

What Readers Are Saying about

Practical Programming

I wish I could go back in time and give this book to my 10-year-old self when I

first learned programming! It’s so much more engaging, practical, and accessible

than the dry introductory programming books that I tried (and often failed) to

comprehend as a kid. I love the authors’ hands-on approach of mixing explanations

with code snippets that students can type into the Python prompt.

➤ Philip Guo

Creator of Online Python Tutor (www.pythontutor.com), Assistant Professor, Depart-

ment of Cognitive Science, UCSD

Practical Programming delivers just what it promises: a clear, readable, usable

introduction to programming for beginners. This isn’t just a guide to hacking

together programs. The book provides foundations to lifelong programming skills:

a crisp, consistent, and visual model of memory and execution and a design recipe

that will help readers produce quality software.

➤ Steven Wolfman

Professor of Teaching, Department of Computer Science, University of British

Columbia

http://www.pythontutor.com

This excellent text reflects the authors’ many years of experience teaching Python

to beginning students. Topics are presented so that each leads naturally to the

next, and common novice errors and misconceptions are explicitly addressed. The

exercises at the end of each chapter invite interested students to explore computer

science and programming language topics.

➤ Kathleen Freeman

Director of Undergraduate Studies, Department of Computer and Information

Science, University of Oregon

Practical Programming, Third Edition
An Introduction to Computer Science Using Python 3.6

Paul Gries

Jennifer Campbell

Jason Montojo

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in

initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,

Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-

marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes

no responsibility for errors or omissions, or for damages that may result from the use of

information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create

better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow

Managing Editor: Brian MacDonald

Supervising Editor: Jacquelyn Carter

Development Editor: Tammy Coron

Indexing: Potomac Indexing

Copy Editor: Liz Welch

Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-6805026-8-8

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—December 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments xi

Preface xiii

1. What’s Programming? 1

Programs and Programming 2

What’s a Programming Language? 3

What’s a Bug? 4

The Difference Between Brackets, Braces, and Parentheses 5

Installing Python 5

2. Hello, Python 7

How Does a Computer Run a Python Program? 7

Expressions and Values: Arithmetic in Python 9

What Is a Type? 12

Variables and Computer Memory: Remembering Values 15

How Python Tells You Something Went Wrong 22

A Single Statement That Spans Multiple Lines 23

Describing Code 25

Making Code Readable 26

The Object of This Chapter 27

Exercises 27

3. Designing and Using Functions 31

Functions That Python Provides 31

Memory Addresses: How Python Keeps Track of Values 34

Defining Our Own Functions 35

Using Local Variables for Temporary Storage 39

Tracing Function Calls in the Memory Model 40

Designing New Functions: A Recipe 47

Writing and Running a Program 58

Omitting a return Statement: None 60

Dealing with Situations That Your Code Doesn’t Handle 61

What Did You Call That? 62

Exercises 63

4. Working with Text 65

Creating Strings of Characters 65

Using Special Characters in Strings 68

Creating a Multiline String 70

Printing Information 70

Getting Information from the Keyboard 73

Quotes About Strings 74

Exercises 75

5. Making Choices 77

A Boolean Type 77

Choosing Which Statements to Execute 86

Nested if Statements 92

Remembering Results of a Boolean Expression Evaluation 92

You Learned About Booleans: True or False? 94

Exercises 94

6. A Modular Approach to Program Organization 99

Importing Modules 100

Defining Your Own Modules 104

Testing Your Code Semiautomatically 110

Tips for Grouping Your Functions 112

Organizing Our Thoughts 113

Exercises 113

7. Using Methods 115

Modules, Classes, and Methods 115

Calling Methods the Object-Oriented Way 117

Exploring String Methods 119

What Are Those Underscores? 123

A Methodical Review 125

Exercises 126

8. Storing Collections of Data Using Lists 129

Storing and Accessing Data in Lists 129

Type Annotations for Lists 133

Modifying Lists 133

Contents • vi

Operations on Lists 135

Slicing Lists 137

Aliasing: What’s in a Name? 139

List Methods 141

Working with a List of Lists 142

A Summary List 145

Exercises 145

9. Repeating Code Using Loops 149

Processing Items in a List 149

Processing Characters in Strings 151

Looping Over a Range of Numbers 152

Processing Lists Using Indices 154

Nesting Loops in Loops 156

Looping Until a Condition Is Reached 160

Repetition Based on User Input 162

Controlling Loops Using break and continue 163

Repeating What You’ve Learned 167

Exercises 168

10. Reading and Writing Files 173

What Kinds of Files Are There? 173

Opening a File 175

Techniques for Reading Files 179

Files over the Internet 183

Writing Files 185

Writing Example Calls Using StringIO 186

Writing Algorithms That Use the File-Reading Techniques 188

Multiline Records 195

Looking Ahead 198

Notes to File Away 200

Exercises 201

11. Storing Data Using Other Collection Types 203

Storing Data Using Sets 203

Storing Data Using Tuples 209

Storing Data Using Dictionaries 214

Inverting a Dictionary 222

Using the in Operator on Tuples, Sets, and Dictionaries 223

Comparing Collections 224

Creating New Type Annotations 224

Contents • vii

A Collection of New Information 226

Exercises 226

12. Designing Algorithms 229

Searching for the Two Smallest Values 230

Timing the Functions 238

At a Minimum, You Saw This 240

Exercises 240

13. Searching and Sorting 243

Searching a List 243

Binary Search 250

Sorting 256

More Efficient Sorting Algorithms 265

Merge Sort: A Faster Sorting Algorithm 266

Sorting Out What You Learned 270

Exercises 272

14. Object-Oriented Programming 275

Understanding a Problem Domain 276

Function isinstance, Class object, and Class Book 277

Writing a Method in Class Book 280

Plugging into Python Syntax: More Special Methods 285

A Little Bit of OO Theory 288

A Case Study: Molecules, Atoms, and PDB Files 293

Classifying What You’ve Learned 297

Exercises 298

15. Testing and Debugging 303

Why Do You Need to Test? 303

Case Study: Testing above_freezing 304

Case Study: Testing running_sum 309

Choosing Test Cases 315

Hunting Bugs 316

Bugs We’ve Put in Your Ear 317

Exercises 317

16. Creating Graphical User Interfaces 321

Using Module tkinter 321

Building a Basic GUI 323

Models, Views, and Controllers, Oh My! 327

Customizing the Visual Style 331

Contents • viii

Introducing a Few More Widgets 335

Object-Oriented GUIs 338

Keeping the Concepts from Being a GUI Mess 339

Exercises 340

17. Databases 343

Overview 343

Creating and Populating 344

Retrieving Data 348

Updating and Deleting 351

Using NULL for Missing Data 352

Using Joins to Combine Tables 353

Keys and Constraints 357

Advanced Features 358

Some Data Based On What You Learned 364

Exercises 365

Bibliography 369

Index 371

Contents • ix

Acknowledgments

This book would be confusing and riddled with errors if it weren’t for a bunch

of awesome people who patiently and carefully read our drafts.

We had a great team of people provide technical reviews for this edition and

previous editions: in no particular order, Frank Ruiz, Stefan Turalski, Stephen

Wolff, Peter W.A. Wood, Steve Wolfman, Adam Foster, Owen Nelson, Arturo

Martínez Peguero, C. Keith Ray, Michael Szamosi, David Gries, Peter Beens,

Edward Branley, Paul Holbrook, Kristie Jolliffe, Mike Riley, Sean Stickle, Tim

Ottinger, Bill Dudney, Dan Zingaro, and Justin Stanley. We also appreciate

all the people who reported errata: your feedback was invaluable.

Greg Wilson started us on this journey when he proposed that we write a

textbook, and he was our guide and mentor as we worked together to create

the first edition of this book.

Finally, we would like to thank our editor Tammy Coron, who set up a workflow

that made the tight timeline possible. Tammy, your gentle nudges kept us on

track (squirrel!) and helped us complete this third edition in record time.

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Preface

This book uses the Python programming language to teach introductory

computer science topics and a handful of useful applications. You’ll certainly

learn a fair amount of Python as you work through this book, but along the

way you’ll also learn about issues that every programmer needs to know:

ways to approach a problem and break it down into parts, how and why to

document your code, how to test your code to help ensure your program does

what you want it to, and more.

We chose Python for several reasons:

• It is free and well documented. In fact, Python is one of the largest and

best-organized open source projects going.

• It runs everywhere. The reference implementation, written in C, is used

on everything from cell phones to supercomputers, and it’s supported by

professional-quality installers for Windows, macOS, and Linux.

• It has a clean syntax. Yes, every language makes this claim, but during

the several years that we have been using it at the University of Toronto,

we have found that students make noticeably fewer “punctuation” mistakes

with Python than with C-like languages.

• It is relevant. Thousands of companies use it every day: it is one of the

languages used at Google, Industrial Light & Magic uses it extensively,

and large portions of the game EVE Online are written in Python. It is

also widely used by academic research groups.

• It is well supported by tools. Legacy editors like vi and Emacs all have

Python editing modes, and several professional-quality IDEs are available.

(We use IDLE, the free development environment that comes with a

standard Python installation.)

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Our Approach

We have organized the book into two parts. The first covers fundamental pro-

gramming ideas: how to store and manipulate information (numbers, text, lists,

sets, dictionaries, and files), how to control the flow of execution (conditionals

and loops), how to organize code (functions and modules), how to ensure your

code works (testing and debugging), and how to plan your program (algorithms).

The second part of the book consists of more or less independent chapters

on more advanced topics that assume all the basic material has been covered.

The first of these chapters shows how to create and manage your own types

of information. It introduces object-oriented concepts such as encapsulation,

inheritance, and polymorphism. The other chapters cover testing, databases,

and graphical user interface construction.

Further Reading

Lots of other good books on Python programming exist. Some are accessible

to novices, such as Introduction to Computing and Programming in Python: A

Multimedia Approach [GE13] and Python Programming: An Introduction to

Computer Science [Zel03]; others are for anyone with any previous programming

experience (How to Think Like a Computer Scientist: Learning with Python

[DEM02], Object-Oriented Programming in Python [GL07], and Learning Python

[Lut13]). You may also want to take a look at Python Education Special Interest

Group (EDU-SIG) [Pyt11], the special interest group for educators using Python.

Python Resources

Information about a variety of Python books and other resources is available at

http://wiki.python.org/moin/FrontPage.

After you have a good grasp of programming in Python, we recommend that

you learn a second programming language. There are many possibilities, such

as well-known languages like C, Java, C#, and Ruby. Python is similar in

concept to those languages. However, you will likely learn more and become

a better programmer if you learn a programming language that requires a

different mindset, such as Racket,1 Erlang,2 or Haskell.3 In any case, we

strongly recommend learning a second programming language.

1. See http://www.ccs.neu.edu/home/matthias/HtDP2e/index.html.
2. See http://learnyousomeerlang.com.

3. See http://learnyouahaskell.com.

Preface • xiv

report erratum • discuss

http://wiki.python.org/moin/FrontPage
http://www.ccs.neu.edu/home/matthias/HtDP2e/index.html
http://learnyousomeerlang.com
http://learnyouahaskell.com
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

What You’ll See

In this book, we’ll do the following:

• We’ll show you how to develop and use programs that solve real-world

problems. Most of the examples will come from science and engineering,

but the ideas can be applied to any domain.

• We’ll start by teaching you the core features of Python. These features

are included in most modern programming languages, so you can use

what you learn no matter what you work on next.

• We’ll also teach you how to think methodically about programming. In

particular, we will show you how to break complex problems into simple

ones and how to combine the solutions to those simpler problems to create

complete applications.

• Finally, we’ll introduce some tools that will help make your programming

more productive, as well as some others that will help your applications

cope with larger problems.

Online Resources

All the source code, errata, discussion forums, installation instructions, and

exercise solutions are available at http://pragprog.com/book/gwpy3/practical-programming.

report erratum • discuss

What You’ll See • xv

http://pragprog.com/book/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 1

What’s Programming?

(Photo credit: NASA/Goddard Space Flight Center Scientific Visualization Studio)

Take a look at the pictures above. The first one shows forest cover in the

Amazon basin in 1975. The second one shows the same area twenty-six years

later. Anyone can see that much of the rainforest has been destroyed, but

how much is “much”?

Now look at this:

(Photo credit: CDC)

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Are these blood cells healthy? Do any of them show signs of leukemia? It

would take an expert doctor a few minutes to tell. Multiply those minutes by

the number of people who need to be screened. There simply aren’t enough

human doctors in the world to check everyone.

This is where computers come in. Computer programs can measure the dif-

ferences between two pictures and count the number of oddly shaped platelets

in a blood sample. Geneticists use programs to analyze gene sequences;

statisticians, to analyze the spread of diseases; geologists, to predict the effects

of earthquakes; economists, to analyze fluctuations in the stock market; and

climatologists, to study global warming. More and more scientists are writing

programs to help them do their work. In turn, those programs are making

entirely new kinds of science possible.

Of course, computers are good for a lot more than just science. We used

computers to write this book. Your smartphone is a pretty powerful computer;

you’ve probably used one today to chat with friends, check your lecture notes,

or look for a restaurant that serves pizza and Chinese food. Every day,

someone figures out how to make a computer do something that has never

been done before. Together, those “somethings” are changing the world.

This book will teach you how to make computers do what you want them to

do. You may be planning to be a doctor, a linguist, or a physicist rather than

a full-time programmer, but whatever you do, being able to program is as

important as being able to write a letter or do basic arithmetic.

We begin in this chapter by explaining what programs and programming are.

We then define a few terms and present some useful bits of information for

course instructors.

Programs and Programming

A program is a set of instructions. When you write down directions to your

house for a friend, you are writing a program. Your friend “executes” that

program by following each instruction in turn.

Every program is written in terms of a few basic operations that its reader already

understands. For example, the set of operations that your friend can understand

might include the following: “Turn left at Darwin Street,” “Go forward three

blocks,” and “If you get to the gas station, turn around—you’ve gone too far.”

Computers are similar but have a different set of operations. Some operations

are mathematical, like “Take the square root of a number,” whereas others

include “Read a line from the file named data.txt” and “Make a pixel blue.”

Chapter 1. What’s Programming? • 2

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The most important difference between a computer and an old-fashioned

calculator is that you can “teach” a computer new operations by defining

them in terms of old ones. For example, you can teach the computer that

“Take the average” means “Add up the numbers in a sequence and divide by

the sequence’s size.” You can then use the operations you have just defined

to create still more operations, each layered on top of the ones that came

before. It’s a lot like creating life by putting atoms together to make proteins

and then combining proteins to build cells, combining cells to make organs,

and combining organs to make a creature.

Defining new operations and combining them to do useful things is the heart

and soul of programming. It is also a tremendously powerful way to think

about other kinds of problems. As Professor Jeannette Wing wrote in

Computational Thinking [Win06], computational thinking is about the following:

• Conceptualizing, not programming. Computer science isn’t computer pro-

gramming. Thinking like a computer scientist means more than being

able to program a computer: it requires thinking at multiple levels of

abstraction.

• A way that humans, not computers, think. Computational thinking is a

way humans solve problems; it isn’t trying to get humans to think like

computers. Computers are dull and boring; humans are clever and

imaginative. We humans make computers exciting. Equipped with com-

puting devices, we use our cleverness to tackle problems we wouldn’t dare

take on before the age of computing and build systems with functionality

limited only by our imaginations.

• For everyone, everywhere. Computational thinking will be a reality when

it becomes so integral to human endeavors it disappears as an explicit

philosophy.

We hope that by the time you have finished reading this book, you will see

the world in a slightly different way.

What’s a Programming Language?

Directions to the nearest bus station can be given in English, Portuguese,

Mandarin, Hindi, and many other languages. As long as the people you’re

talking to understand the language, they’ll get to the bus station.

In the same way, there are many programming languages, and they all can

add numbers, read information from files, and make user interfaces with

windows and buttons and scroll bars. The instructions look different, but

report erratum • discuss

What’s a Programming Language? • 3

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

they accomplish the same task. For example, in the Python programming

language, here’s how you add 3 and 4:

3 + 4

But here’s how it’s done in the Scheme programming language:

(+ 3 4)

They both express the same idea—they just look different.

Every programming language has a way to write mathematical expressions,

repeat a list of instructions a number of times, choose which of two instruc-

tions to do based on the current information you have, and much more. In

this book, you’ll learn how to do these things in the Python programming

language. Once you understand Python, learning the next programming lan-

guage will be much easier.

What’s a Bug?

Pretty much everyone has had a program crash. A standard story is that you

were typing in a paper when, all of a sudden, your word processor crashed.

You had forgotten to save, and you had to start all over again. Old versions

of Microsoft Windows used to crash more often than they should have,

showing the dreaded “blue screen of death.” (Happily, they’ve gotten a lot

better in the past several years.) Usually, your computer shows some kind of

cryptic error message when a program crashes.

What happened in each case is that the people who wrote the program told

the computer to do something it couldn’t do: open a file that didn’t exist,

perhaps, or keep track of more information than the computer could handle,

or maybe repeat a task with no way of stopping other than by rebooting the

computer. (Programmers don’t mean to make these kinds of mistakes, they

are just part of the programming process.)

Worse, some bugs don’t cause a crash; instead, they give incorrect information.

(This is worse because at least with a crash you’ll notice that there’s a prob-

lem.) As a real-life example of this kind of bug, the calendar program that one

of the authors uses contains an entry for a friend who was born in 1978. That

friend, according to the calendar program, had his 5,875,542nd birthday this

past February. Bugs can be entertaining, but they can also be tremendously

frustrating.

Every piece of software that you can buy has bugs in it. Part of your job as a

programmer is to minimize the number of bugs and to reduce their severity.

In order to find a bug, you need to track down where you gave the wrong

Chapter 1. What’s Programming? • 4

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

instructions, then you need to figure out the right instructions, and then you

need to update the program without introducing other bugs.

Every time you get a software update for a program, it is for one of two reasons:

new features were added to a program or bugs were fixed. It’s always a game

of economics for the software company: are there few enough bugs, and are

they minor enough or infrequent enough in order for people to pay for the

software?

In this book, we’ll show you some fundamental techniques for finding and

fixing bugs and also show you how to prevent them in the first place.

The Difference Between Brackets, Braces, and Parentheses

One of the pieces of terminology that causes confusion is what to call certain

characters. Several dictionaries use these names, so this book does too:

Parentheses()
Brackets[]
Braces (Some people call these curly brackets or curly braces, but we’ll

stick to just braces.)

{}

Installing Python

Installation instructions and use of the IDLE programming environment are

available on the book’s website: http://pragprog.com/titles/gwpy3/practical-programming.

report erratum • discuss

The Difference Between Brackets, Braces, and Parentheses • 5

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 2

Hello, Python

Programs are made up of commands that tell the computer what to do. These

commands are called statements, which the computer executes. This chapter

describes the simplest of Python’s statements and shows how they can be

used to do arithmetic, which is one of the most common tasks for computers

and also a great place to start learning to program. It’s also the basis of almost

everything that follows.

How Does a Computer Run a Python Program?

In order to understand what happens when you’re programming, it helps to

have have a mental model of how a computer executes a program.

The computer is assembled from pieces of hardware, including a processor

that can execute instructions and do arithmetic, a place to store data such

as a hard drive, and various other pieces, such as a screen, a keyboard, an

Ethernet controller for connecting to a network, and so on.

To deal with all these pieces, every computer runs some kind of operating

system, such as Microsoft Windows, Linux, or macOS. An operating system,

or OS, is a program; what makes it special is that it’s the only program on

the computer that’s allowed direct access to the hardware. When any other

application (such as your browser, a spreadsheet program, or a game) wants

to draw on the screen, find out what key was just pressed on the keyboard,

or fetch data from storage, it sends a request to the OS (see the top image on

page 8).

This may seem like a roundabout way of doing things, but it means that only

the people writing the OS have to worry about the differences between one

graphics card and another and whether the computer is connected to a

network through Ethernet or wireless. The rest of us—everyone analyzing

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Storage Device Screen

Operating System

Applications

scientific data or creating 3D virtual chat rooms—only have to learn our way

around the OS, and our programs will then run on thousands of different

kinds of hardware.

Today, it’s common to add another layer between the programmer and the

computer’s hardware. When you write a program in Python, Java, or Visual

Basic, it doesn’t run directly on top of the OS. Instead, another program,

called an interpreter or virtual machine, takes your program and runs it for

you, translating your commands into a language the OS understands. It’s a

lot easier, more secure, and more portable across operating systems than

writing programs directly on top of the OS:

Storage Device Screen

Operating System

Applications Python Interpreter

Python Program

There are two ways to use the Python interpreter. One is to tell it to execute

a Python program that is saved in a file with a .py extension. Another is to

interact with it in a program called a shell, where you type statements one at

a time. The interpreter will execute each statement when you type it, do what

the statement says to do, and show any output as text, all in one window.

We will explore Python in this chapter using a Python shell.

Chapter 2. Hello, Python • 8

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Install Python Now (If You Haven’t Already)

If you haven’t yet installed Python 3.6, please do so now. (Python 2 won’t do; there

are significant differences between Python 2 and Python 3, and this book uses Python

3.6.) Locate installation instructions on the book’s website: http://pragprog.com/titles/gwpy3/
practical-programming.

Programming requires practice: you won’t learn how to program just by reading this

book, much like you wouldn’t learn how to play guitar just by reading a book on how

to play guitar.

Python comes with a program called IDLE, which we use to write Python programs.

IDLE has a Python shell that communicates with the Python interpreter and also

allows you to write and run programs that are saved in a file.

We strongly recommend that you open IDLE and follow along with our examples.

Typing in the code in this book is the programming equivalent of repeating phrases

back to an instructor as you’re learning to speak a new language.

Expressions and Values: Arithmetic in Python

You’re familiar with mathematical expressions like 3 + 4 (“three plus four”)

and 2 - 3 / 5 (“two minus three divided by five”); each expression is built out of

values like 2, 3, and 5 and operators like + and -, which combine their operands

in different ways. In the expression 4 / 5, the operator is “/” and the operands

are 4 and 5.

Expressions don’t have to involve an operator: a number by itself is an

expression. For example, we consider 212 to be an expression as well as a

value.

Like any programming language, Python can evaluate basic mathematical

expressions. For example, the following expression adds 4 and 13:

>>> 4 + 13
17

The >>> symbol is called a prompt. When you opened IDLE, a window should

have opened with this symbol shown; you don’t type it. It is prompting you

to type something. Here we typed 4 + 13, and then we pressed the Return (or

Enter) key in order to signal that we were done entering that expression.

Python then evaluated the expression.

When an expression is evaluated, it produces a single value. In the previous

expression, the evaluation of 4 + 13 produced the value 17. When you type the

expression in the shell, Python shows the value that is produced.

report erratum • discuss

Expressions and Values: Arithmetic in Python • 9

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Subtraction and multiplication are similarly unsurprising:

>>> 15 - 3
12
>>> 4 * 7
28

The following expression divides 5 by 2:

>>> 5 / 2
2.5

The result has a decimal point. In fact, the result of division always has a

decimal point even if the result is a whole number:

>>> 4 / 2
2.0

Types

Every value in Python has a particular type, and the types of values determine

how they behave when they’re combined. Values like 4 and 17 have type int
(short for integer), and values like 2.5 and 17.0 have type float. The word float

is short for floating point, which refers to the decimal point that moves around

between digits of the number.

An expression involving two floats produces a float:

>>> 17.0 - 10.0
7.0

When an expression’s operands are an int and a float, Python automatically

converts the int to a float. This is why the following two expressions both return

the same answer:

>>> 17.0 - 10
7.0
>>> 17 - 10.0
7.0

If you want, you can omit the zero after the decimal point when writing a

floating-point number:

>>> 17 - 10.
7.0
>>> 17. - 10
7.0

However, most people think this is bad style, since it makes your programs

harder to read: it’s very easy to miss a dot on the screen and see 17 instead

of 17..

Chapter 2. Hello, Python • 10

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Integer Division, Modulo, and Exponentiation

Every now and then, we want only the integer part of a division result. For

example, we might want to know how many 24-hour days there are in 53

hours (which is two 24-hour days plus another 5 hours). To calculate the

number of days, we can use integer division:

>>> 53 // 24
2

We can find out how many hours are left over using the modulo operator,

which gives the remainder of the division:

>>> 53 % 24
5

Python doesn’t round the result of integer division. Instead, it takes the floor

of the result of the division, which means that it rounds down to the nearest

integer:

>>> 17 // 10
1

Be careful about using % and // with negative operands. Because Python takes

the floor of the result of an integer division, the result is one smaller than

you might expect if the result is negative:

>>> -17 // 10
-2

When using modulo, the sign of the result matches the sign of the divisor

(the second operand):

>>> -17 % 10
3
>>> 17 % -10
-3

For the mathematically inclined, the relationship between // and % comes from

this equation, for any two non-zero numbers a and b:

(b * (a // b) + a % b) is equal to a

For example, because -17 // 10 is -2, and -17 % 10 is 3; then 10 * (-17 // 10) + -17 %
10 is the same as 10 * -2 + 3, which is -17.

Floating-point numbers can be operands for // and % as well. With //, division

is performed and the result is rounded down to the nearest whole number,

although the type is a floating-point number:

report erratum • discuss

Expressions and Values: Arithmetic in Python • 11

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> 3.3 // 1
3.0
>>> 3 // 1.0
3.0
>>> 3 // 1.1
2.0
>>> 3.5 // 1.1
3.0
>>> 3.5 // 1.3
2.0

The following expression calculates 3 raised to the 6th power:

>>> 3 ** 6
729

Operators that have two operands are called binary operators. Negation is a

unary operator because it applies to one operand:

>>> -5
-5
>>> --5
5
>>> ---5
-5

What Is a Type?

We’ve now seen two types of numbers (integers and floating-point numbers),

so we ought to explain what we mean by a type. In Python, a type consists

of two things:

• A set of values

• A set of operations that can be applied to those values

For example, in type int, the values are …, -3, -2, -1, 0, 1, 2, 3, … and we have seen

that these operators can be applied to those values: +, -, *, /, //, %, and **.

The values in type float are a subset of the real numbers, and it happens that

the same set of operations can be applied to float values. We can see what

happens when these are applied to various values in Table 1, Arithmetic

Operators, on page 13. If an operator can be applied to more than one type

of value, it is called an overloaded operator.

Finite Precision

Floating-point numbers are not exactly the fractions you learned in grade

school. For example, look at Python’s version of the fractions 2⁄3 and 5⁄3:

Chapter 2. Hello, Python • 12

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

ResultExampleOperatorSymbol

-5-5Negation-
14.111 + 3.1Addition+
-145 - 19Subtraction-
34.08.5 * 4Multiplication*
5.511 / 2Division/
511 // 2Integer Division//
1.58.5 % 3.5Remainder%
322 ** 5Exponentiation**

Table 1—Arithmetic Operators

>>> 2 / 3
0.6666666666666666
>>> 5 / 3
1.6666666666666667

The first value ends with a 6, and the second with a 7. This is fishy: both of

them should have an infinite number of 6s after the decimal point. The

problem is that computers have a finite amount of memory, and (to make

calculations fast and memory efficient) most programming languages limit

how much information can be stored for any single number. The number

0.6666666666666666 turns out to be the closest value to 2⁄3 that the computer

can actually store in that limited amount of memory, and 1.6666666666666667
is as close as we get to the real value of 5⁄3.

Operator Precedence

Let’s put our knowledge of ints and floats to use in converting Fahrenheit to

Celsius. To do this, we subtract 32 from the temperature in Fahrenheit and

then multiply by 5⁄9:

>>> 212 - 32 * 5 / 9
194.22222222222223

Python claims the result is 194.22222222222223 degrees Celsius, when in fact it

should be 100. The problem is that multiplication and division have higher

precedence than subtraction; in other words, when an expression contains

a mix of operators, the * and / are evaluated before the - and +. This means

that what we actually calculated was 212 - ((32 * 5) / 9): the subexpression 32 * 5
is evaluated before the division is applied, and that division is evaluated before

the subtraction occurs.

report erratum • discuss

What Is a Type? • 13

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

More on Numeric Precision

Integers (values of type int) in Python can be as large or as small as you like. However,

float values are only approximations to real numbers. For example, 1⁄4 can be stored

exactly, but as we’ve already seen, 2⁄3 cannot. Using more memory won’t solve the

problem, though it will make the approximation closer to the real value, just as

writing a larger number of 6s after the 0 in 0.666… doesn’t make it exactly equal to 2⁄3.

The difference between 2⁄3 and 0.6666666666666666 may look tiny. But if we use

0.6666666666666666 in a calculation, then the error may get compounded. For example,

if we add 1 to 2⁄3, the resulting value ends in …6665, so in many programming lan-

guages, 1 + 2⁄3 is not equal to 5⁄3:

>>> 2 / 3 + 1
1.6666666666666665
>>> 5 / 3
1.6666666666666667

As we do more calculations, the rounding errors can get larger and larger, particularly

if we’re mixing very large and very small numbers. For example, suppose we add

10000000000 (10 billion) and 0.00000000001 (there are 10 zeros after the decimal point):

>>> 10000000000 + 0.00000000001
10000000000.0

The result ought to have twenty zeros between the first and last significant digit, but

that’s too many for the computer to store, so the result is just 10000000000—it’s as if

the addition never took place. Adding lots of small numbers to a large one can

therefore have no effect at all, which is not what a bank wants when it totals up the

values of its customers’ savings accounts.

It’s important to be aware of the floating-point issue. There is no magic bullet to solve

it, because computers are limited in both memory and speed. Numerical analysis,

the study of algorithms to approximate continuous mathematics, is one of the largest

subfields of computer science and mathematics.

Here’s a tip: If you have to add up floating-point numbers, add them from smallest

to largest in order to minimize the error.

We can alter the order of precedence by putting parentheses around

subexpressions:

>>> (212 - 32) * 5 / 9
100.0

Table 2, Arithmetic Operators Listed by Precedence from Highest to Lowest, on

page 15 shows the order of precedence for arithmetic operators.

Operators with higher precedence are applied before those with lower prece-

dence. Here is an example that shows this:

Chapter 2. Hello, Python • 14

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> -2 ** 4
-16
>>> -(2 ** 4)
-16
>>> (-2) ** 4
16

Because exponentiation has higher precedence than negation, the subexpres-

sion 2 ** 4 is evaluated before negation is applied.

OperationOperatorPrecedence

Exponentiation**Highest
Negation-
Multiplication, division, integer division, and

remainder

*, /, //, %

Addition and subtraction+, -Lowest

Table 2—Arithmetic Operators Listed by Precedence from Highest to Lowest

Operators on the same row have equal precedence and are applied left to

right, except for exponentiation, which is applied right to left. So, for example,

because binary operators + and - are on the same row, 3 + 4 - 5 is equivalent

to (3 + 4) - 5, and 3 - 4 + 5 is equivalent to (3 - 4) + 5.

It’s a good rule to parenthesize complicated expressions even when you don’t

need to, since it helps the eye read things like 1 + 1.7 + 3.2 * 4.4 - 16 / 3. On the

other hand, it’s a good rule to not use parentheses in simple expressions such

as 3.1 * 5.

Variables and Computer Memory: Remembering Values

Like mathematicians, programmers frequently name values so that they can

use them later. A name that refers to a value is called a variable. In Python,

variable names can use letters, digits, and the underscore symbol (but they

can’t start with a digit). For example, X, species5618, and degrees_celsius are all

allowed, but 777 isn’t (it would be confused with a number), and neither is

no-way! (it contains punctuation). Variable names are case sensitive, so ph and

pH are two different names.

You create a new variable by assigning it a value:

>>> degrees_celsius = 26.0

This statement is called an assignment statement; we say that degrees_celsius is
assigned the value 26.0. That makes degrees_celsius refer to the value 26.0. We can

report erratum • discuss

Variables and Computer Memory: Remembering Values • 15

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

use variables anywhere we can use values. Whenever Python sees a variable in

an expression, it substitutes the value to which the variable refers:

>>> degrees_celsius = 26.0
>>> degrees_celsius
26.0
>>> 9 / 5 * degrees_celsius + 32
78.80000000000001
>>> degrees_celsius / degrees_celsius
1.0

Variables are called variables because their values can vary as the program

executes. We can assign a new value to a variable:

>>> degrees_celsius = 26.0
>>> 9 / 5 * degrees_celsius + 32
78.80000000000001
>>> degrees_celsius = 0.0
>>> 9 / 5 * degrees_celsius + 32
32.0

Assigning a value to a variable that already exists doesn’t create a second

variable. Instead, the existing variable is reused, which means that the variable

no longer refers to its old value.

We can create other variables; this example calculates the difference between

the boiling point of water and the temperature stored in degrees_celsius:

>>> degrees_celsius = 15.5
>>> difference = 100 - degrees_celsius
>>> difference
84.5

Warning: = Is Not Equality in Python!

In mathematics, = means “the thing on the left is equal to the thing on the right.” In

Python, it means something quite different. Assignment is not symmetric: x = 12
assigns the value 12 to variable x, but 12 = x results in an error. Because of this, we

never describe the statement x = 12 as “x equals 12.” Instead, we read this as “x gets

12” or “x is assigned 12.”

Values, Variables, and Computer Memory

We’re going to develop a model of computer memory—a memory model—that will

let us trace what happens when Python executes a Python program. This memory

model will help us accurately predict and explain what Python does when it exe-

cutes code, a skill that is a requirement for becoming a good programmer.

Chapter 2. Hello, Python • 16

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The Online Python Tutor

Philip Guo wrote a web-based memory visualizer that matches our memory model

pretty well. Here’s the URL: http://pythontutor.com/visualize.html. It can trace both Python 2

and Python 3 code; make sure you select the correct version. The settings that most

closely match our memory model are these:

• Hide exited frames

• Render all objects on the heap

• Use text labels for pointers

We strongly recommend that you use this visualizer whenever you want to trace

execution of a Python program.

In case you find it motivating, we weren’t aware of Philip’s visualizer when we devel-

oped our memory model (and vice versa), and yet they match extremely closely.

Every location in the computer’s memory has a memory address, much like

an address for a house on a street, that uniquely identifies that location.

We’re going to mark our memory addresses with an id prefix (short for identi-

fier) so that they look different from integers: id1, id2, id3, and so on.

Here is how we draw the floating-point value 26.0 using the memory model:

26.0

id1

This image shows the value 26.0 at the memory address id1. We will always

show the type of the value as well—in this case, float. We will call this box an

object: a value at a memory address with a type. During execution of a pro-

gram, every value that Python keeps track of is stored inside an object in

computer memory.

In our memory model, a variable contains the memory address of the object

to which it refers:

In order to make the image easier to interpret, we usually draw arrows from

variables to their objects.

We use the following terminology:

• Value 26.0 has the memory address id1.

• The object at the memory address id1 has type float and the value 26.0.

report erratum • discuss

Variables and Computer Memory: Remembering Values • 17

http://pythontutor.com/visualize.html
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

• Variable degrees_celsius contains the memory address id1.

• Variable degrees_celsius refers to the value 26.0.

Whenever Python needs to know which value degrees_celsius refers to, it looks

at the object at the memory address that degrees_celsius contains. In this

example, that memory address is id1, so Python will use the value at the

memory address id1, which is 26.0.

Assignment Statement

Here is the general form of an assignment statement:

«variable» = «expression»
This is executed as follows:

1. Evaluate the expression on the right of the = sign to produce a value. This

value has a memory address.

2. Store the memory address of the value in the variable on the left of the =.

Create a new variable if that name doesn’t already exist; otherwise, just reuse

the existing variable, replacing the memory address that it contains.

Consider this example:

>>> degrees_celsius = 26.0 + 5
>>> degrees_celsius
31.0

Here is how Python executes the statement degrees_celsius = 26.0 + 5:

1. Evaluate the expression on the right of the = sign: 26.0 + 5. This produces

the value 31.0, which has a memory address. (Remember that Python

stores all values in computer memory.)

2. Make the variable on the left of the = sign, degrees_celsius, refer to 31.0 by

storing the memory address of 31.0 in degrees_celsius.

Reassigning to Variables

Consider this code:

>>> difference = 20
>>> double = 2 * difference
>>> double
40
>>> difference = 5
>>> double
40

Chapter 2. Hello, Python • 18

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

This code demonstrates that assigning to a variable does not change any

other variable. We start by assigning value 20 to variable difference, and then

we assign the result of evaluating 2 * difference (which produces 40) to variable

double.

Next, we assign value 5 to variable difference, but when we examine the value

of double, it still refers to 40.

Here’s how it works according to our rules. The first statement, difference = 20,
is executed as follows:

1. Evaluate the expression on the right of the = sign: 20. This produces the

value 20, which we’ll put at memory address id1.

2. Make the variable on the left of the = sign, difference, refer to 20 by storing

id1 in difference.

Here is the current state of the memory model. (Variable double has not yet

been created because we have not yet executed the assignment to it.)

The second statement, double = 2 * difference, is executed as follows:

1. Evaluate the expression on the right of the = sign: 2 * difference. As we see

in the memory model, difference refers to the value 20, so this expression

is equivalent to 2 * 20, which produces 40. We’ll pick the memory address

id2 for the value 40.

2. Make the variable on the left of the = sign, double, refer to 40 by storing id2
in double.

Here is the current state of the memory model:

When Python executes the third statement, double, it merely looks up the value

that double refers to (40) and displays it.

report erratum • discuss

Variables and Computer Memory: Remembering Values • 19

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The fourth statement, difference = 5, is executed as follows:

1. Evaluate the expression on the right of the = sign: 5. This produces the

value 5, which we’ll put at the memory address id3.

2. Make the variable on the left of the = sign, difference, refer to 5 by storing

id3 in difference.

Here is the current state of the memory model:

Variable double still contains id2, so it still refers to 40. Neither variable refers

to 20 anymore.

The fifth and last statement, double, merely looks up the value that double refers

to, which is still 40, and displays it.

We can even use a variable on both sides of an assignment statement:

>>> number = 3
>>> number
3
>>> number = 2 * number
>>> number
6
>>> number = number * number
>>> number
36

We’ll now explain how Python executes this code, but we won’t explicitly

mention memory addresses. Trace this on a piece of paper while we describe

what happens; make up your own memory addresses as you do this.

Python executes the first statement, number = 3, as follows:

1. Evaluate the expression on the right of the = sign: 3. This one is easy to

evaluate: 3 is produced.

2. Make the variable on the left of the = sign, number, refer to 3.

Python executes the second statement, number = 2 * number, as follows:

Chapter 2. Hello, Python • 20

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

1. Evaluate the expression on the right of the = sign: 2 * number. number cur-

rently refers to 3, so this is equivalent to 2 * 3, and 6 is produced.

