “ + currentState);

11. currentState = in.readLine();

12. }

13. }catch(IOException e) {

14. e.printStackTrace();

15. }

16. }

17. }

 Here is what the States program does:

 1. A new FileReader is instantiated on line 6. If the file states.txt is not found or can-
not be read from, a FileNotFoundException is thrown.

 2. A BufferedReader is chained to the FileReader to buffer the data.

 3. Line 8 reads in the first line of text from the file.

 4. On line 9, if the previous line of text read from the file is not null , we print it to the
console and read in the next line of the file on line 11.

 5. The while loop continues line by line until the end of the file is reached, at which point
the readLine method returns null .

 The output of the States program is

State: New York

State: Alabama

State: South Dakota

State: Nevada

 Figure 4.7 shows the BufferedReader chained to the FileReader . A BufferedReader
cannot exist on its own. It is a high - level stream so it must be attached to an existing
stream.

BufferedReader

FileReader

1011010

“states.txt”

“New York”
‘N’ ‘e’ ‘w’

F I GU R E 4 .7 A BufferedReader is chained to a FileReader.

c04.indd 286c04.indd 286 2/11/09 6:20:18 PM2/11/09 6:20:18 PM

 The File Class

 The exam objectives mention using the java.io.File class in combination with the stream
classes. The File class represents the pathname of a fi le or directory, and the class contains
useful methods for determining information about the fi le or directory. Some uses of the
 File class include the following:

 Determining if a file exists using the exists method, which returns a boolean

 Determining if a file can be read from, written to, or executed using the respective
 canRead , canWrite , or canExecute methods

 Creating a new file using the createNewFile method

 Making a new directory using the mkdir method

 Deleting a file or directory using the delete method

 Listing the contents of a directory using the list and listFiles methods

 To demonstrate using the File class, the following code creates a new fi le and writes strings
to it using a FileWriter object. The FileWriter is chained to a BufferedWriter , which in
turn is chained to a PrintWriter , a useful class for printing all data types. (System.out is a
 PrintWriter object.) Study the code and see if you can determine what it does:

1. package com.sybex.io;

2.

3. import java.io.*;

�

�

�

�

�

�

Buffering File Input and Output

The BufferedReader class does more than read the characters from a fi le line by line. It
buffers the characters to minimize the overhead of actually reading from the fi le system
each time a character is read. You can set the size of the buffer by using the following
BufferedReader constructor:

public BufferedReader(Reader in, int size)

Similarly, the BufferedWriter class is used to buffer characters written to a fi le and con-
tains the following constructor:

public BufferedWriter(Writer out, int size)

If you are working with other data types besides characters, use the FileOutputStream
and FileInputStream classes to read and write to the fi le, and use the BufferedInput-
Stream and BufferedOutputStream classes if you want to also buffer that data.

File Input and Output 287

c04.indd 287c04.indd 287 2/11/09 6:20:18 PM2/11/09 6:20:18 PM

288 Chapter 4 � API Contents

4.

5. public class FileDemo {

6. public static void main(String [] args) {

7. File test = new File(“./test.html”);

8. if(!test.exists()) {

9. try {

10. test.createNewFile();

11. }catch(IOException e) {

12. System.out.println(e.getMessage());

13. return;

14. }

15. }

16. try {

17. FileWriter fw = new FileWriter(test);

18. BufferedWriter bw = new BufferedWriter(fw, 1024);

19. PrintWriter out = new PrintWriter(fw);

20. out.println(“ < html > < body > < h1 > ”);

21. out.println(args[0]);

22. out.println(“ < /h1 > < /body > < /html > ”);

23. out.close();

24. bw.close();

25. fw.close();

26. }catch(IOException e) {

27. e.printStackTrace();

28. }

29. }

30. }

 The following sequence of events occurs when running the FileDemo program:

 1. Line 7 creates a new File object for the pathname “ ./test.html ” . Keep in mind this
does not create a new file on your file system. The File class represents pathnames to
files and directories, not actual files and directories.

 2. Line 10 creates a new file named test.html on the file system if no such file already
exists in the current directory.

 3. Line 17 instantiates a new FileWriter object that opens the file and prepares it for
writing. If the file contained any existing data, that data is now lost. (If you need to
append to a file, use the FileWriter constructor that takes in an additional boolean
argument.)

 4. Line 18 chains a BufferedWriter to the FileWriter with an initial buffer size of
1,024.

c04.indd 288c04.indd 288 2/11/09 6:20:19 PM2/11/09 6:20:19 PM

 5. Line 19 chains a PrintWriter to the BufferedWriter .

 6. Lines 20 – 22 write some HTML to the file.

 7. Lines 23 – 25 close the streams.

 Suppose we run the program with the following command line:

java com.sybex.io.FileDemo “This is a new file”

 A fi le named test.html is created in the current working directory and the contents of
the fi le look like

 < html > < body > < h1 >

This is a new file

 < /h1 > < /body > < /html >

 You probably won ’ t use this example in the real world to write a dynamic web page, but
the program does demonstrate how you can use the File class. It also demonstrates how
to chain a low - level writer (FileWriter) to a high - level writer (BufferedWriter), and even
how to chain a high - level writer (BufferedWriter) to another high - level writer (Print-
Writer) to achieve the buffered, fi ltered stream that Figure 4.8 illustrates.

PrintWriter

BufferedWriter

FileWriter

“test.html”

“<html>”

F I GU R E 4 . 8 Data written to the PrintWriter is buffered and eventually written to
the file.

 The following section demonstrates the concept of chaining streams together using byte
streams instead of character streams.

 The FileInputStream and FileOutputStream Classes

 The FileInputStream and FileOutputStream classes represent low - level streams that read and
write byte streams from fi les. As with FileReader and FileWriter , chain FileInputStream

File Input and Output 289

c04.indd 289c04.indd 289 2/11/09 6:20:19 PM2/11/09 6:20:19 PM

290 Chapter 4 � API Contents

and FileOutputStream to high - level streams to buffer and fi lter the data into appropriate data
types.

 The following CopyFile program demonstrates these two classes by reading the bytes
from one fi le and copying them into another, making a byte - by - byte copy of the fi le:

1. package com.sybex.io;

2.

3. import java.io.*;

4.

5. public class CopyFile {

6. public static void copy(File src, File dest)

7. throws IOException {

8. FileInputStream in = new FileInputStream(src);

9. FileOutputStream out = new FileOutputStream(dest);

10. int c;

11. try {

12. while((c = in.read()) != -1) {

13. out.write(c);

14. }

15. }finally{

16. in.close();

17. out.close();

18. }

19. }

20.

21. public static void main(String [] args) {

22. try {

23. File source = new File(“States.class”);

24. File destination = new File(“copyofStates.class”);

25. copy(source, destination);

26. }catch(IOException e) {

27. e.printStackTrace();

28. }

29. }

30. }

 The following breakdown illustrates what the CopyFile program does:

 1. Within main on lines 23 and 24, two File objects are instantiated to represent the
pathnames to the source and destination files.

 2. The copy method is called on line 25, and the two File references are copied into the
 src and dest parameters.

c04.indd 290c04.indd 290 2/11/09 6:20:20 PM2/11/09 6:20:20 PM

 3. Line 8 instantiates a FileInputStream for src and line 9 instantiates a FileOutput-
Stream for dest .

 4. The while loop on line 12 reads one byte at time from the source file. If the read
method returns - 1 , the end of the file has been reached and the while loop terminates.
Otherwise, the byte is written to the destination file.

 5. Be sure to close all streams, as done on lines 16 and 17.

 Notice that the source fi le I chose to copy was a bytecode fi le, which is not just character
data. (The Reader and Writer classes would not have worked for this application because
the data is raw bytes.) An exact copy of States.class is created in a new fi le named
copyofStates.class .

 The next section discusses two useful high - level streams, DataInputStream and
DataOutputStream , which fi lter byte streams into primitive types and strings.

 The DataInputStream and DataOutputStream Classes

 The CopyFile program from the previous section used only low - level streams, but most
input and output use the high - level streams as well. For example, the DataInputStream and
 DataOutputStream classes are high - level streams that contain methods for reading and writ-
ing the eight Java primitive types as well as String objects. The following ContactManager
program demonstrates the DataInputStream and DataOutputStream classes. The program
uses the following Contact class, a basic representation of a person ’ s contact information:

1. package com.sybex.io;

2.

3. public class Contact {

4. public String name;

5. public int age;

6. public long cellPhone;

7.

8. public Contact(String name, int age, long cellPhone) {

9. this.name = name;

10. this.age = age;

11. this.cellPhone = cellPhone;

12. }

13.

14. public String toString() {

15. return name + “ “ + age + ” “ + cellPhone + ”\n”;

16. }

17. }

File Input and Output 291

c04.indd 291c04.indd 291 2/11/09 6:20:20 PM2/11/09 6:20:20 PM

292 Chapter 4 � API Contents

 The ContactManager program writes the fi elds of a Contact object to a given File , and
also reads the fi elds from a File and creates new Contact objects with the read data. Study
the code and see if you can determine its output:

1. package com.sybex.io;

2.

3. import java.io.*;

4. import java.util.ArrayList;

5.

6. public class ContactManager {

7.

8. public static void addContact(Contact contact, File dest)

9. throws IOException {

10. FileOutputStream fos = new FileOutputStream(dest, true);

11. BufferedOutputStream bos = new BufferedOutputStream(fos);

12. DataOutputStream out = new DataOutputStream(bos);

13. out.writeUTF(contact.name);

14. out.writeInt(contact.age);

15. out.writeLong(contact.cellPhone);

16. out.close();

17. bos.close();

18. fos.close();

19. }

20.

21. public static ArrayList < Contact > getContacts(File source)

22. throws IOException {

23. ArrayList < Contact > contacts = new ArrayList < Contact > ();

24.

25. FileInputStream fis = new FileInputStream(source);

26. BufferedInputStream bis = new BufferedInputStream(fis);

27. DataInputStream in = new DataInputStream(bis);

28. while(in.available() > 0) {

29. String name = in.readUTF();

30. int age = in.readInt();

31. long cellPhone = in.readLong();

32. Contact current = new Contact(name, age, cellPhone);

33. contacts.add(current);

34. }

35.

36. return contacts;

37. }

c04.indd 292c04.indd 292 2/11/09 6:20:21 PM2/11/09 6:20:21 PM

38.

39. public static void main(String [] args) {

40. try {

41. Contact one = new Contact(“Bugs Bunny”, 22,

42. 2025551212L);

43. Contact two = new Contact(“Daffy Duck”, 33,

44. 3035551212L);

45. File contactsFile = new File(“mycontacts.dat”);

46.

47. addContact(one, contactsFile);

48. addContact(two, contactsFile);

49.

50. System.out.println(getContacts(contactsFile));

51. }catch(IOException e) {

52. e.printStackTrace();

53. }

54. }

55. }

 Let ’ s step through the ContactManager program and discuss what it does:

 1. Within main , two Contact objects are instantiated on lines 41 – 44.

 2. The File object on line 45 represents the pathname to the file that we will be writing
to and reading from, which is mycontacts.dat .

 3. The addContact method is invoked on line 47, passing in the Bugs Bunny object.
Within addContact , a FileOutputStream is instantiated on line 10 using mycontacts
.dat . The true argument says to append to the file. Without the true argument, any
existing data in the file is lost.

 4. Line 11 chains a BufferedOutputStream to the FileOutputStream and line 12 chains
a DataOutputStream to the buffer.

 5. The writeUTF method is for writing String objects, and on line 13 ” Bugs Bunny ”
 is written to the file. Similarly, the int 22 is written on line 14 and the long
2025551212 is written on line 15.

 6. The streams are closed and the method returns. The process repeats for Daffy Duck
on line 48.

 7. Line 50 invokes the getContacts method for mycontacts.dat , so control jumps to
line 21.

 8. Lines 25 – 27 chain together the streams to read, buffer, and filter the data in
 mycontacts.dat through a DataInputStream .

 9. Lines 29 – 31 read in the data in the same order that it was written, and the data is
used to instantiate a new Contact object. Line 33 adds the Contact object to the
 ArrayList from line 23.

File Input and Output 293

c04.indd 293c04.indd 293 2/11/09 6:20:21 PM2/11/09 6:20:21 PM

294 Chapter 4 � API Contents

 10. The while loop on line 28 repeats until all the data is read from the file. For each set
of data in the file, a Contact object is instantiated and added to the ArrayList , which
is returned on line 36 and printed to the console on line 50. The toString method is
invoked on each Contact and printed to the console.

 The output of the ContactManager program is

[Bugs Bunny 22 2025551212

, Daffy Duck 33 3035551212

]

 The square brackets and comma in the output of ContactManager are
the output of the ArrayList object. The toString method of ArrayList
returns the elements of the collection in a comma - separated list, which
is useful for debugging but probably not something you will use in a
 production scenario.

 I doubt anyone would use the ContactManager program to actually manage your con-
tacts in real life, but it does demonstrate a typical use of the classes in the java.io package:
chaining streams together to buffer and fi lter the data into whatever format your program
needs.

 You might be tempted to write code like ContactManager that writes the fi elds of an
object to a fi le. It seems like a good way to save the state of your objects, and it would make
sense to do this except for the fact that Java has a built - in mechanism called serialization
for saving the state of objects. In the upcoming section “ Object Serialization, ” I provide
a different version of ContactManager that writes Contact objects to a fi le in an easier
fashion.

 The next section discusses a stream that is both a low - level and a high - level stream: the
 PrintWriter class.

 The PrintWriter Class

 The purpose of a PrintWriter object is to print data types and objects to a character
stream. The PrintWriter class contains the same print and println methods as
PrintStream (the data type of System.out and System.err), except that PrintWriter
outputs data as characters instead of bytes.

 Let ’ s start with a simple example of using PrintWriter to print data types to a fi le as
characters. See if you can determine the result of the following statements:

6. int i = 101;

7. double d = 1.0/3.0;

8. StringBuilder s = new StringBuilder(“hello”);

9. boolean b = true;

10.

c04.indd 294c04.indd 294 2/11/09 6:20:21 PM2/11/09 6:20:21 PM

11. FileWriter fw = new FileWriter(“characters.txt”);

12. PrintWriter out = new PrintWriter(fw);

13. out.print(i);

14. out.println(d);

15. out.println(s);

16. out.println(b);

17. out.close();

18. fw.close();

 The new FileWriter on line 11 creates a fi le named characters.txt , which is chained
to a PrintWriter on line 12. Line 13 prints i without an ending line feed, so d gets printed
on the same line as i . The StringBuilder s and the boolean b are printed next on their
own lines, and the resulting fi le looks like this:

1010.3333333333333333

hello

true

 The int , double , and boolean are converted to characters and output to the fi le. The
value of d prints a long list of 3 s because it is the fraction one third. The print and println
methods cannot be used to control the format of d . If you need control over formatting, use
the format method of PrintWriter , which is discussed next.

 The format and printf Methods

 The format method of a PrintWriter object writes a formatted string to the stream using
a specifi ed format string and arguments. Along with general knowledge of the PrintWriter
class, the exam objectives specifi cally state that you need to be able to “ write code using
 PrintWriter.format/printf methods. ” In addition, you must be able to “ recognize and
use formatting parameters (limited to: %b , %c , %d , %f , %s) in format strings. ” The Print-
Writer class has been a part of the Java language since JDK 1.1, but the format and printf
methods were introduced in Java 5.0.

 As a convenience to C programmers familiar with C ’ s printf function, PrintWriter
also contains a printf method. The signatures of the two methods are

 public PrintWriter format(String fmt, Object... args)

 public PrintWriter printf(String fmt, Object... args)

 Aside from their names, there is no difference between the format and printf methods.
Their output and behavior is identical. The return value of both is the PrintWriter object,
which allows for chaining of method calls. The fmt parameter consists of fi xed text and one

�

�

File Input and Output 295

c04.indd 295c04.indd 295 2/11/09 6:20:22 PM2/11/09 6:20:22 PM

296 Chapter 4 � API Contents

or more embedded format specifi ers . The args parameter is a variable - length argument that
contains a comma - separated list of data types that are written to the stream in the format
specifi ed by their corresponding format specifi er. Here is an example of a call to format :

6. PrintWriter out = new PrintWriter(System.out);

7. double d = 0.1/0.3;

8. String intro = ”d = “;

9. out.format(“%s%7.3f”, intro, d);

10. out.flush();

 The PrintWriter on line 6 is chained to System.out , so it outputs characters to the con-
sole. The format specifi er on line 9 is ” %s%7.3f ” . The ” s ” denotes string conversion and
is associated with the intro argument. The ” f ” denotes fl oating - point conversion and is
associated with the d argument. The 7.3 before the f denotes the width (7) and precision
(3) to output d in. Figure 4.9 shows how the format specifi er lines up with the arguments to
 format .

Out.format (“% s % 7.3f”, intro, d)j

format the first
argument, which is

a String

format the second
argument, which is

a double

F I GU R E 4 . 9 Understanding format specifiers for the format method

 The output of the previous code is

d = 0.333

 The double d has a width of 7, which includes the decimal point and two spaces preced-
ing it. Because the intro string already has a space after its equals sign, there are exactly
three spaces between the equals sign and the ” 0.333 ” .

 The syntax for a format specifi er is as follows:

%[argument_index$][flags][width][.precision]conversion

 The argument_index is optional and denotes the position of the argument in the argu-
ment list. The flags value is optional and varies depending on the specifi er. The width
value is the minimum number of characters to output. For fl oating - point numbers, the pre-
cision value is the number of digits to write after the decimal point.

 Java has over 15 format conversions, but the exam objectives only require you to know
the fi ve specifi ers shown in Table 4.2.

c04.indd 296c04.indd 296 2/11/09 6:20:22 PM2/11/09 6:20:22 PM

 The best way to understand the format specifi ers is by looking at examples. Study the
following code and see if you can determine its result:

11. FileWriter fw = new FileWriter(“format.txt”);

12. PrintWriter pw = new PrintWriter(fw);

13. double r = Math.random();

14. int x = 1, y = 2;

15. pw.format(“The number %4.2f is between %d and %d%n”, r, x, y);

16. pw.printf(“%2$d %3$s %1$d%n”, x, y, “is bigger than”);

17. pw.flush();

 The output is formatted to a fi le named format.txt . Line 15 formats a double and two
 int s. The %n conversion outputs a line separator. Line 16 demonstrates the argument_index
parameter, which appears before the dollar sign in a format specifi er. For example, ” %2$d ”
 formats the second argument as an integer, and ” %3$s ” formats the third argument as a
string. The resulting format.txt fi le looks like this:

The number 0.67 is between 1 and 2

2 is bigger than 1

 The call to printf on line 16 could have been a call to format because the two methods
are identical. In terms of the exam, make sure you know the conversions in Table 4.1 and
the syntax for format specifi ers. The Formatter and Console classes, discussed in the side-
bar “ The Formatter Class ” and the next section, “ The Console Class, ” use the same syntax.

TA B LE 4 . 2 The Format Specifiers

Conversion Specifier Description

%b Specifies a boolean

%c Specifies a character

%d Specifies an integer number

%f Specifies a decimal number

%s Specifies a string

File Input and Output 297

c04.indd 297c04.indd 297 2/11/09 6:20:23 PM2/11/09 6:20:23 PM

298 Chapter 4 � API Contents

 The Console Class

 The java.io.Console class represents the JVM ’ s console, typically the command prompt
where the Java application is executed from. The System.in and System.out objects also
represent the console, but they are byte streams. The Console class, new to the language as
of Java 6.0, represents a single Console object in your JVM that provides access to the con-
sole input and output as character streams.

 The Console class is unique in that it does not have any constructors. There is only one
instance of this class, obtained by invoking the static method System.console() . This
method returns null if no console device is available in your environment.

 The Console class contains similar format and printf methods as the PrintWriter class:

 public Console format(String fmt, Object... args)

 public Console printf(String fmt, Object... args)

 As with PrintWriter , these two methods in Console are synonyms and behave in the
same manner. Let ’ s look at an example. See if you can determine the format of the output
of the following code:

�

�

The Formatter Class

The Formatter class is an interpreter for the format strings used in format/printf
methods. The class is similar to the PrintWriter class except that Formatter defi nes
only the format methods and not the printf methods. You invoke format in the way
you do PrintWriter: passing in a format specifi er followed by a comma-separated list of
arguments.

For example, the following statements create a Formatter object and format a string of
primitive types. Study the code and see if you can determine its output:

StringBuilder sb = new StringBuilder();

Formatter fmt = new Formatter(sb);

double d = 0.1/0.3;

int x = 123;

fmt.format(“d=%5.3f and x=%6d”, d, x);

System.out.println(sb.toString());

In this example, the Formatter writes its output to a StringBuilder object. The double d
is formatted with a width of 5 and precision of 3. The int x is formatted with a width of 6,
and the resulting StringBuffer looks like this:

d=0.333 and x= 123

As you can see, working with Formatter is similar to working with PrintWriter.

c04.indd 298c04.indd 298 2/11/09 6:20:24 PM2/11/09 6:20:24 PM

4. Console console = System.console();

5. if(console == null) {

6. throw new IOException(“Console not available”);

7. }

8. String formula = “Formula = “;

9. double radius = 2.0;

10. console.format(“%10s%12.10f * %3$4.2f * %3$4.2f%n”,

11. formula, Math.PI, radius);

12. double area = Math.PI * radius * radius;

13. console.format(“%10s%16.13f%n”, “Result = “, area);

 Line 4 obtains a reference to the Console object, and line 5 makes sure that it worked
by checking for a null return value. Line 10 formats four conversions, but notice there
are only three arguments. The third argument, radius , is formatted twice (demonstrating
that arguments can be reused in the format specifi er). Also the two strings formula and
 ” Result = “ have the same width so that they line up nicely. The output of the code is sent
to the console and looks like this:

Formula = 3.1415926536 * 2.00 * 2.00

 Result = 12.5663706143592

 You can also use the Console object to read keyboard input from the user. The Console
class defi nes four methods for reading in a single line of text from the console:

 public String readLine() reads in a single line as a String .

 public String readLine(String fmt, Object... args) displays a formatted
prompt, then reads a single line as a String .

 public char [] readPassword() reads a line of text as a char array with echoing
disabled.

 public char [] readPassword(String fmt, Object... args) displays a formatted
prompt and then reads a line of text as a char array with echoing disabled.

 The readPassword methods provide support for secure password entry by disabling the
input and also by storing the input in an array of char s, allowing you to overwrite the pass-
word in memory after it has been used without waiting for the garbage collector.

 The following code demonstrates reading input using the Console object by prompting the
user for a username and password. Study the code and see if you can determine its output:

10. Console console = System.console();

11. if(console == null) {

12. throw new IOException(“Console not available”);

13. }

14. String userprompt = “Enter username:”;

15. String passprompt = “Password:”;

�

�

�

�

File Input and Output 299

c04.indd 299c04.indd 299 2/11/09 6:20:24 PM2/11/09 6:20:24 PM

300 Chapter 4 � API Contents

16. String verifyprompt = “Verify password:”;

17.

18. String username = console.readLine(“%18s “, userprompt);

19. char [] password = console.readPassword(“%18s “, passprompt);

20. char [] verify = console.readPassword(“%18s “, verifyprompt);

21. if(password == null || !Arrays.equals(password, verify)) {

22. System.out.println(“Passwords do not match”);

23. return;

24. }

25. if(!Arrays.equals(password, “qwerty123”.toCharArray())) {

26. System.out.println(“Invalid login”);

27. return;

28. }

29. System.out.println(“Login successful!”);

30. //Remove password from memory

31. for(int i = 0; i < password.length; i++) {

32. password[i] = ‘x’;

33. verify[i] = ‘x’;

34. }

 The following breakdown illustrates what the code does:

 1. Line 10 obtains a reference to the Console object and lines 11 – 13 verify that the Con-
sole is available.

 2. Line 18 displays ” Enter username: ” formatted as 18 characters and the program
waits for the user to input a line of text at the console.

 3. Lines 19 and 20 prompt the user to input a password twice. The program waits for
input each time and users cannot see their input.

 4. Line 21 uses the Arrays.equals method for comparing two arrays of type char . If
 password is null or the two input passwords are different, the method returns.

 5. Line 25 compares the password input by the user to ” qwerty123 ” .

 6. The for loop on line 31 overwrites the two passwords input by the user with x s (this is
done for security purposes).

 The output varies depending on what the user inputs. The following output occurs if the
user inputs any username and ” qwerty123 ” for both passwords:

 Enter username: raposa

 Password:

 Verify password:

Login successful!

 The output does not show the passwords because the readPassword method disables the
echoing of user input.

c04.indd 300c04.indd 300 2/11/09 6:20:25 PM2/11/09 6:20:25 PM

 The Console class is preferred over using System.out and System.in
when working with formatted output to the console or console input from
the user. Because the class is new in Java 6.0, expect a question or two
about Console on the exam.

 Next we discuss a different exam objective: object serialization. I explain how it works
in the next section and discuss the various classes and interface involved.

 Object Serialization
 The exam objectives state that you need to be able to “ develop code that serializes and/or
de - serializes objects using the following APIs from java.io : DataInputStream , DataOutput-
Stream , FileInputStream , FileOutputStream , ObjectInputStream , ObjectOutputStream
and Serializable . ” In other words, you need to understand the details of Java object seri-
alization. The earlier section titled “ The DataInputStream and DataOutputStream Classes ”
discussed saving the state of an object using DataInputStream and DataOutputStream . This
section focuses on the ObjectInputStream and ObjectOutputStream classes and the Serial-
izable interface.

 Object serialization refers to taking the state of an object and writing it to a stream.
You can use serialization to persistently store your objects in fi les. You can also serial-
ize an object and send it across the network to another Java program or save it in a data-
base. Deserialization refers to the process of reading the data from an object stream and
 reconstituting the object in memory. Not all objects can be serialized; only objects whose
classes implement the java.io.Serializable interface . Let ’ s take a look at this interface
and what it means to implement it.

 The Serializable Interface

 The Serializable interface is a tagging interface, which means it does not have any meth-
ods in it. A class implements Serializable to let the JVM know that instances of the class
can be serialized. There is no extra work on your part to make a class serializable because
there are no methods in the interface. Your main concern with implementing Serializ-
able is ensuring that all the fi elds in your class are also Serializable . If an attempt is
made to serialize an object and a fi eld is reached during the serialization process that is not
serializable, the JVM throws a NotSerializableException and the serialization fails. The
compiler does not verify whether or not your fi elds are Serializable . Denote a fi eld as
 transient (using the transient keyword) to tell the JVM to ignore the fi eld during the seri-
alization and deserialization process.

Object Serialization 301

c04.indd 301c04.indd 301 2/11/09 6:20:25 PM2/11/09 6:20:25 PM

302 Chapter 4 � API Contents

 Let ’ s take a look at an example by revisiting the Contact class from earlier in this chap-
ter. I renamed the class Contact2 to distinguish it from the earlier version, and I added a
 GregorianCalendar fi eld to represent the person ’ s birthday. The Contact2 class implements
 Serializable , and I also made the fi elds private to demonstrate that the access specifi er
on a fi eld does not have an effect on serialization. The city fi eld is declared transient to
demonstrate the effect of the transient keyword.

package com.sybex.io;

import java.util.GregorianCalendar;

public class Contact2 implements java.io.Serializable {

 private String name;

 private int age;

 private long cellPhone;

 private GregorianCalendar birthday;

 private transient String city;

 public Contact2(String name, int age, long cellPhone,

 GregorianCalendar birthday, String city) {

 this.name = name;

 this.age = age;

 this.cellPhone = cellPhone;

 this.birthday = birthday;

 this.city = city;

 }

 public String toString() {

Why Not Make Everything Serializable?

You might be wondering why Java doesn’t just make all objects serializable automatically.
The reason is that for some objects it does not make sense to save their state. For
example, the Thread class is not serializable, nor are any of the stream classes in the java.
io package. It would be too diffi cult to try to save the state of a thread or stream object,
and their state is often not the kind of information that you want or need to save anyway.
However, most classes in the Java API are serializable and many of the classes you write
will likely be serializable as well. For example, the String class implements Serializable,
as do most of the data structure classes in the Collections API of the java.util
package. If you are not sure whether or not an object is serializable, check the Java API
documentation and see if its corresponding class implements the Serializable interface.

c04.indd 302c04.indd 302 2/11/09 6:20:25 PM2/11/09 6:20:25 PM

 return name + “ “ + age + “ “ + cellPhone;

 }

 public String getCity() {

 return city;

 }

}

 The Contact2 class implements Serializable , so each of its nontransient fi elds better be
 Serializable as well. The primitive types are no problem because all the primitive types
are serializable. You won ’ t be surprised to fi nd that the String class implements Serial-
izable , as does the GregorianCalendar class. Therefore, we should be able to serialize
objects of type Contact2 using the ObjectOutputStream class.

 The ObjectOutputStream Class

 An ObjectOutputStream writes Serializable objects to an output stream. It is a high - level
stream that needs to be chained to a low - level stream that represents the destination of the
serialized objects. The upcoming SerializeDemo program demonstrates using FileOutput-
Stream with ObjectOutputStream .

 The ObjectOutputStream class contains methods for writing primitive types and
 String objects, but the principal method of ObjectOutputStream is public void
writeObject(Object obj) throws IOException .

 The writeObject method serializes the Object argument passed in. If the Object passed
in is not serializable, a NotSerializableException is thrown. If the Object is serializable,
all the information necessary to deserialize the object is written to the stream, including the
class name, class signature, and the values of the nonstatic and nontransient fi elds.

 Let ’ s look at an example that serializes Contact2 objects to a fi le. Study the following
 SerializeDemo program and see if you can determine its result:

1. package com.sybex.io;

2.

3. import java.io.*;

4. import java.util.GregorianCalendar;

5.

6. public class SerializeDemo {

7. public static void main(String [] args) {

8. try {

9. GregorianCalendar bday1 =

10. new GregorianCalendar(1950, 3, 21);

11. GregorianCalendar bday2 =

12. new GregorianCalendar(1956, 5, 30);

13. Contact2 one = new Contact2(“Bugs Bunny”, 22,

Object Serialization 303

c04.indd 303c04.indd 303 2/11/09 6:20:26 PM2/11/09 6:20:26 PM

304 Chapter 4 � API Contents

14. 2025551212L, bday1, “Toontown”);

15. Contact2 two = new Contact2(“Daffy Duck”, 33,

16. 3035551212L, bday2, “Toontown”);

17.

18. File contactsFile = new File(“mycontacts.ser”);

19. FileOutputStream fos =

20. new FileOutputStream(contactsFile);

21. ObjectOutputStream out = new ObjectOutputStream(fos);

22.

23. out.writeObject(one);

24. out.writeObject(two);

25.

26. out.close();

27. fos.close();

28. }catch(IOException e) {

29. e.printStackTrace();

30. }

31. }

32. }

 There is no output, but the SerializeDemo program does create a new fi le named my
contacts.ser that contains two serialized objects of type Contact2 . The lines of code
to focus on in this program are lines 23 and 24. Calling writeObject and passing in a
 Contact2 reference serializes the object and writes it to the mycontacts.ser fi le.

 Now that we have seen how to serialize objects, let ’ s look at the code to deserialize them
using the ObjectInputStream class.

 The ObjectInputStream Class

 An ObjectInputStream deserializes objects from an input stream. It is a high - level stream
that needs to be chained to a low - level stream that represents the source of the serialized
objects. You should know how to use FileInputStream with ObjectInputStream , and I
discuss an example of using these two classes as we deserialize the two Contact2 objects
from the SerializeDemo program in the previous section.

 The ObjectInputStream class contains read methods that correspond to the write meth-
ods of ObjectOutputStream , including public Object readObject() throws IOExcep-
tion, ClassNotFoundException .

 The readObject method deserializes the next object in the stream. Note the reference
type of the return value is Object . Typically we need to cast the reference to its appropriate
class type.

 The following DeserializeDemo program deserializes two objects from the mycontacts.
ser fi le created in SerializeDemo . Assuming the SerializeDemo program is executed once,
see if you can determine the output of this program:

c04.indd 304c04.indd 304 2/11/09 6:20:26 PM2/11/09 6:20:26 PM

1. package com.sybex.io;

2.

3. import java.io.*;

4. import java.util.GregorianCalendar;

5.

6. public class DeserializeDemo {

7. public static void main(String [] args) {

8. try {

9. File contactsFile = new File(“mycontacts.ser”);

10. FileInputStream fis =

11. new FileInputStream(contactsFile);

12. ObjectInputStream in = new ObjectInputStream(fis);

13.

14. while(fis.available() > 0) {

15. Object obj = in.readObject();

16. if(obj instanceof Contact2) {

17. Contact2 contact = (Contact2) obj;

18. System.out.println(contact);

19. System.out.println(“city = “

20. + contact.getCity());

21. }

22. }

23.

24. in.close();

25. fis.close();

26. }catch(IOException e) {

27. e.printStackTrace();

28. }catch(ClassNotFoundException c) {

29. c.printStackTrace();

30. }

31. }

32. }

 The while loop on line 14 reads in objects from the mycontacts.ser fi le until the stream
is empty. Two objects are in the fi le, so the while loop executes twice. The instanceof
comparison on line 16 is true for both objects and line 18 prints the Contact2 object,
outputting the result of its toString method. I added line 19 to explicitly illustrate that
the city fi eld did not get serialized because it was declared transient . Transient fi elds are
ignored during serialization and initialized to their “ zero ” value during deserialization,
which for references is null . The output of the DeserializeDemo program is

Object Serialization 305

c04.indd 305c04.indd 305 2/11/09 6:20:27 PM2/11/09 6:20:27 PM

306 Chapter 4 � API Contents

Bugs Bunny 22 2025551212

city = null

Daffy Duck 33 3035551212

city = null

 By the way, the GregorianCalendar objects were also serialized, but the toString
method for GregorianCalendar prints out a lot of information, so I purposely left it out of
the toString method of Contact2 . (We discuss formatting dates in detail later in this chap-
ter.) If you open mycontacts.ser in a text editor, you will clearly see the two Gregorian-
Calendar objects serialized in the fi le.

 Now that we have seen how to serialize and deserialize objects, let ’ s turn our attention
to formatting and parsing data that uses the java.text package.

 Formatting and Parsing Data
 The java.text package contains classes and interfaces for handling text, dates, numbers,
and messages independent of the language that is being used in the application. According
to the exam objectives, you need to be able to “ use standard J2SE APIs in the java.text
package to correctly format or parse dates, numbers, and currency values for a specifi c
locale. ” This section discusses these topics in detail, including how to

 Format and parse numbers and currency using the DecimalFormat and NumberFormat
classes in java.text .

 Format and parse dates using the java.text.DateFormat class .

 Format and Parse Numbers and Currency

 The java.text.NumberFormat class is the abstract parent class of the number formatting
classes. The class contains static methods for getting appropriate formatter instances based
on the type of number you are formatting. For example, if you want to format currency,
use the static getCurrencyInstance method. Because formatting currency varies depending
on the language and culture of the users of your program, you can also specify the locale of
your specifi c users. Use a java.util.Locale object to represent your desired locale.

 The following list gives the static methods in NumberFormat for obtaining instances of
 NumberFormat :

 public static final NumberFormat getInstance() is a general - purpose number
format that uses the default locale.

 public static NumberFormat getInstance(Locale loc) is the same as the previous
method except that the format uses the specified locale.

 public static final NumberFormat getNumberInstance() is intended for formatting
and parsing numbers in the default locale.

�

�

�

�

�

c04.indd 306c04.indd 306 2/11/09 6:20:27 PM2/11/09 6:20:27 PM

 public static NumberFormat getNumberInstance(Locale loc) is used for
formatting and parsing numbers in the given locale.

 public static final NumberFormat getCurrencyInstance() returns a currency
format for the default locale.

 public static NumberFormat getCurrencyInstance(Locale loc) returns a currency
format for the given locale.

 public static final NumberFormat getIntegerInstance() is used for formatting
and parsing integers. Floating - point numbers are rounded using the half - even rounding
mode. (See the Java API documentation for NumberFormat if you are interested in
learning about the half - even rounding mode. It is not a topic you need to know for the
SCJP exam.)

 public static NumberFormat getIntegerInstance(Locale loc) returns an integer
format for the given locale.

 public static final NumberFormat getPercentInstance() is intended for
formatting and parsing percentages using the default locale.

 public static NumberFormat getPercentInstance(Locale loc) returns a
percentage format for the given locale.

 Each method is overloaded with a Locale object so that you can use a formatter for a
specifi c locale. The no - argument versions of these methods use the default locale, which
vary depending on the platform that the program executes on. After you obtain a Number-
Format instance, use its format and parse methods to format and parse numbers and cur-
rency. Let ’ s start with a discussion on the format methods.

 The NumberFormat.format Methods

 Use one of the format methods of the NumberFormat class to format a number. The class
defi nes several overloaded versions of format , including

 public final String format(long number)

 public final String format(double number)

 The format method formats the given number based on the locale associated with the
 NumberFormat object. The following code demonstrates using a NumberFormat object with
the German language locale. Study the code and see if you can determine its output:

NumberFormat nf = NumberFormat.getInstance(Locale.GERMAN);

double d = 123.57;

System.out.println(nf.format(d));

 If you are not familiar with how numbers are formatted in German, decimal numbers
use a comma instead of a decimal point, so the output is

123,57

�

�

�

�

�

�

�

�

�

Formatting and Parsing Data 307

c04.indd 307c04.indd 307 2/11/09 6:20:28 PM2/11/09 6:20:28 PM

308 Chapter 4 � API Contents

 See if you can determine the output of the following statements:

NumberFormat pf = NumberFormat.getPercentInstance();

double p = 0.47;

System.out.println(pf.format(p));

 Because no Locale is specifi ed, the NumberFormat object uses the default locale. Running
the program on a Windows machine in the United States outputs
47%

 Notice that the decimal 0.47 is converted to the number 47 followed by the percent sym-
bol, which is the syntax expected in the United States.

Working with Locales

A locale represents a specifi c geographical, political, or cultural region. The java.util
.Locale class represents a locale. To obtain a Locale object, you can either instantiate
a new one by passing a language into one of its constructors, or you can use one of
the many static Locale fi elds in the Locale class. For example, the following statement
creates a new Locale object for the Portuguese language:

Locale por = new Locale(“pt”);

The string ”pt” represents the two-letter code for Portuguese as specifi ed by ISO 639.2.
View a complete list of language codes online at http://www.loc.gov/standards/
iso639-2/.

The static fi elds of Locale represent locales for commonly used languages and countries.
For example, if you need a formatter for the Japanese language, use the Locale
.JAPANESE object.

 To format currency, use a NumberFormat object obtained from the getCurrencyInstance
methods. The following statements format a double as currency in the country locale of
France:

NumberFormat cf = NumberFormat.getCurrencyInstance(Locale.FRANCE);

double c = 59.99321;

FileWriter fw = new FileWriter(“numberformat.txt”);

PrintWriter pw = new PrintWriter(fw);

pw.println(cf.format(c));

pw.flush();

pw.close();

fw.close();

c04.indd 308c04.indd 308 2/11/09 6:20:28 PM2/11/09 6:20:28 PM

 France uses the euro for its currency, and the output in the numberformat.txt fi le looks
like this:
59,99

 Notice the double c was rounded to two decimal places, a comma appears instead of a
decimal point, and the euro symbol appears after the digits. (I had to write the output to a
fi le because my Windows console was not properly displaying the euro symbol.)

 The DecimalFormat Class

 The NumberFormat class has a child class named DecimalFormat that adds a variety of fea-
tures for formatting fl oating - point numbers, including the ability to specify precision, lead-
ing and trailing zeros, and prefi xes and suffi xes. You can obtain a DecimalFormat object in
two ways:

 Instantiate a new DecimalFormat using one of its constructors, which is useful when
working with the default locale.

 When using a specific locale, invoke the static getInstance method in NumberFormat
and cast the return value to a DecimalFormat .

 A DecimalFormat object has a pattern to represent the format of the decimal number.
The pattern consists of symbols, which include pound signs (#) and zeros to denote place-
holders. The pound signs are placeholders that are ignored if the number has fewer digits
than the pattern. The zeros are placeholders that represent leading and trailing zeros if the
number has fewer digits than the pattern.

 The pattern is best understood by an example. The following code creates several
 DecimalFormat objects that format a large fl oating - point number. Study the code and see if
you can determine its output:

8. double d = 1234567.437;

9. DecimalFormat one = new DecimalFormat(“###,###,###.###”);

10. System.out.println(one.format(d));

11.

12. DecimalFormat two = new DecimalFormat(“000,000,000.00000”);

13. System.out.println(two.format(d));

14.

15. DecimalFormat three = new DecimalFormat(“$#,###,###.##”);

16. System.out.println(three.format(d));

 The DecimalFormat object on line 15 demonstrates adding a symbol to the pattern, in
this case a dollar sign. The output of the code is

1,234,567.437

001,234,567.43700

$1,234,567.44

 The DecimalFormat object on line 12 puts leading and trailing zeros on the number, and
the one from line 15 prefi xes a dollar sign and the decimal value is rounded up.

�

�

Formatting and Parsing Data 309

c04.indd 309c04.indd 309 2/11/09 6:20:29 PM2/11/09 6:20:29 PM

310 Chapter 4 � API Contents

 When using a locale, a DecimalFormat object is obtained by calling getInstance in
 NumberFormat and casting the return value, as demonstrated in the following code. Study
the code and see if you can determine its output:

18. NumberFormat nf = NumberFormat.getInstance(Locale.GERMAN);

19. if(nf instanceof DecimalFormat) {

20. DecimalFormat df = (DecimalFormat) nf;

21. df.applyPattern(“##,#00.00#”);

22. double d1 = 23184.348;

23. double d2 = 3.1;

24. System.out.println(df.format(d1));

25. System.out.println(df.format(d2));

26. }

 On line 18 the locale is set to the German language, and getInstance typically returns
a DecimalFormat object, so line 19 is true for most environments. The pattern on line 21
contains both pound signs and zeros and uses English - style commas and a decimal point.
In German, the commas are replaced by a decimal point and vice versa. The output of the
code is

23.184,348

03,10

 The double 3.1 is formatted with a leading and trailing zero because the pattern calls
for at least two digits before and after the decimal.

 The NumberFormat.parse Method

 The NumberFormat class defi nes a parse method for parsing a String into a number using
a specifi c locale. The signature of the parse method is public Number parse(String
source) throws ParseException .

 The result of parsing depends on the locale. For example, if the locale is the United
States and the number contains commas, the commas are treated as formatting symbols.
If the locale is a country or language that uses commas as a decimal separator, the comma
is treated as a decimal point. In other words, the value of the resulting number depends on
the locale.

 Let ’ s look at an example. The following code parses the same string with different
locales. Study the code and see if you can determine its output:

6. NumberFormat en = NumberFormat.getInstance(Locale.US);

7. NumberFormat fr = NumberFormat.getInstance(Locale.FRANCE);

8.

9. try {

10. String s = “123,45”;

11. System.out.println(en.parse(s));

c04.indd 310c04.indd 310 2/11/09 6:20:29 PM2/11/09 6:20:29 PM

12. System.out.println(fr.parse(s));

13. }catch(ParseException e) {

14. e.printStackTrace();

15. }

 The string being parsed is ” 123,45 ” . In the U.S. locale, the comma is treated as a visual
format and is ignored, so the resulting number is the integer 12345 . In the France locale, the
comma is a decimal separator, so the resulting number is the double 123.45 . The output of
the code is

12345

123.45

 The parse method only parses the beginning of a string. After it reaches a character that
cannot be parsed, the parsing stops and the value is returned. See if you can determine the
output of the following statements:
NumberFormat nf = NumberFormat.getInstance();

try {

 String one = “456abc”;

 String two = “-2.5165e10”;

 String three = “x85.3”;

 System.out.println(nf.parse(one));

 System.out.println(nf.parse(two));

 System.out.println(nf.parse(three));

}catch(ParseException e) {

 e.printStackTrace();

}

 The NumberFormat object uses the default locale to parse ” 456abc ” . When the ‘ a ’ char-
acter is reached, the parsing stops and 456 is returned. Similarly, the String two is parsed
into - 2.5165 . Parsing ” x85.3 ” throws a ParseException because the beginning of the
string cannot be parsed. The output of the code is

456

-2.5165

java.text.ParseException: Unparseable number: “x85.3”

 I do not think the exam will test your knowledge of such details about the
 parse method and the point at which parsing fails, but it is a good trait to
understand. Instead, expect a question that successfully parses a string
to a number.

Formatting and Parsing Data 311

c04.indd 311c04.indd 311 2/11/09 6:20:29 PM2/11/09 6:20:29 PM

312 Chapter 4 � API Contents

 The parse method is also used for parsing currency. Study the following code and see if
you can determine its output:
29. NumberFormat cf = NumberFormat.getCurrencyInstance();

30. try {

31. String amt = “$12,345.99”;

32. double value = (Double) cf.parse(amt);

33. System.out.println(value);

34. }catch(ParseException e) {

35. e.printStackTrace();

36. }

 The currency string ” $12,345.99 ” on line 31 contains a dollar sign and a comma. The
 parse method strips out the characters and converts the value to a number. Assuming a
U.S. locale, the output of the code is

12345.99

 The return value of parse is a Number object. Number is the parent class of all the java
.lang wrapper classes, so the return value can be cast to its appropriate data type. On line
32, the Number is cast to a Double and then automatically unboxed into a double .

 The NumberFormat and DecimalFormat classes have other features and capabilities, but
the topics covered in this section address the content you need to know for the SCJP exam.
The next section discusses how to format and parse dates.

 Format and Parse Dates

 The java.text.DateFormat class is an abstract class that formats and parses dates and
times for a specifi c locale. Similar to NumberFormat , DateFormat objects are obtained by
invoking one of the static factory methods in the DateFormat class. You can create a date
format for working with just dates, or a date/time format for working with dates and times,
as follows:

 public static final DateFormat getDateInstance() is intended for formatting
dates in the default locale.

 public static final DateFormat getDateInstance(int style, Locale loc) gets
the date formatter with the specified style and locale. The possible formatting styles
are FULL , LONG , MEDIUM , and SHORT , static constants defined in the DateFormat class.

 public static final DateFormat getTimeInstance() is used for formatting times in
the default locale.

 public static final DateFormat getTimeInstance(int style, Locale loc) gets
the time formatter with the specified style and locale. The possible time formatting
styles are FULL , LONG , MEDIUM , and SHORT .

 public static final DateFormat getDateTimeInstance() is used for formatting
dates and times in the default locale.

�

�

�

�

�

c04.indd 312c04.indd 312 2/11/09 6:20:30 PM2/11/09 6:20:30 PM

 public static final DateFormat getDateTimeInstance(int dateStyle, int
timeStyle, Locale loc) gets a date/time formatter with the specified date style, time
style, and locale.

 The DateFormat class also defi nes a third overloaded version for each of these methods
that takes in the style int s but not the Locale reference, so the default locale is used for
those methods. After you obtain a DateFormat object, you use its format and parse meth-
ods to format and parse dates and times in the specifi ed locale, which we discuss next.

 The DateFormat.format Methods

 The DateFormat class defi nes three format methods, but you only need to know one of
these for the exam: public final String format(Date date) .

 The date parameter is of type java.util.Date , a useful class that represents a specifi c
instance in time as milliseconds. A Date object is instantiated by passing in a long that
represents the time in milliseconds from January 1, 1970 at 00:00:00 GMT. (The no -
 argument constructor of Date returns the current time on the underlying platform.) The
 format method returns the String representation of the given Date based on the specifi ed
locale of the DateFormat object.

 Let ’ s look at an example. The following code creates a Date object that lies on January
31, 1984, and formats the date in both the SHORT and FULL styles:

DateFormat df = DateFormat.getDateInstance(DateFormat.SHORT);

DateFormat full =DateFormat.getDateInstance(DateFormat.FULL);

Date d = new Date(444444444000L);

System.out.println(df.format(d));

System.out.println(full.format(d));

 The output of the statements is

1/31/84

Tuesday, January 31, 1984

 To include the time in the format of a date, use a DateFormat object from the get
DateTimeInstance method. The following statement formats the same Date object from the
previous code using a MEDIUM date style and a FULL time style:

DateFormat dtf = DateFormat.getDateTimeInstance(

 DateFormat.MEDIUM,

 DateFormat.FULL);

System.out.println(dtf.format(d));

 The output of the previous statements depends on the time zone and locale, but it will
look something like this:

Jan 31, 1984 5:47:24 PM MST

�

Formatting and Parsing Data 313

c04.indd 313c04.indd 313 2/11/09 6:20:30 PM2/11/09 6:20:30 PM

314 Chapter 4 � API Contents

 Let ’ s try a similar format with the same date but a different locale. The following state-
ments use a DateFormat object for the country Germany:

DateFormat de = DateFormat.getDateTimeInstance(

 DateFormat.MEDIUM,

 DateFormat.FULL,

 Locale.GERMANY);

System.out.println(de.format(d));

 The output of the statements looks something like this:

31.01.1984 17.47 Uhr MST

 Between the various date styles, time styles, and locales, you have a lot of options for
formatting dates and times using the DateFormat class. The class is also used for parsing
dates, as the next section shows.

 The DateFormat.parse Method

 The DateFormat class contains the following parse method for parsing strings into dates:
 public Date parse(String source) throws ParseException .

 The return value is of type java.util.Date , and the ParseException is thrown when
the beginning of the string cannot be parsed into a date successfully.

 The format of the String object depends on both the style and the locale of the Date-
Format object. The following statements parse a date string in the SHORT style of the U.S.
locale, and then format the resulting Date object in the FULL style of the France locale:

7. DateFormat shortFormat = DateFormat.getDateInstance(

8. DateFormat.SHORT,

9. Locale.US);

10. String s = “01/31/1984”;

11. try {

12. Date date = shortFormat.parse(s);

13. DateFormat fullFormat = DateFormat.getDateInstance(

14. DateFormat.FULL,

15. Locale.FRANCE);

16. System.out.println(fullFormat.format(date));

17. }catch(ParseException e) {

18. e.printStackTrace();

19. }

 The shortFormat object has the SHORT date style and U.S. locale, and on line 12 it parses
the string ” 01/31/1984 ” . The resulting Date object is printed on line 16 using a FULL style
with the France locale. The output is

mardi 31 janvier 1984

c04.indd 314c04.indd 314 2/11/09 6:20:31 PM2/11/09 6:20:31 PM

 The parse method throws a ParseException if the beginning of the string
cannot be parsed. As with the parse method in NumberFormat , the parse
method in DateFormat successfully parses a string if the beginning of the
string is in the proper format.

 The DateFormat class is useful when you develop Java applications that need to
work with formatted dates and times. The next section discusses some useful classes
for working with regular expressions.

 Regular Expressions
 A regular expression is a sequence of characters that describes a pattern of characters.
The pattern describes a set of strings based on common characteristics. The syntax for a
regular expression is not unique to Java, and they are used in many different programming
languages. Java uses the Pattern and Matcher classes in the java.util.regex package for
using regular expressions in your Java applications.

 For the exam you should be able to write code that uses the Pattern and Matcher classes
and the String.split method. You also need to be able to “ recognize and use regular
expression patterns for matching (limited to: . (dot), * (star), + (plus), ? , \d , \s , \w , [] , ()). ”
The objectives specifi cally state that what you need to know about “ the use of * , + , and ?
will be limited to greedy quantifi ers, and the parentheses operator will only be used as a
grouping mechanism, not for capturing content during matching. ” This section discusses
these topics in detail, starting with a discussion on the Pattern and Matcher classes.