2. Make the variable on the left of the = sign, number, refer to 6.

Python executes the third statement, number = number * number, as follows:

1. Evaluate the expression on the right of the = sign: number * number. number
currently refers to 6, so this is equivalent to 6 * 6, and 36 is produced.

2. Make the variable on the left of the = sign, number, refer to 36.

Augmented Assignment

In this example, the variable score appears on both sides of the assignment

statement:

>>> score = 50
>>> score
50
>>> score = score + 20
>>> score
70

This is so common that Python provides a shorthand notation for this

operation:

>>> score = 50
>>> score
50
>>> score += 20
>>> score
70

An augmented assignment combines an assignment statement with an oper-

ator to make the statement more concise. An augmented assignment statement

is executed as follows:

1. Evaluate the expression on the right of the = sign to produce a value.

2. Apply the operator attached to the = sign to the variable on the left of the

= and the value that was produced. This produces another value. Store

the memory address of that value in the variable on the left of the =.

Note that the operator is applied after the expression on the right is evaluated:

>>> d = 2
>>> d *= 3 + 4
>>> d
14

report erratum • discuss

Variables and Computer Memory: Remembering Values • 21

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

All the operators (except for negation) in Table 2, Arithmetic Operators Listed

by Precedence from Highest to Lowest, on page 15, have shorthand versions.

For example, we can square a number by multiplying it by itself:

>>> number = 10
>>> number *= number
>>> number
100

This code is equivalent to this:

>>> number = 10
>>> number = number * number
>>> number
100

Table 3 contains a summary of the augmented operators you’ve seen plus a

few more based on arithmetic operators you learned about in Expressions

and Values: Arithmetic in Python, on page 9.

ResultExampleSymbol

x refers to 9
+= x = 7

x += 2

x refers to 5
-= x = 7

x -= 2

x refers to 14
*= x = 7

x *= 2

x refers to 3.5
/= x = 7

x /= 2

x refers to 3
//= x = 7

x //= 2

x refers to 1
%= x = 7

x %= 2

x refers to 49
**= x = 7

x **= 2

Table 3—Augmented Assignment Operators

How Python Tells You Something Went Wrong

Broadly speaking, there are two kinds of errors in Python: syntax errors,

which happen when you type something that isn’t valid Python code, and

semantic errors, which happen when you tell Python to do something that it

just can’t do, like divide a number by zero or try to use a variable that doesn’t

exist.

Chapter 2. Hello, Python • 22

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Here is what happens when we try to use a variable that hasn’t been created yet:

>>> 3 + moogah
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'moogah' is not defined

This is pretty cryptic; Python error messages are meant for people who already

know Python. (You’ll get used to them and soon find them helpful.) The first

two lines aren’t much use right now, though they’ll be indispensable when

we start writing longer programs. The last line is the one that tells us what

went wrong: the name moogah wasn’t recognized.

Here’s another error message you might sometimes see:

>>> 2 +
File "<stdin>", line 1
2 +

^
SyntaxError: invalid syntax

The rules governing what is and isn’t legal in a programming language are

called its syntax. The message tells us that we violated Python’s syntax

rules—in this case, by asking it to add something to 2 but not telling it what

to add.

Earlier, in Warning: = Is Not Equality in Python!, on page 16, we claimed that

12 = x results in an error. Let’s try it:

>>> 12 = x
File "<stdin>", line 1

SyntaxError: can't assign to literal

A literal is any value, like 12 and 26.0. This is a SyntaxError because when Python

examines that assignment statement, it knows that you can’t assign a value

to a number even before it tries to execute it; you can’t change the value of

12 to anything else. 12 is just 12.

A Single Statement That Spans Multiple Lines

Sometimes statements get pretty intricate. The recommended Python style is

to limit lines to 80 characters, including spaces, tabs, and other whitespace

characters, and that’s a common limit throughout the programming world.

Here’s what to do when lines get too long or when you want to split it up for

clarity.

report erratum • discuss

A Single Statement That Spans Multiple Lines • 23

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

In order to split up a statement into more than one line, you need to do one

of two things:

1. Make sure your line break occurs inside parentheses.

2. Use the line-continuation character, which is a backslash, \.

Note that the line-continuation character is a backslash (\), not the division

symbol (/).

Here are examples of both:

>>> (2 +
... 3)
5
>>> 2 + \
... 3
5

Notice how we don’t get a SyntaxError. Each triple-dot prompt in our examples

indicates that we are in the middle of entering an expression; we use them

to make the code line up nicely. You do not type the dots any more than you

type the greater-than signs in the usual >>> prompt, and if you are using

IDLE, you won’t see them at all.

Here is a more realistic (and tastier) example: let’s say we’re baking cookies.

The authors live in Canada, which uses Celsius, but we own cookbooks that

use Fahrenheit. We are wondering how long it will take to preheat our oven.

Here are our facts:

• The room temperature is 20 degrees Celsius.

• Our oven controls use Celsius, and the oven heats up at 20 degrees per

minute.

• Our cookbook uses Fahrenheit, and it says to preheat the oven to 350

degrees.

We can convert t degrees Fahrenheit to t degrees Celsius like this: (t - 32) * 5 /
9. Let’s use this information to try to solve our problem.

>>> room_temperature_c = 20
>>> cooking_temperature_f = 350
>>> oven_heating_rate_c = 20
>>> oven_heating_time = (
... ((cooking_temperature_f - 32) * 5 / 9) - room_temperature_c) / \
... oven_heating_rate_c
>>> oven_heating_time
7.833333333333333

Chapter 2. Hello, Python • 24

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Not bad—just under eight minutes to preheat.

The assignment statement to variable oven_heating_time spans three lines. The

first line ends with an open parenthesis, so we do not need a line-continuation

character. The second ends outside the parentheses, so we need the line-

continuation character. The third line completes the assignment statement.

That’s still hard to read. Once we’ve continued an expression on the next line,

we can indent (by pressing the Tab key or by pressing the spacebar a bunch)

to our heart’s content to make it clearer:

>>> oven_heating_time = (
... ((cooking_temperature_f - 32) * 5 / 9) - room_temperature_c) / \
... oven_heating_rate_c

Or even this—notice how the two subexpressions involved in the subtraction

line up:

>>> oven_heating_time = (
... ((cooking_temperature_f - 32) * 5 / 9) -
... room_temperature_c) / \
... oven_heating_rate_c

In the previous example, we clarified the expression by working with indenta-

tion. However, we could have made this process even clearer by converting

the cooking temperature to Celsius before calculating the heating time:

>>> room_temperature_c = 20
>>> cooking_temperature_f = 350
>>> cooking_temperature_c = (cooking_temperature_f - 32) * 5 / 9
>>> oven_heating_rate_c = 20
>>> oven_heating_time = (cooking_temperature_c - room_temperature_c) / \
... oven_heating_rate_c
>>> oven_heating_time
7.833333333333333

The message to take away here is that well-named temporary variables can

make code much clearer.

Describing Code

Programs can be quite complicated and are often thousands of lines long. It

can be helpful to write a comment describing parts of the code so that when

you or someone else reads it the meaning is clear.

In Python, any time the # character is encountered, Python will ignore the

rest of the line. This allows you to write English sentences:

>>> # Python ignores this sentence because of the # symbol.

report erratum • discuss

Describing Code • 25

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The # symbol does not have to be the first character on the line; it can appear

at the end of a statement:

>>> (212 - 32) * 5 / 9 # Convert 212 degrees Fahrenheit to Celsius.
100.0

Notice that the comment doesn’t describe how Python works. Instead, it is

meant for humans reading the code to help them understand why the code

exists.

Making Code Readable

Much like there are spaces in English sentences to make the words easier to

read, we use spaces in Python code to make it easier to read. In particular,

we always put a space before and after every binary operator. For example,

we write v = 4 + -2.5 / 3.6 instead of v=4+-2.5/3.6. There are situations where it

may not make a difference, but that’s a detail we don’t want to fuss about,

so we always do it: it’s almost never harder to read if there are spaces.

Psychologists have discovered that people can keep track of only a handful

of things at any one time (Forty Studies That Changed Psychology [Hoc04]).

Since programs can get quite complicated, it’s important that you choose

names for your variables that will help you remember what they’re for. id1,
X2, and blah won’t remind you of anything when you come back to look at your

program next week: use names like celsius, average, and final_result instead.

Other studies have shown that your brain automatically notices differences

between things—in fact, there’s no way to stop it from doing this. As a result,

the more inconsistencies there are in a piece of text, the longer it takes to

read. (JuSt thInK a bout how long It w o u l d tAKE you to rEa d this cHaPTer

iF IT wAs fORmaTTeD like thIs.) It’s therefore also important to use consistent

names for variables. If you call something maximum in one place, don’t call it

max_val in another; if you use the name max_val, don’t also use the name maxVal,
and so on.

These rules are so important that many programming teams require members

to follow a style guide for whatever language they’re using, just as newspapers

and book publishers specify how to capitalize headings and whether to use

a comma before the last item in a list. If you search the Internet for program-

ming style guide (https://www.google.com/search?q=programming+style+guide), you’ll

discover links to hundreds of examples. In this book, we follow the style guide

for Python from http://www.python.org/dev/peps/pep-0008/.

You will also discover that lots of people have wasted many hours arguing

over what the “best” style for code is. Some of your classmates (and your

Chapter 2. Hello, Python • 26

report erratum • discuss

https://www.google.com/search?q=programming+style+guide
http://www.python.org/dev/peps/pep-0008/
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

instructors) may have strong opinions about this as well. If they do, ask them

what data they have to back up their beliefs. Strong opinions need strong

evidence to be taken seriously.

The Object of This Chapter

In this chapter, you learned the following:

• An operating system is a program that manages your computer’s hardware

on behalf of other programs. An interpreter or virtual machine is a program

that sits on top of the operating system and runs your programs for you.

The Python shell is an interpreter, translating your Python statements

into language the operating system understands and translating the

results back so you can see and use them.

• Programs are made up of statements, or instructions. These can be simple

expressions like 3 + 4 and assignment statements like celsius = 20 (which

create new variables or change the values of existing ones). There are

many other kinds of statements in Python, and we’ll introduce them

throughout the book.

• Every value in Python has a specific type, which determines what opera-

tions can be applied to it. The two types used to represent numbers are

int and float. Floating-point numbers are approximations to real numbers.

• Python evaluates an expression by applying higher-precedence operators

before lower-precedence operators. You can change that order by putting

parentheses around subexpressions.

• Python stores every value in computer memory. A memory location con-

taining a value is called an object.

• Variables are created by executing assignment statements. If a variable

already exists because of a previous assignment statement, Python will

use that one instead of creating a new one.

• Variables contain memory addresses of values. We say that variables refer

to values.

• Variables must be assigned values before they can be used in expressions.

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

report erratum • discuss

The Object of This Chapter • 27

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

1. For each of the following expressions, what value will the expression give?

Verify your answers by typing the expressions into Python.

a. 9 - 3

b. 8 * 2.5

c. 9 / 2

d. 9 / -2

e. 9 // -2

f. 9 % 2

g. 9.0 % 2

h. 9 % 2.0

i. 9 % -2

j. -9 % 2

k. 9 / -2.0

l. 4 + 3 * 5

m. (4 + 3) * 5

2. Unary minus negates a number. Unary plus exists as well; for example,

Python understands +5. If x has the value -17, what do you think +x should

do? Should it leave the sign of the number alone? Should it act like

absolute value, removing any negation? Use the Python shell to find out

its behavior.

3. Write two assignment statements that do the following:

a. Create a new variable, temp, and assign it the value 24.

b. Convert the value in temp from Celsius to Fahrenheit by multiplying

by 1.8 and adding 32; make temp refer to the resulting value.

What is temp’s new value?

4. For each of the following expressions, in which order are the subexpres-

sions evaluated?

a. 6 * 3 + 7 * 4

b. 5 + 3 / 4

c. 5 - 2 * 3 ** 4

Chapter 2. Hello, Python • 28

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

5. Create a new variable x, and assign it the value 10.5.a.

b. Create a new variable y, and assign it the value 4.

c. Sum x and y, and make x refer to the resulting value. After this state-

ment has been executed, what are the values of x and y?

6. Write a bullet list description of what happens when Python evaluates

the statement x += x - x when x has the value 3.

7. When a variable is used before it has been assigned a value, a NameError
occurs. In the Python shell, write an expression that results in a NameError.

8. Which of the following expressions results in SyntaxErrors?

a. 6 * -----------8

b. 8 = people

c. ((((4 ** 3))))

d. (-(-(-(-5))))

e. 4 += 7 / 2

report erratum • discuss

Exercises • 29

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 3

Designing and Using Functions

Mathematicians create functions to make calculations (such as Fahrenheit-

to-Celsius conversions) easy to reuse and to make other calculations easier

to read because they can use those functions instead of repeatedly writing

out equations. Programmers do this too, at least as often as mathematicians.

In this chapter we will explore several of the built-in functions that come with

Python, and we’ll also show you how to define your own functions.

Functions That Python Provides

Python comes with many built-in functions that perform common operations.

One example is abs, which produces the absolute value of a number:

>>> abs(-9)
9
>>> abs(3.3)
3.3

Each of these statements is a function call.

Keep Your Shell Open

As a reminder, we recommend that you have IDLE open (or another Python editor)

and that you try all the code under discussion; this is a good way to cement your

learning.

The general form of a function call is as follows:

«function_name»(«arguments»)
An argument is an expression that appears between the parentheses of a

function call. In abs(-9), the argument is -9.

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Here, we calculate the difference between a day temperature and a night

temperature, as might be seen on a weather report (a warm weather system

moved in overnight):

>>> day_temperature = 3
>>> night_temperature = 10
>>> abs(day_temperature - night_temperature)
7

In this call on function abs, the argument is day_temperature - night_temperature.
Because day_temperature refers to 3 and night_temperature refers to 10, Python

evaluates this expression to -7. This value is then passed to function abs,
which then returns, or produces, the value 7.

Here are the rules to executing a function call:

1. Evaluate each argument one at a time, working from left to right.

2. Pass the resulting values into the function.

3. Execute the function. When the function call finishes, it produces a value.

Because function calls produce values, they can be used in expressions:

>>> abs(-7) + abs(3.3)
10.3

We can also use function calls as arguments to other functions:

>>> pow(abs(-2), round(4.3))
16

Python sees the call on pow and starts by evaluating the arguments from left

to right. The first argument is a call on function abs, so Python executes it.

abs(-2) produces 2, so that’s the first value for the call on pow. Then Python

executes round(4.3), which produces 4.

Now that the arguments to the call on function pow have been evaluated,

Python finishes calling pow, sending in 2 and 4 as the argument values. That

means that pow(abs(-2), round(4.3)) is equivalent to pow(2, 4), and 24 is 16.

Here is a diagram indicating the order in which the various pieces of this

expression are evaluated by Python:

Chapter 3. Designing and Using Functions • 32

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

We have underlined each subexpression and given it a number to indicate

when Python executes or evaluates that subexpression.

Some of the most useful built-in functions are ones that convert from one

type to another. Type names int and float can be used as functions:

>>> int(34.6)
34
>>> int(-4.3)
-4
>>> float(21)
21.0

In this example, we see that when a floating-point number is converted to an

integer, it is truncated, not rounded.

If you’re not sure what a function does, try calling built-in function help, which

shows documentation for any function:

>>> help(abs)
Help on built-in function abs in module builtins:

abs(x, /)
Return the absolute value of the argument.

The first line states which function is being described and which module

it belongs to. Here, the module name is builtins. Modules are an organizational

tool in Python and are discussed in Chapter 6, A Modular Approach, on

page 99.

The next part describes what the function does. The form of the function

appears first: function abs expects one argument. (The / indicates that there

are no more arguments.) After the form is an English description of what the

function does when it is called.

Another built-in function is round, which rounds a floating-point number to

the nearest integer:

>>> round(3.8)
4
>>> round(3.3)
3
>>> round(3.5)
4
>>> round(-3.3)
-3
>>> round(-3.5)
-4

report erratum • discuss

Functions That Python Provides • 33

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The function round can be called with one or two arguments. If called with one, as

we’ve been doing, it rounds to the nearest integer. If called with two, it rounds to

a floating-point number, where the second argument indicates the precision:

>>> round(3.141592653, 2)
3.14

The documentation for round indicates that the second argument is optional

by surrounding it with brackets:

>>> help(round)
Help on built-in function round in module builtins:

round(...)
round(number[, ndigits]) -> number

Round a number to a given precision in decimal digits (default 0 digits).
This returns an int when called with one argument, otherwise the
same type as the number. ndigits may be negative.

Let’s explore built-in function pow by starting with its help documentation:

>>> help(pow)
Help on built-in function pow in module builtins:

pow(x, y, z=None, /)
Equivalent to x**y (with two arguments) or x**y % z (with three arguments)

Some types, such as ints, are able to use a more efficient algorithm when
invoked using the three argument form.

This shows that the function pow can be called with either two or three argu-

ments. The English description mentions that when called with two arguments

it is equivalent to x ** y. Let’s try it:

>>> pow(2, 4)
16

This call calculates 24. So far, so good. How about with three arguments?

>>> pow(2, 4, 3)
1

We know that 24 is 16, and evaluation of 16 % 3 produces 1.

Memory Addresses: How Python Keeps Track of Values

Back in Values, Variables, and Computer Memory, on page 16, you learned that

Python keeps track of each value in a separate object and that each object has a

memory address. You can discover the actual memory address of an object using

built-in function id:

Chapter 3. Designing and Using Functions • 34

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> help(id)
Help on built-in function id in module builtins:

id(obj, /)
Return the identity of an object.

This is guaranteed to be unique among simultaneously existing objects.
(CPython uses the object's memory address.)

How cool is that? Let’s try it:

>>> id(-9)
4301189552
>>> id(23.1)
4298223160
>>> shoe_size = 8.5
>>> id(shoe_size)
4298223112
>>> fahrenheit = 77.7
>>> id(fahrenheit)
4298223064

The addresses you get will probably be different from what’s listed here since

values get stored wherever there happens to be free space. Function objects

also have memory addresses:

>>> id(abs)
4297868712
>>> id(round)
4297871160

Defining Our Own Functions

The built-in functions are useful but pretty generic. Often there aren’t built-

in functions that do what we want, such as calculate mileage or play a game

of cribbage. When we want functions to do these sorts of things, we have to

write them ourselves.

Because we live in Toronto, Canada, we often deal with our neighbor to the

south. The United States typically uses Fahrenheit, so we convert from

Fahrenheit to Celsius and back a lot. It sure would be nice to be able to do

this:

>>> convert_to_celsius(212)
100.0
>>> convert_to_celsius(78.8)
26.0
>>> convert_to_celsius(10.4)
-12.0

report erratum • discuss

Defining Our Own Functions • 35

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Python Remembers and Reuses Some Objects

A cache is a collection of data. Because small integers—up to about 250 or so,

depending on the version of Python you’re using—are so common, Python creates

those objects as it starts up and reuses the same objects whenever it can. This speeds

up operations involving these values. The function id reveals this:

>>> i = 3
>>> j = 3
>>> k = 4 - 1
>>> id(i)
4296861792
>>> id(j)
4296861792
>>> id(k)
4296861792

What that means is that variables i, j, and k refer to the exact same object. This is

called aliasing.

Larger integers and all floating-point values aren’t necessarily cached:

>>> i = 30000000000
>>> j = 30000000000
>>> id(i)
4301190928
>>> id(j)
4302234864
>>> f = 0.0
>>> g = 0.0
>>> id(f)
4298223040
>>> id(g)
4298223016

Python decides for itself when to cache a value. The only reason you need to be aware

of it is so that you aren’t surprised when it happens; the output of your program is

not affected by when Python decides to cache.

However, the function convert_to_celsius doesn’t exist yet, so instead we see this

(focus only on the last line of the error message for now):

>>> convert_to_celsius(212)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'convert_to_celsius' is not defined

To fix this, we have to write a function definition that tells Python what to do

when the function is called.

We’ll go over the syntax of function definitions soon, but we’ll start with an

example:

Chapter 3. Designing and Using Functions • 36

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> def convert_to_celsius(fahrenheit):
... return (fahrenheit - 32) * 5 / 9
...

The function body is indented. Here, we indent four spaces, as the Python

style guide recommends. If you forget to indent, you get this error:

>>> def convert_to_celsius(fahrenheit):
... return (fahrenheit - 32) * 5 / 9

File "<stdin>", line 2
return (fahrenheit - 32) * 5 / 9

^
IndentationError: expected an indented block

Now that we’ve defined function convert_to_celsius, our earlier function calls will

work. We can even use built-in function help on it:

>>> help(convert_to_celsius)
Help on function convert_to_celsius in module __main__:

convert_to_celsius(fahrenheit)

This shows the first line of the function definition, which we call the function

header. (Later in this chapter, we’ll show you how to add more help documen-

tation to a function.)

Here is a quick overview of how Python executes the following code:

>>> def convert_to_celsius(fahrenheit):
... return (fahrenheit - 32) * 5 / 9
...
>>> convert_to_celsius(80)
26.666666666666668

1. Python executes the function definition, which creates the function object

(but doesn’t execute it yet).

2. Next, Python executes function call convert_to_celsius(80). To do this, it assigns

80 to fahrenheit (which is a variable). For the duration of this function call,

fahrenheit refers to 80.

3. Python now executes the return statement. fahrenheit refers to 80, so the

expression that appears after return is equivalent to (80 - 32) * 5 / 9. When

Python evaluates that expression, 26.666666666666668 is produced. We use

the word return to tell Python what value to produce as the result of the

function call, so the result of calling convert_to_celsius(80) is 26.666666666666668.

4. Once Python has finished executing the function call, it returns to the

place where the function was originally called.

report erratum • discuss

Defining Our Own Functions • 37

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Here is an image showing this sequence:

def convert_to_celsius(fahrenheit):

 return (fahrenheit - 32) * 5 / 9

convert_to_celsius(80)

(rest of program)

1

2

3

4

A function definition is a kind of Python statement. The general form of a

function definition is as follows:

def «function_name»(«parameters»):
«block»

Keywords Are Words That Are Special to Python

Keywords are words that Python reserves for its own use. We can’t use them except

as Python intends. Two of them are def and return. If we try to use them as either

variable names or as function names (or anything else), Python produces an error:

>>> def = 3
File "<stdin>", line 1

def = 3
^

SyntaxError: invalid syntax
>>> def return(x):

File "<stdin>", line 1
def return(x):

^
SyntaxError: invalid syntax

Here is a complete list of Python keywords (we’ll encounter most of them in this book):

False assert del for in or while
None break elif from is pass with
True class else global lambda raise yield
and continue except if nonlocal return
as def finally import not try

The function header (that’s the first line of the function definition) starts with

def, followed by the name of the function, then a comma-separated list of

parameters within parentheses, and then a colon. A parameter is a variable.

You can’t have two functions with the same name in the same file; it isn’t an

error, but if you do it, the second function definition replaces the first one, much

like assigning a value to a variable a second time replaces the first value.

Below the function header and indented (four spaces, as per Python’s style

guide) is a block of statements called the function body. The function body

must contain at least one statement.

Chapter 3. Designing and Using Functions • 38

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Most function definitions will include a return statement that, when executed,

ends the function and produces a value. The general form of a return statement

is as follows:

return «expression»
When Python executes a return statement, it evaluates the expression and then

produces the result of that expression as the result of the function call.

Using Local Variables for Temporary Storage

Some computations are complex, and breaking them down into separate steps

can lead to clearer code. In the next example, we break down the evaluation

of the quadratic polynomial ax
2
+ bx + c into several steps. Notice that all the

statements inside the function are indented the same amount of spaces in

order to be aligned with each other. You may want to type this example into

an editor first (without the leading >>> and ...) and then paste it to the Python

shell. That makes fixing mistakes much easier:

>>> def quadratic(a, b, c, x):
... first = a * x ** 2
... second = b * x
... third = c
... return first + second + third
...
>>> quadratic(2, 3, 4, 0.5)
6.0
>>> quadratic(2, 3, 4, 1.5)
13.0

Variables like first, second, and third that are created within a function are called

local variables. Local variables get created each time that function is called, and

they are erased when the function returns. Because they only exist when the

function is being executed, they can’t be used outside of the function. This means

that trying to access a local variable from outside the function is an error, just

like trying to access a variable that has never been defined is an error:

>>> quadratic(2, 3, 4, 1.3)
11.280000000000001
>>> first
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'first' is not defined

A function’s parameters are also local variables, so we get the same error if

we try to use them outside of a function definition:

report erratum • discuss

Using Local Variables for Temporary Storage • 39

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> a
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'a' is not defined

The area of a program that a variable can be used in is called the variable’s

scope. The scope of a local variable is from the line in which it is defined up

until the end of the function.

As you might expect, if a function is defined to take a certain number of

parameters, a call on that function must have the same number of arguments:

>>> quadratic(1, 2, 3)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: quadratic() takes exactly 4 arguments (3 given)

Remember that you can call built-in function help to find out information

about the parameters of a function.

Tracing Function Calls in the Memory Model

Read the following code. Can you predict what it will do when we run it?

>>> def f(x):
... x = 2 * x
... return x
...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

That code is confusing, in large part because x is used all over the place.

However, it is pretty short and it only uses Python features that we have seen

so far: assignment statements, expressions, function definitions, and function

calls. We’re missing some information: Are all the x’s the same variable? Does

Python make a new x for each assignment? For each function call? For each

function definition?

Here’s the answer: whenever Python executes a function call, it creates a

namespace (literally, a space for names) in which to store local variables for

that call. You can think of a namespace as a scrap piece of paper; Python

writes down the local variables on that piece of paper, keeps track of them

as long as the function is being executed, and throws that paper away when

the function returns.

Separately, Python keeps another namespace for variables created in the

shell. That means that the x that is a parameter of function f is a different

variable than the x in the shell!

Chapter 3. Designing and Using Functions • 40

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Reusing Variable Names Is Common

Using the same name for local variables in different functions is quite common. For

example, imagine a program that deals with distances—converting from meters to

other units of distance, perhaps. In that program, there would be several functions

that all deal with these distances, and it would be entirely reasonable to use meters
as a parameter name in many different functions.

Let’s refine our rules from Functions That Python Provides, on page 31, for

executing a function call to include this namespace creation:

1. Evaluate the arguments left to right.

2. Create a namespace to hold the function call’s local variables, including

the parameters.

3. Pass the resulting argument values into the function by assigning them

to the parameters.

4. Execute the function body. As before, when a return statement is executed,

execution of the body terminates and the value of the expression in the

return statement is used as the value of the function call.

From now on in our memory model, we will draw a separate box for each

namespace to indicate that the variables inside it are in a separate area of

computer memory. The programming world calls this box a frame. We separate

the frames from the objects by a vertical dotted line:

Frames Objects

Frames for namespaces
go here

Objects go here

Using our newfound knowledge, let’s trace that confusing code. At the

beginning, no variables have been created; Python is about to execute the

function definition. We have indicated this with an arrow:

>>> def f(x):➤

... x = 2 * x

... return x

...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

As you’ve seen in this chapter, when Python executes that function definition,

it creates a variable f in the frame for the shell’s namespace plus a function

report erratum • discuss

Tracing Function Calls in the Memory Model • 41

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

object. (Python didn’t execute the body of the function; that won’t happen

until the function is called.) Here is the result:

Frames

shell

f id1 f(x)

id1:function

Objects

Now we are about to execute the first assignment to x in the shell.

>>> def f(x):
... x = 2 * x
... return x
...
>>> x = 1➤

>>> x = f(x + 1) + f(x + 2)

Once that assignment happens, both f and x are in the frame for the shell:

Now we are about to execute the second assignment to x in the shell:

>>> def f(x):
... x = 2 * x
... return x
...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)➤

Following the rules for executing an assignment from Assignment Statement,

on page 18, we first evaluate the expression on the right of the =, which is f(x
+ 1) + f(x + 2). Python evaluates the left function call first: f(x + 1).

Following the rules for executing a function call, Python evaluates the argu-

ment, x + 1. In order to find the value for x, Python looks in the current frame.

The current frame is the frame for the shell, and its variable x refers to 1, so

x + 1 evaluates to 2.

Now we have evaluated the argument to f. The next step is to create a

namespace for the function call. We draw a frame, write in parameter x, and

assign 2 to that parameter:

Chapter 3. Designing and Using Functions • 42

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Frames

shell

f

x

id1 f(x)

id1:function

Objects

id2

f

x id3

1

id2:int

2

id3:int

Notice that there are two variables called x, and they refer to different values.

Python will always look in the current frame, which we will draw with a

thicker border.

We are now about to execute the first statement of function f:

>>> def f(x):
... x = 2 * x➤

... return x

...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

x = 2 * x is an assignment statement. The right side is the expression 2 * x.
Python looks up the value of x in the current frame and finds 2, so that

expression evaluates to 4. Python finishes executing that assignment statement

by making x refer to that 4:

Frames

shell

f

x

id1 f(x)

id1:function

Objects

id2

f

x id4

1

id2:int

2

id3:int

4

id4:int

We are now about to execute the second statement of function f:

>>> def f(x):
... x = 2 * x
... return x➤

...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

report erratum • discuss

Tracing Function Calls in the Memory Model • 43

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

This is a return statement, so we evaluate the expression, which is simply x.
Python looks up the value for x in the current frame and finds 4, so that is

the return value:

Frames

shell

f

x

id1 f(x)

id1:function

Objects

id2

f

x

Return value

id4

id4

1

id2:int

2

id3:int

4

id4:int

When the function returns, Python comes back to this expression: f(x + 1) +
f(x + 2). Python just finished executing f(x + 1), which produced the value 4. It
then executes the right function call: f(x + 2).

Following the rules for executing a function call, Python evaluates the argu-

ment, x + 2. In order to find the value for x, Python looks in the current frame.

The call on function f has returned, so that frame is erased: the only frame

left is the frame for the shell, and its variable x still refers to 1, so x + 2 evalu-

ates to 3.

Now we have evaluated the argument to f. The next step is to create a

namespace for the function call. We draw a frame, write in the parameter x,
and assign 3 to that parameter:

Again, we have two variables called x.

Chapter 3. Designing and Using Functions • 44

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

We are now about to execute the first statement of function f:

>>> def f(x):
... x = 2 * x➤

... return x

...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

x = 2 * x is an assignment statement. The right side is the expression 2 * x.
Python looks up the value of x in the current frame and finds 3, so that

expression evaluates to 6. Python finished executing that assignment statement

by making x refer to that 6:

Frames

shell

f

x

id1 f(x)

id1:function

Objects

id2

f

x id6

1

id2:int

2

id3:int

4

id4:int

3

id5:int

6

id6:int

We are now about to execute the second statement of function f:

>>> def f(x):
... x = 2 * x
... return x➤

...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

This is a return statement, so we evaluate the expression, which is simply x.
Python looks up the value for x in the current frame and finds 6, so that is

the return value (as shown in the figure on page 46).

report erratum • discuss

Tracing Function Calls in the Memory Model • 45

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

f

x

Return value

Frames

shell

f

x

id1 f(x)

id1:function

Objects

id2

id6

id6

1

id2:int

2

id3:int

4

id4:int

3

id5:int

6

id6:int

When the function returns, Python comes back to this expression: f(x + 1) +
f(x + 2). Python just finished executing f(x + 2), which produced the value 6.
Both function calls have been executed, so Python applies the + operator to

4 and 6, giving us 10.

We have now evaluated the right side of the assignment statement; Python

completes it by making the variable on the left side, x, refer to 10:

Frames

shell

f

x

id1 f(x)

id1:function

Objects

id7 1

id2:int

2

id3:int

4

id4:int

3

id5:int

6

id6:int

10

id7:int

Phew! That’s a lot to keep track of. Python does all that bookkeeping for us,

but to become a good programmer it’s important to understand each individ-

ual step.

Chapter 3. Designing and Using Functions • 46

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Designing New Functions: A Recipe

Writing a good essay requires planning: deciding on a topic, learning the

background material, writing an outline, and then filling in the outline until

you’re done.

Similarly, writing a good function also requires planning. You have an idea

of what you want the function to do, but you need to decide on the details.

Every time you write a function, you need to figure out the answers to the fol-

lowing questions:

• What do you name the function?

• What are the parameters, and what types of information do they refer to?

• What calculations are you doing with that information?

• What information does the function return?

• Does it work like you expect it to?

The function design recipe helps you find answers to all these questions.

This section describes a step-by-step recipe for designing and writing a

function. Part of the outcome will be a working function, but almost as

important is the documentation for the function. Python uses three double

quotes to start and end this documentation; everything in between is meant

for humans to read. This notation is called a docstring, which is short for

documentation string.

Here is an example of a completed function. We’ll show you how we came up

with this using a function design recipe (FDR), but it helps to see a completed

example first:

>>> def days_difference(day1: int, day2: int) -> int:
... """Return the number of days between day1 and day2, which are
... both in the range 1-365 (thus indicating the day of the
... year).
...
... >>> days_difference(200, 224)
... 24
... >>> days_difference(50, 50)
... 0
... >>> days_difference(100, 99)
... -1
... """
... return day2 - day1
...

Here are the parts of the function, including the docstring:

report erratum • discuss

Designing New Functions: A Recipe • 47

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

• The first line is the function header. We have annotated the parameters

with the types of information that we expect to be passed to them (we

expect both day1 and day2 to refer to values of type int), and the int after the

-> is the type of value we expect the function to return. These type anno-

tations are optional in Python, but we will use them throughout the book.

• The second line has three double quotes to start the docstring, which begins

with a description of what the function will do when it is called. The description

mentions both parameters and describes what the function returns.

• Next are some example calls and return values as we would expect to see

in the Python shell. (We chose the first example because that made day1
smaller than day2, the second example because the two days are equal,

and the third example because that made day1 bigger than day2.)

• Next are three double quotes to end the docstring.

• The last line is the body of the function.

There are five steps to the function design recipe. It may seem like a lot of

work at first, and you will often be able to write a function without rigidly

following these steps, but this recipe can save you hours of time when you’re

working on more complicated functions.

1. Examples. The first step is to figure out what name you want to give to

your function, what arguments it should have, and what information it

will return. This name is often a short answer to the question, “What does

your function do?” Type a couple of example calls and return values.

We start with the examples because they’re the easiest: before we write

anything, we need to decide what information we have (the argument

values) and what information we want the function to produce (the return

value). Here are the examples from days_difference:

... >>> days_difference(200, 224)

... 24

... >>> days_difference(50, 50)

... 0

... >>> days_difference(100, 99)

... -1

2. Header. The second step is to decide on the parameter names, parameter

types, and return type and write the function header. Pick meaningful

parameter names to make it easy for other programmers to understand

what information to give to your function. Include type annotations: Are

you giving it integers? Floating-point numbers? Maybe both? We’ll see a

lot of other types in the upcoming chapters, so practicing this step now

Chapter 3. Designing and Using Functions • 48

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

while you have only a few choices will help you later. If the answer is,

“Both integers and floating-point numbers,” then use float because integers

are a subset of floating-point numbers.

Also, what type of value is returned? An integer, a floating-point number,

or possibly either one of them?

The parameter types and return type form a type contract because we are

claiming that if you call this function with the right types of values, we’ll

give you back the right type of value. (We’re not saying anything about

what will happen if we get the wrong kind of values.)

Here is the header from days_difference:

>>> def days_difference(day1: int, day2: int) -> int:

3. Description. Write a short paragraph describing your function: this is what

other programmers will read in order to understand what your function

does, so it’s important to practice this! Mention every parameter in your

description and describe the return value. Here is the description from

days_difference:

... """Return the number of days between day1 and day2, which are

... both in the range 1-365 (thus indicating the day of the

... year).

4. Body. By now, you should have a good idea of what you need to do in

order to get your function to behave properly. It’s time to write some code!

Here is the body from days_difference:

... return day2 - day1

5. Test. Run the examples to make sure your function body is correct. Feel

free to add more example calls if you happen to think of them. For

days_difference, we copy and paste our examples into the shell and compare

the results to what we expected:

>>> days_difference(200, 224)
24
>>> days_difference(50, 50)
0
>>> days_difference(100, 99)
-1

Designing Three Birthday-Related Functions

We’ll now apply our function design recipe to solve this problem: Which day

of the week will a birthday fall upon, given what day of the week it is today

report erratum • discuss

Designing New Functions: A Recipe • 49

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

and what day of the year the birthday is on? For example, if today is the third

day of the year and it’s a Thursday, and a birthday is on the 116th day of the

year, what day of the week will it be on that birthday?

We’ll design three functions that together will help us do this calculation.

We’ll write them in the same file; until we get to Chapter 6, A Modular

Approach, on page 99, we’ll need to put functions that we write in the same

file if we want to be able to have them call one another.

We will represent the day of the week using 1 for Sunday, 2 for Monday, and

so on:

NumberDay of the Week

1Sunday

2Monday

3Tuesday

4Wednesday

5Thursday

6Friday

7Saturday

We are using these numbers simply because we don’t yet have the tools to

easily convert between days of the week and their corresponding numbers.

We’ll have to do that translation in our heads.

For the same reason, we will also ignore months and use the numbers 1

through 365 to indicate the day of the year. For example, we’ll represent

February 1st as 32, since it’s the thirty-second day of the year.

How Many Days Difference?

We’ll start by seeing how we came up with function days_difference. Here are

the function design recipe steps. Try following along in the Python shell.

1. Examples. We want a clear name for the difference in days; we’ll use

days_difference. In our examples, we want to call this function and state

what it returns. If we want to know how many days there are between

the 200th day of the year and the 224th day, we can hope that this will

happen:

... >>> days_difference(200, 224)

... 24

What are the special cases? For example, what if the two days are the

same? How about if the second one is before the first?

Chapter 3. Designing and Using Functions • 50

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

... >>> days_difference(50, 50)

... 0

... >>> days_difference(100, 99)

... -1

Now that we have a few examples, we can move on to the next step.

2. Header. We have a couple of example calls. The arguments in our function

call examples are all integers, and the return values are integers too, so

that gives us the type contract. In the examples, both arguments represent

a number of days, so we’ll name them day1 and day2:

>>> def days_difference(day1: int, day2: int) -> int:

3. Description. We’ll now describe what a call on the function will do. Because

the documentation should completely describe the behavior of the function,

we need to make sure that it’s clear what the parameters mean:

... """Return the number of days between day1 and day2, which are

... both in the range 1-365 (thus indicating the day of the

... year).