 The Pattern and Matcher Classes

 The Pattern class represents a compiled regular expression. You do not instantiate a Pat-
tern object; instances are obtained from the static compile method defi ned in the Pattern
class public static Pattern compile(String regex) .

 Regular expressions need to be compiled into a pattern. The resulting Pattern object is
used to obtain a Matcher instance. A Matcher object represents the engine that performs
the actual parsing on the character sequence to see if it matches the pattern.

 The following statements represent a typical usage of the Pattern and Matcher classes:

5. String regex = “hello”;

6. Pattern pattern = Pattern.compile(regex);

7. Matcher m1 = pattern.matcher(“hello”);

8. Matcher m2 = pattern.matcher(“goodbye”);

9. if(m1.matches()) {

10. System.out.println(“hello is a match”);

Regular Expressions 315

c04.indd 315c04.indd 315 2/11/09 6:20:31 PM2/11/09 6:20:31 PM

316 Chapter 4 � API Contents

11. }

12. if(m2.matches()) {

13. System.out.println(“goodbye is a match”);

14. }

 The regular expression ” hello ” on line 5 is an example of a string literal pattern, the
simplest pattern in regular expressions. A character sequence matches the regular expres-
sion ” hello ” only if the character sequence is ” hello ” . The Pattern object on line 6 rep-
resents the compiled pattern. Two Matcher objects are instantiated for the pattern: ” hello ”
 and ” goodbye ” . Line 9 is true because “ hello ” matches the pattern, and line 12 is false
because “ goodbye ” does not match the pattern. The output of the code is

hello is a match

 Regular Expression Metacharacters

 A typical regular expression is more complex than a string literal like “ hello ” . A special
set of characters called metacharacters is used to specify wildcards, repetition, ranges,
and more. Table 4.3 shows the metacharacters specifi cally mentioned in the SCJP exam
objectives.

TA B LE 4 . 3 Metacharacters of Regular Expressions

Metacharacter Description

. (dot) Any character

* Match the preceding character any number of times

+ Match the previous character one or more times

? Match the previous character 0 or 1 times only

\d A digit 0–9

\s A whitespace character

\w A word character (any lowercase or uppercase letter, the underscore char-
acter, or any digit)

[] Match anything inside the square brackets for one character position once

() Use parentheses for grouping together search expressions

c04.indd 316c04.indd 316 2/11/09 6:20:32 PM2/11/09 6:20:32 PM

 Let ’ s look at an example of the various metacharacters. Suppose we have the following
 Pattern :

14. String regex = “.ing”;

15. Pattern pattern = Pattern.compile(regex);

 The dot in a regular expression represents any character, so ” .ing ” says “ match any
word that begins with any character and ends in ing. ” Using this pattern, see if you can
determine the output of the following statements:

16. String [] tests = {“ing”, “ring”, “trying”, “running”, “beings”};

17. for(String test: tests) {

18. Matcher m = pattern.matcher(test);

19. if(m.matches()) {

20. System.out.println(test + “ matches “ + regex);

21. }

22. }

 The for loop on line 17 iterates through the tests array and creates a Matcher object
for each String in the array. Line 19 invokes the matches method in Matcher , which
returns true if the pattern matches the String . The only String in tests that consists of
one character and ends in ” ing ” is ” ring ” , so the output of the code is

ring matches .ing

 If you want to match all words that end in ” ing ” , then use the * metacharacter, which
matches the preceding character any number of times. Assuming we use the same tests
array from earlier, see if you can determine the matches of the following pattern:

String regex = “.*ing”;

Pattern pattern = Pattern.compile(regex);

 The regular expression ” .*ing ” matches any word ending in ” ing ” , so the matches from
the tests array are

ing matches .*ing

ring matches .*ing

trying matches .*ing

running matches .*ing

 Use square brackets ([]) to denote a list or range of specifi c characters in a regular
expression. For example, the pattern [aeiou] matches any vowel. Use a hyphen (-) to spec-
ify a range of characters. For example, the expression [q - v] is equivalent to [qrstuv] . The
pattern [a - zA - Z] matches any uppercase or lowercase letter of the alphabet. See if you can
determine the types of strings that match the following pattern:

String regex = “[qrstuv]*.ing”;

Pattern pattern = Pattern.compile(regex);

Regular Expressions 317

c04.indd 317c04.indd 317 2/11/09 6:20:32 PM2/11/09 6:20:32 PM

318 Chapter 4 � API Contents

 The pattern matches any word that starts with any character between ‘ q ’ and ‘ v ’ (the
 [qrstuv]) repeated any number of times (the “ * ”), followed by any single character (the .),
and ending with the literal string “ ing ” . Using the tests array from the previous examples,
the matches are

ring matches [qrstuv]*.ing

trying matches [qrstuv]*.ing

 Together with * , the + and ? metacharacters also allow for repetition in a regular
expression. The + matches the previous character or expression one or more times, while ?
matches the previous character or expression zero or one times. For example, the pattern x+
matches 1 or more x s. The pattern [aeiou]? matches any vowel zero or one times.

 See if you can determine the output of the following statements:

23. Pattern p = Pattern.compile(“[0-4]+[a-z]*[5-9]?”);

24. String [] values = {“4a”, “112abc6”, “2345”, “01a”,

25. “a5” , “4a56” };

26. for(String value: values) {

27. Matcher m = p.matcher(value);

28. if(m.matches()) {

29. System.out.println(value + “ matches [0-4]+[a-z]*[5-9]?”);

30. }

31. }

 Figure 4.10 explains the pattern “ [0 - 4]+[a - z]*[5 - 9]? ” and the strings that match it.

[0 – 4] � [a–z] * [5–9] ?

The sequence must
start with 1 or more

digits between 0 and 4.

Next can come
any number of

lowercase letters
between a and z,

including no letters.

The sequence must
end with either
0 or 1 digits

between 5 and 9.

F I GU R E 4 .10 Using the +, ?, and * metacharacters [f0410.eps]

 The string ” a5 ” does not match because it does not start with a digit between 0 and 4 .
The string ” 4a56 ” does not match because it ends with two digits between 5 and 9 . The
other four strings in the values array match, so the output of the code is

4a matches [0-4]+[a-z]*[5-9]?

112abc6 matches [0-4]+[a-z]*[5-9]?

2345 matches [0-4]+[a-z]*[5-9]?

01a matches [0-4]+[a-z]*[5-9]?

c04.indd 318c04.indd 318 2/11/09 6:20:33 PM2/11/09 6:20:33 PM

 Parentheses in a Regular Expression

 Use parentheses to group together expressions in a regular expression. For example, the
pattern a*b+ matches any number of a ’s followed by one or more b ’s. Matches include
 ab , aaaab , and b . Adding parentheses can change the pattern. For example, the pattern
 (a*b)+ matches any number of a ’s followed by one b , with that pattern repeated one or
more times. Matches include ab , abaabab , and babb .

 The Pattern Character Classes

 The Pattern class uses several predefi ned character classes that represent commonly used
character patterns in regular expressions. The exam objectives explicitly state knowledge of
the following three character classes:

 \d , which denotes a digit; equivalent to [0 - 9]

 \s , which denotes a whitespace character; equivalent to [\t\n\x0B\f\r]

 \w , which denotes a word character; equivalent to [a - zA - Z_0 - 9]

 Because the syntax of the character classes starts with a backslash, in Java you must
escape them with an additional backslash. For example, the following regular expression
matches one or more digits:

String digits = “\\d+”;

 See if you can determine the output of the following statements:

34. String s = “[A-Z]\\w*\\s+[A-Z]\\w+”;

35. Pattern x = Pattern.compile(s);

36. String [] names = {“John Doe”, “JohnDoe”, “John\tDoe”, “John doe”,

37. “J D”, “J D5”};

38. for(String name: names) {

39. Matcher m = x.matcher(name);

40. if(m.matches()) {

41. System.out.println(name + “ matches “ + s);

42. }

43. }

 Figure 4.11 breaks down the regular expression on line 34.

�

�

�

Regular Expressions 319

c04.indd 319c04.indd 319 2/11/09 6:20:33 PM2/11/09 6:20:33 PM

320 Chapter 4 � API Contents

 The string “ JohnDoe ” is not a match because it does not contain any whitespace charac-
ters. “ John doe ” is not a match because the second word does not start with a letter from
 A to Z . “ J D ” is not a match because the D is not followed by one or more word characters.
The other strings in the names array match, so the output of the code is

John Doe matches [A-Z]\w*\s+[A-Z]\w+

John Doe matches [A-Z]\w*\s+[A-Z]\w+

J D5 matches [A-Z]\w*\s+[A-Z]\w+

 As you can see, regular expressions can become quite complex, but their complexity
makes them a powerful tool for matching character sequences. They also show up in other
Java API classes and methods, including the String.split method, which we discuss next.

 The String.split Method

 The String class contains a method named split that takes in a regular expression and
splits the String object into an array of String objects. The signature of the split method
is public String [] split(String regex) .

 The String argument is a regular expression, and the return value is one or more String
objects in an array. The size of the array depends on how many matches of the regular
expression are found. For example, the following statements split a String object into three
 String objects:

String greetings = “hi;hello;welcome”;

String [] greetingsArray = greetings.split(“;”);

for(String greeting : greetingsArray) {

 System.out.println(greeting);

}

 The regular expression in the call to split is the string literal “ ; ” that appears twice in
the greetings String . The greetingsArray contains three elements. The output of the
code is

[A–Z] \\w* \\s� [A–Z] \\w�

The sequence must
start with a single
uppercase letter
between A and Z

Next can come
any number

(including 0) of
word characters

Next must come
an uppercase
letter between

A and Z

Next must come
1 on more white
space characters

The sequence must
end with 1 or more
word characters.

F I GU R E 4 .11 A regular expression that contains character classes

c04.indd 320c04.indd 320 2/11/09 6:20:34 PM2/11/09 6:20:34 PM

hi

hello

welcome

 The split method is useful for parsing character sequences where the delimiter is
defi ned as a regular expression, as demonstrated by the following statements. See if you can
determine the output of this code:

String data = “3035551212,123 Main St.\tDenver,CO:50431”;

String [] results = data.split(“[;,:\\t]”);

for(String result : results) {

 System.out.println(result);

}

 The regular expression [;,:\\t] splits the String at every semicolon, comma, colon, or
tab. The output of the code is

3035551212

123 Main St.

Denver

CO

50431

 Limiting the Results of the split Method

 The split method also has an overloaded version that takes in an int that limits the
number of times the regular expression is applied to the String . If you specify a limit,
after the limit is reached the remaining characters are placed in the last element of the
 String array. For example, the following code invokes split with a limit of 3, so the
resulting array will not be larger than three elements. See if you can determine the output:

String s = “abc,def,g,hi,jklm,o”;

String [] array = s.split(“,”, 3);

for(String x : array) {

 System.out.println(x);

}

 The ” abc ” and ” def ” are split into the array and the remaining characters are put in a
 String in the third element of the array. The output of the code is

abc

def

g,hi,jklm,o

Regular Expressions 321

c04.indd 321c04.indd 321 2/11/09 6:20:35 PM2/11/09 6:20:35 PM

322 Chapter 4 � API Contents

 As I mentioned earlier, regular expressions appear in other areas of the Java API, but the exam
objectives only require knowledge of the Pattern and Matcher classes and the String.split
method. Now that we have discussed regular expressions, we can explore the Scanner class.

 The Scanner Class

 The Scanner class is a text scanner that can parse primitive data type and strings into
tokens. The delimiter for the tokens is either whitespace or a regular expression. The
source of the text can be from a String , File , or InputStream object. You can also assign a
 Locale to a Scanner object.

 A Scanner is constructed by passing in the source of the data. Here are some of the con-
structors in Scanner :

 public Scanner(File source) throws FileNotFoundException

 public Scanner(InputStream source)

 public Scanner(String source)

 By default, the delimiter for parsing the text is whitespace. To assign a regular expres-
sion as the delimiter, invoke one of the useDelimiter methods of Scanner :

 public Scanner useDelimiter(Pattern pattern)

 public Scanner useDelimiter(String pattern)

 The Scanner class defi nes a collection of “ next ” and “ hasNext ” methods for parsing
tokens, including a version for strings and each of the primitive types. For example, nextInt()
returns the next int in the input, and hasNextInt() returns true if the next token is an
 int . Similarly, nextDouble() and hasNextDouble() are used to read in doubles. The next()
method of the Scanner class reads in the next token as a String , no matter its data type.

 Let ’ s look at an example. The following code parses a String into tokens using
whitespace as the delimiter. Study the code and see if you can determine its output:

String source = “abc de fgh 123 ijk”;

Scanner scan = new Scanner(source);

while(scan.hasNext()) {

 if(scan.hasNextInt()) {

 int x = scan.nextInt();

 System.out.println(“int = “ + x);

 } else {

 String token = scan.next();

 System.out.println(token);

 }

}

 The source String has four spaces that split the string into fi ve tokens. Notice the
fourth token is parsed as an int . The output is

abc

de

�

�

�

�

�

c04.indd 322c04.indd 322 2/11/09 6:20:35 PM2/11/09 6:20:35 PM

fgh

int = 123

ijk

 The following example demonstrates using a delimiter that is a regular expression by
invoking the useDelimiter method. Study the code and see if you can determine its output:
String status = “probable,questionable;doubtful:out”;

Scanner in = new Scanner(status);

in.useDelimiter(“[,;:]”);

while(in.hasNext()) {

 String token = in.next();

 System.out.println(token);

}

 The delimiter pattern [,;:] is any character that is a comma, semicolon, or colon.
Therefore, the output of the code is

probable

questionable

doubtful

out

 Using Scanner for Keyboard Input

 A common use of the Scanner class is for keyboard input. Use System.in as the source
of the text and the “ next ” methods wait for the user to input data. The following example
reads in three tokens from the console separated by whitespace:

25. Scanner console = new Scanner(System.in);

26. System.out.print(“Enter a String, int and double: “);

27. String first = console.next();

28. int middle = console.nextInt();

29. double last = console.nextDouble();

30. System.out.println(“first = “ + first);

31. System.out.println(“middle = “ + middle);

32. System.out.println(“last = “ + last);

 Whitespace includes spaces and line feeds so that the user can input the tokens on a
single line separated by spaces. A sample execution of the code is

Enter a String, int and double: first 123 4.567

first = first

middle = 123

last = 4.567

Regular Expressions 323

c04.indd 323c04.indd 323 2/11/09 6:20:36 PM2/11/09 6:20:36 PM

324 Chapter 4 � API Contents

 The Scanner class has other features, such as the ability to fi nd the next occurrence of a
token, skip tokens, and work with locales. However, the information provided in this sec-
tion is suffi cient for the types of questions that you can expect on the SCJP exam regarding
 Scanner .

 Summary
 This chapter covered the “ API Contents ” section of the SCJP exam objectives. We discussed
many useful classes in the Java language, starting with the primitive wrapper classes in java
.lang . Each primitive type has a corresponding class that is used to “ wrap ” the primitives
into objects. As of Java 5.0, a primitive type is automatically boxed into its corresponding
wrapper class and automatically unboxed whenever necessary.

 Strings were discussed in detail, including the differences between the String , String-
Builder , and StringBuffer classes. The String class represents an immutable string of
characters. StringBuilder and StringBuffer represent mutable strings of characters, and
the two classes have the same method signatures and constructor parameters. The only dif-
ference between them is that StringBuffer is thread - safe and StringBuilder is not.

 A key topic discussed in this chapter was the input and output of data, including the
difference between byte streams and character streams (readers and writers). Low - level
streams connect to the source of the data, and high - level streams are chained to existing
streams. We saw how to buffer data streams using the BufferedInputStream , Buffered-
OutputStream , BufferedReader , and BufferedWriter classes. We also discussed how to
read and write primitive types and strings using the DataInputStream and DataOutput-
Stream classes.

 The java.io.File class represents the pathname of a fi le or directory, and the class
contains methods for determining information about the fi le or directory is represents. The
 FileInputStream and FileOutputStream classes read and write raw bytes to fi les, and the
 FileReader and FileWriter classes read and write characters streams to fi les. We saw how
to use the format/printf methods of the PrintWriter class to format strings. We also dis-
cussed the Console class, which represents the JVM environment ’ s console.

 Serialization refers to taking the state of an object and writing it to a stream. An object ’ s
class must implement java.io.Serializable to be serialized. Use the ObjectInputStream
and ObjectOutputStream classes to read and write objects to a stream.

 We spent a large portion of this chapter discussing how to format numbers, currency,
dates, and strings, including how to use the java.util.Locale class to perform these
operations within a given locale. Use the format methods of the java.text.Number
Format class to format numbers and currency for a specifi c locale. The DecimalFormat
class is a child class of NumberFormat and formats fl oating - point numbers for a specifi c
locale. We discussed how to use the parse method of NumberFormat to parse numbers
and currency. We also discussed how to format and parse dates using the DateFormat
class of java.text .

c04.indd 324c04.indd 324 2/11/09 6:20:36 PM2/11/09 6:20:36 PM

 A regular expression is a sequence of characters that describe a pattern of characters. We
discussed how to represent a regular expression in Java using the compile method of the
 Pattern class, and how to search for a match to a Pattern using the matcher method of
the Matcher class. The String.split method splits a String object into an array of String
objects based on a regular expression. The Scanner class is a text scanner that parses primi-
tive data types and strings into tokens using a delimiter, and is also useful for reading key-
board input from the console.

 Be sure to test your knowledge of these API contents by answering the Review Questions
at the end of the chapter. Make sure you have a good understanding of the following Exam
Essentials before you attempt the Review Questions.

 Exam Essentials

 Understand autoboxing and unboxing. Since the addition of autoboxing and unboxing to
Java, the need for using the wrapper classes explicitly has been minimized greatly. Be sure
to understand when a primitive type is autoboxed or unboxed.

 Be familiar with the various string methods. The concat method in String creates a new
 String object. Understand how the append and insert methods of StringBuilder and
 StringBuffer behave.

 Be familiar with the basic methods of the File class. The java.io.File class only repre-
sents a pathname to a fi le or directory and does not contain any methods for accessing or
modifying the contents of a fi le. However, you can use the File class to create and delete
fi les and directories.

 Understand Java object serialization. Understand what it means for an object to be seri-
alizable and how to serialize and deserialize an object using the ObjectOutputStream and
 ObjectInputStream classes.

 Know how to format and parse numbers, currency, and dates for a given locale. You
won ’ t be expected know all the foreign locales, but you should be able to format or parse a
number, currency, or date in the U.S. locale using the NumberFormat , DecimalFormat , and
 DateFormat classes in java.text .

 Be able to interpret simple regular expressions. Know the patterns and metacharacters
you need to for the exam. You won ’ t see a complex and confusing regular expression on the
exam, but you should be able to answer questions that contain simple regular expressions
used in places like Pattern , Scanner , and String.split .

 Understand the format specifiers for format / printf . Expect to see a question or two
on the exam that uses the format specifi ers found in the format/printf methods of the
 PrintWriter and Formatter classes. The exam objectives specifi cally list %b , %c , %d , %f ,
and %s .

Exam Essentials 325

c04.indd 325c04.indd 325 2/11/09 6:20:37 PM2/11/09 6:20:37 PM

326 Chapter 4 � API Contents

 Review Questions
 1. What is the result of the following code?

3. byte twelve = -12;

4. Byte b1 = new Byte(twelve);

5. Byte b2 = new Byte(twelve);

6. if(b1.byteValue() == b2) {

7. System.out.println(“equal”);

8. } else {

9. System.out.println(“not equal”);

10. }

 A. Line 6 generates a compiler error.
 B. An exception is thrown on line 6.

 C. equal

 D. not equal

 2. What is the result of the following program?

1. public class Unboxer {

2. private Integer x;

3.

4. public boolean compare(int y) {

5. return x == y;

6. }

7.

8. public static void main(String [] args) {

9. Unboxer u = new Unboxer();

10. if(u.compare(21)) {

11. System.out.println(”true”);

12. } else {

13. System.out.println(”false”);

14. }

15. }

16. }

 A. true

 B. false

 C. Line 5 does not compile.

 D. Line 5 throws an exception.

 E. Line 10 does not compile.

c04.indd 326c04.indd 326 2/11/09 6:20:37 PM2/11/09 6:20:37 PM

 3. What is the result of the following program?
1. public class Question03 {

2. public static void doSomething(int i){

3. System.out.println(”method one”);

4. }

5.

6. public static void doSomething(Byte b){

7. System.out.println(“method two”);

8. }

9.

10. public static void main(String[] args) {

11. byte b = -12;

12. doSomething(b);

13. }

14. }

 A. method one

 B. method two

 C. Compiler error on line 11

 D. Compiler error on line 12

 4. What is the result of the following program?
1. import java.util.Locale;

2. import java.text.NumberFormat;

3.

4. public class MyParser {

5. public static void main(String [] args) {

6. NumberFormat nf =

7. NumberFormat.getInstance(Locale.FRANCE);

8. String value = “444,33”;

9. System.out.println(nf.parse(value));

10. }

11. }

 A. 444.33

 B. 444,33

 C. Line 9 causes an exception to be thrown.

 D. Line 7 generates a compiler error.

 E. Line 9 generates a compiler error.

Review Questions 327

c04.indd 327c04.indd 327 2/11/09 6:20:38 PM2/11/09 6:20:38 PM

328 Chapter 4 � API Contents

 5. Given the following code:
6. try {

7. File f = new File(“./test/”);

8. if(!f.exists()) {

9. f.mkdir();

10. }

11.

12. File g = new File(“./test/something.txt”);

13. g.createNewFile();

14. }catch(IOException e) {

15. e.printStackTrace();

16. }
 and assuming that the current directory from which this program is executed does not
contain any subdirectories and that no exceptions are thrown, which of the following
statents are true? (Select two answers.)

 A. A new subdirectory named test is created in the current directory.

 B. A new file named something.txt is created in the current directory.

 C. A new file named something.txt is created in the test subdirectory.

 D. The mkdir and createNewFile methods are not defined for objects of type java
.io.File .

 E. A new file named test is created in the current directory.

 6. Which of the following statements are true? (Select three.)

 A. All string literals are automatically instantiated into a String object.

 B. The StringBuilder and StringBuffer classes define the exact same public methods.

 C. In a multithreaded environment, use StringBuilder instead of StringBuffer .

 D. A StringBuilder object is immutable.

 E. A StringBuffer object can increase its length when appending characters.

 7. What is the result of the following code?
4. String s = “Hello”;

5. String t = new String(s);

6.

7. if(“Hello”.equals(s)) {

8. System.out.print(“one”);

9. }

10.

11. if(t == s) {

12. System.out.print(“two”);

c04.indd 328c04.indd 328 2/11/09 6:20:38 PM2/11/09 6:20:38 PM

13. }

14.

15. if(t.equals(s)) {

16. System.out.print(“three”);

17. }

 A. one

 B. onethree

 C. twothree

 D. onetwothree

 E. The code does not compile.

 8. What is the result of the following code?
NumberFormat fmt =

 NumberFormat.getCurrencyInstance(Locale.US);

float f = 99.999F;

System.out.println(fmt.format(f));

 A. $99.99

 B. $99.999

 C. $100.00

 D. 99.999

 E. The output is indeterminate and depends on the locale of the JVM environment.

 9. What is the result of the following code?

7. StringBuilder sb = new StringBuilder();

8. sb.append(“aaa”).insert(1, “bb”).insert(4, “ccc”);

9. System.out.println(sb);

 A. bbaaaccc

 B. abbaaccc

 C. abbaccca

 D. bbaaccca

 E. The code does not compile.

 10. Given the following class definition:

1. import java.io.*;

2.

3. public class MyReader {

4. BufferedReader in;

5.

Review Questions 329

c04.indd 329c04.indd 329 2/11/09 6:20:38 PM2/11/09 6:20:38 PM

330 Chapter 4 � API Contents

6. public MyReader(File file) throws IOException {

7. FileReader fr = new FileReader(file);

8. in = new BufferedReader(fr);

9. }

10.

11. public void go() throws IOException {

12. String s = null;

13. while((s = in.readLine()) != null) {

14. System.out.print(s);

15. }

16. }

17.

18. public static void main(String [] args) {

19. try {

20. File file = new File(“data.txt”);

21. new MyReader(file).go();

22. }catch(IOException e) {

23. e.printStackTrace();

24. }

25. }

26. }
 what is the output of the MyReader program if the fi le “ data.txt ” is in the same direc-
tory as MyReader.class and contains the following contents:

H

E

L

L

O

 A. The characters HELLO with each character on a separate line.

 B. The characters HELLO on the same line.

 C. The character ‘ H’ .

 D. An IOException is thrown on line 13.

 E. The code does not compile.

 11. Suppose you need to write data that consists of int s, double s, boolean s, and string s
to a file that maintains the format of the original data. The data needs to be buffered to
improve performance. Which three java.io classes can be chained together to best achieve
this result?

 A. FileWriter
 B. FileOutputStream

c04.indd 330c04.indd 330 2/11/09 6:20:39 PM2/11/09 6:20:39 PM

 C. BufferedOutputStream

 D. DataOutputStream

 E. PrintWriter

 F. PipedOutputStream

 12. What is output of the following code?

5. PrintWriter pw = new PrintWriter(System.out);

6. double d = 2.73258;

7. int x = 3;

8. pw.format(“%4.2f%s %d%n”, d, “ is almost”, x);

9. pw.close();

 A. 2.73 is almost 3

 B. 2.73 is almost3

 C. 02.73 is almost 3

 D. 2.733 is almost 3

 E. There is no output.

 13. What is the result of the following code?

7. PrintWriter pw = new PrintWriter(System.out);

8. pw.format(“%2$d is bigger than %2$d”, 10, 5);

9. pw.close();

 A. 10 is bigger than 5

 B. 5 is bigger than 10

 C. 10 is bigger than 10

 D. 5 is bigger than 5

 E. Line 8 generates a compiler error.

 14. Given the following program:

1. import java.io.*;

2.

3. public class Employee {

4. private String name;

5. private float salary;

6. private int id;

7.

8. public Employee(String name, float salary, int id)

9. {

10. this.name = name;

Review Questions 331

c04.indd 331c04.indd 331 2/11/09 6:20:39 PM2/11/09 6:20:39 PM

332 Chapter 4 � API Contents

11. this.salary = salary;

12. this.id = id;

13. }

14.

15. public static void main(String [] args)

16. throws IOException {

17. Employee e = new Employee(“Jim”, 100.0F, 44);

18. FileOutputStream fs =

19. new FileOutputStream(“e.ser”);

20. new ObjectOutputStream(fs).writeObject(e);

21. }

22. }

 which one of the following statements is true?

 A. A new file named e.ser is created and contains a serialized Employee object.

 B. The private fields of the Employee object are not serialized.

 C. Line 3 generates a compiler error.

 D. Line 20 generates a compiler error.

 E. Line 20 throws a NotSerializableException .

 15. Given the following code:

5. java.io.Console out = System.console();

6. String s = out.readPassword(“%s”, “Enter a password: “);

7. System.out.println(“You entered “ + s);

 which of the following statements are true? (Select two.)

 A. Line 5 generates a compiler error.

 B. Line 6 generates a compiler error.

 C. Line 7 generates a compiler error.

 D. The out reference on line 5 may be null .

 E. The readPassword method does not use a format specifier.

 16. What is the result of the following program?

1. import java.io.*;

2.

3. public class SerializeA {

4. public static void main(String [] args) throws

5. IOException, ClassNotFoundException {

6. A ref = new A(12);

c04.indd 332c04.indd 332 2/11/09 6:20:40 PM2/11/09 6:20:40 PM

7. FileOutputStream fos =

8. new FileOutputStream(“a.ser”);

9. new ObjectOutputStream(fos).writeObject(ref);

10. FileInputStream fis =

11. new FileInputStream(“a.ser”);

12. A ref2 = (A)

13. new ObjectInputStream(fis).readObject();

14. System.out.print(ref2.a);

15. }

16. }

17.

18. class A implements Serializable {

19. public int a;

20.

21. public A(int a) {

22. this.a = a;

23. System.out.print(“A”);

24. }

25. }

 A. A0

 B. AA12

 C. A12

 D. An exception is thrown at runtime because the A class does not have a no - argument
constructor.

 E. The code does not compile because the A class does not properly implement the Seri-
alizable interface.

 17. What is the result of the following code?

4. NumberFormat n =

5. NumberFormat.getPercentInstance(Locale.US);

6. double d = 3.1415;

7. System.out.println(n.format(d));

 A. 314%

 B. 3.1415%

 C. 314.15%

 D. 3.14%

 E. The code does not compile.

Review Questions 333

c04.indd 333c04.indd 333 2/11/09 6:20:40 PM2/11/09 6:20:40 PM

334 Chapter 4 � API Contents

 18. What is the result of the following code?

10. DecimalFormat df = new DecimalFormat(“#,#00.00##”);

11. double d = 3.141592653;

12. System.out.println(df.format(d));

 A. 03.1415

 B. 3.0016

 C. 3.1416

 D. 03.1416

 E. 00.0015

 19. What is the result of the following code?

10. try {

11. NumberFormat nf =

12. NumberFormat.getPercentInstance(Locale.US);

13. String s = “75%”;

14. double d = (Double) nf.parse(s);

15. System.out.println(d);

16. }catch(ParseException e) {

17. System.out.println(“Something failed”);

18. }

 A. 75%

 B. 0.75

 C. 0.00

 D. Something failed.

 E. Line 14 generates a compiler error.

 20. Given the following code:

3. try {

4. DateFormat df =

5. DateFormat.getDateInstance(DateFormat.SHORT,

6. Locale.US);

7. String s = “10/19/1987”;

8. Date d = df.parse(s);

9. System.out.println(d.getTime());

10. }catch(ParseException e) {

11. System.out.println(“Something failed”);

12. }
 which of the following statements are true? (Select two.)

c04.indd 334c04.indd 334 2/11/09 6:20:40 PM2/11/09 6:20:40 PM

 A. Line 8 throws a ParseException because ” 19 ” is not a valid month.

 B. Line 8 generates a compiler error.

 C. Line 8 successfully parses the String s into a java.util.Date object that represents
October 19, 1987.

 D. The U.S. locale does not support the SHORT date style.

 E. The output is a long that represents the number of milliseconds from January 1, 1970
to October 19, 1987.

 21. Given the following code:

Pattern p = Pattern.compile(“x.y”);

String [] values = {“xy”, “xay”, “xaby”, “xa”};

for(String value : values) {

 if(p.matcher(value).matches()) {

 System.out.println(value);

 }

}
 which of the following strings is output? (Select one.)

 A. xy

 B. xay

 C. xaby

 D. xa

 E. None of the above

 22. What is the output of the following code?

3. String stuff = “of coursewyeswnowmaybe”;

4. String [] values = stuff.split(“w”);

5. System.out.println(values.length);

 A. 0

 B. 3

 C. 4

 D. 5

 E. A NullPointerException is thrown.

 23. What is the result of the following code?

3. Pattern pattern =

4. Pattern.compile(“(\\d[a-z])+\\s\\w?”);

5. String [] values = {“9a4b x”, “3a z”, “a”, “1a2b3c “};

6. int counter = 0;

Review Questions 335

c04.indd 335c04.indd 335 2/11/09 6:20:41 PM2/11/09 6:20:41 PM

336 Chapter 4 � API Contents

7. for(String value : values) {

8. if(pattern.matcher(value).matches()) {

9. counter++;

10. }

11. }

12. System.out.println(counter);

 A. 0

 B. 1

 C. 2

 D. 3

 E. 4

 24. What is the result of the following code?

2. String s = “Good morning sunshine the earth says hello”;

3. Scanner in = new Scanner(s);

4. in.useDelimiter(“\\s[s]”);

5. int counter = 0;

6. while(in.hasNext()) {

7. in.next();

8. counter++;

9. }

10. System.out.println(counter);

 A. 3

 B. 4

 C. 8

 D. 9

 E. 0

c04.indd 336c04.indd 336 2/11/09 6:20:41 PM2/11/09 6:20:41 PM

Answers to Review Questions
1. C. The code compiles and executes successfully, so A and B are incorrect. The com-

parison on line 6 is byte comparison, because b1.byteValue() is a byte and b2 is auto-
matically unboxed to a byte. Because both bytes are - 12 , the comparison is true and
line 7 outputs equal . Therefore, the answer is C.

2. D. The code compiles fi ne, so C is incorrect. On line 5, the Integer x is automatically
unboxed into an int . However, x is null in this program because it is an uninitialized fi eld
of Unboxer . Attempting to unbox a null reference results in a NullPointerException , so
the answer is D.

3. A. The code compiles fi ne, so C and D are incorrect. Line 12 invokes the overloaded
 doSomething method and passes in a byte argument, which is a valid argument for both
 doSomething methods. The compiler has to pick one, and it chooses the method with the
nearest compatible parameter, which is the int parameter of the doSomething method on
line 2. Therefore, the output is method one and the answer is A.

4. E. The parse method in the NumberFormat class throws the checked exception
ParseException , which must be handled or declared. The code does neither, so a
compiler error occurs on line 9 and therefore the answer is E.

5. A and C. D is incorrect: the File class contains a mkdir and createNewFile method
used for creating new directories and fi les on the fi le system. Because we are assum-
ing that the current directory does not contain any subdirectories, the ./test/
 subdirectory cannot already exist. Therefore, line 8 is true and line 9 creates a new
subdirectory named test . The only reason line 13 would fail is if the fi le something.
txt already existed in /test , but because /test is a new, empty directory, the
createNewFile method is successful and a new fi le named something.txt is
created in the /test subdirectory. Therefore, the answers are A and C.

6. A, B, and E. String literals are automatically instantiated into String objects, so A is true.
B is also true; the two classes contain the same methods. The only difference between
 StringBuilder and StringBuffer is that StringBuffer is thread - safe, which is why C
is false. You should use StringBuffer if using mutable strings in a multithreaded applica-
tion. D is false; the StringBuilder and StringBuffer classes represent mutable character
sequences. E is true; a StringBuffer and StringBuilder can grow and shrink to match
the number of characters in the sequence.

7. B. The code compiles fi ne, so E is incorrect. Line 7 is a valid statement and evaluates
to true , so one is output. The reference s points to a String object in the string pool
and t points to a String object on the heap. Because s and t do not point to the same
object in memory, line 11 is false . Line 15 is true because s and t both point to a
 Hello string. Therefore, the output is onethree and the answer is B.

Answers to Review Questions 337

c04.indd 337c04.indd 337 2/11/09 6:20:41 PM2/11/09 6:20:41 PM

338 Chapter 4 � API Contents

 8 C. E is incorrect because the Locale.US is specifi ed for fmt , so the output does not
depend on the JVM ’ s environment or platform. The currency format rounds decimals
up to two decimal places, so 99.999 is rounded up to 100.00 and printed in the U.S.
locale. The output is $100.00 , and therefore the answer is C.

9 C. The code compiles fi ne, so E is incorrect. The StringBuilder contains aaa after the
 append(“ aaa “) method call. The insert(1, “ bb “) inserts bb at position 1, resulting in
 abbaa . The insert(4, “ ccc “) inserts ccc at position 4, resulting in abbaccca . There-
fore, the answer is C.

10. B. The code compiles and runs fi ne, so D and E are incorrect. The File object repre-
sents the fi lename data.txt . The constructor of MyReader chains a FileReader and
 BufferedReader to data.txt . The go method reads in the contents of data.txt one line
at a time and prints each character without a linefeed, so the output is HELLO and the
answer is B.

11. B, C, and D. The data to be output consists of more than strings or characters, so
writer classes are not appropriate. FileOutputStream is needed to write to the fi le.
 BufferedOutputStream is needed to buffer the data, and the best choice for writing
various primitive types and strings is DataOutputStream , so the answer is B, C, and D.

12. A . The format specifi er formats d with a width of 4 and precision 2, which results in
 2.73 . The string is almost is printed, followed by a space. (There is a space between
 %s and %d in the format specifi er.) The value of x is printed as 3 , and then a linefeed
(%n). The result is 2.73 is almost 3 , so the answer is A.

13. D . The ” 2$ ” portion of ” %2$d ” denotes the second argument to be formatted, which is
the 5 . Therefore, 5 is output twice and the 10 does not appear in the result. The output is 5
is bigger than 5 and the answer is D.

14. E . The code compiles fi ne, so C and D are incorrect. Line B is a false statement because
the access specifi er of a fi eld does not have an effect on serialization. An attempt is
made on line 20 to serialize an Employee object, but the Employee class does not imple-
ment the Serializable interface. Therefore, a NotSerialiableException is thrown, so
A is false and E is true. Therefore, the answer is E.

15. B and D. Line 5 compiles fi ne and is how you obtain a reference to the Console object.
The System.console() method might return null if the environment does not have
a console, so D is true. Line 6 does not compile because the return value of readPassword
is a char array, not a String , so B is true. E is false; the fi rst argument of readPassword is
a format specifi er. Therefore, the answer is B and D.

16. C . The code compiles fi ne and the A class properly implements Serialiable , so E is
incorrect. D is incorrect because no constructors are invoked on a class being deserial-
ized. (A nonserializable parent class constructor may be invoked.) Instantiating A on
line 6 invokes the constructor on line 21 and A is printed. After the object is deserial-
ized, line 14 prints the value of ref2.a , which is 12 , so the fi nal output is A12 and
therefore the answer is C.

c04.indd 338c04.indd 338 2/11/09 6:20:42 PM2/11/09 6:20:42 PM

17 A. The code compiles fi ne, so E is incorrect. The percent format for the U.S. locale for-
mats a double as a percentage. The decimal point is not displayed, so B, C, and D are
incorrect. The number is multiplied by 100 and the percent sign is appended to the end.
After any necessary rounding, the output is displayed, which in this example is 314% .
Therefore, the answer is A.

18. D. The DecimalFormat object calls for at least two digits before the decimal point, so a
leading 0 appears before the 3 , making B and C incorrect. The format also calls for at
least two digits past the decimal but no more than four. The decimal portion of d has
more than four digits, so the format rounds the result up in this case because a 9 fol-
lows the 5 . Therefore, the output is 03.1416 and the answer is D.

19. B. The code compiles fi ne, so E is incorrect. The NumberFormat object is a percent format
and the string being parsed is ” 75% ” . The return value of parse on line 14 is a Number
object. Casting it to a Double (its actual type) and assigning it to a double causes the value
to be automatically unboxed. Printing it on line 15 results in 0.75 , so the answer is B.

20. C and E. The code compiles successfully, so B is incorrect. D is just an odd statement
that I made up to try to confuse you, so it is incorrect also. A is incorrect; the SHORT
format lists the month fi rst in the U.S. locale, so 10 is the month and 19 is the day of
the month. C is correct; the parse method successfully creates a Date object for Octo-
ber 19, 1987. As odd as E sounds, it is true. Date objects measure time as the number
of milliseconds from January 1, 1970, a date referred to as the epoch.

21. B. The regular expression ” x.y ” matches character streams of length three that begin
with x , end with y , and with any character in the middle. The string ” xay ” matches,
but none of the others do, so the answer is B.

22. C . The split method splits the stuff string into an array of substrings using the char-
acter ‘ w ’ as the delimiter. The resulting substrings are ” of course ” , ” yes ” , ” no ” , and
 ” maybe ” , so values.length is 4 and the answer is C.

23. D . A match for the pattern has to start with (\\d[a - z])+ , which specifi es a digit fol-
lowed by a lowercase character, with that pattern repeating one or more times. The \\s
denotes exactly one whitespace character. The \\w? denotes 0 or 1 word characters.
The string ” a ” does not match because it lacks a beginning digit and a whitespace
character. The other three strings in the array match this pattern, so the value of
 counter is 3 and the answer is D.

24. A. The delimiter of the Scanner is ” \\s[s] “ , which describes a whitespace character
followed by an s . The string being scanned has two delimiter matches: at _sunshine
and _says . Within the while loop, the Scanner reads in Good morning , then unshine
the earth , and then ays hello . Therefore, the while loop executes 3 times and the
answer is A.

Answers to Review Questions 339

c04.indd 339c04.indd 339 2/11/09 6:20:42 PM2/11/09 6:20:42 PM

c04.indd 340c04.indd 340 2/11/09 6:20:43 PM2/11/09 6:20:43 PM

 Concurrency

 SCJP EXAM OBJECTIVES COVERED IN THIS

CHAPTER:

 Write code to define, instantiate, and start new threads

using both java.lang.Thread and java.lang.Runnable.

 Recognize the states in which a thread can exist, and

identify ways in which a thread can transition from one

state to another.

 Given a scenario, write code that makes appropriate use

of object locking to protect static or instance variables

from concurrent access problems.

 Given a scenario, write code that makes appropriate use

of wait, notify, or notifyAll.

�

�

�

�

Chapter

5

c05.indd 341c05.indd 341 2/11/09 6:29:50 PM2/11/09 6:29:50 PM

 These objectives are found in Section 4 of the SCJP exam
objectives. The exam tests your knowledge of writing and
using threads in Java, including thread states, synchronization,

and the wait and notify methods of Object . This chapter covers these topics in detail.

 Overview of Threads
 Before we discuss the details and semantics of concurrency and threads, I want to discuss
some terminology. Concurrency refers to doing multiple tasks at the same time. Your
computer ’ s operating system runs programs concurrently, and a program that runs
on a computer is referred to as a process. A process consists of allocated memory and
resources, including the executable code of your program.

 Concurrency in processes is handled at the operating system level, and a typical Java
program is not interested in multiple processes. Instead, Java programs often need to
perform simultaneous tasks within a single process by using multiple threads to implement
concurrency. A thread is a path of execution, a block of code that executes within a process
and has access to the process memory. Each thread within a process executes concurrently,
and the JVM schedules the threads with the CPU. The number of threads running at any
given time depends on the number of CPUs on the machine. For example, if your machine
has one CPU, only one thread can be executing at a time. What are the other threads doing
when the CPUs are busy? Depending on their state, they are either waiting for the JVM to
schedule them with the next available CPU or waiting for a particular event to occur.

 Every stand - alone Java program has system threads that run in the background of the
application. For example, garbage collection is a task that always needs to be running and
is implemented in a system thread. From a programmer ’ s point of view, you are typically
more concerned with user - defi ned threads , the threads that you write to perform a specifi c
task. A stand - alone Java application starts with a single thread associated with the main
method. This main thread can start new user - defi ned threads, allowing you to break down
your program into simultaneous, logical units of work.

 This chapter discusses in detail the steps involved in writing and starting new user -
 defi ned threads. We will also discuss the various states that a thread can be in, along with
thread synchronization and the wait and notify methods of Object . Let ’ s start with a
discussion on how to write and start a thread.

c05.indd 342c05.indd 342 2/11/09 6:29:51 PM2/11/09 6:29:51 PM

 Writing a Thread
 For the exam you need to understand how to instantiate and start a thread using the
 Thread class and Runnable interface. A thread has two components:

 A thread object that gets started and has a priority and state, and is scheduled to run
by the JVM

 A runnable target that contains the code that executes when the thread object finally
gets to the CPU

 The Thread class represents a thread object in Java, and the Runnable interface is used to
defi ne a runnable target. You can write a thread two ways in Java:

 Write a class that implements Runnable and then pass an instance of your Runnable
class into the constructor of a new Thread object. When the Thread object is started
and reaches the CPU, the run method of the Runnable object is invoked.

 Write a class that subclasses the Thread class and overrides the run method. (The
 Thread class implements Runnable .) When your Thread object is started and reaches
the CPU, the overridden run method is invoked.

 In either option, you implement the run method defi ned in the Runnable interface and
instantiate a new Thread object. The run method has the following signature:

public void run()

 The run method represents the code that executes when the Thread object gets scheduled
to run. Before a thread can run, it needs to be started. Once started, a thread is alive
until the run method fi nishes executing, either by running to completion or throwing an
exception. We will discuss this topic in detail in the section “ Thread States, ” but fi rst let ’ s
discuss the details of writing a thread using both of the options mentioned previously.

�

�

�

�

 Writing Threads

 From an object - oriented point of view, the preferred option for writing a thread is
to implement Runnable . The Runnable target creates a nice separation between the
 Thread object, which is busy getting scheduled, synchronizing, and other thread - related
activities, and the runnable target, which is the code that executes when the thread gets
scheduled.

 If you write a class that extends Thread , you are implying that the class you are writing
 “ is a ” thread object and are therefore extending the capabilities of the Thread class.
However, if you extend thread only to override the run method, then from an object -
 oriented point of view you are not extending Thread for inheritance reasons.

Writing a Thread 343

c05.indd 343c05.indd 343 2/11/09 6:29:52 PM2/11/09 6:29:52 PM

344 Chapter 5 � Concurrency

 Therefore, in the real world you typically create a thread by writing a class that
implements Runnable and associating it as a target of a new Thread object. That being
said, we will discuss in detail both ways to write a thread in Java because the exam
objectives specifi cally state knowledge of both techniques.

 Implementing the Runnable Interface

 You can write a thread in Java by writing a new class that implements the Runnable
interface and assigning an instance of the class to a new Thread object. A Runnable target is
associated with a new Thread object using one of the following constructors in the Thread
class:

 public Thread(Runnable target)

 public Thread(Runnable target, String name)

 public Thread(ThreadGroup group, Runnable target)

 public Thread(ThreadGroup group, Runnable target, String name)

 public Thread(ThreadGroup group, Runnable target, String name, long
stackSize)

 You can assign a Thread object a name so that your application can monitor its threads.
You can also specify a stack size that, according to the Java API documentation, is highly
platform dependent. The stack size is the approximate number of bytes of address space
that the virtual machine is to allocate for this thread ’ s stack.

 Using the Thread constructors that declare a ThreadGroup parameter, you
can assign your Thread object to a ThreadGroup . A ThreadGroup allows
you to organize and manage the threads of your application into groups.
The SCJP exam does not require knowledge of the ThreadGroup class.

 Let ’ s look at an example of creating a new thread by writing a class that implements the
 Runnable interface. The following SayHello class implements the Runnable interface and
has one fi eld, one constructor, and the necessary run method:

1. public class SayHello implements Runnable {

2. private String greeting;

3.

4. public SayHello(String greeting) {

�

�

�

�

�

c05.indd 344c05.indd 344 2/11/09 6:29:52 PM2/11/09 6:29:52 PM

5. this.greeting = greeting;

6. }

7.

8. public void run() {

9. for(int i = 1; i < = 10; i++) {

10. System.out.print(greeting);

11. }

12. System.out.println(“End of run”);

13. }

14. }

 The run method on line 8 prints a String ten times. Line 12 prints “ End of run ” just
before the run method completes. Keep in mind that implementing Runnable does not
make the SayHello object a thread. An instance of SayHello needs to be associated with
a new Thread object, and then that Thread object is started by invoking its start method.
Only when the start method is invoked does an additional thread get added to the current
process.

 The following CountToTen program starts a new Thread using a SayHello instance.
Study the code and see if you can determine its result:

public class CountToTen {

 public static void main(String [] args) {

 SayHello hello = new SayHello(“Hi”);

 Thread t = new Thread(hello);

 t.start();

 for(int k = 1; k < = 10; k++) {

 System.out.print(k);

 }

 System.out.println(“End of main”);

 }

}

 The output of the CountToTen programs looks like

12345678910End of main

HiHiHiHiHiHiHiHiHiHiEnd of run

Writing a Thread 345

c05.indd 345c05.indd 345 2/11/09 6:29:53 PM2/11/09 6:29:53 PM

346 Chapter 5 � Concurrency

 The Output of a Multithreaded Program

 Now is a good time to point out that you cannot exactly determine the output of a
multithreaded program because you do not control when the threads get to execute. The
actual output of the CountToTen program is indeterminate because it can change every
time the program is executed.

 Given that, I ran CountToTen many times and each result was the same as the previous
one. The most likely reason that the output was similar each time is that the program ’ s
threads do not perform a lot of computations. The code is executed so quickly that the
main thread ends before the new thread has a chance to run. To test this hypothesis, I
modifi ed the for loops in both SayHello and CountToTen so that they executed 50 times
instead of 10 times, and here is a sample output of that result:

123456789101112Hi

HiHiHiHiHiHiHi131415161718192021222324252627282930313233343536373839

4041424344454647HiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiEnd of run

484950End of main

 Notice how this time the two threads took turns on the CPU. The main thread printed the
numbers 1 to 12 , and then gave up the CPU while the SayHello thread printed “ Hi ” . The
output varies on different executions of the program, and you might see entirely different
results running this code on different platforms and environments.

 Let ’ s look at another example of writing a thread, except this time I demonstrate
extending the Thread class instead of implementing Runnable .

 Extending the Thread Class

 You can create a thread by writing a class that extends the Thread class and overriding the
 run method. (A class that extends Thread is still a Runnable object because the Thread class
implements Runnable .) The following class demonstrates this technique:

1. public class MyThread extends Thread {

2. private String message;

3. private boolean keepGoing;

4.

5. public MyThread(String m) {

6. message = m;

7. keepGoing = true;

8. }

c05.indd 346c05.indd 346 2/11/09 6:29:53 PM2/11/09 6:29:53 PM

9.

10. public void setKeepGoing(boolean b) {

11. keepGoing = b;

12. }

13.

14. public void run() {

15. while(keepGoing) {

16. System.out.print(message + “ “);

17. try {

18. Thread.sleep(1000);

19. }catch(InterruptedException e) {}

20. }

21. System.out.println(“gone!”);

22. }

23. }

 In the run method of MyThread , the message fi eld is printed in a while loop. The call
to Thread.sleep on line 18 causes the currently running thread (which is the MyThread
instance) to sleep for at least 1,000 milliseconds (one second). Therefore, this run method
prints a String over and over again with at least a one - second delay between printings.

 The following Main program instantiates and starts a MyThread object. Because this
example extended Thread , there is no need to instantiate two objects. (When implementing
 Runnable , you instantiate both the Runnable target and a Thread object.) The MyThread
object represents both the thread object and the runnable target. Study the Main program
and see if you can determine its result:

1. public class Main {

2. public static void main(String [] args) {

3. MyThread myThread = new MyThread(“going”);

4. myThread.start();

5. try {

6. Thread.sleep(6000);

7. }catch(InterruptedException e) {}

8.

9. myThread.setKeepGoing(false);

10. System.out.println(“End of main”);

11. }

12. }

Writing a Thread 347

c05.indd 347c05.indd 347 2/11/09 6:29:53 PM2/11/09 6:29:53 PM

348 Chapter 5 � Concurrency

 Line 3 instantiates a new MyThread object with the message “ going ” . Because MyThread
extends the Thread class, it inherits the start method of Thread , so line 4 starts the new
 MyThread object. The main thread then sleeps on line 6 for six seconds. While the main
thread is sleeping, MyThread is printing “ going ” about every second. Upon awaking and
getting scheduled by the JVM, line 9 sets the keepGoing fi eld of MyThread to false . The
output of Main looks like

going going going going going going End of main

gone!

 As I mentioned in the previous section, the output of a multithreaded application is
indeterminate. The above output of Main is a common output because of the timing of the
calls to sleep . MyThread prints “ going ” every second and Main sleeps for six seconds, then
tells MyThread to stop printing, so I am not surprised that “ going ” is printed six times.
However, depending on the JVM and other factors of the environment, it is possible for
 “ going ” to be printed a different number of times.

 Now that you have seen the details of writing a thread by implementing Runnable or
extending Thread , let ’ s discuss the important topic of thread state and what happens to
your threads when they are not running on the CPU.

 Stopping a Thread

 The Thread class contains a method named stop , but this method is deprecated and you
are highly discouraged from invoking it. The problem with the stop method is that the
thread being stopped might contain object locks that other threads are waiting for, and
the stopped threads might not let go of those locks when stop is called.

 If you need one thread to be able to stop another thread, follow the design of the
 MyThread class in this section. Notice that the while loop on line 15 of MyThread checks
the boolean fi eld keepGoing after each printing of the message. The idea behind this
design is that another thread can communicate with a MyThread object by setting
 keepGoing to false (via the setKeepGoing method of MyThread). Setting the boolean
to false won ’ t stop the thread immediately, but the thread only does a small amount of
work before checking the boolean again. Providing a mechanism in your threads so that
they can be stopped cleanly by another thread is commonly done in multithreaded Java
applications.

c05.indd 348c05.indd 348 2/11/09 6:29:54 PM2/11/09 6:29:54 PM

 Thread States
 A thread takes on various states from the time that it starts to the point when its run
method completes execution. You should be able to recognize the various thread states and
how a thread transitions from one state to another. This section discusses the details of
these various states.

 The Thread class defi nes the following method for obtaining the current state of a
thread:

public Thread.State getState()

 Thread.State is an enumeration defi ned in the Thread class that represents all the
possible states of threads. The Thread.State enumeration has the following values:

 NEW The thread has been instantiated but not started yet.

 RUNNABLE The thread is either currently running on the CPU or waiting to be scheduled by
the JVM for execution.

 BLOCKED The thread is waiting for a monitor lock to become available. A thread becomes
blocked when attempting to enter a block of synchronized code.

 WAITING The thread is waiting for another thread to perform a particular action. For
example, the thread might be waiting for another thread to call Object.notify on a spe-
cifi c object or waiting for another thread to terminate due to a call to Thread.join .

 TIMED_WAITING This state is similar to WAITING except the thread only waits until a speci-
fi ed time elapses. A thread enters this state with a call to Thread.join or Object.notify
with a timeout, or Thread.sleep .

 TERMINATED The thread has run to completion. A terminated thread cannot be started
again.

 Now we discuss each of these states and how a thread transitions from one state to
another.

 New Threads

 A Thread object is required to create a thread in Java. After a Thread object is
instantiated but before its start method is invoked, the thread is referred to as being in
the new thread state. Let ’ s look at an example. Suppose we have the following Runnable

Thread States 349

c05.indd 349c05.indd 349 2/11/09 6:29:54 PM2/11/09 6:29:54 PM

350 Chapter 5 � Concurrency

class named ReadAFile whose run method scans the contents of a fi le and prints them to
the console output:

import java.io.*;

import java.util.Scanner;

public class ReadAFile extends Thread {

 private Scanner in;

 private boolean keepGoing = true;

 public ReadAFile(File f) throws FileNotFoundException {

 in = new Scanner(f);

 }

 public void stopReading() {

 keepGoing = false;

 }

 public void run() {

 while(keepGoing & & in.hasNext()) {

 System.out.print(in.next());

 }

 }

}

 The following statements instantiate a ReadAFile object and then wrap that object into
a new thread:

File source = new File(“somedata.txt”);

ReadAFile target = new ReadAFile(source);

Thread t = new Thread(target);

 At this point in the program, t points to a new Thread object but the JVM has not
created a new thread in the process yet. Only when the start method is invoked on
the Thread does the JVM add a new thread to the process, at which point a new thread
transitions into a runnable thread , as Figure 5.1 shows.

 F I GU R E 5 .1 A new thread transitions to a runnable thread when its start method is
invoked.

RUNNABLE
start()

NEW

c05.indd 350c05.indd 350 2/11/09 6:29:55 PM2/11/09 6:29:55 PM

 Starting a Thread Twice Is Not Valid

 A new thread cannot be started twice. For example, the following code compiles fi ne:

23. File source = new File(“ somedata.txt “);

24. ReadAFile target = new ReadAFile(source);

25. Thread t = new Thread(target);

26. t.start();

27. t.start();

 However, the call to start on line 27 throws an IllegalThreadStateException at
runtime:

Exception in thread “ main ” java.lang.IllegalThreadStateException

 at java.lang.Thread.start(Thread.java:595)

 at ReadAFile.main(ReadAFile.java:27)

 Keep an eye out for this scenario on the exam.

 Runnable Threads

 A runnable thread is a thread that is either executing or waiting to be scheduled. The JVM
schedules which thread to execute based on the thread priority . The priority is an integer
value, and a thread inherits its priority from the thread that started it. Priority can be
changed at any time using the setPriority method of the Thread class:

public final void setPriority(int p)

 Typically you set a thread ’ s priority to be MIN_PRIORITY , NORM_PRIORITY , or
 MAX_PRIORITY , static fi elds in the Thread class. The setPriority method throws
an IllegalArgumentException if the argument is not between MIN_PRIORITY and
 MAX_PRIORITY .

 Java programmers should assume the scheduler uses preemptive scheduling , meaning
that if a thread is executing and another thread of a higher priority becomes runnable, it
preempts the lower - priority thread, as Figure 5.2 shows. (Preemptive scheduling is not an
absolute guarantee, so your algorithm logic should not rely on it.)

 F I GU R E 5 . 2 The JVM scheduler determines which thread to schedule on a CPU.

preempted

scheduled

CPU
runnable
threads

Thread States 351

c05.indd 351c05.indd 351 2/11/09 6:29:56 PM2/11/09 6:29:56 PM

352 Chapter 5 � Concurrency

 Threads that have the same priority execute in a round - robin fashion, meaning that the
currently executing thread runs until it either terminates or transitions into a waiting state.

 Use the static yield or sleep method of the Thread class if you are concerned a thread is
hogging the CPU. The sleep method causes a thread to transition into the TIMED_WAITING
state until the specifi ed amount of time elapses. The yield method causes the currently
running thread to give up the CPU, allowing another thread to be scheduled. Figure 5.3
shows the transitions for sleep and yield .

F I GU R E 5 . 3 The thread state transition of the sleep and yield methods

yield() sleep()

timeout

scheduled

CPU

TIMED_WAITING

RUNNABLE

 Notice that invoking yield does not change the state of a thread; it just pushes the
thread to the back of the line of other runnable threads. The sleep method actually
transitions a thread from RUNNABLE to TIMED_WAITING . When the specifi ed time elapses, the
thread becomes RUNNABLE and goes to the back of the line of runnable threads.

 To demonstrate the yield method, I added a call to yield in the run method of the
 SayHello class from the previous section:
public void run() {

 for(int i = 1; i < = 10; i++) {

 System.out.print(greeting);

 Thread.yield();

 }

 System.out.println(“End of run”);

}

 Similarly, I added a call to yield in the CountToTen program, which now yields after
printing each int :

for(int k = 1; k < = 10; k++) {

 System.out.print(k);

 Thread.yield();

}

 Running the program again results in an entirely different output than before the yields
were added:

1Hi2Hi3Hi4Hi5Hi6Hi7Hi8Hi9Hi10HiEnd of main

End of run

c05.indd 352c05.indd 352 2/11/09 6:29:56 PM2/11/09 6:29:56 PM

 The two threads have the same priority and politely yield to each other. As you can see
by the output, each thread is getting equal time on the CPU. In a real - world scenario, you
might not call yield quite this often, but in general it is a good method to call whenever
you want your threads to get along with other threads and not hog the CPU unnecessarily.

 Blocked Threads

 Threads access shared memory in a process and therefore need to be synchronized. The
upcoming section “ Thread Synchronization ” discusses the synchronized keyword and the
details you need to know about thread synchronization. Synchronization in Java is done at
the object level, where threads ask for an object ’ s lock before entering synchronized code.
If a thread asks for a lock and the lock is already in use by another thread, it becomes a
 blocked thread . A blocked thread stays blocked until the requested lock becomes available,
at which point it returns to the runnable state, as Figure 5.4 shows.

F I GU R E 5 . 4 A thread goes from RUNNABLE to BLOCKED when a synchronized lock is
unavailable.

synchronizedlock
becomes
available

scheduled

CPU

BLOCKED

RUNNABLE

 The getState method of a blocked thread returns the BLOCKED value of the Thread
.State enumeration.

 Waiting and Timed - Waiting Threads

 The Java language has built - in threading capabilities, as demonstrated by the wait and
 notify methods of the Object class. The wait method invoked on an Object causes the
thread to wait until another thread calls notify on the same Object . We discuss the details
in the section “ The wait , notify , and notifyAll Methods, ” but for now let ’ s see the effect
these methods have on the state of a thread.

 The wait method in Object has three overloaded versions:

public final void wait() throws InterruptedException

public final void wait(long timeout) throws InterruptedException

public final void wait(long timeout, int nanos) throws InterruptedException

 The wait method causes the thread to wait for either notify or notifyAll to be invoked
on the same object or wait for the specifi ed time to elapse. The wait and notify methods
cannot be invoked unless the thread has the object ’ s lock. When wait is invoked, the lock

Thread States 353

c05.indd 353c05.indd 353 2/11/09 6:29:57 PM2/11/09 6:29:57 PM

354 Chapter 5 � Concurrency

is released and the state of the thread changes to WAITING or TIMED_WAITING , depending on
which version of the wait method is invoked. When notify is invoked on the object, the
waiting threads move to the BLOCKED state because the lock of the object is not available
(the thread that called notify has it). Figure 5.5 shows the thread state transition of wait
and notify .

F I GU R E 5 .5 The thread state transition caused by the wait and notify methods

wait (timeout)

wait () notify()
notifyAll()

timeout

scheduled

notify()
notifyAll()

CPU

TIMED_WAITING

WAITING

RUNNABLE

lock
becomes
available

BLOCKED

 Two events need to occur for a waiting thread to become runnable again: notify or
 notifyAll needs to be invoked and then the lock of the object needs to become available.

 WAITING vs. TIMED_WAITING

 Invoking wait() moves a thread into the WAITING state and invoking wait(long
timeout) or wait(long timeout, int nanos) moves a thread into the TIMED_WAITING
state.

 A TIMED_WAITING thread and a WAITING thread both move into the BLOCKED state after
 notify or notifyAll . However, a WAITING thread waits indefi nitely, while a TIMED_
WAITING thread only waits for as long as the specifi ed timeout value. A thread can also
move into the TIMED_WAITING state by invoking the sleep and join methods of Thread
that have long parameters for specifying a time - out.

c05.indd 354c05.indd 354 2/11/09 6:29:58 PM2/11/09 6:29:58 PM

 Terminated Threads

 A terminated thread is a thread that has run to completion, and its corresponding
enumerated state is TERMINATED . A thread terminates when its run method completes, either
by returning or throwing an exception. A thread cannot be started again, and a terminated
thread is often referred to as a dead thread. Figure 5.6 shows the state transition of a
terminated thread.

 F I GU R E 5 .6 When a thread runs to completion, its state changes to TERMINATED .

scheduled

CPURUNNABLE TERMINATED

runs to
completion

 The only way to transition into the TERMINATED state is from RUNNABLE . A thread in the
 TERMINATED state cannot be started again or an IllegalThreadStateException is thrown.

 Now that we have discussed the various states that a thread can be in, the next section
looks at the BLOCKED state of a thread and synchronization.

 Thread Synchronization
 Thread synchronization involves using an object ’ s lock to protect its fi elds, a topic you
need to understand for the exam. We synchronize threads because they share the same
memory, and it is possible for two threads to cause inconsistent or unreliable data in your
application by modifying fi elds of an object at the same time. We use object locking to force
threads to play nice with other threads and ensure that the data in our program remains
consistent.

 To demonstrate the need for synchronization, let ’ s look at a multithreaded program
whose threads interfere with each other. The following MyStack class simulates a simple
stack of ten int s. The index fi eld points to the next available spot in the stack. The push
method contains a call to Thread.yield on line 8 at an important step in the program ’ s
business logic. You would probably not put a yield call here in a real - world scenario,
but because you never know when a thread is going to be preempted, we will attempt to
simulate preempting at this point in the code. Study the class and see if you can determine
how the push and pop methods work:

1. public class MyStack {

2. private int [] values = new int[10];

3. private int index = 0;

4.

5. public void push(int x) {

6. if(index < = 9) {

Thread Synchronization 355

c05.indd 355c05.indd 355 2/11/09 6:29:58 PM2/11/09 6:29:58 PM

356 Chapter 5 � Concurrency

7. values[index] = x;

8. Thread.yield();

9. index++;

10. }

11. }

12.

13. public int pop() {

14. if(index > 0) {

15. index--;

16. return values[index];

17. } else {

18. return -1;

19. }

20. }

21.

22. public String toString() {

23. String reply = “”;

24. for(int i = 0; i < values.length; i++) {

25. reply += values[i] + “ “;

26. }

27. return reply;

28. }

29. }

 If two threads each push an int onto the stack at the same time, it is possible that data
in the stack will be corrupted, as demonstrated by the following Pusher class. The Pusher
class extends Thread and pushes fi ve int s onto an instance of MyStack in its run method:

public class Pusher extends Thread {

 private MyStack stack;

 public Pusher(MyStack stack) {

 this.stack = stack;

 }

 public void run() {

 for(int i = 1; i < = 5; i++) {

 stack.push(i);

 }

 }

}

c05.indd 356c05.indd 356 2/11/09 6:29:59 PM2/11/09 6:29:59 PM

 The following code instantiates one MyStack object, which is shared between two
 Pusher threads. The two threads run and each pushes fi ve int s onto the MyStack object:

MyStack stack = new MyStack();

Pusher one = new Pusher(stack);

Pusher two = new Pusher(stack);

one.start();

two.start();

try {

 one.join();

 two.join();

}catch(InterruptedException e) {}

System.out.println(stack.toString());

 The main thread calls join on the two Pusher threads, which causes the main thread to
wait until both Pusher threads run to completion. Then the toString method displays the
contents of the values array. Because the code uses threads, the output varies depending on
the environment that the code executes in, but here is a sample output:

1 2 2 3 3 4 4 5 5 0

 Notice that the contents of this array are not consistent with the logic of the program.
Each Pusher thread pushed the numbers 1 through 5 onto the stack, so there should appear
two 1 s, two 2 s, and so on. Instead, there is only one 1 on the stack and a 0 appears at the
end, so only nine elements were actually pushed on the stack.

 The problem is that when an int is pushed onto the stack, both the values array and the
 index need to be updated in an atomic manner (without being interrupted). By yielding in
the middle of a push, the stack is left in an invalid state. When the 1 is pushed on the stack
by the fi rst thread, the following statement (from line 7 of MyStack) executes:

values[0] = 1;

 Before the thread can increment index by 1 , it yields to the second thread, which
immediately pushes a 1 onto the stack also. But index is still 0 , so the second thread
executes the same statement:

values[0] = 1;

 At this point in the program, the array data has been corrupted because both threads
pushed a 1 onto the fi rst element in the stack. The problem is that the second thread should
not have been allowed to invoke the push method of the MyStack object while the fi rst
thread was in the middle of a push. These two threads need to be synchronized, which we
will fi x in the next section, but fi rst I need to discuss the details of an object ’ s monitor lock.

Thread Synchronization 357

c05.indd 357c05.indd 357 2/11/09 6:29:59 PM2/11/09 6:29:59 PM

358 Chapter 5 � Concurrency

 The Monitor Lock

 Every Object in Java has an entity called its monitor lock (often referred to as the monitor
or lock) that threads use to synchronize access to the data of the object. The monitor lock
of an Object has the following features:

 A thread uses the synchronized keyword to “ acquire ” an object ’ s lock.

 If the lock is available, the thread is said to “ own ” the lock.

 Once the thread leaves the synchronized block of code, the thread “ releases ” the lock.

 If a thread attempts to acquire a lock and the lock is not available, the thread
transitions into the blocked state. The thread remains blocked until the lock becomes
available again.

 A thread attempts to acquire a monitor lock on a specifi c object in the following two
ways:

 The thread enters a synchronized block of code, in which case the thread attempts to
acquire the monitor lock of the object specified with the synchronized keyword.

 The thread invokes a synchronized method, in which case the thread attempts to
acquire the monitor lock of the object the method is invoked on.

 Both of these scenarios involve using the synchronized keyword, either at the method
level or on a block of code. Let ’ s look at an example that demonstrates both of these
scenarios, starting with a synchronized block of code.

 Synchronized Blocks

 Use the synchronized keyword to create a synchronized block of code . The syntax is

synchronized(reference) {

 //synchronized block

}

 The reference is any Object reference, and if the monitor lock of that Object is
available, then the thread acquires it; otherwise, the thread blocks until the lock becomes
available.

 Let ’ s look at an example. Suppose we have the following class named BankAccount :

public class BankAccount {

 private double balance;

 public void deposit(double amount) {

 System.out.println(“Making a deposit: “ + amount);

 balance += amount;

�

�

�

�

�

�

c05.indd 358c05.indd 358 2/11/09 6:30:00 PM2/11/09 6:30:00 PM

 }

 public void withdraw(double amount) {

 System.out.println(“Making a withdrawal: “ + amount);

 balance -= amount;

 }

 public double getBalance() {

 return balance;

 }

}

 Making a withdrawal or deposit on a bank account is a good candidate for
synchronization. (I doubt you or your bank would be happy with a program that
occasionally loses a deposit or withdrawal because of interfering threads.) A thread that
needs to access a BankAccount object should obtain its monitor lock fi rst, as demonstrated
in the following method:

4. public static void doSomeBanking(BankAccount account) {

5. synchronized(account) {

6. account.deposit(50.00);

7. account.withdraw(20.00);

8. }

9. System.out.println(account.getBalance());

10. }

 On line 5, the current thread attempts to acquire the lock on a BankAccount object using
its reference. Line 5 has two possible outcomes:

 The lock is available and the current thread becomes the owner of the lock. Lines 6
and 7 execute and then the lock is released on line 8.

 The lock is not available and the current thread becomes blocked. The thread does not
become runnable again until the lock becomes available.

 Assuming lines 6 and 7 execute (unless we are in a deadlock situation), the output is

Making a deposit: 50.0

Making a withdrawal: 20.0

30.0

 The getBalance method is invoked outside of synchronized code, which might be
acceptable because the method does not alter any data in the fi elds. However, it is not
uncommon for a “ get ” method to be invoked within synchronized code.

�

�

Thread Synchronization 359

c05.indd 359c05.indd 359 2/11/09 6:30:00 PM2/11/09 6:30:00 PM

360 Chapter 5 � Concurrency

 Beware of Deadlock

 Like many tasks in Java, starting a thread is easy. However, making sure your threads
play nice with the other threads in your application is often a diffi cult task in the real
world. After your threads start asking for monitor locks, you have to worry about the
possibility of deadlock. If a thread attempts to acquire a lock and, for whatever reason,
the lock never becomes available, then your thread has become deadlocked and will
never become runnable again.

 For example, using the BankAccount class defi ned in this section, suppose we have the
following Teller thread that transfers $50.00 from one BankAccount object to another,
obtaining the lock of both objects before making the transfer:

public class Teller extends Thread {

 private BankAccount src, dest;

 public Teller(BankAccount src, BankAccount dest) {

 this.src = src;

 this.dest = dest;

 }

 public void run() {

 synchronized(src) {

 Thread.yield();

 synchronized(dest) {

 src.withdraw(50.00);

 dest.deposit(50.00);

 }

 }

 }

}

 Notice the conveniently placed call to Thread.yield after the fi rst lock is acquired but
before the attempt at acquiring the second lock. You would not normally call yield here,
but I want to emphasize the importance of never knowing when a thread is preempted.
Try to determine the output of the following code:

public class DeadlockDemo {

 public static void main(String [] args) {

 BankAccount a = new BankAccount();

c05.indd 360c05.indd 360 2/11/09 6:30:00 PM2/11/09 6:30:00 PM

 a.deposit(100.00);

 BankAccount b = new BankAccount();

 Teller t1 = new Teller(a, b);

 Teller t2 = new Teller(b, a);

 t1.start();

 t2.start();

 try {

 t1.join();

 t2.join();

 }catch(InterruptedException e) {}

 System.out.println(“a balance = “ + a.getBalance());

 System.out.println(“b balance = “ + b.getBalance());

 }

}

 The output varies depending on the environment, but deadlock can occur immediately, in
which case the output is

Making a deposit: 100.0

 Here is what happens: the deposit of $100.00 is successfully made on BankAccount a ,
but the two Teller threads deadlock before any other output occurs. The t1 thread grabs
the lock on a , then yields. The t2 thread grabs the lock on b , then yields. The t1 thread
now attempts to acquire the b lock, but t2 owns it, so t1 becomes blocked. The t2 thread
attempts to acquire the a lock, but t1 owns it so t2 becomes blocked. Neither thread will
ever become runnable again because the locks they are waiting for will never be freed. In
addition, the main thread of the DeadlockDemo program is also blocked forever because it
called join on both t1 and t2 , and neither of those two threads can run to completion.

 Starting threads is easy but working with them can be diffi cult. The BankAccount
example shown here is the typical example used to demonstrate deadlock. By the way,
there are several fi xes to this problem. One common design pattern is to order your
locks. If a thread needs multiple locks, then those objects should have some type of
ordering so that all threads ask for multiple locks in the same order. For example, when
 t1 and t2 needed the a and b locks, both threads should have attempted to acquire the
 a lock fi rst. When the t2 thread attempts to grab the a lock and t1 already owns it, t2 is
blocked but does not own any monitor locks, leaving the b lock available for the t1 thread
to complete its task successfully and avoid this deadlock scenario.

Thread Synchronization 361

c05.indd 361c05.indd 361 2/11/09 6:30:01 PM2/11/09 6:30:01 PM

362 Chapter 5 � Concurrency

 Synchronized Methods

 A synchronized method is similar to a synchronized block of code except the lock being
acquired is on the object the synchronized method is invoked on. Think of a synchronized
method as a synchronized block of code that attempts to acquire the this reference. Use
the synchronized keyword in the method declaration to denote a method as synchronized.

 Let ’ s revisit the MyStack class from earlier in this section. The push and pop methods
are good candidates for synchronized methods because they perform atomic tasks.
The following version of the class, MyStack2 , demonstrates the syntax for declaring
synchronized methods:

public class MyStack2 {

 private int [] values = new int[10];

 private int index = 0;

 public synchronized void push(int x) {

 if(index < = 9) {

 values[index] = x;

 Thread.yield();

 index++;

 }

 }

 public synchronized int pop() {

 if(index > 0) {

 index--;

 return values[index];

 } else {

 return -1;

 }

 }

 public synchronized String toString() {

 String reply = “”;

 for(int i = 0; i < values.length; i++) {

 reply += values[i] + “ “;

 }

 return reply;

 }

}

 All three methods of MyStack2 are declared as synchronized . This simple change to the
class now makes it thread - safe, and the issue of data corruption that existed in MyStack

c05.indd 362c05.indd 362 2/11/09 6:30:01 PM2/11/09 6:30:01 PM

is resolved. The following code creates two threads that each push the int s 1 to 5 onto
the same MyStack2 object, except this time the threads do not interfere with each other.
The Pusher2 class is the same as Pusher from earlier except it has a fi eld of type MyStack2
instead of MyStack .

MyStack2 stack = new MyStack2();

Pusher2 one = new Pusher2(stack);

Pusher2 two = new Pusher2(stack);

one.start();

two.start();

try {

 one.join();

 two.join();

}catch(InterruptedException e) {}

System.out.println(stack.toString());

 Here is a sample output:

1 1 2 2 3 3 4 4 5 5

 Because the MyStack2 object has synchronized methods, the push and pop methods
successfully modify the values and index fi elds of MyStack2 without leaving the object in
an inconsistent state.

 Now that we have seen the synchronized keyword, we can discuss the wait and
 notify methods of the Object class. These two methods can only be invoked within a
synchronized block of code, and they provide a communication mechanism between
threads that need to work concurrently.

 The wait , notify , and notifyAll Methods
 The wait , notify , and notifyAll methods are defi ned in the Object class, so they can
be invoked on any Java object. As we discussed in the “ Thread States ” section, the wait
method causes the current thread to stop running until another thread calls notify or
 notifyAll on the same object that the waiting thread called wait on. You should know the
following two important details about wait , notify , and notifyAll :

 A thread can only invoke wait , notify , or notifyAll on an object if the thread
owns the object ’ s monitor lock. In other words, these methods must be invoked in
synchronized code.

�

The wait, notify, and notifyAll Methods 363

c05.indd 363c05.indd 363 2/11/09 6:30:02 PM2/11/09 6:30:02 PM

364 Chapter 5 � Concurrency

 The wait method releases the object ’ s lock before transitioning into the WAITING or
 TIMED_WAITING state.

 If the wait method does not release the lock, no other thread can invoke notify because
the notify method requires the lock.

 The wait and notify methods are used in a producer/consumer model where one
thread is “ producing ” something and another thread is “ consuming ” something. If the
producer is too fast, it might need to wait for the consumer. Once the consumer catches up,
it can notify the producer to start producing again.

 To demonstrate a producer and consumer model, let ’ s use the thread - safe MyStack2 class
from the previous section. The class contains two fi elds:

public class MyStack2 {

 private int [] values = new int[10];

 private int index = 0;

 //remainder of class definition

}

 Suppose a thread (our producer) pushes values onto the stack, and another thread (our
consumer) pops values off the stack. If the stack is empty, the popping thread can wait for
the pushing thread to push something onto the stack. Once a push occurs, the pushing
thread can notify the popping thread to resume execution.

 Let ’ s start with the consumer thread. The following class named Consumer tries to pop
values off of a MyStack2 object. Study the code and see if you can determine what it does:

1. public class Consumer extends Thread {

2. private MyStack2 stack;

3.

4. public Consumer(MyStack2 stack) {

5. this.stack = stack;

6. }

7.

8. public void run() {

9. while(true) {

10. synchronized(stack) {

11. int x = stack.pop();

12. if(x == -1) {

13. try {

14. System.out.println(“Waiting...”);

15. stack.wait();

16. }catch(InterruptedException e) {}

17. } else {

18. System.out.println(“Just popped “ + x);

19. }

�

c05.indd 364c05.indd 364 2/11/09 6:30:02 PM2/11/09 6:30:02 PM

20. }

21. }

22. }

23. }

 On line 15 the Consumer thread invokes wait on a MyStack2 object if the stack is empty
(returns - 1). The thread needs to own the lock of stack , which it acquires on line 10.

 The following Producer thread calls notify after each push onto the stack:

1. public class Producer extends Thread {

2. private MyStack2 stack;

3.

4. public Producer(MyStack2 stack) {

5. this.stack = stack;

6. }

7.

8. public void run() {

9. while(true) {

10.

11. int random = (int) (Math.random() * 5);

12. stack.push(random);

13. System.out.println(“Just pushed “ + random);

14. synchronized(stack) {

15. System.out.println(“Notifying...”);

16. stack.notify();

17. }

18. try {

19. Thread.sleep(2000);

20. }catch(InterruptedException e) {}

21. }

22. }

23. }

 I added a call to Thread.sleep on line 19 of the Producer thread to slow the program
down. The call to notify on line 16 is made on a MyStack2 object. The following code
instantiates a Consumer and Producer , each with a reference to the same MyStack2 object:

4. MyStack2 stack = new MyStack2();

5. Consumer c = new Consumer(stack);

6. c.start();

7.

8. Producer p = new Producer(stack);

9. p.start();

The wait, notify, and notifyAll Methods 365

c05.indd 365c05.indd 365 2/11/09 6:30:03 PM2/11/09 6:30:03 PM

366 Chapter 5 � Concurrency

 The following sequence of events occurs when the code executes:

 1. Assuming the Consumer thread runs first (which is only an assumption and not a guar-
antee), its run method is invoked.

 2. On line 10, the thread attempts to acquire the monitor lock of the stack. Again, let ’ s
assume the lock is available.

 3. The Consumer pops an int off the stack. With our assumptions so far, the value
returned is - 1 because the Producer has not had a chance to push anything onto the
stack yet.

 4. The Consumer calls wait on line 15 and gives up the monitor lock of the stack.

 5. The Producer thread is started and its run method is invoked. A random int between
 0 and 4 is pushed onto the stack on line 12.

 6. On line 14, the Producer thread attempts to acquire the lock of the stack. This step is
necessary because the call to notify can only occur if the thread owns the lock on the
stack.

 7. On line 16, the notify method awakens the Consumer thread and its state changes
from WAITING to BLOCKED . Notice the Consumer thread is not RUNNABLE at this point
in time. Why? Because the Producer thread still has the lock on the stack and the
 Consumer thread was within synchronized code when it invoked wait .

 8. The Producer thread gives up the lock of the MyStack2 object on line 17, causing the
 Consumer thread to transition to the RUNNABLE state.

 9. The Producer thread sleeps, allowing the Consumer thread to obtain the lock of the
stack and pop the recently pushed value. The stack is now empty because the Producer
is sleeping, so the Consumer waits again.

 This process repeats indefi nitely because the threads run in infi nite while loops.
The output changes each time because we are dealing with threads and also because the
numbers pushed onto the stack are random. Here is a typical output of the code:

Waiting...

Just pushed 1

Notifying...

Just popped 1

Waiting...

Just pushed 3

Notifying...

Just popped 3

Waiting...

Just pushed 4

Notifying...

Just popped 4

Waiting...

c05.indd 366c05.indd 366 2/11/09 6:30:03 PM2/11/09 6:30:03 PM

 The output is the most common I got from running the program many times (aside from
the random numbers changing), but as with any multithreaded application, the output
might vary depending on the environment.

 The notifyAll Method

 If your program has multiple threads waiting for a call to notify , then you can use the
 notifyAll method of Object . The notifyAll method wakes up all threads waiting for an
object ’ s lock.

 Keep in mind that all of these threads that are awakened are all competing for the same
object ’ s lock before they can proceed. However, they are no longer in the WAITING or
 TIMED_WAITING state because they have transitioned to the BLOCKED state, making each
thread one step closer to RUNNABLE , as Figure 5.5 shows.

The wait, notify, and notifyAll Methods 367

 The producer and consumer in the stack example could easily be switched. If a thread
attempts to push an int on a full stack, it could wait for another thread to pop an int
off the stack, assuming the popping thread calls notify on the stack after each pop. For
example, assuming the pushing thread is waiting for a pop, the following statements add a
call to notify to the Consumer class on line 19 on the stack object after a pop occurs:

10. synchronized(stack) {

11. int x = stack.pop();

12. if(x == - 1) {

13. try {

14. System.out.println(“Waiting...”);

15. stack.wait();

16. }catch(InterruptedException e) {}

17. } else {

18. System.out.println(“Just popped “ + x);

19. stack.notify();

20. }

21. }

 Having a thread invoke both wait and notify is a fairly common occurrence in
producer/consumer situations where threads rely on each other to complete certain tasks.

 The notify method wakes a single thread that is waiting on the object ’ s
monitor. If multiple threads are waiting, you do not have any control over
which ones are chosen to be awakened. The thread chosen is arbitrary and
is based on the JVM implementation that the code is running in.

c05.indd 367c05.indd 367 2/11/09 6:30:03 PM2/11/09 6:30:03 PM

368 Chapter 5 � Concurrency

 The wait and notify methods are an example of how threads are a built - in aspect of the
Java programming language. The methods have been a part of the language since the fi rst
version of Java, and their main usage is in implementing a producer/consumer model. If you
also understand that a thread needs to own the object ’ s lock to invoke its wait or notify
methods, you will have the information you need for answering the wait and notify
questions on the SJCP exam.

 Summary
 This chapter covered the “ Concurrency ” objectives of the SCJP exam. The goal of this
chapter was to demonstrate how to create a thread in Java and also to understand the
various states of a thread once it is started.

 You can write a thread in Java in two ways: write a class that implements the Runnable
interface and wrap a new Thread object around an instance of your Runnable class, or
write a class that extends Thread and override the run method. From an object - oriented
point of view, writing a class that implements Runnable is the preferred technique.

 We discussed the various states of a thread object and how a thread transitions from
one state to another. A thread in Java is NEW , RUNNABLE , BLOCKED , WAITING , TIMED_WAITING ,
or TERMINATED . A NEW thread has been instantiated but not yet started. A RUNNABLE thread
is either currently executing on the CPU or waiting to be scheduled. A BLOCKED thread
has requested an unavailable lock and is waiting for that lock to be released by whichever
thread currently owns the lock. A WAITING thread has invoked the wait method on an
object and is waiting indefi nitely for a notify or notifyAll to be invoked on the object.
A thread enters the TIMED_WAITING state by invoking wait or join with a specifi ed timeout
or by invoking the Thread.sleep method. A TERMINATED thread has run to completion; it
cannot be started again.

 Threads have a priority, and we discussed thread scheduling and the preemptive
behavior of threads. We also discussed the static sleep and yield methods of Thread
and their effects on the currently running thread. The sleep method causes the currently
running thread to temporarily cease executing for a specifi ed amount of time. The yield
method causes the currently running thread to temporarily pause and allow other threads
of the same priority to execute.

 Threads need to be synchronized when accessing the same data in a process. Every
 Object in Java has an entity called its monitor lock that threads use to synchronize access
to the data of the object. Use the synchronized keyword to have a thread attempt to
acquire the monitor lock of an object. The synchronized keyword can obtain the lock of a
specifi c object ’ s reference. You can also declare a method synchronized , in which case the
monitor lock of the object the method was invoked on is acquired.

c05.indd 368c05.indd 368 2/11/09 6:30:03 PM2/11/09 6:30:03 PM

 We also discussed the wait , notify , and notifyAll methods of Object . These methods
are used in a producer/consumer model where one thread is “ producing ” something and
another thread is “ consuming ” something. The object ’ s lock must be owned by the current
thread before invoking these methods or an exception occurs at runtime.

 Be sure to test your knowledge of concurrency by answering the Review Questions at
the end of the chapter. Make sure you have a good understanding of the following Exam
Essentials before you attempt the Review Questions, and good luck!

 Exam Essentials

 Know the two different ways to write a thread in Java. A thread in Java is created
by either extending the Thread class or writing a class that implements Runnable and
 associating an instance with a new Thread .

 Understand the various states of a thread and the ways that a thread can transition from
one state to another. For example, a NEW thread transitions to RUNNABLE by invoking
its start method. A RUNNABLE thread transitions to BLOCKED when attempting to acquire
an unavailable lock. A RUNNABLE thread transitions to TERMINATED upon running to
completion.

 A thread cannot be started more than once. A thread can only be started
once. An attempt to start a thread that has already been started results in an
 IllegalThreadStateException .

 Understand the synchronized keyword. The synchronized keyword is used by a thread to
attempt to acquire an object ’ s monitor lock. The synchronized keyword is used to write a
synchronized block of code or to denote a method as synchronized.

 Understand the join method. A thread that calls join on another thread blocks until the
other thread runs to completion.

 The output of a multithreaded application is indeterminate. In many situations, the out-
put is indeterminate because there are multiple possible results of the code.

 Understand the producer/consumer model. Be able to answer conceptual questions about
the producer/consumer model, along with a programmatic understanding of how to use the
 wait and notify methods.

Exam Essentials 369

c05.indd 369c05.indd 369 2/11/09 6:30:04 PM2/11/09 6:30:04 PM

370 Chapter 5 � Concurrency

 Review Questions
 1. Given the following DoSomething class definition:

1. public class DoSomething implements Runnable {

2. public void run() {

3. System.out.println(“Do something”);

4. }

5. }

 what is output of the following statements?

10. DoSomething r = new DoSomething();

11. Thread t = new Thread(r);

12. System.out.println(t.getState());

 A. Do something

 B. The output is indeterminate.

 C. NEW

 D. RUNNABLE

 E. TERMINATED

 2. Given the following DoSomething class definition:

1. public class DoSomething implements Runnable {

2. public void run() {

3. System.out.print(“Do something”);

4. }

5. }

 what is output of the following program?

1. public class Main {

2. public static void main(String [] args)

3. throws InterruptedException {

4. DoSomething r = new DoSomething();

5. Thread t = new Thread(r);

6. t.start();

7. t.join();

8. System.out.print(“ else “);

9. }

10. }

 A. Do something else

 B. else Do something

c05.indd 370c05.indd 370 2/11/09 6:30:04 PM2/11/09 6:30:04 PM

 C. else

 D. Do something

 E. The output is indeterminate.

 3. Given the following PrintA class definition:

1. public class PrintA extends Thread {

2. public void run() {

3. System.out.print(“A”);

4. }

5. }

 which of the statements is true about the following PrintB program? (Select one.)

1. public class PrintB {

2. public static void main(String [] args) {

3. Thread a = new PrintA();

4. a.run();

5.

6. System.out.print(“B”);

7. }

8. }

 A. The program generates an exception at runtime.

 B. The program does not compile.

 C. The output varies and is either AB or BA .

 D. The output is always AB .

 4. Which of these statements is true about the following PrintSomething program?
(Select one.)

1. public class PrintSomething implements Runnable {

2. private String value;

3.

4. public PrintSomething(String value) {

5. this.value = value;

6. }

7.

8. public void run() {

9. try {

10. Thread.sleep((int) (Math.random() * 4000));

11. }catch(InterruptedException e) {}

12. System.out.print(value);

13. }

14.

Review Questions 371

c05.indd 371c05.indd 371 2/11/09 6:30:04 PM2/11/09 6:30:04 PM

372 Chapter 5 � Concurrency

15. public static void main(String [] args) {

16. Runnable x = new PrintSomething(“x”);

17. Runnable y = new PrintSomething(“y”);

18. Thread one = new Thread(x);

19. Thread two = new Thread(y);

20. two.start();

21. one.start();

22. }

23. }

 A. The output is always xy .

 B. The output is always yx .

 C. The output can be either xy or yx .

 D. Lines 16 and 17 generate compiler errors.

 E. Lines 18 and 19 generate compiler errors.

 5. Given the following MyTarget class definition:

1. public class MyTarget {

2. public void run() {

3. for(int i = 1; i < = 10; i++) {

4. System.out.print(“x”);

5. }

6. }

7. }

 what is result of the following program?

1. public class PrintX {

2. public static void main(String [] args) {

3. MyTarget target = new MyTarget();

4. Thread t = new Thread(target);

5. t.start();

6. System.out.print(“y”);

7. }

8. }

 A. xxxxxxxxxxy

 B. yxxxxxxxxxx

 C. Ten x s and one y printed in an indeterminate order.

 D. xxxxxxxxxxy or yxxxxxxxxxx

 E. The code does not compile.

c05.indd 372c05.indd 372 2/11/09 6:30:04 PM2/11/09 6:30:04 PM

 6. What state can a WAITING thread transition into? (Select one.)

 A. NEW

 B. RUNNABLE

 C. BLOCKED

 D. TIMED_WAITING

 E. TERMINATED

 7. If the state of a thread is BLOCKED , what must its previous state have been? (Select all that
apply.)

 A. NEW

 B. RUNNABLE

 C. WAITING

 D. TIMED_WAITING

 E. TERMINATED

 8. Fill in the blanks: A thread that invokes wait is a and a thread
that invokes notify or notifyAll is a .

 9. Given the following BankAccount class definition, which of the following statements are
true? (Select two.)

1. public class BankAccount {

2. private double balance;

3.

4. public synchronized void deposit(double amount) {

5. balance += amount;

6. }

7.

8. public void withdraw(double amount) {

9. synchronized(this) {

10. balance - = amount;

11. }

12. }

13.

14. public double getBalance() {

15. return balance;

16. }

17. }

 A. The lock being acquired on line 4 is for the this reference.

 B. A thread must have the appropriate monitor lock before invoking the deposit method.

 C. Line 4 generates a compiler error.

Review Questions 373

c05.indd 373c05.indd 373 2/11/09 6:30:05 PM2/11/09 6:30:05 PM

374 Chapter 5 � Concurrency

 D. The getBalance method can be invoked even if the object ’ s monitor is owned by
another thread.

 E. Line 9 generates a compiler error.

 10. Given the following Paint class definition, which of the following statements is true?
(Select one.)

1. public class Paint {

2. private static int color = 1;

3.

4. public synchronized static void setColor(

5. int newColor) {

6. color = newColor;

7. }

8.

9. public synchronized static int getColor() {

10. return color;

11. }

12. }

 A. The color field is protected from concurrent access problems.

 B. Line 2 generates a compiler error.

 C. Lines 4 and 9 generate compiler errors.

 D. Lines 6 and 10 generate compiler errors.

 11. Given the following MyConsumer class definition:

1. public class MyConsumer extends Thread {

2. private StringBuffer sb;

3.

4. public MyConsumer(StringBuffer sb) {

5. this.sb = sb;

6. }

7. public void run() {

8. if(sb != null & & sb.length() == 0) {

9. try {

10. System.out.println(“Waiting”);

11. sb.wait();

12. }catch(InterruptedException e) {}

13. }

14. sb.reverse();

15. }

16. }

c05.indd 374c05.indd 374 2/11/09 6:30:05 PM2/11/09 6:30:05 PM

 which of the statements is true about the following MyProducer program? (Select one.)

1. public class MyProducer {

2. public static void main(String [] args) {

3. StringBuffer sb = new StringBuffer(“”);

4. MyConsumer consumer = new MyConsumer(sb);

5. consumer.start();

6. Thread.yield();

7. sb.append(“abc”);

8. synchronized(sb) {

9. sb.notifyAll();

10. }

11. System.out.println(sb);

12. }

13. }

 A. The output is Waiting following by cba .

 B. The output is abc .

 C. Either A or B always occurs.

 D. The code may generate an exception at runtime.

 E. The code does not compile.

 12. What is the result of the following Reverser program?

1. public class Reverser extends Thread {

2. private StringBuffer sb;

3.

4. public Reverser(StringBuffer sb) {

5. this.sb = sb;

6. }

7.

8. public void run() {

9. sb.reverse();

10. }

11.

12. public static void main(String [] args) {

13. StringBuffer s = new StringBuffer(“xyz”);

14. Reverser r = new Reverser(s);

15. r.start();

16. System.out.print(s);

17. r.start();

18. System.out.print(s);

19. }

20. }

Review Questions 375

c05.indd 375c05.indd 375 2/11/09 6:30:06 PM2/11/09 6:30:06 PM

376 Chapter 5 � Concurrency

 A. xyzzyx

 B. zyxxyz

 C. Either xyzzyx or zyxxyz

 D. The code generates an exception at runtime.

 E. The code does not compile.

 13. Given the following statements:

5. Thread t = new Thread(new Runnable() {

6. public void run() {

7. System.out.println(“do something”);

8. }

9. });

10. t.start();

 what is the state of the thread t immediately after line 10 executes?

 A. NEW

 B. RUNNABLE

 C. BLOCKED

 D. TERMINATED

 E. The state of the thread is indeterminate.

 14. Given the following statements:

7. Thread t = new Thread(new Runnable() {

8. public void run() {

9. System.out.println(“do something”);

10. }

11. });

12. try {

13. t.sleep(1000);

14. }catch(InterruptedException e) {

15. System.out.println(e);

16. }

 what is the state of the thread t immediately after line 13 executes?

 A. NEW

 B. RUNNABLE

 C. TIMED_WAITING

 D. WAITING

 E. The state of the thread is indeterminate.

c05.indd 376c05.indd 376 2/11/09 6:30:06 PM2/11/09 6:30:06 PM

 15. Given the following Calendar class:

public class Calendar {

 private static int FIRST_DAY = 1;

 public static synchronized void setFirstDay(int value) {

 FIRST_DAY = value;

 }

 public static int getFirstDay() {

 return FIRST_DAY;

 }

}

 which of the following statements is true? (Select one)

 A. The code does not compile.

 B. Invoking setFirstDay generates an exception at runtime.

 C. A thread that enters the setFirstDay method must own the lock of the Calendar ’ s
 Class object.

 D. A thread that enters the setFirstDay method must own the lock of any instance of
 Calendar .

 E. The getFirstDay method must also be synchronized.

Review Questions 377

c05.indd 377c05.indd 377 2/11/09 6:30:06 PM2/11/09 6:30:06 PM

378 Chapter 5 � Concurrency

Answers to Review Questions
 1. C. The thread t is instantiated but has not been started yet. That is the defi nition of a

new thread, so its state is NEW and the answer is C.

 2. A. The call to join on line 7 of Main causes the main thread to wait until t is done
executing. The t thread prints Do something and then ends, and line 8 prints else.
Therefore, the answer is A.

 3. D. The code compiles fi ne and runs fi ne, so A and B are incorrect. On line 4 of the
PrintB class, the run method of the new thread is invoked. However, the run method
does not start a new thread in the process. (Only a call to start starts a new thread.)
In other words, this program is not multithreaded and the call to run occurs within the
main thread. The output of this program is always AB and therefore the answer is D.

 4 The code compiles fi ne, so D and E are incorrect. The order of the output of these
two threads is indeterminate because they are scheduled by the JVM and there is no
guarantee of the order in which they will execute (even if the call to sleep did not occur
in the run method). Therefore, the output can either be xy or yx and the answer is C.

 5. E. The MyTarget class does not implement Runnable, so line 4 of PrintX does not
compile. Therefore, the answer is E.

 6. C. When a WAITING thread receives a notify or notifyAll, it transitions into the BLOCKED
state because the monitor lock it needs is not available. (The thread that called notify or
notifyAll owns it.) Therefore, the answer is C.

 7. B, C, and D. A NEW thread can only transition into the RUNNABLE state, so A is incorrect. A
RUNNABLE thread transitions into BLOCKED when attempting to acquire an unavailable moni-
tor lock, so B is correct. A WAITING or TIMED_WAITING thread transitions into BLOCKED on
a notify or notifyAll, so C and D are correct. The state of a TERMINATED thread never
changes, so E is incorrect. Therefore, the answers are B, C, and D.

 8. consumer, producer. The wait and notify methods are used in producer/consumer models.
If a consumer thread has nothing to consume, it waits. When a producer thread produces,
it notifi es. Therefore, a thread that invokes wait is a consumer and a thread that invokes
notify or notifyAll is a producer.

 9. A and D. The code compiles fi ne, so C and E are incorrect. Synchronized methods attempt to
acquire the lock on the this reference, so A is true. B is false; a thread can invoke deposit
without the lock. If the thread does not have the lock, it will have to acquire it. D is true;
the getBalance method is not synchronized, so it is possible to invoke getBalance while
another thread is in the middle of a deposit or withdraw. Therefore, the answers are A and D.

10. A. A static method can be declared as synchronized. The this reference it is attempting to
acquire is to the Class object of the Paint class and not an actual instance of Paint. The
code compiles fi ne. Because the color fi eld is private and the only way to access it is through
synchronized methods, it is protected from concurrent access problems and the answer is A.

c05.indd 378c05.indd 378 2/11/09 6:30:06 PM2/11/09 6:30:06 PM

11. D. The code compiles fi ne, so E is incorrect. A thread cannot invoke wait on an object
unless that thread owns the object’s monitor lock. In other words, a call to wait must
appear within a synchronized method or block of code. Line 11 of the MyConsumer class
generates an IllegalMonitorStateException at runtime because the thread does not own
the lock of sb. Therefore, the answer is D.

12. D. You cannot start a thread twice. Line 17 compiles, but the r thread has already been
started, so line 17 generates an IllegalThreadStateException. Therefore, the answer is D.

13. B. The state of t is NEW after it is instantiated on line 9, and t becomes
RUNNABLE once it is started. Therefore, the answer is B.

14. A. This question is tricky. The state of t is NEW after it is instantiated on line 7. Because t is
never started, it does not change states. The sleep method is static and causes the current
thread to sleep, not the thread t. Therefore, the answer is A.

15. C. The code compiles and runs fi ne, so A and B are incorrect. E is false; there is no such
requirement of the getFirstDay method. D is also false; owning the lock of a particular
 Calendar object is not suffi cient for entering setFirstDay . The thread that enters
setFirstDay must own the lock of the Class object of Calendar . Therefore, the answer is C.

Answers to Review Questions 379

c05.indd 379c05.indd 379 2/11/09 6:30:07 PM2/11/09 6:30:07 PM

c05.indd 380c05.indd 380 2/11/09 6:30:07 PM2/11/09 6:30:07 PM

Object-Oriented
Concepts

 SCJP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

 Develop code that implements tight encapsulation, loose

coupling, and high cohesion in classes, and describe the

benefits.

 Given a scenario, develop code that demonstrates the use

of polymorphism. Further, determine when casting will

be necessary and recognize compiler vs. runtime errors

related to object reference casting.

 Explain the effect of modifiers on inheritance with respect

to constructors, instance or static variables, and instance

or static methods.

 Given a scenario, develop code that declares and/or

invokes overridden or overloaded methods and code that

declares and/or invokes superclass, or overloaded con-

structors.

 Develop code that implements “ is - a ” and/or “ has - a ”

 relationships.

�

�

�

�

�

 Chapter

6

c06.indd 381c06.indd 381 2/11/09 6:33:51 PM2/11/09 6:33:51 PM

 These objectives are Section 5 of the SCJP exam objectives.
The exam tests your knowledge of object - oriented (OO)
programming, including encapsulation, inheritance,
polymorphism, and good OO design that includes loose coupling
and high cohesion. This chapter covers all of these topics in detail.

 Encapsulation, Coupling,
and Cohesion
 The concepts of encapsulation, coupling, and cohesion are not unique to Java and represent
good design techniques in any object - oriented programming language. This section
discusses each of these design concepts in detail, starting with tight encapsulation.

 Tight Encapsulation

 Encapsulation refers to the combining of fi elds and methods together in a class such
that the methods operate on the data, as opposed to users of the class accessing the
fi elds directly. The term tight encapsulation refers to using encapsulation every time on
all the fi elds of a class, and only providing access to the fi elds via methods. With tight
encapsulation, no fi elds of an object can be modifi ed or accessed directly; you can only
access the fi elds through a method call.

 To implement tight encapsulation, make the fi elds of a class private and provide public
accessor (“ getter ”) and mutator (“ setter ”) methods. Because a mutator or accessor method
must be invoked to access the fi elds of the object, tight encapsulation has several key benefi ts:

 You can monitor and validate all changes to a field.

 Similarly, you can monitor and format all access to a field.

 The actual data type of a field can be hidden from the user, allowing you to change the
data type without affecting the code that uses the object, as long as you do not alter
the signatures of the corresponding accessor and mutator method.

 To demonstrate, let ’ s fi rst look at a class that does not implement tight encapsulation.
The following class, named Student1 , represents a student with fi elds for the year
(Freshman, Sophomore, Junior, Senior) and percentage grade of a student. The fi elds of
 Student1 are public and can be accessed directly:

�

�

�

c06.indd 382c06.indd 382 2/11/09 6:33:53 PM2/11/09 6:33:53 PM

Encapsulation, Coupling, and Cohesion 383

public class Student1 {

 public String year;

 public double grade;

}

 Because the class does not implement tight encapsulation, the fi elds of a Student1 object
can take on any values. The following code is valid, although from an application point of
view the values do not make sense:

Student1 s = new Student1();

s.year = “Memphis, TN”;

s.grade = -24.5;

 The string “ Memphis, TN ” is not a valid year, and we can assume that a student ’ s grade
should never be negative. With tight encapsulation, these issues can easily be avoided
because users of the class cannot access its fi elds directly. By forcing a method call to
change a value, you can validate any changes to the fi elds of the object.

 The following Student2 class is similar to Student1 but implements tight encapsulation. It
is not possible for year to be an invalid value or grade to be negative or greater than 105.0 :

1. public class Student2 {

2. private String year;

3. private double grade;

4.

5. public void setYear(String year) {

6. if(!year.equals(“Freshman”) & &

7. !year.equals(“Sophomore”) & &

8. !year.equals(“Junior”) & &

9. !year.equals(“Senior”)) {

10. throw new IllegalArgumentException(

11. year + “ not a valid year”);

12. } else {

13. this.year = year;

14. }

15. }

16.

17. public String getYear() {

18. return year;

19. }

20.