4. Body. We’ve laid everything out. Looking at the examples, we see that we

can implement this using subtraction. Here is the whole function again,

including the body:

>>> def days_difference(day1: int, day2: int) -> int:
... """Return the number of days between day1 and day2, which are
... both in the range 1-365 (thus indicating the day of the
... year).
...
... >>> days_difference(200, 224)
... 24
... >>> days_difference(50, 50)
... 0
... >>> days_difference(100, 99)
... -1
... """
... return day2 - day1
...

5. Test. To test it, we fire up the Python shell and copy and paste the calls

into the shell, checking that we get back what we expect:

>>> days_difference(200, 224)
24
>>> days_difference(50, 50)
0
>>> days_difference(100, 99)
-1

report erratum • discuss

Designing New Functions: A Recipe • 51

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Here’s something really cool. Now that we have a function with a docstring,

we can call help on that function:

>>> help(days_difference)
Help on function days_difference in module __main__:

days_difference(day1:int, day2:int) -> int
Return the number of days between day1 and day2, which are both
in the range 1-365 (thus indicating the day of the year).

>>> days_difference(200, 224)
24
>>> days_difference(50, 50)
0
>>> days_difference(100, 99)
-1

What Day Will It Be in the Future?

It will help our birthday calculations if we write a function to calculate what

day of the week it will be given the current weekday and how many days

ahead we’re interested in. Remember that we’re using the numbers 1 through

7 to represent Sunday through Saturday.

Again, we’ll follow the function design recipe:

1. Examples. We want a short name for what it means to calculate what

weekday it will be in the future. We could choose something like

which_weekday or what_day; we’ll use get_weekday. There are lots of choices.

We’ll start with an example that asks what day it will be if today is Tuesday

(day 3 of the week) and we want to know what tomorrow will be (1 day

ahead):

>>> get_weekday(3, 1)
4

Whenever we have a function that should return a value in a particular

range, we should write example calls where we expect either end of that

range as a result.

What if it’s Friday (day 6)? If we ask what day it will be tomorrow, we

expect to get Saturday (day 7):

>>> get_weekday(6, 1)
7

What if it’s Saturday (day 7)? If we ask what day it will be tomorrow, we

expect to get Sunday (day 1):

Chapter 3. Designing and Using Functions • 52

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> get_weekday(7, 1)
1

We’ll also try asking about 0 days in the future as well as a week ahead;

both of these cases should give back the day of the week we started with:

>>> get_weekday(1, 0)
1
>>> get_weekday(4, 7)
4

Let’s also try 10 weeks and 2 days in the future so we have a case where

there are several intervening weeks:

>>> get_weekday(7, 72)
2

2. Header. In our example calls, the arguments are all integers, and the

return values are integers too, so that gives us our type contract.

The first argument is the current day of the week, so we’ll name it cur-
rent_weekday. The second argument is how many days from now to calculate.

We’ll pick the name days_ahead, although days_from_now would also be fine:

>>> def get_weekday(current_weekday: int, days_ahead: int) -> int:

3. Description. We need a complete description of what this function will do.

We’ll start with a sentence describing what the function does, and then

we’ll describe what the parameters mean:

... """Return which day of the week it will be days_ahead days

... from current_weekday.

...

... current_weekday is the current day of the week and is in

... the range 1-7, indicating whether today is Sunday (1),

... Monday (2), ..., Saturday (7).

...

... days_ahead is the number of days after today.

Notice that our first sentence uses both parameters and also describes

what the function will return.

4. Body. Looking at the examples, we see that we can solve the first example

with this: return current_weekday + days_ahead. That, however, won’t work for

all of the examples; we need to wrap around from day 7 (Saturday) back

to day 1 (Sunday). When you have this kind of wraparound, usually the

remainder operator, %, will help. Notice that evaluation of (7 + 1) % 7 pro-

duces 1, (7 + 2) % 7 produces 2, and so on.

report erratum • discuss

Designing New Functions: A Recipe • 53

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Let’s try taking the remainder of the sum: return current_weekday + days_ahead
% 7. Here is the whole function again, including the body:

>>> def get_weekday(current_weekday: int, days_ahead: int) -> int:
... """Return which day of the week it will be days_ahead days from
... current_weekday.
...
... current_weekday is the current day of the week and is in the
... range 1-7, indicating whether today is Sunday (1), Monday (2),
... ..., Saturday (7).
...
... days_ahead is the number of days after today.
...
... >>> get_weekday(3, 1)
... 4
... >>> get_weekday(6, 1)
... 7
... >>> get_weekday(7, 1)
... 1
... >>> get_weekday(1, 0)
... 1
... >>> get_weekday(4, 7)
... 4
... >>> get_weekday(7, 72)
... 2
... """
... return current_weekday + days_ahead % 7
...

5. Test. To test it, we fire up the Python shell and copy and paste the calls

into the shell, checking that we get back what we expect:

>>> get_weekday(3, 1)
4
>>> get_weekday(6, 1)
7
>>> get_weekday(7, 1)
8

Wait, that’s not right. We expected a 1 on that third example, not an 8,
because 8 isn’t a valid number for a day of the week. We should have

wrapped around to 1.

Taking another look at our function body, we see that because % has

higher precedence than +, we need parentheses:

Chapter 3. Designing and Using Functions • 54

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> def get_weekday(current_weekday: int, days_ahead: int) -> int:
... """Return which day of the week it will be days_ahead days
... from current_weekday.
...
... current_weekday is the current day of the week and is in
... the range 1-7, indicating whether today is Sunday (1),
... Monday (2), ..., Saturday (7).
...
... days_ahead is the number of days after today.
...
... >>> get_weekday(3, 1)
... 4
... >>> get_weekday(6, 1)
... 7
... >>> get_weekday(7, 1)
... 1
... >>> get_weekday(1, 0)
... 1
... >>> get_weekday(4, 7)
... 4
... >>> get_weekday(7, 72)
... 2
... """
... return (current_weekday + days_ahead) % 7
...

Testing again, we see that we’ve fixed that bug in our code, but now we’re

getting the wrong answer for the second test!

>>> get_weekday(3, 1)
4
>>> get_weekday(6, 1)
0
>>> get_weekday(7, 1)
1

The problem here is that when current_weekday + days_ahead evaluates to a

multiple of 7, then (current_weekday + days_ahead) % 7 will evaluate to 0, not 7.
All the other results work well; it’s just that pesky 7.

Because we want a number in the range 1 through 7 but we’re getting an

answer in the range 0 through 6 and all the answers are correct except

that we’re seeing a 0 instead of a 7, we can use this trick:

a. Subtract 1 from the expression: current_weekday + days_ahead - 1.

b. Take the remainder.

c. Add 1 to the entire result: (current_weekday + days_ahead - 1) % 7 + 1.

report erratum • discuss

Designing New Functions: A Recipe • 55

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Let’s test it again:

>>> get_weekday(3, 1)
4
>>> get_weekday(6, 1)
7
>>> get_weekday(7, 1)
1
>>> get_weekday(1, 0)
1
>>> get_weekday(4, 7)
4
>>> get_weekday(7, 72)
2

We’ve passed all the tests, so we can now move on.

What Day Is My Birthday On?

We now have two functions related to day-of-year calculations. One of them

calculates the difference between two days of the year. The other calculates the

weekday for a day in the future given the weekday today. We can use these two

functions to help figure out what day of the week a birthday falls on given what

day of the week it is today, what the current day of the year is, and what day of

the year the birthday falls on. Again, we’ll follow the function design recipe:

1. Examples. We want a name for what it means to calculate what weekday

a birthday will fall on. Once more, there are lots of choices; we’ll use

get_birthday_weekday.

If today is a Thursday (day 5 of the week), and today is the third day of the

year, what day will it be on the fourth day of the year? Hopefully Friday:

>>> get_birthday_weekday(5, 3, 4)
6

What if it’s the same day (Thursday, the 3rd day of the year), but the

birthday is the 116th day of the year? For now, we can verify externally

(looking at a calendar) that it turns out to be a Friday.

>>> get_birthday_weekday(5, 3, 116)
6

What if today is Friday, April 26, the 116th day of the year, but the

birthday we want is the 3rd day of the year? This is interesting because

the birthday is a couple months before the current day:

>>> get_birthday_weekday(6, 116, 3)
5

Chapter 3. Designing and Using Functions • 56

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

2. Header. In our example calls, the arguments are all integers, and the

return values are integers too, so that gives us our type contract. We’re

happy enough with the function name so again we’ll stick with it.

The first argument is the current day of the week, so we’ll use current_week-
day, as we did for the previous function. (It’s a good idea to be consistent

with naming when possible.) The second argument is what day of the year

it is today, and we’ll choose current_day. The third argument is the day of

the year the birthday is, and we’ll choose birthday_day:

>>> def get_birthday_weekday(current_weekday: int, current_day: int,
... birthday_day: int) -> int:

3. Description. We need a complete description of what this function will do.

We’ll start with a sentence describing what the function does, and then

we’ll describe what the parameters mean:

... """Return the day of the week it will be on birthday_day,

... given that the day of the week is current_weekday and the

... day of the year is current_day.

...

... current_weekday is the current day of the week and is in

... the range 1-7, indicating whether today is Sunday (1),

... Monday (2), ..., Saturday (7).

...

... current_day and birthday_day are both in the range 1-365.

Again, notice that our first sentence uses all parameters and also describes

what the function will return. If it gets more complicated, we’ll start to

write multiple sentences to describe what the function does, but we

managed to squeeze it in here.

4. Body. It’s time to write the body of the function. We have a puzzle:

a. Using days_difference, we can figure out how many days there are

between two days.

Using get_weekday, we can figure out what day of the week it will be

given the current day of the week and the number of days away.

We’ll start by figuring out how many days from now the birthday falls:

... days_diff = days_difference(current_day, birthday_day)

Now that we know that, we can use it to solve our problem: given the

current weekday and that number of days ahead, we can call function

get_weekday to get our answer:

... return get_weekday(current_weekday, days_diff)

report erratum • discuss

Designing New Functions: A Recipe • 57

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Let’s put it all together:

>>> def get_birthday_weekday(current_weekday: int, current_day: int,
... birthday_day: int) -> int:
... """Return the day of the week it will be on birthday_day,
... given that the day of the week is current_weekday and the
... day of the year is current_day.
...
... current_weekday is the current day of the week and is in
... the range 1-7, indicating whether today is Sunday (1),
... Monday (2), ..., Saturday (7).
...
... current_day and birthday_day are both in the range 1-365.
...
... >>> get_birthday_weekday(5, 3, 4)
... 6
... >>> get_birthday_weekday(5, 3, 116)
... 6
... >>> get_birthday_weekday(6, 116, 3)
... 5
... """
... days_diff = days_difference(current_day, birthday_day)
... return get_weekday(current_weekday, days_diff)
...

5. Test. To test it, we fire up the Python shell and copy and paste the calls

into the shell, checking that we get back what we expect:

>>> get_birthday_weekday(5, 3, 4)
6
>>> get_birthday_weekday(5, 3, 116)
6
>>> get_birthday_weekday(6, 116, 3)
5

And we’re done!

Writing and Running a Program

So far, we have used the shell to investigate Python. As you have seen, the

shell will show you the result of evaluating an expression:

>>> 3 + 5 / abs(-2)
5.5

In a program that is supposed to interact with a human, showing the result

of every expression is probably not desirable behavior. (Imagine if your web

browser showed you the result of every calculation it performed.)

Chapter 3. Designing and Using Functions • 58

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

How Does a Computer Run a Python Program?, on page 7, explained that in

order to save code for later use, you can put it in a file with a .py extension.

You can then tell Python to run the code in that file rather than type com-

mands in at the interactive prompt.

Here is a program that we wrote using IDLE and saved in a file called temper-
ature.py. This program consists of a function definition for convert_to_celsius (from

earlier in the chapter) and three calls on that function that convert three dif-

ferent Fahrenheit temperatures to their Celsius equivalents.

Notice that there is no >>> prompt. This never appears in a Python program;

it is used exclusively in the shell.

Now open IDLE, select File→New Window, and type this program in. (Or

download the code from the book website and open the file.)

To run the program in IDLE, select Run→Run Module. This will open the

Python shell and show the results of running the program. Here is our result.

(The line containing RESTART is letting us know that the shell has restarted,

wiping out any previous work done in the shell.)

Notice that no values are shown, unlike in Defining Our Own Functions, on

page 35, when we typed the equivalent code into the shell. In order to have

report erratum • discuss

Writing and Running a Program • 59

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

a program print the value of an expression, we use built-in function print. Here

is the same program but with calls on function print.

And here is what happens when we run this program:

Omitting a return Statement: None

If you don’t have a return statement in a function, nothing is produced:

>>> def f(x):
... x = 2 * x
...
>>> res = f(3)
>>> res
>>>

Wait, that can’t be right—if res doesn’t have a value, shouldn’t we get a

NameError? Let’s investigate:

>>> print(res)
None
>>> id(res)
1756120

Chapter 3. Designing and Using Functions • 60

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Variable res has a value: it’s None! And None has a memory address. If you don’t

have a return statement in your function, your function will return None. You

can return None yourself if you like:

>>> def f(x):
... x = 2 * x
... return None
...
>>> print(f(3))
None

The value None is used to signal the absence of a value. We’ll see some uses

for it later in the book.

Dealing with Situations That Your Code Doesn’t Handle

You’ll often write a function that works only in some situations. For example,

you might write a function that takes as a parameter a number of people who

want to eat a pie and returns the percentage of the pie that each person gets

to eat. If there are five people, each person gets 20% of the pie; if there are

two people, each person gets 50%; if there is one person, that person gets

100%; but if there are zero people, what should the answer be?

Here is an implementation of this function:

def pie_percent(n: int) -> int:
"""Assuming there are n people who want to eat a pie, return the
percentage of the pie that each person gets to eat.

>>> pie_percent(5)
20
>>> pie_percent(2)
50
>>> pie_percent(1)
100
"""

return int(100 / n)

Reading the code, if someone calls pie_percent(0), then you probably see that

this will result in a ZeroDivisionError. There isn’t anything that anyone can do

about this situation; there isn’t a sensible answer.

As a programmer, you warn other people about situations that your function

isn’t set up to handle by describing your assumptions in a precondition. Here

is the same function with a precondition:

report erratum • discuss

Dealing with Situations That Your Code Doesn’t Handle • 61

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

def pie_percent(n: int) -> int:
"""Precondition: n > 0

Assuming there are n people who want to eat a pie, return the percentage
of the pie that each person gets to eat.

>>> pie_percent(5)
20
>>> pie_percent(2)
50
>>> pie_percent(1)
100
"""

return int(100 / n)

Whenever you write a function and you’ve assumed something about the

parameter values, write a precondition that lets other programmers know

your assumptions. If they ignore your warning and call it with invalid values,

the fault does not lie with you!

What Did You Call That?

• A function definition introduces a new variable that refers to a function

object. The return statement describes the value that will be produced as

a result of the function when this function is done being executed.

• A parameter is a variable that appears between the parentheses of a

function header.

• A local variable is a variable that is used in a function definition to store

an intermediate result in order to make code easier to write and read.

• A function call tells Python to execute a function.

• An argument is an expression that appears between the parentheses of

a function call. The value that is produced when Python evaluates the

expression is assigned to the corresponding parameter.

• If you made assumptions about the values of parameters or you know

that your function won’t work with particular values, write a precondition

to warn other programmers.

Chapter 3. Designing and Using Functions • 62

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. Two of Python’s built-in functions are min and max. In the Python shell,

execute the following function calls:

a. min(2, 3, 4)

b. max(2, -3, 4, 7, -5)

c. max(2, -3, min(4, 7), -5)

2. For the following function calls, in what order are the subexpressions

evaluated?

a. min(max(3, 4), abs(-5))

b. abs(min(4, 6, max(2, 8)))

c. round(max(5.572, 3.258), abs(-2))

3. Following the function design recipe, define a function that has one

parameter, a number, and returns that number tripled.

4. Following the function design recipe, define a function that has two

parameters, both of which are numbers, and returns the absolute value

of the difference of the two. Hint: Call built-in function abs.

5. Following the function design recipe, define a function that has one

parameter, a distance in kilometers, and returns the distance in miles.

(There are 1.6 kilometers per mile.)

6. Following the function design recipe, define a function that has three

parameters, grades between 0 and 100 inclusive, and returns the average

of those grades.

7. Following the function design recipe, define a function that has four

parameters, all of them grades between 0 and 100 inclusive, and returns

the average of the best 3 of those grades. Hint: Call the function that you

defined in the previous exercise.

8. Complete the examples in the docstring and then write the body of the

following function:

report erratum • discuss

Exercises • 63

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

def weeks_elapsed(day1, day2):
""" (int, int) -> int

day1 and day2 are days in the same year. Return the number of full weeks
that have elapsed between the two days.

>>> weeks_elapsed(3, 20)
2
>>> weeks_elapsed(20, 3)
2
>>> weeks_elapsed(8, 5)

>>> weeks_elapsed(40, 61)

"""

9. Consider this code:

def square(num):
""" (number) -> number

Return the square of num.

>>> square(3)
9
"""

In the following table, fill in the Example column by writing square, num,

square(3), and 3 next to the appropriate description.

ExampleDescription

Parameter

Argument

Function name

Function call

10. Write the body of the square function from the previous exercise.

Chapter 3. Designing and Using Functions • 64

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 4

Working with Text

From email clients and web browsers to calendars and games, text plays a

central role in computer programs. This chapter introduces a non-numeric

data type that represents text, such as the words in this sentence or the

sequence of bases in a strand of DNA. Along the way, we will see how to make

programs a little more interactive by printing messages to our programs’ users

and getting input from them.

Creating Strings of Characters

Computers may have been invented to do arithmetic, but these days, most

of them spend a lot of their time processing text. Many programs create text,

store it, search it, and move it from one place to another.

In Python, text is represented as a string, which is a sequence of characters

(letters, digits, and symbols). The type whose values are sequences of charac-

ters is str. The characters consist of those from the Latin alphabet found on

most North American keyboards, as well as Chinese morphograms, chemical

symbols, musical symbols, and much more.

In Python, we indicate that a value is a string by putting either single or

double quotes around it. As we will see in Using Special Characters in Strings,

on page 68, single and double quotes are equivalent except for strings that

contain quotes. You can use whichever you prefer. (For docstrings, the Python

style guidelines say that double quotes are preferred.) Here are two examples:

>>> 'Aristotle'
'Aristotle'
>>> "Isaac Newton"
'Isaac Newton'

The opening and closing quotes must match:

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> 'Charles Darwin"
File "<stdin>", line 1
'Charles Darwin"

^
SyntaxError: EOL while scanning string literal

EOL stands for “end of line.” The previous error indicates that the end of the

line was reached before the end of the string (which should be marked with

a closing single quote) was found.

Strings can contain any number of characters, limited only by computer memory.

The shortest string is the empty string, containing no characters at all:

>>> ''
''
>>> ""
''

Operations on Strings

Python has a built-in function, len, that returns the number of characters

between the opening and closing quotes:

>>> len('Albert Einstein')
15
>>> len('123!')
4
>>> len(' ')
1
>>> len('')
0

We can add two strings using the + operator, which produces a new string

containing the same characters as in the two operands:

>>> 'Albert' + ' Einstein'
'Albert Einstein'

When + has two string operands, it is referred to as the concatenation operator.

Operator + is probably the most overloaded operator in Python. So far, we’ve

applied it to integers, floating-point numbers, and strings, and we’ll apply it

to several more types in later chapters.

As the following example shows, adding an empty string to another string

produces a new string that is just like the nonempty operand:

>>> "Alan Turing" + ''
'Alan Turing'
>>> "" + 'Grace Hopper'
'Grace Hopper'

Chapter 4. Working with Text • 66

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Here is an interesting question: Can operator + be applied to a string and a

numeric value? If so, would addition or concatenation occur? We’ll give it a try:

>>> 'NH' + 3
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly

This is the second time that we have encountered a type error. The first time,

in Using Local Variables for Temporary Storage, on page 39, the problem was

that we didn’t pass the right number of parameters to a function. Here, Python

took exception to our attempts to combine values of different data types

because it didn’t know which version of + we want: the one that adds numbers

or the one that concatenates strings. Because the first operand was a string,

Python expected the second operand to also be a string but instead it was an

integer. Now consider this example:

>>> 9 + ' planets'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Here, because Python saw a 9 first, it expected the second operand to also be

numeric. The order of the operands affects the error message.

The concatenation operator must be applied to two strings. If you want to

join a string with a number, you could apply function str to the number to

get its string representation, and then apply the concatenation:

>>> 'Four score and ' + str(7) + ' years ago'
'Four score and 7 years ago'

Function int can be applied to a string whose contents look like an integer,

and float can be applied to a string whose contents are numeric:

>>> int('0')
0
>>> int("11")
11
>>> int('-324')
-324
>>> float('-324')
-324.0
>>> float("56.34")
56.34

It isn’t always possible to get an integer or a floating-point representation of

a string, and when an attempt to do so fails, an error occurs:

report erratum • discuss

Creating Strings of Characters • 67

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> int('a')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'a'
>>> float('b')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: could not convert string to float: 'b'

In addition to +, len, int, and float, operator * can be applied to strings. A string can

be repeated using operator * and an integer, like this:

>>> 'AT' * 5
'ATATATATAT'
>>> 4 * '-'
'----'

If the integer is less than or equal to zero, the operator yields the empty string:

>>> 'GC' * 0
''
>>> 'TATATATA' * -3
''

Strings are values, so you can assign a string to a variable. Also, operations on

strings can be applied to those variables:

>>> sequence = 'ATTGTCCCCC'
>>> len(sequence)
10
>>> new_sequence = sequence + 'GGCCTCCTGC'
>>> new_sequence
'ATTGTCCCCCGGCCTCCTGC'
>>> new_sequence * 2
'ATTGTCCCCCGGCCTCCTGCATTGTCCCCCGGCCTCCTGC'

Using Special Characters in Strings

Suppose you want to put a single quote inside a string. If you write it directly, an

error occurs:

>>> 'that's not going to work'
File "<stdin>", line 1
'that's not going to work'

^
SyntaxError: invalid syntax

When Python encounters the second quote—the one that is intended to be

part of the string—it thinks the string is ended. It doesn’t know what to do

with the text that comes after the second quote.

Chapter 4. Working with Text • 68

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

One simple way to fix this is to use double quotes around the string; we can

also put single quotes around a string containing a double quote:

>>> "that's better"
"that's better"
>>> 'She said, "That is better."'
'She said, "That is better."'

If you need to put a double quote in a string, you can use single quotes around

the string. But what if you want to put both kinds of quote in one string? You

could do this:

>>> 'She said, "That' + "'" + 's hard to read."'
'She said, "That\'s hard to read."'

The result is a valid Python string. The backslash is called an escape character,

and the combination of the backslash and the single quote is called an escape

sequence. The name comes from the fact that we’re “escaping” from Python’s

usual syntax rules for a moment. When Python sees a backslash inside a

string, it means that the next character represents something that Python

normally uses for other purposes, such as marking the end of a string.

The escape sequence \' is indicated using two symbols, but those two symbols

represent a single character:

>>> len('\'')
1
>>> len('it\'s')
4

Python recognizes several escape sequences. Here are some common ones:

DescriptionEscape Sequence

Single quote\'
Double quote\"
Backslash\\
Tab\t
Newline\n
Carriage return\r

Table 4—Escape Sequences

In order to see how they are used, we will introduce multiline strings and also

revisit built-in function print.

report erratum • discuss

Using Special Characters in Strings • 69

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Creating a Multiline String

If you create a string using single or double quotes, the whole string must fit

onto a single line.

Here’s what happens when you try to stretch a string across multiple lines:

>>> 'one
File "<stdin>", line 1
'one

^
SyntaxError: EOL while scanning string literal

As we saw in Creating Strings of Characters, on page 65, EOL stands for “end

of line”. So in this error report, Python is saying that it reached the end of

the line before it found the end of the string.

To span multiple lines, put three single quotes or three double quotes around

the string instead of one. The string can then span as many lines as you want:

>>> '''one
... two
... three'''
'one\ntwo\nthree'

Notice that the string Python creates contains a \n sequence everywhere our

input started a new line. Each newline is a character in the string.

Normalizing Line Endings

Each of the three major operating systems uses a different set of characters to indicate

the end of a line. This set of characters is called a newline. On Linux and macOS, a

newline is one \n character; on version 9 and earlier of Mac OS, it is one \r; and on

Windows, the ends of lines are marked with both characters as \r\n.

Python always uses a single \n to indicate a newline, even on operating systems like

Windows that do things other ways. This is called normalizing the string; Python does

this so that you can write exactly the same program no matter what kind of machine

you’re running on.

Printing Information

In Writing and Running a Program, on page 58, built-in function print was used

to print values to the screen. We will use print to print messages to the users

of our program. Those messages may include the values that expressions

produce and the values that the variables refer to. Here are two examples of

printing:

Chapter 4. Working with Text • 70

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> print(1 + 1)
2
>>> print("The Latin 'Oryctolagus cuniculus' means 'domestic rabbit'.")
The Latin 'Oryctolagus cuniculus' means 'domestic rabbit'.

Function print doesn’t allow any styling of the output: no colors, no italics, no

boldface. All output is plain text.

The first function call does what you would expect from the numeric examples

we have seen previously, but the second does something slightly different

from previous string examples: it strips off the quotes around the string and

shows us the string in a human-readable form, rather than its character

representation. This example makes the difference between the two even

clearer:

>>> print('In 1859, Charles Darwin revolutionized biology')
In 1859, Charles Darwin revolutionized biology
>>> print('and our understanding of ourselves')
and our understanding of ourselves
>>> print('by publishing "On the Origin of Species".')
by publishing "On the Origin of Species".

And the following example shows that when Python prints a string, any escape

sequences are converted to a form that humans expect:

>>> print('one\ttwo\nthree\tfour')
one two
three four

The previous example shows how the tab character \t can be used to lay values

out in columns.

In Creating a Multiline String, on page 70, we saw that \n indicates a new line

in multiline strings. When a multiline string is printed, those \n sequences

are displayed as new lines:

>>> numbers = '''one
... two
... three'''
>>> numbers
'one\ntwo\nthree'
>>> print(numbers)
one
two
three

Function print takes a comma-separated list of values and prints the values

with a single space between them and a newline after the last value:

report erratum • discuss

Printing Information • 71

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> print(1, 2, 3)
1 2 3
>>>

When called with no arguments (which is a comma-separated list of length

zero), print ends the current line, advancing to the next one:

>>> print()

>>>

Function print can print values of any type, and it can even print values of

different types in the same function call:

>>> print(1, 'two', 'three', 4.0)
1 two three 4.0

As with other function calls, it is also possible to call print with an expression

as an argument. It will print the value of that expression:

>>> radius = 5
>>> print("The diameter of the circle is", radius * 2, "cm.")
The diameter of the circle is 10 cm.

Function print has a few extra helpful features; here is the help documentation

for it:

>>> help(print)
Help on built-in function print in module builtins:

print(...)
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:
file: a file-like object (stream); defaults to the current sys.stdout.
sep: string inserted between values, default a space.
end: string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.

The parameters sep, end, file, and flush have assignment statements in the

function header! These are called default parameter values: by default, if we

call function print with a comma-separated list of values, the separator is a

space; similarly, a newline character appears at the end of every printed

string. (We won’t discuss file and flush; they are beyond the scope of this text.)

We can supply different values by using keyword arguments. (In the Python

documentation, these are often referred to explicitly as kwargs.) That’s a fancy

term for assigning a value to a parameter name in the function call. Here, we

separate each value with a comma and a space instead of just a space by

including sep=', ' as an argument:

Chapter 4. Working with Text • 72

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> print('a', 'b', 'c') # The separator is a space by default
a b c
>>> print('a', 'b', 'c', sep=', ')
a, b, c

Often you’ll want to print information but not start a new line. To do this,

use the keyword argument end='' to tell Python to end with an empty string

instead of a new line:

>>> print('a', 'b', 'c', sep=', ', end='')
a, b, c>>>

Notice how the last prompt appeared right after the 'c'. Typically, end='' is used

only in programs, not in the shell. Here is a program that converts three

temperatures from Fahrenheit to Celsius and prints using keyword arguments:

def convert_to_celsius(fahrenheit: float) -> float:
""" Return the number of Celsius degrees equivalent to fahrenheit degrees.

>>> convert_to_celsius(75)
23.88888888888889
"""

return (fahrenheit - 32.0) * 5.0 / 9.0

print('80, 78.8, and 10.4 degrees Fahrenheit are equal to ', end='')
print(convert_to_celsius(80), end=', \n')
print(convert_to_celsius(78.8), end=', and ')
print(convert_to_celsius(10.4), end=' Celsius.\n')

Here’s the output of running this program:

80, 78.8, and 10.4 degrees Fahrenheit are equal to 26.666666666666668,
26.0, and -12.0 Celsius.

Getting Information from the Keyboard

In Chapter 3, Designing and Using Functions, on page 31, we explored some

built-in functions. Another built-in function is input, which reads a single line

of text from the keyboard. It returns whatever the user enters as a string,

even if it looks like a number:

>>> species = input()
Homo sapiens
>>> species
'Homo sapiens'
>>> population = input()
6973738433
>>> population
'6973738433'
>>> type(population)
<class 'str'>

report erratum • discuss

Getting Information from the Keyboard • 73

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The second and sixth lines of that example, Homo sapiens and 6973738433, were

typed by us in response to the calls on function input.

If you are expecting the user to enter a number, you must use int or float to
get an integer or a floating-point representation of the string:

>>> population = input()
6973738433
>>> population
'6973738433'
>>> population = int(population)
>>> population
6973738433
>>> population = population + 1
>>> population
6973738434

We don’t actually need to stash the value that the call to input produces before

converting it. This time function int is called on the result of the call to input
and is equivalent to the previous code:

>>> population = int(input())
6973738433
>>> population = population + 1
6973738434

Finally, input can be given a string argument, which is used to prompt the

user for input (notice the space at the end of our prompt):

>>> species = input("Please enter a species: ")
Please enter a species: Python curtus
>>> print(species)
Python curtus

Quotes About Strings

In this chapter, you learned the following:

• Python uses type str to represent text as sequences of characters.

• Strings are created by placing pairs of single quotes ' or double quotes "
around the text.

• '''Should you want a string
that crosses multiple lines,
Use matched triple quotes.'''

• Special characters like newline (\n) and tab (\t) are represented using escape

sequences that begin with a backslash. For example, 'this string\nspans\nthree
lines'.

Chapter 4. Working with Text • 74

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

• Values can be printed using built-in function print, and input can be pro-

vided by the user using built-in function input.

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. What value does each of the following expressions evaluate to? Verify your

answers by typing the expressions into the Python shell.

a. 'Computer' + ' Science'

b. 'Darwin\'s'

c. 'H2O' * 3

d. 'CO2' * 0

2. Express each of the following phrases as Python strings using the

appropriate type of quotation marks (single, double, or triple) and, if

necessary, escape sequences. There is more than one correct answer for

each of these phrases.

a. They’ll hibernate during the winter.

b. “Absolutely not,” he said.

c. “He said, ‘Absolutely not,’” recalled Mel.

d. hydrogen sulfide

e. left\right

3. Rewrite the following string using single or double quotes instead of triple

quotes:

'''A
B
C'''

4. Use built-in function len to find the length of the empty string.

5. Given variables x and y, which refer to values 3 and 12.5, respectively, use

function print to print the following messages. When numbers appear in

the messages, variables x and y should be used.

a. The rabbit is 3.

b. The rabbit is 3 years old.

report erratum • discuss

Exercises • 75

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

c. 12.5 is average.

d. 12.5 * 3

e. 12.5 * 3 is 37.5.

6. Consider this code:

>>> first = 'John'
>>> last = 'Doe'
>>> print(last + ', ' + first)

What is printed by this code?

7. Use input to prompt the user for a number, store the number entered as

a float in a variable named num, and then print the contents of num.

8. Complete the examples in the docstring and then write the body of the

following function:

def repeat(s: str, n: int) -> str:
""" Return s repeated n times; if n is negative, return the empty string.

>>> repeat('yes', 4)
'yesyesyesyes'
>>> repeat('no', 0)

>>> repeat('no', -2)

>>> repeat('yesnomaybe', 3)

"""

9. Complete the examples in the docstring and then write the body of the

following function:

def total_length(s1: str, s2: str) -> int:
""" Return the sum of the lengths of s1 and s2.

>>> total_length('yes', 'no')
5
>>> total_length('yes', '')

>>> total_length('YES!!!!', 'Noooooo')

"""

Chapter 4. Working with Text • 76

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 5

Making Choices

This chapter introduces another fundamental concept of programming:

making choices. We do this whenever we want our program to behave differ-

ently depending on the data it’s working with. For example, we might want

to do different things depending on whether a solution is acidic or basic, or

depending on whether a user types yes or no in response to a call on built-in

function input.

We’ll introduce statements for making choices in this chapter called control

flow statements (because they control the way the computer executes pro-

grams). These statements involve a Python type that is used to represent

truth and falsehood. Unlike the integers, floating-point numbers, and strings

we have already seen, this type has only two values and three operators.

A Boolean Type

In Python, there is a type called bool (without an “e”). Unlike int and float, which

have billions of possible values, bool has only two: True and False. True and False
are values, just as much as the numbers 0 and -43.7.

George Boole

In the 1840s, the mathematician George Boole showed that the classical rules of

logic could be expressed in purely mathematical form using only the two values true

and false. A century later, Claude Shannon (the inventor of information theory) realized

that Boole’s work could be used to optimize the design of electromechanical telephone

switches. His work led directly to the use of Boolean logic to design computer circuits.

In honor of Boole’s work, most modern programming languages use a type named

after him to keep track of what’s true and what isn’t.

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Boolean Operators

There are only three basic Boolean operators: and, or, and not. not has the

highest precedence, followed by and, followed by or.

not is a unary operator: it is applied to just one value, like the negation in the

expression -(3 + 2). An expression involving not produces True if the original

value is False, and it produces False if the original value is True:

>>> not True
False
>>> not False
True

In the previous example, instead of not True, we could simply use False, and

instead of not False, we could use True. Rather than apply not directly to a Boolean

value, we would typically apply not to a Boolean variable or a more complex

Boolean expression. The same goes for the following examples of the Boolean

operators and and or, so although we apply them to Boolean constants in the

following examples, we’ll give an example of how they are typically used at

the end of this section.

and is a binary operator. It produces True if both operands are True, and it pro-

duces False otherwise:

>>> True and True
True
>>> False and False
False
>>> True and False
False
>>> False and True
False

or is also a binary operator. It produces True if either operand is True, and it

produces False only if both are False:

>>> True or True
True
>>> False or False
False
>>> True or False
True
>>> False or True
True

This definition is called inclusive or, since it allows both possibilities as well

as either. In English, the word or is also sometimes an exclusive or. For

example, if someone says, “You can have pizza or tandoori chicken,” they

Chapter 5. Making Choices • 78

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

probably don’t mean that you can have both. Unlike English (but like most

programming languages), Python always interprets or as inclusive.

Building an Exclusive or Expression

If you want an exclusive or, you need to build a Boolean expression for it. We’ll walk

through the development of this expression.

Let’s say you have two Boolean variables, b1 and b2, and you want an expression that

evaluates to True if and only if exactly one of them is True. Evaluation of b1 and not b2
will produce True if b1 is True and b2 is False. Similarly, evaluation of b2 and not b1 will

produce True if b2 is True and b1 is False.

It isn’t possible for both of these expressions to produce True. Also, if b1 and b2 are

both True or both False, both expressions will evaluate to False. We can, therefore,

combine the two expressions with an or:

>>> b1 = False
>>> b2 = False
>>> (b1 and not b2) or (b2 and not b1)
False
>>> b1 = False
>>> b2 = True
>>> (b1 and not b2) or (b2 and not b1)
True
>>> b1 = True
>>> b2 = False
>>> (b1 and not b2) or (b2 and not b1)
True
>>> b1 = True
>>> b2 = True
>>> (b1 and not b2) or (b2 and not b1)
False

In a few pages, we’ll see a much simpler version.

We mentioned earlier that Boolean operators are usually applied to Boolean

expressions rather than Boolean constants. If we want to express “It is not

cold and windy” using two variables, cold and windy, that refer to Boolean values,

we first have to decide what the ambiguous English expression means: is it

not cold but at the same time windy, or is it both not cold and not windy? A

truth table for each alternative is shown in Table 5, Boolean Operators, on

page 80, and the following code snippet shows what they look like translated

into Python:

>>> cold = True
>>> windy = False
>>> (not cold) and windy
False
>>> not (cold and windy)
True

report erratum • discuss

A Boolean Type • 79

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

not (cold and windy)(not cold) and
windy

cold or windycold and windywindycold

FalseFalseTrueTrueTrueTrue
TrueFalseTrueFalseFalseTrue
TrueTrueTrueFalseTrueFalse
TrueFalseFalseFalseFalseFalse

Table 5—Boolean Operators

Boolean Operators in Other Languages

If you already know another language such as C or Java, you might be used to &&
for and, || for or, and ! for not. These won’t work in Python, but the idea is the same.

Relational Operators

We said earlier that True and False are values. Typically those values are not

written down directly in expressions but rather created in expressions. The

most common way to do that is by doing a comparison using a relational

operator. For example, 3 < 5 is a comparison using the relational operator <
that produces the value True, while 13 > 77 uses > and produces the value False.

As shown in Table 6, Python has all the operators you’re used to using. Some

of them are represented using two characters instead of one, like <= instead

of ≤.

OperationSymbol

Greater than>
Less than<
Greater than or equal to>=
Less than or equal to<=
Equal to==
Not equal to!=

Table 6—Relational and Equality Operators

The most important representation rule is that Python uses == for equality

instead of just =, because = is used for assignment. Avoid typing x = 3 when

you mean to check whether variable x is equal to three: x == 3.

All relational operators are binary operators: they compare two values and

produce True or False as appropriate. The greater-than (>) and less-than (<)

operators work as follows:

Chapter 5. Making Choices • 80

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> 45 > 34
True
>>> 45 > 79
False
>>> 45 < 79
True
>>> 45 < 34
False

We can compare integers to floating-point numbers with any of the relational

operators. Integers are automatically converted to floating point when we do

this, just as they are when we add 14 to 23.3:

>>> 23.1 >= 23
True
>>> 23.1 >= 23.1
True
>>> 23.1 <= 23.1
True
>>> 23.1 <= 23
False

The same holds for “equal to” and “not equal to”:

>>> 67.3 == 87
False
>>> 67.3 == 67
False
>>> 67.0 == 67
True
>>> 67.0 != 67
False
>>> 67.0 != 23
True

Of course, it doesn’t make much sense to compare two numbers that you

know in advance, since you would also know the result of the comparison.