21. public void setGrade(double grade) {

22. if(grade < 0.0 || grade > 105.0) {

23. throw new IllegalArgumentException(

c06.indd 383c06.indd 383 2/11/09 6:33:53 PM2/11/09 6:33:53 PM

384 Chapter 6 � Object-Oriented Concepts

24. grade + “ is out of range”);

25. } else {

26. this.grade = grade;

27. }

28. }

29.

30. public double getGrade() {

31. return grade;

32. }

33. }

 See if you can determine the result of the following statements:

Student2 s2 = new Student2();

s2.setYear(“Junior”);

s2.setGrade(-24.5);

 Invoking setYear with the argument “ Junior ” changes the year fi eld to “ Junior ” .
Invoking setGrade with the argument - 24.5 causes an IllegalArgumentException to be
thrown on line 23. Due to tight encapsulation, it is not possible for the values of Student2
to contain invalid values.

 Information Hiding

 One of the key benefi ts of tight encapsulation is information hiding , where the user
of an object is unaware of how the object stores its data. With information hiding and
tight encapsulation, if you ever need to alter or modify a fi eld, the users of the class are
unaffected by the change as long as you do not modify the method signatures in the
class.

 For example, suppose we decide to store the grade of Student2 as a float instead of a
 double . If we leave the signatures of setGrade and getGrade alone, the change will not
affect code elsewhere:

public class Student2 {

 private float grade;

 public void setGrade(double grade) {

 if(grade < 0.0 || grade > 105.0) {

c06.indd 384c06.indd 384 2/11/09 6:33:54 PM2/11/09 6:33:54 PM

Encapsulation, Coupling, and Cohesion 385

 throw new IllegalArgumentException(grade + “ is out of range”);

 } else {

 this.grade = (float) grade;

 }

 }

 public double getGrade() {

 return grade;

 }

 //remainder of class definition remains unchanged...

}

 The fi eld grade is now a float and a cast is needed within setGrade to assign the
double parameter to grade . Any object invoking setGrade still passes in a double , and
a double is still returned from getGrade , but behind the scenes the data is stored as a
 float , and the change to the Student2 class has no effect on the code that already
interacts with Student2 objects.

 The benefi ts of encapsulation outweigh any overhead of the additional method calls,
and any good OO design uses tight encapsulation in all classes. The next section discusses
another important object - oriented design concept: loose coupling.

 Loose Coupling

 Coupling is the extent to which one object depends on another object to achieve its goal.
For example, an Employee class might depend on an Address class to represent the home
address of an employee, so the Employee class is coupled to the Address class. At some
point in your application, your classes need to interact with each other, so you cannot avoid
coupling entirely. However, the goal of good OO design is to implement loose coupling ,
where you minimize the dependencies an object has on other objects.

 If objects are tightly coupled, changing the code in one class has a major effect on the
dependent class, requiring code changes to both classes. For example, suppose we have
the following Address class:

public class Address {

 public String street;

 public String city;

 public int zip;

}

c06.indd 385c06.indd 385 2/11/09 6:33:54 PM2/11/09 6:33:54 PM

386 Chapter 6 � Object-Oriented Concepts

 The following Employee class is tightly coupled to Address because Employee makes
multiple accesses to the Address class, directly accessing the street , city , and zip fi elds of
 Address :

public class Employee {

 private Address home;

 public Employee(String street, String city, int zip) {

 home = new Address();

 home.street = street;

 home.city = city;

 home.zip = zip;

 }

}

 Making changes to Address has a direct effect on Employee . For example, if we need to
change the city fi eld in Address from a String to a StringBuffer , the Employee class no
longer compiles. The ripple effect of tight coupling can quickly get out of hand, and it can
become tedious and diffi cult to maintain the code.

 You can avoid this situation by using loose coupling. With loose coupling, changing
code in one class can have a minimal effect on its dependent classes. In addition, loose
coupling increases the reusability of your classes because a class is more readily used and
extended when it is not dependent on other classes.

 Loose Coupling and Tight Encapsulation

 Implementing loose coupling actually works in close association with tight encapsulation.
One of the design techniques of loose coupling is to make the fi elds of a class private
and only access them through public methods, which is exactly how we implement tight
encapsulation. By making the fi elds private and using tight encapsulation, we loosen the
coupling between classes because the fi elds of a class are not accessed directly, as we
demonstrate in the Employee2 class in a moment.

 To demonstrate loose coupling, let ’ s modify the Address class so that it uses tight
encapsulation, shown here in a new class named Address2 :

public class Address2 {

 private String street;

 private String city;

c06.indd 386c06.indd 386 2/11/09 6:33:54 PM2/11/09 6:33:54 PM

Encapsulation, Coupling, and Cohesion 387

 private int zip;

 public void setStreet(String s) {

 street = s;

 }

 public void setCity(String c) {

 city = c;

 }

 public void setZip(int z) {

 zip = z;

 }

}

 The following Employee2 class is similar to Employee from earlier except that it changes
the fi elds of Address2 via public mutator methods:

public class Employee2 {

 private Address2 home;

 public Employee2(String street, String city, int zip) {

 home = new Address2();

 home.setStreet(street);

 home.setCity(city);

 home.setZip(zip);

 }

}

 If the city fi eld of Address is changed from a String to a StringBuffer , no changes
need to be made to the Employee2 class as long as the signature of setCity is unchanged. In
this situation, the benefi t of loose coupling is achieved by using tight encapsulation.

 One other design technique for achieving loose coupling involves minimizing the
interaction between two objects. For example, in the constructor of Employee2 , several
methods are invoked on Address2 to initialize its fi elds. A better, loosely coupled design is
to perform the initialization steps in one method call, such as a constructor. For example,
suppose we add the following constructor to Address2 :

 public Address2(String s, String c, int z) {

 street = s;

 city = c;

 zip = z;

 }

c06.indd 387c06.indd 387 2/11/09 6:33:55 PM2/11/09 6:33:55 PM

388 Chapter 6 � Object-Oriented Concepts

 The following Employee3 class is even more decoupled from Address2 because it
performs the initialization of the home fi eld in one step instead of invoking multiple
methods of Address2 :

public class Employee3 {

 private Address2 home;

 public Employee3(String street, String city, int zip) {

 home = new Address2(street, city, zip);

 }

}

 Unnecessary coupling decreases the reusability of the coupled objects and increases the
diffi culty of modifying your code, so loose coupling is an important design to implement
in your Java applications. The next section discusses yet another important OO design
concept: high cohesion.

 High Cohesion

 Cohesion refers to how closely related the specifi c tasks are of an object. High cohesion
is when an object performs a collection of closely related tasks. Low cohesion is when an
object performs multiple tasks that are not related to each other. Using low cohesion creates
code that is diffi cult to maintain and reuse; therefore, high cohesion is an important design
goal of any OO application. Classes that implement high cohesion are more reusable and
easier to test and understand.

 To demonstrate cohesion, consider the following Payroll class that performs various
tasks related to paying employees of a company. Based on the names of the methods of
 Payroll , see if you can determine if it follows the design principle of high or low cohesion:

public class Payroll {

 public void computeEmployeePay() {

 System.out.println(“Compute pay for employees”);

 }

 public void computeEmployeeTaxes() {

 System.out.println(“Compute taxes for employees”);

 }

 public void addNewEmployee(Employee e) {

 System.out.println(“New employee hired...”);

 }

}

c06.indd 388c06.indd 388 2/11/09 6:33:55 PM2/11/09 6:33:55 PM

Encapsulation, Coupling, and Cohesion 389

 The Payroll class has three specifi c tasks: computing the employees ’ pay, computing
their taxes, and adding new employees. Computing pay and taxes are related, but adding a
new employee to the company seems unrelated to the specifi c tasks of computing paychecks.
Therefore, the Payroll class uses low cohesion and is therefore not a well - designed class.

 To make Payroll highly cohesive, remove the addNewEmployee method from Payroll
and add it to a new class that is related to the tasks of hiring employees. For example, the
following HumanResources class seems like a good class to contain such a method:

public class HumanResources {

 public void addNewEmployee(Employee e) {

 System.out.println(“New employee hired...”);

 }

 public void removeEmployee(Employee e) {

 System.out.println(“Employee leaving...”);

 }

}

 Now the hiring and removing of employees is separate from paying employees, which
results in a highly cohesive design. If we need to alter how employees are added or removed
from the company, the Payroll class will be unaffected by such a change. Similarly, if we
need to change how employees are paid, changes can be made to the Payroll class without
affecting the HumanResources class.

 High Cohesion and Loose Coupling

 Implementing high cohesion works in close association with loose coupling. If a class is
highly cohesive, it is easier to minimize the number of interactions the object has with
other objects, which results in looser coupling. On the other hand, if a class performs
various unrelated tasks and therefore has low cohesion, more objects will need to
communicate with the class, which results in tighter coupling.

 In general, your OO applications should strive to decrease dependencies between
unrelated objects (loose coupling), while striving to create objects that perform specifi c,
related tasks (high cohesion). The result is code that is easier to maintain and reuse.

 There is a direct relationship and benefi t to using tight encapsulation, loose coupling,
and high cohesion. Using tight encapsulation and high cohesion tends to result in loose
coupling, all of which result in code that is more maintainable and reusable.

c06.indd 389c06.indd 389 2/11/09 6:33:56 PM2/11/09 6:33:56 PM

390 Chapter 6 � Object-Oriented Concepts

 The next section discusses two more important OO design relationships that you should
adhere to in your Java applications: the is - a and the has - a relationships.

 OO Design Relationships
 You need to be able to develop code that implements is - a and/or has - a relationships for the
exam. When you design applications, you make decisions as to how your objects are related
to each other. Some objects are extensions of existing objects, making inheritance a good
design choice. Some objects are made up of other objects, in which case composition is the
better design choice.

 The is - a relationship is a simple check to verify that you are using inheritance properly.
Specifi cally, you should be able to state that a child object “ is a ” parent object. The has - a
relationship is a simple check to verify that you are using composition properly. Specifi cally,
if an object “ has a ” specifi c attribute or property, the attribute or property is a good
candidate for a fi eld within the object ’ s class.

 This section discusses the details you need to know regarding the is - a and has - a
relationships, starting with the is - a relationship.

 The “ is - a ” Relationship

 In Java, a child class is allowed only one parent and can subclass any other non - fi nal
class. From a design point of view, your inheritance should satisfy the is - a relationship , a
simple test to determine if you are using a proper approach and good code design in your
application regarding inheritance. The test is simple, but the result is very important: you
should be able to state that your child object “ is a ” parent object.

 For example, suppose a class named Cat extends a Pet class. Because a cat “ is a ” pet, this
inheritance is probably a good design. Figure 6.1 shows what these classes might look like.

F I GU R E 6 .1 A cat is a pet, so Cat extending Pet is a good design.

Pet

name : String
age : int

eat() : void

Cat

breathe() : void
sleep() : void

Good design: A cat
is a pet.

c06.indd 390c06.indd 390 2/11/09 6:33:56 PM2/11/09 6:33:56 PM

OO Design Relationships 391

 Suppose I need to write a class to represent employees of a company. Because the Pet
class contains fi elds like name and age , I might be tempted to write an Employee class that
extends Pet to reuse the code in Pet , as Figure 6.2 shows.

 Although this design might work functionally and allow me to store an employee ’ s name
and age in the fi elds of Pet , the design is not a good one because an employee is not a pet.

 A better design is for the Employee class to extend a class like Person , because most
likely an employee “ is a ” person. Figure 6.3 shows what these classes might look like.

Pet

name : String
age : int

eat() : void

salary : double

work() : void

Employee

Poor design: An employee
is not a pet.

F I GU R E 6 . 2 Good inheritance design needs to satisfy the “is a” relationship.

Person

name : String
age : int

Good design: An employee
is a person.

salary : double

work() : void

Employee

F I GU R E 6 .3 An employee is a person, so Employee extending Person is a good design.

c06.indd 391c06.indd 391 2/11/09 6:33:57 PM2/11/09 6:33:57 PM

392 Chapter 6 � Object-Oriented Concepts

 The is - a Relationship and Polymorphism

 The is - a relationship is more than a test to verify good inheritance design. It is also useful
in understating object - oriented programming and polymorphism. For example, using the
 Cat and Pet classes from Figure 6.1 , the following statement is valid in Java:

Pet c = new Cat();

 Why can a Pet reference point to a Cat object? Because a Cat object “ is a ” Pet object. We
discuss this topic in detail in the upcoming section “ Polymorphism. ”

 The is - a relationship is not unique to Java. Inheritance in any OO programming
language should satisfy the is - a relationship. Now let ’ s look at another design test: the has -
 a relationship.

 The “ has - a ” Relationship

 Composition refers to a class that contains a reference to another class. The has - a
relationship is a test to decide when a class should use composition. For example, suppose
we have a class called Address that we want to use with an Employee class to represent an
employee ’ s home and mailing addresses. Because an employee “ has a ” address, composition
is a good design choice. Figure 6.4 illustrates this relationship.

Employee

home : Address
mailing : Address

Adress

street : String
city : String
state : String
zip : int

Good design: An employee has a home
and mailing address.

F I GU R E 6 . 4 An employee “has a” address, so making Address a field of Employee is a
good design.

 We saw in the previous section that Employee extending Person is a good design because
an employee is a person. However, inheritance is not a good design with Address and
 Employee because an address is not an employee, nor is an employee an address.

c06.indd 392c06.indd 392 2/11/09 6:33:58 PM2/11/09 6:33:58 PM

Modifiers and Inheritance 393

 As with the is - a relationship, the has - a relationship is an object - oriented concept not
exclusive to Java. Sometimes the relationships between objects is not as obvious as the
 Employee , Person , and Address classes, but you should strive to adhere to the is - a and
has - a relationships as much as possible. The benefi ts of adhering to these relationships
include the following:

 The resulting code is more logical.

 The code is easier to understand.

 The classes are easier to reuse in other relationships and applications.

 The code is easier to maintain, especially if the needs and requirements of the program
change.

 Combining the is - a and has - a relationships with the other OO design goals of
tight encapsulation, loose coupling, and high cohesion results in fl exible, logical, and
maintainable code.

 We now change subjects and discuss the details of modifi ers on the fi elds and methods
of inherited classes.

 Modifiers and Inheritance
 You will be tested on your knowledge about the various Java modifi ers and their effect
on inheritance. In particular, the exam will test your knowledge of the access modifi ers:
 public , private , protected , and the default access, as well as the abstract and final
modifi ers. This section discusses the details of these modifi ers on inheritance, starting with
the access modifi ers.

 The Access Modifiers

 The Java language has four access modifi ers, and it is important to understand their effect
on fi elds and methods. (Expect several questions on the exam that test your understanding
of the access modifi ers.) The access modifi ers are as follows:

 public A public fi eld, method, or constructor in a class is accessible to any other class.

 private A private fi eld, method, or constructor is only accessible from within the class
it is declared.

 protected A protected fi eld, method, or constructor is accessible from other classes in
the same package or subclasses.

 No modifier (the default access) A fi eld, method, or constructor with default access is
accessible only from other classes in the same package.

�

�

�

�

c06.indd 393c06.indd 393 2/11/09 6:33:58 PM2/11/09 6:33:58 PM

394 Chapter 6 � Object-Oriented Concepts

 Let ’ s look at an example. The following Phone class is declared in the com.sybex.demos
package and demonstrates members with each level of access:

1. package com.sybex.demos;

2.

3. public class Phone {

4. public int number;

5. int extension;

6. private String ringTone;

7.

8. public Phone(int n, int e) {

9. number = n;

10. extension = e;

11. }

12.

13. protected Phone(int n, int e, String r) {

14. this(n, e);

15. ringTone = r;

16. }

17.

18. void placeCall(int numberToDial) {

19. System.out.println(“Calling “ + numberToDial);

20. }

21.

22. protected String getRingTone() {

23. return ringTone;

24. }

25. }

 The Phone class has the following properties:

 The class is public , so it is accessible from anywhere. More precisely, the Phone class
can be used in any other class.

 Its number field and the constructor on line 8 are also public , so they are accessible
from any other class.

 The ringTone field is private and only accessible from within the class, as done on
lines 15 and 23.

 The extension field has the default access and is only accessible from other classes in
the com.sybex.demos package.

 The constructor on line 13 and the getRingTone method are protected , so they are
accessible from any child classes of Phone and also any other classes in the com.sybex
.demos package.

�

�

�

�

�

c06.indd 394c06.indd 394 2/11/09 6:33:59 PM2/11/09 6:33:59 PM

Modifiers and Inheritance 395

 The following CellPhone class subclasses Phone and is in the same package, so
 CellPhone has access to all the public , protected , and default members of Phone :

1. package com.sybex.demos;

2.

3. public class CellPhone extends Phone {

4. private int minutesUsed;

5. private int minutesRemaining;

6.

7. public CellPhone(int n, int minutes) {

8. super(n, 0);

9. minutesRemaining = minutes;

10. }

11.

12. public CellPhone(int n, int minutes, String ringTone) {

13. super(n, 0, ringTone);

14. minutesRemaining = minutes;

15. }

16.

17. public void placeCall(int numberToDial) {

18. super.placeCall(numberToDial);

19. minutesUsed += 10;

20. minutesRemaining -= 10;

21. }

22. }

 The following comments are about the CellPhone class:

 Line 8 invokes the public constructor of Phone , which is allowed because the
constructor is public .

 Line 13 invokes the protected constructor of Phone , which is allowed because
 CellPhone is a child of Phone .

 Line 18 invokes the placeCall method of Phone , which is allowed because CellPhone
and Phone are in the same package.

 Therefore, the CellPhone class compiles fi ne and is a valid extension of Phone . Now let ’ s
look at an example that does not compile. Study the following RotaryPhone class and see if
you can determine what is wrong with the code:

1. package com.sybex.demos.oldphones;

2.

3. import com.sybex.demos.Phone;

4.

�

�

�

c06.indd 395c06.indd 395 2/11/09 6:33:59 PM2/11/09 6:33:59 PM

396 Chapter 6 � Object-Oriented Concepts

5. public class RotaryPhone extends Phone {

6. private int number;

7.

8. public RotaryPhone(int n, int e, String r) {

9. super(n, e, r);

10. this.number = super.number;

11. }

12.

13. public void placeCall(int numberToDial) {

14. super.placeCall(numberToDial);

15. System.out.println(“Using ring tone “ + ringTone);

16. }

17. }

 The RotaryPhone class makes some valid and invalid attempts at accessing the members
of Phone :

 Line 9 invokes the protected constructor of Phone , which is valid because
 RotaryPhone is a child of Phone .

 Line 10 is valid because the number field in Phone is public and therefore accessible to
any other class.

 Line 14 does not compile because the placeCall method has default access and
 RotaryPhone is not in the same package as Phone .

 Line 15 does not compile because ringTone is private in Phone and therefore not
accessible outside of the Phone class.

 Attempting to compile RotaryPhone generates the following compiler errors:

RotaryPhone.java:14: placeCall(int) is not public in

 com.sybex.demos.Phone; cannot be accessed from outside package

 super.placeCall(numberToDial);

 ^

RotaryPhone.java:15: ringTone has private access in

 com.sybex.demos.Phone

 System.out.println(“Using ring tone “ + ringTone);

 ^

2 errors

�

�

�

�

 In the real world you would implement tight encapsulation, so the number
field of Phone would not be public . However, the Phone class is meant
to demonstrate the effect of the access modifiers, and you can expect
exam questions that contain classes like Phone that do not follow good OO
design but instead are testing your knowledge of a specific Java concept.

c06.indd 396c06.indd 396 2/11/09 6:34:00 PM2/11/09 6:34:00 PM

Modifiers and Inheritance 397

 Make sure that you have a good understanding of the four access modifi ers. We now
discuss the effect of the abstract modifi er on inheritance in Java.

 The abstract Modifier

 As you probably recall, we discussed the details of abstract methods and method overriding
in Chapter 2, “ Declarations, Initialization, and Scoping. ” The emphasis in this section is to
discuss the specifi c details of the abstract modifi er and its effect on inheritance. The abstract
modifi er declares a class or method as abstract and has the following effect on the class or
method:

 An abstract class cannot be instantiated.

 An abstract method must be overridden.

 A class that contains an abstract method must also be declared abstract .

 A child class must override the abstract methods in its parent class or the child class
must also be declared abstract .

 The access modifier in the child class must be at least as accessible as the access
modifier of the abstract parent method.

 For example, the following Shape class contains an abstract method named
 computeArea :

public abstract class Shape {

 private String color;

 public Shape(String color) {

 this.color = color;

 }

 protected abstract double computeArea();

}

 Any non - abstract child class of Shape must declare a protected or public computeArea
method. For example, the following class does not compile:

public class InvalidShape extends Shape {

 public InvalidShape(String color) {

 super(color);

 }

 double computeArea() {

 System.out.println(“Computing area...”);

 return 0.0;

 }

}

�

�

�

�

�

c06.indd 397c06.indd 397 2/11/09 6:34:00 PM2/11/09 6:34:00 PM

398 Chapter 6 � Object-Oriented Concepts

 The computeArea method in InvalidShape has the default access, a weaker access than
 protected . The following compiler error is generated:

InvalidShape.java:7: computeArea() in InvalidShape cannot override

 computeArea() in Shape; attempting to assign weaker access privileges;

 was protected

 double computeArea() {

 ^

1 error

 The computeArea method in InvalidShape can only have public or protected access.

 Private and Abstract Methods

 An abstract method cannot be declared private because a private method is not visible
in a child class and therefore cannot be overridden. For example, the following code does
not compile:
public abstract class Shape {

 private abstract double computeArea();

}

 The following compiler error is generated:

Shape.java:2: illegal combination of modifiers: abstract and private

 private abstract double computeArea();

 ^

1 error

 As you can see, the compiler states that abstract and private are not a valid
combination of modifi ers.

 The abstract modifi er is only applied to classes and methods. Constructors cannot be
overridden, so it does not make sense for a constructor to be abstract. For example, the
following Square class does not compile:

public abstract class Square {

 private int side;

 public abstract Square(int s) {

 side = s;

 }

}

c06.indd 398c06.indd 398 2/11/09 6:34:00 PM2/11/09 6:34:00 PM

Modifiers and Inheritance 399

 The compiler error generated is

Square.java:4: modifier abstract not allowed here

 public abstract Square(int s) {

 ^

1 error

 A constructor cannot be abstract because it cannot be overridden. You can specify that
a method cannot be overridden as well using the final modifi er, discussed in the next
section.

 The final Modifier

 The fi nal modifi er is applied to local variables, fi elds, methods, or classes. The properties of
the final modifi er are

 A final variable or field cannot be changed. These are referred to as constants .

 A final method cannot be overridden. (We discussed final methods in Chapter 2.)

 A final class cannot be subclassed.

 A final variable or fi eld cannot be changed once it is assigned. The following MyLogger
class contains a final fi eld, a final parameter, and a final local variable:

1. import java.io.File;

2.

3. public final class MyLogger {

4. private final File DEST;

5.

6. public MyLogger(File d) {

7. DEST = d;

8. }

9.

10. public void logMessage(final String MESSAGE) {

11. final long TIME = new java.util.Date().getTime();

12. //write time and message to file...

13. }

14. }

 The fi eld DEST on line 4 and the parameter MESSAGE on line 10 are referred to as blank
fi nals . They are constants that do not have an initial value, and once they are assigned a
value, they cannot be changed. The TIME variable on line 11 is assigned the current time
and cannot be changed.

�

�

�

c06.indd 399c06.indd 399 2/11/09 6:34:01 PM2/11/09 6:34:01 PM

400 Chapter 6 � Object-Oriented Concepts

 The MyLogger class is also declared final , meaning that it cannot be subclassed. For
example, the following InvalidLogger class does not compile because it attempts to extend
 MyLogger :

public class InvalidLogger extends MyLogger {

 public InvalidLogger(java.io.File dest) {

 super(dest);

 }

}

 The compiler generates the following error:

InvalidLogger.java:1: cannot inherit from final MyLogger

public class InvalidLogger extends MyLogger {

 ^

1 error

 Naming Convention for Final Variables

 The naming conventions of Java specify that variable names of constants be in all
uppercase letters. For example:
final long TIME = new java.util.Date().getTime();

 If the variable name is a compound word, use the underscore character to separate
the words. For example:
final String COMPANY_NAME = “Sybex”;

 For more information on Java naming conventions, visit http://java.sun.com/docs/
codeconv .

 The final modifi er on a fi eld does not affect how the fi eld is inherited. A subclass still
inherits the fi eld in the same manner as a non - fi nal fi eld; final methods are also inherited in
the same manner as non - final methods. The only difference is that a final method cannot
be overridden in the child class.

 Static methods can also be declared final , meaning they cannot be overridden. For
example, the following MyStaticLogger class declares a final static method named
 logMessage :

import java.io.File;

public class MyStaticLogger {

c06.indd 400c06.indd 400 2/11/09 6:34:01 PM2/11/09 6:34:01 PM

Polymorphism 401

 private static final File DEST;

 static {

 DEST = new File(“mylogfile.txt”);

 }

 public final static void logMessage(final String MESSAGE) {

 final long TIME = new java.util.Date().getTime();

 //write time and message to file...

 }

}

 The following MyNewLogger class extends MyStaticLogger and attempts to override
 logMessage :

public class MyNewLogger extends MyStaticLogger {

 public static void logMessage(final String MESSAGE) {

 System.out.println(“Using MyNewLogger...”);

 //write message to DEST file

 }

}

 The compiler generates the following error:

MyNewLogger.java:2: logMessage(java.lang.String) in MyNewLogger cannot

 override logMessage(java.lang.String) in MyStaticLogger; overridden

 method is static final

 public static void logMessage(final String MESSAGE) {

 ^

1 error

 Recall from Chapter 2 that a non-final static method can be overridden in Java,
which is referred to as method hiding. For example, if logMessage in MyStaticLogger is not
declared final , then overriding logMessage in MyNewLogger would be valid.

 Now that we have discussed the details of the various modifi ers, let ’ s change subjects
and discuss the object - oriented concept of polymorphism and how to use polymorphism in
your Java applications.

 Polymorphism
 Polymorphism refers to how an object in Java can take on “ many forms. ” Be prepared to
develop code that demonstrates the use of polymorphism.

c06.indd 401c06.indd 401 2/11/09 6:34:01 PM2/11/09 6:34:01 PM

402 Chapter 6 � Object-Oriented Concepts

 The concept of polymorphism is a result of inheritance and implementing interfaces:

 A child class takes on the form of its parent class.

 A class takes on the form of its implemented interfaces.

 This section discusses how to use polymorphism in your code. We also discuss
the casting of references, the instanceof operator, polymorphic parameters, and
heterogeneous collections.

 Understanding Polymorphism

 To understand how polymorphism works in Java, let ’ s look at an example of a class that
extends another class and implements an interface. Suppose we have the following Pet class
to represent the parent class of various types of pets:

public class Pet {

 private String name;

 private int age;

 public Pet(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public void eat() {

 System.out.println(name + “ is eating”);

 }

}

 In addition, suppose we have the following interface named Mammal to represent the
behaviors of mammals:

public interface Mammal {

 public void breathe();

}

 The following Cat class both extends Pet and implements the Mammal interface:

public class Cat extends Pet implements Mammal {

 public Cat(String name, int age) {

 super(name, age);

 }

 public void breathe() {

�

�

c06.indd 402c06.indd 402 2/11/09 6:34:02 PM2/11/09 6:34:02 PM

Polymorphism 403

 System.out.println(“Cat is breathing”);

 }

 public void sleep() {

 System.out.println(“Cat is sleeping”);

 }

}

 The is - a relationship is helpful when trying to understand polymorphism. Because Cat
extends Pet , a Cat object is a Pet object. Because Cat implements Mammal , a Cat object is
also a Mammal object. Therefore, the following statements are valid:

Cat c = new Cat(“Garfield”, 3);

Pet p = c;

Mammal m = c;

 The reference p can only refer to Pet objects, but because a Cat object is a Pet object,
assigning p to c is valid. Similarly, the reference m can only refer to Mammal objects, but
because a Cat object is a Mammal , assigning m to c is also valid. As Figure 6.5 shows, there
is only one Cat object in memory, but the object is taking on three different forms. The c
reference is treating the object as a Cat , the p reference is treating the object as a Pet , and
the m reference is treating the object as a Mammal .

F I GU R E 6 .5 The single Cat object takes on different forms.

c

p

m

Cat reference Cat object

name

sleep()
breathe()
eat()

3
age

Pet reference

Mammal
reference

“Garfield”

c06.indd 403c06.indd 403 2/11/09 6:34:02 PM2/11/09 6:34:02 PM

404 Chapter 6 � Object-Oriented Concepts

 Using the references from Figure 6.5 , the following statements are valid without
requiring any casting:

c.sleep();

c.breathe();

c.eat();

p.eat();

m.breathe();

 Using the reference c , you can invoke all the methods of Cat , Pet , and Mammal . Using the
reference p , you can only invoke the eat method of Pet . Even though the corresponding Cat
object contains sleep and breathe methods, the p reference does not see those methods
because the p reference thinks it is pointing to a Pet object (not a Cat). Similarly, using the
 m reference, you can only invoke the breathe method, even though the object has an eat
and a sleep method. Casting is required if you want to invoke the “ hidden ” methods of the
 Cat object using the m and p references.

 Virtual Method Invocation

 Now that we have discussed polymorphism, we can discuss the concept of a virtual
method . All methods in Java are virtual methods, meaning that if a method is overridden,
the overridden method is always invoked at runtime, even if the compiler sees the parent
class method at compile time. For example, suppose we have the following parent class
named ButtonListener with a single method named buttonClicked :

public class ButtonListener {

 public void buttonClicked() {

 System.out.println(“Inside ButtonListener”);

 }

}

 The following ChildListener class extends ButtonListener and overrides the
 buttonClicked method:

public class ChildListener extends ButtonListener {

 public void buttonClicked() {

 System.out.println(“Inside ChildListener”);

 }

}

 Using polymorphism, the following statements are valid. Study them carefully and see if
you can determine the output:

7. ButtonListener listener = new ChildListener();

8. listener.buttonClicked();

c06.indd 404c06.indd 404 2/11/09 6:34:03 PM2/11/09 6:34:03 PM

Polymorphism 405

 The listener reference is of type ButtonListener , but it points to a ChildListener
object. On line 8, the compiler looks for a buttonClicked method in ButtonListener and
fi nds one, so the code compiles fi le. However, at runtime, the buttonClicked method
in ChildListener is invoked. This type of behavior is referred to as virtual
method invocation , where the runtime type of an object is used to determine the
overridden method invoked at runtime, as opposed to invoking the method the compiler
found at compile time. The output of the previous statements is
Inside ChildListener

 Virtual method invocation is an essential concept in Java that you must understand if you
are going to become a serious Java developer.

 Casting Polymorphic References

 Polymorphic references often need to be cast to their appropriate child class type. The exam
tests your knowledge of issues that arise at compile time and runtime involving the casting
of these references. In general, the only time casting is necessary is when you need to invoke
a method defi ned in a child class using a parent class or interface reference and the method
is not overridden. (If the method is overridden, invoking the parent class method causes the
child class method to execute at runtime because methods in Java are virtual.)

 For example, the Cat class contains a sleep method that does not override any methods
in Pet or Mammal . To invoke sleep using a Pet reference, you need to cast the reference fi rst,
as demonstrated in the following statements:

16. Pet pet = new Cat(“Alley”, 7);

17. pet.eat(); //no cast needed

18. ((Cat) pet).sleep(); //cast is needed

19. ((Mammal) pet).breathe(); //cast is needed

20. ((Cat) pet).breathe(); //Same as previous line of code

 The pet reference is of type Pet , so invoking eat on line 17 does not require a cast.
However, invoking sleep on line 18 requires pet to be cast to Cat . Invoking breathe
requires pet to be cast to either Mammal or Cat , as demonstrated on lines 19 and 20. The
output of the previous statements is

Alley is eating

Cat is sleeping

Cat is breathing

Cat is breathing

c06.indd 405c06.indd 405 2/11/09 6:34:03 PM2/11/09 6:34:03 PM

406 Chapter 6 � Object-Oriented Concepts

 You need to be careful when casting because it is possible to fool the compiler with a cast
that fails at runtime. For example, suppose we have a class called Dog that also extends Pet :

public class Dog extends Pet {

 public Dog(String name, int age) {

 super(name, age);

 }

 public void eat() {

 System.out.println(“Dog is eating”);

 }

}

 Notice that the Dog class overrides eat from Pet . Study the following code carefully and
see if you can determine if it compiles and its result:

22. Pet one = new Dog(“Fido”, 2);

23. one.eat();

24. ((Dog) one).eat();

25. ((Cat) one).eat();

 On line 23, the compiler sees the eat method of Pet , but at runtime the eat method in Dog
is invoked. Line 24 casts one to a Dog , which is valid and the eat method in Dog is invoked
again. Line 25 compiles because the Cat class inherits an eat method from Pet , so invoking
 eat on a Cat is normally a valid statement and the code compiles fi ne. However, the one
reference does not point to a Cat object, and the JVM throws an exception at runtime, as
seen in the following output:

Dog is eating

Dog is eating

Exception in thread “main” java.lang.ClassCastException:

Dog cannot be cast to Cat

 at PolymorphismDemo.main(PolymorphismDemo.java:25)

 As you can see, we need to be careful when casting a reference “ down the
inheritance tree ” so that we are casting the reference to its appropriate type. To avoid a
 ClassCastException , use the instanceof operator, discussed in the next section.

 The instanceof Operator

 The instanceof operator is a Boolean operator used to compare a reference to a class type.
If the reference is of the given class type, then the result is true ; otherwise, it ’ s false . The
syntax for instanceof is
 reference instanceof ClassName

c06.indd 406c06.indd 406 2/11/09 6:34:04 PM2/11/09 6:34:04 PM

Polymorphism 407

 For example, the following statement avoids the ClassCastException from the previous
example by using the instanceof operator to determine the runtime type of the reference
 mypet :

Pet mypet = new Dog(“Fido”, 2);

if(mypet instanceof Cat) {

 ((Cat) mypet).eat();

} else if(mypet instanceof Dog) {

 ((Dog) mypet).eat();

}

 If mypet points to a Cat , we cast it to a Cat before invoking eat . If mypet points to a
 Dog , we cast it to a Dog before invoking eat . The previous statements compile and run
successfully without a ClassCastException ever occurring.

 The casting might seem odd, and you might be wondering why we don ’ t just make the
 mypet reference be of type Dog instead of Pet . The answer is that there are many real - world
situations in Java where a parent class reference is used to point to a child object, including
polymorphic parameters and heterogeneous collections, which I discuss next.

 Polymorphic Parameters

 A common use of polymorphism is with polymorphic parameters of a method. If a method
parameter is a class type, the argument passed in can be any child type of the class as well.
For example, the following Vet class contains a vaccinate method that takes in a Pet
reference:

public class Vet {

 public void vaccinate(Pet pet) {

 if(pet instanceof Dog) {

 System.out.println(“Vaccinating a dog”);

 Dog dog = (Dog) pet;

 //use the dog reference

 } else if(pet instanceof Cat) {

 System.out.println(“Vaccinating a cat”);

 Cat cat = (Cat) pet;

 //use the cat reference

 }

 }

}

 The argument passed into vaccinate can certainly be a Pet object, but you can also
pass in a Cat object, a Dog object, or any other object that is a child class of Pet . The
result is often a parent class reference pointing to a child class object, and we can use
the instanceof operator if we need to cast the reference to its appropriate child class type,
as demonstrated in the vaccinate method.

c06.indd 407c06.indd 407 2/11/09 6:34:04 PM2/11/09 6:34:04 PM

408 Chapter 6 � Object-Oriented Concepts

 Using Object as a Parameter

 If you need to write a method that takes in any type of argument, use Object as the data
type of the parameter. This situation is quite common in the Java API. For example, the
 writeObject method of ObjectOutputStream takes in an Object :
public final void writeObject(Object obj)

 Because of polymorphism, every object in Java is of type Object . Therefore, any
reference can be passed into the writeObject method. Of course, as we saw in
Chapter 4, “ API Contents, ” the Object passed in to writeObject needs to be of type
 Serializable or an exception is thrown. The writeObject method uses the instanceof
operator to determine if the argument passed in implements Serializable . The code
looks similar to the following:

if(!(obj instanceof Serializable)) {

 throw new NotSerializableException(obj.getClass());

}

 Using Polymorphic Parameters

 I developed an application that required an event to be logged every time a customer
preference is changed. For example, a customer can choose whether or not to receive
emails with promotions, special offers, and news items, and these preferences are stored
in a database. The corresponding Java objects to represent the various preferences all
extend a class named Preference . The event logging method is defi ned as

public void preferenceChanged(Preference pref) {

 logger.writeUTF(pref.toString());

}

 The logger variable is a DataOutputStream that writes to a fi le. Instead of defi ning
multiple overloaded preferenceChanged methods, this single method can log
any Preference that is changed. If a new type of preference comes along, the
 preferenceChanged method can remain unchanged as long as the new preference
extends the Preference class.

c06.indd 408c06.indd 408 2/11/09 6:34:05 PM2/11/09 6:34:05 PM

Summary 409

 Heterogeneous Collections

 A heterogeneous collection is a collection of objects that are not the same data type but
have a common parent class. Continuing with the Pet class example, suppose we defi ne an
 ArrayList of Pet references:

ArrayList < Pet > pets = new ArrayList < Pet > ();

 Any object of type Pet can be added to the pets collection. For example, the following
statements add three different types of objects to pets :

pets.add(new Pet(“”, 4));

pets.add(new Cat(“Alley”, 7));

pets.add(new Dog(“Fido”, 2));

 Each statement is valid, and the ArrayList now contains one Pet object, one Cat object,
and one Dog object. This type of collection is made possible because of polymorphism.
As far as the ArrayList is concerned, the only objects in pets are of type Pet because the
collection consists of Pet references. However, because of polymorphism, the collection
actually contains different types of objects like Cat and Dog objects.

 Summary
 This chapter covered the “ OO Concepts ” objectives of the SCJP exam. The goal of this
chapter was to discuss the details of object - oriented programming and the standard design
rules to follow when you develop OO applications.

 We discussed the details of tight encapsulation, loose coupling, and high cohesion. Tight
encapsulation is when you make the fi elds of your class private and only allow access to the
fi eld via public methods. The benefi t of tight encapsulation is that you control the changes
made to your fi elds and also hide from the users the implementation details of the class.

 Loose coupling is when you design your objects to minimize the number of dependencies
on other objects. Loose coupling goes hand in hand with tight encapsulation and allows for
changes in a class to have a minimal effect on the other classes it is coupled with.

 High cohesion is when you design your objects to perform specifi c, closely related tasks.
A highly cohesive object does a specifi c job and does that job well, without relying on a lot
of input from other objects. High cohesion works hand in hand with loose coupling and
allows for more logical code that is easier to understand.

 The two OO design relationships that we discussed were the is - a and has - a
relationships. The is - a relationship is a simple but important test to determine if you are
implementing a good inheritance design. Whenever you use inheritance, you should be able
to state that a child object “ is a ” parent object. Similarly, the has - a relationship is used to
verify that you are using composition properly. If a class has an object fi eld, you should be
able to state that the class “ has a ” object as one of its attributes.

c06.indd 409c06.indd 409 2/11/09 6:34:05 PM2/11/09 6:34:05 PM

410 Chapter 6 � Object-Oriented Concepts

 We discussed the effect of access modifi ers and inheritance. There are four access
modifi ers in Java that can be applied to the fi eld, methods, and constructors of a class. The
 public modifi er provides access to everyone; the private modifi er provides access from only
within the class; the protected modifi er provides package - level access as well as child classes;
and the default access is package - level only. We also discussed the effects of the abstract and
 final modifi ers on methods and inheritance. An abstract method must be overridden by
any non - abstract child class, and a final method cannot be overridden in any child class.

 The topic of polymorphism was discussed in detail. Polymorphism is when an object
takes on many forms. The typical use of polymorphism in Java is when a parent class
reference points to a child class object. In this situation, the child object is said to “ take
on the form ” of the parent class. We discussed how to use the instanceof operator to
ensure valid casting, and we also discussed polymorphism in action with the examples of
polymorphic parameters and heterogeneous collections.

 Be sure to test your knowledge of these OO concepts by answering the Review
Questions that follow the section on Exam Essentials. Attempt to answer the questions
without looking back at the pages of this chapter. Make sure you have a good
understanding of the following Exam Essentials before you attempt to answer the Review
Questions, and good luck!

 Exam Essentials

 Understand encapsulation, coupling, and cohesion. Be sure to know what it means for
the fi elds of a class to be tightly encapsulated, where the fi elds of a class are private and
accessed via public methods. Also, you need to know the benefi ts of loose coupling
and high cohesion, which results in code that is more reusable and easier to maintain.

 Understand polymorphism and the “ is - a ” relationship. An object takes on many forms.
For example, a parent class reference can refer to a child class object because the child object
 “ is - a ” parent. Use the is - a relationship as a simple test to ensure you are using inheritance
properly. Use the has - a relationship to determine if you are using composition properly.

 Recognize valid reference casting. Given multiple class defi nitions, you need to be able to
determine if a reference cast is successful at compile or runtime. The compiler cannot
always determine if a cast is appropriate, so be able to recognize when a ClassCastException
is thrown.

 Know the four levels of access in Java. The members of a class can be public , private ,
 protected , or have the default access. You need to recognize whether an attempt to access
a fi eld, method, or constructor of a class is allowed.

c06.indd 410c06.indd 410 2/11/09 6:34:06 PM2/11/09 6:34:06 PM

Exam Essentials 411

 Understand polymorphism. Polymorphism, where an object can take on many forms,
is one of the most important concepts in OO programming. Be sure to recognize when
a parent class reference is pointing to a child class object, as well as when that reference
needs to be cast to a child class type.

 Understand the instanceof operator. Use the instanceof operator to avoid a ClassCast-
Exception when you are unsure of the actual data type of a reference that needs casting.

 Understand virtual method invocation. By default, Java methods behave like virtual
methods, meaning that overridden methods are invoked at runtime, no matter which
method the compiler sees at compile time.

c06.indd 411c06.indd 411 2/11/09 6:34:06 PM2/11/09 6:34:06 PM

412 Chapter 6 � Object-Oriented Concepts

 Review Questions

 1. Fill in the blank: If all of the non - final fields of a class are private and the class contains
 public methods to view or modify the fields, this is an example of .

 A. Tight encapsulation

 B. Loose coupling

 C. High cohesion

 D. The is - a relationship

 E. The has - a relationship

 2. Given the following Television class definition:
public class Television {

 public int channel;

 private boolean on;

 private int volume;

 public void changeChannel(int newChannel) {

 channel = newChannel;

 }

 public int getChannel() {

 return channel;

 }

 public void turnOn() {

 on = true;

 }

 public void turnOff() {

 on = false;

 }

 public void turnUp() {

 volume += 1;

 }

c06.indd 412c06.indd 412 2/11/09 6:34:07 PM2/11/09 6:34:07 PM

Review Questions 413

 public void turnDown() {

 volume -= 1;

 }

}
 which of the following OO design patterns does the Television class more closely
adhere to?

 A. Tight encapsulation

 B. Tight coupling

 C. High cohesion

 D. Low cohesion

 3. Fill in the blank: Minimizing the dependencies an object has on other objects is referred
to as .

 A. Tight encapsulation

 B. Loose coupling

 C. High cohesion

 D. The is - a relationship

 E. The has - a relationship

 4. Which of the following is not a benefit of tight encapsulation and loose coupling?

 A. Information hiding

 B. Code changes have a smaller ripple effect on other classes .

 C. Easier reuse of code

 D. Decreases the need to test the code

 5. Which one of the following uses of inheritances is probably not a good design?

 A. Car extends Vehicle

 B. Elephant extends Mammal

 C. Laptop extends Computer

 D. Square extends Triangle

 E. Apple extends Fruit

 6. Given the following class definitions:
1. public class Parent {

2. protected void sayHi() {

3. System.out.print(“Hi”);

4. }

5. }

c06.indd 413c06.indd 413 2/11/09 6:34:07 PM2/11/09 6:34:07 PM

414 Chapter 6 � Object-Oriented Concepts

6.

7. class Child extends Parent {

8. public void sayHi() {

9. System.out.print(“Hello”);

10. }

11. }

 what is output of the result of the following statements?

15. Parent p = new Child();

16. p.sayHi();

 A. Hi

 B. Hello

 C. Compiler error on line 8

 D. Compiler error on line 15

 E. Line 16 causes an exception to be thrown.

 7. What is the result of the following code?
1. public class Beverage {

2. private int ounces = 12;

3. boolean carbonated = false;

4.

5. public static void main(String [] args) {

6. System.out.println(new SodaPop());

7. }

8. }

9.

10. class SodaPop extends Beverage {

11. public String toString() {

12. return ounces + “ “ + carbonated;

13. }

14. }

 A. 12 false

 B. Compiler error on line 6

 C. Compiler error on line 10

 D. Compiler error on line 11

 E. Compiler error on line 12

 8. What is the result of the following code?

1. public class Fruit {

2. private String color = “Green”;

c06.indd 414c06.indd 414 2/11/09 6:34:07 PM2/11/09 6:34:07 PM

Review Questions 415

3.

4. public static void main(String [] args) {

5. Fruit apple = new Fruit();

6. apple.color = “Red”;

7. System.out.println(apple.color);

8. }

9. }

 A. Red

 B. Green

 C. Compiler error on line 5

 D. Compiler error on lines 6 and 7

 E. Line 6 throws an exception at runtime.

 9. Given the following MyWindowCloser class definition:

1. public abstract class MyWindowCloser {

2. protected abstract void closeWindow(String id);

3. }

 which of the following methods could appear in a child class of MyWindowCloser ?
(Select three answers.)

 A. protected void closeWindow(String id)

 B. private void closeWindow()

 C. protected int closeWindow(String id)

 D. void closeWindow(String id)

 E. public void closeWindow(String x)

 10. What is the result of the following code?

1. public abstract class Catchable {

2. protected abstract void catchAnObject(Object x);

3.

4. public static void main(String [] args) {

5. java.util.Date now = new java.util.Date();

6. Catchable target = new MyStringCatcher();

7. target.catchAnObject(now);

8. }

9. }

10.

11. class MyStringCatcher extends Catchable {

12. public void catchAnObject(Object x) {

13. System.out.println(“Caught object”);

14. }

c06.indd 415c06.indd 415 2/11/09 6:34:08 PM2/11/09 6:34:08 PM

416 Chapter 6 � Object-Oriented Concepts

15.

16. public void catchAnObject(String s) {

17. System.out.println(“Caught string”);

18. }

19. }

 A. Caught object

 B. Caught string

 C. Compiler error on line 2

 D. Compiler error on line 12

 E. Compiler error on line 16

 11. What is the result of the following code?

1. public abstract class A {

2. private void doSomething() {

3. System.out.println(“A”);

4. }

5.

6. public static void main(String [] args) {

7. A a = new B();

8. a.doSomething();

9. }

10. }

11.

12. class B extends A {

13. protected void doSomething() {

14. System.out.println(“B”);

15. }

16. }

 A. A

 B. B

 C. Compiler error on line 7

 D. Compiler error on line 8

 E. Compiler error on line 13

 12. What is the result of the following code?

1. public class X {

2. protected final void doSomething() {

3. System.out.println(“X”);

4. }

c06.indd 416c06.indd 416 2/11/09 6:34:08 PM2/11/09 6:34:08 PM

Review Questions 417

5.

6. public static void main(String [] args) {

7. X x = new Y();

8. x.doSomething();

9. }

10. }

11.

12. class Y extends X {

13. protected void doSomething() {

14. System.out.println(“Y”);

15. }

16. }

 A. X

 B. Y

 C. Compiler error on line 2

 D. Compiler error on line 8

 E. Compiler error on line 13

 13. Given the following class definitions:

1. public class Pet implements Runnable {

2. public void run() {}

3.

4. public static void main(String [] args) {

5. _____ x = new Cat();

6. }

7. }

8.

9. class Cat extends Pet {

10. }

11.

12. class Dog extends Pet {

13. }

 which of the following answers can fi ll in the blank on line 5 and have the code com-
pile successfully? (Select three.)

 A. Pet

 B. Runnable

 C. Cat

 D. Dog

 E. Thread

c06.indd 417c06.indd 417 2/11/09 6:34:09 PM2/11/09 6:34:09 PM

418 Chapter 6 � Object-Oriented Concepts

 14. Given the following Vehicle and Car class definitions:

1. package my.vehicles;

2.

3. public class Vehicle {

4. public String make;

5. protected String model;

6. private int year;

7. int mileage;

8. }

1. package my.vehicles.cars;

2.

3. import my.vehicles.*;

4.

5. public class Car extends Vehicle {

6. public Car() {

7.

8. }

9. }

 which of the following statements can appear on line 7 so that the Car class compiles
successfully? (Select all that apply.)

 A. make = “ Honda “ ;

 B. model = “ Pilot “ ;

 C. year = 2009;

 D. mileage = 15285;

 E. None of the above

 15. What is the result of the following code?

1. public class Browser {

2. public static void main(String [] args) {

3. Browser b = new Firefox();

4. IE e = (IE) b;

5. e.go();

6. }

7.

8. public void go() {

9. System.out.println(“Inside Browser”);

10. }

11. }

c06.indd 418c06.indd 418 2/11/09 6:34:09 PM2/11/09 6:34:09 PM

Review Questions 419

12.

13. class Firefox extends Browser {

14. public void go() {

15. System.out.println(“Inside Firefox”);

16. }

17. }

18.

19. class IE extends Browser {

20. public void go() {

21. System.out.println(“Inside IE”);

22. }

23. }

 A. Inside Browser

 B. Inside Firefox

 C. Inside IE

 D. Compiler error on line 4

 E. Line 4 generates an exception at runtime.

 16. Using the class definitions from Question 15, what is the result of the following statements?

4. Browser ref = new IE();

5. if(ref instanceof Firefox) {

6. System.out.println(“Firefox”);

7. } else if(ref instanceof Browser) {

8. System.out.println(“Browser”);

9. } else if(ref instanceof IE) {

10. System.out.println(“IE”);

11. } else {

12. System.out.println(“None of the above”);

13. }

 A. Firefox

 B. Browser

 C. IE

 D. None of the above

 E. The code does not compile.

 17. Using the class definitions from Question 15 along with the following OperatingSystem
class:

1. public class OperatingSystem {

2. private Browser browser;

c06.indd 419c06.indd 419 2/11/09 6:34:09 PM2/11/09 6:34:09 PM

420 Chapter 6 � Object-Oriented Concepts

3.

4. public void setBrowser(Browser b) {

5. browser = b;

6. }

7.

8. public static void main(String [] args) {

9. OperatingSystem os = new OperatingSystem();

10. os.setBrowser(___________________);

11. }

12. }

 which of the following statements can appear in the blank on line 10 so that the
 OperatingSystem class compiles successfully?

 A. new Browser()

 B. new Firefox()

 C. new IE()

 D. new Object()

 E. new String(“ Hello “)

 18. Given the following class definitions:

1. import java.util.Stack;

2.

3. public class FairyTale {

4. public static void main(String [] args) {

5. Stack < FairyTale > tales =

6. new Stack < FairyTale > ();

7. tales.add(___________________);

8. }

9. }

10.

11. class SnowWhite extends FairyTale {}

12.

13. class Cinderella {}

 which of the following statements can appear in the blank on line 7 so that the code
compiles successfully? (Select all that apply.)