Relational operators therefore almost always involve variables, like this:

>>> def is_positive(x: float) -> bool:
... """Return True iff x is positive.
...
... >>> is_positive(3)
... True
... >>> is_positive(-4.6)
... False
... """
... return x > 0
...
>>> is_positive(3)
True

report erratum • discuss

A Boolean Type • 81

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> is_positive(-4.6)
False
>>> is_positive(0)
False

In this docstring, we use the acronym “iff,” which stands for “if and only if.”

An equivalent phrase is “exactly when.” The type contract states that the

function will return a bool. The docstring describes the conditions under which

True will be returned. It is implied that when those conditions aren’t met the

function will return False.

We can now write our exclusive or expression from Building an Exclusive or

Expression, on page 79, much more simply:

b1 != b2

Exclusive or means that exactly one of b1 and b2 has to be True. If b1 is True, b2
can’t be, and vice versa.

Combining Comparisons

We have now seen three types of operators: arithmetic (+, -, and so on), Boolean

(and, or, and not), and relational (<, ==, and so on).

Here are the rules for combining them:

• Arithmetic operators have higher precedence than relational operators.

For example, + and / are evaluated before < or >.

• Relational operators have higher precedence than Boolean operators. For

example, comparisons are evaluated before and, or, and not.

• All relational operators have the same precedence.

These rules mean that the expression 1 + 3 > 7 is evaluated as (1 + 3) > 7, not

as 1 + (3 > 7). These rules also mean that you can often skip the parentheses

in complicated expressions:

>>> x = 2
>>> y = 5
>>> z = 7
>>> x < y and y < z
True

It’s usually a good idea to put the parentheses in, though, since it helps the

eye find the subexpressions and clearly communicates the order to anyone

reading your code:

Chapter 5. Making Choices • 82

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> x = 5
>>> y = 10
>>> z = 20
>>> (x < y) and (y < z)
True

It’s very common in mathematics to check whether a value lies in a certain

range—in other words, that it is between two other values. You can do this

in Python by combining the comparisons with and:

>>> x = 3
>>> (1 < x) and (x <= 5)
True
>>> x = 7
>>> (1 < x) and (x <= 5)
False

This comes up so often, however, that Python lets you chain the comparisons:

>>> x = 3
>>> 1 < x <= 5
True

Most combinations work as you would expect, but there are cases that may

startle you:

>>> 3 < 5 != True
True
>>> 3 < 5 != False
True

It seems impossible for both of these expressions to be True. However, the first

one is equivalent to this:

(3 < 5) and (5 != True)

while the second is equivalent to this:

(3 < 5) and (5 != False)

Since 5 is neither True nor False, the second half of each expression is True, so

the expression as a whole is True as well.

This kind of expression is an example of something that’s a bad idea even though

it’s legal. We strongly recommend that you only chain comparisons in ways that

would seem natural to a mathematician—in other words, that you use < and

<= together, or > and >= together, and nothing else. If you feel the impulse to

do something else, resist. Use simple comparisons and combine them with and
in order to keep your code readable. It’s also a good idea to use parentheses

whenever you think the expression you are writing may not be entirely clear.

report erratum • discuss

A Boolean Type • 83

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Using Numbers and Strings with Boolean Operators

We have already seen that Python will convert an int to a float when the integer is used

in an expression involving a floating-point number. Along the same lines, numbers

and strings can be used with Boolean operators. Python treats 0 and 0.0 as False and

treats all other numbers as True:

>>> not 0
True
>>> not 1
False
>>> not 34.2
False
>>> not -87
False

Similarly, the empty string is treated as False and all other strings are treated as True:

>>> not ''
True
>>> not 'bad'
False

None is also treated as False. In general, you should only use Boolean operators on

Boolean values.

Short-Circuit Evaluation

When Python evaluates an expression containing and or or, it does so from left

to right. As soon as it knows enough to stop evaluating, it stops, even if some

operands haven’t been looked at yet. This is called short-circuit evaluation.

In an or expression, if the first operand is True, we know that the expression

is True. Python knows this as well, so it doesn’t even evaluate the second

operand. Similarly, in an and expression, if the first operand is False, we know

that the expression is False. Python knows this as well, and the second operand

isn’t evaluated.

To demonstrate this, we use an expression that results in an error:

>>> 1 / 0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

We now use that expression as the second operand to or:

>>> (2 < 3) or (1 / 0)
True

Chapter 5. Making Choices • 84

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Since the first operand produces True, the second operand isn’t evaluated, so

the computer never actually tries to divide anything by zero.

Of course, if the first operand to an or is False, the second operand must be

evaluated. The second operand also needs to be evaluated when the first

operand to an and is True.

Comparing Strings

It’s possible to compare strings just as you would compare numbers. The

characters in strings are represented by integers: a capital A, for example, is

represented by 65, whereas a space is 32, and a lowercase z is 122. This

encoding is called ASCII,1 which stands for “American Standard Code for

Information Interchange.” One of its quirks is that all the uppercase letters

come before all the lowercase letters, so a capital Z is less than a small a.

One of the most common reasons to compare two strings is to decide which

one comes first alphabetically. This is often referred to as dictionary ordering

or lexicographic ordering. Python decides which string is greater than which

by comparing corresponding characters from left to right. If the character

from one string is greater than the character from the other, the first string

is greater than the second. If all the characters are the same, the two strings

are equal; if one string runs out of characters while the comparison is being

done (in other words, is shorter than the other), then it is less. The following

code fragment shows a few comparisons in action:

>>> 'A' < 'a'
True
>>> 'A' > 'z'
False
>>> 'abc' < 'abd'
True
>>> 'abc' < 'abcd'
True

In addition to operators that compare strings lexicographically, Python pro-

vides an operator that checks whether one string appears inside another one:

>>> 'Jan' in '01 Jan 1838'
True
>>> 'Feb' in '01 Jan 1838'
False

Using this idea, we can prompt the user for a date in this format and report

whether that date is in January:

1. See https://en.wikipedia.org/wiki/ASCII.

report erratum • discuss

A Boolean Type • 85

https://en.wikipedia.org/wiki/ASCII
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> date = input('Enter a date in the format DD MTH YYYY: ')
Enter a date in the format DD MTH YYYY: 24 Feb 2013
>>> 'Jan' in date
False
>>> date = input('Enter a date in the format DD MTH YYYY: ')
Enter a date in the format DD MTH YYYY: 03 Jan 2002
>>> 'Jan' in date
True

The in operator produces True exactly when the first string appears in the

second string. This is case sensitive:

>>> 'a' in 'abc'
True
>>> 'A' in 'abc'
False

The empty string is always a substring of every string:

>>> '' in 'abc'
True
>>> '' in ''
True

The in operator also applies to other types; you’ll see examples of this in

Chapter 8, Storing Collections of Data Using Lists, on page 129, and in Chapter

11, Storing Data Using Other Collection Types, on page 203.

Choosing Which Statements to Execute

An if statement lets you change how your program behaves based on a condi-

tion. The general form of an if statement is as follows:

if «condition»:
«block»

The condition is an expression, such as color != “neon green” or x < y. (Note that

this doesn’t have to be a Boolean expression. As we discussed in Using Num-

bers and Strings with Boolean Operators, on page 84, non-Boolean values

are treated as True or False when required.)

As with function bodies, the block of statements inside an if must be indented.

As a reminder, the standard indentation for Python is four spaces.

If the condition is true, the statements in the block are executed; otherwise,

they are not. As with functions, the block of statements must be indented to

show that it belongs to the if statement. If you don’t indent properly, Python

might raise an error, or worse, might happily execute the code that you wrote

Chapter 5. Making Choices • 86

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

but do something you didn’t intend because some statements were not

indented properly. We’ll briefly explore both problems in this chapter.

Here is a table of solution categories based on pH level:

Solution CategorypH Level

Strong acid0–4

Weak acid5–6

Neutral7

Weak base8–9

Strong base10–14

Table 7—Solution Categories

We can use an if statement to print a message only when the pH level given

by the program’s user is acidic:

>>> ph = float(input('Enter the pH level: '))
Enter the pH level: 6.0
>>> if ph < 7.0:
... print(ph, "is acidic.")
...
6.0 is acidic.

Recall from Getting Information from the Keyboard, on page 73, that we have

to convert user input from a string to a floating-point number before doing

the comparison. Also, here we are providing a prompt for the user by passing

a string into function input; Python prints this string to let the user know what

information to type.

If the condition is false, the statements in the block aren’t executed:

>>> ph = float(input('Enter the pH level: '))
Enter the pH level: 8.0
>>> if ph < 7.0:
... print(ph, "is acidic.")
...
>>>

If we don’t indent the block, Python lets us know:

>>> ph = float(input('Enter the pH level: '))
Enter the pH level: 6
>>> if ph < 7.0:
... print(ph, "is acidic.")

File "<stdin>", line 2
print(ph, "is acidic.")

^
IndentationError: expected an indented block

report erratum • discuss

Choosing Which Statements to Execute • 87

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Since we’re using a block, we can have multiple statements that are executed

only if the condition is true:

>>> ph = float(input('Enter the pH level: '))
Enter the pH level: 6.0
>>> if ph < 7.0:
... print(ph, "is acidic.")
... print("You should be careful with that!")
...
6.0 is acidic.
You should be careful with that!

When we indent the first line of the block, the Python interpreter changes its

prompt to ... until the end of the block, which is signaled by a blank line:

>>> ph = float(input('Enter the pH level: '))
Enter the pH level: 8.0
>>> if ph < 7.0:
... print(ph, "is acidic.")
...
>>> print("You should be careful with that!")
You should be careful with that!

If we don’t indent the code that’s in the block, the interpreter complains:

>>> ph = float(input('Enter the pH level: '))
Enter the pH level: 8.0
>>> if ph < 7.0:
... print(ph, "is acidic.")
... print("You should be careful with that!")

File "<stdin>", line 3
print("You should be careful with that!")

^
SyntaxError: invalid syntax

If the program is in a file, then no blank line is needed. As soon as the

indentation ends, Python assumes that the block has ended as well. This is

therefore legal:

ph = 8.0
if ph < 7.0:

print(ph, "is acidic.")
print("You should be careful with that!")

In practice, this slight inconsistency is never a problem, and most people

won’t even notice it.

Of course, sometimes we encounter situations where a single decision isn’t

sufficient. If multiple criteria have to be examined, we have a couple of ways

to handle it. One way is to use multiple if statements. For example, we might

Chapter 5. Making Choices • 88

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

print different messages depending on whether a pH level is acidic or basic

(if it’s exactly 7, then it’s neutral and our code won’t print anything):

>>> ph = float(input('Enter the pH level: '))
Enter the pH level: 8.5
>>> if ph < 7.0:
... print(ph, "is acidic.")
...
>>> if ph > 7.0:
... print(ph, "is basic.")
...
8.5 is basic.
>>>

Here’s a flowchart that shows how Python executes the if statements. The

diamonds are conditions, and the arrows indicate what path to take

depending on the results of evaluating those conditions:

True
ph < 7.0

ph > 7.0
True

False

False

if-block #1

if-block #2

Notice that both conditions are always evaluated, even though we know that

only one of the blocks can be executed.

We can merge both cases by adding another condition/block pair using the

elif keyword (which stands for “else if”); each condition/block pair is called a

clause:

>>> ph = float(input('Enter the pH level: '))
Enter the pH level: 8.5
>>> if ph < 7.0:
... print(ph, "is acidic.")
... elif ph > 7.0:
... print(ph, "is basic.")
...
8.5 is basic.
>>>

report erratum • discuss

Choosing Which Statements to Execute • 89

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The difference between the two is that elif is checked only when the if condition

above it evaluated to False. Here’s a flowchart for this code:

This flowchart shows that if the first condition evaluates to True, the second

condition is skipped.

If the pH is exactly 7.0, neither clause matches, so nothing is printed:

>>> ph = float(input('Enter the pH level: '))
Enter the pH level: 7.0
>>> if ph < 7.0:
... print(ph, "is acidic.")
... elif ph > 7.0:
... print(ph, "is basic.")
...
>>>

With the ph example, we accomplished the same thing with two if statements

as we did with an if/elif.

This is not always the case; for example, if the body of the first if changes the

value of a variable used in the second condition, they are not equivalent. Here

is the version with two ifs:

>>> ph = float(input('Enter the pH level: '))
Enter the pH level: 6.0
>>> if ph < 7.0:
... ph = 8.0
...
>>> if ph > 7.0:
... print(ph, "is acidic.")
...
8.0 is acidic.

And here is the version with an if/elif:

Chapter 5. Making Choices • 90

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> ph = float(input('Enter the pH level: '))
Enter the pH level: 6.0
>>> if ph < 7.0:
... ph = 8.0
>>> elif ph > 7.0:
... print(ph, "is acidic.")
...
>>>

As a rule of thumb, if two conditions are related, use if/elif instead of two ifs.

An if statement can be followed by multiple elif clauses. This longer example

translates a chemical formula into English:

>>> compound = input('Enter the compound: ')
Enter the compound: CH4
>>> if compound == "H2O":
... print("Water")
... elif compound == "NH3":
... print("Ammonia")
... elif compound == "CH4":
... print("Methane")
...
Methane
>>>

As we saw in the code on page 90, if none of the conditions in a chain of if/elif
statements are satisfied, Python does not execute any of the associated blocks.

This isn’t always what we’d like, though. In our translation example, we

probably want our program to print something even if it doesn’t recognize the

compound.

To do this, we add an else clause at the end of the chain:

>>> compound = input('Enter the compound: ')
Enter the compound: H2SO4
>>> if compound == "H2O":
... print("Water")
... elif compound == "NH3":
... print("Ammonia")
... elif compound == "CH4":
... print("Methane")
... else:
... print("Unknown compound")
...
Unknown compound
>>>

An if statement can have at most one else clause, and it has to be the final

clause in the statement. Notice there is no condition associated with else:

report erratum • discuss

Choosing Which Statements to Execute • 91

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

if «condition»:
«if_block»

else:
«else_block»

Logically, that code is the same as this code (except that the condition is

evaluated only once in the first form but twice in the second form):

if «condition»:
«if_block»

if not «condition»:
«else_block»

Nested if Statements

An if statement’s block can contain any type of Python statement, which

implies that it can include other if statements. An if statement inside another

is called a nested if statement.

value = input('Enter the pH level: ')
if len(value) > 0:

ph = float(value)
if ph < 7.0:

print(ph, "is acidic.")
elif ph > 7.0:

print(ph, "is basic.")
else:

print(ph, "is neutral.")
else:

print("No pH value was given!")

In this case, we ask the user to provide a pH value, which we’ll initially receive

as a string. The first, or outer, if statement checks whether the user typed some-

thing, which determines whether we examine the value of pH with the inner if
statement. (If the user didn’t enter a number, then function call float(value) will

produce a ValueError.)

Nested if statements are sometimes necessary, but they can get complicated and

difficult to understand. To describe when a statement is executed, we have to

mentally combine conditions; for example, the statement print(ph, "is acidic.") is exe-

cuted only if the length of the string that value refers to is greater than 0 and pH <
7.0 also evaluates to True (assuming the user entered a number).

Remembering Results of a Boolean Expression Evaluation

Take a look at the following line of code and guess what value is assigned to x:

>>> x = 15 > 5

Chapter 5. Making Choices • 92

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

If you said True, you were right: 15 is greater than 5, so the comparison pro-

duces True, and since that’s a value like any other, it can be assigned to a

variable.

The most common situation in which you would want to do this comes up

when translating decision tables into software. For example, suppose you

want to calculate someone’s risk of heart disease using the following rules

based on age and body mass index (BMI):

Age

<45 ≥45

BMI
<22.0 Low Medium

≥22.0 Medium High

One way to implement this would be to use nested if statements:

if age < 45:
if bmi < 22.0:

risk = 'low'
else:

risk = 'medium'
else:

if bmi < 22.0:
risk = 'medium'

else:
risk = 'high'

The expression bmi < 22.0 is used multiple times. To simplify this code, we can

evaluate each of the Boolean expressions once, create variables that refer to

the values produced by those expressions, and use those variables multiple

times:

young = age < 45
slim = bmi < 22.0
if young:

if slim:
risk = 'low'

else:
risk = 'medium'

else:
if slim:

risk = 'medium'
else:

risk = 'high'

We could also write this without nesting as follows:

report erratum • discuss

Remembering Results of a Boolean Expression Evaluation • 93

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

young = age < 45
slim = bmi < 22.0
if young and slim:

risk = 'low'
elif young and not slim:

risk = 'medium'
elif not young and slim:

risk = 'medium'
elif not young and not slim:

risk = 'high'

Whether you use nesting or not, giving meaningful names to the Boolean

variables (young and slim) helps make the code easier to understand.

You Learned About Booleans: True or False?

In this chapter, you learned the following:

• Python uses Boolean values, True and False, to represent what is true and

what isn’t. Programs can combine these values using three operators: not,
and, and or.

• Boolean operators can also be applied to numeric values. 0, 0.0, the empty

string, and None are treated as False; all other numeric values and strings

are treated as True. It is best to avoid applying Boolean operators to non-

Boolean values.

• Relational operators such as “equals” and “less than” compare values and

produce a Boolean result.

• When different operators are combined in an expression, the order of prece-

dence from highest to lowest is arithmetic, relational, and then Boolean.

• if statements control the flow of execution. As with function definitions, the

bodies of if statements are indented, as are the bodies of elif and else clauses.

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. What value does each expression produce? Verify your answers by typing

the expressions into Python.

a. True and not False

b. True and not false (Notice the capitalization.)

c. True or True and False

Chapter 5. Making Choices • 94

report erratum • discuss

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

d. not True or not False

e. True and not 0

f. 52 < 52.3

g. 1 + 52 < 52.3

h. 4 != 4.0

2. Variables x and y refer to Boolean values.

a. Write an expression that produces True iff both variables are True.

b. Write an expression that produces True iff x is False.

c. Write an expression that produces True iff at least one of the variables

is True.

3. Variables full and empty refer to Boolean values. Write an expression that

produces True if and only if at most one of the variables is True.

4. You want an automatic wildlife camera to switch on if the light level is

less than 0.01 lux or if the temperature is above freezing, but not if both

conditions are true. (You should assume that function turn_camera_on has

already been defined.)

Your first attempt to write this is as follows:

if (light < 0.01) or (temperature > 0.0):
if not ((light < 0.01) and (temperature > 0.0)):

turn_camera_on()

A friend says that this is an exclusive or and that you could write it more

simply as follows:

if (light < 0.01) != (temperature > 0.0):
turn_camera_on()

Is your friend right? If so, explain why. If not, give values for light and

temperature that will produce different results for the two fragments of code.

5. In Functions That Python Provides, on page 31, we saw built-in function

abs. Variable x refers to a number. Write an expression that evaluates to

True if x and its absolute value are equal and evaluates to False otherwise.

Assign the resulting value to a variable named result.

6. Write a function named different that has two parameters, a and b. The

function should return True if a and b refer to different values and should

return False otherwise.

report erratum • discuss

Exercises • 95

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

7. Variables population and land_area refer to floats.

a. Write an if statement that will print the population if it is less than

10,000,000.

b. Write an if statement that will print the population if it is between

10,000,000 and 35,000,000.

c. Write an if statement that will print “Densely populated” if the land density

(number of people per unit of area) is greater than 100.

d. Write an if statement that will print “Densely populated” if the land density

(number of people per unit of area) is greater than 100, and “Sparsely
populated” otherwise.

8. Function convert_to_celsius from Defining Our Own Functions, on page 35,

converts from Fahrenheit to Celsius. Wikipedia, however, discusses eight

temperature scales: Kelvin, Celsius, Fahrenheit, Rankine, Delisle, Newton,

Rèaumur, and Rømer. Visit http://en.wikipedia.org/wiki/Comparison_of_tempera-
ture_scales to read about them.

a. Write a convert_temperatures(t, source, target) function to convert tempera-

ture t from source units to target units, where source and target are each

one of "Kelvin", "Celsius", "Fahrenheit", "Rankine", "Delisle", "Newton", "Reaumur",
and "Romer" units.

Hint: On the Wikipedia page there are eight tables, each with two columns

and seven rows. That translates to an awful lot of if statements—at least

8 * 7—because each of the eight units can be converted to the seven

other units. Possibly even worse, if you decided to add another tempera-

ture scale, you would need to add at least sixteen more if statements:

eight to convert from your new scale to each of the current ones and eight

to convert from the current ones to your new scale.

A better way is to choose one canonical scale, such as Celsius. Your

conversion function could work in two steps: convert from the source
scale to Celsius and then from Celsius to the target scale.

b. Now if you added a new temperature scale, how many if statements

would you need to add?

9. Assume we want to print a strong warning message if a pH value is below

3.0 and otherwise simply report on the acidity. We try this if statement:

Chapter 5. Making Choices • 96

report erratum • discuss

http://en.wikipedia.org/wiki/Comparison_of_temperature_scales
http://en.wikipedia.org/wiki/Comparison_of_temperature_scales
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> ph = 2
>>> if ph < 7.0:
... print(ph, "is acidic.")
... elif ph < 3.0:
... print(ph, "is VERY acidic! Be careful.")
...
2 is acidic.

This prints the wrong message when a pH of 2 is entered. What is the

problem, and how can you fix it?

10. The following code displays a message(s) about the acidity of a solution:

ph = float(input("Enter the ph level: "))
if ph < 7.0:

print("It's acidic!")
elif ph < 4.0:

print("It's a strong acid!")

a. What message(s) are displayed when the user enters 6.4?

b. What message(s) are displayed when the user enters 3.6?

c. Make a small change to one line of the code so that both messages

are displayed when a value less than 4 is entered.

11. Why does the last example in Remembering Results of a Boolean Expression

Evaluation, on page 92, check to see whether someone is light (that is,

that person’s BMI is less than the threshold) rather than heavy? If you

wanted to write the second assignment statement as heavy = bmi >= 22.0,
what change(s) would you have to make to the code?

report erratum • discuss

Exercises • 97

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 6

A Modular Approach

to Program Organization

Mathematicians don’t prove every theorem from scratch. Instead, they build

their proofs on the truths their predecessors have already established. In the

same way, it’s rare for someone to write all of a program alone; it’s much more

common—and productive—to make use of the millions of lines of code that

other programmers have written before.

What Happens When You Import This?

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one -- and preferably only one -- obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

A module is a collection of variables and functions that are grouped together

in a single file. The variables and functions in a module are usually related

to one another in some way; for example, module math contains the variable

pi and mathematical functions such as cos (cosine) and sqrt (square root). This

chapter shows you how to use some of the hundreds of modules that come

with Python, as well as how to create your own modules.

Importing Modules

To gain access to the variables and functions from a module, you have to

import it. To tell Python that you want to use functions in module math, for

example, you use this import statement:

>>> import math

Importing a module creates a new variable with that name. That variable

refers to an object whose type is module:

>>> type(math)
<class 'module'>

Once you have imported a module, you can use built-in function help to see

what it contains. Here is the first part of the help output:

>>> help(math)
Help on module math:

NAME
math

MODULE REFERENCE
https://docs.python.org/3.6/library/math

The following documentation is automatically generated from the Python
source files. It may be incomplete, incorrect or include features that
are considered implementation detail and may vary between Python
implementations. When in doubt, consult the module reference at the
location listed above.

DESCRIPTION
This module is always available. It provides access to the
mathematical functions defined by the C standard.

FUNCTIONS
acos(...)

acos(x)
Return the arc cosine (measured in radians) of x.

acosh(...)
acosh(x)
Return the inverse hyperbolic cosine of x.

[Lots of other functions not shown here.]

Chapter 6. A Modular Approach to Program Organization • 100

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The statement import math creates a variable called math that refers to a module

object. In that object are all the names defined in that module. Some of them

refer to a function objects:

math

acos

acosh

id3:module

acos(x)

id1:function

id1

id2

acosh(x)

id2:function
id3math

Great—our program can now use all the standard mathematical functions.

When we try to calculate a square root, though, we get an error telling us

that Python is still unable to find function sqrt:

>>> sqrt(9)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'sqrt' is not defined

The solution is to tell Python explicitly to look for the function in module math
by combining the module’s name with the function’s name using a dot:

>>> math.sqrt(9)
3.0

The dot is an operator, just like + and ** are operators. Its meaning is “look

up the object that the variable to the left of the dot refers to and, in that object,

find the name that occurs to the right of the dot.” In math.sqrt(9), Python finds

math in the current namespace, looks up the module object that math refers

to, finds function sqrt inside that module, and then executes the function call

following the standard rules described in Tracing Function Calls in the Memory

Model, on page 40.

Modules can contain more than just functions. Module math, for example,

also defines some variables like pi. Once the module has been imported, you

can use these variables like any others:

>>> import math
>>> math.pi
3.141592653589793
>>> radius = 5
>>> print('area is', math.pi * radius ** 2)
area is 78.53981633974483

report erratum • discuss

Importing Modules • 101

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

You can even assign to variables imported from modules:

>>> import math
>>> math.pi = 3
>>> radius = 5
>>> print('area is', math.pi * radius ** 2)
area is 75

Don’t do this! Changing the value of π isn’t a good idea. In fact, it’s such a

bad idea that many languages allow programmers to define unchangeable

constants as well as variables. As the name suggests, the value of a constant

cannot be changed after it has been defined: π is always 3.14159 and a little

bit, while SECONDS_PER_DAY is always 86,400. The fact that Python doesn’t allow

programmers to “freeze” values like this is one of the language’s few significant

flaws.

Combining the module’s name with the names of the things it contains is

safe, but it isn’t always convenient. For this reason, Python lets you specify

exactly what you want to import from a module, like this:

>>> from math import sqrt, pi
>>> sqrt(9)
3.0
>>> radius = 5
>>> print('circumference is', 2 * pi * radius)
circumference is 31.41592653589793

This doesn’t introduce a variable called math. Instead, it creates function sqrt
and variable pi in the current namespace, as if you had typed the function

definition and variable assignment yourself. Restart your shell and try this:

>>> from math import sqrt, pi
>>> math.sqrt(9)
Traceback (most recent call last):

File "<pyshell#12>", line 1, in <module>
math.sqrt(9)

NameError: name 'math' is not defined
>>> sqrt(9)
3.0

Here, we don’t have a variable called math. Instead, we imported variables sqrt
and pi directly into the current namespace, as shown in this diagram:

Chapter 6. A Modular Approach to Program Organization • 102

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Module __builtins__

Python’s built-in functions are actually in a module named __builtins__ (with two

underscores before and after builtins). The double underscores before and after the

name signal that it’s part of Python; we’ll see this convention used again later for

other things. You can see what’s in the module using help(__builtins__), or if you just

want to see what functions and variables are available, you can use dir instead (which

works on other modules as well):

>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',
'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',
'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',
'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
'FileExistsError', 'FileNotFoundError', 'FloatingPointError', 'FutureWarning',
'GeneratorExit', 'IOError', 'ImportError', 'ImportWarning', 'IndentationError',
'IndexError', 'InterruptedError', 'IsADirectoryError', 'KeyError',
'KeyboardInterrupt', 'LookupError', 'MemoryError', 'ModuleNotFoundError',
'NameError', 'None', 'NotADirectoryError', 'NotImplemented',
'NotImplementedError', 'OSError', 'OverflowError', 'PendingDeprecationWarning',
'PermissionError', 'ProcessLookupError', 'RecursionError', 'ReferenceError',
'ResourceWarning', 'RuntimeError', 'RuntimeWarning', 'StopAsyncIteration',
'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError', 'SystemExit',
'TabError', 'TimeoutError', 'True', 'TypeError', 'UnboundLocalError',
'UnicodeDecodeError', 'UnicodeEncodeError', 'UnicodeError',
'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning', 'ValueError',
'Warning', 'ZeroDivisionError', '_', '__build_class__', '__debug__', '__doc__',
'__import__', '__loader__', '__name__', '__package__', '__spec__', 'abs', 'all',
'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable', 'chr',
'classmethod', 'compile', 'complex', 'copyright', 'credits', 'delattr', 'dict',
'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit', 'filter', 'float',
'format', 'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex',
'id', 'input', 'int', 'isinstance', 'issubclass', 'iter', 'len', 'license',
'list', 'locals', 'map', 'max', 'memoryview', 'min', 'next', 'object', 'oct',
'open', 'ord', 'pow', 'print', 'property', 'quit', 'range', 'repr', 'reversed',
'round', 'set', 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum',
'super', 'tuple', 'type', 'vars', 'zip']

As of Python 3.6.0, 48 of the 151 items in __builtins__ are used to signal errors of par-

ticular kinds, such as SyntaxError and ZeroDivisionError. All errors, warnings, and exceptions

are types like int, float, and function. Their names follow a naming convention in which

the first letter of each word is uppercase.

We’ll introduce some of this module’s other members in later chapters.

This can lead to problems when different modules provide functions that have

the same name. If you import a function called spell from a module called

magic and then you import another function called spell from the grammar module,

the second replaces the first. It’s exactly like assigning one value to a variable

and then assigning another value: the most recent assignment or import wins.

report erratum • discuss

Importing Modules • 103

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

This is why it’s usually not a good idea to use import *, which brings in every-

thing from the module at once:

>>> from math import *
>>> print(sqrt(8))
2.8284271247461903

Although import * saves some typing, you run the risk of your program

accessing the incorrect function and not working properly.

The standard Python library contains several hundred modules to do every-

thing from figuring out what day of the week it is to fetching data from a

website. The full list is online at http://docs.python.org/release/3.6.0/py-modindex.html;
although it’s far too much to absorb in one sitting (or even one course),

knowing how to use the library well is one of the things that distinguishes

good programmers from poor ones.

Defining Your Own Modules

Writing and Running a Program, on page 58, explained that in order to save

code for later use, you can put it in a file with a .py extension, and it demon-

strated how to run that code. Chapter 3, Designing and Using Functions, on

page 31, also included this function definition:

>>> def convert_to_celsius(fahrenheit: float) -> float:
... """Return the number of Celsius degrees equivalent to fahrenheit
... degrees.
...
... >>> convert_to_celsius(75)
... 23.88888888888889
... """
... return (fahrenheit - 32.0) * 5.0 / 9.0
...

Put the function definition for convert_to_celsius from Defining Our Own Functions,

on page 35, in a file called temperature.py. (You can save this file anywhere you

like, although most programmers create a separate directory for each set of

related files that they write.) Add another function to temperature.py called

above_freezing that returns True if and only if its parameter celsius is above freezing

as shown in the screenshot on page 105.

Congratulations—you have created a module called temperature. Now that you’ve

created this file, you can run it and import it like any other module:

>>> import temperature
>>> celsius = temperature.convert_to_celsius(33.3)
>>> temperature.above_freezing(celsius)
True

Chapter 6. A Modular Approach to Program Organization • 104

report erratum • discuss

http://docs.python.org/release/3.6.0/py-modindex.html
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

What Happens During Import

Let’s try another experiment. Create a file called experiment.py with this one

statement inside it:

print("The panda's scientific name is 'Ailuropoda melanoleuca'")

Run experiment.py and then import it:

>>> import experiment
The panda's scientific name is 'Ailuropoda melanoleuca'

What this shows is that Python executes modules as it imports them. You can

do anything in a module you would do in any other program, because as far

as Python is concerned, it’s just another bunch of statements to be run.

Let’s try another experiment. Start a fresh Python session, run experiment.py,
and try importing module experiment twice in a row:

>>> import experiment
The panda's scientific name is 'Ailuropoda melanoleuca'
>>> import experiment
>>>

Notice that the message wasn’t printed the second time. That’s because Python

loads modules only the first time they’re imported. Internally, Python keeps track

of the modules it has already seen; when it is asked to load one that’s already in

that list, it just skips over it. This saves time and will be particularly important

when you start writing modules that import other modules, which in turn import

other modules—if Python didn’t keep track of what was already in memory, it

could wind up loading commonly used modules like math dozens of times.

report erratum • discuss

Defining Your Own Modules • 105

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Restoring a Module

If you change the value of a variable or function from an imported module, you can

restart the shell and reimport the module to restore it to its original value. In IDLE,

you can restart the shell by choosing Shell→Restart Shell.

Without having to restart the shell, you can restore a user-defined module to its

original state using function reload from module importlib. For example, consider module

example, which contains a variable named x that refers to 2:

>>> import example
>>> example.x
2
>>> example.x = 7
>>> example.x
7
>>> import importlib
>>> example = importlib.reload(example)
>>> example.x
2

Function importlib.reload returns the module. This approach does not work the same

way for systems modules, like math. Using the same approach with math.pi does not

restore its value:

>>> import math
>>> math.pi
3.141592653589793
>>> math.pi = 3
>>> math.pi
3
>>> math = importlib.reload(math)
>>> math.pi
3

Even if you import a module, edit that module’s file, and then reimport, the

module won’t be reloaded. Your edits won’t have any effect until you restart

the shell or call imp.reload. For example, after we’ve imported experiment, we’ll

change the file contents to this:

print("The koala's scientific name is 'Phascolarctos cinereus'")

We’ll now call imp.reload to reload module experiment:

>>> import experiment
The panda's scientific name is 'Ailuropoda melanoleuca'
>>> import experiment
>>> import imp
>>> imp.reload(experiment)
The koala's scientific name is 'Phascolarctos cinereus'
<module 'experiment' from '/Users/campbell/Documents/experiment.py'>

In this example, the call on imp.reload returns the module that was imported.

Chapter 6. A Modular Approach to Program Organization • 106

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Selecting Which Code Gets Run on Import: __main__

As we saw in Writing and Running a Program, on page 58, every Python module

can be run directly (from the command line or by running it from an IDE like

IDLE), or, as we saw earlier in this section, it can be run indirectly (imported

by another program). If a module is to be imported by another module, then

the files containing the two modules should be saved in the same directory

(an alternative approach would be to use absolute file paths, which are

explained in Opening a File, on page 175).

Sometimes we want to write code that should only be run when the module

is run directly and not when the module is imported. Python defines a special

string variable called __name__ in every module to help us figure this out.

Suppose we put the following into echo.py:

print("__name__ is", __name__)

If we run this file, its output is as follows:

__name__ is __main__

As promised, Python has created variable __name__. Its value is "__main__",
meaning this module is the main program. But look at what happens when

we import echo (instead of running it directly):

>>> import echo
__name__ is echo

The same thing happens if we write a program that does nothing but import

our echoing module. Create a file import_echo.py with this code inside it:

import echo

print("After import, __name__ is", __name__,
"and echo.__name__ is", echo.__name__)

When run from the command line, the code produces this:

__name__ is echo
After import, __name__ is __main__ and echo.__name__ is echo

When Python imports a module, it sets that module’s __name__ variable to be

the name of the module rather than the special string "__main__". This means

that a module can tell whether it is the main program. Now create a file named

main_example.py with this code inside it:

if __name__ == "__main__":
print("I am the main program.")

else:
print("Another module is importing me.")

report erratum • discuss

Defining Your Own Modules • 107

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Try it. See what happens when you run main_example.py directly and when you

import it.

Some of our modules contain not only function definitions but also programs.

For example, create a new module temperature_program that contains the func-

tions from temperature and a little program:

When that module is run, it prompts the user to enter a value and, depending

on the value entered, prints one of two messages:

Let’s create another module, baking.py, that uses the conversion function from

module temperature_program as shown in the top screenshot on page 109.

Chapter 6. A Modular Approach to Program Organization • 108

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

When baking.py is run, it imports temperature_program, so the program at the

bottom of temperature_program.py is executed:

Since we don’t care whether a temperature is above freezing when preheating

our oven, when importing temperature_program.py we can prevent that part of the

code from executing by putting it in an if __name__ == '__main__': block as shown

in the top screenshot on page 110.

Now when baking.py is run, only the code from temperature_program that is outside

of the if __name__ == '__main__': block is executed as shown in the second

screenshot on page 110.

We will see other uses of __name__ in the following sections and in later chapters.

report erratum • discuss

Defining Your Own Modules • 109

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Testing Your Code Semiautomatically

In Designing New Functions: A Recipe, on page 47, we introduced the function

design recipe (FDR). Following the FDR, the docstrings that we write include

example function calls.

The last step of the FDR involves testing the function. Up until now, we have

been typing the function calls from the docstrings to the shell (or copying and

pasting them) to run them and then have been comparing the results with

what we expect to make sure they match.

Chapter 6. A Modular Approach to Program Organization • 110

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Python has a module called doctest that allows us to run the tests that we include

in docstrings all at once. It reports on whether the function calls return what we

expect. We will use doctest to run the tests from module temperature_program from

Selecting Which Code Gets Run on Import: __main__, on page 107:

That message tells us that three tests were run and none of them failed. That

is, the three function calls in the docstrings were run, and they returned the

same value that we expected and stated in the docstring.

Now let’s see what happens when there is an error in our calculation. Instead

of the calculation we’ve been using, (fahrenheit - 32.0) * 5.0 / 9.0, let’s remove the

parentheses: fahrenheit - 32.0 * 5.0 / 9.0.

report erratum • discuss

Testing Your Code Semiautomatically • 111

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Here is the result of running doctest on that module:

The failure message above indicates that function call convert_to_celsius(75) was

expected to return 23.88888888888889, but it actually returned 57.22222222222222.
The other two tests ran and passed.

When a failure occurs, we need to review our code to identify the problem.

We should also check the expected return value listed in the docstring to

make sure that the expected value matches both the type contract and the

description of the function.

Tips for Grouping Your Functions

Put functions and variables that logically belong together in the same module.

If there isn’t some logical connection—for example, if one of the functions

calculates how much carbon monoxide different kinds of cars produce, while

another figures out bone strength given the bone’s diameter and density—then

you shouldn’t put them in one module just because you happen to be the

author of both.

Of course, people often have different opinions about what is logical and what

isn’t. Take Python’s math module, for example; should functions to multiply

matrices go in there too, or should they go in a separate linear algebra module?

What about basic statistical functions? Going back to the previous paragraph,

should a function that calculates gas mileage go in the same module as one that

Chapter 6. A Modular Approach to Program Organization • 112

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

calculates carbon monoxide emissions? You can always find a reason why two

functions should not be in the same module, but a thousand modules with one

function each are going to be hard for people (including you) to work with.

As a rule of thumb, if a module has less than a handful of things in it, it’s

probably too small, and if you can’t sum up the contents and purpose of a

module in a one- or two-sentence docstring, it’s probably too large. These are

just guidelines, though; in the end, you’ll have to decide based on how more

experienced programmers have organized modules, like the ones in the Python

standard library, and eventually on your own sense of style.

Organizing Our Thoughts

In this chapter, you learned the following:

• A module is a collection of functions and variables grouped together in a

file. To use a module, you must first import it using import «modulename».
After it has been imported, you refer to its contents using «modulename».«func-
tionname» or «modulename».«variable».

• Variable __name__ is created by Python and can be used to specify that

some code should only run when the module is run directly and not when

the module is imported.

• Programs have to do more than just run to be useful; they have to run

correctly. One way to ensure that they do is to test them, which you can

do in Python using module doctest.

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. Import module math, and use its functions to complete the following

exercises. (You can call dir(math) to get a listing of the items in math.)

a. Write an expression that produces the floor of -2.8.

b. Write an expression that rounds the value of -4.3 and then produces

the absolute value of that result.

c. Write an expression that produces the ceiling of the sine of 34.5.

2. In the following exercises, you will work with Python’s calendar module:

a. Visit the Python documentation website at http://docs.python.org/release/
3.6.0/py-modindex.html, and look at the documentation on module calendar.

report erratum • discuss

Organizing Our Thoughts • 113

http://pragprog.com/titles/gwpy3/practical-programming
http://docs.python.org/release/3.6.0/py-modindex.html
http://docs.python.org/release/3.6.0/py-modindex.html
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

b. Import module calendar.

c. Using function help, read the description of function isleap.

d. Use isleap to determine the next leap year.

e. Use dir to get a list of what calendar contains.

f. Find and use a function in module calendar to determine how many

leap years there will be between the years 2000 and 2050, inclusive.

g. Find and use a function in module calendar to determine which day of

the week July 29, 2016, will be.

3. Create a file named exercise.py with this code inside it:

def average(num1: float, num2: float) -> float:
"""Return the average of num1 and num2.

>>> average(10,20)
15.0
>>> average(2.5, 3.0)
2.75
"""

return num1 + num2 / 2

a. Run exercise.py. Import doctest and run doctest.testmod().

b. Both of the tests in function average’s docstring fail. Fix the code and

rerun the tests. Repeat this procedure until the tests pass.

Chapter 6. A Modular Approach to Program Organization • 114

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 7

Using Methods

So far we’ve seen lots of functions: built-in functions, functions inside modules,

and functions that we’ve defined. A method is another kind of function that

is attached to a particular type. There are str methods, int methods, bool
methods, and more—every type has its own set of methods. In this chapter,

we’ll explore how to use methods and also how they differ from the rest of the

functions that we’ve seen.

Modules, Classes, and Methods

In Importing Modules, on page 100, we saw that a module is a kind of object,

one that can contain functions and other variables. There is another kind of

object that is similar to a module: a class. You’ve been using classes all along,

probably without realizing it: a class is how Python represents a type.

You may have called built-in function help on int, float, bool, or str. We’ll do that

now with str (notice that the first line says that it’s a class):

>>> help(str)
Help on class str in module builtins:

class str(object)
| str(object='') -> str
| str(bytes_or_buffer[, encoding[, errors]]) -> str
|
| Create a new string object from the given object. If encoding or
| errors is specified, then the object must expose a data buffer
| that will be decoded using the given encoding and error handler.
| Otherwise, returns the result of object.__str__() (if defined)
| or repr(object).
| encoding defaults to sys.getdefaultencoding().
| errors defaults to 'strict'.
|
| Methods defined here:
|

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

| __add__(self, value, /)
| Return self+value.
|
| __contains__(self, key, /)
| Return key in self.

[Lots of other names with leading and trailing underscores not shown here.]

| capitalize(...)
| S.capitalize() -> str
|
| Return a capitalized version of S, i.e. make the first character
| have upper case and the rest lower case.
|
| casefold(...)
| S.casefold() -> str
|
| Return a version of S suitable for caseless comparisons.
|
| center(...)
| S.center(width[, fillchar]) -> str
|
| Return S centered in a string of length width. Padding is
| done using the specified fill character (default is a space)
|
| count(...)
| S.count(sub[, start[, end]]) -> int
|
| Return the number of non-overlapping occurrences of substring sub in
| string S[start:end]. Optional arguments start and end are
| interpreted as in slice notation.

[There are many more of these as well.]

Near the top of this documentation is this:

| str(object[, encoding[, errors]]) -> str
|
| Create a new string object from the given object.

That describes how to use str as a function: we can call it to create a string.

For example, str(17) creates the string '17'.

We can also use str to call a method in class str, much like we call a function

in module math. The main difference is that every method in class str requires

a string as its first argument:

>>> str.capitalize('browning')
'Browning'

This is how methods are different from functions: the first argument to every

string method must be a string, and the parameter is not described in the

Chapter 7. Using Methods • 116

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

documentation for the method. This is because all string methods require a

string as the first argument, and more generally, all methods in a class require

an object of that class as the first argument. Here are two more examples,

this time using the other two string methods from the code on page 115. Both

of these also require a string as the first argument.

>>> str.center('Sonnet 43', 26)
' Sonnet 43 '
>>> str.count('How do I love thee? Let me count the ways.', 'the')
2

The first method call produces a new string that centers 'Sonnet 43' in a string

of length 26, padding to the left and right with spaces.

The second method call counts how many times 'the' occurs in 'How do I love
thee? Let me count the ways.' (once in the word thee and once as the penultimate

word in the string).

Calling Methods the Object-Oriented Way

Because every method in class str requires a string as the first argument (and,

more generally, because every method in any class requires an object of that

class as the first argument), Python provides a shorthand form for calling a

method where the object appears first and then the method call:

>>> 'browning'.capitalize()
'Browning'
>>> 'Sonnet 43'.center(26)
' Sonnet 43 '
>>> 'How do I love thee? Let me count the ways.'.count('the')
2

When Python encounters one of these method calls, it translates it to the

more long-winded form. We will use this shorthand form throughout the rest

of the book.

The help documentation for methods uses this form. Here is the help for

method lower in class str. (Notice that we can get help for a single method by

prefixing it with the class it belongs to.)

>>> help(str.lower)
Help on method_descriptor:

lower(...)
S.lower() -> str

Return a copy of the string S converted to lowercase.

Contrast that documentation with the help for function sqrt in module math:

report erratum • discuss

Calling Methods the Object-Oriented Way • 117

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> import math
>>> help(math.sqrt)
Help on built-in function sqrt in module math:

sqrt(...)
sqrt(x)

Return the square root of x.

The help for str.lower shows that you need to prefix the call with the string

value S; the help for math.sqrt doesn’t show any such prefix.

The general form of a method call is as follows:

«expression».«method_name»(«arguments»)
So far every example we’ve seen has a single object as the expression, but

any expression can be used as long as it evaluates to the correct type. Here’s

an example:

>>> ('TTA' + 'G' * 3).count('T')
2

The expression ('TTA' + 'G' * 3) evaluates to the DNA sequence 'TTAGGG', and that

is the object that is used in the call on string method count.

Here are the steps for executing a method call. These steps are quite similar

to those for executing a function call in Tracing Function Calls in the Memory

Model, on page 40.

1. Evaluate «expression»; this may be something simple, like 'Elizabeth Barrett
Browning' (a poet from the 1800s), or it may be more complicated, like ('TTA'
+ 'G' * 3). Either way, a single object is produced, and that will be the object

we are interacting with during the method call.

2. Now that we have an object, evaluate the method arguments left to right.

In our DNA example, the argument is 'T'.

3. Pass the result of evaluating the initial expression as the first argument,

and also pass the argument values from the previous step, into the

method. In our DNA example, our code is equivalent to str.count('TTAGGG', 'T').

4. Execute the method.

When the method call finishes, it produces a value. In our DNA example,

str.count('TTAGGG', 'T') returns the number of times 'T' occurs in 'TTAGGG', which is 2.

Chapter 7. Using Methods • 118

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Why Programming Languages Are Called Object Oriented

The phrase object oriented was introduced to describe the style of programming where

the objects are the main focus: we tell objects to do things (by calling their methods),

as opposed to imperative programming, where functions are the primary focus and

we pass them objects to work with. Python allows a mixture of both styles.

Exploring String Methods

Strings are central to programming; almost every program uses strings in

some way. We’ll explore some of the ways in which we can manipulate strings

and, at the same time, firm up our understanding of methods.

Listed in Table 8, Common String Methods,are the most commonly used string

methods. (You can find the complete list in Python’s online documentation,

or type help(str) into the shell.)

DescriptionMethod

Returns a copy of the string with the first letter

capitalized and the rest lowercase.

str.capitalize()

Returns the number of nonoverlapping occurrences

of s in the string.

str.count(s)

Returns True if and only if the string ends with the

characters in the end string—this is case sensitive.

str.endswith(end)

Returns the index of the first occurrence of s in the

string, or -1 if s doesn’t occur in the string—the first

character is at index 0. This is case sensitive.

str.find(s)

Returns the index of the first occurrence of s at or

after index beg in the string, or -1 if s doesn’t occur

str.find(s, beg)

in the string at or after index beg—the first character

is at index 0. This is case sensitive.

Returns the index of the first occurrence of s between

indices beg (inclusive) and end (exclusive) in the

str.find(s, beg, end)

string, or -1 if s does not occur in the string between

indices beg and end—the first character is at index

0. This is case sensitive.

Returns a string made by substituting for placehold-

er fields in the string—each field is a pair of braces

str.format(«expressions»)

('{' and '}') with an integer in between; the expression

arguments are numbered from left to right starting

report erratum • discuss

Exploring String Methods • 119

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

DescriptionMethod

at 0. Each field is replaced by the value produced

by evaluating the expression whose index corre-

sponds with the integer in between the braces of the

field. If an expression produces a value that isn’t a

string, that value is converted into a string.

Returns True if and only if all characters in the string

are lowercase.

str.islower()

Returns True if and only if all characters in the string

are uppercase.

str.isupper()

Returns a copy of the string with all letters converted

to lowercase.

str.lower()

Returns a copy of the string with leading whitespace

removed.

str.lstrip()

Returns a copy of the string with leading occurrences

of the characters in s removed.

str.lstrip(s)

Returns a copy of the string with all occurrences of

substring old replaced with string new.

str.replace(old, new)

Returns a copy of the string with trailing whitespace

removed.

str.rstrip()

Returns a copy of the string with trailing occurrences

of the characters in s removed.

str.rstrip(s)

Returns the whitespace-separated words in the

string as a list. (We’ll introduce the list type in Storing

and Accessing Data in Lists, on page 129.)

str.split()

Returns True if and only if the string starts with the

letters in the string beginning—this is case sensitive.

str.startswith(beginning)

Returns a copy of the string with leading and trailing

whitespace removed.

str.strip()

Returns a copy of the string with leading and trailing

occurrences of the characters in s removed.

str.strip(s)

Returns a copy of the string with all lowercase letters

capitalized and all uppercase letters made lowercase.

str.swapcase()

Returns a copy of the string with all letters converted

to uppercase.

str.upper()

Table 8—Common String Methods

Chapter 7. Using Methods • 120

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Method calls look almost the same as function calls, except that in order to

call a method we need an object of the type associated with that method. For

example, let’s call the method startswith on the string 'species':

>>> 'species'.startswith('a')
False
>>> 'species'.startswith('spe')
True

String method startswith takes a string argument and returns a bool indicating

whether the string whose method was called—the one to the left of the dot—starts

with the string that is given as an argument. There is also an endswith method:

>>> 'species'.endswith('a')
False
>>> 'species'.endswith('es')
True

Sometimes strings have extra whitespace at the beginning and the end. The string

methods lstrip, rstrip, and strip remove this whitespace from the front, from the end,

and from both, respectively. This example shows the result of applying these three

methods to a string with leading and trailing whitespace:

>>> compound = ' \n Methyl \n butanol \n'
>>> compound.lstrip()
'Methyl \n butanol \n'
>>> compound.rstrip()
' \n Methyl \n butanol'
>>> compound.strip()
'Methyl \n butanol'

Note that the other whitespace inside the string is unaffected; these methods

only work from the front and end. Here is another example that uses string

method swapcase to change lowercase letters to uppercase and uppercase to

lowercase:

>>> 'Computer Science'.swapcase()
'cOMPUTER sCIENCE'

String method format has a complex description, but a couple of examples

should clear up the confusion. Here we show that we can substitute a series

of strings into a format string:

>>> '"{0}" is derived from "{1}"'.format('none', 'no one')
'"none" is derived from "no one"'
>>> '"{0}" is derived from the {1} "{2}"'.format('Etymology', 'Greek',
... 'ethos')
'"Etymology" is derived from the Greek "ethos"'
>>> '"{0}" is derived from the {2} "{1}"'.format('December', 'decem', 'Latin')
'"December" is derived from the Latin "decem"'

report erratum • discuss

Exploring String Methods • 121

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

We can have any number of fields. The last example shows that we don’t have

to use the numbers in order.

Next, using string method format, we’ll specify the number of decimal places

to round a number to. We indicate this by following the field number with a

colon and then using .2f to state that the number should be formatted as a

floating-point number with two digits to the right of the decimal point:

>>> my_pi = 3.14159
>>> 'Pi rounded to {0} decimal places is {1:.2f}.'.format(2, my_pi)
'Pi rounded to 2 decimal places is 3.14.'
>>> 'Pi rounded to {0} decimal places is {1:.3f}.'.format(3, my_pi)
'Pi rounded to 3 decimal places is 3.142.'

It’s possible to omit the position numbers. If that’s done, then the arguments

passed to format replace each placeholder field in order from left to right:

>>> 'Pi rounded to {} decimal places is {:.3f}.'.format(3, my_pi)
'Pi rounded to 3 decimal places is 3.142.'

Remember how a method call starts with an expression? Because 'Computer
Science'.swapcase() is an expression, we can immediately call method endswith on

the result of that expression to check whether that result has 'ENCE' as its last

four characters:

>>> 'Computer Science'.swapcase().endswith('ENCE')
True

The next figure shows what happens when we do this:

'Computer Science'.swapcase().endswith('ENCE')

.endswith('ENCE')'cOMPUTER sCIENCE'

True

The call on method swapcase produces a new string, and that new string is

used for the call on method endswith.

Both int and float are classes. It is possible to access the documentation for

these either by calling help(int) or by calling help on an object of the class:

Chapter 7. Using Methods • 122

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> help(0)
Help on int object:

class int(object)
| int(x=0) -> integer
| int(x, base=10) -> integer
|
| Convert a number or string to an integer, or return 0 if no arguments
| are given. If x is a number, return x.__int__(). For floating point
| numbers, this truncates towards zero.
|
| If x is not a number or if base is given, then x must be a string,
| bytes, or bytearray instance representing an integer literal in the
| given base. The literal can be preceded by '+' or '-' and be surrounded
| by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
| Base 0 means to interpret the base from the string as an integer literal.
| >>> int('0b100', base=0)
| 4
|
| Methods defined here:
|
| __abs__(self, /)
| abs(self)
|
| __add__(self, value, /)
| Return self+value.
...

Most modern programming languages are structured this way: the “things”

in the program are objects, and most of the code in the program consists of

methods that use the data stored in those objects. Chapter 14, Object-Oriented

Programming, on page 275, will show you how to create new kinds of objects;

until then, we’ll work with objects of types that are built into Python.

What Are Those Underscores?

Any method (or other name) beginning and ending with two underscores is

considered special by Python. The help documentation for strings shows these

methods, among many others:

| Methods defined here:
|
| __add__(self, value, /)
| Return self+value.

These methods are typically connected with some other syntax in Python:

use of that syntax will trigger a method call. For example, string method __add__
is called when anything is added to a string:

report erratum • discuss

What Are Those Underscores? • 123

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> 'TTA' + 'GGG'
'TTAGGG'
>>> 'TTA'.__add__('GGG')
'TTAGGG'

Programmers almost never call these special methods directly, but it is eye-

opening to see this and it may help you to understand how Python works.

Integers and floating-point numbers have similar features. Here is part of the

help documentation for int:

Help on class int in module builtins:

class int(object)
...
| Methods defined here:
|
| __abs__(self, /)
| abs(self)
|
| __add__(self, value, /)
| Return self+value.
|
| __gt__(self, value, /)
| Return self>value.

The documentation describes when these are called. Here we show both ver-

sions of getting the absolute value of a number:

>>> abs(-3)
3
>>> (-3).__abs__()
3

We put -3 in parentheses so that Python will call __abs__ after negating 3.
Without the parentheses __abs__ is called first and the result is negated, which

leads to an unexpected result:

>>> -3 .__abs__()
-3

This is functionally equivalent to:

>>> -(3 .__abs__())
-3

We need to put a space after 3 so that Python doesn’t think we’re making a

floating-point number 3. (remember that we can leave off the trailing 0).

Let’s add two integers using this trick:

Chapter 7. Using Methods • 124

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> 3 + 5
8
>>> 3 .__add__(5)
8

And here we compare two numbers to see whether one is bigger than the other:

>>> 3 > 5
False
>>> 3 .__gt__(5)
False
>>> 5 > 3
True
>>> 5 .__gt__(3)
True

Again, programmers don’t typically call on the underscore methods directly, but

it’s worth knowing that Python uses methods to handle all of these operators.

Function objects, like other objects, contain double-underscore variables. For

example, the documentation for each function is stored in a variable called

__doc__:

>>> import math
>>> math.sqrt.__doc__
'sqrt(x)\n\nReturn the square root of x.'

When we use built-in function print to print that __doc__ string, look what comes

out! It looks just like the output from calling built-in function help on math.sqrt:

>>> print(math.sqrt.__doc__)
sqrt(x)

Return the square root of x.
>>> help(math.sqrt)
Help on built-in function sqrt in module math:

sqrt(...)
sqrt(x)

Return the square root of x.

Every function object keeps track of its docstring in a special variable called

__doc__.

A Methodical Review

In this chapter, you learned the following:

• Classes are like modules, except that classes contain methods and mod-

ules contain functions.

report erratum • discuss

A Methodical Review • 125

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

• Methods are like functions, except that the first argument must be an

object of the class in which the method is defined.

• Method calls in this form—'browning'.capitalize()—are shorthand for this:

str.capitalize('browning').

• Methods beginning and ending with two underscores are considered

special by Python, and they are triggered by particular syntax.

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. In the Python shell, execute the following method calls:

a. 'hello'.upper()

b. 'Happy Birthday!'.lower()

c. 'WeeeEEEEeeeEEEEeee'.swapcase()

d. 'ABC123'.isupper()

e. 'aeiouAEIOU'.count('a')

f. 'hello'.endswith('o')

g. 'hello'.startswith('H')

h. 'Hello {0}'.format('Python')

i. 'Hello {0}! Hello {1}!'.format('Python', 'World')

2. Using string method count, write an expression that produces the number

of o’s in 'tomato'.

3. Using string method find, write an expression that produces the index of

the first occurrence of o in 'tomato'.

4. Using string method find, write a single expression that produces the index

of the second occurrence of o in 'tomato'. Hint: Call find twice.

5. Using your expression from the previous exercise, find the second o in
'avocado'. If you don’t get the result you expect, revise the expression and

try again.

6. Using string method replace, write an expression that produces a string

based on 'runner' with the n’s replaced by b’s.

Chapter 7. Using Methods • 126

report erratum • discuss

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

7. Variable s refers to ' yes '. When a string method is called with s as its

argument, the string 'yes' is produced. Which string method was called?

8. Variable fruit refers to 'pineapple'. For the following function calls, in what

order are the subexpressions evaluated?

a. fruit.find('p', fruit.count('p'))

b. fruit.count(fruit.upper().swapcase())

c. fruit.replace(fruit.swapcase(), fruit.lower())

9. Variable season refers to 'summer'. Using string method format and variable

season, write an expression that produces 'I love summer!'

10. Variables side1, side2, and side3 refer to 3, 4, and 5, respectively. Using string

method format and those three variables, write an expression that produces

'The sides have lengths 3, 4, and 5.'

11. Using string methods, write expressions that produce the following:

a. A copy of 'boolean' capitalized

b. The first occurrence of '2' in 'CO2 H2O'

c. The second occurrence of '2' in 'CO2 H2O'

d. True if and only if 'Boolean' begins lowercase

e. A copy of "MoNDaY" converted to lowercase and then capitalized

f. A copy of " Monday" with the leading whitespace removed

12. Complete the examples in the docstring and then write the body of the

following function:

def total_occurrences(s1: str, s2: str, ch: str) -> int:
"""Precondition: len(ch) == 1

Return the total number of times that ch occurs in s1 and s2.

>>> total_occurrences('color', 'yellow', 'l')
3
>>> total_occurrences('red', 'blue', 'l')

>>> total_occurrences('green', 'purple', 'b')

"""

report erratum • discuss

Exercises • 127

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 8

Storing Collections of Data Using Lists

Up to this point, we have seen numbers, Boolean values, strings, functions,

and a few other types. Once one of these objects has been created, it can’t be

modified. In this chapter, you will learn how to use a Python type named list.
Lists contain zero or more objects and are used to keep track of collections

of data. Unlike the other types you’ve learned about, lists can be modified.

Storing and Accessing Data in Lists

Table 9 shows the number of gray whales counted near the Coal Oil Point

Natural Reserve in a two-week period starting on February 24, 2008.1

Number of WhalesDayNumber of WhalesDay

6851

4942

21073

11134

71225

11336

31427

Table 9—Gray Whale Census

Using what we have seen so far, we would have to create fourteen variables

to keep track of the number of whales counted each day as shown in the figure

on page 130.

1. Gray Whales Count nonprofit 501(c)(3) corporation for research and education:

http://www.graywhalescount.org/gwc/GWC_REPORTS.html.

report erratum • discuss

http://www.graywhalescount.org/gwc/GWC_REPORTS.html
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

To track an entire year’s worth of observations, we would need 365 variables

(366 for a leap year).

Rather than dealing with this programming nightmare, we can use a list to

keep track of the 14 days of whale counts. That is, we can use a list to keep

track of the 14 int objects that contain the counts:

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]
>>> whales
[5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]

A list is an object; like any other object, it can be assigned to a variable. Here

is what happens in the memory model:

The general form of a list expression is as follows:

[«expression1», «expression2», ... , «expressionN»]
The empty list is expressed as [].

In our whale count example, variable whales refers to a list with fourteen items,

also known as elements. The list itself is an object, but it also contains the

Chapter 8. Storing Collections of Data Using Lists • 130

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

memory addresses of fourteen other objects. The previous memory model

shows whales after this assignment statement has been executed.

The items in a list are ordered, and each item has an index indicating its

position in the list. The first item in a list is at index 0, the second at index

1, and so on. It would be more natural to use 1 as the first index, as human

languages do. Python, however, uses the same convention as languages like

C and Java and starts counting at zero. To refer to a particular list item, we

put the index in brackets after a reference to the list (such as the name of a

variable):

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]
>>> whales[0]
5
>>> whales[1]
4
>>> whales[12]
1
>>> whales[13]
3

We can use only those indices that are in the range from zero up to one less

than the length of the list, because the list index starts at 0, not at 1. In a

fourteen-item list, the legal indices are 0, 1, 2, and so on, up to 13. Trying to

use an out-of-range index results in an error:

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]
>>> whales[1001]
Traceback (most recent call last):

File "<stdin>", line 1, in ?
IndexError: list index out of range

Unlike most programming languages, Python also lets us index backward

from the end of a list. The last item is at index -1, the one before it at index

-2, and so on. Negative indices provide a way to access the last item, second-

to-last item and so on, without having to figure out the size of the list:

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]
>>> whales[-1]
3
>>> whales[-2]
1
>>> whales[-14]
5
>>> whales[-15]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list index out of range

report erratum • discuss

Storing and Accessing Data in Lists • 131

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Since each item in a list is an object, the items can be assigned to other

variables:

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]
>>> third = whales[2]
>>> print('Third day:', third)
Third day: 7

In Aliasing: What's in a Name?, on page 139, you will learn that an entire list,

such as the one that whales refers to, can be assigned to other variables. You

will also discover what effect that has.

The Empty List

In Chapter 4, Working with Text, on page 65, we saw the empty string, which

doesn’t contain any characters. There is also an empty list. An empty list is

a list with no items in it. As with all lists, an empty list is represented using

brackets:

>>> whales = []

Since an empty list has no items, trying to index an empty list results in an

error:

>>> whales[0]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list index out of range
>>> whales[-1]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list index out of range

Lists Are Heterogeneous

Lists can contain any type of data, including integers, strings, and even other

lists. Here is a list of information about the element krypton, including its

name, symbol, melting point (in degrees Celsius), and boiling point (also in

degrees Celsius):

>>> krypton = ['Krypton', 'Kr', -157.2, -153.4]
>>> krypton[1]
'Kr'
>>> krypton[2]
-157.2

A list is usually used to contain items of the same kind, like temperatures or

dates or grades in a course. A list can be used to aggregate related information

of different kinds, as we did with krypton, but this is prone to error. Here, we

Chapter 8. Storing Collections of Data Using Lists • 132

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

need to remember which temperature comes first and whether the name or

the symbol starts the list. Another common source of bugs is when you forget

to include a piece of data in your list (or perhaps it was missing in your source

of information). How, for example, would you keep track of similar information

for iridium if you don’t know the melting point? What information would you

put at index 2? A better, but more advanced way to do this is described in

Chapter 14, Object-Oriented Programming, on page 275.

Type Annotations for Lists

When writing type contracts for functions, often we’ll want to specify that the

values in a list parameter are all of a particular type. For example, we might

write a function to calculate the average of a list of floats:

>>> def average(L: list) -> float:
... """Return the average of the values in L.
...
... >>> average([1.4, 1.6, 1.8, 2.0])
... 1.7
... """

There is currently no indication that the function works only with lists of

numbers, but it would be odd to call it with a list of strings, for example. To

address this, Python includes module typing that allows us to specify the

expected type of value contained in a list (and in other types that you’ll

encounter in Chapter 10, Reading and Writing Files, on page 173 and Chapter

11, Storing Data Using Other Collection Types, on page 203). In order to prevent

conflicts with type list, this module contains a capitalized version, List, that we

can use in the type annotation:

>>> from typing import List
>>> def average(L: List[float]) -> float:
... """Return the average of the values in L.
...
... >>> average([1.4, 1.6, 1.8, 2.0])
... 1.7
... """

This doesn’t prevent a programmer from calling our function with other kinds

of data (even though this would often result in an error), but it does indicate

what we expect when someone calls our function.

Modifying Lists

Suppose you’re typing in a list of the noble gases and your fingers slip:

>>> nobles = ['helium', 'none', 'argon', 'krypton', 'xenon', 'radon']

report erratum • discuss

Type Annotations for Lists • 133

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The error here is that you typed 'none' instead of 'neon'. Here’s the memory

model that was created by that assignment statement:

0
id1

id7:list

id7nobles
1
id2

2
id3

3
id4

4
id5

5
id6

"helium"

id1:str

"none"

id2:str

"argon"

id3:str

"krypton"

id4:str

"xenon"

id5:str

"radon"

id6:str

Rather than retyping the whole list, you can assign a new value to a specific

element of the list:

>>> nobles[1] = 'neon'
>>> nobles
['helium', 'neon', 'argon', 'krypton', 'xenon', 'radon']

Here is the result after the assignment to nobles[1]:

That memory model also shows that list objects are mutable. That is, the

contents of a list can be mutated.

In the previous code, nobles[1] was used on the left side of the assignment

operator. It can also be used on the right side. In general, an expression of

the form L[i] (list L at index i) behaves just like a simple variable (see Variables

and Computer Memory: Remembering Values, on page 15).

If L[i] is used in an expression (such as on the right of an assignment statement),

it means “Get the value referred to by the memory address at index i of list L.”

On the other hand, if L[i] is on the left of an assignment statement (as in

nobles[1] = 'neon'), it means “Look up the memory address at index i of list L so

it can be overwritten.”

Chapter 8. Storing Collections of Data Using Lists • 134

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

In contrast to lists, numbers and strings are immutable. You cannot, for

example, change a letter in a string. Methods that appear to do that, like

upper, actually create new strings:

>>> name = 'Darwin'
>>> capitalized = name.upper()
>>> print(capitalized)
DARWIN
>>> print(name)
Darwin

Because strings are immutable, it is only possible to use an expression of the

form s[i] (string s at index i) on the right side of the assignment operator.

Operations on Lists

Functions That Python Provides, on page 31, and Operations on Strings, on

page 66, introduced a few of Python’s built-in functions. Some of these, such

as len, can be applied to lists, as well as others we haven’t seen before. (See

the following table.)

DescriptionFunction

Returns the number of items in list Llen(L)
Returns the maximum value in list Lmax(L)
Returns the minimum value in list Lmin(L)
Returns the sum of the values in list Lsum(L)
Returns a copy of list L where the items are in order from

smallest to largest (This does not mutate L.)
sorted(L)

Table 10—List Functions

Here are some examples. The half-life of a radioactive substance is the time

taken for half of it to decay. After twice this time has gone by, three-quarters

of the material will have decayed; after three times, seven-eighths will have

decayed, and so on.

An isotope is a form of a chemical element. Plutonium has several isotopes,

and each has a different half-life. Here are some of the built-in functions in

action working on a list of the half-lives of plutonium isotopes Pu-238, Pu-239,

Pu-240, Pu-241, and Pu-242:

>>> half_lives = [887.7, 24100.0, 6563.0, 14, 373300.0]
>>> len(half_lives)
5
>>> max(half_lives)
373300.0
>>> min(half_lives)

report erratum • discuss

Operations on Lists • 135

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

14
>>> sum(half_lives)
404864.7
>>> sorted(half_lives)
[14, 887.7, 6563.0, 24100.0, 373300.0]
>>> half_lives
[887.7, 24100.0, 6563.0, 14, 373300.0]

In addition to built-in functions, some of the operators that we have seen can

also be applied to lists. Like strings, lists can be combined using the concate-

nation (+) operator:

>>> original = ['H', 'He', 'Li']
>>> final = original + ['Be']
>>> final
['H', 'He', 'Li', 'Be']

This code doesn’t mutate either of the original list objects. Instead, it creates

a new list whose entries refer to the items in the original lists.

A list has a type, and Python complains if you use a value of some type in an

inappropriate way. For example, an error occurs when the concatenation

operator is applied to a list and a string:

>>> ['H', 'He', 'Li'] + 'Be'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "str") to list

You can also multiply a list by an integer to get a new list containing the ele-

ments from the original list repeated that number of times:

>>> metals = ['Fe', 'Ni']
>>> metals * 3
['Fe', 'Ni', 'Fe', 'Ni', 'Fe', 'Ni']

Chapter 8. Storing Collections of Data Using Lists • 136

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

As with concatenation, the original list isn’t modified; instead, a new list is

created.

One operator that does modify a list is del, which stands for delete. It can be

used to remove an item from a list, as follows:

>>> metals = ['Fe', 'Ni']
>>> del metals[0]
>>> metals
['Ni']

The in Operator on Lists

The in operator can be applied to lists to check whether an object is in a list:

>>> nobles = ['helium', 'neon', 'argon', 'krypton', 'xenon', 'radon']
>>> gas = input('Enter a gas: ')
Enter a gas: argon
>>> if gas in nobles:
... print('{} is noble.'.format(gas))
...
argon is noble.
>>> gas = input('Enter a gas: ')
Enter a gas: nitrogen
>>> if gas in nobles:
... print('{} is noble.'.format(gas))
...
>>>

Unlike with strings, when used with lists, the in operator checks only for a

single item. This code checks whether the list [1, 2] is an item in the list [0, 1,
2, 3]:

>>> [1, 2] in [0, 1, 2, 3]
False

Slicing Lists

Geneticists describe C. elegans phenotypes (nematodes, a type of microscopic

worms) using three-letter short-form markers. Examples include Emb

(embryonic lethality), Him (high incidence of males), Unc (uncoordinated), Dpy

(dumpy: short and fat), Sma (small), and Lon (long). We can keep a list:

>>> celegans_phenotypes = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> celegans_phenotypes
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

It turns out that Dpy worms and Sma worms are difficult to distinguish from

each other, so they aren’t as easily differentiated in complex strains. We can

report erratum • discuss

Slicing Lists • 137

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

produce a new list based on celegans_phenotypes but without Dpy or Sma by

taking a slice of the list:

>>> celegans_phenotypes = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> useful_markers = celegans_phenotypes[0:4]

This creates a new list consisting of only the four distinguishable markers,

which are the first four items from the list that celegans_phenotypes refers to:

The first index in the slice is the starting point. The second index is one more

than the index of the last item we want to include. For example, the last item

we wanted to include, Lon, had an index of 3, so we use 4 for the second index.

More rigorously, list[i:j] is a slice of the original list from index i (inclusive) up

to, but not including, index j (exclusive). Python uses this convention to be

consistent with the rule that the legal indices for a list go from 0 up to one

less than the list’s length.

The first index can be omitted if we want to slice from the beginning of the

list, and the last index can be omitted if we want to slice to the end:

>>> celegans_phenotypes = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> celegans_phenotypes[:4]
['Emb', 'Him', 'Unc', 'Lon']
>>> celegans_phenotypes[4:]
['Dpy', 'Sma']

To create a copy of the entire list, omit both indices so that the “slice” runs

from the start of the list to its end:

>>> celegans_phenotypes = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> celegans_copy = celegans_phenotypes[:]
>>> celegans_phenotypes[5] = 'Lvl'
>>> celegans_phenotypes
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']

Chapter 8. Storing Collections of Data Using Lists • 138

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> celegans_copy
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

The list referred to by celegans_copy is a clone of the list referred to by celegans_phe-
notypes. The lists have the same items, but the lists themselves are different

objects at different memory addresses:

In List Methods, on page 141, you will learn about a list method that can be

used to make a copy of a list.

Aliasing: What’s in a Name?

An alias is an alternative name for something. In Python, two variables are

said to be aliases when they contain the same memory address. For example,

the following code creates two variables, both of which refer to a single list:

"Emb"

id1:str

"Him"

id2:str

"Unc"

id3:str

"Lon"

id4:str

id7celegans_alias

id7celegans_markers

id7:list

0
id1

1
id2

2
id3

"Dpy"

id5:str

"Sma"

id6:str

3
id4

4
id5

5
id8

"Lvl"

id8:str

When we modify the list using one of the variables, references through the

other variable show the change as well:

>>> celegans_phenotypes = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> celegans_alias = celegans_phenotypes
>>> celegans_phenotypes[5] = 'Lvl'
>>> celegans_phenotypes
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']
>>> celegans_alias
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']

Aliasing is one of the reasons why the notion of mutability is important. For

example, if x and y refer to the same list, then any changes you make to the

report erratum • discuss

Aliasing: What’s in a Name? • 139

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

list through x will be “seen” by y, and vice versa. This can lead to all sorts of

hard-to-find errors in which a list’s value changes as if by magic, even though

your program doesn’t appear to assign anything to it. This can’t happen with

immutable values like strings. Since a string can’t be changed after it has

been created, it’s safe to have aliases for it.

Mutable Parameters

Aliasing occurs when you use list parameters as well, since parameters are

variables. Here is a function that takes a list, removes its last item, and returns

the list:

>>> def remove_last_item(L: list) -> list:
... """Return list L with the last item removed.
...
... Precondition: len(L) >= 0
...
... >>> remove_last_item([1, 3, 2, 4])
... [1, 3, 2]
... """
... del L[-1]
... return L
...
>>>

In the code that follows, a list is created and stored in a variable; then that

variable is passed as an argument to remove_last_item:

>>> celegans_markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']
>>> remove_last_item(celegans_markers)
['Emb', 'Him', 'Unc', 'Lon', 'Dpy']
>>> celegans_markers
['Emb', 'Him', 'Unc', 'Lon', 'Dpy']

When the call on function remove_last_item is executed, parameter L is assigned

the memory address that celegans_markers contains. That makes celegans_markers
and L aliases. When the last item of the list that L refers to is removed, that

change is “seen” by celegan_markers as well.

Since remove_last_item modifies the list parameter, the modified list doesn’t

actually need to be returned. You can remove the return statement:

>>> def remove_last_item(L: list) -> None:
... """Remove the last item from L.
...
... Precondition: len(L) >= 0
...
... >>> remove_last_item([1, 3, 2, 4])
... """

Chapter 8. Storing Collections of Data Using Lists • 140

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

... del L[-1]

...
>>> celegans_markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']
>>> remove_last_item(celegans_markers)
>>> celegans_markers
['Emb', 'Him', 'Unc', 'Lon', 'Dpy']

Notice that we did not use typing.List in the type contract for remove_last_item.

This is because the function does not rely on having values of any particular

type inside the list. We could instead use typing.List and specify Any as the type:

>>> from typing import List, Any
>>> def remove_last_item(L: List[Any]) -> None:
... """Remove the last item from L.
...
... Precondition: len(L) >= 0
...
... >>> remove_last_item([1, 3, 2, 4])
... """
... del L[-1]

As we’ll see in List Methods, on page 141, several methods modify a list and

return None, like the second version of remove_last_item.

List Methods

Lists are objects and thus have methods. Table 11, List Methods, on page 142

gives some of the most commonly used list methods.

Here is a sample interaction showing how we can use list methods to construct

a list of many colors:

>>> colors = ['red', 'orange', 'green']
>>> colors.extend(['black', 'blue'])
>>> colors
['red', 'orange', 'green', 'black', 'blue']
>>> colors.append('purple')
>>> colors
['red', 'orange', 'green', 'black', 'blue', 'purple']
>>> colors.insert(2, 'yellow')
>>> colors
['red', 'orange', 'yellow', 'green', 'black', 'blue', 'purple']
>>> colors.remove('black')
>>> colors
['red', 'orange', 'yellow', 'green', 'blue', 'purple']

All the methods shown here modify the list instead of creating a new list. The

same is true for the methods clear, reverse, sort, and pop. Of those methods, only

pop returns a value other than None. (pop returns the item that was removed

report erratum • discuss

List Methods • 141

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

DescriptionMethod

Appends value v to list L.L.append(v)
Removes all items from list L.L.clear()
Returns the number of occurrences of v in list L.L.count(v)
Appends the items in v to L.L.extend(v)
Returns the index of the first occurrence of v in L—an

error is raised if v doesn’t occur in L.
L.index(v)

Returns the index of the first occurrence of v at or after

index beg in L—an error is raised if v doesn’t occur in

that part of L.

L.index(v, beg)

Returns the index of the first occurrence of v between

indices beg (inclusive) and end (exclusive) in L; an error

is raised if v doesn’t occur in that part of L.

L.index(v, beg, end)

Inserts value v at index i in list L, shifting subsequent

items to make room.

L.insert(i, v)

Removes and returns the last item of L (which must be

nonempty).

L.pop()

Removes the first occurrence of value v from list L.L.remove(v)
Reverses the order of the values in list L.L.reverse()
Sorts the values in list L in ascending order (for strings

with the same letter case, it sorts in alphabetical order).