 A. new Cinderella()

 B. new SnowWhite()

 C. new FairyTale()

 D. None of the above

c06.indd 420c06.indd 420 2/11/09 6:34:09 PM2/11/09 6:34:09 PM

Review Questions 421

 19. What is the result of the following code?

1. public abstract class Book {

2. public abstract void read();

3.

4. public static void main(String [] args) {

5. Book book = new NonFictionBook();

6. book.read();

7. }

8. }

9.

10. class NonFictionBook extends Book {

11. public void read(int time) {

12. System.out.println(“Reading a NonFictionBook”);

13. }

14. }

 A. Reading a NonFictionBook

 B. Compiler error on line 5

 C. Compiler error on line 6

 D. Compiler error on line 10

 E. An exception occurs at runtime on line 6.

 20. What is the result of the following program?

1. public abstract class Book {

2. public final void read() {

3. System.out.println(“Reading a Book”);

4. }

5.

6. public static void main(String [] args) {

7. Book book = new NonFictionBook();

8. book.read();

9. }

10. }

11.

12. class NonFictionBook extends Book {

13. public void read() {

14. System.out.println(“Reading a NonFictionBook”);

15. }

16. }

c06.indd 421c06.indd 421 2/11/09 6:34:10 PM2/11/09 6:34:10 PM

422 Chapter 6 � Object-Oriented Concepts

 A. Reading a Book

 B. Reading a NonFictionBook

 C. Compiler error on line 7

 D. Compiler error on line 8

 E. Compiler error on line 13

c06.indd 422c06.indd 422 2/11/09 6:34:10 PM2/11/09 6:34:10 PM

Answers to Review Questions
 1. A. Making all of the fi elds of a class private and providing public setter and getter meth-

ods is the defi nition of tight encapsulation, so the answer is A.

 2. C. The Television class has a public fi eld channel, so it does not follow tight encapsu-
lation and A is incorrect. It does not refer to any other classes, so it is loosely coupled and B
is incorrect. The methods of Television perform tasks reminiscent of a TV and are closely
related, which is the goal of high cohesion, making D incorrect and C the correct answer.

 3. B. The defi nition of loose coupling is to minimize an object’s dependencies on other
objects, so the answer is B.

 4. D. Information hiding is a benefi t of tight encapsulation, so A is incorrect. Easier code
changes and reuse of code are benefi ts of both tight encapsulation and loose coupling. No
matter how well you design your application, there is always a need to test your code, so D
is the correct answer.

 5. D. The only inheritance that does not satisfy the is-a relationship is D, because a
square is not a triangle. Therefore, the answer is D.

 6. B. The code compiles and runs fi ne, so C, D, and E are incorrect. The compiler sees the
sayHi method of Parent on line 16, but at runtime the sayHi method of Child is invoked
because the Child class overrides the sayHi method. Therefore, the output is Hello and the
answer is B.

 7. E. The code does not compile, so A is incorrect. On line 12, the child class SodaPop
attempts to access the ounces fi eld of its parent class Beverage. Because the ounces fi eld is
private, SodaPop does not have access to it and a compiler error is generated. Therefore,
the answer is E.

 8. A. The code compiles and runs fi ne, so C, D, and E are incorrect. The main method is
defi ned within Fruit, so main has access to the private fi eld color. (If main were defi ned
in a different class, then lines 6 and 7 would not compile.) Line 6 changes the color to Red
and line 7 prints it out, so the answer is A.

 9. A, B, and E. C is incorrect because it attempts to change the return value of closeWindow in
the parent, which is not allowed. D is incorrect because it has the default access, which is a
weaker access than protected in the parent. A and E successfully override the closeWindow
method in MyWindowCloser, so they are valid methods that could appear in a child class. B is
also valid because it is overloading the closeWindow method (not overriding the method) in
the parent and can have any access modifi er. Therefore, the correct answers are A, B, and E.

10. A. An abstract method can be protected, and a child class can override the method with
public access. The catchAnObject method on line 16 is a valid overloading of the method.
The code compiles fi ne, so C, D, and E are incorrect. Line 7 invokes catchAnObject with
a Date object, which through polymorphism causes the method on line 12 to be invoked.
Therefore, the output is Caught object and the answer is A.

Answers to Review Questions 423

c06.indd 423c06.indd 423 2/11/09 6:34:10 PM2/11/09 6:34:10 PM

424 Chapter 6 � Object-Oriented Concepts

11. A. Tough question! The code actually compiles fi ne, so C, D, and E are incorrect. A
private method cannot be overridden, so doSomething in B is not overriding doSomething
in A. The method call to doSomething on line 8 is referring to the private method on line
2, and that is also the method that gets invoked at runtime because it is not overridden.
Therefore, the output is A and the correct answer is A.

12. E. The code does not compile, so A and B are incorrect. The parent class X declares a
final method named doSomething, and the child class Y attempts to override it on
line 13. Because a final method cannot be overridden, a compiler error occurs on line 13
and the answer is E.

13. A, B, and C. The object on the right-hand side of the equation on line 5 is a Cat object, so
the reference on the left-hand side needs to be compatible with Cat. Because Cat extends
Pet, Pet is valid, so A is correct. Because Pet implements Runnable and Cat extends Pet,
Runnable is valid so B is correct. C is correct because a Cat reference can certainly point
to a Cat object. D is incorrect; Dog is not compatible with Cat. E is incorrect; Thread is not
related to the Cat class in any way.

14. A and B. The make fi eld in Vehicle is public, so it is accessible anywhere. Therefore, A is
a correct answer. The model fi eld is protected, so it is accessible in child classes. Because
Car extends Vehicle, B is a correct answer. The year fi eld is private in Vehicle, so C
does not compile. The mileage fi eld has the default access, but Car is in a different package
than Vehicle, so D is incorrect.

15. E. The code compiles fi le, so D is incorrect. However, a ClassCastException is thrown at
runtime on line 4 when the reference b, which points to a Firefox object, is cast to an IE
reference. Therefore, the answer is E.

16. B. The ref reference points to an IE object, so the comparison line 5 is false. However,
the comparison line 7 is true because an IE object is a Browser object, so line 8 displays
Browser. Therefore, the answer is B.

17. A, B, and C. The parameter of setBrowser is Browser, so any Browser object of child of
Browser can be passed into setBrowser. Therefore, A, B, and C are correct. D is incorrect
because Object is not a child of Browser. (Browser is a child of Object, but that relation-
ship is in the wrong direction for setBrowser to be invoked successfully.) Similarly, since
String is not a child of Browser, E is also incorrect.

18. B and C. The tales reference is a Stack of FairyTale objects, which can include any child
classes of FairyTale. Putting a SnowWhite object on the stack and a FairyTale object are both
valid, so B and C are correct. Because Cinderella does not extend FairyTale, A is incorrect.

19. D. The code does not compile, so A is incorrect. The problem with the code is that
NonFictionBook extends Book but does not override read. The read method
in NonFictionBook is an overloaded version of read, so NonFictionBook must be declared
abstract. Because it is not declared abstract, the compiler points to line 10 as the cause of
the error, so the answer is D.

20. E. The code does not compile, so A and B are incorrect. Lines 7 and 8 are valid,
so C and D are incorrect. The problem with this code is the Book declares the read method
as final, and the child class NonFictionBook attempts to override it. The compiler error is
on line 13, so the answer is E.

c06.indd 424c06.indd 424 2/11/09 6:34:11 PM2/11/09 6:34:11 PM

Collections and
Generics

 SCJP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

 Given a design scenario, determine which collection

classes and/or interfaces should be used to prop-

erly implement that design, including the use of the

Comparable interface.

 Distinguish between correct and incorrect overrides

of corresponding hashCode and equals methods, and

explain the difference between == and the equals

method.

 Write code that uses the generic versions of the

Collections API, in particular, the Set, List, and Map

interfaces and implementation classes. Recognize the

limitations of the non - generic Collections API and how to

refactor code to use the generic versions. Write code that

uses the NavigableSet and NavigableMap interfaces.

 Develop code that makes proper use of type parameters

in class/interface declarations, instance variables,

method arguments, and return types; and write generic

methods or methods that make use of wildcard types

and understand the similarities and differences between

these two approaches.

 Use capabilities in the java.util package to write code to

manipulate a list by sorting, performing a binary search,

or converting the list to an array. Use capabilities in the

java.util package to write code to manipulate an array

by sorting, performing a binary search, or converting the

array to a list. Use the java.util.Comparator and java.lang

.Comparable interfaces to affect the sorting of lists and

arrays. Furthermore, recognize the effect of the “ natural

ordering ” of primitive wrapper classes and java.lang

.String on sorting.

�

�

�

�

�

Chapter

7

c07.indd 425c07.indd 425 2/11/09 6:42:15 PM2/11/09 6:42:15 PM

 These objectives are Section 6 of the SCJP exam objectives.
The exam tests your knowledge of the Collections API,
including the use of generics. This chapter covers all of these
topics in detail.

 Overview of Collections
 A collection is a group of objects contained in a single element. Examples of collections
include an array of integers, a vector of strings, or a hash map of vehicles. The Java
Collections Framework is a unifi ed set of classes and interfaces defi ned in the java.util
package for storing collections. For the exam, you need to understand the different types
of collections in the Collections Framework, including lists, maps, and sets. You need
to recognize which collection to use given a specifi c scenario. The exam also tests your
knowledge of the Comparable interface and the difference between == and the equals
method. This section discusses all of these topics, starting with a discussion on the
collections interfaces, which provide the foundation of the Collections Framework.

 The Collections Interfaces

 The java.util package contains a group of interfaces referred to as the collections
interfaces to represent the various types of collections. The root interface of the collections
interfaces is Collection . There are different types of collections, and the subinterfaces of
 Collection refl ect these various types of collections, as follows:

 Lists A list is an ordered collection of elements that allows duplicate entries. Lists
implement the List interface, and elements in a list can be accessed by an integer index.

 Sets A set is a collection that does not allow duplicate entries. Sets implement the Set
interface.

 Queues A queue is a collection that orders its elements in a specifi c order for processing.
A typical queue processes its elements in a fi rst - in, fi rst - out (FIFO) fashion, but other
ordering is possible. Queues implement the Queue interface.

 Maps A map is a collection that maps keys to values, with no duplicate keys allowed.
The elements in a map are key - value pairs. Maps implement the Map interface, which is
unique because the Map interface is not a subinterface of Collection like the other types of
collections.

c07.indd 426c07.indd 426 2/11/09 6:42:16 PM2/11/09 6:42:16 PM

Overview of Collections 427

 Figure 7.1 shows the Collection interface and its core subinterfaces.

F I GU R E 7.1 The Collection interface is the root of all collections except maps.

Collection Map

Set QueueList

 Maps are the only collections that do not implement the Collection interface because
elements in a map are key - value pairs of data while elements in a collection are single items.
The Map interface contains methods for working with keys and values that do not apply to
 Collection objects.

 The Collection interface contains useful methods for working with lists, sets, and
queues, including:

 public boolean add(E e) Adds an element to the collection.

 public boolean remove(Object e) Removes a single instance of the given object from
the collection.

 public boolean contains(Object e) Returns true if the given Object appears in the
collection.

 public Iterator < E > iterator() Returns an iterator over the elements in the collection.

 All of the interfaces and classes in the Collections Framework are generics,
as evidenced by the E parameter of the add method and the < E > generic
return type of the iterator method. Generics are an important aspect of the
Collections Framework and are discussed in detail in the section, “ Using
Generics, ” later in this chapter.

 Let ’ s look at each of the collection types and their corresponding interfaces and classes,
starting with lists.

 Lists

 A list is an ordered collection that can contain duplicate entries. Items in a list can be
retrieved and inserted at a specifi c position in the list based on an integer index, much like
an array. You can search a list, iterate through its elements, and perform operations on
a range of values in the list. Lists are commonly used because there are many situations
in programming where you need to keep track of a list of objects. For example, suppose
you have a website that sells electronic equipment and you execute a database query that

c07.indd Sec1:427c07.indd Sec1:427 2/11/09 6:42:17 PM2/11/09 6:42:17 PM

428 Chapter 7 � Collections and Generics

returns all cameras for sale. You could use a list to hold the data and iterate through the list
to display the cameras in an HTML table.

 Figure 7.2 shows the List interface and the classes in the Collections Framework that
implement List .

F I GU R E 7. 2 The List interface and its implementing classes

class
ArrayList

interface
List

class
LinkedList

class
Vector

class
Stack

 The different list classes each provide their own unique functionality:

 ArrayList A resizable list implemented as an array. When elements are added and
removed, the ArrayList grows and shrinks accordingly. You can control the internal size of
the array to improve performance.

 LinkedList A list that implements a linked list data structure. Items can be added and
removed from the beginning or end of the linked list. LinkedList is unique in that it also
implements the Queue and Deque interfaces.

 Vector A Vector is essentially the same as an ArrayList except that the methods in
 Vector are synchronized.

 Stack A list that implements a stack data. Items are pushed onto the top and popped off
the top of the stack, a last - in, fi rst - out (LIFO) behavior.

 The basic operations of List include the ability to add a single element at a specifi ed
index, add a collection of elements, replace or remove a specifi c element, and retrieve an
element at a specifi ed index.

 Sets

 A set is a collection of elements that does not allow duplicates and models the mathematical
concept of abstract sets. For example, the Set interface contains an andAll method for
performing set unions and a retainAll method for performing set intersections. Use

c07.indd Sec1:428c07.indd Sec1:428 2/11/09 6:42:17 PM2/11/09 6:42:17 PM

Overview of Collections 429

a set when you need a collection where duplicates are not allowed. Attempts to add a
duplicate element to a set are ignored. For example, suppose that you need to write an
application that searches a book for keywords and keeps track of the page numbers where
the keywords appear. After a page number is found, add it to the set. If a keyword appears
twice on a page, adding the page number again to the set has no effect, which is the desired
behavior in this situation.

 Figure 7.3 shows the Set interfaces and their implementing classes.

F I GU R E 7. 3 The Set interfaces and their implementing classes

class
HashSet

interface
Set

class
LinkedHashSet

class
TreeSet

interface
SortedSet

interface
NavigableSet

 The different set classes each provide their own unique functionality:

 HashSet A set that stores its elements in a hash table. There is no ordering to the items,
and HashSet uses the hashCode method of its elements to determine their placing in the set.

 LinkedHashSet A set that stores its elements in a linked list hash table. The items are
hashed based on their hashCode and also ordered in a doubly linked list.

 TreeSet A set that stores its elements in a tree data structure that is also sorted and navi-
gable. The add , remove , and contains methods are guaranteed to work in log(n) time,
where n is the number of elements in the tree.

 The basic operations of Set include the ability to add or remove a single element or
collection of elements, and to perform unions and intersections.

 Queues

 A queue is a collection whose elements are added and removed in a specifi c order. Queues
are typically used for storing elements prior to processing them. For example, suppose you
have an order processing application that places new orders into a queue. The warehouse
could retrieve the order from the queue to fulfi ll the order, and the billing department could
retrieve the order from the queue to collect payment. Queues typically process elements in a
FIFO behavior, but the actual behavior depends on the type of queue you are using.

c07.indd Sec1:429c07.indd Sec1:429 2/11/09 6:42:18 PM2/11/09 6:42:18 PM

430 Chapter 7 � Collections and Generics

 A deque (pronounced “ deck ”) is a double - ended queue that allows for elements to be
inserted and removed at both ends of the queue. Deques implement the Deque interface, a
subinterface of Queue . Figure 7.4 shows the hierarchy of queue interfaces and classes.

F I GU R E 7. 4 The Queue and Deque interfaces and implementing classes

class
PriorityQueue

interface
Queue

class
LinkedList

class
ArrayDeque

interface
Deque

 The different queue and deque classes each have their own specifi c behaviors:

 PriorityQueue A queue where the elements are ordered based on an ordering you specify
(as opposed to ordering based on FIFO).

 LinkedList The same LinkedList class we saw earlier in the discussion on lists.
 LinkedList also implements the Queue and Deque interfaces, providing a queue or deque
that is implemented as a linked list data structure.

 ArrayDeque A queue and deque implemented as a resizable array with no capacity
restrictions.

 The basic operations of Queue include adding a single element, polling the queue to
retrieve the next element, or peeking at the queue to see if there is an element available
in the queue. The Deque operations are similar except elements can be added, polled, or
peeked at both the beginning and end of the deque.

 Maps

 A map is a collection that maps keys to values. Each key maps to one value, and duplicate
keys are not allowed in a map. A map is similar to a function in mathematics. Use a map
when the data you are storing has a key value that is more meaningful than a simple integer
index (like arrays and lists use). For example, suppose you need to write a phonebook
application. A person ’ s name and phone number are paired together, and we usually search a
phonebook by a person ’ s name. Therefore, a phonebook map could use a person ’ s name as
the key and their phone number as the value of that key.

 Figure 7.5 shows the Map interface, its subinterfaces, and the various map classes in the
Collections Framework.

c07.indd Sec1:430c07.indd Sec1:430 2/11/09 6:42:18 PM2/11/09 6:42:18 PM

Overview of Collections 431

 The following overview shows the implementing classes of Map :

 HashMap A map that stores its elements in a hash table. There is no ordering to the
elements, and they are placed in the hash table based on their hashCode .

 LinkedHashMap A map that stores its element in a hash table and doubly linked lists. The
linked list provides an ordering to the elements.

 TreeMap A map that stores its elements in a tree data structure with a natural or
user - defi ned ordering. TreeMap provides log(n) time for the methods that view or change
elements in the tree.

 The Map interface provides methods for accessing the elements of the collection as a set
of keys, a list of values, or a set of key - value mappings. We discuss maps in detail in the
section “ Using Generics ” later in this chapter as well as the details for using lists, sets, and
queues. But before we move on to generics, I need to discuss one more topic on the subject
of collections: the Comparable interface.

F I GU R E 7.5 The Map interfaces and implementing classes

class
HashMap

interface
Map

class
LinkedHashMap

class
TreeMap

interface
SortedMap

interface
NavigableMap

Using a Map to Count Keywords

A common use for search engines is to determine the relevance of the content on a web
page, and an important factor that search engines use is the number of times a particular
word or phrase appears on the page. This scenario is a good example of when to use a
 Map object, where the key of the map is the keyword on the web page and the value of the
map is the number of occurrences. The code might look something like the following:

import java.util.HashMap;

public class KeywordCounter {

 public HashMap < String, Integer > keywords = new HashMap < String, Integer > ();

 public void keywordFound(String keyword) {

 Integer count = keywords.get(keyword);

c07.indd Sec1:431c07.indd Sec1:431 2/11/09 6:42:19 PM2/11/09 6:42:19 PM

432 Chapter 7 � Collections and Generics

 The Comparable Interface

 The Comparable interface in the java.util package creates an ordering for a collection of
objects by providing a method to compare two objects. The Comparable interface contains
only one method:

public int compareTo(T o)

 if(count == null) {

 keywords.put(keyword, 1);

 } else {

 keywords.put(keyword, count + 1);

 }

 }

}

 The keywordFound method takes in a String object to represent a keyword. If the String
is not in the map, then count is null and the keyword is added with a value of 1. If the
keyword is in the map already, it is replaced with the same keyword but an incremented
value. The following statements create a new KeywordCounter and add various strings to
the map:

KeywordCounter webpage = new KeywordCounter();

webpage.keywordFound(“java”);

webpage.keywordFound(“ejb”);

webpage.keywordFound(“java”);

webpage.keywordFound(“jsp”);

for(String keyword : webpage.keywords.keySet()) {

 System.out.println(keyword + “ = “ +

 webpage.keywords.get(keyword));

}

 The output of this code is

ejb = 1

jsp = 1

java = 2

c07.indd Sec1:432c07.indd Sec1:432 2/11/09 6:42:19 PM2/11/09 6:42:19 PM

Overview of Collections 433

 The T parameter denotes a generic type. The return value of compareTo is an int , which
represents one of three outcomes:

 Zero The two objects are equal.

 Negative This object is less than the specifi ed object o .

 Positive This object is greater than the specifi ed object o .

 The ordering of objects that the compareTo method provides is referred to as the natural
ordering of the class. For example, the String class implements Comparable , and the
natural ordering of String objects is lexicographical, which is close to alphabetical except
uppercase letters always appear before lowercase letters. See if you can determine if the
following compareTo method calls return a positive number, a negative number, or 0:

4. String a = “hello”;

5. String b = “goodbye”;

6. String c= “Hello”;

7.

8. System.out.println(a.compareTo(b));

9. System.out.println(c.compareTo(b));

10. System.out.println(a.compareTo(c));

11. System.out.println(a.compareTo(a));

 The output of the statements is

1

-31

32

0

 The fi rst int displayed from line 8 is positive because the string “ hello ” is greater than
 “ goodbye “ . The actual value of the positive number is normally irrelevant, and for String
objects it represents the difference between the fi rst unequal characters between the two
strings. Line 9 compares “ Hello ” to “ goodbye ” and outputs - 31 because H is uppercase and
appears before all lowercase letters. Therefore, “ Hello ” is less than “ goodbye “ . Similarly,
 “ hello ” is greater than “ Hello ” on line 10, which outputs 32 . Line 11 outputs 0 because
the two strings are equal.

 The Difference Between == and equals

 We discussed the differences between the == operator and the equals method of Object in
Chapter 1 , “ Fundamentals. ” The = = operator compares if two references point to the same

c07.indd Sec1:433c07.indd Sec1:433 2/11/09 6:42:20 PM2/11/09 6:42:20 PM

434 Chapter 7 � Collections and Generics

object, and the equals method uses your own business logic to determine if two objects are
equal. To refresh your memory, see if you can determine the output of the following:

4. String x = “hi”;

5. String y = new String(“hi”);

6. if(x == y) {

7. System.out.println(“x == y”);

8. }

9. if(x.equals(y)) {

10. System.out.println(“x.equals(y)”);

11. }

 Because x and y point to different objects, line 6 is false . Because the two objects are
equal in the sense of String equality, line 9 is true . Therefore, the output of the previous
code is

x.equals(y)

 The equals method plays an important role in the Java Collections Framework. Sets do
not allow duplicate elements and maps do not allow duplicate keys. The set and map classes
use the equals method of the objects in the collection to determine if two objects are equal.
If you are using collections, you should include an equals method in your classes. When
overriding equals , be sure to override hashCode so that two equal objects generate the same
 hashCode , as demonstrated by the following Product class:

public class Product {

 String description;

 double price;

 int id;

 public boolean equals(Object obj) {

 if(!(obj instanceof Product)) {

 return false;

 }

 Product other = (Product) obj;

 return this.id == other.id;

 }

 public int hashCode() {

 return id;

 }

}

c07.indd Sec1:434c07.indd Sec1:434 2/11/09 6:42:20 PM2/11/09 6:42:20 PM

Overview of Collections 435

 Notice that the two Product objects are equal if they have the same id , and two equal
 Product objects generate the same hashCode .

 compareTo Consistent with equals

 If you write a class that implements Comparable , you introduce new business logic
for determining equality. The compareTo method returns 0 if two objects are equal,
while your equals method returns true if two objects are equal. A natural ordering
that uses compareTo is said to be consistent with equals if and only if x.equals(y) is
 true whenever x.compareTo(y) equals 0 . You are strongly encouraged to make your
 Comparable classes consistent with equals because not all collection classes behave
predictably if the compareTo and equals methods are not consistent. For example, the
following Product class defi nes a compareTo method that is consistent with equals :

public class Product implements Comparable < Product > {

 int id;

 public boolean equals(Object obj) {

 if(!(obj instanceof Product)) {

 return false;

 }

 Product other = (Product) obj;

 return this.id == other.id;

 }

 public int compareTo(Product obj) {

 return this.id - obj.id;

 }

}

 If two Product objects are equal, they have the same id . Therefore, the return value of
 compareTo is 0 when comparing two equal Product objects, so this compareTo method is
consistent with equals .

 Now that we have discussed the various types of collections in the Collections
Framework, let ’ s put this knowledge to use by instantiating and using the collection classes
in the next section. Because all of the collections classes use generics and the exam requires
knowledge of generics, the next section discusses both topics simultaneously.

c07.indd Sec1:435c07.indd Sec1:435 2/11/09 6:42:21 PM2/11/09 6:42:21 PM

436 Chapter 7 � Collections and Generics

 Using Generics
 You will be tested on your knowledge of the generic versions of the Set , List , and Map
interfaces and implementation classes. You also need to understand the limitations of
nongeneric collection objects. Generics refers to a new feature added to J2SE 5.0 that
provides support for parameterized data types. Before J2SE 5.0, Collection objects
stored Object references, meaning that the compiler did not know the actual contents of
a collection. Generics provide compile - time type safety for collections by allowing your
 Collection objects to specify what types they contain.

 This section discusses generics and how to use them in collections, starting with a
discussion on the limitations of nongeneric collections.

 Limitations of Nongeneric Collections

 Let ’ s look at an example that does not use generics to demonstrate the various limitations
of non generics. Suppose we create an ArrayList to contain String objects that represents
the keywords of the subject of this book. The following code does not use generics and has
a problem. Do you see what the problem is?

7. ArrayList keywords = new ArrayList();

8. keywords.add(“java”);

9. keywords.add(“certification”);

10. keywords.add(“exam”);

11. keywords.add(new java.util.Date());

12.

13. for(Object x : keywords) {

14. String temp = (String) x;

15. System.out.println(temp.toUpperCase());

16. }

 The ArrayList can contain any Object , even though we only want it to store String s.
Line 11 adds a Date object, which is a problem with nongenerics because the compiler
cannot stop us from putting a Date object in the ArrayList . Another problem is on line 14,
where each reference in the ArrayList is cast to a String so we can invoke toUpperCase .
The cast throws an exception when it gets to the Date object, as the following output
shows:

JAVA

CERTIFICATION

EXAM

Exception in thread “main” java.lang.ClassCastException: java.util.Date

 cannot be cast to java.lang.String

c07.indd Sec1:436c07.indd Sec1:436 2/11/09 6:42:21 PM2/11/09 6:42:21 PM

Using Generics 437

 at GenericsDemo.main(GenericsDemo.java:14)

 We could use instanceof to avoid this situation, but that adds yet another step of
complexity to what should be a fairly simple task. Now let ’ s look at this example again,
except we will use generics to specify the data type of the elements in the ArrayList .

 As of J2SE 5.0, the class declaration of ArrayList is

public class ArrayList < E >

 The < E > represents a generic element. The E is not required and can be any variable
name, but the naming convention for generics uses single uppercase letters to denote
generic types, and E is commonly used for elements. The < E > denotes that an ArrayList can
specify a data type when it is constructed. For example, the following code instantiates an
 ArrayList for String objects:

18. ArrayList < String > keywords2 = new ArrayList < String > ();

19. keywords2.add(“java”);

20. keywords2.add(“certification”);

21. keywords2.add(“exam”);

22. keywords2.add(new java.util.Date());

 The ArrayList of keywords2 can only contain String objects, and the compiler enforces
this rule. Lines 19 – 21 compile fi ne, but line 22 generates the following compiler error:

GenericsDemo.java:22: cannot find symbol

symbol : method add(java.util.Date)

location: class java.util.ArrayList < java.lang.String >

keywords2.add(new java.util.Date());

 The add method of ArrayList only accepts String references. Notice how generics allow
issues like this one to be discovered at compile time. The other benefi t of generics is that
you do not need to cast the data when accessing elements in the collection. For example,
any time an element in keywords2 is accessed, it is returned as a String :

for(String keyword : keywords2) {

 System.out.println(keyword.toUpperCase());

}

 No casting appears in the code, which improves both the readability and reliability of
the code. A ClassCastException is not possible in the for - each loop, demonstrating how
generics and for - each loops work together to simplify working with collections.

 Generics have greatly improved the Java Collections Framework. Generics allow the
compiler to enforce the data types that can be added to a collection, as well as retrieve
elements from the collection in their appropriate data type. Your Java code is simpler and
easier to read. Now that we have seen an example of generics, let ’ s discuss what you need
to know about using generics with lists, sets, and maps.

c07.indd Sec2:437c07.indd Sec2:437 2/11/09 6:42:21 PM2/11/09 6:42:21 PM

438 Chapter 7 � Collections and Generics

 Lists

 The Collections Framework has several implementations of the List interface, including
 ArrayList , LinkedList , Vector , and Stack . Instantiating a list using generics requires
specifying the data type that the list contains. The use of generics is seen in the class
declaration of the list classes. For example, the Vector class is declared as

public class Vector < E > extends AbstractList < E >
 implements List < E > , RandomAccess, Cloneable, Serializable

 The E is a generic and represents a placeholder for the data type of the elements to be
stored in the Vector . You specify the data type for E when constructing a Vector . For
example, a Vector of Date objects is instantiated as

Vector < Date > december = new Vector < Date > ();

 Only Date objects can be stored in the december vector, and all get methods of december
return Date references.

 Let ’ s look at an example of using lists. The following ArrayList can only contain
 String types:

List < String > list = new ArrayList < String > ();

 The following statements demonstrate some of the basic methods in the List interface
for adding and removing items from list . Study the code and see if you can determine the
result:

7. list.add(“SD”);

8. list.add(0, “NY”);

9. list.set(1, “FL”);

10. list.remove(“NY”);

11. list.remove(0);

 The sequence of events for the previous statements is as follows:

 1. The ArrayList is initially empty. Line 7 adds “ SD ” to the end of list, which is at index 0 .

 2. Line 8 inserts “ NY ” at index 0 . The list now contains “ NY ” and “ SD “ .

 3. Line 9 sets “ FL ” at index 1 , replacing “ SD “ . The list now contains two String objects:
 “ NY ” and “ FL “ .

 4. Line 10 removes “ NY ” “ from the list , leaving just “ FL “ .

 5. Line 11 removes the element at index 0 , which is “ FL “ . The ArrayList is now empty
again.

 The List interface contains other useful methods. Using the same ArrayList named
 list from the previous code, see if you can determine the output of the following
statements:

c07.indd Sec2:438c07.indd Sec2:438 2/11/09 6:42:22 PM2/11/09 6:42:22 PM

Using Generics 439

12. list.add(“OH”);

13. list.add(“CO”);

14. list.add(“NE”);

15. list.add(“NJ”);

16. String state = list.get(2);

17. System.out.println(state);

18. if(list.contains(“CO”)) {

19. System.out.println(list.indexOf(“CO”));

20. }

21. Iterator < String > iter = list.iterator();

22. while(iter.hasNext()) {

23. System.out.println(iter.next());

24. }

25. list.clear();

26. System.out.println(list.size());

 The sequence of events for the previous statements is as follows:

 1. Lines 12 – 15 add four strings to list .

 2. Line 16 sets state to the element at index 2 , which is the third element, “ NE “ . Because
of generics, there is no need to cast the return value of get to a String .

 3. Line 18 is true and line 19 displays the index of “ CO “ , which is 1 .

 4. Line 21 returns an Iterator for list , a common technique for iterating through a list.
Using generics, the Iterator declares its elements as String types, which is consistent
with the data types in list .

 5. The while loop on lines 22 – 24 demonstrates the hasNext and next methods of
 Iterator , displaying each String in list on a separate line.

 6. Line 25 removes all elements from the list, so printing the size on line 26 outputs 0 .

 The output of the code is

NE

1

OH

CO

NE

NJ

0

c07.indd Sec2:439c07.indd Sec2:439 2/11/09 6:42:22 PM2/11/09 6:42:22 PM

440 Chapter 7 � Collections and Generics

 The methods demonstrated here are in the List interface and therefore are available to
all List objects. Each implementation class of List also adds additional behaviors relevant
to the type of list. For example:

 The LinkedList class implements a doubly linked list and contains the methods
 addFirst , addLast , removeFirst , and removeLast for adding and removing elements at
the beginning or end of the linked list.

 The Stack class contains the methods push and pop for pushing and popping elements
onto the stack, as demonstrated in the sidebar “ The Stack Class. ”

 The Vector class contains methods for array - like behaviors, like elementAt ,
 insertElementAt , and removeElementAt .

 The ArrayList class is a simple (but useful) implementation of the List interface and
basically contains the same methods as the List interface.

�

�

�

�

The Stack Class

 The Stack class in java.util implements a Stack data structure as a list. The Stack class
defi nes a push method that pushes an item on the stack and a pop method that removes the
top object from the stack. For example, the following statements create a Stack for storing
 Integer objects and push two elements onto the stack:

Stack < Integer > mystack = new Stack < Integer > ();

mystack.push(new Integer(100));

mystack.push(200);

 Due to generics, only Integer types can be pushed on the Stack mystack . (Pushing 200
is allowed because of Java ’ s autoboxing feature.) The following line of code does not
compile:

mystack.push(“Not an Integer”);

 The compiler error looks like

ListDemo.java:9: push(java.lang.Integer) in

java.util.Stack < java.lang.Integer > cannot be applied to

(java.lang.String)

mystack.push(“Not an Integer”);

 ^

 The pop method of stack removes the top element and returns a reference to it. For
example:

Integer top = mystack.pop();

for(Integer i : mystack) {

 System.out.println(i);

}

c07.indd Sec2:440c07.indd Sec2:440 2/11/09 6:42:23 PM2/11/09 6:42:23 PM

Using Generics 441

 Use lists when you work with ordered collections where duplicates are allowed and you
need control over where the items appear in the collection. If duplicates are not allowed, a
set might be more appropriate for your needs, as discussed in the next section.

 Sets

 The Collections Framework has several implementations of the Set interface, including
 HashSet , LinkedHashSet , and TreeSet . Use a Set object when duplicates are not allowed in
your collection. The equals method is used to determine if elements are duplicated. All the
 Set classes use generics. For example, the HashSet class is declared as

public class HashSet < E > extends AbstractSet < E >

 implements Set < E > , Cloneable, Serializable

 The E is a generic type that represents the data type of the elements that can be stored in
the HashSet .

 To demonstrate using sets, suppose we have the following class called Product to
represent a product for sale. According to the equals method, two Product objects are
equal if they have the same id .

public class Product {

 String description;

 double price;

 int id;

 public Product(String d, double p, int i) {

 description = d;

 price = p;

 id = i;

 }

 public boolean equals(Object obj) {

 if(!(obj instanceof Product)) {

 return false;

 }

 The for - each loop executes only once because the 200 was popped off the top of the
stack, leaving only 100 . The output of the previous statements is

100

 Use the Stack class for situations that require LIFO behavior.

c07.indd Sec2:441c07.indd Sec2:441 2/11/09 6:42:23 PM2/11/09 6:42:23 PM

442 Chapter 7 � Collections and Generics

 Product other = (Product) obj;

 return this.id == other.id;

 }

 public int hashCode() {

 return id;

 }

 public String toString() {

 return id + “ “ + description;

 }

}

 Let ’ s add some Product objects to a set. Using generics, the following statements create
a HashSet for Product objects. Study the code carefully and see if you can determine its
result:

7. Product one = new Product(“Laptop”, 1299.99, 101);

8. Product two = new Product(“Television”, 1099.00, 202);

9. Product three = new Product(“Cellphone”, 200.00, 303);

10. Product four = new Product(“PC”, 699.99, 101);

11. Set < Product > set = new HashSet < Product > ();

12. set.add(one);

13. set.add(two);

14. set.add(three);

15. set.add(four);

16. set.add(null);

17. set.add(null);

18. for(Product p : set) {

19. System.out.println(p);

20. }

 The four Product objects are added to set using the add method of Set . Notice that the
objects one and four have the same id and are therefore equal, so adding four on line 15
does not modify the set. A HashSet allows a null entry, but only once. Adding null on line
16 modifi es the set, while line 17 does not. Sets are not ordered, so the elements of the set
are displayed in the for - each loop in no particular order. The output of the code is

null

101 Laptop

202 Television

303 Cellphone

c07.indd Sec2:442c07.indd Sec2:442 2/11/09 6:42:24 PM2/11/09 6:42:24 PM

Using Generics 443

 The add method was invoked six times on set , but the HashSet only contains four
elements because duplicate elements are not added. Because we are using generics, only
 Product objects can be added to set based on its construction on line 11.

 Another Set implementation is LinkedHashSet , which is basically identical to HashSet
except the insertion order is maintained behind the scenes by a doubly linked list. The
 iterator method returns the set in the order the elements were inserted. For example, see
if you can determine the output of the following LinkedHashSet iterator that uses the same
four Product objects from the previous code example:

Set < Product > linkedset = new LinkedHashSet < Product > ();

linkedset.add(two);

linkedset.add(three);

linkedset.add(null);

linkedset.add(two);

linkedset.add(four);

linkedset.add(one);

Iterator < Product > products = linkedset.iterator();

while(products.hasNext()) {

 System.out.println(products.next());

}

 The linkedset object maintains the insertion order, so the iterator outputs the four
unique Product objects in the order that they were added:

202 Television

303 Cellphone

null

101 PC

 Inserting two a second time did not change linkedset . Adding one did not change the
 linkedset because four was already added and the four and one Product objects are
equal.

 Another Set implementation in the Collections Framework is TreeSet , useful for
working with large sets of data that require multiple searches or insertions. The TreeSet
uses a tree data structure, so access is guaranteed in log(n) time, where n is the number
of elements in the tree. The TreeSet class also orders the elements in the set and contains
methods like first , last , ceiling , and floor for accessing specifi c elements and subsets.
Use TreeSet when your collection does not allow duplicates and you want control over
how the elements in the set are ordered.

c07.indd Sec2:443c07.indd Sec2:443 2/11/09 6:42:24 PM2/11/09 6:42:24 PM

444 Chapter 7 � Collections and Generics

 The NavigableSet Interface

 A TreeSet object has a specifi c ordering, and the TreeSet class implements the
 NavigableSet interface, which declares methods for navigating and searching a set.
The interface contains the following generic methods, where E represents the data type of
the elements in the set:

 Iterator < E > iterator() returns an iterator in ascending order.

 Iterator < E > descendingIterator() returns an iterator in descending order.

 E lower(E e) returns the greatest element in this set strictly less than the given
element.

 E floor(E e) returns the greatest element in this set less than or equal to the given
element.

 E ceiling(E e) returns the least element in this set greater than or equal to the
given element.

 E higher(E e) returns the least element in this set strictly greater than the given
element.

 NavigableSet < E > subSet(E fromElement, boolean fromInclusive, E toEle-
ment, boolean toInclusive) returns a view of the portion of this set whose
elements range from fromElement to toElement .

 The interface also defi nes headSet and tailSet methods for retrieving subsets from the
beginning or end of the set.

 Let ’ s look at an example. The following code adds a collection of Integer objects to a
 TreeSet named tree :

TreeSet < Integer > tree = new TreeSet < Integer > ();

for(int i = 1; i < = 20; i++) {

 tree.add(i);

}

 The tree contains 20 Integer objects whose values are 1 to 20. The following statements
demonstrate some of the methods in NavigableSet . Study the code and see if you can
determine its output:

12. Integer ceiling = tree.ceiling(10);

13. System.out.println(“ceiling of 10 = “ + ceiling);

14. Integer higher = tree.higher(10);

15. System.out.println(“floor of 10 = “ + higher);

�

�

�

�

�

�

�

c07.indd Sec2:444c07.indd Sec2:444 2/11/09 6:42:25 PM2/11/09 6:42:25 PM

Using Generics 445

16. NavigableSet < Integer > subset = tree.subSet(new Integer(7), false,

 new Integer(14), true);

17. for(Integer x : subset) {

18. System.out.print(x + “ “);

19. }

 The previous statements break down as follows:

1. Line 12 retrieves the ceiling of 10 , which is the smallest element greater than or
equal to 10 , which is 10 .

2. Line 14 retrieves the higher of 10 , which is the smallest element greater than 10 ,
which is 11 .

 3. Line 16 retrieves a subset of tree from 7 (noninclusive) and 14 (inclusive), which is
8 to 14 . The for - each loop on line 17 outputs this subset.

 The output of the code is

ceiling of 10 = 10

floor of 10 = 11

8 9 10 11 12 13 14

 The TreeSet class is the only class in the Collections Framework that implements the
 NavigableSet interface, and the exam requires basic knowledge of the methods listed
previously.

 Now let ’ s discuss the details of using the various types of maps in the Collections
Framework.

 Maps

 The Map interface is the parent interface of the various maps in the Collections Framework.
Maps are unique in that they do not implement the Collection interface like all the other
collections classes. The elements in a map are pairs of data: a value and a key that maps to
that value. Think of a map as an array, except instead of integer indexes to access elements,
you use a key that can be any data type. Maps do not allow duplicate keys, but there is no
restriction on duplicate values.

c07.indd Sec2:445c07.indd Sec2:445 2/11/09 6:42:25 PM2/11/09 6:42:25 PM

446 Chapter 7 � Collections and Generics

 The Map implementations are HashMap , LinkedHashMap , and TreeMap . Like all the other
Collections Framework classes and interfaces, maps use generics. Maps are different,
though, because you specify two data types when you construct a Map object: the data type
of the key and the data type of the value. For example, the declaration of the TreeMap class
looks like this:

public class TreeMap < K,V > extends AbstractMap < K,V >

 implements NavigableMap < K,V > , Cloneable, Serializable

 The K and V are generic types for the key and value, respectively. The following
statement declares a new TreeMap whose keys are String objects and whose values are Long
objects:

TreeMap < String, Long > phoneBook = new TreeMap < String, Long > ();

 Unlike Collection objects where you “ add ” an element, with maps you “ put ” an
element in the map. For example, the following statements put several paired values into
the phoneBook map:

phoneBook.put(“Nguyen, Scott”, 2015551111L);

phoneBook.put(“Negreanu, Dan”, 2015552222L);

phoneBook.put(“Ivey, Phil”, 2015553333L);

phoneBook.put(“Rosario, Shirley”, 2015554444L);

phoneBook.put(“Boyd, Russ”, 2015555555L);

 The keys in this map are the names and the values are the phone numbers. The L after
the phone numbers ensures that the values are autoboxed into Long objects. A TreeMap
orders the elements in the tree based on the natural ordering of the keys, so the elements in
 phoneBook are in alphabetical order.

 The Map interface contains several methods for obtaining elements. You can obtain
a specifi c value given a key, the entire list of values, and specifi c keys. The following
statements demonstrate some of the Map methods. Because of generics, no casting is needed
when you retrieve elements from the map. Study the code and see if you can determine its
result:

14. Long number = phoneBook.get(“Ivey, Phil”); //a value from a key

15. Set < String > keys = phoneBook.keySet();

16. for(String key : keys) {

17. System.out.println(key + “: “ + phoneBook.get(key));

18. }

19.

20. Map.Entry < String, Long > last = phoneBook.lastEntry();

c07.indd Sec2:446c07.indd Sec2:446 2/11/09 6:42:26 PM2/11/09 6:42:26 PM

Using Generics 447

21. System.out.println(“Last entry = “ + last.getKey()

 + “ “ + last.getValue());

22.

23. String firstKey = phoneBook.firstKey();

24. System.out.println(“First key = “ + firstKey);

 A description of the previous statements follows:

 1. Line 14 shows how to use the get method to obtain a value given a key. The value of
 number is 2015553333 .

 2. Line 15 shows how to use the keySet method to obtain a Set of just the keys. The keys
are String objects in phoneBook , as seen by the data type of the keys reference.

 3. The for - each loop on line 16 uses the get method to obtain the value, displaying each
key - value pair in phoneBook .

 4. Map.Entry is an object for storing map elements. The last reference on line 20 points
to the last map entry in phoneBook , which based on the natural ordering of String
objects is “ Rosario, Shirley “ .

 5. Line 21 demonstrates the getKey and getValue methods of Map.Entry , which return
 “ Rosario, Shirley ” and 2015554444 , respectively.

 6. Line 23 demonstrates the firstKey method, which returns the first key in the set. In
 phoneBook , that is “ Boyd, Russ “ .

 The output of the previous statements is

Boyd, Russ: 2015555555

Ivey, Phil: 2015553333

Negreanu, Dan: 2015552222

Nguyen, Scott: 2015551111

Rosario, Shirley: 2015554444

Last entry = Rosario, Shirley 2015554444

First key = Boyd, Russ

 TreeMap is a good choice for a phone book because elements are retrieved and inserted
in log(n) time, where n is the number of elements. A TreeMap with hundreds of thousands
of entries has a relatively effi cient access time.

 The HashMap and LinkedHashMap classes have similar put and get methods for adding
and retrieving elements. Elements in a HashMap are iterated in arbitrary order, while a
 LinkedHashMap maintains the elements in their order of insertion. Use a HashMap if ordering
does not matter, a LinkedHashMap if insertion order is suffi cient, and a TreeMap if you need
to control the specifi c ordering of elements.

c07.indd Sec2:447c07.indd Sec2:447 2/11/09 6:42:26 PM2/11/09 6:42:26 PM

448 Chapter 7 � Collections and Generics

 The NavigableMap Interface

 The TreeMap class implements the NavigableMap interface, which contains methods
similar to the NavigableSet interface for navigating and searching a map. Here are some
of the methods in NavigableMap :

 Map.Entry < K,V > ceilingEntry(K key) returns a key - value mapping associated with
the least key greater than or equal to the given key.

 K ceilingKey(K key) returns the least key greater than or equal to the given key.

 Map.Entry < K,V > floorEntry(K key) returns a key - value mapping associated with
the greatest key less than or equal to the given key.

 K floorKey(K key) returns the greatest key less than or equal to the given key.

 NavigableSet < K > descendingKeySet() returns a reverse order NavigableSet view
of the keys contained in this map.

 NavigableMap < K,V > descendingMap() returns a reverse order view of the mappings
contained in this map.

 NavigableMap < K,V > subMap(K fromKey, boolean fromInclusive, K toKey,
boolean toInclusive) returns a view of the portion of this map whose keys range
from fromKey to toKey .

 The interface also defi nes headMap and tailMap methods for obtaining subsets at the
beginning and end of the map. Let ’ s look at an example. The following TreeMap contains
26 character and integer pairs:

TreeMap < Character, Integer > ascii = new TreeMap < Character, Integer > ();

int value = 97;

for(char c = ‘a’; c < = ‘z’; c++) {

 ascii.put(c, value++);

}

 Study the following code and see if you can determine its result:

12. Map.Entry < Character, Integer > ceiling = ascii.ceilingEntry(‘h’);

13. System.out.println(“ceiling: “ + ceiling);

14. SortedMap < Character, Integer > tailMap = ascii.tailMap(‘t’);

15. Set < Character > tailKeys = tailMap.keySet();

16. for(Character key : tailKeys) {

17. System.out.print(key + “ “);

18. }

19. System.out.println();

20. NavigableSet < Character > keys = ascii.descendingKeySet();

�

�

�

�

�

�

�

c07.indd Sec2:448c07.indd Sec2:448 2/11/09 6:42:26 PM2/11/09 6:42:26 PM

Generic Types and Methods 449

21. for(Character key : keys) {

22. System.out.print(key + “ “);

23. }

 A breakdown of the previous statements follows:

 Line 12 returns the least element greater than or equal to ‘ h ’ , which is the pair
(‘h’, 104) .

 Line 14 retrieves the tail of the map after the element ’ t’ . Line 15 retrieves just the
keys from tailMap , and the for - each loop on line 16 displays these keys.

 Line 20 is the keys from ascii in descending order, which are printed in the for - each
loop on line 21.

 The output of the previous statements is

ceiling: h=104

t u v w x y z

z y x w v u t s r q p o n m l k j i h g f e d c b a

 As you can see, a NavigableMap object provides many useful methods for navigating and
searching a map. The TreeMap class is the only class in the Collections Framework that
implements the NavigableMap interface.

�

�

�

 Now that we have discussed generics and you ’ ve used them with the Collections
Framework, let ’ s see how to introduce generics into your own code. The following section
discusses the details of writing and using generic types and methods.

 Generic Types and Methods
 Generic types are not exclusive to the Collections Framework. You can defi ne your own
classes, interfaces, and methods that use generic types. The exam requires a general
understanding of this technique, and this section examines the details of using generics in
your own classes, including a discussion on the following:

 Generic classes

 Generic interfaces

 Generic methods

 Bounded generic types

 Generic wildcards

 Let ’ s start with generic classes.

�

�

�

�

�

c07.indd Sec3:449c07.indd Sec3:449 2/11/09 6:42:27 PM2/11/09 6:42:27 PM

450 Chapter 7 � Collections and Generics

 Generic Classes

 You can introduce generics into your own classes and interfaces. The syntax for
introducing a generic is to declare a formal type parameter in angle brackets, < > . For
example, the following class named Cupboard has a generic type variable declared after the
name of the class:

public class Cupboard < T > {

 private T item;

 public Cupboard(T item) {

 System.out.println(“Cupboard for “ + item.getClass());

 this.item = item;

 }

 public T getItem() {

 return item;

 }

}

 The generic type T is available anywhere within the Cupboard class, and its compile - time
type is determined when a user declares and instantiates a Cupboard object. The following
statements are valid and create three Cupboard objects, each denoting a different data type
for the item fi eld:

4. Cupboard < String > c1 = new Cupboard < String > (“dishes”);

5. Cupboard < Integer > c2 = new Cupboard < Integer > (123);

6. Cupboard < Double > c3 = new Cupboard < Double > (3.14159);

7. String s = c1.getItem();

8. Integer x = c2.getItem();

9. Double d = c3.getItem();

 Notice that c1 assigns the generic of Cupboard to be a String type, and then passes in
a String to the constructor. The variable c2 sets its generic type to be Integer and passes
in an Integer (autoboxed) into the constructor. Similarly, c3 uses a Double for its generic.
The constructor of Cupboard prints out the class type of the generic, so the output of the
previous statements is

Cupboard for class java.lang.String

Cupboard for class java.lang.Integer

Cupboard for class java.lang.Double

 The calls to getItem on lines 7 – 9 do not need a cast. The compiler knows the data type
of the return value for each Cupboard instance, a key benefi t to using generics.

c07.indd Sec3:450c07.indd Sec3:450 2/11/09 6:42:27 PM2/11/09 6:42:27 PM

Generic Types and Methods 451

 As with classes, you can use generics in interface declarations, which I discuss in the
next section.

 Generic Interfaces

 An interface can declare a formal type parameter in the same fashion as a class. For example,
the following Breakable interface uses a generic type as the argument to its doBreak method:

public interface Breakable < T > {

 public void doBreak(T t);

}

 Type Erasure

 Specifying a generic type allows the compiler to enforce proper use of the generic type.
For example, specifying the generic type of a Cupboard as String is like replacing the T in
the Cupboard class with String :

Cupboard < String > c1 = new Cupboard < String > (“dishes”);

 However, behind the scenes, the compiler replaces all references to T in Cupboard with
 Object . In other words, after the code compiles, your generics are actually just Object
types. The Cupboard class looks like the following output:

public class Cupboard {

 private Object item;

 public Cupboard(Object item) {

 System.out.println(“Cupboard for “ + item.getClass());

 this.item = item;

 }

 public Object getItem() {

 return item;

 }

}

 Displaying item.getClass() doesn ’ t simply output Object each time due to
polymorphism. The class name displayed is the actual data type that the fi eld item refers
to. Also, if getItem returns an Object , a cast is needed at runtime. The compiler adds the
appropriate cast for you whenever you invoke getItem .

 This process of removing the generics syntax from your code is referred to as type
erasure . Type erasure allows your code to be compatible with older versions of Java that
did not contain generics.

c07.indd Sec3:451c07.indd Sec3:451 2/11/09 6:42:28 PM2/11/09 6:42:28 PM

452 Chapter 7 � Collections and Generics

 A class can implement Breakable by specifying a data type for T in the implements
statement, as the following Glass class demonstrates:

public class Glass implements Breakable < String > {

 public void doBreak(String message) {

 System.out.println(“Breaking a Glass: “ + message);

 }

}

 The Glass declaration denotes String as the data type for T in Breakable , so the
 doBreak method must have a String parameter.