L.sort()

Sorts the values in list L in descending order (for strings

with the same letter case, it sorts in reverse alphabetical

order).

L.sort(reverse=True)

Table 11—List Methods

from the list.) In fact, the only method that returns a list is copy, which is

equivalent to L[:].

Finally, a call to append isn’t the same as using +. First, append appends a single

value, while + expects two lists as operands. Second, append modifies the list

rather than creating a new one.

Working with a List of Lists

We said in Lists Are Heterogeneous, on page 132 that lists can contain any

type of data. That means that they can contain other lists. A list whose items

are lists is called a nested list. For example, the following nested list describes

life expectancies in different countries:

>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]

Chapter 8. Storing Collections of Data Using Lists • 142

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Where Did My List Go?

Programmers occasionally forget that many list methods return None rather than

creating and returning a new list. As a result, lists sometimes seem to disappear:

>>> colors = 'red orange yellow green blue purple'.split()
>>> colors
['red', 'orange', 'yellow', 'green', 'blue', 'purple']
>>> sorted_colors = colors.sort()
>>> print(sorted_colors)
None

In this example, colors.sort() did two things: it sorted the items in the list, and it returned

the value None. That’s why variable sorted_colors refers to None. Variable colors, on the

other hand, refers to the sorted list:

>>> colors
['blue', 'green', 'orange', 'purple', 'red', 'yellow']

Methods that mutate a collection, such as append and sort, return None; it’s a common

error to expect that they’ll return the resulting list. As we discussed in Testing Your

Code Semiautomatically, on page 110, mistakes like these can be caught by writing

and running a few tests.

Here is the memory model that results from execution of that assignment

statement:

0
id1

id3:list

1
id2

id10life

id10:list

0
id3

1
id6

2
id9

"Canada"

id1:str

0
id4

id6:list

1
id5

0
id7

id9:list

1
id8

76.5

id2:float
"United States"

id4:str

75.5

id5:float
"Mexico"

id7:str

72.0

id8:float

Notice that each item in the outer list is itself a list of two items. We use the

standard indexing notation to access the items in the outer list:

>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]
>>> life[0]
['Canada', 76.5]
>>> life[1]
['United States', 75.5]
>>> life[2]
['Mexico', 72.0]

report erratum • discuss

Working with a List of Lists • 143

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Since each of these items is also a list, we can index it again, just as we can

chain together method calls or nest function calls:

>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]
>>> life[1]
['United States', 75.5]
>>> life[1][0]
'United States'
>>> life[1][1]
75.5

We can also assign sublists to variables:

>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]
>>> canada = life[0]
>>> canada
['Canada', 76.5]
>>> canada[0]
'Canada'
>>> canada[1]
76.5

Assigning a sublist to a variable creates an alias for that sublist:

0
id1

id3:list

1
id2

id10life

id10:list

0
id3

1
id6

2
id9

"Canada"

id1:str

0
id4

id6:list

1
id5

0
id7

id9:list

1
id8

76.5

id2:float
"United States"

id4:str

75.5

id5:float
"Mexico"

id7:str

72.0

id8:float

id3canada

As before, any change we make through the sublist reference will be seen

when we access the main list, and vice versa:

>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]
>>> canada = life[0]
>>> canada[1] = 80.0
>>> canada
['Canada', 80.0]
>>> life
[['Canada', 80.0], ['United States', 75.5], ['Mexico', 72.0]]

Chapter 8. Storing Collections of Data Using Lists • 144

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

A Summary List

In this chapter, you learned the following:

• Lists are used to keep track of zero or more objects. The objects in a list

are called items or elements. Each item has a position in the list called

an index and that position ranges from zero to one less than the length

of the list.

• Lists can contain any type of data, including other lists.

• Lists are mutable, which means that their contents can be modified.

• Slicing is used to create new lists that have the same values or a subset

of the values of the originals.

• When two variables refer to the same object, they are called aliases.

• Module typing contains type List, and this can be used in type contracts to

annotate the type of values a particular list is expected to contain.

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. Variable kingdoms refers to the list ['Bacteria', 'Protozoa', 'Chromista', 'Plantae', 'Fungi',
'Animalia']. Using kingdoms and either slicing or indexing with positive indices,

write expressions that produce the following:

a. The first item of kingdoms

b. The last item of kingdoms

c. The list ['Bacteria', 'Protozoa', 'Chromista']

d. The list ['Chromista', 'Plantae', 'Fungi']

e. The list ['Fungi', 'Animalia']

f. The empty list

2. Repeat the previous exercise using negative indices.

3. Variable appointments refers to the list ['9:00', '10:30', '14:00', '15:00', '15:30']. An

appointment is scheduled for 16:30, so '16:30' needs to be added to the list.

a. Using list method append, add '16:30' to the end of the list that appoint-
ments refers to.

report erratum • discuss

A Summary List • 145

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

b. Instead of using append, use the + operator to add '16:30' to the end of

the list that appointments refers to.

c. You used two approaches to add '16:30' to the list. Which approach

modified the list and which approach created a new list?

4. Variable ids refers to the list [4353, 2314, 2956, 3382, 9362, 3900]. Using list

methods, do the following:

a. Remove 3382 from the list.

b. Get the index of 9362.

c. Insert 4499 in the list after 9362.

d. Extend the list by adding [5566, 1830] to it.

e. Reverse the list.

f. Sort the list.

5. In this exercise, you’ll create a list and then answer questions about that

list.

a. Assign a list that contains the atomic numbers of the six alkaline earth

metals—beryllium (4), magnesium (12), calcium (20), strontium (38),

barium (56), and radium (88)—to a variable called alkaline_earth_metals.

b. Which index contains radium’s atomic number? Write the answer in two

ways, one using a positive index and one using a negative index.

c. Which function tells you how many items there are in alkaline_earth_metals?

d. Write code that returns the highest atomic number in alkaline_earth_metals.
(Hint: Use one of the functions from Table 10, List Functions, on page 135.)

6. In this exercise, you’ll create a list and then answer questions about that

list.

a. Create a list of temperatures in degrees Celsius with the values 25.2,

16.8, 31.4, 23.9, 28, 22.5, and 19.6, and assign it to a variable called

temps.

b. Using one of the list methods, sort temps in ascending order.

c. Using slicing, create two new lists, cool_temps and warm_temps, which contain

the temperatures below and above 20 degrees Celsius, respectively.

d. Using list arithmetic, recombine cool_temps and warm_temps into a new

list called temps_in_celsius.

Chapter 8. Storing Collections of Data Using Lists • 146

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

7. Complete the examples in the docstring and then write the body of the

following function:

def same_first_last(L: list) -> bool:
"""Precondition: len(L) >= 2

Return True if and only if first item of the list is the same as the
last.

>>> same_first_last([3, 4, 2, 8, 3])
True
>>> same_first_last(['apple', 'banana', 'pear'])

>>> same_first_last([4.0, 4.5])

"""

8. Complete the examples in the docstring and then write the body of the

following function:

def is_longer(L1: list, L2: list) -> bool:
"""Return True if and only if the length of L1 is longer than the length
of L2.

>>> is_longer([1, 2, 3], [4, 5])
True
>>> is_longer(['abcdef'], ['ab', 'cd', 'ef'])

>>> is_longer(['a', 'b', 'c'], [1, 2, 3]

"""

9. Draw a memory model showing the effect of the following statements:

values = [0, 1, 2]
values[1] = values

10. Variable units refers to the nested list [['km', 'miles', 'league'], ['kg', 'pound', 'stone']].
Using units and either slicing or indexing with positive indices, write

expressions that produce the following:

a. The first item of units (the first inner list)

b. The last item of units (the last inner list)

c. The string 'km'

d. The string 'kg'

e. The list ['miles', 'league']

f. The list ['kg', 'pound']

11. Repeat the previous exercise using negative indices.

report erratum • discuss

Exercises • 147

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 9

Repeating Code Using Loops

This chapter introduces another fundamental kind of control flow: repetition.

Up to now, to execute an instruction two hundred times, you would need to

write that instruction two hundred times. Now you’ll see how to write the

instruction once and use loops to repeat that code the desired number of

times.

Processing Items in a List

With what you’ve learned so far, to print the items from a list of velocities of

falling objects in metric and Imperial units, you would need to write a call on

function print for each velocity in the list:

>>> velocities = [0.0, 9.81, 19.62, 29.43]
>>> print('Metric:', velocities[0], 'm/sec;',
... 'Imperial:', velocities[0] * 3.28, 'ft/sec')
Metric: 0.0 m/sec; Imperial: 0.0 ft/sec
>>> print('Metric:', velocities[1], 'm/sec;',
... 'Imperial:', velocities[1] * 3.28, 'ft/sec')
Metric: 9.81 m/sec; Imperial: 32.1768 ft/sec
>>> print('Metric:', velocities[2], 'm/sec; ',
... 'Imperial:', velocities[2] * 3.28, 'ft/sec')
Metric: 19.62 m/sec; Imperial: 64.3536 ft/sec
>>> print('Metric:', velocities[3], 'm/sec; ',
... 'Imperial:', velocities[3] * 3.28, 'ft/sec')
Metric: 29.43 m/sec; Imperial: 96.5304 ft/sec

This code is used to process a list with just four values. Imagine processing

a list with a thousand values. Lists were invented so that you wouldn’t have

to create a thousand variables to store a thousand values. For the same rea-

son, Python has a for loop that lets you process each element in a list in turn

without having to write one statement per element. You can use a for loop to

print the velocities:

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> velocities = [0.0, 9.81, 19.62, 29.43]
>>> for velocity in velocities:
... print('Metric:', velocity, 'm/sec;',
... 'Imperial:', velocity * 3.28, 'ft/sec')
...
Metric: 0.0 m/sec; Imperial: 0.0 ft/sec
Metric: 9.81 m/sec; Imperial: 32.1768 ft/sec
Metric: 19.62 m/sec; Imperial: 64.3536 ft/sec
Metric: 29.43 m/sec; Imperial: 96.5304 ft/sec

The general form of a for loop over a list is as follows:

for «variable» in «list»:
«block»

A for loop is executed as follows:

• The loop variable is assigned the first item in the list, and the loop

block—the body of the for loop—is executed.

• The loop variable is then assigned the second item in the list and the loop

body is executed again.

...

• Finally, the loop variable is assigned the last item of the list and the loop

body is executed one last time.

As we saw in Defining Our Own Functions, on page 35, a block is just a

sequence of one or more statements. Each pass through the block is called

an iteration, and at the start of each iteration, Python assigns the next item

in the list to the loop variable. As with function definitions and if statements,

the statements in the loop block are indented.

In the previous code, before the first iteration, variable velocity is assigned

velocities[0] and then the loop body is executed; before the second iteration it

is assigned velocities[1] and then the loop body is executed; and so on. In this

way, the program can do something with each item in turn. Table 12, Looping

Over List Velocities, on page 151, contains the value of velocity at the start of

each iteration, as well as what is printed during that iteration.

In the previous example, we created a new variable, velocity, to refer to the

current item of the list inside the loop. We could have equally well used an

existing variable.

If we use an existing variable, the loop still starts with the variable referring

to the first element of the list. The content of the variable before the loop is

lost, exactly as if we had used an assignment statement to give a new value

to that variable.

Chapter 9. Repeating Code Using Loops • 150

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

What Is Printed During This IterationList Item Referred to at

Start of Iteration

Iteration

Metric: 0.0 m/sec; Imperial: 0.0 ft/secvelocities[0]1st

Metric: 9.81 m/sec; Imperial: 32.1768 ft/secvelocities[1]2nd

Metric: 19.62 m/sec; Imperial: 64.3536 ft/secvelocities[2]3rd

Metric: 29.43 m/sec; Imperial: 96.5304 ft/secvelocities[3]4th

Table 12—Looping Over List Velocities

The variable is left holding its last value when the loop finishes:

>>> speed = 2
>>> velocities = [0.0, 9.81, 19.62, 29.43]
>>> for speed in velocities:
... print('Metric:', speed, 'm/sec')
...
Metric: 0.0 m/sec
Metric: 9.81 m/sec
Metric: 19.62 m/sec
Metric: 29.43 m/sec
>>> print('Final:', speed)
Final: 29.43

Notice that the last print statement isn’t indented, so it is not part of the for
loop. It is executed, only once, after the for loop execution has finished.

Processing Characters in Strings

It is also possible to loop over the characters of a string. The general form of

a for loop over a string is as follows:

for «variable» in «str»:
«block»

As with a for loop over a list, the loop variable gets assigned a new value at

the beginning of each iteration. In the case of a loop over a string, the variable

is assigned a single character.

For example, we can loop over each character in a string, printing the

uppercase letters:

>>> country = 'United States of America'
>>> for ch in country:
... if ch.isupper():
... print(ch)
...
U
S
A

report erratum • discuss

Processing Characters in Strings • 151

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

In the previous code, variable ch is assigned country[0] before the first iteration, country[1]
before the second, and so on. The loop iterates twenty-four times (once per character)

and the if statement block is executed three times (once per uppercase letter).

Looping Over a Range of Numbers

We can also loop over a range of values. This allows us to perform tasks a certain

number of times and to do more sophisticated processing of lists and strings. To

begin, we need to generate the range of numbers over which to iterate.

Generating Ranges of Numbers

Python’s built-in function range produces an object that will generate a

sequence of integers. When passed a single argument, as in range(stop), the

sequence starts at 0 and continues to the integer before stop:

>>> range(10)
range(0, 10)

This is the first time that you’ve seen Python’s range type. You can use a loop

to access each number in the sequence one at a time:

>>> for num in range(10):
... print(num)
...
0
1
2
3
4
5
6
7
8
9

To get the numbers from the sequence all at once, we can use built-in function

list to create a list of those numbers:

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Here are some more examples:

>>> list(range(3))
[0, 1, 2]
>>> list(range(1))
[0]
>>> list(range(0))
[]

Chapter 9. Repeating Code Using Loops • 152

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The sequence produced includes the start value and excludes the stop value,

which is (deliberately) consistent with how sequence indexing works: the expres-

sion seq[0:5] takes a slice of seq up to, but not including, the value at index 5.

Notice that in the previous code, we call list on the value produced by the call

on range. Function range returns a range object, and we create a list based on

its values in order to work with it using the set of list operations and methods

we are already familiar with.

Function range can also be passed two arguments, where the first is the start

value and the second is the stop value:

>>> list(range(1, 5))
[1, 2, 3, 4]
>>> list(range(1, 10))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(5, 10))
[5, 6, 7, 8, 9]

By default, function range generates numbers that successively increase by

one—this is called its step size. We can specify a different step size for range
with an optional third parameter.

Here we produce a list of leap years in the first half of this century:

>>> list(range(2000, 2050, 4))
[2000, 2004, 2008, 2012, 2016, 2020, 2024, 2028, 2032, 2036, 2040, 2044, 2048]

The step size can also be negative, which produces a descending sequence.

When the step size is negative, the starting index should be larger than the

stopping index:

>>> list(range(2050, 2000, -4))
[2050, 2046, 2042, 2038, 2034, 2030, 2026, 2022, 2018, 2014, 2010, 2006, 2002]

Otherwise, range’s result will be empty:

>>> list(range(2000, 2050, -4))
[]
>>> list(range(2050, 2000, 4))
[]

It’s possible to loop over the sequence produced by a call on range. For example,

the following program calculates the sum of the integers from 1 to 100:

>>> total = 0
>>> for i in range(1, 101):
... total = total + i
...
>>> total
5050

report erratum • discuss

Looping Over a Range of Numbers • 153

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Notice that the upper bound passed to range is 101. It’s one more than the

greatest integer we actually want.

Processing Lists Using Indices

The loops over lists that we have written so far have been used to access list

items. But what if we want to change the items in a list? For example, suppose

we want to double all of the values in a list. The following doesn’t work:

>>> values = [4, 10, 3, 8, -6]
>>> for num in values:
... num = num * 2
...
>>> values
[4, 10, 3, 8, -6]

Each loop iteration assigned an item in the list values to variable num. Doubling

that value inside the loop changes what num refers to, but it doesn’t mutate

the list object. For example, after one iteration of the loop, the list is

unchanged and num refers to 8 (twice its original value):

Let’s add a call on function print to show how the value that num refers to

changes during each iteration:

>>> values = [4, 10, 3, 8, -6]
>>> for num in values:
... num = num * 2
... print(num)
...
8
20
6
16
-12
>>> print(values)
[4, 10, 3, 8, -6]

Chapter 9. Repeating Code Using Loops • 154

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The correct approach is to loop over the indices of the list. If variable values refers

to a list, then len(values) is the number of items it contains, and the expression

range(len(values)) produces a sequence containing exactly the indices for values:

>>> values = [4, 10, 3, 8, -6]
>>> len(values)
5
>>> list(range(5))
[0, 1, 2, 3, 4]
>>> list(range(len(values)))
[0, 1, 2, 3, 4]

The list that values refers to has five items, so its indices are 0, 1, 2, 3, and 4.
Rather than looping over values, you can iterate over its indices, which are

produced by range(len(values)):

>>> values = [4, 10, 3, 8, -6]
>>> for i in range(len(values)):
... print(i)
...
0
1
2
3
4

Notice that we called the variable i, which stands for index. You can use each

index to access the items in the list:

>>> values = [4, 10, 3, 8, -6]
>>> for i in range(len(values)):
... print(i, values[i])
...
0 4
1 10
2 3
3 8
4 -6

You can also use them to modify list items:

>>> values = [4, 10, 3, 8, -6]
>>> for i in range(len(values)):
... values[i] = values[i] * 2
...
>>> values
[8, 20, 6, 16, -12]

Evaluation of the expression on the right side of the assignment looks up the

value at index i and multiplies it by two. Python then assigns that value to the

report erratum • discuss

Processing Lists Using Indices • 155

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

item at index i in the list. When i refers to 1, for example, values[i] refers to 10, which

is multiplied by 2 to produce 20. The list item values[1] is then assigned 20.

Processing Parallel Lists Using Indices

Sometimes the data from one list corresponds to data from another. For

example, consider these two lists:

>>> metals = ['Li', 'Na', 'K']
>>> weights = [6.941, 22.98976928, 39.0983]

The item at index 0 of metals has its atomic weight at index 0 of weights. The

same is true for the items at index 1 in the two lists, and so on. These lists

are parallel lists, because the item at index i of one list corresponds to the

item at index i of the other list.

We would like to print each metal and its weight. To do so, we can loop over

each index of the lists, accessing the items in each:

>>> metals = ['Li', 'Na', 'K']
>>> weights = [6.941, 22.98976928, 39.0983]
>>> for i in range(len(metals)):
... print(metals[i], weights[i])
...
Li 6.941
Na 22.98976928
K 39.0983

This code works only when the length of weights is at least as long as the length

of metals. If the length of weights is less than the length of metals, then an error

would occur when trying to access an index of weights that doesn’t exist. For

example, if metals has three items and weights has only two, the first two print

function calls would be executed, but during the third function call, an error

would occur when evaluating the second argument.

Nesting Loops in Loops

The block of statements inside a loop can contain another loop. In this code,

the inner loop is executed once for each item of list outer:

>>> outer = ['Li', 'Na', 'K']
>>> inner = ['F', 'Cl', 'Br']
>>> for metal in outer:
... for halogen in inner:
... print(metal + halogen)
...
...

Chapter 9. Repeating Code Using Loops • 156

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

LiF
LiCl
LiBr
NaF
NaCl
NaBr
KF
KCl
KBr

The number of times that function print is called is len(outer) * len(inner). In Table

13 we show that for each iteration of the outer loop (that is, for each item in

outer), the inner loop executes three times (once per item in inner).

What Is PrintedWhat halogen

Refers To

Iteration of

Inner Loop

What metal

Refers To

Iteration of

Outer Loop

LiFinner[0]1stouter[0]1st

LiClinner[1]2nd

LiBrinner[2]3rd

NaFinner[0]1stouter[1]2nd

NaClinner[1]2nd

NaBrinner[2]3rd

KFinner[0]1stouter[2]3rd

KClinner[1]2nd

KBrinner[2]3rd

Table 13—Nested Loops Over Inner and Outer Lists

Sometimes an inner loop uses the same list as the outer loop. An example of

this is shown in a function used to generate a multiplication table. After

printing the header row, we use a nested loop to print each row of the table

in turn, using tabs (see Table 4, Escape Sequences, on page 69) to make the

columns line up:

def print_table(n: int) -> None:
"""Print the multiplication table for numbers 1 through n inclusive.

>>> print_table(5)
1 2 3 4 5

1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25
"""
The numbers to include in the table.
numbers = list(range(1, n + 1))

report erratum • discuss

Nesting Loops in Loops • 157

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Print the header row.
for i in numbers:

print('\t' + str(i), end='')

End the header row.
print()

Print each row number and the contents of each row.
for i in numbers:❶

print (i, end='')❷
for j in numbers:❸

print('\t' + str(i * j), end='')❹

End the current row.
print()❺

Each iteration of the outer loop prints a row. Each row consists of a row

number, n tab-number pairs, and a newline. It’s the inner loop’s job to print

the tabs and numbers’ part of the row. For print_table(5), let’s take a closer look

at what happens during the third iteration of the outer loop:

❶ i is assigned 3, the third item of numbers.

❷ The row number, 3, is printed.

❸ This line of code is the inner loop header, and it will be executed five times.

Before the first iteration of the inner loop, j is assigned 1; before the second

iteration, it is assigned 2; and so on, until it is assigned 5 before the last iteration.

❹ Five times this line is executed right after the previous line using whatever

value j was just assigned. The first time it prints a tab followed by 3, then a

tab followed by 6, and so on until it prints a tab followed by 15.

❺ Now that a row has been printed, the program prints a newline. This line of

code occurs outside of the inner loop so that it is executed only once per row.

Looping Over Nested Lists

In addition to looping over lists of numbers, strings, and Booleans, we can

also loop over lists of lists. Here is an example of a loop over an outer list.

The loop variable, which we’ve named inner_list, is assigned an item of nested

list elements at the beginning of each iteration:

>>> elements = [['Li', 'Na', 'K'], ['F', 'Cl', 'Br']]
>>> for inner_list in elements:
... print(inner_list)
...
['Li', 'Na', 'K']
['F', 'Cl', 'Br']

Chapter 9. Repeating Code Using Loops • 158

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

To access each string in the inner lists, you can loop over the outer list and

then over each inner list using a nested loop. Here, we print every string in

every inner list:

>>> elements = [['Li', 'Na', 'K'], ['F', 'Cl', 'Br']]
>>> for inner_list in elements:
... for item in inner_list:
... print(item)
...
Li
Na
K
F
Cl
Br

In the previous code, the outer loop variable, inner_list, refers to a list of strings,

and the inner loop variable, item, refers to a string from that list.

When you have a nested list and you want to do something with every item

in the inner lists, you need to use a nested loop.

Looping Over Ragged Lists

Nothing says that nested lists have to be the same length:

>>> info = [['Isaac Newton', 1643, 1727],
... ['Charles Darwin', 1809, 1882],
... ['Alan Turing', 1912, 1954, 'alan@bletchley.uk']]
>>> for item in info:
... print(len(item))
...
3
3
4

Nested lists with inner lists of varying lengths are called ragged lists. Ragged

lists can be tricky to process if the data isn’t uniform; for example, trying to

assemble a list of email addresses for data where some addresses are missing

requires careful thought.

Ragged data does arise normally. For example, if a record is made each day

of the time at which a person has a drink of water, each day will have a dif-

ferent number of entries:

>>> drinking_times_by_day = [["9:02", "10:17", "13:52", "18:23", "21:31"],
... ["8:45", "12:44", "14:52", "22:17"],
... ["8:55", "11:11", "12:34", "13:46",
... "15:52", "17:08", "21:15"],
... ["9:15", "11:44", "16:28"],

report erratum • discuss

Nesting Loops in Loops • 159

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

... ["10:01", "13:33", "16:45", "19:00"],

... ["9:34", "11:16", "15:52", "20:37"],

... ["9:01", "12:24", "18:51", "23:13"]]
>>> for day in drinking_times_by_day:
... for drinking_time in day:
... print(drinking_time, end=' ')
... print()
...
9:02 10:17 13:52 18:23 21:31
8:45 12:44 14:52 22:17
8:55 11:11 12:34 13:46 15:52 17:08 21:15
9:15 11:44 16:28
10:01 13:33 16:45 19:00
9:34 11:16 15:52 20:37
9:01 12:24 18:51 23:13

The inner loop iterates over the items of day, and the length of that list varies.

Looping Until a Condition Is Reached

for loops are useful only if you know how many iterations of the loop you need.

In some situations, it is not known in advance how many loop iterations to

execute. In a game program, for example, you can’t know whether a player

is going to want to play again or quit. In these situations, we use a while loop.

The general form of a while loop is as follows:

while «expression»:
«block»

The while loop expression is sometimes called the loop condition and it is similar

to condition of an if statement. When Python executes a while loop, it evaluates

the expression. If that expression evaluates to False, that is the end of the exe-

cution of the loop. If the expression evaluates to True, on the other hand, Python

executes the loop body once and then goes back to the top of the loop and

reevaluates the expression. If it still evaluates to True, the loop body is executed

again. This is repeated—expression, body, expression, body—until the expres-

sion evaluates to False, at which point Python stops executing the loop.

Here’s an example:

>>> rabbits = 3
>>> while rabbits > 0:
... print(rabbits)
... rabbits = rabbits - 1
...
3
2
1

Chapter 9. Repeating Code Using Loops • 160

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Notice that this loop did not print 0. When the number of rabbits reaches

zero, the loop expression evaluates to False, so the body isn’t executed. Here’s

a flowchart for this code:

True
rabbits > 0 block

False

As a more useful example, we can calculate the growth of a bacterial colony

using a simple exponential growth model, which is essentially a calculation

of compound interest:

P(t + 1) = P(t) + rP(t)

In this formula, P(t) is the population size at time t and r is the growth rate.

Using this program, let’s see how long it takes the bacteria to double their

numbers:

time = 0
population = 1000 # 1000 bacteria to start with
growth_rate = 0.21 # 21% growth per minute
while population < 2000:

population = population + growth_rate * population
print(round(population))
time = time + 1

print("It took", time, "minutes for the bacteria to double.")
print("The final population was", round(population), "bacteria.")

Because variable time was updated in the loop body, its value after the loop

was the time of the last iteration, which is exactly what we want. Running

this program gives us the answer we were looking for:

1210
1464
1772
2144
It took 4 minutes for the bacteria to double.
The final population was 2144 bacteria.

report erratum • discuss

Looping Until a Condition Is Reached • 161

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Infinite Loops

The preceding example used population < 2000 as a loop condition so that the

loop stopped when the population reached double its initial size or more. What

would happen if we stopped only when the population was exactly double its

initial size?

Use multivalued assignment to set up controls
time, population, growth_rate = 0, 1000, 0.21

Don't stop until we're exactly double the original size
while population != 2000:

population = population + growth_rate * population
print(round(population))
time = time + 1

print("It took", time, "minutes for the bacteria to double.")

Here is this program’s output:

1210
1464
1772
2144
...3,680 lines or so later...
inf
inf
inf
...and so on forever...

Whoops—since the population is never exactly two thousand bacteria, the

loop never stops. The first set of dots represents more than three thousand

values, each 21 percent larger than the one before. Eventually, these values

are too large for the computer to represent, so it displays inf (or on some

computers 1.#INF), which is its way of saying “effectively infinity.”

A loop like this one is called an infinite loop, because the computer will execute

it forever (or until you kill your program, whichever comes first). In IDLE, you

kill your program by selecting Restart Shell from the Shell menu; from the

command-line shell, you can kill it by pressing Ctrl-C. Infinite loops are a

common kind of bug; the usual symptoms include printing the same value

over and over again or hanging (doing nothing at all).

Repetition Based on User Input

We can use function input in a loop to make the chemical formula translation

example from Choosing Which Statements to Execute, on page 86, interactive.

We will ask the user to enter a chemical formula, and our program, which is

Chapter 9. Repeating Code Using Loops • 162

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

saved in a file named formulas.py, will print its name. This should continue

until the user types quit:

text = ""
while text != "quit":

text = input("Please enter a chemical formula (or 'quit' to exit): ")
if text == "quit":

print("…exiting program")
elif text == "H2O":

print("Water")
elif text == "NH3":

print("Ammonia")
elif text == "CH4":

print("Methane")
else:

print("Unknown compound")

Since the loop condition checks the value of text, we have to assign it a value

before the loop begins. Now we can run the program in formulas.py and it will

exit whenever the user types quit:

Please enter a chemical formula (or 'quit' to exit): CH4
Methane
Please enter a chemical formula (or 'quit' to exit): H2O
Water
Please enter a chemical formula (or 'quit' to exit): quit
…exiting program

The number of times that this loop executes will vary depending on user

input, but it will execute at least once.

Controlling Loops Using break and continue

As a rule, for and while loops execute all the statements in their body on each

iteration. However, sometimes it is handy to be able to break that rule. Python

provides two ways of controlling the iteration of a loop: break, which terminates

execution of the loop immediately, and continue, which skips ahead to the next

iteration.

The break Statement

In Repetition Based on User Input, on page 162, we showed a program that

continually read input from a user until the user typed quit. Here is a program

that accomplishes the same task, but this one uses break to terminate execution

of the loop when the user types quit:

report erratum • discuss

Controlling Loops Using break and continue • 163

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

while True:
text = input("Please enter a chemical formula (or 'quit' to exit): ")
if text == "quit":

print("…exiting program")
break

elif text == "H2O":
print("Water")

elif text == "NH3":
print("Ammonia")

elif text == "CH4":
print("Methane")

else:
print("Unknown compound")

The loop condition is strange: it evaluates to True, so this looks like an infinite

loop. However, when the user types quit, the first condition, text == "quit", eval-

uates to True. The print("…exiting program") statement is executed, and then the

break statement, which causes the loop to terminate.

As a style point, we are somewhat allergic to loops that are written like this.

We find that a loop with an explicit condition is easier to understand.

Sometimes a loop’s task is finished before its final iteration. Using what you have

seen so far, though, the loop still has to finish iterating. For example, let’s write

some code to find the index of the first digit in string 'C3H7'. The digit 3 is at index

1 in this string. Using a for loop, we would have to write something like this:

>>> s = 'C3H7'
>>> digit_index = -1 # This will be -1 until we find a digit.
>>> for i in range(len(s)):
... # If we haven't found a digit, and s[i] is a digit
... if digit_index == -1 and s[i].isdigit():
... digit_index = i
...
>>> digit_index
1

Here we use variable digit_index to represent the index of the first digit in the

string. It initially refers to -1, but when a digit is found, the digit’s index, i, is
assigned to digit_index. If the string doesn’t contain any digits, then digit_index
remains -1 throughout execution of the loop.

Once digit_index has been assigned a value, it is never again equal to -1, so the

if condition will not evaluate to True. Even though the job of the loop is done,

the loop continues to iterate until the end of the string is reached.

To fix this, you can terminate the loop early using a break statement, which

jumps out of the loop body immediately:

Chapter 9. Repeating Code Using Loops • 164

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> s = 'C3H7'
>>> digit_index = -1 # This will be -1 until we find a digit.
>>> for i in range(len(s)):
... # If we find a digit
... if s[i].isdigit():
... digit_index = i
... break # This exits the loop.
...
>>> digit_index
1

Notice that because the loop terminates early, we were able to simplify the if
statement condition. As soon as digit_index is assigned a new value, the loop

terminates, so it isn’t necessary to check whether digit_index refers to -1. That

check existed only to prevent digit_index from being assigned the index of a

subsequent digit in the string.

Here’s a flowchart for this code:

Truerange(len(s))

has more?

False s[i]

.isdigit() ?

True

False

break

rest of
for loop

One more thing about break: it terminates only the innermost loop in which

it’s contained. This means that in a nested loop, a break statement inside the

inner loop will terminate only the inner loop, not both loops.

The continue Statement

Another way to bend the rules for iteration is to use the continue statement,

which causes Python to skip immediately ahead to the next iteration of a

loop. Here, we add up all the digits in a string, and we also count how many

digits there are. Whenever a nondigit is encountered, we use continue to skip

report erratum • discuss

Controlling Loops Using break and continue • 165

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

the rest of the loop body and go back to the top of the loop in order to start

the next iteration.

>>> s = 'C3H7'
>>> total = 0 # The sum of the digits seen so far.
>>> count = 0 # The number of digits seen so far.
>>> for i in range(len(s)):
... if s[i].isalpha():
... continue
... total = total + int(s[i])
... count = count + 1
...
>>> total
10
>>> count
2

When continue is executed, it immediately begins the next iteration of the loop.

All statements in the loop body that appear after it are skipped, so we execute

the assignments to total and count only when s[i] isn’t a letter. Here’s a flowchart

for this code:

Using continue is one way to skip alphabetic characters, but this can also be

accomplished by using if statements. In the previous code, continue prevents

the variables from being modified; in other words, if the character isn’t

alphabetic, it should be processed.

The form of the previous sentence matches that of an if statement, and the

updated code is as follows:

>>> s = 'C3H7'
>>> total = 0
>>> count = 0

Chapter 9. Repeating Code Using Loops • 166

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> for i in range(len(s)):
... if not s[i].isalpha():
... total = total + int(s[i])
... count = count + 1
...
>>> total
10
>>> count
2

This new version is easier to read than the first one. Most of the time, it is

better to rewrite the code to avoid continue; almost always, the code ends up

being more readable.

A Warning About break and continue

break and continue have their place, but they should be used sparingly since

they can make programs harder to understand. When people see while and for
loops in programs, their first assumption is that the whole body will be exe-

cuted every time—in other words, that the body can be treated as a single

“super statement” when trying to understand the program. If the loop contains

break or continue, though, that assumption is false. Sometimes only part of the

statement body will be executed, which means the reader has to keep two

scenarios in mind.

There are always alternatives: well-chosen loop conditions (as in Repetition

Based on User Input, on page 162) can replace break, and if statements can be

used to skip statements instead of continue. It is up to the programmer to decide

which option makes the program clearer and which makes it more complicat-

ed. As we said in Describing Code, on page 25, programs are written for human

beings; taking a few moments to make your code as clear as possible, or to

make clarity a habit, will pay dividends for the lifetime of the program.

Now that code is getting pretty complicated, it’s even more important to write

comments describing the purpose of each tricky block of statements.

Repeating What You’ve Learned

In this chapter, you learned the following:

• Repeating a block is a fundamental way to control a program’s behavior. A

for loop can be used to iterate over the items of a list, over the characters of

a string, and over a sequence of integers generated by built-in function range.

• The most general kind of repetition is the while loop, which continues

executing as long as some specified Boolean condition is true. However,

report erratum • discuss

Repeating What You’ve Learned • 167

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

the condition is tested only at the beginning of each iteration. If that

condition is never false, the loop will be executed forever.

• The break and continue statements can be used to change the way loops

execute.

• Control structures like loops and conditionals can be nested inside one

another to any desired depth.

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. Write a for loop to print all the values in the celegans_phenotypes list from

Slicing Lists, on page 137, one per line. celegans_phenotypes refers to ['Emb',
'Him', 'Unc', 'Lon', 'Dpy', 'Sma'].

2. Write a for loop to print all the values in the half_lives list from Operations

on Lists, on page 135, all on a single line. half_lives refers to [87.74, 24110.0,
6537.0, 14.4, 376000.0].

3. Write a for loop to add 1 to all the values from whales from Storing and

Accessing Data in Lists, on page 129, and store the converted values in a

new list called more_whales. The whales list shouldn’t be modified. whales refers

to [5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3].

4. In this exercise, you’ll create a nested list and then write code that per-

forms operations on that list.

a. Create a nested list where each element of the outer list contains the

atomic number and atomic weight for an alkaline earth metal. The

values are beryllium (4 and 9.012), magnesium (12 and 24.305), cal-

cium (20 and 40.078), strontium (38 and 87.62), barium (56 and

137.327), and radium (88 and 226). Assign the list to variable

alkaline_earth_metals.

b. Write a for loop to print all the values in alkaline_earth_metals, with the

atomic number and atomic weight for each alkaline earth metal on a

different line.

c. Write a for loop to create a new list called number_and_weight that contains

the elements of alkaline_earth_metals in the same order but not nested.

5. The following function doesn’t have a docstring, type annotations, or com-

ments. Write enough of all three to make it easy for another programmer to

Chapter 9. Repeating Code Using Loops • 168

report erratum • discuss

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

understand what the function does and how, and then compare your

solution with those of at least two other people. How similar are they?

Why do they differ?

def mystery_function(values):
result = []
for sublist in values:

result.append([sublist[0]])
for i in sublist[1:]:

result[-1].insert(0, i)

return result

6. In Repetition Based on User Input, on page 162, you saw a loop that

prompted users until they typed quit. This code won’t work if users type

Quit, or QUIT, or any other version that isn’t exactly quit. Modify that loop

so that it terminates if a user types that word with any capitalization.

7. Consider the following statement, which creates a list of populations of

countries in eastern Asia (China, DPR Korea, Hong Kong, Mongolia,

Republic of Korea, and Taiwan) in millions: country_populations = [1295, 23, 7,
3, 47, 21]. Write a for loop that adds up all the values and stores them in

variable total. (Hint: Give total an initial value of zero, and, inside the loop

body, add the population of the current country to total.)

8. You are given two lists, rat_1 and rat_2, that contain the daily weights of

two rats over a period of ten days. Assume the rats never have exactly

the same weight. Write statements to do the following:

a. If the weight of rat 1 is greater than that of rat 2 on day 1, print "Rat
1 weighed more than rat 2 on day 1."; otherwise, print "Rat 1 weighed less than rat
2 on day 1.".

b. If rat 1 weighed more than rat 2 on day 1 and if rat 1 weighs more

than rat 2 on the last day, print "Rat 1 remained heavier than Rat 2."; other-

wise, print "Rat 2 became heavier than Rat 1."

c. If your solution to the previous exercise used nested if statements,

then do it without nesting, or vice versa.

9. Print the numbers in the range 33 to 49 (inclusive).

10. Print the numbers from 1 to 10 (inclusive) in descending order, all on one

line.

11. Using a loop, sum the numbers in the range 2 to 22 (inclusive), and then

calculate the average.

report erratum • discuss

Exercises • 169

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

12. Consider this code:

from typing import List

def remove_neg(num_list: List[float]) -> None:
"""Remove the negative numbers from the list num_list.

>>> numbers = [-5, 1, -3, 2]
>>> remove_neg(numbers)
>>> numbers
[1, 2]
"""

for item in num_list:
if item < 0:

num_list.remove(item)

When remove_neg([1, 2, 3, -3, 6, -1, -3, 1]) is executed, it produces [1, 2, 3, 6, -3, 1].
The for loop traverses the elements of the list, and when a negative value

(like -3 at position 3) is reached, it is removed, shifting the subsequent

values one position earlier in the list (so 6 moves into position 3). The

loop then continues on to process the next item, skipping over the value

that moved into the removed item’s position. If there are two negative

numbers in a row (like -1 and -3), then the second one won’t be removed.

Rewrite the code to avoid this problem.

13. Using nested for loops, print a right triangle of the character T on the

screen where the triangle is one character wide at its narrowest point and

seven characters wide at its widest point:

T
TT
TTT
TTTT
TTTTT
TTTTTT
TTTTTTT

14. Using nested for loops, print the triangle described in the previous exercise

with its hypotenuse on the left side:

T
TT

TTT
TTTT
TTTTT

TTTTTT
TTTTTTT

15. Redo the previous two exercises using while loops instead of for loops.

Chapter 9. Repeating Code Using Loops • 170

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

16. Variables rat_1_weight and rat_2_weight contain the weights of two rats at the

beginning of an experiment. Variables rat_1_rate and rat_2_rate are the rate

that the rats’ weights are expected to increase each week (for example, 4

percent per week).

a. Using a while loop, calculate how many weeks it would take for the

weight of the first rat to become 25 percent heavier than it was

originally.

b. Assume that the two rats have the same initial weight, but rat 1 is

expected to gain weight at a faster rate than rat 2. Using a while loop,

calculate how many weeks it would take for rat 1 to be 10 percent

heavier than rat 2.

report erratum • discuss

Exercises • 171

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 10

Reading and Writing Files

Data is often stored in plain-text files, which can be organized in several dif-

ferent ways. For example, the rainfall amounts in Oregon for each separate

day in a study period might be stored one value per line in a file, using a

newline as a delimiter to separate the values and make the data easier for

humans to read. Alternatively, each line might store the values for an entire

week or month, separating values within a line using a delimiter such as a

space, tab, or comma.

Often, data organization is more complex. For example, a study might keep

track of the heights, weights, and ages of the participants. Each record can

appear on a line by itself, with the pieces of data in each record separated by

delimiters. Some records might even span multiple lines, in which case each

record will usually have some kind of a separator (such as a blank line) or

use special symbols to mark the start or end of each record.

In this chapter, you’ll learn about different file formats, common ways to

organize data, and how to read and write that data using Python. You’ll first

learn how to open and read information from files. After that, you’ll learn

about the different techniques for writing to files, and then you’ll see several

case studies that use the various techniques.

What Kinds of Files Are There?

There are many kinds of files. Text files, music files, videos, and various word

processor and presentation documents are common. Text files contain only

characters; all the other file formats include formatting information that is

specific to that particular file format, and in order to use a file in a particular

format you need a special program that understands that format.

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Try opening a Microsoft PowerPoint (.ppt) file in a text editor such as Apple

TextEdit, Microsoft Notepad, or one of the many Linux text editors such as

vi, emacs, and gedit. Scroll through it; you’ll see what looks like gobbledygook.

This is because those files contain a lot of information: what’s a title, what

are the headings, which words are bold, which are italic, what the line height

should be, what the margins are, what the links to embedded content are,

and a lot more. Without a program such as Microsoft PowerPoint, .ppt files

are unusable.

Text files, on the other hand, don’t contain any style information. They contain

only human-readable characters. You can open a text file in any text editor

and read it. You can’t include style information in text files, but you gain a

lot in portability.

Plain-text files take up very little disk space. Compare the size of an empty

text file to “empty” OpenOffice, Apple Pages, and Microsoft Word documents:

The empty text file is truly empty: there is no styling information or metadata

such as author information, number of pages, or anything else in the file.

This makes text files much faster to process than other kinds of documents,

and any editing program can read an empty text file.

The Python programs you have been writing are text files. By themselves,

they are only characters in a file. But combined with a Python interpreter,

these Python text files are robust: you can express a powerful algorithm fol-

lowing Python’s syntax rules, and the interpreter will follow your instructions.

This power comes from applications that can process text files that are written

with a particular syntax. Web browsers read and process HTML files,

spreadsheets read and process comma-separated value files, calendar pro-

grams read and process calendar data files, and other programming language

applications read and process files written with a particular programming

language syntax. A database, which you’ll learn about in Chapter 17,

Databases, on page 343, is another way to store and manage data.

In the next section, you’ll learn how to write programs that open and print

the contents of a text file.

Chapter 10. Reading and Writing Files • 174

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Opening a File

When you want to write a program that opens and reads a file, that program

needs to tell Python where that file is. By default, Python assumes that the

file you want to read is in the same directory as the program that is doing

the reading. If you’re working in IDLE as you read this book, there’s a little

setup you should do:

1. Make a directory, perhaps called file_examples.

2. In IDLE, select File→New Window and type (or copy and paste) the

following:

First line of text
Second line of text
Third line of text

3. Save this file in your file_examples directory under the name file_example.txt.

4. In IDLE, select File→New Window and type (or copy and paste) this

program:

file = open('file_example.txt', 'r')
contents = file.read()
file.close()
print(contents)

5. Save this as file_reader.py in your file_examples directory.

When you run this program, this is what gets printed:

First line of text
Second line of text
Third line of text

It’s important that you save the two files in the same directory, as you’ll see

in the next section. Also, this won’t work if you try those same commands

from the Python shell.

Built-in function open opens a file (much like you open a book when you want

to read it) and returns an object that knows how to get information from the

file. This object also keeps track of how much you’ve read and which part of

the file you’re about to read next. The marker that keeps track of the current

location in the file is called a file cursor and acts much like a bookmark. The

file cursor is initially at the beginning of the file, but as we read or write data

it moves to the end of what we just read or wrote.

The first argument in the example call on function open, 'file_example.txt', is the

name of the file to open, and the second argument, 'r', tells Python that you

report erratum • discuss

Opening a File • 175

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

want to read the file; this is called the file mode. Other options for the mode

include 'w' for writing and 'a' for appending, which you’ll see later in this

chapter. If you call open with only the name of the file (omitting the mode),

then the default is 'r'.

The second statement, contents = file.read(), tells Python that you want to read

the contents of the entire file into a string, which we assign to a variable called

contents.

The third statement, file.close(), releases all resources associated with the open

file object.

The last statement prints the string.

When you run the program, you’ll see that newline characters are treated

just like every other character; a newline character is just another character

in the file.

The with Statement

Here’s a common programming pattern: get access to a resource, do something

with the resource, and then tidy up and release the resource. In the previous

file example, we gained access to a file by calling function open, then we read

the file contents, and then we tidied up by closing the file.

There’s a catch: if there is a problem and an error occurs, it’s possible that

our code has an error preventing execution of the statement file.close(), and

the associated resources are never released. Python provides a with statement

for situations like this where we always want to tidy up, regardless of whether

an error occurs. For this reason, the with statement is frequently used for file

access.

How with Works

In What Are Those Underscores?, on page 123 you learned that names beginning and

ending with two underscores is considered special by Python. The with statement uses

two special methods, __enter__ and __exit__. Open file objects have these methods, which

is why they can be used in a with statement.

The expression in a with statement evaluates to an object. This object’s __enter__ method

is then called. The result of this call is assigned to the variable.

After the block has been executed, Python calls method __exit__ on the object even if

the block causes an error. For file objects, method __exit__ closes the file.

Chapter 10. Reading and Writing Files • 176

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Here is the same example using a with statement:

with open('file_example.txt', 'r') as file:
contents = file.read()

print(contents)

The general form of a with statement is as follows:

with «expression» as «variable»:
«block»

How Files Are Organized on Your Computer

A file path specifies a location in your computer’s file system. A file path

contains the sequence of directories to a file, starting at the root directory at

the top of the file system, and optionally includes the name of a file.

Here is an example of the file path for file_example.txt:

/Users/pgries/Desktop/file_examples/file_example.txt

This file path is on a computer running Apple OS X. A file path in Linux would

look similar. Both operating systems use a forward slash as the directory

separator.

In Microsoft Windows, the path usually begins with a drive letter, such as C:.
There is one drive letter per disk partition. Also, Microsoft Windows uses a

backslash as the directory separator. (When working with backslashes as

directory separators, you might want to review Using Special Characters in

Strings, on page 68.)

Here is a path in Windows:

C:\Users\pgries\Desktop\file_examples\file_example.txt

If you always use forward slashes, Python’s file-handling operations will

automatically translate them to work in Windows, much like these operations

automatically translate the two kinds of newlines that you learned about in

Normalizing Line Endings, on page 70.

Specifying Which File You Want

Python keeps track of the current working directory; this is the directory in

which it looks for files. When you run a Python program, the current working

directory is the directory where that program is saved. For example, perhaps

this is the path of the file that you have open in IDLE:

/home/pgries/Documents/py3book/Book/code/fileproc/program.py

report erratum • discuss

Opening a File • 177

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Then this is the current working directory:

/home/pgries/Documents/py3book/Book/code/fileproc

When you call function open, it looks for the specified file in the current

working directory.

The default current working directory for the Python shell is operating system

dependent. You can find out the current working directory using function

getcwd from module os:

>>> import os
>>> os.getcwd()
'/home/pgries'

If you want to open a file in a different directory, you need to say where that

file is. You can do that with an absolute path or with a relative path. An

absolute path (like all the previous examples) is one that starts at the root of

the file system, and a relative path is relative to the current working directory.

Alternatively, you can change Python’s current working directory to a different

directory using function chdir (short for “change directory”):

>>> os.chdir('/home/pgries/Documents/py3book')
>>> os.getcwd()
'/home/pgries/Documents/py3book'

Let’s say that you have a program called reader.py and a directory called data
in the same directory as reader.py. Inside data you might have files called data1.txt
and data2.txt. This is how you would open data1.txt:

open('data/data1.txt', 'r')

Here, data/data1.txt is a relative path.

To look in the directory above the current working directory, you can use two

dots:

open('../data1.txt', 'r')

You can chain them to go up multiple directories. Here, Python looks for

data1.txt three directories above the current working directory and then down

into a data directory:1

open('../../../data/data1.txt', 'r')

1. If you’re still not clear on how directory paths work, try looking at this discussion on

Wikipedia: http://en.wikipedia.org/wiki/Path_(computing).

Chapter 10. Reading and Writing Files • 178

report erratum • discuss

http://en.wikipedia.org/wiki/Path_(computing)
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Techniques for Reading Files

As we mentioned at the beginning of the chapter, Python provides several

techniques for reading files. You’ll learn about them in this section.

All of these techniques work starting at the current file cursor. That allows

us to combine the techniques as we need to.

The Read Technique

Use this technique when you want to read the contents of a file into a single

string, or when you want to specify exactly how many characters to read.

This technique was introduced in Opening a File, on page 175; here is the same

example:

with open('file_example.txt', 'r') as file:
contents = file.read()

print(contents)

When called with no arguments, method read reads everything from the current

file cursor all the way to the end of the file and moves the file cursor to the

end of the file. When called with one integer argument, it reads that many

characters and moves the file cursor after the characters that were just read.

Here is a version of the same program in a file called file_reader_with_10.py; it
reads ten characters and then the rest of the file:

with open('file_example.txt', 'r') as example_file:
first_ten_chars = example_file.read(10)
the_rest = example_file.read()

print("The first 10 characters:", first_ten_chars)
print("The rest of the file:", the_rest)

Method call example_file.read(10) moves the file cursor, so the next call, exam-
ple_file.read(), reads everything from character 11 to the end of the file.

Reading at the End of a File

When the file cursor is at the end of the file, methods read, readlines, and readline all

return an empty string. In order to read the contents of a file a second time, you’ll

need to close and reopen the file.

The Readlines Technique

Use this technique when you want to get a Python list of strings containing

the individual lines from a file. Function readlines works much like function

report erratum • discuss

Techniques for Reading Files • 179

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

read, except that it splits up the lines into a list of strings. As with read, the

file cursor is moved to the end of the file.

This example reads the contents of a file into a list of strings and then prints

that list:

with open('file_example.txt', 'r') as example_file:
lines = example_file.readlines()

print(lines)

Here is the output:

['First line of text.\n', 'Second line of text.\n', 'Third line of text.\n']

Take a close look at that list; you’ll see that each line ends in \n characters.

Python does not remove any characters from what is read; it only splits them

into separate strings.

The last line of a file may or may not end with a newline character, as you

learned in Exploring String Methods, on page 119.

Assume file planets.txt contains the following text:

Mercury
Venus
Earth
Mars

This example prints the lines in planets.txt backward, from the last line to the

first (here, we use built-in function reversed, which returns the items in the

list in reverse order):

>>> with open('planets.txt', 'r') as planets_file:
... planets = planets_file.readlines()
...
>>> planets
['Mercury\n', 'Venus\n', 'Earth\n', 'Mars\n']
>>> for planet in reversed(planets):
... print(planet.strip())
...
Mars
Earth
Venus
Mercury

We can use the Readlines technique to read the file, sort the lines, and print

the planets alphabetically (here, we use built-in function sorted, which returns

the items in the list in order from smallest to largest):

Chapter 10. Reading and Writing Files • 180

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> with open('planets.txt', 'r') as planets_file:
... planets = planets_file.readlines()
...
>>> planets
['Mercury\n', 'Venus\n', 'Earth\n', 'Mars\n']
>>> for planet in sorted(planets):
... print(planet.strip())
...
Earth
Mars
Mercury
Venus

The “For Line in File” Technique

Use this technique when you want to do the same thing to every line from

the file cursor to the end of a file. On each iteration, the file cursor is moved

to the beginning of the next line.

This code opens file planets.txt and prints the length of each line in that file:

>>> with open('planets.txt', 'r') as data_file:
... for line in data_file:
... print(len(line))
...
8
6
6
5

Take a close look at the last line of output. There are only four characters in

the word Mars, but our program is reporting that the line is five characters

long. The reason for this is the same as for function readlines: each of the lines

we read from the file has a newline character at the end. We can get rid of it

using string method strip, which returns a copy of a string that has leading

and trailing whitespace characters (spaces, tabs, and newlines) stripped away:

>>> with open('planets.txt', 'r') as data_file:
... for line in data_file:
... print(len(line.strip()))
...
7
5
5
4

The Readline Technique

This technique reads one line at a time, unlike the Readlines technique. Use

this technique when you want to read only part of a file.

report erratum • discuss

Techniques for Reading Files • 181

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

For example, you might want to treat lines differently depending on context;

perhaps you want to process a file that has a header section followed by a

series of records, either one record per line or with multiline records.

The following data, taken from the Time Series Data Library [Hyn06], describes

the number of colored fox fur pelts produced in Hopedale, Labrador, in the

years 1834–1842. (The full data set has values for the years 1834–1925.)

Coloured fox fur production, HOPEDALE, Labrador, 1834-1842
#Source: C. Elton (1942) "Voles, Mice and Lemmings", Oxford Univ. Press
#Table 17, p.265--266

22
29
2
16
12
35
8
83
166

The first line contains a description of the data. The next two lines contain

comments about the data, each of which begins with a # character. Each

piece of actual data appears on a single line.

We’ll use the Readline technique to skip the header, and then we’ll use the

For Line in File technique to process the data in the file, counting how many

fox fur pelts were produced.

with open('hopedale.txt', 'r') as hopedale_file:

Read and skip the description line.
hopedale_file.readline()

Keep reading and skipping comment lines until we read the first piece
of data.
data = hopedale_file.readline().strip()
while data.startswith('#'):

data = hopedale_file.readline().strip()

Now we have the first piece of data. Accumulate the total number of
pelts.
total_pelts = int(data)

Read the rest of the data.
for data in hopedale_file:

total_pelts = total_pelts + int(data.strip())

print("Total number of pelts:", total_pelts)

And here is the output:

Total number of pelts: 373

Chapter 10. Reading and Writing Files • 182

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Each call on the function readline moves the file cursor to the beginning of the

next line.

Sometimes leading whitespace is important and you’ll want to preserve it. In

the Hopedale data, for example, the integers are right-justified to make them

line up nicely. In order to preserve this, you can use rstrip instead of strip to
remove the trailing newline; here is a program that prints the data from that

file, preserving the whitespace:

with open('hopedale.txt', 'r') as hopedale_file:

Read and skip the description line.
hopedale_file.readline()

Keep reading and skipping comment lines until we read the first piece
of data.
data = hopedale_file.readline().rstrip()
while data.startswith('#'):

data = hopedale_file.readline().rstrip()

Now we have the first piece of data.
print(data)

Read the rest of the data.
for data in hopedale_file:

print(data.rstrip())

And here is the output:

22
29
2

16
12
35
8

83
166

Files over the Internet

These days, of course, the file containing the data we want could be on a

machine half a world away. Provided the file is accessible over the Internet,

though, we can read it just as we do a local file. For example, the Hopedale

data not only exists on our computers, but it’s also on a web page. At the

time of writing, the URL for the file is http://robjhyndman.com/tsdldata/ecology1/hope-
dale.dat (you can look at it online!).

(Note that the examples in this section will work only if your computer is

actually connected to the Internet.)

report erratum • discuss

Files over the Internet • 183

http://robjhyndman.com/tsdldata/ecology1/hopedale.dat
http://robjhyndman.com/tsdldata/ecology1/hopedale.dat
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Module urllib.request contains a function called urlopen that opens a web page

for reading. urlopen returns a file-like object that you can use much as if you

were reading a local file.

There’s a hitch: because there are many kinds of files (images, music, videos,

text, and more), the file-like object’s read and readline methods both return a

type you haven’t yet encountered: bytes.

What’s a Byte?

To a computer, information is nothing but bits, which we think of as ones and zeros.

All data—for example, characters, sounds, and pixels—are represented as sequences

of bits. Computers organize these bits into groups of eight. Each group of eight bits

is called a byte. Programming languages interpret these bytes for us and let us think

of them as integers, strings, functions, and documents.

When dealing with type bytes, such as a piece of information returned by a

call on function urllib.urlrequest.read, we need to decode it. In order to decode it,

we need to know how it was encoded.

Common encoding schemes are described in the online Python documentation

here: http://docs.python.org/3/library/codecs.html#standard-encodings. One of the most

common encodings is UTF-8, an encoding created to represent Unicode:

https://docs.python.org/3/howto/unicode.html.

The Hopedale data on the web is encoded using UTF-8. This program reads

that web page and uses string method decode in order to decode the bytes object:

import urllib.request
url = 'https://robjhyndman.com/tsdldata/ecology1/hopedale.dat'
with urllib.request.urlopen(url) as webpage:

for line in webpage:
line = line.strip()
line = line.decode('utf-8')
print(line)

Security Certificates and macOS

If you are using a Mac and get an error that contains the message “SSL: CERTIFICATE

_VERIFY_FAILED” when you run this program, you’ll need to run the following

installer:

/Applications/Python 3.6/Install Certificates.command

Chapter 10. Reading and Writing Files • 184

report erratum • discuss

http://docs.python.org/3/library/codecs.html#standard-encodings
https://docs.python.org/3/howto/unicode.html
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Writing Files

This program opens a file called topics.txt, writes the words Computer Science to
the file, and then closes the file:

with open('topics.txt', 'w') as output_file:
output_file.write('Computer Science')

In addition to writing characters to a file, method write returns the number of

characters written. For example, output_file.write('Computer Science') returns 16.

To create a new file or to replace the contents of an existing file, we use write

mode ('w'). If the filename doesn’t exist already, then a new file is created;

otherwise the file contents are erased and replaced. Once opened for writing,

you can use method write to write a string to the file.

Rather than replacing the file contents, we can also add to a file using append

mode ('a'). When we write to a file that is opened in append mode, the data

we write is added to the end of the file and the current file contents are not

overwritten. For example, to add to our previous file topics.txt, we can append

the words Software Engineering:

with open('topics.txt', 'a') as output_file:
output_file.write('Software Engineering')

At this point, if we print the contents of topics.txt, we’d see the following:

Computer ScienceSoftware Engineering

Unlike function print, method write doesn’t automatically append a newline; if you

want a string to end in a newline, you have to include it manually using '\n'.

The next example, in a file called total.py, is more complex, and it involves both

reading from and writing to a file. Notice that it uses typing.TextIO as the type

annotation for an open file. “IO” is short for “Input/Output.” Our input file

contains two numbers per line separated by a space. The output file will

contain three numbers per line: the two from the input file followed by their

sum (all separated by spaces).

from typing import TextIO
from io import StringIO

def sum_number_pairs(input_file: TextIO, output_file: TextIO) -> None:
"""Read the data from input_file, which contains two floats per line
separated by a space. output_file for writing and, for each line in
input_file, write a line to output_file that contains the two floats from
the corresponding line of input_file plus a space and the sum of the two
floats.
"""

report erratum • discuss

Writing Files • 185

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

for number_pair in input_file:
number_pair = number_pair.strip()
operands = number_pair.split()
total = float(operands[0]) + float(operands[1])
new_line = '{0} {1}\n'.format(number_pair, total)
output_file.write(new_line)

if __name__ == '__main__':
with open('number_pairs.txt', 'r') as input_file, \

open('number_pair_sums.txt', 'w') as output_file:
sum_number_pairs(input_file, output_file)

Notice that parameters are open files. That is why we don’t need to call func-

tion open inside the function. Instead, that happens in the main program.

Assume that a file called number_pairs.txt exists with these contents:

1.3 3.4
2 4.2
-1 1

Then this program creates a file named number_pair_sums.txt with these contents:

1.3 3.4 4.7
2 4.2 6.2
-1 1 0.0

Writing Example Calls Using StringIO

In order to follow the function design recipe, we need to write example calls.

Writing these calls using real files would involve creating test files for each

of the situations you want to demonstrate. This is fragile, because it means

that you can’t just give the program to someone—you need to remember to

include the test files in case they want to try your function, and it’s also not

optimal because anyone trying to understand the function needs to open the

input and output files.

Python provides a class, StringIO, in module io, that can be used as a mock

open file. That means that you can read from it using the regular file-reading

techniques as if it were a real file. StringIO objects can be used anywhere TextIO
are expected.

Here, we create a StringIO object containing the same information as file num-
ber_pairs.txt, and read the first line:

>>> from io import StringIO
>>> input_string = '1.3 3.4\n2 4.2\n-1 1\n'
>>> infile = StringIO(input_string)
>>> infile.readline()
'1.3 3.4\n'

Chapter 10. Reading and Writing Files • 186

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

We can also write to StringIO objects as if they were files, and retrieve their

contents as a string using method getvalue:

>>> from io import StringIO
>>> outfile = StringIO()
>>> outfile.write('1.3 3.4 4.7\n')
12
>>> outfile.write('2 4.2 6.2\n')
10
>>> outfile.write('-1 1 0.0\n')
9
>>> outfile.getvalue()
'1.3 3.4 4.7\n2 4.2 6.2\n-1 1 0.0\n'

We can now provide example calls in our sum_number_pairs function. Notice that

we need two backslashes inside the examples because they are part of the

docstring (see Using Special Characters in Strings, on page 68):

from typing import TextIO
from io import StringIO

def sum_number_pairs(input_file: TextIO, output_file: TextIO) -> None:
"""Read the data from input_file, which contains two floats per line
separated by a space. output_file for writing and, for each line in
input_file, write a line to output_file that contains the two floats from
the corresponding line of input_file plus a space and the sum of the two
floats.

>>> infile = StringIO('1.3 3.4\\n2 4.2\\n-1 1\\n')
>>> outfile = StringIO()
>>> sum_number_pairs(infile, outfile)
>>> outfile.getvalue()
'1.3 3.4 4.7\\n2 4.2 6.2\\n-1 1 0.0\\n'
"""

for number_pair in input_file:
number_pair = number_pair.strip()
operands = number_pair.split()
total = float(operands[0]) + float(operands[1])
new_line = '{0} {1}\n'.format(number_pair, total)
output_file.write(new_line)

if __name__ == '__main__':
with open('number_pairs.txt', 'r') as input_file, \

open('number_pair_sums.txt', 'w') as output_file:
sum_number_pairs(input_file, output_file)

report erratum • discuss

Writing Example Calls Using StringIO • 187

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Writing Algorithms That Use the File-Reading Techniques

There are several common ways to organize information in files. The rest of

this chapter will show how to apply the various file-reading techniques to

these situations and how to develop some algorithms to help with this.

Skipping the Header

Many data files begin with a header. As described in The Readline Technique,

on page 181, TSDL files begin with a one-line description followed by comments

in lines beginning with a #, and the Readline technique can be used to skip

that header. The technique ends when we read the first real piece of data,

which will be the first line after the description that doesn’t start with a #.

In English, we might try this algorithm to process this kind of a file:

Skip the first line in the file
Skip over the comment lines in the file
For each of the remaining lines in the file:

Process the data on that line

The problem with this approach is that we can’t tell whether a line is a com-

ment line until we’ve read it, but we can read a line from a file only

once—there’s no simple way to “back up” in the file. An alternative approach

is to read the line, skip it if it’s a comment, and process it if it’s not. Once

we’ve processed the first line of data, we process the remaining lines:

Skip the first line in the file
Find and process the first line of data in the file
For each of the remaining lines:

Process the data on that line

The thing to notice about this algorithm is that it processes lines in two places:

once when it finds the first “interesting” line in the file and once when it

handles all of the following lines:

from typing import TextIO
from io import StringIO

def skip_header(reader: TextIO) -> str:
"""Skip the header in reader and return the first real piece of data.

>>> infile = StringIO('Example\\n# Comment\\n# Comment\\nData line\\n')
>>> skip_header(infile)
'Data line\\n'
"""

Read the description line
line = reader.readline()

Chapter 10. Reading and Writing Files • 188

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Find the first non-comment line
line = reader.readline()
while line.startswith('#'):

line = reader.readline()

Now line contains the first real piece of data
return line

def process_file(reader: TextIO) -> None:
"""Read and print the data from reader, which must start with a single
description line, then a sequence of lines beginning with '#', then a
sequence of data.

>>> infile = StringIO('Example\\n# Comment\\nLine 1\\nLine 2\\n')
>>> process_file(infile)
Line 1
Line 2
"""

Find and print the first piece of data
line = skip_header(reader).strip()
print(line)

Read the rest of the data
for line in reader:

line = line.strip()
print(line)

if __name__ == '__main__':
with open('hopedale.txt', 'r') as input_file:

process_file(input_file)

In skip_header, we return the first line of read data, because once we’ve found

it, we can’t read it again (we can go forward but not backward). We’ll want to

use skip_header in all of the file-processing functions in this section. Rather

than copying the code each time we want to use it, we can put the function

in a file called time_series.py (for Time Series Data Library) and use it in other

programs using import time_series, as shown in the next example. This allows

us to reuse the skip_header code, and if it needs to be modified, then there is

only one copy of the function to edit.

This program processes the Hopedale data set to find the smallest number of fox

pelts produced in any year. As we progress through the file, we keep the smallest

value seen so far in a variable called smallest. That variable is initially set to the

value on the first line, since it’s the smallest (and only) value seen so far:

from typing import TextIO
import time_series

def smallest_value(reader: TextIO) -> int:
"""Read and process reader and return the smallest value after the
time_series header.

report erratum • discuss

Writing Algorithms That Use the File-Reading Techniques • 189

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> infile = StringIO('Example\\n1\\n2\\n3\\n')
>>> smallest_value(infile)
1
>>> infile = StringIO('Example\\n3\\n1\\n2\\n')
>>> smallest_value(infile)
1
"""

line = time_series.skip_header(reader).strip()

Now line contains the first data value; this is also the smallest value
found so far, because it is the only one we have seen.
smallest = int(line)

for line in reader:
value = int(line.strip())

If we find a smaller value, remember it.
if value < smallest:

smallest = value

return smallest

if __name__ == '__main__':
with open('hopedale.txt', 'r') as input_file:

print(smallest_value(input_file))

As with any algorithm, there are other ways to write this; for example, we can

replace the if statement with this single line:

smallest = min(smallest, value)

Dealing with Missing Values in Data

We also have data for colored fox fur production in Hebron, Labrador:

Coloured fox fur production, Hebron, Labrador, 1834-1839
#Source: C. Elton (1942) "Voles, Mice and Lemmings", Oxford Univ. Press
#Table 17, p.265--266
#remark: missing value for 1836

55
262
-
102
178
227

The hyphen indicates that data for the year 1836 is missing. Unfortunately,

calling read_smallest on the Hebron data produces this error:

>>> import read_smallest
>>> read_smallest.smallest_value(open('hebron.txt', 'r'))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

Chapter 10. Reading and Writing Files • 190

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

File "./read_smallest.py", line 16, in smallest_value
value = int(line.strip())

ValueError: invalid literal for int() with base 10: '-'

The problem is that '-' isn’t an integer, so calling int('-') fails. This isn’t an iso-

lated problem. In general, we will often need to skip blank lines, comments,

or lines containing other “nonvalues” in our data. Real data sets often contain

omissions or contradictions; dealing with them is just a fact of scientific life.

For the development of this algorithm, we assume that the first value is an

integer, because otherwise the time series would simply start at the second

value.

To fix our code, we must add a check inside the loop that processes a line

only if it contains a real value. We will assume that the first value is never a

hyphen because in the TSDL data sets, missing entries are always marked

with hyphens. So we just need to check for that before trying to convert the

string we have read to an integer:

from typing import TextIO
from io import StringIO
import time_series

def smallest_value_skip(reader: TextIO) -> int:
"""Read and process reader, which must start with a time_series header.
Return the smallest value after the header. Skip missing values, which
are indicated with a hyphen.

>>> infile = StringIO('Example\\n1\\n-\\n3\\n')
>>> smallest_value_skip(infile)
1
"""

line = time_series.skip_header(reader).strip()
Now line contains the first data value; this is also the smallest value
found so far, because it is the only one we have seen.
smallest = int(line)

for line in reader:
line = line.strip()
if line != '-':

value = int(line)
smallest = min(smallest, value)

return smallest

if __name__ == '__main__':
with open('hebron.txt', 'r') as input_file:

print(smallest_value_skip(input_file))

Notice that the update to smallest is nested inside the check for hyphens.

report erratum • discuss

Writing Algorithms That Use the File-Reading Techniques • 191

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Processing Whitespace-Delimited Data

The file at http://robjhyndman.com/tsdldata/ecology1/lynx.dat (Time Series Data Library

[Hyn06]) contains information about lynx pelts in the years 1821–1934. All

data values are integers, each line contains many values, the values are

separated by whitespace, and for reasons best known to the file’s author,

each value ends with a period. (Note that author M. J. Campbell’s name below

is misspelled in the original file.)

Annual Number of Lynx Trapped, MacKenzie River, 1821-1934
#Original Source: Elton, C. and Nicholson, M. (1942)
#"The ten year cycle in numbers of Canadian lynx",
#J. Animal Ecology, Vol. 11, 215--244.
#This is the famous data set which has been listed before in
#various publications:
#Cambell, M.J. and Walker, A.M. (1977) "A survey of statistical work on
#the MacKenzie River series of annual Canadian lynx trappings for the years
#1821-1934 with a new analysis", J.Roy.Statistical Soc. A 140, 432--436.

269. 321. 585. 871. 1475. 2821. 3928. 5943. 4950. 2577. 523. 98.
184. 279. 409. 2285. 2685. 3409. 1824. 409. 151. 45. 68. 213.
546. 1033. 2129. 2536. 957. 361. 377. 225. 360. 731. 1638. 2725.

2871. 2119. 684. 299. 236. 245. 552. 1623. 3311. 6721. 4245. 687.
255. 473. 358. 784. 1594. 1676. 2251. 1426. 756. 299. 201. 229.
469. 736. 2042. 2811. 4431. 2511. 389. 73. 39. 49. 59. 188.
377. 1292. 4031. 3495. 587. 105. 153. 387. 758. 1307. 3465. 6991.

6313. 3794. 1836. 345. 382. 808. 1388. 2713. 3800. 3091. 2985. 3790.
674. 81. 80. 108. 229. 399. 1132. 2432. 3574. 2935. 1537. 529.
485. 662. 1000. 1590. 2657. 3396.

Now we’ll develop a program to find the largest value. To process the file, we

will break each line into pieces and strip off the periods. Our algorithm is the

same as it was for the fox pelt data: find and process the first line of data in

the file, and then process each of the subsequent lines. However, the notion

of “processing a line” needs to be examined further because there are many

values per line. Our refined algorithm, shown next, uses nested loops to

handle the notion of “for each line and for each value on that line”:

Find the first line containing real data after the header
For each piece of data in the current line:

Process that piece

For each of the remaining lines of data:
For each piece of data in the current line:

Process that piece

Once again we are processing lines in two different places. That is a strong hint

that we should write a helper function to avoid duplicate code. Rewriting our

algorithm and making it specific to the problem of finding the largest value makes

this clearer:

Chapter 10. Reading and Writing Files • 192

report erratum • discuss

http://robjhyndman.com/tsdldata/ecology1/lynx.dat
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Find the first line of real data after the header
Find the largest value in that line

For each of the remaining lines of data:
Find the largest value in that line
If that value is larger than the previous largest, remember it

The helper function required is one that finds the largest value in a line, and it

must split up the line. String method split will split around the whitespace, but

we still have to remove the periods at the ends of the values.

We can also simplify our code by initializing largest to -1, since that value is guaranteed

to be smaller than any of the (positive) values in the file. That way, no matter what

the first real value is, it’ll be larger than the “previous” value (our -1) and replace it.

from typing import TextIO
from io import StringIO
import time_series

def find_largest(line: str) -> int:
"""Return the largest value in line, which is a whitespace-delimited string
of integers that each end with a '.'.

>>> find_largest('1. 3. 2. 5. 2.')
5
"""
The largest value seen so far.
largest = -1
for value in line.split():

Remove the trailing period.
v = int(value[:-1])
If we find a larger value, remember it.
if v > largest:

largest = v

return largest

We now face the same choice as with skip_header: we can put find_largest in a module

(possibly time_series), or we can include it in the same file as the rest of the code.

We choose the latter this time because the code is specific to this particular data

set and problem:

from typing import TextIO
from io import StringIO
import time_series

def find_largest(line: str) -> int:
"""Return the largest value in line, which is a whitespace-delimited string
of integers that each end with a '.'.

>>> find_largest('1. 3. 2. 5. 2.')
5
"""

report erratum • discuss

Writing Algorithms That Use the File-Reading Techniques • 193

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The largest value seen so far.
largest = -1
for value in line.split():

Remove the trailing period.
v = int(value[:-1])
If we find a larger value, remember it.
if v > largest:

largest = v

return largest

def process_file(reader: TextIO) -> int:
"""Read and process reader, which must start with a time_series header.
Return the largest value after the header. There may be multiple pieces
of data on each line.

>>> infile = StringIO('Example\\n 20. 3.\\n 100. 17. 15.\\n')
>>> process_file(infile)
100
"""

line = time_series.skip_header(reader).strip()
The largest value so far is the largest on this first line of data.
largest = find_largest(line)

Check the rest of the lines for larger values.
for line in reader:

large = find_largest(line)
if large > largest:

largest = large
return largest

if __name__ == '__main__':
with open('lynx.txt', 'r') as input_file:

print(process_file(input_file))

Notice how simple the code in process_file looks! This happened only because we

decided to write helper functions. To show you how much clearer this is, here is

the same code without using time_series.skip_header and find_largest as helper methods:

from typing import TextIO
from io import StringIO

def process_file(reader: TextIO) -> int:
"""Read and process reader, which must start with a time_series header.
Return the largest value after the header. There may be multiple pieces
of data on each line.

>>> infile = StringIO('Example\\n 20. 3.\\n')
>>> process_file(infile)
20
>>> infile = StringIO('Example\\n 20. 3.\\n 100. 17. 15.\\n')
>>> process_file(infile)
100
"""

Chapter 10. Reading and Writing Files • 194

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Read the description line
line = reader.readline()

Find the first non-comment line
line = reader.readline()
while line.startswith('#'):

line = reader.readline()

Now line contains the first real piece of data

The largest value seen so far in the current line
largest = -1

for value in line.split():

Remove the trailing period
v = int(value[:-1])
If we find a larger value, remember it
if v > largest:

largest = v

Check the rest of the lines for larger values
for line in reader:

The largest value seen so far in the current line
largest_in_line = -1

for value in line.split():

Remove the trailing period
v = int(value[:-1])
If we find a larger value, remember it
if v > largest_in_line:

largest_in_line = v

if largest_in_line > largest:
largest = largest_in_line

return largest

if __name__ == '__main__':
with open('lynx.txt', 'r') as input_file:

print(process_file(input_file))

Multiline Records

Not every data record will fit onto a single line. Here is a file in simplified

Protein Data Bank (PDB) format that describes the arrangements of atoms

in ammonia:

COMPND AMMONIA
ATOM 1 N 0.257 -0.363 0.000
ATOM 2 H 0.257 0.727 0.000
ATOM 3 H 0.771 -0.727 0.890
ATOM 4 H 0.771 -0.727 -0.890
END

report erratum • discuss

Multiline Records • 195

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The first line is the name of the molecule. All subsequent lines down to the

one containing END specify the ID, type, and XYZ coordinates of one of the

atoms in the molecule.

Reading this file is straightforward using the techniques that we have built

up in this chapter. But what if the file contained two or more molecules,

like this:

COMPND AMMONIA
ATOM 1 N 0.257 -0.363 0.000
ATOM 2 H 0.257 0.727 0.000
ATOM 3 H 0.771 -0.727 0.890
ATOM 4 H 0.771 -0.727 -0.890
END
COMPND METHANOL
ATOM 1 C -0.748 -0.015 0.024
ATOM 2 O 0.558 0.420 -0.278
ATOM 3 H -1.293 -0.202 -0.901
ATOM 4 H -1.263 0.754 0.600
ATOM 5 H -0.699 -0.934 0.609
ATOM 6 H 0.716 1.404 0.137
END

As always, we tackle this problem by dividing into smaller ones and solving

each of those in turn. Our first algorithm is as follows:

While there are more molecules in the file:
Read a molecule from the file
Append it to the list of molecules read so far

Simple, except the only way to tell whether there is another molecule left in

the file is to try to read it. Our modified algorithm is as follows:

reading = True
while reading:

Try to read a molecule from the file
If there is one:

Append it to the list of molecules read so far
else: # nothing left

reading = False

In Python, this is as follows:

from typing import TextIO
from io import StringIO

def read_molecule(reader: TextIO) -> list:
"""Read a single molecule from reader and return it, or return None to
signal end of file. The first item in the result is the name of the
compound; each list contains an atom type and the X, Y, and Z coordinates
of that atom.