 The other technique for a class to implement Breakable is to specify another generic as
the data type:

public class Dish < U > implements Breakable < U > {

 public void doBreak(U u) {

 System.out.println(“Breaking “ + u.toString());

 }

}

 The data type for the Breakable generic T will be the same as the data type for the
generic U in Dish , which is specifi ed when a Dish is constructed. For example:

Dish < Float > dish = new Dish < Float > ();

dish.doBreak(2.7F);

 The Dish object uses a Float for its generic, so the parameter for invoking doBreak is a
 Float . The output of the previous statement is

Breaking 2.7

 As a side note, the U in Dish is arbitrary and in the real world I would probably use a T .
I just wanted to emphasize that the Dish is assigning the generic T in Breakable to another
generic.

 Naming Conventions for Generics

 You can name your generic types using any valid identifi er. However, the standard
naming convention is to use a single, uppercase letter. Again, use any letter you want,
but in general the following letters are used:

 E for an element

 K for a map key

�

�

c07.indd Sec3:452c07.indd Sec3:452 2/11/09 6:42:28 PM2/11/09 6:42:28 PM

Generic Types and Methods 453

 Declaring a generic type at the class level allows the generic to be used anywhere within
the class. You can also declare generics at the method level, which I discuss in the next
section.

 Generic Methods

 A method or constructor can contain generic type parameters, which makes the method
or constructor generic. You defi ne a generic method by declaring a generic type in angle
brackets before the return value of the method. The scope of the generic type is only within
the method.

 To demonstrate, the following Box class contains a generic method named ship. The data
type of the argument is the generic denoted by < T > preceding the method signature, which
means that the parameter ’ s type is not determined until compile time, allowing the ship
method to be invoked with any object type. See if you can determine the result of the Box
program:

1. import java.awt.Frame;

2.

3. public class Box {

4. public static < T > void ship(T item) {

5. System.out.println(“Shipping “ + item.toString());

6. if(item instanceof Frame) {

7. Frame frame = (Frame) item;

8. frame.setSize(200,200);

9. frame.setVisible(true);

10. }

11. }

12.

13. public static void main(String [] args) {

14. Box.ship(“a String object”);

15. Box.ship(args);

16. Box.ship(new Frame());

17. }

18. }

 V for a map value

 N for a number

 T for a generic data type

 Use S , U , V , and so on for multiple types in the same class.

�

�

�

c07.indd Sec3:453c07.indd Sec3:453 2/11/09 6:42:29 PM2/11/09 6:42:29 PM

454 Chapter 7 � Collections and Generics

 On line 6, if the data type of the argument passed in is Frame , the Frame is given a
size and displays. Within main , line 14 passes in a String object, so the T is a String
during that invocation. On line 15, an array of String objects is passed in, so T is of type
 String [] for that invocation. Line 16 passes in a new Frame object, so line 6 is true and
a 100 � 100 - pixel window displays after line 9 executes. The ship method also prints the
 toString method of each argument, so the output to the command prompt is

Shipping a String object

Shipping [Ljava.lang.String;@3e25a5

Shipping java.awt.Frame[frame0,0,0,0x0,invalid,hidden,

layout=java.awt.BorderLayout,title=,resizable,normal]

 The Syntax for Invoking a Generic Method

 Generics have an optional syntax for specifying the type for a generic method. You can
place the data type of the generic in angle brackets, < > , after the dot operator and before
the method call. For example, the following statements are valid method invocations
of the ship method in the Box class:

Box. < String > ship(“a String object”);

Box. < String [] > ship(args);

Box. < Frame > ship(new Frame());

 The syntax makes the code more readable and also gives you control over the generic
type in situations where the type might not be obvious.

 Let ’ s look at another example of a generic method. Suppose we add the following
method to the Box class, which uses the generic Dish class discussed earlier in this section:

public static < U > void wrap(List < Dish < U > > list) {

 for(Dish < U > dish : list) {

 System.out.println(“Wrapping “ + dish);

 }

}

 The wrap method takes in a List of Dish objects with any data type for the Dish ’ s
generic. The for - each loop prints out each Dish < U > in the list. The following statements
demonstrate invoking the wrap method:

Dish < String > d1 = new Dish < String > ();

Dish < String > d2 = new Dish < String > ();

Dish < String > d3 = new Dish < String > ();

List < Dish < String > > dishes = new ArrayList < Dish < String > > ();

c07.indd Sec3:454c07.indd Sec3:454 2/11/09 6:42:29 PM2/11/09 6:42:29 PM

Generic Types and Methods 455

dishes.add(d1);

dishes.add(d2);

dishes.add(d3);

Box.wrap(dishes);

 The call to wrap passes in a List < Dish < String > > object, and the output looks like this:

Wrapping Dish@1389e4

Wrapping Dish@c20e24

Wrapping Dish@2e7263

 If the syntax of List < Dish < String > > looks confusing, welcome to Java generics! Often
the syntax for generics requires the nesting of data types, which tends to result in code that
is not always intuitive. As we will see in the next section, the bounded generic types only
add another layer of complexity to this syntax.

 Bounded Generic Types

 A generic type parameter opens the door for any data type to be used as the generic type.
There might be situations where you want to use generics but also restrict the type used.
A bounded parameter type is a generic type that specifi es a bound for the generic. You can
specify a parent class for a generic type using the extends keyword, creating an upper -
 bound generic, as the following example shows:

public class Hello < T extends List > { }

 The previous declaration states that T is a generic type that must extend (or, in this case,
implement) the List interface. Using extends in a generic creates an upper bound on the
actual type used for the generic. For example, the following statements are valid for
the Hello class because ArrayList and Stack both implement List :

Hello < ArrayList > h1 = new Hello < ArrayList > ();

Hello < Stack > h2 = new Hello < Stack > ();

 However, the following statement is not valid because a HashMap is not a List :

Hello < HashMap > h3 = new Hello < HashMap > (); //not valid

 The compiler error looks like

Hello.java:7: type parameter java.util.HashMap is not within its bound

Hello < HashMap > h3 = new Hello < HashMap > ();

c07.indd Sec3:455c07.indd Sec3:455 2/11/09 6:42:30 PM2/11/09 6:42:30 PM

456 Chapter 7 � Collections and Generics

 Understanding Polymorphism and Generics

 Be careful when you work with polymorphism and generic types that do not use the
 extends keyword. There is no implied upper bound when a specifi c generic type is
declared without the extends keyword. To demonstrate, let ’ s use the Cupboard class from
earlier in this section that used a formal type parameter:

public class Cupboard < T > {

 //definition of class

}

 The following statement is valid because we are assigning a Cupboard < Number > object to
a Cupboard < Number > reference:

Cupboard < Number > a = new Cupboard < Number > (123);

 Now consider the following statement that assigns a Cupboard < Double > object to a
 Cupboard < Number > reference. Is it valid?

Cupboard < Number > b = new Cupboard < Double > (456.0);

 Surprisingly, the answer is no: the previous statement does not compile and generates
the following compiler error:

SubtypeDemo.java:5: incompatible types

found : Cupboard < java.lang.Double >

required: Cupboard < java.lang.Number >

Cupboard < Number > b = new Cupboard < Double > (456.0);
 ^

 Even though a Double is a Number , a Cupboard < Double > is not a Cupboard < Number > . If you
want to use a polymorphic reference, you need to use an upper bound. For example, the
following statement is valid:

Cupboard < ? extends Number > c = new Cupboard < Double > (789.0);

 The ? is referred to as a wildcard and creates a reference that can point to any
 Cupboard < ? > object where ? extends the Number class. The previous statement is valid
because we are assigning a Cupboard < Double > object to a Cupboard < ? extends Number >
reference and Double extends Number .

 We use the extends keyword to create an upper - bound generic type. In the next section
I discuss how to use the super keyword together with a wildcard to create a lower - bound
generic type, together with the other details that you need to know about using generic
wildcards.

c07.indd Sec3:456c07.indd Sec3:456 2/11/09 6:42:30 PM2/11/09 6:42:30 PM

Generic Types and Methods 457

 Let ’ s look at a complete example. The following MyMath class contains a generic method
named average with type < T extends Number > . (Number is the parent class of the numeric
wrapper classes.) Study the following code and see if you can determine its result:

1. public class MyMath {

2. public static < T extends Number > double average(T one, T two) {

3. double d1 = one.doubleValue();

4. double d2 = two.doubleValue();

5. double average = (d1 + d2)/2.0;

6. return average;

7. }

8.

9. public static void main(String [] args) {

10. Double x = 25.0;

11. Integer y = 35;

12. double ave = MyMath.average(x, y);

13. System.out.println(“average = “ + ave);

14. }

15. }

 Within main on line 12, a Double and Integer are passed into the average method,
which is valid because both Double and Integer are subclasses of Number . A nice advantage
of using an upper - bound generic type is that within the average method, we can invoke the
 doubleValue method of Number on lines 3 and 4 without casting the one or two references.
The compiler does not know the exact data type of one or two , but it does know that these
two references are at least of type Number . Without the extends Number in the generic, lines
3 and 4 would not compile.

 Using the average method, the following statement compiles because of the autoboxing
feature of Java:

MyMath.average(12.0, -12);

 However, the following statement does not compile because ‘ a ’ is a char and “ Hello ” is
a String , neither of which extend Number :

MyMath.average(‘a’, “Hello”);

 The compiler error looks like this:

MyMath.java:15: internal error; cannot instantiate < T > average(T,T)

at MyMath to (char,java.lang.String)

 MyMath.average(‘a’, “Hello”);

c07.indd Sec3:457c07.indd Sec3:457 2/11/09 6:42:31 PM2/11/09 6:42:31 PM

458 Chapter 7 � Collections and Generics

 Generic Wildcards

 A wildcard generic type is an unknown generic represented with a question mark, ? . The
wildcard provides a polymorphic - like behavior for declaring generics. You can use generic
wildcards in three ways:

 ? , an unbounded wildcard

 ? extends type , a wildcard with an upper bound

 ? super type , a wildcard with a lower bound

 This section examines each of these wildcard uses, starting with the unbounded
wildcard.

 Unbounded Wildcards

 The unbounded wildcard represents any data type, similar to the < T > syntax. Use the ?
in situations where you do not need a formal parameter type like < T > . For example, the
following for - each loop takes in a List of any type. Because the loop does not need to
know the actual data type, it uses a wildcard:

public static void printList(List < ? > list) {

 for(Object x : list) {

 System.out.println(x.toString());

 }

}

 Any List of any generic type can be passed into the printList method. For example,
the following statements invoke printList with an ArrayList < String > object:

ArrayList < String > keywords = new ArrayList < String > ();

keywords.add(“java”);

keywords.add(“generics”);

keywords.add(“collections”);

printList(keywords);

 The output of the statements is

java

generics

collections

 Upper - Bound Wildcards

 As discussed in the sidebar “ Understanding Polymorphism and Generics , ” polymorphism is
not quite as apparent with generics. For example, the following statement is valid:

ArrayList < Double > list = new ArrayList < Double > ();

�

�

�

c07.indd Sec3:458c07.indd Sec3:458 2/11/09 6:42:31 PM2/11/09 6:42:31 PM

Generic Types and Methods 459

 The reference list and the object it refers to are both of type ArrayList < Double > .
However, the following statement is not valid:

ArrayList < Number > notvalid = new ArrayList < Double > ();//doesn’t compile

 Even though Double is a child of Number , the compiler complains that
 ArrayList < Double > is incompatible with ArrayList < Number > . An ArrayList < Number >
reference can only point to an ArrayList object whose generic is a Number . If you want
a reference that can refer to an ArrayList whose generic is any Number (including subclasses
of Number), you need to use the wildcard:

ArrayList < ? extends Number > list2 = new ArrayList < Double > ();

 The generic < ? extends Number > declares list2 as a reference to an ArrayList object
whose generic is Number or any subclass of Number .

 The following statements are also valid:

ArrayList < ? extends Number > list3 = new ArrayList < Integer > ();

List < ? extends Number > list4 = new Stack < Float > ();

 The list3 reference is valid because Integer is a child of Number . The list4 reference is
valid because both Float is a child of Number and Stack implements List .

 Lower - Bound Wildcards

 Similar to using the extends keyword for creating an upper - bound wildcard, you can
use the super keyword to create a lower - bound wildcard with a wildcard generic. For
example, the following statement declares a generic type that must be an IOException or
parent of IOException :

 < ? super IOException >

 Using this generic type, see if you can determine whether or not the following statements
are valid declarations:

6. ArrayList < ? super IOException > alist1 = new ArrayList < Exception > ();

7. ArrayList < ? super IOException > alist2 =

 new ArrayList < IOException > ();

8. ArrayList < ? super IOException > alist3 =

 new ArrayList < FileNotFoundException > ();

 Line 6 is valid because < Exception > is a supertype of the generic < ? super
IOException > and Exception is a parent class of IOException . Line 7 is valid because the
lower - bound generic < ? super IOException > includes the IOException class. Line 8 does

c07.indd Sec3:459c07.indd Sec3:459 2/11/09 6:42:31 PM2/11/09 6:42:31 PM

460 Chapter 7 � Collections and Generics

not compile because FileNotFoundException is not a parent class of IOException . The
compiler error looks like the following output:

WildcardDemo.java:8: incompatible types

found : java.util.ArrayList < java.io.FileNotFoundException >

required: java.util.ArrayList < ? super java.io.IOException >

ArrayList < ? super IOException > alist3 =

 new ArrayList < FileNotFoundException > ();

 Let ’ s look at an example of a method that declares a lower - bound generic. The
following showExceptions method prints a List of objects whose type is List < ? super
IOException > :

public static void showExceptions(List < ? super IOException > list) {

 for(Object e : list) {

 System.out.println(e.toString());

 }

}

 The following statements create an ArrayList < Exception > , a valid argument for
 showExceptions . Study the code and determine if it compiles and what the output is:

30. ArrayList < ? super IOException > exceptions =

 new ArrayList < Exception > ();

31. IOException e1 = new IOException(“Problem 1”);

32. IOException e2 = new IOException(“Problem 2”);

33. FileNotFoundException e3 = new FileNotFoundException(“Problem 3”);

34. exceptions.add(e1);

35. exceptions.add(e2);

36. exceptions.add(e3);

37. showExceptions(exceptions);

 The reference exceptions on line 30 is of type ArrayList < ? super IOException > and
the object it refers to is an ArrayList < Exception > . Therefore, line 30 is valid because
 Exception is the parent of IOException . Lines 31 – 36 add three Exception objects
to the ArrayList . Line 37 passes exceptions to showExceptions . The argument of
 showExceptions is List < ? super IOException > , so passing in an ArrayList < ? super
IOException > is also valid. The code compiles and runs fi ne, and the output is

java.io.IOException: Problem 1

java.io.IOException: Problem 2

java.io.FileNotFoundException: Problem 3

c07.indd Sec3:460c07.indd Sec3:460 2/11/09 6:42:32 PM2/11/09 6:42:32 PM

Working with Lists 461

 This ends our discussion on writing your own generic classes, interfaces, and methods.
Now we change subjects and discuss how to sort and search lists using classes in the
java.util package.

 Working with Lists
 For the exam you should be able to sort lists either in their natural order or using a
 Comparator object. The exam also requires knowledge of performing a binary search on
lists. These objectives are indirectly referring to methods in the java.util.Collections
class. In particular, the objectives refer to the static methods sort and binarySearch in
 Collections , which take in a List and an optional Comparator object.

 In the next section I discuss the details that you need to know for the exam regarding
the sorting and searching of lists using the Collections class, starting with the sort
methods.

 Sorting Lists

 The Collections class (not to be confused with the Collection interface) contains
dozens of useful static methods for working with and manipulating collections. The exam
objectives specifi cally state knowledge of sorting lists, which is achieved using the two sort
methods of Collections :

 public static < T extends Comparable < ? super T > > void sort(List < T > list)
sorts the given List according to its natural ordering, which is the ordering based on
the implementation of the compareTo method in the Comparable interface. The elements
in list must implement Comparable and must be mutually comparable , meaning each
element can be compared to each other element without a ClassCastException being
thrown.

�

 Understanding Generic Supertypes

 You might fi nd it confusing that a FileNotFoundException object can appear in
the exceptions list, especially because FileNotFoundException is not a parent of
 IOException . The upper bound of the generic method showExceptions applies to the data
type of the generic, which for < ? super IOException > must be a parent class of Exception .
The argument passed in was an ArrayList < Exception > , which is compatible with < ? super
IOException > . Because the data type of the generic is ArrayList < IOException > , any child
of Exception can appear in the actual ArrayList , which is why FileNotFoundException
can be in the list. In fact, any child object of Exception can appear in the exceptions object
created on line 30 of the previous code snippet.

c07.indd Sec4:461c07.indd Sec4:461 2/11/09 6:42:32 PM2/11/09 6:42:32 PM

462 Chapter 7 � Collections and Generics

 public static < T > void sort(List < T > list, Comparator < ? super T > c) sorts the
given List according to the ordering of the given Comparator . All elements in list
must be mutually comparable.

 Notice that in the fi rst sort method the generic T is declared as < T extends
Comparable < ? super T > > , meaning the list object passed in must contain elements that
implement the Comparable interface (because of extends Comparable) or whose parent class
implements Comparable (based on < ? super T >).

 The second sort method does not have this restriction because the sorting is based on a
 Comparator , which is a separate object.

 We discuss the difference between Comparable sorting and Comparator sorting next,
starting with a discussion on the Comparable sort method.

 Comparable Sorting

 Let ’ s look at an example of the fi rst sort method shown previously that uses the natural
ordering of objects. Recall that the natural ordering refers to the behavior of the compareTo
method in the Comparable interface, so the elements being sorted must implement the
 Comparable interface. The following program sorts a list of Character objects in their
natural order. Study the following program and see if you can determine its result:

1. import java.util.*;

2.

3. public class CharacterSorter {

4. public static void main(String [] args) {

5. char [] chars = args[0].toCharArray();

6. List < Character > list = new ArrayList < Character > ();

7. for(char c : chars) {

8. list.add(c);

9. }

10. Collections.sort(list);

11. for(Character c : list) {

12. System.out.print(c + “ “);

13. }

14. }

15. }

 The CharacterSorter program sorts an ArrayList of Character objects. Here is the
sequence of events of the program:

 1. Line 5 converts the first command - line argument into a char array.

 2. Line 6 creates a new ArrayList < Character > , and the for - each loop on line 7 adds
each char in chars to the list. Because of autoboxing, each char is wrapped in a
 Character object.

�

c07.indd Sec4:462c07.indd Sec4:462 2/11/09 6:42:33 PM2/11/09 6:42:33 PM

Working with Lists 463

 3. Line 10 invokes the sort method of Collections . The sort method modifies list ,
rearranging the Character objects into their natural order, which is strictly based on
the order of their numeric Unicode values.

 4. The for - each loop on line 11 displays the sorted list.

 Suppose the program is executed with the following command:

java CharacterSorter soRTedChAractERs

 The output is

A C E R R T a c d e h o r s s t

 Notice that uppercase letters precede all lowercase letters because the numeric Unicode
values of uppercase letters appear before the lowercase letters.

 Natural Ordering of Wrapper Classes and Strings

 The exam objectives mention knowledge of the natural ordering of the primitive wrapper
classes and String . The natural ordering of the numeric classes Byte , Short , Integer ,
 Long , Float , and Double matches their natural ordering in the number system, just as
expected.

 As we saw in the CharacterSorter program, Character objects are naturally ordered
by their numeric Unicode values (which is not alphabetical because all uppercase letters
appear before all lowercase letters).

 For Boolean objects, true is considered greater than false . For example, the following
statements output 1 :

Boolean b = true;

System.out.println(b.compareTo(false));

 As we saw in the earlier section “ The Comparable Interface, ” the natural order of
String objects is lexicographical, meaning that the fi rst different character in two String
objects determines the ordering. See if you can determine the output of the following
statements:

String s1 = “hello”;

String s2 = “hEllo”;

String s3 = “hellothere”;

List < String > list = new ArrayList < String > ();

list.add(s1);

list.add(s2);

c07.indd Sec4:463c07.indd Sec4:463 2/11/09 6:42:33 PM2/11/09 6:42:33 PM

464 Chapter 7 � Collections and Generics

 Sorting a list using the natural ordering requires each element in the List object to
implement the Comparable interface and also that each element in the list be mutually
comparable. For example, the following code does not compile. Can you see why?

6. List < Object > items = new ArrayList < Object > ();

7. items.add(“Java”);

8. items.add(new Integer(123));

9. Collections.sort(items);

 Lines 6 – 8 are valid and compile fi ne. The compiler error occurs at line 9. Because the
 Collections.sort method uses a generic type of < T extends Comparable < ? super T > ,
only List objects whose generic type implements Comparable can be an argument for
the sort method. The Object class does not implement Comparable , so line 9 generates the
following compiler error:

MutuallyComparableDemo.java:9: cannot find symbol

symbol : method sort(java.util.List < java.lang.Object >)

location: class java.util.Collections

Collections.sort(items);

 The compiler is complaining that it cannot fi nd a version of sort in Collections that
takes in a List < Object > . Java generics are working their magic in this example, enforcing
data type rules at compile time to avoid issues at runtime. If line 9 compiled successfully,
then invoking sort would cause the String object “ Java ” to be compared to the Integer
object wrapping 123 , which would result in a ClassCastException at runtime because
 “ Java ” and 123 are not mutually comparable.

list.add(s3);

Collections.sort(list);

for(String s : list) {

 System.out.println(s);

}

 All three String objects share the same fi rst character, so their second character
determines the ordering. Because E comes before e , “ hEllo ” comes before both “ hello ”
and “ hellothere “ . Because “ hello ” and “ hellothere ” do not contain a different
character to determine their order, “ hello ” comes fi rst because it is the shorter String .
The output of the previous statements is

hEllo

hello

hellothere

c07.indd Sec4:464c07.indd Sec4:464 2/11/09 6:42:34 PM2/11/09 6:42:34 PM

Working with Lists 465

 Comparator Sorting

 The other version of the sort method in Collections does not require its elements to
implement Comparable . Instead, it uses a separate object of type Comparator to determine
the ordering:

public static < T > void sort(List < T > list, Comparator < ? super T > c)

 To use this version of Collections.sort , you need to write a class that implements the
generic Comparator interface, making sure the generic type of the Comparator is T or a
parent of T (based on the < ? super T > in the method signature). The Comparator interface
declares the following method:

int compare(T o1, T o2)

 Defi ne this method so that it returns 0 if o1 equals o2 , a positive number if o1 is greater
than o2 , and a negative number if o1 is less than o2 . The ordering is totally up to you, so
the logic can be anything you defi ne. For example, suppose we have the following class
named Reverse that implements the Comparator interface with an Integer generic type:

public class Reverse implements java.util.Comparator < Integer > {

 public int compare(Integer o1, Integer o2) {

 return o2 - o1;

 }

}

 The logic in Reverse is the opposite of the natural order of Integer . For example, 10 is
less than 5 using the logic of Reverse . To use this Comparator , create an instance and pass
it into the sort method along with the List object to be sorted. Study the following code
and see if you can determine its output:

List < Integer > list = new ArrayList < Integer > ();

list.add(-5);

list.add(12);

list.add(7);

list.add(7);

list.add(30);

Collections.sort(list, new Reverse());

for(Integer i : list) {

 System.out.println(i);

}

c07.indd Sec4:465c07.indd Sec4:465 2/11/09 6:42:34 PM2/11/09 6:42:34 PM

466 Chapter 7 � Collections and Generics

 The ArrayList object contains fi ve Integer objects. The call to Collections.sort
includes a new Reverse object, which orders the numbers in reverse order. The output of
the previous statements is

30

12

7

7

-5

 The natural ordering is ignored when a Comparator is supplied to the sort method.
Using a Comparator , you control the ordering of a list based on the needs of your business
logic.

 Converting a List to an Array

 The sort methods in Collections perform the list search in n log(n) time, where n is the
number of elements in the list. To achieve this type of performance, the sort methods
actually convert the given List object to an array, sort the array, and then iterate over the
list, resetting each element from the corresponding position in the array.

 For the exam, you do not need to understand how the sort method works behind the
scenes. However, the exam objectives specifi cally mention the ability to convert a list to
an array, which is achieved using the generic toArray method of the List interface:

 < T > T[] toArray(T[] a)

 The toArray method returns an array that contains all the elements of the list. This
generic version of toArray requires an array argument. The array passed in, if big
enough, is used to contain the list elements (and also returned). If the array passed in
is not big enough to hold the list, as in the following code, a new array is created and
returned:

List < String > list = new ArrayList < String > ();

list.add(“one”);

list.add(“two”);

list.add(“three”);

String [] array = list. < String > toArray(new String [0]);

for(String s : array) {

 System.out.print(s + “ “);
}

c07.indd Sec4:466c07.indd Sec4:466 2/11/09 6:42:35 PM2/11/09 6:42:35 PM

Working with Lists 467

 Sorting lists is a common task in programming, and the Collections.sort methods
implement an effi cient sorting algorithm that offers n log(n) performance, where n is the
number of elements in the list. The next section discusses another common programming
task: searching a list.

 Searching Lists

 The Collections class contains two methods for searching the elements in a List :

 public static < T > int binarySearch(List < ? extends Comparable < ? super T > >
list, T key) searches the given List for the specified object. The list must be sorted
first and the elements in the list must implement Comparable .

 public static < T > int binarySearch(List < ? extends T > list, T key,
Comparator < ? super T > c) searches the given List for the specified object. The List
must be sorted first, and the c parameter represents the Comparator object used to sort
the list.

 Both binarySearch methods require the given list to be sorted prior to searching. If the
list is not sorted, the result of the search is undefi ned. The return value of both methods
is the index in the list where the object was found or negative if the given object does not
appear in the list.

 Let ’ s look at an example. The following list contains 20 Integer objects with random
values:

6. List < Integer > list = new ArrayList < Integer > ();

7. for(int i = 1; i < = 20; i++) {

8. int x = (int) (Math.random() * 10);

9. list.add(x);

10. }

 Before it can be searched, the list must be sorted. The following statements sort the list
and then search for the number 5 :

11. Collections.sort(list);

12. for(Integer i : list) {

�

�

 The output of the previous statements is

one two three

Notice that the invocation of toArray requires the generic type to be specifi ed so
that the toArray method knows what type of array to create and return. The syntax
 list. < String > toArray lets the toArray method know to return an array of String
objects.

c07.indd Sec4:467c07.indd Sec4:467 2/11/09 6:42:36 PM2/11/09 6:42:36 PM

468 Chapter 7 � Collections and Generics

13. System.out.print(i + “ “);

14. }

15. System.out.println();

16. int index = Collections.binarySearch(list, new Integer(5));

17. if(index > = 0) {

18. System.out.println(“5 found at index “ + index);

19. } else {

20. System.out.println(“5 not found”);

21. }

 The Integer class implements Comparable , and the method call on line 16 invokes the
 Comparable version of the binarySearch method. The value of index is the location in
 list where one of the 5 s appears, or a negative value if list does not contain a 5 . Here is a
sample output of the previous statements:

0 0 0 1 1 2 3 3 3 5 5 5 5 5 6 8 8 9 9 9

5 found at index 9

 If more than one element is found, the index returned is for one of the elements, but
there is no guarantee as to which one.

 The following example demonstrates the other version of binarySearch that uses a
 Comparator object. Use the Comparator version of binarySearch when the elements in the
list do not implement the Comparable interface. For example, suppose we have a list of
 Product objects based on the Product class from earlier in this chapter:

public class Product {

 String description;

 double price;

 int id;

 public Product(String d, double p, int i) {

 description = d;

 price = p;

 id = i;

 }

 //remainder of class definition...

}

 A Comparator object is required to sort and search a list of Product objects, as
demonstrated by the following program. Study the code and see if you can determine its
result:

1. import java.util.*;

2.

3. public class ProductSearch {

c07.indd Sec4:468c07.indd Sec4:468 2/11/09 6:42:37 PM2/11/09 6:42:37 PM

Working with Lists 469

4. static class ProductComparator implements Comparator < Product > {

5. public int compare(Product a, Product b) {

6. return (int) (a.price - b.price);

7. }

8. }

9.

10. public static void main(String [] args) {

11. List < Product > list = new ArrayList < Product > ();

12. Product toFind = new Product(“shirt”, 29.99, 101);

13. list.add(toFind);

14. list.add(new Product(“shoes”, 150.00, 202));

15. list.add(new Product(“tie”, 12.50, 303));

16. ProductComparator pc = new ProductComparator();

17. Collections.sort(list, pc);

18. for(Product p : list) {

19. System.out.println(p.description + “ “ + p.price);

20. }

21. int index = Collections.binarySearch(list, toFind, pc);

22. System.out.println(“Index of shirt is “ + index);

23. }

24. }

 The ProductComparator class sorts Product objects in ascending order by price . Three
 Product objects are added to the ArrayList from line 11, and then the list is sorted
by price on line 17. Line 21 searches for the “ shirt ” product, and the resulting index is
printed on line 22. The output of the previous program is

tie 12.5

shirt 29.99

shoes 150.0

Index of shirt is 1

 Because the Product objects are sorted by price, the shirt is second in the list, so its
index is 1 .

 Use the binarySearch methods to fi nd a specifi c element in a list. Remember that a
list must be sorted fi rst before invoking binarySearch or the result is undefi ned. Use the
 Collections class to sort and search lists. The next section discusses the sorting and
searching of arrays in Java using the Arrays class.

c07.indd Sec4:469c07.indd Sec4:469 2/11/09 6:42:37 PM2/11/09 6:42:37 PM

470 Chapter 7 � Collections and Generics

 Working with Arrays
 The exam objectives state that you should be able to sort arrays either in their natural order
or using a Comparator object. The exam also requires knowledge of performing
a binary search on arrays. These objectives are indirectly referring to the static sort and
 binarySearch methods of the java.util.Arrays class. We start with a discussion on
sorting arrays.

 Sorting Arrays

 The Arrays class contains a collection of sort methods for sorting arrays of primitive types
and objects. There is a pair of sort methods for each Java array type (except arrays of
 boolean s). For example, the following sort methods are for sorting arrays of ints :

 public static void sort(int[] a)

 public static void sort(int[] a, int fromIndex, int toIndex)

 Similarly, there are two sort methods for byte , short , long , float , double , and char
arrays. The overloaded versions of sort allow for sorting a subset of the given array.

 There is also a pair of sort methods for Object arrays:

 public static void sort(Object[] a)

 public static void sort(Object[] a, int fromIndex, int toIndex)

 The Object array is sorted in its natural order and the elements in the array must
implement Comparable and be mutually comparable.

 The Arrays class also contains a generics version of sort that uses a Comparator to
determine the ordering:

 public static < T > void sort(T[] a, Comparator < ? super T > c)

 public static < T > void sort(T[] a, int fromIndex, int toIndex, Comparator < ?
super T > c)

 Similar to sorting lists, a Comparator is useful when the objects being sorted do not
implement Comparable or you need the objects sorted in a different order than their natural
ordering.

 Passing an array to a sort method alters the array. The values are rearranged in the
appropriate order. Let ’ s start with an example that sorts an array of primitive types. Study
the following code and see if you can determine what it does:

6. int [] values = new int[15];

7. System.out.print(“Initial values: “);

8. for(int i = 0; i < values.length; i++) {

9. values[i] = (int) (Math.random() * 10);

10. System.out.print(values[i] + “ “);

11. }

�

�

�

�

�

�

c07.indd Sec4:470c07.indd Sec4:470 2/11/09 6:42:37 PM2/11/09 6:42:37 PM

Working with Arrays 471

12.

13. Arrays.sort(values);

14.

15. System.out.print(“\nSorted values: “);

16. for(int i : values) {

17. System.out.print(i + “ “);

18. }

 The previous code breakdowns as follows:

 1. Line 6 creates an array of 15 int s named values .

 2. The for loop on line 8 fills the array with random numbers between 0 and 9 and
displays those values.

 3. Line 13 sorts the values array. Because the array is of type int , the array is ordered in
its natural ordering.

 4. The for loop on line 16 displays the array again.

 Here is a sample output of the previous code:

Initial values: 8 0 7 9 9 9 0 5 7 1 5 0 9 3 8

Sorted values: 0 0 0 1 3 5 5 7 7 8 8 9 9 9 9

 The array is sorted in its natural order, which for int s is numerical order. Now let ’ s
look at an example where a Comparator is used to determine the sort order. See if you can
determine the ordering logic of the following comparator:

public class EvenSorter implements java.util.Comparator < Integer > {

 public int compare(Integer a, Integer b) {

 return (b%2) - (a%2);

 }

}

 If a and b are equal, the compare method returns 0 . If both numbers are even or odd, the
return value is also 0 , so two even numbers are equal and two odd numbers are equal. If
 a is even and b is odd, the result is 1 , so even numbers are greater than odd numbers. The
following code sorts an array of random Integer objects using an EvenSorter comparator:

Integer [] values = new Integer[15];

System.out.print(“Initial values: “);

for(int i = 0; i < values.length; i++) {

 values[i] = (int) (Math.random() * 10);

 System.out.print(values[i] + “ “);

}

Arrays.sort(values, new EvenSorter());

c07.indd Sec5:471c07.indd Sec5:471 2/11/09 6:42:38 PM2/11/09 6:42:38 PM

472 Chapter 7 � Collections and Generics

System.out.print(“\nSorted values: “);

for(int i : values) {

 System.out.print(i + “ “);

}

 The odd numbers appear before all the even numbers. Here is a sample output of the
previous code:

Initial values: 6 8 8 9 2 1 7 2 3 0 7 2 6 5 2

Sorted values: 9 1 7 3 7 5 6 8 8 2 2 0 2 6 2

 Converting an Array to a List

 You should be able to convert an array to a list, which is accomplished by using the
static asList method in the Arrays class, as follows:

public static < T > List < T > asList(T... a)

 The returned List is fi xed in size and backed by the specifi ed array, meaning that
changes to the List object actually change the array, as long as you do not perform any
operations that modify the length of the List . For example, see if you can determine the
output of the following statements:

String [] array = {“one”, “two”, “three”};

List < String > list = Arrays.asList(array);

list.set(1, “four”);

for(String s : array) {

 System.out.println(s);

}

 The array contains three String objects, and passing it to asList creates a List with the
same three String objects. Setting index 1 to “ four ” changes list and array , as shown
by the output of the for - each loop:

one

four

three

 Another use of the asList method is to create a fi xed - size List using the variable -
 length arguments passed in. For example, the following statement creates a new List
containing seven Integer objects:

List < Integer > numbers = Arrays. < Integer > asList(8, 6, 7, 5, 3, 0, 9);

 Just remember that asList returns a fi xed - size List. Attempting to add or remove an
element from numbers results in an UnsupportedOperationException at runtime.

c07.indd Sec5:472c07.indd Sec5:472 2/11/09 6:42:38 PM2/11/09 6:42:38 PM

Working with Arrays 473

 We just discussed how to use a Comparator object for sorting arrays either to alter the
natural ordering or for sorting an array of objects that do not implement the Comparable
interface. Now let ’ s explore how to use the binarySearch method of Arrays to search
arrays sorted either in the natural order or with a Comparator .

 Searching Arrays

 The Arrays class contains a collection of binarySearch methods for searching arrays of
primitive types and objects. There is a pair of binarySearch methods for each Java array
type (except arrays of boolean s). For example, the following binarySearch methods are for
searching arrays of longs :

 public static int binarySearch(long[] a, long key) searches the entire array for
the specified long . The array must be sorted first.

 public static int binarySearch(long[] a, int fromIndex, int toIndex, long
key) searches a subset of the array for the specified long . The array must be sorted
first.

 Similarly, there are two binarySearch methods for byte , short , int , float , double , and
 char arrays. There is also a pair of binarySearch methods for Object arrays:

 public static int binarySearch(Object[] a, Object key)

 public static int binarySearch(Object[] a, int fromIndex, int toIndex,
Object key)

 The elements in the Object array must implement Comparable and be mutually
comparable. The Arrays class also contains a generics version of binarySearch for arrays
sorted using a Comparator , as follows:

 public static < T > int binarySearch(T[] a, T key, Comparator < ? super T > c)

 public static < T > int binarySearch(T[] a, int fromIndex, int toIndex, T
key, Comparator < ? super T > c)

 All of the binarySearch methods require the array to be sorted prior to searching.
If the array is not sorted, then the result of the search is undefi ned. The return value of
 binarySearch is the index in the array where the key was found or negative if the given key
does not appear in the array.

 Let ’ s look at an example. The following statements search an array of long elements.
Study the code and see if you can determine its output:

6. long [] values = {432432L, 2342323L, 1244L, 89349L, 7898239L};

7. Arrays.sort(values);

8. long key = 432432L;

9. int index = Arrays.binarySearch(values, key);

10. System.out.println(key + “ found at index “ + index);

11. long key2 = 55555L;

12. int index2 = Arrays.binarySearch(values, key2);

13. System.out.println(key2 + “ found at index “ + index2);

�

�

�

�

�

�

c07.indd Sec5:473c07.indd Sec5:473 2/11/09 6:42:39 PM2/11/09 6:42:39 PM

474 Chapter 7 � Collections and Generics

 Line 6 creates an array of fi ve long s that is sorted on line 7. The array is searched on
line 9 for the value 432432L and the index is returned. Line 12 searches the array for
 55555L , which is not in the array. Therefore, index2 is a negative value. The output of the
statements is

432432 found at index 2

55555 found at index -2

 The number 432432 is third in the values array after it is sorted, so the index is 2 . The
number 55555 is not in the array, so the return value is computed as (- (insertion_point) -
1), where insertion_point is the index in the array where 55555 would appear in the array
if it was inserted in order.

 The following example demonstrates searching an array that is sorted using a
 Comparator . The code uses the Product class from earlier in this chapter and sorts the
 Product objects based on their description. Study the code and see if you can determine its
output:

1. import java.util.*;

2.

3. public class ProductArraySearch {

4. static class DescriptionSorter implements Comparator < Product > {

5. public int compare(Product a, Product b) {

6. return a.description.compareTo(b.description);

7. }

8. }

9.

10. public static void main(String [] args) {

11. Product toFind = new Product(“milk”, 2.95, 111);

12. Product [] products = {

13. toFind,

14. new Product(“eggs”, 4.00, 222),

15. new Product(“butter”, 2.75, 333),

16. new Product(“bread”, 1.95, 444)

17. };

18.

19. DescriptionSorter dc = new DescriptionSorter();

20. Arrays. < Product > sort(products, dc);

21. for(Product p : products) {

22. System.out.println(p.description + “ “ + p.price);

23. }

24. int index = Arrays. < Product > binarySearch(products,

 toFind, dc);

c07.indd Sec5:474c07.indd Sec5:474 2/11/09 6:42:39 PM2/11/09 6:42:39 PM

25. System.out.println(“Index of milk is “ + index);

26. }

27. }

 A breakdown of the ProductArraySearch program follows:

 1. Line 4 declares a Comparator named DescriptionSorter that sorts Product objects in
lexicographical order of the description string.

 2. Line 12 fills the products array with four Product objects.

 3. Line 20 sorts the products array using the DescriptionSorter comparator. The for
loop on line 21 prints out the sorted array.

 4. Line 24 searches the products array for the “ milk ” product, which appears at the end
of the array.

 5. Line 25 prints out the value of index .

 The output of the program is

bread 1.95

butter 2.75

eggs 4.0

milk 2.95

Index of milk is 3

 Because “ milk ” is at the end of the array, its index is 3 . Notice that the products are
sorted in alphabetical order by description. Use the generic version of binarySearch when
you search an array sorted with a Comparator object.

 Summary
 This chapter covered the “ Collections and Generics ” objectives of the SCJP exam. The
goal of this chapter was to discuss the details of using the Java Collections Framework, a
collection of classes and interfaces in the java.util package that implement common data
structures like lists, maps, and sets. The collection ’ s classes and interfaces use generics,
which provide a compile - time type safety for simplifying the use of collections.

 The Collection interface is the parent interface of List , Set , and Queue . The map
data structures implement the Map interface. A list is an ordered collection of elements
that allows duplicate entries. The List implementations include ArrayList , LinkedList ,
 Vector , and Stack . A set is a collection that does not allow duplicate entries. The Set
implementations are HashSet , LinkedHashSet , and TreeSet . A queue is a collection
that orders its elements in a specifi c order for processing. The Queue implementations
include LinkedList , PriorityQueue , and ArrayDeque . A map is a collection that maps
keys to values, with no duplicate keys allowed. The Map implementations are HashMap ,
 LinkedHashMap , and TreeMap .

Summary 475

c07.indd Sec5:475c07.indd Sec5:475 2/11/09 6:42:40 PM2/11/09 6:42:40 PM

476 Chapter 7 � Collections and Generics

 The collections classes use the equals method to determine the equality of two objects.
The Comparable interface declares the compareTo method. Objects that implement
 Comparable are said to have a natural ordering, and the compareTo method is consistent
with equals if it returns 0 for two objects that are equal in terms of the equals method.
The Comparator interface declares the compare method and provides a mechanism for
ordering objects in whatever order you defi ne.

 The generics feature, new to J2SE 5.0, provides support for parameterized data types.
We discussed the details of using generics with the Collections Framework, along with
defi ning your own classes, interfaces, and methods that take advantage of generics.
Generics can use the wildcard ? to represent any generic type. Use the extends keyword to
defi ne an upper bound for a generic type and super to defi ne a lower bound.

 The Collections class contains sort methods for sorting lists and binarySearch
methods for searching lists. The Arrays class contains sort methods for sorting arrays and
 binarySearch methods for searching arrays.

 Be sure to test your knowledge of collections and generics by answering the Review
Questions that follow the Exam Essentials. Attempt to answer the questions without
looking back at the pages of this chapter. Make sure you have a good understanding of the
following Exam Essentials before you attempt the Review Questions, and good luck!

 Exam Essentials

 Understand the different types of collection data structures. Know the difference between
lists, sets, queues, and maps. Be able to recognize which type of collection to use given a
specifi c scenario. A list is an ordered collection of elements that allows duplicate entries, a
set is a collection that does not allow duplicate entries, a queue is a collection that orders
its elements in a specifi c order for processing, and a map is a collection that maps keys to
values, with no duplicate keys allowed.

 Understand the generics syntax. Be sure you understand how to instantiate an object
that uses generics, as well as invoke a generic method. Generics provide compile - time
type safety for collections by allowing your Collection objects to specify what types they
contain.

 Understand generics and polymorphism. You need to be able to recognize proper and
improper use of polymorphic references and generics, especially with wildcards and upper
and lower bounds. A question mark (?) represents an unknown generic, the extends
keyword creates an upper - bound generic, and the super keyword creates a lower - bound
generic.

 Be familiar with the various collections class. You are not expected to know all the
details of all the collections classes, but you should be able to understand code that uses
 ArrayList , Vector , Stack , LinkedList , HashSet , TreeSet , HashMap , and TreeMap .

c07.indd Sec5:476c07.indd Sec5:476 2/11/09 6:42:40 PM2/11/09 6:42:40 PM

 Understand natural ordering vs. comparators. Classes that implement Comparable are
said to have a natural ordering. If a class does not have a natural ordering, use a separate
 Comparator object to sort and search instances of the class. The Comparator interface
declares the compare method that returns an int . The return value is a negative integer,
zero, or a positive integer if the fi rst argument is less than, equal to, or greater than the sec-
ond, respectively.

 Understand the difference between == and equals . The comparison operator == returns
true if the two references being compared point to the same object. The equals method
compares two objects and uses business logic. If you override equals , make sure you also
override the hashCode method in such a way that two equal objects produce the same hash
code.

 Understand the behavior and usage of the sort and binarySearch methods. You should
be able to understand code that uses the sort and binarySearch methods of the Collec-
tions (for lists) and Arrays (for arrays) classes. The Collections class defi nes two static
 sort methods: one for natural - order sorting and one for comparator sorting of lists. The
 Collections class also defi nes two static binarySearch methods, and the list must be
sorted before it is searched. The Arrays class contains two overloaded sort methods for
each type of array, which provides for both natural - order and comparator sorting. Simi-
larly, the Arrays class contains binarySearch methods for searching the various types of
arrays, and an array must be sorted before it is searched.

 Exam Essentials 477

c07.indd Sec5:477c07.indd Sec5:477 2/11/09 6:42:41 PM2/11/09 6:42:41 PM

478 Chapter 7 � Collections and Generics

 Review Questions
 1. Suppose you have a collection of products for sale in a database and you need to display

those products on a web page. The Java code on the server needs to be able to sort the
products by price and category. Which of the following collections classes in the java.util
package best suit your needs for this scenario?

 A. HashSet

 B. HashMap

 C. PriorityQueue

 D. Arrays

 E. ArrayList

 2. Suppose you need to work with a collection of elements that need to be sorted in their natu-
ral ordering, iterated in descending order, and each element has a unique string associated
with its value. Which of the following collections classes in the java.util package best
suit your needs for this scenario?

 A. HashMap

 B. TreeMap

 C. HashSet

 D. Vector

 E. ArrayList

 3. What is the result of the following statements?
6. List list = new ArrayList();

7. list.add(“one”);

8. list.add(“two”);

9. list.add(7);

10. for(String s : list) {

11. System.out.print(s);

12. }

 A. onetwo

 B. onetwo7

 C. onetwo followed by an exception

 D. Compiler error on line 9

 E. Compiler error on line 10

 4. What is the result of the following statements?
6. List < String > list = new ArrayList < String > ();

7. list.add(“one”);

c07.indd Sec5:478c07.indd Sec5:478 2/11/09 6:42:41 PM2/11/09 6:42:41 PM

8. list.add(“two”);

9. list.add(7);

10. for(String s : list) {

11. System.out.print(s);

12. }

 A. onetwo

 B. onetwo7

 C. onetwo followed by an exception

 D. Compiler error on line 9

 E. Compiler error on line 10

 5. What is the result of the following statements?
3. ArrayList < Integer > values = new ArrayList < Integer > ();

4. values.add(4);

5. values.add(5);

6. values.set(1, 6);

7. values.remove(0);

8. for(Integer v : values) {

9. System.out.print(v);

10. }

 A. 4

 B. 5

 C. 6

 D. 46

 E. 45

 6. What is the result of the following statements?
10. Stack < String > greetings = new Stack < String > ();

11. greetings.push(“hello”);

12. greetings.push(“hi”);

13. greetings.push(“ola”);

14. greetings.pop();

15. greetings.peek();

16. Iterator iter = greetings.iterator();

17. while(iter.hasNext()) {

18. System.out.print(iter.next());

19. }

 A. hello

 B. hellohi

 Review Questions 479

c07.indd Sec5:479c07.indd Sec5:479 2/11/09 6:42:42 PM2/11/09 6:42:42 PM

480 Chapter 7 � Collections and Generics

 C. hellohiola

 D. hihello

 E. The code does not compile.

 7. Which of the following statements are valid? (Choose three.)

 A. List < String > list = new Vector < String > ();

 B. HashSet < Number > hs = new HashSet < Integer > ();

 C. Map < String, ? extends Number > hm = new HashMap < String, Integer > ();

 D. HashSet < ? super ClassCastException > set = new HashSet < Exception > ();

 E. List < Object > values = new LinkedHashSet < Object > ();

 8. What is the result of the following program?
1. public class Hello < T > {

2. T t;

3.

4. public Hello(T t) {

5. this.t = t;

6. }

7.

8. public String toString() {

9. return t.toString();

10. }

11.

12. public static void main(String [] args) {

13. System.out.print(new Hello < String > (“hi”));

14. System.out.print(new Hello(“there”));

15. }

16. }

 A. hi

 B. hi followed by a runtime exception

 C. hithere

 D. Compiler error on line 9

 E. Compiler error on line 14

 9. Given the following statements:

6. Set < Number > numbers = new HashSet < Number > ();

7. numbers.add(new Integer(86));

8. numbers.add(75);

9. numbers.add(new Integer(86));

10. numbers.add(null);

c07.indd Sec5:480c07.indd Sec5:480 2/11/09 6:42:42 PM2/11/09 6:42:42 PM

11. numbers.add(309L);

12. Iterator iter = numbers.iterator();

13. while(iter.hasNext()) {

14. System.out.print(iter.next());

15. }

 Which of the following statements are true? (Select two.)

 A. The code compiles successfully.

 B. The output is 8675null309 .

 C. The output is indeterminate.

 D. Line 6 generates a compiler error.

 E. Line 12 generates a compiler error.

 10. What is the result of the following statements?

7. TreeSet < String > tree = new TreeSet < String > ();

8. tree.add(“one”);

9. tree.add(“One”);

10. tree.add(“ONE”);

11. System.out.println(tree.ceiling(“On”));

 A. one

 B. One

 C. ONE

 D. On

 11. Given the following declaration:

Map < String, Double > map = new HashMap < String, Double > ();

 which of the following statements are valid?

 A. map.add(“ pi “ , 3.14159);

 B. map.add(“ e “ , 2.71828D);

 C. map.add(“ log(1) “ , new Double(0.0));

 D. map.add(‘x’, new Double(123.4));

 E. None of the above.

 12. What is the result of the following program?

import java.util.*;

public class MyComparator implements Comparator < String > {

 public int compare(String a, String b) {

 Review Questions 481

c07.indd Sec5:481c07.indd Sec5:481 2/11/09 6:42:42 PM2/11/09 6:42:42 PM

482 Chapter 7 � Collections and Generics

 return a.toLowerCase().compareTo(b.toLowerCase());

 }

 public static void main(String [] args) {

 String [] values = {“abc”, “Abb”, “aab”};

 Arrays.sort(values, new MyComparator());

 for(String s : values) {

 System.out.print(s + “ “);

 }

 }

}

 A. aab Abb abc

 B. Abb aab abc

 C. abc Abb aab

 D. aab abc Abb

 E. The code does not compile.

 13. What is the result of the following statements?

3. Map < Integer, Integer > map = new HashMap < Integer, Integer > (10);

4. for(int i = 1; i < = 10; i++) {

5. map.put(i, i * i);

6. }

7. System.out.println(map.get(4));

 A. Compiler error on line 3

 B. Compiler error on line 5

 C. Compiler error on line 7

 D. 16

 E. 25

 14. What is the result of the following statements?

10. int [] random = {6, -4, 12, 0, -10};

11. int x = 12;

12. int y = Arrays.binarySearch(random, x);

13. System.out.println(y);

 A. 2

 B. 4

 C. The result is undefined.

 D. Line 12 throws an exception at runtime.

 E. Compiler error on line 12

c07.indd Sec5:482c07.indd Sec5:482 2/11/09 6:42:43 PM2/11/09 6:42:43 PM

 15. Given the following class definition:

1. import java.io.*;

2.

3. public class Helper {

4. public static < U extends Exception > void

 printException(U u) {

5. System.out.println(u.getMessage());

6. }

7.

8. public static void main(String [] args) {

9. ___________________

10. }

11. }

 which of the following statements can appear on line 9 so that the Helper class
compiles successfully?

 A. Helper.printException(new FileNotFoundException(“ A “));

 B. Helper.printException(new Exception(“ B “));

 C. Helper. < Throwable > printException(new Exception(“ C “));

 D. Helper. < NullPointerException > printException(new NullPointerException
(“ D “));

 E. Helper.printException(new Throwable(“ E “));

 16. Given the following class definition:

1. import java.util.*;

2.

3. public class Wildcard {

4. public void showSize(List < ? > list) {

5. System.out.println(list.size());

6. }

7.

8. public static void main(String [] args) {

9. Wildcard card = new Wildcard();

10. ___________________

11. card.showSize(list);

12. }

13. }

 Review Questions 483

c07.indd Sec5:483c07.indd Sec5:483 2/11/09 6:42:43 PM2/11/09 6:42:43 PM

 which of the following statements can appear on line 10 so that the Wildcard class
compiles successfully? (Select three answers.)

 A. Stack < ? > list = new Stack < ? > ();

 B. List < ? > list = new ArrayList < String > ();

 C. ArrayList < ? super Date > list = new ArrayList < Date > ();

 D. Vector < ? extends Number > list = new Vector < Integer > ();

 E. List < Exception > list = new LinkedList < java.io.IOException > ();

 17. What is the result of the following statements?

3. List < Integer > list =

 Arrays. < Integer > asList(10, 4, -1, 5);

4. Collections.sort(list);

5. Integer [] array =

 list. < Integer > toArray(new Integer[4]);

6. System.out.println(array[0]);

 A. Compiler error on line 3

 B. Line 4 throws an exception at runtime.

 C. Compiler error on line 5

 D. - 1

 E. 10

 18. What is the result of the following program?

1. import java.util.*;

2.

3. public class StringSearch {

4. static class ReverseLexi implements

 Comparator < String > {

5. public int compare(String a, String b) {

6. return b.compareToIgnoreCase(a);

7. }

8. }

9.

10. public static void main(String [] args) {

11. List < String > list = new ArrayList < String > ();

12. list.add(“ab”);

13. list.add(“ba”);

14. list.add(“bd”);

15. list.add(“aa”);

484 Chapter 7 � Collections and Generics

c07.indd Sec5:484c07.indd Sec5:484 2/11/09 6:42:43 PM2/11/09 6:42:43 PM

16. ReverseLexi comparator = new ReverseLexi();

17. Collections.sort(list, comparator);

18. int index = Collections.binarySearch(list,

 “ab”, comparator);

19. System.out.println(index);

20. }

21. }

 A. 1

 B. 2

 C. 3

 D. 4

 E. The code does not compile.

 19. What is the result of the following statements?

6. String [] names = {“Tom”, “Dick”, “Harry”};

7. List < String > list = names.asList();

8. list.set(0, “Sue”);

9. System.out.println(names[0]);

 A. Sue

 B. Tom

 C. Compiler error on line 7

 D. Compiler error on line 8

 E. Line 9 causes an exception at runtime.

 20. What is the result of the following code?

4. List < String > names = Arrays.asList(“Tom”, “Dick”,

 “Harry”, “Sue”);

5. Collections.sort(names);

6. int x = Collections.binarySearch(names, “Tom”);

7. System.out.println(x);

 A. 0

 B. 1

 C. 2

 D. 3

 E. - 1

 Review Questions 485

c07.indd Sec5:485c07.indd Sec5:485 2/11/09 6:42:44 PM2/11/09 6:42:44 PM

486 Chapter 7 � Collections and Generics

 21. What is the result of the following statements?

10. List < String > one = new ArrayList < String > ();

11. one.add(“abc”);

12. List < String > two = new ArrayList < String > ();

13. two.add(“abc”);

14. if(one == two) {

15. System.out.println(“A”);

16. } else if(one.equals(two)) {

17. System.out.println(“B”);

18. } else {

19. System.out.println(“C”);

20. }

 A. A

 B. B

 C. C

 D. Compiler error on line 14

 E. Compiler error on line 16

 22. What is the result of the following code?

10. List < String > one = new ArrayList < String > ();

11. one.add(“abc”);

12. List < String > two = new Vector < String > ();

13. two.add(“abc”);

14. if(one == two) {

15. System.out.println(“A”);

16. } else if(one.equals(two)) {

17. System.out.println(“B”);

18. } else {

19. System.out.println(“C”);

20. }

 A. A

 B. B

 C. C

 D. Compiler error on line 14

 E. Compiler error on line 16

c07.indd Sec5:486c07.indd Sec5:486 2/11/09 6:42:44 PM2/11/09 6:42:44 PM

 Answers to Review Questions 487

Answers to Review Questions
 1. E . The HashSet and HashMap classes do not provide ordering or sorting of items, so they

are not good choices in this scenario. A PriorityQueue is used for processing items based
on a priority, which is not relevant to our needs. The Arrays class is not a collections class;
it is a utility class with only static methods. An ArrayList can be ordered and sorted easily
using the Collections class, which makes it a good choice for this scenario. Therefore, the
answer is E.

 2. B . Because each element has a unique string associated with its value, a map is the best
choice, so C, D, and E are incorrect. A HashMap does not provide specifi c ordering, so A is
incorrect. A TreeMap is always sorted in natural order, and because it implements
NavigableMap , it contains a descending iterator. Therefore, the best choice for this scenario
is TreeMap and the answer is B.

 3. E . The code does not compile, so A, B, and C are incorrect. D is also incorrect; line 9
 compiles fi ne because the code is not using generics and any Object can be added to list .
Line 10 does not compile because list contains Object references and the for - each loop
is attempting to assign them to String . Therefore, the answer is E.

 4. D . The code does not compile, so A, B, and C are incorrect. E is also incorrect; line 10
compiles fi ne because list contains String objects. Line 9 does not compile because list
is instantiated using generics; only String objects can be added to list and 7 is an int .
Therefore, the answer is D.

 5. C. Here is the sequence of events:

 1. Line 4 adds 4 to values at index 0.

 2. Line 5 adds 5 to values at index 1.

 3. Line 6 replaces 5 with 6 at index 1.

 4. Line 7 removes 4 from index 0, leaving only the 6 in values.

 The for-each loop only iterates one time and 6 is displayed, so the answer is C.

 6. B. The code compiles fi ne, so E is incorrect. The strings “ hello “ , “ hi “ , and “ ola ” are
pushed onto the stack. The call to pop on line 14 removes “ ola ” from the stack. The call to
 peek on line 15 returns “ hi ” but does not remove it from the stack. That leaves “ hello ”
and “ hi ” on the stack, and they are iterated in that order. Therefore, the output is hellohi
and the answer is B.

 7. A, C, and D . A is valid because Vector implements List and the < String > generics are
identical. B does not compile because < Integer > is not compatible with < Number > . (There
is no implied polymorphism with generic types.) C is valid because HashMap implements
 Map and Integer is a child of Number . D is valid because Exception is a parent class of
 ClassCastException . E is not valid because LinkedHashSet does not implement List .

c07.indd Sec5:487c07.indd Sec5:487 2/11/09 6:42:44 PM2/11/09 6:42:44 PM

 8. C . The code compiles and runs fi ne, so B, D, and E are incorrect. Line 14 does cause a
 “ Note ” from the compiler about using “ unchecked or unsafe operations, ” but it is not
a compiler error. The compiler has to deduce that “ T ” is of type String for the Hello
object on line 14, which it successfully does. Line 9 compiles fi ne because all objects have a
 toString method. Lines 13 and 14 print “ hi ” and “ there ” respectively, so the output of
the code is “ hithere ” and the answer is C.

 9. A and C . The code compiles fi ne, so A is correct and D and E are incorrect. B is not correct
because a Set does not guarantee any specifi c iteration order, and the iteration order can
change over time. Therefore, C is correct and the answers are A and C.

10. B . To fi nd the ceiling of “ On “ , you need to know the natural ordering of the four String
objects, which is “ ONE “ , “ On “ , “ One “ ,and then “ one “ . The ceiling method returns the
least String in tree greater than “ On “ , which is “ One “ . Therefore, the answer is B.

11. E . This is a trick question! Each of the answers attempts to “ add ” a key - value pair to the
map, but the Map interface does not declare an add method. Instead, you “ put ” elements in
a map using the put method, so none of the statements are valid and the answer is E. (By
the way, if you change add to put , then A, B, and C would be correct and D would generate
a compiler error because ‘ x ’ is not a String .)

12. A . The code compiles fi ne, so E is incorrect. The values array is sorted using the
 MyComparator class, which sorts strings in alphabetical order because it ignores uppercase
characters. The order of values alphabetically is aab , Abb , and abc , so the answer is A.

13. D . The code compiles fi ne, so A, B, and C are incorrect. The for loop puts 10 pairs in the
map. The keys range from 1 to 10 and they map to their squared value. For example, 1
maps to 1, 2 maps to 4 , 3 maps to 9 , 4 maps to 16 , and so on. Line 7 prints out the value
whose key is 4 , which is 16 . Therefore, the answer is D.

14. C . The code compiles and runs fi ne, but an array must be sorted before invoking the
 Arrays.binarySearch method. Therefore, the result is undefi ned and the answer is C.

15. A, B, and D . The generic for the printException method must be an Exception or a child
of Exception . A is valid because FileNotFoundException is a child of Exception . B is
valid because the generic is Exception . C and E are not valid because Throwable is not a
child class of Exception . D is valid and demonstrates the syntax for specifying the type
explicitly when invoking a generic method. Therefore, A, B, and D are the correct answers.

16. B, C, and D . The showSize method can accept a List object with any generic type. A is
not a valid statement (regardless of the showSize method) because when you instantiate a
generic type, you cannot use a wildcard in the new statement. You must declare a specifi c
data type. E is not a valid statement either (regardless of the showSize method);
< IOException > and < Exception > are not compatible. The other three statements are valid
 List declarations, and because any generic List can be passed into showSize because of
the wildcard < ? > , the answers are B, C, and D.

17. D . The code compiles and runs fi ne, so A, B, and C are incorrect. The asList method creates
a fi xed - size list with four Integer objects. Line 4 sorts the numbers into their natural order.
Line 5 converts the list to an array using the generic toArray method of List . Line 6 prints
out the fi rst element in the array, which is the smallest value: - 1 . Therefore, the answer is D.

488 Chapter 7 � Collections and Generics

c07.indd Sec5:488c07.indd Sec5:488 2/11/09 6:42:45 PM2/11/09 6:42:45 PM

18. B . The code compiles fi ne, so E is incorrect. The array is sorted in reverse alphabetical
order, so the order of the sorted list is “ bd “ , “ ba “ , “ ab “ , then “ aa “ . The index of “ ab ” is 2 ,
which is displayed on line 19. Therefore, the answer is B.

19. C . The code does not compile. An array is converted to a list using the static Arrays.
asList method. Line 7 attempts to invoke asList as if it is a method of the array object,
which it is not. Line 7 generates a compiler error and therefore the answer is C.

20. D . The names list is sorted on line 6, so its order is “ Dick “ , “ Harry “ , “ Sue “ , and then
 “ Tom “ . The binarySearch call on line 6 assigns x to the index of “ Tom “ , which is 3.
Therefore, the answer is D.

21. B . The code compiles fi ne, so D and E are incorrect. Line 14 is false because one and two
do not point to the same object. Line 16 is true ; the equals method of List returns true if
and only if both lists have the same size, and all corresponding pairs of elements in the two
lists are equal. Because one and two are both of size 1 and contain the same String object
 “ abc “ , they are equal and line 17 prints out B . Therefore, the answer is B.

22. B. The code compiles fi ne, so D and E are incorrect. The only difference between Question
21 and Question 22 is line 12: this time the two reference points to a Vector instead of an
ArrayList. Line 14 is false because one and two do not point to the same object. Line 16
is actually true; the equals method of List does not make a distinction about the actual
List implementation, so an ArrayList can equal a Vector as long they have the same size
and all corresponding pairs of elements in the two lists are equal. Because one and two are
both of size 1 and contain the same String object “abc“, they are equal and line 17 prints
out B. Therefore, the answer is B.

Answers to Review Questions 489

c07.indd Sec5:489c07.indd Sec5:489 2/11/09 6:42:46 PM2/11/09 6:42:46 PM

c07.indd Sec5:490c07.indd Sec5:490 2/11/09 6:42:46 PM2/11/09 6:42:46 PM

About the
Companion CD

 IN THIS APPENDIX:

 What you ’ ll find on the CD

 System requirements

 Using the CD

 Troubleshooting

�

�

�

�

 Appendix

bapp.indd 491bapp.indd 491 2/11/09 5:54:55 PM2/11/09 5:54:55 PM

492 Appendix � About the Companion CD

 What You ’ ll Find on the CD
 The following sections are arranged by category and summarize the software and other
goodies you ’ ll fi nd on the CD. If you need help with installing the items provided on the
CD, refer to the installation instructions in the “ Using the CD ” section of this appendix.

 Some programs on the CD might fall into one of these categories:

 Shareware programs are fully functional, free, trial versions of copyrighted programs.
If you like particular programs, register with their authors for a nominal fee and
receive licenses, enhanced versions, and technical support.

 Freeware programs are free, copyrighted games, applications, and utilities. You can
copy them to as many computers as you like — for free — but they offer no technical
support.

 GNU software is governed by its own license, which is included inside the folder of
the GNU software. There are no restrictions on distribution of GNU software. See the
GNU license at the root of the CD for more details.

 Trial , demo , or evaluation versions of software are usually limited either by time or by
functionality (such as not letting you save a project after you create it).

 Sybex Test Engine

 For Windows
 The CD contains the Sybex test engine, which includes all of the Assessment Test and

chapter review questions in electronic format, as well as two bonus exams located only on
the CD.

 PDF of the Book

 For Windows
 We have included an electronic version of the text in .pdf format. You can view the

electronic version of the book with Adobe Reader.

 Adobe Reader

 For Windows
 We ’ ve also included a copy of Adobe Reader so you can view PDF fi les that accompany

the book ’ s content. For more information on Adobe Reader or to check for a newer version,
visit Adobe ’ s website at www.adobe.com/products/reader/ .

bapp.indd 492bapp.indd 492 2/11/09 5:54:58 PM2/11/09 5:54:58 PM

 Electronic Flashcards

 For PC, Pocket PC, and Palm
 These handy electronic fl ashcards are just what they sound like. One side contains a

question or fi ll - in - the - blank question, and the other side shows the answer.

 System Requirements
 Make sure your computer meets the minimum system requirements shown in the following
list. If your computer doesn ’ t match up to most of these requirements, you may have
problems using the software and fi les on the companion CD. For the latest and greatest
information, please refer to the ReadMe fi le located at the root of the CD.

 A PC running Microsoft Windows 98, Windows 2000, Windows NT4 (with SP4 or
later), Windows Me, Windows XP, or Windows Vista

 An Internet connection

 A CD - ROM drive

 Using the CD
 To install the items from the CD to your hard drive, follow these steps:

 1. Insert the CD into your computer ’ s CD - ROM drive. The license agreement appears.

�

�

�

 Windows users : The interface won ’ t launch if you have Autorun disabled.
In that case, click Start � Run (for Windows Vista, Start � All Programs �
Accessories � Run). In the dialog box that appears, type D :\Start.exe .
(Replace D with the proper letter if your CD drive uses a different letter.
If you don ’ t know the letter, see how your CD drive is listed under My
Computer.) Click OK.

 2. Read the license agreement, and then click the Accept button if you want to use the CD.

 The CD interface appears. The interface allows you to access the content with just one
or two clicks.

Using the CD 493

bapp.indd 493bapp.indd 493 2/11/09 5:54:58 PM2/11/09 5:54:58 PM

494 Appendix � About the Companion CD

 Troubleshooting
 Wiley has attempted to provide programs that work on most computers with the minimum
system requirements. Alas, your computer may differ, and some programs may not work
properly for some reason.

 The two likeliest problems are that you don ’ t have enough memory (RAM) for
the programs you want to use or you have other programs running that are affecting
installation or running of a program. If you get an error message such as “ Not enough
memory ” or “ Setup cannot continue, ” try one or more of the following suggestions and
then try using the software again:

 Turn off any antivirus software running on your computer. Installation programs
sometimes mimic virus activity and may make your computer incorrectly believe that
it ’ s being infected by a virus.

 Close all running programs. The more programs you have running, the less memory is
available to other programs. Installation programs typically update fi les and programs;
so if you keep other programs running, installation may not work properly.

 Have your local computer store add more RAM to your computer. This is, admittedly,
a drastic and somewhat expensive step. However, adding more memory can really help
the speed of your computer and allow more programs to run at the same time.

 Customer Care

 If you have trouble with the book ’ s companion CD, please call the Wiley Product Technical
Support phone number at (800) 762 - 2974. Outside the United States, call +1(317) 572 - 3994.
You can also contact Wiley Product Technical Support at http://sybex.custhelp.com . John
Wiley & Sons will provide technical support only for installation and other general
quality - control items. For technical support on the applications themselves, consult the
program ’ s vendor or author.

 To place additional orders or to request information about other Wiley products, please
call (877) 762 - 2974.

bapp.indd 494bapp.indd 494 2/11/09 5:54:59 PM2/11/09 5:54:59 PM

 Glossary

bgloss.indd 495bgloss.indd 495 2/11/09 8:50:19 AM2/11/09 8:50:19 AM

496 Glossary

A
 abstract class A class declared with the abstract keyword. An abstract class cannot be
instantiated.

 abstract method An instance method declared with the abstract keyword. An abstract
method does not contain a method body and must be overridden by any nonabstract child
classes.

 abstract modifier Declares a class or method as abstract. An abstract class cannot be
instantiated; an abstract method must be overridden in any concrete subclass.

 accessor methods A JavaBeans “ get ” method that is used to access the value of a field.

 additive operators The operators + and - ; they can be evaluated on any of the primitive
types except boolean .

 anonymous inner class A local inner class that does not have a name. It is declared and
instantiated all in one statement using the new keyword.

 argument A variable that is passed into a method.

 arithmetic operators Refers to the operators + , - , * , / , % , ++ and - - .

 array A contiguous chunk of memory on the heap representing a fixed - size collection of
values that all have the same data type.

 array initializer A shorthand notation for declaring an array and filling it with values, all
in a single statement.

 array reference A reference that denotes the data type of the values to be stored in the
array, using square brackets to denote the array reference.

 assert statement Used to insert an assertion at a particular point in your code. An assert
statement uses the assert keyword followed by a boolean expression and an optional error
message.

 assertion A boolean expression placed at particular points in your code where you think
something should always be true.

 assignment operators The simple assignment = and 11 compound assignment operators:
 += , - = , *= , /= , %= , & = , ̂ = , |= , < < = , > > = , and > > > = .

 atomic A task that needs to be completed without interruption. The term is often used to
describe a task that needs to execute in a synchronized block of code.

 autoboxing Refers to the compiler automatically converting a primitive type into its
corresponding wrapper class.

bgloss.indd 496bgloss.indd 496 2/11/09 8:50:20 AM2/11/09 8:50:20 AM

Glossary 497

B
 bitwise Refers to the & , ̂ , and | operators.

 bitwise and logical operators The & , ̂ , | , & & , and || operators.

 blank finals A constant variable that is not assigned an initial value. A blank final
becomes constant once it is assigned a value.

 blocked thread A thread in the BLOCKED state. A blocked thread becomes runnable
when the monitor lock it is attempting to acquire becomes available.

 bounded parameter type A generic type that specifies a bound for the generic.

 break statement Transfers flow of control out of an enclosing statement. A break
statement can appear within a switch , for , while , or do statement.

 by value Refers to how arguments are passed to methods in Java. Passing arguments by
value means that a copy of the argument is passed to the corresponding parameter of the
method.

 bytecode Compiled Java code. Bytecode appears in .class files.

C
 call stack Refers to the stack of methods executing within a single thread. The first
method invoked in a thread sits at the bottom of the call stack, and subsequent method calls
are pushed onto the top of the stack.

 catch clauses A block of code using the catch keyword that follows a try block. The
 catch block is often referred to as an exception handler since the catch block can handle an
exception and stop it from traversing further down the method call stack.

 character classes Represents commonly used character patterns in regular expressions.

 checked exception Any exception that is a subclass of java.lang.Exception but not a
subclass of java.lang.RuntimeException . Checked exceptions must be handled or declared.

 class A description of an object. A class in Java is defined in a .java source file and
compiled into a .class file.

 class method A method within a class declared as static.

 classpath The path on your file system where your .class files are saved. The classpath is
defined by the CLASSPATH environment variable.

 class variable A field within a class declared as static.

bgloss.indd 497bgloss.indd 497 2/11/09 8:50:21 AM2/11/09 8:50:21 AM

498 Glossary

 cohesion Refers to how closely related the specific tasks are of an object.

 collection A group of objects contained in a single element.

 collections interfaces Refers to the interfaces in the Java Collections Framework that
represent the various types of collections.

 composition Refers to a class containing a reference to another class. Good composition
design satisfies the has - a relationship.

 compound assignment operators Refers to the assignment operators +=, - =, *=, /=, %=,
 & =, ^=, |=, < < =, > > =, and > > > =.

 concrete subclass A subclass of an abstract class that is not abstract.

 concurrency Performing multiple tasks at the same time. In Java, concurrency refers to a
program that contains multiple threads.

 conditional operator The operator a ? b : c , where a is a boolean expression, b is the
expression evaluated when a is true , and c is the expression evaluated when c is false .

 consistent with equals A natural ordering that uses compareTo is said to be consistent
with equals if and only if x.equals(y) is true whenever x.compareTo(y) equals 0 .

 constants Final fields or local variables; they cannot be changed.

 constructor A special method within a class that gets invoked when an object is
instantiated. A constructor must match the name of the class and cannot declare a return
value. The purpose of a constructor is to initialize the fields of the object.

 continue statement A statement within a repetition control structure that transfers flow
of control to the loop - continuation point of the loop. A continue statement can appear
within a for , while , or do statement.

 coupling The extent to which one object depends on another object to achieve its goal.

 covariant return types When the return type of the overriding method is a child class of
the return type of the overridden method.

D
 default constructor A compiler - generated constructor that is automatically generated by
the compiler if a class does not explicitly define a constructor. The default constructor takes
in no arguments and only contains a call to the no - argument parent class constructor.

 deserialization Refers to the process of reading the data from an object stream and
reconstituting a serialized object in memory.

 deque Pronounced “ deck, ” it is short for “ double - ended queue, ” a collection that allows
for elements to be inserted and removed at both ends of the queue.

bgloss.indd 498bgloss.indd 498 2/11/09 8:50:22 AM2/11/09 8:50:22 AM

Glossary 499

 do - while loop A repetition control structure that is useful for repeating a block of code an
indeterminate number of times, but at least once. A do - while loop is declared using the do
keyword.

E
 encapsulation Refers to the combining of fields and methods together in a class such that
the methods operate on the data, as opposed to users of the class accessing the fields directly.

 enhanced for loop Referred to as a for - each loop, the enhanced for loop is a new type of
loop introduced in Java 5.0 that provides a simpler syntax for iterating through collections.

 enhanced for statement An enhanced for statement, also referred to as a for - each
loop, is a looping control structure designed for iterating through arrays and collections.
The syntax is simpler than a basic for loop and makes your code more readable.

 enum A Java class that represents an enumeration.

 enumeration A fixed set of constants.

 error An exception that is a child class of java.lang.Error . An error is associated with
problems that arise outside of your application, and you typically do not attempt to recover
from errors.

 exception An event that occurs during the execution of a program that disrupts the
normal flow of control. In Java, an exception is an object that a method “ throws ” down the
method call stack by handing it to the JVM and letting the JVM search for a handler.

 explicit initialization Refers to when an instance variable is assigned a value at the same
time that the instance variable is declared.

F
 fields Another name for the instance variables of a class.

 final method A method declared with the final keyword. A final method cannot be
overridden.

 final modifier When applied to fields and variables, creates constants. When applied to a
method, the method cannot be overridden. When applied to a class, the class cannot be
subclassed.

 finally block A block of code that follows a try statement and executes after the try
block, regardless of whether an exception occurs within the try block.

 for loop A repetition control structure that uses the for keyword and is useful for
repeating a block of code a fixed number of times.

bgloss.indd 499bgloss.indd 499 2/11/09 8:50:22 AM2/11/09 8:50:22 AM

500 Glossary

 for - each loop Another name for an enhanced for statement.

 formal type parameter Refers to the parameter used in a class, interface, method, or
constructor that uses generics. The formal type parameter is declared in angle brackets. For
example, T is the formal type parameter of the expression < T > .

 format specifiers The expression used in the format methods of the java.io
.PrintWriter class. Examples include %b for Booleans, %c for characters, %d for integers,
%f for decimal numbers, and %s for strings.

 free store Another term used to refer to the heap.

G
 generics Refers to the new Java feature added to J2SE 5.0 that provides support for
parameterized data types.

 Handle or Declare Rule A rule enforced by the compiler that states if a statement throws
a checked exception, it must either attempt to catch the exception or declare the exception
in the enclosing method declaration using the throws keyword.

H
 has - a relationship A simple test to decide when a class should use composition.

 heap Represents a large pool of unused memory allocated to your Java application. All
objects in Java reside in the heap memory.

 heterogeneous collection A collection of objects that are not the same data type but
have a common parent class.

 high cohesion An OO design where an object performs a collection of closely related
tasks.

I
 identifier The name of a variable, method, class, interface, or enum.

 if - else statement Also referred to as an if - then or if - then - else statement, it is the
most basic of decision - making control structures in Java.

 immutable Refers to an object that cannot be changed.

 import The Java keyword used to import a package into a source file.

 information hiding A result of tight encapsulation, where a class does not expose to its
users how the fields of the class are stored.

bgloss.indd 500bgloss.indd 500 2/11/09 8:50:23 AM2/11/09 8:50:23 AM

Glossary 501

 inner class A nonstatic nested class.

 instance initializer A block of code declared in a class that executes for each new instance
of the class. An instance initializer executes immediately after the parent class constructor
finishes and before the body of the class constructor executes.

 instance method A nonstatic method of a class.

 instance variables The nonstatic fields of a class.

 instantiation process The events that occur during the creation of a new object.

 interface A reference type, similar to a class, that can only contain static constants,
abstract methods, and nested types.

 is - a relationship A simple test to determine if you are using a proper approach and good
code design in your application regarding inheritance. Simply put, you should be able to
state that a child object “ is a ” parent object.

J
 JavaBeans A technology for developing software components in Java.

 Java Collections Framework A unified set of classes and interfaces defined in the
 java.util package for storing collections.

L
 label An identifier that appears before a statement and is followed by a colon. A break or
 continue statement can refer to a label to clarify which loop to break or continue on.

 labeled break A break statement that specifies a label, useful for breaking out of an outer
loop or switch.

 labeled continue A continue statement that specifies a label, useful for continuing on an
outer loop.

 list An ordered collection of elements that allows duplicate entries, and each element is
accessed by an integer index.

 local inner class An inner class defined within a method.

 local variable A variable defined within a method, which includes method parameters.

 lock Short for “ monitor lock. ”

 loose coupling The minimizing of the dependencies an object has on other objects.

 low cohesion When an object performs multiple tasks that are not related to each other.

bgloss.indd 501bgloss.indd 501 2/11/09 8:50:24 AM2/11/09 8:50:24 AM

502 Glossary

M
 main thread Refers to the thread created by the JVM when invoking the main method of
a stand - alone Java application.

 map A collection that maps keys to values, with no duplicate keys allowed. The elements
in a map are key - value pairs.

 member inner class A nonstatic nested class defined at the member level of a class.

 metacharacters A special set of characters used to specify wildcards, repetition, and
ranges in regular expressions.

 method declaration The definition of a Java method comprising of six components
of a method: modifiers, return type, method name, parameter list, exception list, and
method body.

 method hiding When a child class contains a static method that is also defined in its
parent, following the rules of method overriding.

 method overloading When a class contains multiple methods with the same name but
different parameter lists.

 method overriding When a child class contains the same instance method as its
parent class.

 method signature A method ’ s name and parameter types.

 monitor Short for “ monitor lock. ”

 monitor lock An entity that every Java Object has, the monitor lock is used by threads to
synchronize access to the Object .

 multiplicative operators The operators * , / , and % .

 mutator methods A JavaBean “ set ” method that is used to alter the value of a field.

 mutually comparable A collection of elements is said to be mutually comparable if any
two elements in the list can be compared to each other using the compareTo method without
a ClassCastException being thrown.

N
 natural ordering Refers to an ordered collection whose elements implement the
 Comparable interface.

 nested class A class defined within another class.

 new thread A thread in the NEW state, it refers to a new thread object that has been
instantiated but not started yet.

bgloss.indd 502bgloss.indd 502 2/11/09 8:50:24 AM2/11/09 8:50:24 AM

Glossary 503

O
 object An instance of a class.

 object serialization Refers to taking the state of an object and writing it to a stream.

 order of precedence The order in which operators are evaluated.

P
 package A grouping of classes, interfaces, enumerations, and annotated types.

 parameter The name of the variable in the method signature that gets assigned the value
of the argument.

 polymorphic parameters Refers to a method parameter that is class type. Due to
polymorphism, child objects of the parameter type can also be passed into the method.

 preemptive scheduling Refers to the JVM scheduling higher - priority threads over lower -
 priority threads. A lower - priority thread is preempted by a higher - priority thread.

 primitive types The built - in data types of the Java language. There are eight primitive
types in Java: byte , short , int , long , float , double , char , and boolean .

 process A program that runs in an environment. A process consists of allocated memory
and resources.

Q
 queue A collection that orders its elements in a specific order for processing. A typical
queue processes its elements in a first - in, first - out fashion, but other ordering is possible.

R
 reference types Variables that are class types, interface types, and array types.

 regular expression A sequence of characters that describes a pattern of characters. The
pattern describes a set of strings based on common characteristics.

 relational operators The comparison operators < , < = , > , and > = .

 runnable target The code that executes when its corresponding thread object is scheduled
to run on the CPU.

 runnable thread A thread in the RUNNABLE state. A runnable thread is either running
on the CPU or waiting to be scheduled.

 runtime exception Any exception that is a subclass of java.lang.RuntimeException .
The Handle or Declare Rule does not apply to runtime exceptions.

bgloss.indd 503bgloss.indd 503 2/11/09 8:50:25 AM2/11/09 8:50:25 AM

504 Glossary

S
 scope The portion of code where a variable can be accessed.

 set A collection that does not allow duplicate entries.

 shift operators Operators used to shift the bits of a numerical value. Java has three shift
operators: < < for a left shift, > > for a signed right shift, and > > > for an unsigned right shift.

 simple assignment Refers to the assignment operator =.

 static field Another name for a class variable.

 static import A type of import introduced in Java 5.0 that allows for class variable names
to be imported into a source file.

 static initializer A block of code that executes once when a class is loaded by the class loader.
The syntax for a static initializer is the static keyword followed by a set of curly braces.

 static method Another name for a class method, a static method is a method containing
the static keyword in its declaration.

 static nested class A static class defined at the member level of an enclosing class.

 static variable Another name for a class variable.

 string A sequence of characters.

 string pool A feature of the JVM where String literals are stored. The JVM can optimize
the use of string literals by allowing only one instance of a string in the pool.

 switch statement A decision - making control structure based on testing a byte , short ,
 char , int , or enumerated type for equality to a list of case statements. A switch is similar
to an if - then - else statement, except that a switch statement can only test for equality and
it is possible for multiple blocks of code in a switch to execute.

 synchronized block of code A block of code created using the synchronized keyword
along with a reference to the object whose monitor lock is being acquired.

 synchronized method A method in a class declared with the synchronized keyword.
A thread invoking a synchronized method must acquire the object ’ s this reference.

 system threads Threads created automatically by the JVM that run in the background.

T
 terminated thread A thread in the TERMINATED state. A terminated thread has run to
completion.

 ternary operator Another name for the conditional operator.

bgloss.indd 504bgloss.indd 504 2/11/09 8:50:25 AM2/11/09 8:50:25 AM

Glossary 505

 thread A path of execution; a block of code that executes within a process and has access
to the process memory.

 thread object The part of a thread that gets started, has a priority and state, and is
scheduled to run by the JVM.

 thread priority An integer value that is a property of every thread object. The JVM uses a
thread ’ s priority as one of its factors in deciding which thread to schedule.

 tight encapsulation Refers to using encapsulation every time on all the fields of a class,
and only providing access to the fields via methods.

 tokens Separators, keywords, literals, operators, and identifiers in a source code file.

 transient A modifier for class fields that tells the JVM to ignore the field during the
serialization and deserialization process.

 try statement A block of code containing one or more statements that may throw an
exception. The statements within a try block are referred to as protected code.

 type erasure Refers to the changes that the compiler does to your code to remove the
generics syntax and replace the generic types with Object references.

U
 unbounded wildcard The ? in generics, which represents any data type.

 unboxing Refers to the compiler automatically unwrapping a primitive type from its
wrapper object.

 unnamed package The package that contains all Java elements that are not specifically
declared in a package.

 user - defined threads A thread you write to perform a specific task.

V
 variable An allocated piece of memory for storing data. A variable has an identifier and a
specific data type.

 variable - length argument list A parameter that contains the ellipsis (…) after its data
type can take in any number of arguments. This comma - separated list of arguments must
appear at the end of the argument list and is treated as an array.

 virtual method All methods in Java are virtual methods, meaning that if a method is
overridden, the overridden method is always invoked at runtime, even if the compiler sees
the parent class method at compile time.

bgloss.indd 505bgloss.indd 505 2/11/09 8:50:26 AM2/11/09 8:50:26 AM

506 Glossary

 virtual method invocation Refers to the behavior of virtual methods, where the runtime
type of an object is used to determine the overridden method invoked at runtime, as
opposed to invoking the method the compiler found at compile time.

W
 wildcard generic type An unknown generic represented with a question mark (?).

 while loop A repetition control structure that uses the while keyword and is useful for
repeating a block of code an indeterminate number of times.

 wrapper classes Refers to the eight classes defined in the java.lang package that are
used to “ wrap ” primitive types into objects.

bgloss.indd 506bgloss.indd 506 2/11/09 8:50:26 AM2/11/09 8:50:26 AM

Index
Note to the reader: Throughout this index boldfaced page numbers indicate primary discussions
of a topic. Italicized page numbers indicate illustrations.

A
abstract classes, 138–143

declaring, 138–143, 166
defined, 138

abstract keyword, 138, 140
abstract methods, 140–143

child classes and, 140, 141, 166, 410
overriding, 410
private methods and, 398

abstract modifier, 397–399, 410
abstraction, 139. See also object–oriented

programming
access modifiers (access specifiers),

393–397, 410. See also default access;
private; protected; public

inheritance and, 393–397, 410
local inner classes and, 158
for methods, 116
nested classes and, 163
for top-level classes, 4

accessor methods (getter methods), 119,
165, 382, 387, 423

ActionListener, 17, 161
additive operators, 44, 46–47
Address class, 385, 386, 387, 392, 393
Address2 class, 386, 387
addScore method, 271, 272, 273
AND operator (&), 44, 53–54

logical (&&), 44, 53, 54
anonymous inner classes, 159–162

interfaces and, 161
local inner classes v., 161

API (Application Programming Interface,
Java), 4

Collections, 89, 203, 270, 302,
425, 426

documentation, 5
append method, 275, 278, 279, 280, 281,

288, 325
Apple class, 82, 101, 102
Application Programming Interface. See API
arguments. See also command-line

arguments; variable-length arguments
defined, 36
passing, by value, 36

arithmetic operators, 46–50
additive, 44, 46–47
decrement (––), 44, 49–50
increment (++), 44, 49–50
multiplicative, 48–49

ArithmeticException, 54, 225, 226, 227,
228, 232, 234, 237, 267

arrays, 88–96, 167, 470–475. See also
specific arrays

command-line arguments and, 20–21
conversions

arrays into lists, 472
lists into arrays, 466–467

declaring, 88–96
defined, 88, 165
enhanced for loops and. See enhanced

for loops
length attribute and, 243
maps v., 445
multidimensional, 93–95
searching, 473–475, 477
sorting, 470–473, 477
square brackets ([]) and, 21, 89, 93, 294
using, 91–93

bindex.indd 507bindex.indd 507 2/11/09 8:51:00 AM2/11/09 8:51:00 AM

508 Index

array initializers, 95–96
array objects, 90–91
array references, 89

array objects and, 90, 91
declaring, 89

ArrayDemo program, 92, 93
ArrayDeque, 430, 475
ArrayIndexOutOfBoundsException, 21,

167, 242, 243
ArrayList, 428, 440, 475, 476
ArrayList object, 26, 27
ASCII characters, 23, 78
assert statement, 219
AssertionError, 219, 222, 232, 242, 247,

249, 266
assertions, 188, 218–224, 249, 250

class invariants and, 221, 223
code outcome and, 222
control flow invariants and, 221, 222
enabling, 220
exceptions v., 224
internal invariants and, 221
purpose of, 221

assignment operators, 44, 44–46
compound, 44–46
simple, 44, 45

assignment statements, boolean
expressions and, 191

atomic manner, 357
atomic tasks, 362
autoboxing, 131, 271, 272–274, 325
average method, 128, 457

B
%b, 297, 325
backslash (\), 319. See also character

classes
BankAccount class, 358, 359, 360, 361
basic for loops. See for loops
behind-the-scene details

on inner classes, 155
of instance methods, 124

binarySearch methods
for arrays, 473–475, 477
for lists, 461, 467–469

bitwise operators, 44, 53–55
AND (&), 44, 53–54
exclusive OR (∧), 44, 53, 54
inclusive OR (|), 44, 53, 54

blank finals, 399
blocked threads, 349, 353, 368, 369
blueprints, classes as, 2, 85
Book class, 136, 137
boolean (primitive type), 22, 51, 190
Boolean (wrapper class), 270
boolean add(E e), public, 427
boolean contains(Object e), boolean, 427
boolean expressions

assignment statements and, 191
if statements and, 190
numeric types and, 51

Boolean objects, 463
Boolean operator, 406. See also instance

of operator
boolean remove(Object e), remove, 427
bounded generic types, 455–457
bounded type parameters, 455
Box class, 163, 453, 454
braces/brackets. See curly braces;

parentheses; square brackets
break statements, 211–215

examples, 211, 212, 213
labeled, 213
syntax, 212

Breakable, 451, 452
breathe method, 137, 138
Buffalo class, 142
BufferedInputStream, 282, 284, 287, 324
BufferedOutputStream, 282, 284,

287, 293
BufferedReader class, 282, 283, 284, 285,

286, 287, 324

bindex.indd 508bindex.indd 508 2/11/09 8:51:01 AM2/11/09 8:51:01 AM

Index 509

BufferedWriter class, 283, 284, 285, 287,
289, 324

Button objects, in ColorChanger class, 114
ButtonListener class, 404, 405
Byte, 192, 194, 270, 271, 463
byte, 22
byte streams. See FileInputStream class;

FileOutputStream class
ByteArrayInputStream, 282, 284
bytecode

defined, 3
/source code, separating, 19

C
%c, 297, 325
call by value, 36–43, 62
call stack, 42
Camera class, 103–104
canExecute, 287
canRead, 287
canWrite, 287
Car class, 112, 113
case statements, 149, 184, 192, 193, 194,

195. See also switch statements
case values, final, 196–197
casting. See converting
Cat class, 390, 402, 403, 404, 405, 406
catch clauses (exception handlers), 227,

229–231. See also try statements
multiple, 229–231
order of, 231

catching errors/runtime exceptions, 233
CellPhone class, 395
chaining streams

BufferedReader/FileReader and, 285,
286, 286

FileInputStream/FileOutputStream and,
289, 290

FileWriter/BufferedWriter/PrintWriter
and, 287, 288, 289, 289

char, 22
Character (wrapper class), 192, 194, 270
character classes, 319–320, 320. See also

metacharacters
\d, 269, 316, 319, 320
\s, 269, 316, 319, 320
\w, 269, 316, 319, 320

character streams. See FileReader class;
FileWriter class

CharacterSorter program, 462–463
CharArrayReader, 282
CharArrayWriter, 283, 284
checked exceptions, 232, 232, 237. See

also ClassNotFoundException;
InterruptedException; IOException

CheckedDemo class, 234, 235, 236, 237
child classes

abstract methods and, 140, 141, 166,
410

final methods and, 137, 138, 410
is-as relationship and, 390, 391, 410
method hiding and, 135, 136, 166
method overloading and, 128, 129, 166
method overriding and, 165
polymorphism and, 402, 403, 410, 411
protected modifier and, 393, 410

ChildListener class, 404
Circle class, 159
.class file, 3, 11, 97, 115, 143, 165
class invariants, 221, 223
class loader, 115
class methods. See static methods
class variables. See static fields
ClassCastException, 52, 232, 242, 244,

406, 407, 437, 461, 464. See also
instanceof operator

classes, 97–100. See also inheritance;
inner classes; methods; nested classes;
objects; specific classes

abstract, 138–143, 166
as blueprints, 2, 85
child. See child classes

bindex.indd 509bindex.indd 509 2/11/09 8:51:01 AM2/11/09 8:51:01 AM

510 Index

classes (continued)
cohesion and, 388–390, 409
composition and, 390, 392, 409, 410
cookie analogy and, 2
coupling and, 385–388, 409
declaring, 97–100
defined, 2, 97
elements in, 97, 165
generic, 450–451
house analogy and, 2, 85
inner, 152
interfaces v., 143
multiple, in single file, 4, 62
in packages, 5–6, 61. See also packages
parent. See parent class
top-level, access modifiers for, 4
wrapper, 270–272
writing, 2–4

ClassNotFoundException, 73, 232, 234,
235, 236, 237, 304

classpath, 11
CLASSPATH environment variable,

11, 61
-classpath flag, 17
clickCount method, 87, 88
code outcome, assertions and, 222
code output, 61
code reuse. See reuse
cohesion, 388–390, 409
Collection interface, 426, 427, 475.

See also Collections class; collections
interfaces

methods in, 427
subinterfaces in, 427

collections, 426–435. See also generics
classes, list of, 476
defined, 426
enhanced for loops and, 203–204
heterogeneous, 409
nongeneric, limitations of, 436–437
overview of, 426
review questions, 478–489

Collections API, 89, 203, 270, 302, 425, 426
Collections class, 461, 467, 469, 476, 477,

487. See also Collection interface;
searching lists; sorting lists

Collections Framework (Java), 426, 475
equals method and, 434. See also

equals method
generics and, 427, 437, 476. See also

generics
collections interfaces, 426–432, 476

lists, 426, 427–428, 438–441, 476
maps, 426, 430–432, 476
queues, 426, 429–430, 476
sets, 426, 428–429, 441–445, 476

ColorChanger class, 97–100
Button objects in, 114
elements in, 99–100
GUI programming and, 17, 100
MyButtonListener class, 157
running Java from command line and,

14, 15, 16, 17
command line

arguments, 19–22
arrays and, 20–21

running Java applications from, 12–22
ColorChanger and, 14, 15, 16, 17
TestColors and, 15, 16, 17

Comparable interface, 432–433
comparable sorting, 462–464
Comparator object, 461, 467, 468, 470,

473, 475, 477
comparators

natural ordering v., 477
sorting, 465–467

compareTo, 432–435
consistent with equals and, 435, 476
natural ordering and, 433, 435, 461,

462, 476
comparison operator (==), 56–58, 62.

See also equals method
autoboxing and, 274
equals method v., 62, 433–435, 477

bindex.indd 510bindex.indd 510 2/11/09 8:51:02 AM2/11/09 8:51:02 AM

Index 511

compile method, 315, 325
composition, 390, 392, 409, 410. See also

has-a relationship
compound assignment operators,

44–46
computeArea method, 398
concat method, 275, 325. See also

String class
concatenation

+ operator and, 46, 47, 276
optimizing, 277

concrete subclasses, 141
concurrency. See also threads

defined, 342
processes and, 342
threads and, 342

conditional (ternary) operator (? :), 44, 55
conditional/logical operators. See logical

operators
consistent with equals, compareTo and,

435, 476
Console class, 298–301

methods, 299
System.in and, 298, 301
System.out and, 298, 301

Console enum, 195
constantexpression, 192, 192
constants

blank finals as, 399
DateFormat class and, 312
enumerations and, 147, 166, 196
final variables and, 196, 399, 400
naming conventions for, 400

constructors, 102
Camera class and, 103–104
default, 104–105
defined, 97, 102, 165
enum, declaring, 151–152
properties, 102
Scanner class and, 322
super keyword in, 108–111, 166
this keyword in, 105–107, 166

Consumer class, 364, 365, 366, 367
consumer model. See producer/consumer

model
Contact class, 291
Contact2 class, 302, 303
ContactManager program, 291, 292,

293, 294
containers. See collections
continue statements, 215–218

labeled, 217, 218
syntax, 216

control flow invariants, 221, 222
control structures

boolean expressions and, 190
break statements and, 211–215
decision making, 188, 249, 250
repetition, 188, 249, 250

conversion specifiers. See format specifiers
convert method, 130
converting (casting). See also

ClassCastException
arrays into lists, 472
autoboxing and. See autoboxing
cast operator and, 47
lists into arrays, 466–467
numbers to strings. See concatenation;

DecimalFormat class
primitive types, 47
primitive types into strings, 276
references (polymorphic), 47, 405–409
strings into dates, 314–315
strings into numbers, 310–311

cookie analogy, classes/objects and, 2
CopyFile program, 290, 291
CountToTen program, 345, 346, 352
coupling, 385–388, 409
covariant return types, 134–135
-cp flag, 17
CreateEmployee program, 6, 7
CreateEmployee2 program, 7
createNewFile method, 287, 337
Cupboard class, 450, 451, 456

bindex.indd 511bindex.indd 511 2/11/09 8:51:03 AM2/11/09 8:51:03 AM

512 Index

curly braces ({ })
abstract methods and, 141
do statement and, 209
if statement and, 189
instance initializers and, 112
try statement and, 227
while statement and, 206

currency
formatting, 306, 307, 308, 309
parsing, 312

Customer class, 121, 122

D
%d, 297, 325
\d (metacharacter), 269, 316, 319, 320
-d flag, 6, 10
-da flag, 220
data

formatting/parsing, 306–315, 324, 325
input/output. See input/output

data types. See also generic types;
primitive types; reference types

interfaces and, 146
promotion, method overloading and,

129–130
DataInputStream class, 281, 282, 284,

291–294, 324
DataOutputStream class, 281, 282,

291–294, 324
DateFormat class, 312–315, 324

constants and, 312
format methods, 313–314
parse method, 314–315
static methods, 312–313

dates, strings into, 314–315
dead threads. See terminated threads
deadlock, 360–361
DecimalFormat class, 309–310. See also

NumberFormat class
decision making control structures, 188,

249, 250. See also if statements;
switch statements

declaring
abstract classes, 138–143, 166
array references, 89
arrays, 88–96
classes, 97–100
enum constructors, 151–152
enum methods, 150–151
enumerations, 147–152
interfaces, 143–147
methods, 116–138, 165
nested classes, 152–164
variables, 78–79, 165

decrement operators (––), 44, 49–50
default access (access modifier), 393, 410.

See also access modifiers
classes and, 3
constructors and, 102
interfaces and, 143
member inner class and, 153
methods and, 116
top-level classes and, 4

default constructors, 104–105
super keyword and, 110–111

delete()
File class, 287
StringBuffer/StringBuilder classes, 280

deleteCharAt(), 280
delimiters, 322, 323, 325
Deque interface, 426, 428, 430, 475
deques, 430, 475. See also queues
deserialization, 301. See also serialization
DeserializeDemo program, 304,

305, 306
design principles, OO. See OO design

principles
Direction enum, 149, 150, 151
-disableassertions flag, 220
Dish objects, 452, 454
division (/) operator, 48
do statements. See do-while loops
Dog class, 406

equality of objects in, 59–60
Fido object, 60
finalize method and, 34, 35

bindex.indd 512bindex.indd 512 2/11/09 8:51:03 AM2/11/09 8:51:03 AM

Index 513

Lassie object, 35, 60
naming conventions and, 9
Snoopy object, 35, 36

DogTest program, 60
dollar sign ($), 78, 155, 183, 297, 309, 312
doSomething class, 20
doSomething method, 134, 159, 337
dot (.), 269, 315, 316, 317
Double (wrapper class), 270, 272, 273,

312, 339, 463
doubles, 22

precision of, 159
do-while loops (do statements), 209–211

examples, 209, 210
rules for, 209
variables, scope of, 211
while loops v., 208

Drawable interface, 144, 145, 146, 147

E
E (element), 452
E ceiling(E e), 444
E floor(E e), 444
‹E› generic return type, 427, 437. See also

generics
E higher(E e), 444
E lower(E e), 444
-ea flag, 220
eat method, 132, 133, 134
element (E), 452
eligible, for garbage collection, 31–32, 62
ellipsis. See variable-length argument list
else block, 189. See also if statements
Email class, 130, 131
Employee class, 106, 107, 119, 120, 386,

391, 392, 393
Employee2 class, 387
Employee3 class, 388
-enableassertions flag, 220
encapsulation, 382–385, 409, 423
enhanced for loops (for-each loops), 92,

201–205
collections and, 203–204

for loops v., 204–205
nested, 205
properties, 202
syntax, 201
variables, scope of, 202–203
when to use, 204–205

enums
Console, 195
defined, 147, 166
Direction, 149, 150, 151
IceCream, 151, 152
Season, 148
switch statements and, 149, 194–196
using, 149–150

enum constructors, 151–152
enum keyword, 148, 166, 167
enum methods, 150–151
enumerations, 147–152, 167

constants and, 147, 166, 196
equal to. See comparison operator
equality, of objects, 58–61
equality operators, 56–58

comparison (==), 56–58, 62
autoboxing and, 274
equals method v., 62, 477

not equal to (! =), 56–58
equals method, 58. See also comparison

operator
Collections Framework and, 434
comparing strings with, 276
comparison operator (==) v., 62,

433–435, 477
hashCode method and, 60–61

erasure, type, 451
errors, 232, 232. See also exceptions

AssertionError, 219, 222, 232, 242,
247, 249, 266

catching, 233
ExceptionInInitializerError, 242,

247–248
NoClassDefFoundError, 14, 16, 73,

242, 249
StackOverflowError, 242, 248

escape (\), 319. See also character classes

bindex.indd 513bindex.indd 513 2/11/09 8:51:04 AM2/11/09 8:51:04 AM

514 Index

event handlers, inner classes as, 157,
161–162

event listener methods, 120–121
exception handlers. See catch clauses
exception handling clauses, 224

catch clauses, 227, 229–231
try statements, 227–229

ExceptionDemo class, 225
ExceptionInInitializerError, 242, 247–248
exceptions, 188, 224–249, 250

ArithmeticException, 54, 225, 226,
227, 228, 232, 234, 237, 267

ArrayIndexOutOfBoundsException,
21, 167, 242, 243

AssertionError, 219, 222, 232, 242,
247, 249, 266

assertions v., 224
categories of, 231–232, 232
checked, 232, 232, 237
ClassCastException, 52, 232, 242,

244, 406, 407, 437, 461, 464
ClassNotFoundException, 73, 232,

234, 235, 236, 237, 304
errors, 232, 232
ExceptionInInitializerError, 242,

247–248
FileNotFoundException, 229, 230, 231,

240, 286, 322, 350, 460, 461
Handle or Declare Rule and, 231–237
IllegalArgumentException, 224, 242,

245, 351, 384
IllegalStateException, 242, 245–246
IllegalThreadStateException, 351, 355,

369, 379
InterruptedException, 116, 232, 237, 353
IOException, 8, 231, 232, 233, 237,

239, 266, 267
NoClassDefFoundError, 14, 16, 73,

242, 249
NullPointerException, 122, 194, 229,

232, 233, 237, 241, 242, 246, 247,
267, 268, 337

NumberFormatException, 242, 246–
247, 266, 267, 272

runtime, 231, 232, 233, 237
RuntimeException, 231, 232, 232, 267
StackOverflowError, 242, 248

exclusive OR operator (∧), 44, 53, 54
exists method, 287
explicit initialization, 81–83
extending

interfaces, 147
Thread class, 343, 346–348, 368, 369

extends keyword, 147, 455, 456

F
%f, 297, 325
Favorites program, 204
Feline class, 142, 143
FictionBook class, 111, 136, 137
Fido object, 60
fields, 80. See also instance variables;

static fields
FIFO (first-in, first-out), 426, 429, 430.

See also LIFO; queues
File class, 287–289, 324

methods of, 287, 325
uses of, 287

file input/output, 285–301, 324
FileDemo program, 288, 289
FileInputStream class, 282, 284, 285, 287,

289–291, 324
FileNotFoundException, 229, 230, 231,

240, 286, 322, 350, 460, 461
FileOutputStream class, 282, 284, 287,

289–291, 324
FileReader class, 284, 285–287, 324
FileWriter class, 284, 285–287, 324
final case values, 196–197
final keyword, 137
final methods, 137–138, 410
final modifier, 399–401, 410

bindex.indd 514bindex.indd 514 2/11/09 8:51:05 AM2/11/09 8:51:05 AM

Index 515

final variables, 196–197
constants and, 196, 399, 400
naming convention for, 400

finalize method, 33–36
finally block, 238–241, 250

syntax, 238
try statement and, 238–241, 250

FinallyDemo program, 238, 239, 240
findByName method, 37, 38
finishTimes reference, 89, 90
first-in, first-out (FIFO), 426, 429, 430.

See also last-in, first-out; queues
flag

-classpath, 17
-cp, 17
-d, 6, 10
-da, 220
-disableassertions, 220
-ea, 220
-enableassertions, 220

float, 22
Float (wrapper class), 270, 271, 272, 273,

452, 463
flow control, 187–249

assertions and, 188, 218–224, 249, 250
decision making control structures,

188, 249, 250
exceptions and, 188, 224–247, 249, 250
overview of, 188
repetition control structures, 188, 249,

250
continue statements and, 215–218

Flower class, 146
for loops (basic), 197–201. See also

enhanced for loops
enhanced for loops v., 204–205
examples, 198, 199, 200
length attribute and, 243
nested, 199–200
optional sections of, 201
properties, 197
syntax, 198

types of, 197
variables, scope of, 199

for-each loops. See enhanced for loops
foreign locales, 308, 325
formal type parameters, 450, 451, 456
format methods

DateFormat class, 313–314
NumberFormat class, 307–309
PrintWriter class, 295–298, 324

format specifiers, 296–297, 297, 325
Formatter class, 298. See also

PrintWriter class
formatting currency, 306, 307, 308, 309
formatting data, 306–315, 324, 325
“forms, many.” See polymorphism
free store, 28. See also heap
friendly access. See default access
Fruit class, 101
FullyQualifiedDemo program, 9
fundamentals (Java), 1–75

G
garbage collection, 28–36, 62

eligible for, 31–32, 62
finalize method and, 33–36
GregorianCalendar objects and, 29–31
System.gc method and, 32–33

Garfield, 403
GCDemo program, 31
GCDemo3 program, 35, 36
generics, 436–461

Collections Framework and, 427, 476
‹E› generic return type and, 427, 437
lists and, 438–441
maps and, 445–449
naming conventions for, 452–453
nongeneric collections and, 436–437
polymorphism and, 456, 458, 476
review questions, 478–489
sets and, 441–445

bindex.indd 515bindex.indd 515 2/11/09 8:51:05 AM2/11/09 8:51:05 AM

516 Index

generics (continued)
syntax, 450, 454, 455, 476
type erasure and, 451

generic classes, 450–451
generic data type (T), 453
generic interfaces, 451–453
generic methods, 453–455
generic supertypes, 459, 461
generic types, 449–461

bounded, 455–457
naming conventions for, 452–453
type erasure and, 451
wildcard, 458–460

generic wildcards. See generic types
get methods, 119, 120
getBalance method, 359, 378
getCounter method, 136, 137
getCurrencyInstance(), 307
getDateInstance(), 312
getDateTimeInstance(), 312, 313
getFile method, 43
getInstance(), 306
getIntegerInstance(), 307
getMessage(), 229
getNumberInstance(), 306, 307
getPercentInstance(), 307
getter methods (accessor methods), 119,

165, 382, 387, 423
getTimeInstance(), 312
global methods, static methods v., 125
global variables, 83, 85. See also static

fields
graphical user interface (GUI)

programming, 17, 100
greater than (›), 51
greater than or equal (›=), 51
greedy quantifiers, 315
GregorianCalendar

objects, garbage collection and, 29–31
references, 90, 91, 91

GUI (graphical user interface)
programming, 17, 100

H
Handle or Declare Rule, 231–237
has-a relationship, 392–393, 409
hashCode method, 60–61
HashMap, 431, 447, 475, 476
HashSet, 429, 441–442, 475, 476
hasNext methods, 322
headMap method, 448
headSet method, 444
heap, 28
Hello class, 455. See also SayHello class
heterogeneous collections, 409
hidden static methods, 137
hiding. See encapsulation; information

hiding; method hiding
high cohesion, 388–390, 409. See also

loose coupling; tight encapsulation
loose coupling and, 389
tight encapsulation and, 389

high-level streams, 283–285, 284, 324
house analogy, classes/objects and, 2, 85
House class, 83, 85
HouseCat class, 143
HouseTest program, 84, 85, 86
HumanResources class, 389

I
IceCream enum, 151, 152
identifiers, 78–79

invalid, 79
tokens as, 79
valid, 79

IEEE website, 159
if statements (if-else, if-then-else), 188–192

boolean expressions, 190
curly braces and, 189
else block and, 189
rules for, 189
switch statements v., 192
syntax, 189

bindex.indd 516bindex.indd 516 2/11/09 8:51:06 AM2/11/09 8:51:06 AM

Index 517

if-else statements. See if statements
if-then-else statements. See if statements
IllegalArgumentException, 224, 242, 245,

351, 384
IllegalStateException, 242, 245–246
IllegalThreadStateException, 351, 355,

369, 379
immutable String objects, 25, 38, 39, 57,

275, 276
implements keyword, 144
import keyword, 6–9
import statement, 7
importing nested classes, 164
imports, static, 85–86
inclusive OR operator (|), 44, 53, 54
increment operators (++), 44, 49–50
indeterminate output, of multithreaded

programs, 346, 348, 367, 369
information hiding, 384–385. See also

tight encapsulation
inheritance, 393–397. See also access

modifiers; polymorphism
“is a” relationship and, 390, 391, 392,

409
modifiers and

abstract, 397–399
access, 393–397, 410
final, 399–401

multiple, with interfaces, 147
polymorphism and, 402

initialization, 100. See also constructors;
instantiation process

explicit, 81–83
of instance variables, 80–81
of local variables, 86–87
of variables, 78

initializers. See array initializers; instance
initializers; static initializers

Inner class, 153, 154
inner classes, 152

anonymous, 159–162
behind-the-scene details of, 155

as event handlers, 157, 161–162
local, 152, 158–159
member, 150–157
nested, 156
reuse and, 157, 162

input streams, 282, 282
input/output

binary data, 281. See also streams
character/string data, 281. See also

reader classes; writer classes
files, 285–301, 324

InputStream, 281, 282, 284
InputStreamReader, 282, 284
insert method, 275, 279, 280, 281, 325
instance initializers, 101, 111–114

curly braces and, 112
defined, 97, 111, 165
purpose of, 114
syntax for, 112

instance methods, 121–124
behind-the-scene details of, 124
defined, 121
overridden, 137
references and, 122

instance variables (fields), 80–83, 97, 165
explicit initialization of, 81–83
initialization of, 80–81
lifetime of, 81
static variables v., 166

instanceof operator, 44, 51–52, 244,
406–407, 411

as Boolean operator, 406
ClassCastException and, 244, 406
polymorphism and, 406–407

instantiation process, 100–102, 165
int, 22
Integer (wrapper class), 192, 194, 270, 463
integer_variable, 192
interface(s), 143–147. See also specific

interfaces
anonymous inner classes and, 161
API, 4, 5

bindex.indd 517bindex.indd 517 2/11/09 8:51:06 AM2/11/09 8:51:06 AM

518 Index

interface(s) (continued)
classes v., 143
collections, 426–432, 476
Comparable, 432–433
data types and, 146
declaring, 143–147
defined, 143
Drawable, 144, 145, 146, 147
extending, 147
generic, 451–452
GUI, 17, 100
implementing, 144–146

polymorphism and, 402
List, 426, 428, 438, 440, 455, 466
Map, 426, 427, 431, 445, 446, 475, 488
multiple inheritance with, 147
properties of, 143
public and, 143
purpose of, 145
Queue/Deque, 426, 428, 430, 475
Runnable, 344–346, 368, 369
Serializable, 301–303
Set, 426, 428, 429, 441

internal invariants, 221
InterruptedException, 116, 232, 237, 353
intValue method, 271
invalid identifiers, 79
InvalidLogger class, 400
InvalidShape class, 397, 398
invariants

class, 221, 223
control flow, 221, 222
internal, 221

IOException, 8, 231, 232, 233, 237, 239,
266, 267

is-a relationship, 390–392, 409, 410
isValid method, 223, 224
Iterable, 201, 202, 203
Iterator ‹E› descendingIterator(), 444
Iterator ‹E› iterator(), 444
iterator method, 427, 443, 444. See also

collections; generics

iterators, 197, 201, 202, 204, 206, 209,
211, 215. See also break statements;
continue statements; repetition control
structures

J
JAR files, 17–18
Java

API. See API
applications, command line and, 12–22
Collections Framework. See Collections

Framework
fundamentals, 1–75
modifiers. See abstract modifier; access

modifiers; final modifier
naming conventions. See naming

conventions
OOP and, 2. See also object-oriented

programming
Java Platform, Standard Edition (JavaSE),

4, 5, 32
Java Runtime Environment (JRE), 2, 11
.java source file, 97, 165
JavaBeans, 118

event methods, 120–121
naming convention, 118–121, 165
read/write properties, 120

java.io package, 281
file input/output and, 285–301, 324
high-level streams in, 283–285,

284, 324
input streams of, 282, 282
low-level streams in, 283–285,

284, 324
object serialization and, 301–306, 324
output streams of, 282, 282
reader classes of, 281–283, 282, 324
writer classes of, 281–283, 283, 324

java.lang package, 270. See also strings;
Throwable types; wrapper classes

bindex.indd 518bindex.indd 518 2/11/09 8:51:07 AM2/11/09 8:51:07 AM

Index 519

strings and, 274
Throwable types and, 242
wrapper classes and, 270

JavaSE (Java Platform, Standard Edition),
4, 5, 32

java.text package, 270, 306
formatting/parsing data and, 306–315,

324, 325
java.util package. See also collections

interfaces
Collections API of, 89, 203, 270, 302
collections interfaces in, 426–432, 476

java.util.regex package, 269, 315. See also
regular expressions

join method, 354, 357, 361, 368, 369
JRE. See Java Runtime Environment
july array, 90, 91, 92

K
K (map key), 452
keyboard input, Scanner class and,

323, 325
keyword(s)

abstract, 138, 140
counting, maps and, 431–432
enum, 148, 166, 167
extends, 147, 455, 456
final, 137
implements, 144
import, 6–9
native, 117, 165
new operator, 29, 80, 82, 100, 101,

153, 154
package, 5–6
super

in constructors, 108–111, 166
default constructors and, 110–111
parent class constructors and, 108,

110, 165, 166
as reference, 108, 134

synchronized, 353, 358, 362, 363,
368, 369

this

in constructors, 105–107, 166
as reference, 105, 134

throws, 233
tokens as, 79
transient, 301, 302

keyword counters, 431–432
keywordFound method, 432

L
labeled break statements, 213
labeled continue statements, 217, 218
labels, 213, 214, 217, 218. See also break

statements; continue statements
language codes (online), 308
Lassie object, 35, 60
last-in, first-out (LIFO), 428, 441.

See also Stack
leftClick method, 87, 88
length attribute, 243
less than (‹), 50–51
less than or equal (‹=), 50–51
lifetime, of instance variables, 81
LIFO (last-in, first-out), 428, 441.

See also FIFO; Stack
line numbers, 3
LineNumberReader, 284
LinkedHashMap, 431, 447, 475
LinkedHashSet, 429, 429, 441, 443, 475
LinkedList, 428, 430, 440, 475, 476
Lion class, 132, 133, 134, 137, 138
List interface, 426, 428, 438, 440, 455, 466
lists, 427–428, 476. See also ArrayList;

LinkedList; Stack; Vector
classes, 428
conversions

arrays into lists, 472
lists into arrays, 466–467

bindex.indd 519bindex.indd 519 2/11/09 8:51:08 AM2/11/09 8:51:08 AM

520 Index

lists (continued)
defined, 426, 427
generics and, 438–441
searching, 467–469
sorting, 461–467, 476, 477

literals, tokens as, 79. See also string
literals

local inner classes, 152, 158–159
anonymous inner classes v., 161

local variables, 86–88, 165
Locale class, 308
locales, 308, 325
locks. See monitor locks
logErrors method, 126, 127
logical operators, 44, 53–55

AND (&&), 44, 53, 54
OR (| |), 44, 53, 54

long, 22
Long class, 270, 463
loops. See do-while loops; enhanced for

loops; for loops; while loops
loose coupling, 385–388, 409. See also

high cohesion; tight encapsulation
high cohesion and, 389
tight encapsulation and, 386

lower-bound wildcards, 459–460
low-level streams, 283–285, 284, 324

M
main method, 188
Main program, 347, 348
main threads, 342
Mammal class, 132, 133, 134, 138, 139,

141, 142
Mammal interface, 402, 403, 404
“many forms.” See polymorphism
maps, 430–432, 476. See also HashMap;

LinkedHashMap; TreeMap
arrays v., 445
classes, 431

defined, 426, 430, 445
generics and, 445–449
keyword counting and, 431–432
phonebook application and, 430, 446,

447
Map interface, 426, 427, 431, 431, 445,

446, 475, 488
map key (K), 452
map value (V), 453
Map.Entry ‹K, V› ceilingEntry(K key), 448
Map.Entry ‹K, V› floorEntry(K key), 448
Matcher class, 315–316, 325
matcher method, 315, 325
Math class, 124
member inner classes, 150–157
memory

heap, 28
primitive types in, 23, 23
reference types in, 24, 24

metacharacters, 316, 316–318. See also
regular expressions

? (question mark), 269, 315, 316, 318
character classes, 319–320
\d, 269, 316, 319, 320
dot (.), 269, 315, 316, 317
parentheses (), 269, 316, 319
plus (+), 269, 315, 316, 318
\s, 269, 316, 319, 320
square brackets ([]), 269, 315, 316, 317
star (*), 269, 315, 316, 317, 318
\w, 269, 316, 319, 320

methods, 116–138. See also specific
methods

abstract, 140–143
class. See static methods
declaring, 116–138, 165
defined, 97
enum, declaring, 150–151
final, 137–138, 410
generic, 453–455
generic types and. See generic types
instance, 121–124

bindex.indd 520bindex.indd 520 2/11/09 8:51:08 AM2/11/09 8:51:08 AM

Index 521

naming convention, 117, 118–121
polymorphic parameters of, 407–408
private, method overriding and, 132
static, 124–126

hidden, 137
synchronized, 117, 362–363
virtual, 404–405, 411

method declarations, 116–118, 165
elements in, 116
syntax, 116

method hiding, 135–137
method overriding v., 136, 137
non-final static methods and, 132, 401

method overloading, 128–131, 165
data type promotion and, 129–130
method overriding v., 166

method overriding, 131–134, 165
abstract methods and, 410
final methods and, 410
method hiding v., 136, 137
method overloading v., 166
OOP and, 131
private methods and, 132

method parameters, validating, 224
method signatures, 118
mkdir method, 287, 337
modifiers. See abstract modifier; access

modifiers; final modifier
modifyStacks, 40, 41
modulus operator (%), 44, 48–49
monitor locks

deadlock and, 360–361
features of, 358
synchronized blocks and, 358–361
synchronized methods and, 362–363

months array, 95
MountainLion class, 138
Mouse class, 87
Movie class, 82
multidimensional arrays, 93–95
multiple catch clauses, 229–231
multiple classes in single file, 4, 62

multiple inheritance, with interfaces, 147
multiplication (*) operator, 48
multiplicative operators, 48–49

division (/), 48
modulus (%), 44, 48–49
multiplication (*), 48

multithreaded programs
indeterminate output of, 346, 348,

367, 369
thread synchronization and, 355–357

mutator methods (setter methods), 119,
165, 382, 387, 423

MyButtonListener class, 157
MyErrorLog class, 126, 127
MyFileReader class, 229– 230
MyLogger class, 400
myloop label, 213, 214
MyMath class, 457
MyNewLogger class, 401
MyNumberFormatter class, 115
MyStack class, 355, 356, 357, 362
MyStack2 class, 362, 363, 364, 365, 366
MyStaticLogger class, 400, 401
MyThread class, 347, 348

N
N (number), 453
names array, 95, 95
namespaces, packages and, 9
naming conventions

for constants, 400
for final variables, 400
for generics, 452–453
JavaBeans, 118–121, 165
for methods, 117, 118–121
online information, 400
for packages, 9

native keyword, 117, 165
natural ordering, 433, 477. See also

compareTo; sorting arrays; sorting lists

bindex.indd 521bindex.indd 521 2/11/09 8:51:09 AM2/11/09 8:51:09 AM

522 Index

natural ordering (continued)
comparators v., 477
compareTo and, 433, 435, 461, 462
of numeric classes, 463
of strings, 433, 463–464

lexicographical and, 433, 463, 475
of wrapper classes, 463–464

NavigableMap interface, 448–449. See
also TreeMap

NavigableMap ‹K,V› descendingMap(),
448

NavigableMap ‹K,V› subMap(), 448
NavigableSet ‹E› subSet(), 444
NavigableSet interface, 444–445. See also

TreeSet
NavigableSet ‹K› descendingKeySet(), 448
nested classes, 152–164, 166, 167. See also

inner classes
defined, 97
importing, 164
member inner classes, 150–157
static, 152, 162–164

nested enhanced for loops, 205
nested for loops, 199–200
nested inner classes, 156
new operator (keyword), 29, 80, 82, 100,

101, 153, 154
new threads, 349–351, 368, 369
“next” methods, 322, 323
NoClassDefFoundError, 14, 16, 73, 242,

249
NonFictionBook class, 108, 109
non-final static methods, method hiding

and, 132, 401
nongeneric collections, 436–437
not equal to (! =), 56–58
notify method, 353, 354, 354, 363–369
notifyAll method, 353, 354, 354, 363–369
null type, 26
NullPointerException, 122, 194, 229,

232, 233, 237, 241, 242, 246, 247,
267, 268, 337

numbers
(N), 453
strings converted into, 310–311

Number class, 457
NumberFormat class, 306–309, 324

DecimalFormat (child class), 309–310
format methods, 307–309
parse method, 310–312, 324
static methods, 306–307

NumberFormatException, 242, 246–247,
266, 267, 272

numeric types. See also boolean;
NumberFormatException; primitive
types; specific numeric types

boolean expressions and, 51
increment/decrement operators and, 49
NumberFormatException and, 242

numeric wrapper classes. See wrapper
classes

O
objects. See also classes; collections;

methods; polymorphism
array, 90–91
cookie analogy and, 2
defined, 2
equality of, 58–61
heterogeneous collections of, 409
house analogy and, 2, 85
initialization. See initialization
instantiation process, 100–102, 165
new operator and, 29, 80, 82, 100, 101,

153, 154
passing, 41
reference types v., 29, 41
serialization. See serialization

Object class, 58, 60
arrays and, 165
ClassCastException and, 244
generics as, 451

bindex.indd 522bindex.indd 522 2/11/09 8:51:09 AM2/11/09 8:51:09 AM

Index 523

objects and, 52, 408
as parameters, 408
polymorphism and, 408
primitive types and, 131, 135
toString method and, 276

ObjectInputStream class, 282, 284, 301,
304–306, 324

ObjectOutputStream class, 303–304, 324
object-oriented programming (OOP), 2,

381–424. See also access modifiers;
classes; encapsulation; inheritance;
OO design principles; polymorphism;
reuse

abstraction in, 139
design relationships, 390–393, 409
instanceof operator. See instanceof

operator
Java and, 2
method overriding and, 131. See also

method overriding
review questions/answers, 412–424
static fields and, 85

OO design principles, 382, 409. See also
high cohesion; loose coupling; tight
encapsulation

goals of, 385, 388, 393
has-a relationship and, 392–393, 409
high cohesion and, 388
is-a relationship and, 390–392, 409
loose coupling and, 382, 385, 386, 387,

388
tight encapsulation and, 382, 385, 386

OOP. See object-oriented programming
operators, 43–58, 62. See also specific

operators
arithmetic, 46–50

additive, 44, 46–47
decrement (––), 44, 49–50
increment (++), 44, 49–50
multiplicative, 48–49

assignment, 44, 44–46
bitwise, 44, 53–55

comparison (= =), 56–58, 62, 274,
433–435, 477

conditional (ternary) (? :), 44, 55
equality, 56–58

comparison (= =), 56–58, 62, 274,
433–435, 477

instanceof, 44, 51–52, 244
list of, 44
logical, 44, 53–55

AND (&&), 44, 53, 54
OR (| |), 44, 53, 54

multiplicative, 48–49
division (/), 48
modulus (%), 44, 48–49
multiplication (*), 48

new. See new operator
precedence of, 43, 44
relational, 44, 50–51

greater than (›), 51
greater than or equal (›=), 51
less than (‹), 50–51
less than or equal (‹=), 50–51

shift, 44
tokens as, 79
unary, 44

OR operators
exclusive (∧), 44, 53, 54
inclusive (|), 44, 53, 54
logical (| |), 44, 53, 54

order of precedence, 43, 44
ordering. See natural ordering
ordinal method, 150, 184
outcomes, assertions and, 222
Outer class, 153, 154
output, code, 61. See also

input/output
output streams, 282, 282
OutputStream, 281, 282, 284
OutputStreamWriter, 283, 284
overloading. See method overloading
overridden instance methods, 137
overriding. See method overriding

bindex.indd 523bindex.indd 523 2/11/09 8:51:10 AM2/11/09 8:51:10 AM

524 Index

P
packages, 4–11. See also java.io package;

java.lang package; java.text package;
java.util package; java.util.regex
package

benefits of, 4
classes in, 5–6, 61
directory structure, 9–10
names, JAR files and, 18
namespaces and, 9
naming convention for, 9
online information, 5
as tabbed folders, 5
unnamed, 6

package keyword, 5–6
package-level access. See default access
parameter lists, 117, 165
parameters, 36

method, validating, 224
Object class and, 408
polymorphic, 407–408
type

bounded, 455
formal, 450, 451, 456

parent class. See also child classes
construction, 100–102, 165
constructors

instance initializers and, 111
super keyword and, 108, 110,

165, 166
is-a relationship and, 390, 391,

409, 410
method hiding and, 135, 136, 166
method overloading and, 128, 129, 166
method overriding and, 165, 166
polymorphism and, 402, 403, 407, 410,

411
parentheses (metacharacter), 269, 316, 319
parse methods

DateFormat class, 314–315
NumberFormat class, 310–312, 324

currency and, 312
strings into numbers and, 310–311

ParseException, 310, 311, 314, 315
parsing

currency, 312
data, 306–315, 324, 325
strings into numbers, 310–311
strings into primitive types, 272

passing
arguments by value, 36
objects, 41
primitive types, 37
reference types, 37, 41

Pattern class, 315–316, 325
character classes, 319–320, 320

Payroll class, 388, 389
Person class, 391, 392, 393
Pet class, 390, 391, 402, 403, 404, 409
Phone class, 394, 395, 396
phonebook application, 430, 446, 447. See

also maps
Picture class, 144, 145, 146
PipedInputStream, 282, 284
PipedOutputStream, 282, 284
Plant interface, 146
Platypus class, 139, 140
plus (+)

increment operators (++), 44, 49–50
metacharacter, 269, 315, 316, 318
operator, string concatenation and, 46,

47, 276
pointer, 23
polymorphic parameters, 407–408
polymorphic references, casting, 47, 405–409
polymorphism, 401–409, 410, 411

child classes and, 402, 403, 410, 411
generics and, 456, 458, 476
heterogeneous collections and, 409
inheritance and, 402
instanceof operator and, 406–407
interface implementation and, 402
is-a relationship and, 392

bindex.indd 524bindex.indd 524 2/11/09 8:51:11 AM2/11/09 8:51:11 AM

Index 525

Object class and, 408
parent class and, 402, 403, 407, 410,

411
virtual method invocation and, 404–405

pop method. See also push method; Stack
Stack class and, 39, 440
synchronized methods and, 355, 356,

362, 363
post conditions, 221
pound sign (#), 309, 310
precedence, of operators, 43, 44
precision, of doubles, 159
preconditions, 221
preemptive scheduling, 351, 355, 360, 368
Preference class, 408
primitive types, 22, 22–23. See also data

types; numeric types; reference types;
specific primitive types

autoboxing of, 131, 271, 272–274, 325
casting, 47
parsing strings into, 270, 322
/reference types, passing, 37
unboxing of, 271, 272–274, 325

primitive wrapper classes. See wrapper
classes

print method, 295
printf method, 295–298, 324
println method, 295
printStackTrace methods, 228
PrintWriter class, 294–295

format/printf methods, 295–298, 324
Formatter class v., 298

priority, thread, 343, 351, 352, 353, 368
PriorityQueue, 430, 475
private (access modifier), 393, 410. See

also access modifiers
constructors and, 102
member inner class and, 153
methods and, 116
top-level classes and, 3, 4

private methods
abstract methods and, 398

method overriding and, 132
processes, 342. See also threads
producer/consumer model, 364–367,

368, 369
Product objects, 441, 442, 443, 444,

468, 469
ProductComparator class, 469
protected (access modifier), 393, 410. See

also access modifiers
constructors and, 102
member inner class and, 153
methods and, 116
top-level classes and, 3, 4

public (access modifier), 393, 410. See also
access modifiers

constructors and, 102
interfaces and, 143
member inner class and, 153
methods and, 116
top-level classes and, 3, 4

public boolean add(E e), 427
public boolean contains(Object e), 427
public boolean remove(Object e), 427
public Iterator ‹E› iterator(), 427
push method. See also pop

method; Stack
Stack class and, 39, 440
synchronized methods and, 355, 356,

362, 363
PushbackInputStream, 282, 284
PushbackReader, 282, 284
Pusher class, 356
Pusher2 class, 363

Q
question mark (?). See also metacharacters;

wildcard generic types
metacharacter (?), 269, 315, 316, 318
wildcard generic types (?, ? extends, ?

super), 458

bindex.indd 525bindex.indd 525 2/11/09 8:51:11 AM2/11/09 8:51:11 AM

526 Index

Queue interface, 426, 428, 430, 475
queues, 429–430, 476. See also

ArrayDeque; LinkedList;
PriorityQueue

classes, 430
defined, 426
deques and, 430, 475
FIFO and, 426, 429, 430

R
ReadAFile class, 350
reader classes, 281–283, 282, 324. See also

streams
readLine method

BufferedReader, 285
Console class, 299

readObject method, 304
readPassword method, 299, 300
Rectangle class, 223, 224
reference casting, 47, 405–409
reference types, 23–28. See also arrays;

data types; primitive types; strings;
specific reference types

instance methods and, 122
objects v., 29, 41
polymorphic, casting of, 47,

405–409
/primitive types, passing, 37
switch statement and, 194

ReferenceDemo program, 57, 58
regular expressions, 315–322, 325

character classes in, 319–320, 320
Matcher class and, 315–316, 325
metacharacters of, 316, 316–318
parentheses in, 269, 316, 319
Pattern class and, 315–316, 325
String.split method and, 320–322, 325

relational operators, 44, 50–51
greater than (›), 51
greater than or equal (›=), 51

less than (‹), 50–51
less than or equal (‹=), 50–51

repetition control structures, 188, 249,
250. See also do-while loops; enhanced
for loops; for loops; while loops

continue statements and, 215–218
replace(), 280
ReturnDemo program, 43
reuse. See also high cohesion; loose

coupling; OO design principles;
polymorphism; tight encapsulation

high cohesion and, 388, 389
inner classes and, 157, 162
is-a/ has-a relationships and, 393
loose coupling and, 389, 423
string literals and, 57
tight encapsulation and, 423

reverse(), 280
Reverse class, 465, 466
RotaryPhone class, 395, 396
rounding, 307
run method, 160, 343, 344, 345, 346, 347,

349, 350, 352, 355, 368
Runnable interface, 344–346, 368, 369
runnable target, 343, 344, 347
runnable threads, 349, 351–353, 368, 369
running Java applications (from command

line), 12–22
ColorChanger and, 14, 15, 16, 17
TestColors and, 15, 16, 17

runtime exceptions, 231, 232, 233,
237. See also ArithmeticException;
NullPointerException

RuntimeException, 231, 232, 232, 267

S
%s, 297, 325
\s (metacharacter), 269, 316, 319, 320
SayHello class, 13, 14, 344, 345, 346, 352
Scanner class, 322–323, 325

bindex.indd 526bindex.indd 526 2/11/09 8:51:12 AM2/11/09 8:51:12 AM

Index 527

constructors in, 322
keyboard input and, 323, 325

scope, 80, 165. See also variables
of do-while loop variables, 211
of enhanced for loop variables,

202–203
of for loop variables, 199

ScoreKeeper class, 271, 272, 273
search engines, keyword counters and,

431–432
searching arrays, 473–475, 477
searching lists, 461, 467–469
Season enum, 148
send methods, 129, 130, 131
separators, tokens as, 79
Serializable interface, 301–303
serialization, 301–306, 324, 325
SerializeDemo program, 303, 304
sets, 428–429, 476. See also HashSet;

LinkedHashSet; TreeSet
classes, 429
defined, 426, 428
generics and, 441–445

Set interfaces, 426, 428, 429, 441
set methods, 119, 120
setenv command, 11
setPriority method, 351
setter methods (mutator methods), 119,

165, 382, 387, 423
Shape class, 397
shift operators, 44
Shipment class, 163, 164
Short, 192, 194, 270, 271, 463
short, 22
short-circuit behavior, 54, 55
showExceptions method, 460
simple assignment operator, 44, 45
sleep method, 116, 352, 354, 368, 405
Snoopy object, 35, 36
sort methods

for arrays, 470
for lists, 461–462, 466–467

sorting arrays, 470–473, 477
sorting lists, 461–467, 476, 477

comparable sorting, 462–464
comparator sorting, 465–467

source code
/bytecode, separating, 19
line numbers and, 3

specifiers. See access modifiers
split method. See String.split method
square brackets ([])

arrays and, 21, 89, 93, 294
metacharacter, 269, 315, 316, 317

Square class, 398
Stack, 39, 428, 440–441, 475, 476
Stack objects, 39, 40, 41
StackDemo, 37, 39, 41
StackOverflowError, 242, 248
star (*), 269, 315, 316, 317, 318
start method, 160, 345, 348, 349, 350, 369
starting threads, 351, 355, 360, 361, 369
statements. See decision making control

structures; repetition control
structures; specific statements

states of threads. See thread states
States program, 285, 286
static fields (class variables, static

variables), 83–86, 97, 165
global variables and, 83, 85
instance variables v., 166
OOP and, 85
static imports, 85–86

static imports, 85–86
static initializers, 114–115

class loader and, 115
defined, 97, 114
MyNumberFormatter class and, 115

static methods (class methods), 124–126.
See also specific static methods

global methods v., 125
hidden, 137
non-final, method hiding and, 132, 401
NumberFormat class, 306–307

bindex.indd 527bindex.indd 527 2/11/09 8:51:13 AM2/11/09 8:51:13 AM

528 Index

static nested classes, 152, 162–164
importing, 164
top-level classes v., 163

static variables. See static fields
StaticProblem class, 125
stop method (deprecated), 348
streams, 281–285. See also chaining

streams
byte. See FileInputStream class;

FileOutputStream class
character. See FileReader class;

FileWriter class
high-level, 283–285, 284, 324
input, 282, 282
low-level, 283–285, 284, 324
output, 282, 282
readers/writers v., 281–283, 324

strings, 274–281
comparing, equals method and, 276
into dates, parse method and, 314–315
natural ordering of, 433, 463–464

lexicographical and, 433, 463, 475
into numbers, parse method and,

310–311
into primitive types, 270, 322
into tokens, Scanner class and, 322,

323
String class, 275–278, 324

equals method and, 275
StringBuilder v. StringBuffer v., 275

string concatenation
+ operator and, 46, 47, 276
optimizing, 277

string literals, 25, 57, 275, 277, 316, 320.
See also regular expressions

reuse and, 57
string pool and, 25, 275

string manipulation methods
(StringBuilder/StringBuffer classes),
280

string methods. See append method;
concat method; insert method

String objects, immutable quality of, 25,
38, 39, 57, 275, 276

string pool, 25, 275
StringBuffer/StringBuilder classes, 275,

278–281, 324
append method, 275, 278, 279, 280,

281, 288 325
insert method, 275, 279, 280, 281, 325
string manipulation methods, 280
String v., 275

StringReader, 282, 284
String.split method, 320–322, 325. See

also regular expressions
StringWriter, 283, 284
Student1 class, 382
Student2 class, 383, 385
subclasses, concrete, 141
super keyword

in constructors, 108–111, 166
default constructors and, 110–111
parent class constructors and, 108, 110,

165, 166
as reference, 108, 134

super.finalize, 33, 33
supertypes, generic, 459, 461
switch statements, 192–197

enums and, 149, 194–196
if statements v., 192
reference types and, 194
rules for, 192–193
syntax, 192

synchronization. See thread
synchronization

synchronized blocks, 358–361
synchronized keyword, 353, 358, 362,

363, 368, 369
synchronized methods, 117, 362–363
syntax

basic for loops, 198
break statements, 212
continue statements, 216
do-while loops (do statements), 209

bindex.indd 528bindex.indd 528 2/11/09 8:51:13 AM2/11/09 8:51:13 AM

Index 529

enhanced for loops (for-each loops),
201

finally block, 238
generic methods, 454
generics, 450, 454, 455, 476
if statements (if-else, if-then-else), 189
instance initializers, 112
method declarations, 116
switch statements, 192

system threads, 342
System.gc method, 32–33
System.in

Console class and, 298, 301
Scanner class and, 323
static fields and, 85

System.out
Console class and, 298, 301
static fields and, 85

T
T (generic data type), 453
tabbed folders, packages as, 5
tailMap method, 448
tailSet method, 444
Television class, 80, 81
terminated threads, 349, 355, 368, 369
ternary operator. See conditional operator
TestColors class, 221, 222
TestColors program, 15, 16, 17, 18
this keyword

in constructors, 105–107, 166
as reference, 105, 134

threads
blocked, 349, 353, 368, 369
components of, 343
concurrency and, 342
defined, 342
IllegalThreadStateException and, 351,

355, 369
join method, 354, 357, 361, 368, 369

main, 342
multithreaded programs

indeterminate output of, 346, 348,
367, 369

thread synchronization and, 355–357
MyThread class and, 347, 348
new, 349–351, 368, 369
overview of, 342
preemptive scheduling and, 351, 355,

360, 368
run method, 160, 343, 344, 345, 346,

347, 349, 350, 352, 355, 368
runnable, 349, 351–353, 368, 369
sleep method, 116, 352, 354, 368
starting, 351, 355, 360, 361, 369
stopping, 348
system, 342
terminated, 349, 355, 368, 369
timed-waiting, 349, 353–354, 368, 369
user-defined, 342
waiting, 349, 353–354, 368, 369
writing, 343–348, 368, 369

extending Thread class and, 343,
346–348, 368, 369

Runnable interface and, 344–346,
368, 369

yield method, 352, 353, 355, 360, 368
thread priority, 343, 351, 352, 353, 368
thread states, 349–355, 368, 369

transitions
new to runnable, 350, 369
runnable to blocked, 353, 369
runnable to terminated, 355, 369
sleep/yield methods and, 352
wait/notify methods and, 354

thread synchronization, 355–368
monitor locks

deadlock and, 360–361
features of, 358
synchronized blocks and, 358–361
synchronized methods and, 362–363

multithreaded program and, 355–357

bindex.indd 529bindex.indd 529 2/11/09 8:51:14 AM2/11/09 8:51:14 AM

530 Index

ThreadGroup class, 344
Thread.State, 349
Throwable class, 228–229
Throwable types, 232, 242–249. See also

exceptions
throws clause, 118, 165, 232
throws keyword, 233
tight encapsulation, 382–385, 409, 423.

See also high cohesion; loose coupling
high cohesion and, 389
loose coupling and, 386

timed-waiting threads, 349, 353–354,
368, 369

toArray method, 466–467
tokens. See also identifiers; keywords;

literals; operators; Scanner class;
separators

parsing strings into, 322, 323
types of, 79

Tomato class, 104, 105
Tooth Fairy string, 276, 277
top-level classes

access modifiers for, 4
multiple, in single file, 4, 62
private/protected and, 3, 4
static nested classes v., 163

toString method, 149, 151, 229, 276, 294,
305, 306, 357

transient keyword, 301, 302
transitions, of thread states

new to runnable, 350, 369
runnable to blocked, 353, 369
runnable to terminated, 355, 369
sleep/yield methods and, 352
wait/notify methods and, 354

TreeMap, 431, 446–447, 475, 476
NavigableMap interface and,

448–449
TreeSet, 429, 443–445, 475, 476
try statements, 227–229

catch clauses and, 227, 229–231
curly braces and, 227

finally block and, 238–241, 250
syntax, 227

try-catch-finally block, 238–241, 250
try-finally statement, 240–241
types. See data types; generic types;

numeric types; primitive types;
reference types; Throwable types

type erasure, 451
type parameters

bounded, 455
formal, 450, 451, 456

U
unnamed packages, 6
unary operators, 44
unbounded wildcards, 458
unboxing, 271, 272–274, 325
underscore character (_), 78, 183

\w metacharacter and, 316
UNICODE format, 23, 78
unreachable code, while loops and, 208
upper-bound wildcards, 458–459
useDelimiter methods, 322, 323
user-defined threads, 342

V
V (map value), 453
Vacation class, 212, 213
vaccinate method, 407
valid identifiers, 79
validating method parameters, 224
value types. See primitive types
valueOf method, 150, 247
values array, 94
values method, 149
variables, 78–79. See also specific

variables
class. See static fields
declaring, 78–79, 165
defined, 78

bindex.indd 530bindex.indd 530 2/11/09 8:51:14 AM2/11/09 8:51:14 AM

Index 531

final, 196–197
global, 83, 85. See also static fields
identifiers and, 78–79, 79
initialization of, 78
instance, 80–83, 97, 165
local, 86–88, 165
scope, 80, 165
static. See static fields

variable-length argument list (. . .), 12, 118,
126, 165

variable-length arguments, 126–128
Vector, 34, 35, 82, 428, 440, 475, 476
Vehicle class, 112
Vet class, 407
virtual method invocation, 404–405, 411.

See also polymorphism
virtual methods, 404–405, 411

W
\w (metacharacter), 269, 316, 319, 320
wait method, 353, 354, 354, 363–369
waiting threads, 349, 353–354, 368, 369
walk method, 141, 142, 143
while loops, 206–208

curly braces and, 206
do statements v., 208
examples, 206, 207
rules for, 206
syntax, 206
unreachable code and, 208

whitespace, 322, 323
\s, 269, 316, 319, 320

wildcard (*), 7, 8, 85. See also
metacharacters

wildcard generic types, 458–460
lower-bound, 459–460
unbounded, 458
upper-bound, 458–459

wrap method, 454, 455
wrapper classes (numeric classes),

270–272. See also autoboxing;
primitive types

Boolean, 270
Byte, 192, 194, 270, 463
Character, 192, 194, 270
Double, 270, 272, 273, 312, 339, 463
Float, 270, 271, 272, 273, 452, 463
Integer, 192, 194, 270, 463
Long, 270, 463
natural order of, 463–464
parsing strings with, 272
properties of, 270–271
Short, 192, 194, 270, 271, 463

writeObject method, 408
writer classes, 281–283, 283, 324. See also

streams

X
XBOX, 195, 196

Y
yield method, 352, 353, 355, 360, 368

bindex.indd 531bindex.indd 531 2/11/09 8:51:15 AM2/11/09 8:51:15 AM

bmeddis.indd 532bmeddis.indd 532 2/11/09 9:37:04 AM2/11/09 9:37:04 AM

Wiley Publishing, Inc.

End-User License Agreement

READ THIS. You should carefully read these terms and
conditions before opening the software packet(s) included
with this book “Book”. This is a license agreement
“Agreement” between you and Wiley Publishing, Inc.
“WPI”. By opening the accompanying software packet(s),
you acknowledge that you have read and accept the
following terms and conditions. If you do not agree and
do not want to be bound by such terms and conditions,
promptly return the Book and the unopened software
packet(s) to the place you obtained them for a full refund.
1. License Grant. WPI grants to you (either an individual
or entity) a nonexclusive license to use one copy of the
enclosed software program(s) (collectively, the “Software,”
solely for your own personal or business purposes on
a single computer (whether a standard computer or a
workstation component of a multi-user network). The
Software is in use on a computer when it is loaded into
temporary memory (RAM) or installed into permanent
memory (hard disk, CD-ROM, or other storage device).
WPI reserves all rights not expressly granted herein.
2. Ownership. WPI is the owner of all right, title, and
interest, including copyright, in and to the compilation of
the Software recorded on the physical packet included with
this Book “Software Media”. Copyright to the individual
programs recorded on the Software Media is owned by
the author or other authorized copyright owner of each
program. Ownership of the Software and all proprietary
rights relating thereto remain with WPI and its licensers.
3. Restrictions On Use and Transfer.
(a) You may only (i) make one copy of the Software for
backup or archival purposes, or (ii) transfer the Software to
a single hard disk, provided that you keep the original for
backup or archival purposes. You may not (i) rent or lease
the Software, (ii) copy or reproduce the Software through
a LAN or other network system or through any computer
subscriber system or bulletin-board system, or (iii) modify,
adapt, or create derivative works based on the Software.
(b) You may not reverse engineer, decompile, or
disassemble the Software. You may transfer the Software
and user documentation on a permanent basis, provided
that the transferee agrees to accept the terms and conditions
of this Agreement and you retain no copies. If the Software
is an update or has been updated, any transfer must include
the most recent update and all prior versions.
4. Restrictions on Use of Individual Programs. You must
follow the individual requirements and restrictions detailed
for each individual program in the About the CD-ROM
appendix of this Book or on the Software Media. These
limitations are also contained in the individual license
agreements recorded on the Software Media. These
limitations may include a requirement that after using the
program for a specified period of time, the user must pay a
registration fee or discontinue use. By opening the Software
packet(s), you will be agreeing to abide by the licenses
and restrictions for these individual programs that are
detailed in the About the CD-ROM appendix and/or on
the Software Media. None of the material on this Software
Media or listed in this Book may ever be redistributed, in
original or modified form, for commercial purposes.
5. Limited Warranty.
(a) WPI warrants that the Software and Software Media
are free from defects in materials and workmanship
under normal use for a period of sixty (60) days from
the date of purchase of this Book. If WPI receives
notification within the warranty period of defects in

materials or workmanship, WPI will replace the defective
Software Media.
(b) WPI AND THE AUTHOR(S) OF THE BOOK
DISCLAIM ALL OTHER WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE,
WITH RESPECT TO THE SOFTWARE, THE
PROGRAMS, THE SOURCE CODE CONTAINED
THEREIN, AND/OR THE TECHNIQUES
DESCRIBED IN THIS BOOK. WPI DOES NOT
WARRANT THAT THE FUNCTIONS CONTAINED
IN THE SOFTWARE WILL MEET YOUR
REQUIREMENTS OR THAT THE OPERATION OF
THE SOFTWARE WILL BE ERROR FREE.
(c) This limited warranty gives you specific legal rights,
and you may have other rights that vary from jurisdiction
to jurisdiction.
6. Remedies.
(a) WPI’s entire liability and your exclusive remedy
for defects in materials and workmanship shall be
limited to replacement of the Software Media, which
may be returned to WPI with a copy of your receipt
at the following address: Software Media Fulfillment
Department, Attn.: SCJP: Sun Certified Programmer
for Java Platform, SE 6 Study Guide, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256,
or call 1-800-762-2974. Please allow four to six weeks
for delivery. This Limited Warranty is void if failure of
the Software Media has resulted from accident, abuse,
or misapplication. Any replacement Software Media will
be warranted for the remainder of the original warranty
period or thirty (30) days, whichever is longer.
(b) In no event shall WPI or the author be liable
for any damages whatsoever (including without
limitation damages for loss of business profits, business
interruption, loss of business information, or any other
pecuniary loss) arising from the use of or inability to use
the Book or the Software, even if WPI has been advised
of the possibility of such damages.
(c) Because some jurisdictions do not allow the exclusion
or limitation of liability for consequential or incidental
damages, the above limitation or exclusion may not apply
to you.
7. U.S. Government Restricted Rights. Use, duplication,
or disclosure of the Software for or on behalf of
the United States of America, its agencies and/or
instrumentalities “U.S. Government” is subject to
restrictions as stated in paragraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause of
DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of
the Commercial Computer Software - Restricted Rights
clause at FAR 52.227-19, and in similar clauses in the
NASA FAR supplement, as applicable.
8. General. This Agreement constitutes the entire
understanding of the parties and revokes and supersedes
all prior agreements, oral or written, between them and
may not be modified or amended except in a writing
signed by both parties hereto that specifically refers to
this Agreement. This Agreement shall take precedence
over any other documents that may be in conflict
herewith. If any one or more provisions contained in
this Agreement are held by any court or tribunal to be
invalid, illegal, or otherwise unenforceable, each and
every other provision shall remain in full force and effect.

bmeddis.indd 533bmeddis.indd 533 2/11/09 9:37:04 AM2/11/09 9:37:04 AM

The Absolute Sun Certifi ed Programmer
for the Java Platform, Standard Edition 6
Book/CD Package on the Market!

Get ready for Sun’s Certifi ed Java Programmer

for Java Standard Edition 6 certifi cation with the

most comprehensive and challenging sample

tests anywhere!

The Sybex Test Engine features:

All the review questions, as covered in each
chapter of the book

Challenging questions representative of
those you’ll find on the real exam

Two full-length bonus exams available only
on the CD

An Assessment Test to narrow your focus to
certain objective groups.

�

�

�

�

Use the Electronic Flashcards for PCs or

Palm devices to jog your memory and

prep last-minute for the exam!

Reinforce your understanding of key
concepts with these hardcore flash-
card-style questions.

Download the Flashcards to your Palm
device and go on the road. Now you
can study for the SCJP (CX-310-065)
exam any time, anywhere.

�

�

Search through the complete book in PDF!

Access the entire SCJP: Sun Certified
Programmer for Java Platform, Standard
Edition 6 Study Guide complete with
figures and tables, in electronic format.

Search the SCJP: Sun Certified
Programmer for Java Platform, Standard
Edition 6 Study Guide chapters to find
information on any topic in seconds.

�

�

bmedinst.indd 534bmedinst.indd 534 2/11/09 6:08:21 PM2/11/09 6:08:21 PM

Sun Certifi ed Programmer
for Java® Platform, SE6
STUDY GUIDE

Richard F. Raposa

Covers All Exam Objectives

SCJP

Includes Real-World Scenarios, Hands-On Exercises,
and Leading-Edge Exam Prep Software Featuring:

• Custom Test Engine

• Hundreds of Sample Questions

• Electronic Flashcards for PCs, Pocket PCs,
 and Palm Handhelds

• Entire Book in PDF

SERIOUS SKILLS.

Exam CX-310-065

SCJP
STUDY GUIDE

Raposa

FEATURED ON THE CD

ISBN: 978-0-470-41797-3

Validate your Java programming skills with SCJP certifi cation
from Sun Microsystems. This in-depth guide thoroughly prepares
you for Sun’s Java Programmer for Java, Standard Edition 6 exam
(CX-310-065), which tests you on the fundamental skills that Sun
expects all Java programmers to have. The exam is also a pre-
requisite for Sun’s specialty certifi cations. This book covers exam
essentials such as fl ow control, the API, concurrency, collections/
generics, and more. Inside, fi nd:

Full coverage of all exam objectives in a systematic approach, so you
can be confi dent you’re getting the instruction you need for the exam

Practical hands-on exercises to reinforce critical skills

Real-world scenarios that put what you’ve learned in the context
of actual job roles

Challenging review questions in each chapter to prepare you for
exam day

Exam Essentials, a key feature in each chapter that identifi es critical
areas you must become profi cient in before taking the exam

A handy tear card that maps every offi cial exam objective to the
corresponding chapter in the book, so you can track your exam prep
objective by objective

Richard F. Raposa, SCJP, SCJI, is President of JLicense, a Java Training Center in
South Dakota. He has taught Java all over the U.S. for the past ten years and developed
hundreds of courses in Java, C++, Visual C++/MFC, Win32 internals, UML, and other
object-oriented topics. Richard is the author of Java in 60 Minutes a Day from Wiley.

Prepare for SCJP certifi cation
with this essential guide

$49.99 US
$59.99 CN

A B O U T T H E A U T H O R

Look inside for complete coverage
of all exam objectives.

www.sybex.com

SYBEX TEST ENGINE:
Test your knowledge with advanced
testing software. Includes all chapter
review questions and bonus exams.

ELECTRONIC FLASHCARDS:
Reinforce your understanding with
fl ashcards that can run on your PC,
Pocket PC, or Palm handheld.

Also on CD, you’ll fi nd the entire book
in searchable and printable PDF as
well as code samples from the book.
Study anywhere, any time, and
approach the exam with confi dence.

C A T E G O R Y
COMPUTERS/Programming Languages/Java

Exam CX-310-065Go to www.SybexTestSuccess.com for more information about our online test prep product,
powered by ExamWeb.

Sun C
ertifi ed Program

m
er

for Java
® Platform

, SE
6

	SCJP Sun Certified Programmer for Java® Platform, SE6 Study Guide
	Acknowledgments
	About the Author
	Contents at a Glance
	Contents
	Introduction
	Assessment Test
	Answers to Assessment Test
	Chapter 1: Fundamentals
	Writing Java Classes
	Packages
	Running Java Applications
	Reference vs. Primitive Types
	Garbage Collection
	Call by Value
	Java Operators
	Equality of Objects
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 2: Declarations, Initialization, and Scoping
	Declaring Variables
	Scoping
	Declaring Arrays
	Declaring Classes
	The Instantiation Process
	Declaring Methods
	Declaring Abstract Classes
	Declaring Interfaces
	Declaring Enumerations
	Declaring Nested Classes
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 3: Flow Control
	Overview of Flow Control
	The if Statement
	The switch Statement
	The for Statement
	The while Statement
	The do Statement
	The break Statement
	The continue Statement
	Overview of Assertions
	Overview of Exceptions
	Java API Exceptions and Errors
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 4: API Contents
	The Primitive Wrapper Classes
	Autoboxing and Unboxing
	Strings
	Input and Output
	File Input and Output
	Object Serialization
	Formatting and Parsing Data
	Regular Expressions
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 5: Concurrency
	Overview of Threads
	Writing a Thread
	Thread States
	Thread Synchronization
	The wait, notify, and notifyAll Methods
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 6: Object-Oriented Concepts
	Encapsulation, Coupling, and Cohesion
	OO Design Relationships
	Modifiers and Inheritance
	Polymorphism
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 7: Collections and Generics
	Overview of Collections
	Using Generics
	Generic Types and Methods
	Working with Lists
	Working with Arrays
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Appendix: About the Companion CD
	What You’ll Find on the CD
	System Requirements
	Using the CD
	Troubleshooting

	Glossary
	Index