Chapter 10. Reading and Writing Files • 196

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> instring = 'COMPND TEST\\nATOM 1 N 0.1 0.2 0.3\\nATOM 2 N 0.2 0.1 0.0\\nEND\\n'
>>> infile = StringIO(instring)
>>> read_molecule(infile)
['TEST', ['N', '0.1', '0.2', '0.3'], ['N', '0.2', '0.1', '0.0']]
"""

If there isn't another line, we're at the end of the file.
line = reader.readline()
if not line:

return None

Name of the molecule: "COMPND name"
parts = line.split()
name = parts[1]

Other lines are either "END" or "ATOM num atom_type x y z"
molecule = [name]

reading = True
while reading:

line = reader.readline()
if line.startswith('END'):

reading = False
else:

parts = line.split()
molecule.append(parts[2:])

return molecule

def read_all_molecules(reader: TextIO) -> list:
"""Read zero or more molecules from reader, returning a list of the
molecule information.

>>> cmpnd1 = 'COMPND T1\\nATOM 1 N 0.1 0.2 0.3\\nATOM 2 N 0.2 0.1 0.0\\nEND\\n'
>>> cmpnd2 = 'COMPND T2\\nATOM 1 A 0.1 0.2 0.3\\nATOM 2 A 0.2 0.1 0.0\\nEND\\n'
>>> infile = StringIO(cmpnd1 + cmpnd2)
>>> result = read_all_molecules(infile)
>>> result[0]
['T1', ['N', '0.1', '0.2', '0.3'], ['N', '0.2', '0.1', '0.0']]
>>> result[1]
['T2', ['A', '0.1', '0.2', '0.3'], ['A', '0.2', '0.1', '0.0']]
"""

The list of molecule information.
result = []

reading = True
while reading:

molecule = read_molecule(reader)
if molecule: # None is treated as False in an if statement

result.append(molecule)
else:

reading = False
return result

report erratum • discuss

Multiline Records • 197

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

if __name__ == '__main__':
molecule_file = open('multimol.pdb', 'r')
molecules = read_all_molecules(molecule_file)
molecule_file.close()
print(molecules)

The work of actually reading a single molecule has been put in a function of

its own that must return some false value (such as None) if it can’t find

another molecule in the file. This function checks the first line it tries to read

to see whether there is actually any data left in the file. If not, it returns

immediately to tell read_all_molecules that the end of the file has been reached.

Otherwise, it pulls the name of the molecule out of the first line and then

reads the molecule’s atoms one at a time down to the END line.

Notice that read_molecule uses exactly the same trick to spot the END that marks

the end of a single molecule as read_all_molecules uses to spot the end of the file.

Looking Ahead

Let’s add one final complication. Suppose that molecules didn’t have END
markers but instead just a COMPND line followed by one or more ATOM lines.

How would we read multiple molecules from a single file in that case?

COMPND AMMONIA
ATOM 1 N 0.257 -0.363 0.000
ATOM 2 H 0.257 0.727 0.000
ATOM 3 H 0.771 -0.727 0.890
ATOM 4 H 0.771 -0.727 -0.890
COMPND METHANOL
ATOM 1 C -0.748 -0.015 0.024
ATOM 2 O 0.558 0.420 -0.278
ATOM 3 H -1.293 -0.202 -0.901
ATOM 4 H -1.263 0.754 0.600
ATOM 5 H -0.699 -0.934 0.609
ATOM 6 H 0.716 1.404 0.137

At first glance, it doesn’t seem much different from the problem we just solved:

read_molecule could extract the molecule’s name from the COMPND line and then

read ATOM lines until it got either an empty string signaling the end of the file

or another COMPND line signaling the start of the next molecule. But once it

has read that COMPND line, the line isn’t available for the next call to

read_molecule, so how can we get the name of the second molecule (and all the

ones following it)?

To solve this problem, our functions must always “look ahead” one line. Let’s

start with the function that reads multiple molecules:

Chapter 10. Reading and Writing Files • 198

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

from typing import TextIO

def read_all_molecules(reader: TextIO) -> list:
"""Read zero or more molecules from reader,
returning a list of the molecules read.
"""

result = []
line = reader.readline()
while line:

molecule, line = read_molecule(reader, line)
result.append(molecule)

return result

This function begins by reading the first line of the file. Provided that line is

not the empty string (that is, the file being read is not empty), it passes both

the opened file to read from and the line into read_molecule, which is supposed

to return two things: the next molecule in the file and the first line immedi-

ately after the end of that molecule (or an empty string if the end of the file

has been reached).

This simple description is enough to get us started writing the read_molecule
function. The first thing it has to do is check that line is actually the start of

a molecule. It then reads lines from reader one at a time, looking for one of

three situations:

• The end of the file, which signals the end of both the current molecule

and the file

• Another COMPND line, which signals the end of this molecule and the start

of the next one

• An ATOM, which is to be added to the current molecule

The most important thing is that when this function returns, it returns both

the molecule and the next line so that its caller can keep processing. The

result is probably the most complicated function we have seen so far, but

understanding the idea behind it will help you know how it works:

from typing import TextIO

def read_molecule(reader: TextIO, line: str) -> list:
"""Read a molecule from reader, where line refers to the first line of
the molecule to be read. Return the molecule and the first line after
it (or the empty string if the end of file has been reached).
"""

fields = line.split()
molecule = [fields[1]]

report erratum • discuss

Looking Ahead • 199

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

line = reader.readline()
while line and not line.startswith('COMPND'):

fields = line.split()
if fields[0] == 'ATOM':

key, num, atom_type, x, y, z = fields
molecule.append([atom_type, x, y, z])

line = reader.readline()

return molecule, line

Notes to File Away

In this chapter, you learned the following:

• When files are opened and read, their contents are commonly stored in

lists of strings.

• Data stored in files is usually formatted in one of a small number of ways,

from one value per line to multiline records with explicit end-of-record

markers. Each format can be processed in a stereotypical way.

• Data processing programs should be broken into input, processing, and

output stages so that each can be reused independently.

• Files can be read (content retrieved), written to (content replaced), and

added to (new content appended). When a file is opened in writing mode

and it doesn’t exist, a new file is created.

• Data files come in many different formats, so custom code is often re-

quired, but we can reuse as much as possible by writing helper functions.

• To make the functions usable by different types of readers, the reader (for

a file or web page) is opened outside the function, passed as an argument

to the function, and then closed outside the function.

• typing.TextIO is used in type annotations to indicate an open file.

Chapter 10. Reading and Writing Files • 200

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. Write a program that makes a backup of a file. Your program should

prompt the user for the name of the file to copy and then write a new file

with the same contents but with .bak as the file extension.

2. Suppose the file alkaline_metals.txt contains the name, atomic number, and

atomic weight of the alkaline earth metals:

beryllium 4 9.012
magnesium 12 24.305
calcium 20 20.078
strontium 38 87.62
barium 56 137.327
radium 88 226

Write a for loop to read the contents of alkaline_metals.txt and store it in a list

of lists, with each inner list containing the name, atomic number, and

atomic weight for an element. (Hint: Use string.split.)

3. All of the file-reading functions we have seen in this chapter read forward

through the file from the first character or line to the last. How could you

write a function that would read backward through a file?

4. In Processing Whitespace-Delimited Data, on page 192, we used the “For

Line in File” technique to process data line by line, breaking it into pieces

using string method split. Rewrite function process_file to skip the header as

normal but then use the Read technique to read all the data at once.

5. Modify the file reader in read_smallest_skip.py of Skipping the Header, on page

188 so that it can handle files with no data after the header.

6. Modify the file reader in read_smallest_skip.py of Skipping the Header, on page

188, so that it uses a continue inside the loop instead of an if. Which form

do you find easier to read?

7. Modify the PDB file reader of Multiline Records, on page 195, so that it ignores

blank lines and comment lines in PDB files. A blank line is one that contains

only space and tab characters (that is, one that looks empty when viewed).

A comment is any line beginning with the keyword CMNT.

8. Modify the PDB file reader to check that the serial numbers on atoms

start at 1 and increase by 1. What should the modified function do if it

finds a file that doesn’t obey this rule?

report erratum • discuss

Exercises • 201

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 11

Storing Data Using Other Collection Types

In Chapter 8, Storing Collections of Data Using Lists, on page 129, you learned

how to store collections of data using lists. In this chapter, you will learn

about three other kinds of collections: sets, tuples, and dictionaries. With

four different options for storing your collections of data, you will be able to

pick the one that best matches your problem in order to keep your code as

clean and efficient as possible.

Storing Data Using Sets

A set is an unordered collection of distinct items. Unordered means that items

aren’t stored in any particular order. Something is either in the set or it’s not,

but there’s no notion of it being the first, second, or last item. Distinct means that

any item appears in a set at most once; in other words, there are no duplicates.

Python has a type called set that allows us to store mutable collections of

unordered, distinct items. (Remember that a mutable object is one that you

can modify.) Here we create a set containing the vowels:

>>> vowels = {'a', 'e', 'i', 'o', 'u'}
>>> vowels
{'a', 'u', 'o', 'i', 'e'}

It looks much like a list, except that sets use braces (that is, { and }) instead

of brackets (that is, [and]). Notice that, when displayed in the shell, the set

is unordered. Python does some mathematical tricks behind the scenes to

make accessing the items very fast, and one of the side effects of this is that

the items aren’t in any particular order.

Here we show that each item is distinct; duplicates are ignored:

>>> vowels = {'a', 'e', 'a', 'a', 'i', 'o', 'u', 'u'}
>>> vowels
{'u', 'o', 'i', 'e', 'a'}

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Even though there were three 'a's and two 'u's when we created the set, only

one of each was kept. Python considers the two sets to be equal:

>>> {'a', 'e', 'i', 'o', 'u'} == {'a', 'e', 'a', 'a', 'i', 'o', 'u', 'u'}
True

The reason they are equal is that they contain the same items. Again, order

doesn’t matter, and only one of each element is kept.

Variable vowels refers to an object of type set:

>>> type(vowels)
<class 'set'>
>>> type({1, 2, 3})
<class 'set'>

In Storing Data Using Dictionaries, on page 214, you’ll learn about a type that

also uses the notation {}, which prevents us from using that notation to

represent an empty set. Instead, to create an empty set, you need to call

function set with no arguments:

>>> set()
set()
>>> type(set())
<class 'set'>

Function set expects either no arguments (to create an empty set) or a single

argument that is a collection of values. We can, for example, create a set from

a list:

>>> set([2, 3, 2, 5])
{2, 3, 5}

Because duplicates aren’t allowed, only one of the 2s appears in the set:

Function set expects at most one argument. You can’t pass several values as

separate arguments:

Chapter 11. Storing Data Using Other Collection Types • 204

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> set(2, 3, 5)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: set expected at most 1 arguments, got 3

In addition to lists, there are a couple of other types that can be used as

arguments to function set. One is a set:

>>> vowels = {'a', 'e', 'a', 'a', 'i', 'o', 'u', 'u'}
>>> vowels
{'i', 'a', 'u', 'e', 'o'}
>>> set(vowels)
{'i', 'a', 'u', 'e', 'o'}
>>> set({5, 3, 1})
{1, 3, 5}

Another such type is range from Generating Ranges of Numbers, on page 152.

In the following code a set is created with the values 0 to 4 inclusive:

>>> set(range(5))
{0, 1, 2, 3, 4}

In Storing Data Using Tuples, on page 209, you will learn about the tuple
type, another type of sequence, that can also be used as an argument to

function set.

Set Operations

In mathematics, set operations include union, intersection, add, and remove.

In Python, these are implemented as methods (for a complete list, see Table

14, Set Operations, on page 206). We’ll show you these in action.

Sets are mutable. The methods add, remove, and clear all modify which items

are in a set. The letter y is sometimes considered to be a vowel; here we add

it to our set of vowels:

>>> vowels = {'a', 'e', 'i', 'o', 'u'}
>>> vowels
{'o', 'u', 'a', 'e', 'i'}
>>> vowels.add('y')
>>> vowels
{'u', 'y', 'e', 'a', 'o', 'i'}

Other methods, such as intersection and union, return new sets based on their

arguments.

In the following code, we show all of these methods in action:

report erratum • discuss

Storing Data Using Sets • 205

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> ten = set(range(10))
>>> lows = {0, 1, 2, 3, 4}
>>> odds = {1, 3, 5, 7, 9}
>>> lows.add(9)
>>> lows
{0, 1, 2, 3, 4, 9}
>>> lows.difference(odds)
{0, 2, 4}
>>> lows.intersection(odds)
{1, 3, 9}
>>> lows.issubset(ten)
True
>>> lows.issuperset(odds)
False
>>> lows.remove(0)
>>> lows
{1, 2, 3, 4, 9}
>>> lows.symmetric_difference(odds)
{2, 4, 5, 7}
>>> lows.union(odds)
{1, 2, 3, 4, 5, 7, 9}
>>> lows.clear()
>>> lows
set()

DescriptionMethod

Adds item v to a set S—this has no effect if v is already in SS.add(v)
Removes all items from set SS.clear()
Returns a set with items that occur in set S but not in set otherS.difference(other)
Returns a set with items that occur both in sets S and otherS.intersection(other)
Returns True if and only if all of set S’s items are also in set otherS.issubset(other)
Returns True if and only if set S contains all of set other’s itemsS.issuperset(other)
Removes item v from set SS.remove(v)
Returns a set with items that are in exactly one of sets S and

other—any items that are in both sets are not included in the

result

S.symmetric_difference(other)

Returns a set with items that are either in set S or other (or

in both)

S.union(other)

Table 14—Set Operations

Many of the tasks performed by methods can also be accomplished using

operators. If acids and bases are two sets, for example, then acids | bases creates

a new set containing their union (that is, all the elements from both acids and

bases), while acids <= bases tests whether acids is a subset of bases—that is, that

all the values in acids are also in bases. Some of the operators that sets support

are listed in Table 15, Set Operators, on page 207.

Chapter 11. Storing Data Using Other Collection Types • 206

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

OperatorMethod Call

set1 - set2set1.difference(set2)
set1 & set2set1.intersection(set2)
set1 <= set2set1.issubset(set2)
set1 >= set2set1.issuperset(set2)
set1 | set2set1.union(set2)
set1 ^ set2set1.symmetric_difference(set2)

Table 15—Set Operators

The following code shows the set operations in action:

>>> lows = set([0, 1, 2, 3, 4])
>>> odds = set([1, 3, 5, 7, 9])
>>> lows - odds # Equivalent to lows.difference(odds)
{0, 2, 4}
>>> lows & odds # Equivalent to lows.intersection(odds)
{1, 3}
>>> lows <= odds # Equivalent to lows.issubset(odds)
False
>>> lows >= odds # Equivalent to lows.issuperset(odds)
False
>>> lows | odds # Equivalent to lows.union(odds)
{0, 1, 2, 3, 4, 5, 7, 9}
>>> lows ^ odds # Equivalent to lows.symmetric_difference(odds)
{0, 2, 4, 5, 7, 9}

Set Example: Arctic Birds

Suppose you have a file used to record observations of birds in the Canadian

Arctic and you want to know which species have been observed. The observa-

tions file, observations.txt, has one species per line:

canada goose
canada goose
long-tailed jaeger
canada goose
snow goose
canada goose
long-tailed jaeger
canada goose
northern fulmar

The following program reads each line of the file, strips off the leading and

trailing whitespace, and adds the species on that line to the set. Notice the

type annotation specifying that the function returns a set of strings:

report erratum • discuss

Storing Data Using Sets • 207

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

from typing import Set, TextIO
from io import StringIO

def observe_birds(observations_file: TextIO) -> Set[str]:
"""Return a set of the bird species listed in observations_file, which has
one bird species per line.

>>> infile = StringIO('bird 1\\nbird 2\\nbird 1\\n')
>>> birds = observe_birds(infile)
>>> 'bird 1' in birds
True
>>> 'bird 2' in birds
True
>>> len(birds) == 2
True
"""
birds_observed = set()
for line in observations_file:

bird = line.strip()
birds_observed.add(bird)

return birds_observed

if __name__ == '__main__':
import doctest
doctest.testmod()
with open('observations.txt') as observations_file:

print(observe_birds(observations_file))

The resulting set contains four species. Since sets don’t contain duplicates,

calling method add with a species already in the set had no effect.

You can loop over the values in a set. In the following code, a for loop is used

to print each species:

>>> for species in birds_observed:
... print(species)
...
long-tailed jaeger
canada goose
northern fulmar
snow goose

Looping over a set works exactly like a loop over a list, except that the order

in which items are encountered is arbitrary: there is no guarantee that they

will come out in the order in which they were added, in alphabetical order,

in order by length, or in any other order.

Chapter 11. Storing Data Using Other Collection Types • 208

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Set Contents Must Be Immutable

Checking for set membership must be fast. It uses a mathematical technique

called hashing, which relies on set values being immutable. Mutable values

such as lists cannot be added to sets because mutable values are unhashable:

>>> S = set()
>>> L = [1, 2, 3]
>>> S.add(L)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'set'

This restriction means that we can’t store a set of sets. Sets themselves can’t

be immutable, since we need to add and remove values, so a set can’t contain

another one. To solve this problem, Python has another data type called a frozen

set. As the name implies, frozen sets are sets that cannot be mutated. An empty

frozen set is created using frozenset(); to create a frozen set that contains some

values, use frozenset(values), where values is a list, tuple, set, or other collection.

In the next section, you will learn about tuples, which can also be used as

items in sets.

Storing Data Using Tuples

Lists aren’t the only kind of ordered sequence in Python. You’ve already

learned about one of the others: strings (see Chapter 4, Working with Text,

on page 65). Formally, a string is an immutable sequence of characters. The

characters in a string are ordered and a string can be indexed and sliced like

a list to create new strings:

>>> rock = 'anthracite'
>>> rock[9]
'e'
>>> rock[0:3]
'ant'
>>> rock[-5:]
'acite'
>>> for character in rock[:5]:
... print(character)
...

a
n
t
h
r

report erratum • discuss

Storing Data Using Tuples • 209

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Python also has an immutable sequence type called a tuple. Tuples are written

using parentheses instead of brackets; like strings and lists, they can be subscript-

ed, sliced, and looped over:

>>> bases = ('A', 'C', 'G', 'T')
>>> for base in bases:
... print(base)
...
A
C
G
T

There’s one small catch: although () represents the empty tuple, a tuple with one

element is not written as (x) but as (x,) (with a trailing comma). This is done to

avoid ambiguity. If the trailing comma weren’t required, (5 + 3) could mean either

8 (under the normal rules of arithmetic) or the tuple containing only the value 8:

>>> (8)
8
>>> type((8))
<class 'int'>
>>> (8,)
(8,)
>>> type((8,))
<class 'tuple'>
>>> (5 + 3)
8
>>> (5 + 3,)
(8,)

Unlike lists, once a tuple is created, it cannot be mutated:

>>> life = (['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0])
>>> life[0] = life[1]
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object does not support item assignment

However, the objects inside tuples can still be mutated:

>>> life = (['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0])
>>> life[0][1] = 80.0
>>> life
(['Canada', 80.0], ['United States', 75.5], ['Mexico', 72.0])

Here is an example that explores what is mutable and what isn’t. We’ll build

the same tuple as in the previous example, but we’ll do it in steps. First let’s

create three lists:

Chapter 11. Storing Data Using Other Collection Types • 210

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> canada = ['Canada', 76.5]
>>> usa = ['United States', 75.5]
>>> mexico = ['Mexico', 72.0]

That builds this memory model:

0
id1

id3:list

1
id2

"Canada"

id1:str

0
id4

id6:list

1
id5

0
id7

id9:list

1
id8

76.5

id2

"United States"

id4:str

75.5

id5

"Mexico"

id7:str

72.0

id8

id3canada id6usa id9mexico

We’ll create a tuple using those variables:

>>> life = (canada, usa, mexico)

0
id1

id3:list

1
id2

"Canada"

id1:str

0
id4

id6:list

1
id5

0
id7

id9:list

1
id8

76.5

id2

"United States"

id4:str

75.5

id5

"Mexico"

id7:str

72.0

id8

id3canada

id6usa

id9mexico

id10life
0
id3

id10:tuple

1
id6

2
id9

Notice that none of the four variables know about the others, and that the

tuple object contains three references, one for each of the country lists.

Now let’s change what variable mexico refers to:

>>> mexico = ['Mexico', 72.5]
>>> life
(['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0])

Notice that the tuple that variable life refers to hasn’t changed. Here’s the new

picture as shown on page 212.

report erratum • discuss

Storing Data Using Tuples • 211

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

life[0] will always refer to the same list object—we can’t change the memory

address stored in life[0]—but we can mutate that list object. And because

variable canada also refers to that list, it sees the mutation:

>>> life[0][1] = 80.0
>>> canada
['Canada', 80.0]

We hope that it is clear how essential it is to thoroughly understand variables

and references and how collections contain references to objects and not to

variables.

Chapter 11. Storing Data Using Other Collection Types • 212

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Assigning to Multiple Variables Using Tuples

You can assign to multiple variables in the same assignment statement:

>>> (x, y) = (10, 20)
>>> x
10
>>> y
20

As with a normal assignment statement (see Assignment Statement, on page

18), Python first evaluates all expressions on the right side of the = symbol,

and then it assigns those values to the variables on the left side.

Python uses the comma as a tuple constructor, so we can leave off the

parentheses:

>>> 10, 20
(10, 20)
>>> x, y = 10, 20
>>> x
10
>>> y
20

In fact, multiple assignment will work with lists and sets as well. Python will

happily pull apart information out of any collection:

>>> [[w, x], [[y], z]] = [{10, 20}, [(30,), 40]]
>>> w
10
>>> x
20
>>> y
30
>>> z
40

Any depth of nesting will work as long as the structure on the right can be

translated into the structure on the left.

One of the most common uses of multiple assignment is to swap the values

of two variables:

>>> s1 = 'first'
>>> s2 = 'second'
>>> s1, s2 = s2, s1
>>> s1
'second'
>>> s2
'first'

report erratum • discuss

Storing Data Using Tuples • 213

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

This works because the expressions on the right side of the operator = are

evaluated before assigning to the variables on the left side.

Storing Data Using Dictionaries

Here is the same bird-watching observation file that we saw in Set Example:

Arctic Birds, on page 207:

canada goose
canada goose
long-tailed jaeger
canada goose
snow goose
canada goose
long-tailed jaeger
canada goose
northern fulmar

Suppose we want to know how often each species was seen. Our first attempt uses

a list of lists, in which each inner list has two items. The item at index 0 of the inner

list contains the species, and the item at index 1 contains the number of times it

has been seen so far. To build this list, we iterate over the lines of the observations

file. For each line, we search the outer list, looking for the species on that line. If we

find that the species occurs in the list, we add one to the number of times it has

been observed; if we do not find it, we add a new entry for the species:

from typing import TextIO, List, Any
from io import StringIO

def count_birds(observations_file: TextIO) -> List[List[Any]]:
"""Return a set of the bird species listed in observations_file, which has
one bird species per line.

>>> infile = StringIO('bird 1\\nbird 2\\nbird 1\\n')
>>> count_birds(infile)
[['bird 1', 2], ['bird 2', 1]]
"""
bird_counts = []
for line in observations_file:

bird = line.strip()
found = False
Find bird in the list of bird counts.
for entry in bird_counts:

if entry[0] == bird:
entry[1] = entry[1] + 1
found = True

if not found:
bird_counts.append([bird, 1])

return bird_counts

Chapter 11. Storing Data Using Other Collection Types • 214

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

if __name__ == '__main__':
with open('observations.txt') as observations_file:

bird_counts = count_birds(observations_file)

Print each bird and the number of times it was seen
for entry in bird_counts:

print(entry[0], entry[1])

Here is the output:

canada goose 5
long-tailed jaeger 2
snow goose 1
northern fulmar 1

This code uses a Boolean variable, found. Once a species is read from the file,

found is assigned False. The program then iterates over the list, looking for that

species at index 0 of one of the inner lists. If the species occurs in an inner

list, found is assigned True. At the end of the loop over the list, if found still refers

to False it means that this species is not yet present in the list and so it is

added, along with the number of observations of it, which is currently 1.

Our code works, but there are two things wrong with it. The first is that it is

complex. The more nested loops our programs contain, the harder they are

to understand, fix, and extend. The second is that it is inefficient. Suppose

we were interested in beetles instead of birds and that we had millions of

observations of tens of thousands of species. Scanning the list of names each

time we want to add one new observation would take a long, long time, even

on a fast computer (a topic we will return to in Chapter 13, Searching and

Sorting, on page 243).

Can you use a set to solve both problems at once? Sets can look up values

in a single step; why not combine each bird’s name and the number of times

it has been seen into a two-valued tuple and put those tuples in a set?

The problem with this idea is that you can look for values only if you know

what those values are. In this case, you won’t. You will know only the name

of the species, but not how many times it has already been seen.

The right approach is to use another data structure called a dictionary. Also

known as a map, a dictionary is an unordered mutable collection of key/value

pairs. In plain English, Python’s dictionaries are like dictionaries that map

words to definitions. They associate a key (like a word) with a value (such as

a definition). The keys form a set: any particular key can appear once at most

in a dictionary. Like the elements in sets, keys must be immutable (though

the values associated with them don’t have to be).

report erratum • discuss

Storing Data Using Dictionaries • 215

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Dictionaries are created by putting key/value pairs inside braces (each key

is followed by a colon and then by its value):

>>> bird_to_observations = {'canada goose': 3, 'northern fulmar': 1}
>>> bird_to_observations
{'northern fulmar': 1, 'canada goose': 3}

We chose variable name bird_to_observations since this variable refers to a dictio-

nary where each key is a bird and each value is the number of observations

of that bird. In other words, the dictionary maps birds to observations. Here

is a picture of the resulting dictionary:

id5:dict

id2 id1

id4 id3

"northern fulmar"

id2:str

"canada goose"

id4:str

1

id1:int

3

id3:int

id5birds

To get the value associated with a key, we put the key in square brackets,

much like indexing into a list:

>>> bird_to_observations['northern fulmar']
1

Indexing a dictionary with a key it doesn’t contain produces an error, just

like an out-of-range index for a list does:

>>> bird_to_observations['canada goose']
3
>>> bird_to_observations['long-tailed jaeger']
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'long-tailed jaeger'

The empty dictionary is written {} (this is why we can’t use this notation for

the empty set). It doesn’t contain any key/value pairs, so indexing into it

always results in an error.

As with sets, dictionaries are unordered:

>>> dict1 = {'canada goose': 3, 'northern fulmar': 1}
>>> dict2 = {'northern fulmar': 1, 'canada goose': 3}
>>> dict1 == dict2
True

Chapter 11. Storing Data Using Other Collection Types • 216

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Updating and Checking Membership

To update the value associated with a key, you use the same notation as for lists,

except you use a key instead of an index. If the key is already in the dictionary,

this assignment statement changes the value associated with it. If the key isn’t

present, the key/value pair is added to the dictionary:

>>> bird_to_observations = {}
>>>
>>> # Add a new key/value pair, 'snow goose': 33.
>>> bird_to_observations['snow goose'] = 33
>>>
>>> # Add a new key/value pair, 'eagle': 999.
>>> bird_to_observations['eagle'] = 999
>>> bird_to_observations
{'eagle': 999, 'snow goose': 33}
>>>
>>> # Change the value associated with key 'eagle' to 9.
>>> bird_to_observations['eagle'] = 9
>>> bird_to_observations
{'eagle': 9, 'snow goose': 33}

To remove an entry from a dictionary, use del d[k], where d is the dictionary and k
is the key being removed. Only entries that are present can be removed; trying

to remove one that isn’t there results in an error:

>>> bird_to_observations = {'snow goose': 33, 'eagle': 9}
>>> del bird_to_observations['snow goose']
>>> bird_to_observations
{'eagle': 9}
>>> del bird_to_observations['gannet']
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'gannet'

To test whether a key is in a dictionary, we can use the in operator:

>>> bird_to_observations = {'eagle': 999, 'snow goose': 33}
>>> 'eagle' in bird_to_observations
True
>>> if 'eagle' in bird_to_observations:
... print('eagles have been seen')
...
eagles have been seen
>>> del bird_to_observations['eagle']
>>> 'eagle' in bird_to_observations
False
>>> if 'eagle' in bird_to_observations:
... print('eagles have been seen')
...
>>>

report erratum • discuss

Storing Data Using Dictionaries • 217

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The in operator only checks the keys of a dictionary. In this example, 33 in birds
evaluates to False, since 33 is a value, not a key.

Looping Over Dictionaries

Like the other collections you’ve seen, you can loop over dictionaries. The

general form of a for loop over a dictionary is as follows:

for «variable» in «dictionary»:
«block»

For dictionaries, the loop variable is assigned each key from the dictionary

in turn:

>>> bird_to_observations = {'canada goose': 183, 'long-tailed jaeger': 71,
... 'snow goose': 63, 'northern fulmar': 1}
>>> for bird in bird_to_observations:
... print(bird, bird_to_observations[bird])
...
canada goose 183
long-tailed jaeger 71
snow goose 63
northern fulmar 1

When Python loops over a dictionary, it assigns each key to the loop variable. (It’s

a lot easier to go from a dictionary key to the associated value than it is to take

the value and find the associated key.)

Dictionary Operations

Like lists, tuples, and sets, dictionaries are objects. Their methods are described

in Table 16, Dictionary Methods, on page 219. The following code shows how the

methods can be used:

>>> scientist_to_birthdate = {'Newton' : 1642, 'Darwin' : 1809,
... 'Turing' : 1912}
>>> scientist_to_birthdate.keys()
dict_keys(['Darwin', 'Newton', 'Turing'])
>>> scientist_to_birthdate.values()
dict_values([1809, 1642, 1912])
>>> scientist_to_birthdate.items()
dict_items([('Darwin', 1809), ('Newton', 1642), ('Turing', 1912)])
>>> scientist_to_birthdate.get('Newton')
1642
>>> scientist_to_birthdate.get('Curie', 1867)
1867
>>> scientist_to_birthdate
{'Darwin': 1809, 'Newton': 1642, 'Turing': 1912}
>>> researcher_to_birthdate = {'Curie' : 1867, 'Hopper' : 1906,
... 'Franklin' : 1920}

Chapter 11. Storing Data Using Other Collection Types • 218

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> scientist_to_birthdate.update(researcher_to_birthdate)
>>> scientist_to_birthdate
{'Hopper': 1906, 'Darwin': 1809, 'Turing': 1912, 'Newton': 1642,
'Franklin': 1920, 'Curie': 1867}
>>> researcher_to_birthdate
{'Franklin': 1920, 'Hopper': 1906, 'Curie': 1867}
>>> researcher_to_birthdate.clear()
>>> researcher_to_birthdate
{}

DescriptionMethod

Removes all key/value pairs from dictionary D.D.clear()
Returns the value associated with key k, or None if the key isn’t present.

(Usually you’ll want to use D[k] instead.)

D.get(k)

Returns the value associated with key k, or a default value v if the key

isn’t present.

D.get(k, v)

Returns dictionary D’s keys as a set-like object—entries are guaranteed

to be unique.

D.keys()

Returns dictionary D’s (key, value) pairs as set-like objects.D.items()
Removes key k from dictionary D and returns the value that was asso-

ciated with k—if k isn’t in D, an error is raised.

D.pop(k)

Removes key k from dictionary D and returns the value that was asso-

ciated with k; if k isn’t in D , returns v.
D.pop(k, v)

Returns the value associated with key k in D.D.setdefault(k)
Returns the value associated with key k in D; if k isn’t a key in D, adds

the key k with the value v to D and returns v.
D.setdefault(k, v)

Returns dictionary D’s values as a list-like object—entries may or may

not be unique.

D.values()

Updates dictionary D with the contents of dictionary other; for each key in

other, if it is also a key in D, replaces that key in D’s value with the value

D.update(other)

from other; for each key in other, if that key isn’t in D, adds that key/value

pair to D.

Table 16—Dictionary Methods

As you can see from this output, the keys and values methods return the dictionary’s

keys and values, respectively, while items returns the (key, value) pairs. Like the

range object that you learned about previously, these are virtual sequences over

which we can loop. Similarly, function list can be applied to them to create lists

of keys/values or key/value tuples.

Because dictionaries usually map values from one concept (scientists, in our

example) to another (birthdays), it’s common to use variable names linking the

two—hence, scientist_to_birthdate.

One common use of items is to loop over the keys and values in a dictionary

together:

report erratum • discuss

Storing Data Using Dictionaries • 219

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

for key, value in dictionary.items():
Do something with the key and value

For example, the same format can be used to loop over the scientists and

their birth years:

>>> scientist_to_birthdate = {'Newton' : 1642, 'Darwin' : 1809,
... 'Turing' : 1912}
>>> for scientist, birthdate in scientist_to_birthdate.items():
... print(scientist, 'was born in', birthdate)
...
Turing was born in 1912
Darwin was born in 1809
Newton was born in 1642

Instead of a single loop variable, there are two. The two parts of each of the

two-item tuples returned by the method items is associated with a variable.

Variable scientist refers to the first item in the tuple, which is the key, and

birthdate refers to the second item, which is the value.

Dictionaries, Key Order, and Versions of Python

In every version of Python prior to Python 3.6, when iterating over the keys of a dic-

tionary, the keys were unordered. Consider this program:

items = {'first': 1, 'second': 2, 'third': 3}
for key, value in items.items():

print(key, value)

We ran it three times using Python 3.5. Notice that each run printed the items in a

different order:

Run 3Run 2Run 1

third 3second 2first 1
first 1third 3third 3
second 2first 1second 2

In Python 3.6, the way in which dictionaries are stored by Python has a side effect:

the keys always come out in the same order. The language designers have warned

that we should not rely on this, although it may become a guaranteed feature in

future versions.

In keeping with this advice, none of the examples in this book rely on dictionary key

order.

Dictionary Example

Back to birdwatching once again. Like before, we want to count the number

of times each species has been seen. To do this, we create a dictionary that

Chapter 11. Storing Data Using Other Collection Types • 220

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

is initially empty. Each time we read an observation from a file, we check to

see whether we have encountered that bird before—that is, whether the bird

is already a key in our dictionary. If it is, we add 1 to the value associated

with it. If it isn’t, we add the bird as a key to the dictionary with the value 1.
Here is the program that does this. Notice the type annotation for dictionaries:

from typing import TextIO, Dict
from io import StringIO

def count_birds(observations_file: TextIO) -> Dict[str, int]:
"""Return a set of the bird species listed in observations_file, which has
one bird species per line.

>>> infile = StringIO('bird 1\\nbird 2\\nbird 1\\n')
>>> count_birds(infile)
{'bird 1': 2, 'bird 2': 1}
"""
bird_to_observations = {}
for line in observations_file:

bird = line.strip()
if bird in bird_to_observations:

bird_to_observations[bird] = bird_to_observations[bird] + 1
else:

bird_to_observations[bird] = 1

return bird_to_observations

if __name__ == '__main__':
with open('observations.txt') as observations_file:

bird_to_observations = count_birds(observations_file)
for bird, observations in bird_to_observations.items():

print(bird, observations)

The function body can be shortened by using the method dict.get, which saves

three lines:

def count_birds(observations_file: TextIO) -> Dict[str, int]:
"""Return a set of the bird species listed in observations_file, which has
one bird species per line.

>>> infile = StringIO('bird 1\\nbird 2\\nbird 1\\n')
>>> count_birds(infile)
{'bird 1': 2, 'bird 2': 1}
"""
bird_to_observations = {}
for line in observations_file:

bird = line.strip()
bird_to_observations[bird] = bird_to_observations.get(bird, 0) + 1

return bird_to_observations

Using the get method makes the program shorter, but some programmers

find it harder to understand at a glance. If the first argument to get is not a

report erratum • discuss

Storing Data Using Dictionaries • 221

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

key in the dictionary, it returns 0; otherwise it returns the value associated

with that key. After that, 1 is added to that value. The dictionary is updated

to associate that sum with the key that bird refers to.

Inverting a Dictionary

You might want to print the birds in another order—in order of the number

of observations, for example. To do this, you need to invert the dictionary;

that is, create a new dictionary in which you use the values as keys and the

keys as values. This is a little trickier than it first appears. There’s no guar-

antee that the values are unique, so you have to handle what are called

collisions. For example, if you invert the dictionary {'a': 1, 'b': 1, 'c': 1}, a key

would be 1, but it’s not clear what the value associated with it would be.

Since you’d like to keep all of the data from the original dictionary, you may

need to use a collection, such as a list, to keep track of the values associated

with a key. If we go this route, the inverse of the dictionary shown earlier

would be {1: ['a', 'b', 'c']}. Here’s a program to invert the dictionary of birds to

observations:

>>> bird_to_observations
{'canada goose': 5, 'northern fulmar': 1, 'long-tailed jaeger': 2,
'snow goose': 1}
>>>
>>> # Invert the dictionary
>>> observations_to_birds_list = {}
>>> for bird, observations in bird_to_observations.items():
... if observations in observations_to_birds_list:
... observations_to_birds_list[observations].append(bird)
... else:
... observations_to_birds_list[observations] = [bird]
...
>>> observations_to_birds_list
{1: ['northern fulmar', 'snow goose'], 2: ['long-tailed jaeger'],
5: ['canada goose']}

This program loops over each key/value pair in the original dictionary,

bird_to_observations. If that value is not yet a key in the inverted dictionary,

observations_to_birds_list, it is added as a key and its value is a single-item list

containing the key associated with it in the original dictionary. On the other

hand, if that value is already a key, then the key associated with it in the

original dictionary is appended to its list of values.

Chapter 11. Storing Data Using Other Collection Types • 222

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Now that the dictionary is inverted, you can print each key and all of the

items in its value list:

>>> # Print the inverted dictionary
... observations_sorted = sorted(observations_to_birds_list.keys())
>>> for observations in observations_sorted:
... print(observations, ':', end=" ")
... for bird in observations_to_birds_list[observations]:
... print(' ', bird, end=" ")
... print()
...
1 : northern fulmar snow goose
2 : long-tailed jaeger
5 : canada goose

The outer loop passes over each key in the inverted dictionary, and the inner

loop passes over each of the items in the values list associated with that key.

Using the in Operator on Tuples, Sets, and Dictionaries

As with lists, the in operator can be applied to tuples and sets to check whether

an item is a member of the collection:

>>> odds = set([1, 3, 5, 7, 9])
>>> 9 in odds
True
>>> 8 in odds
False
>>> '9' in odds
False
>>> evens = (0, 2, 4, 6, 8)
>>> 4 in evens
True
>>> 11 in evens
False

When used on a dictionary, in checks whether a value is a key in the dictionary:

>>> bird_to_observations = {'canada goose': 183, 'long-tailed jaeger': 71,
... 'snow goose': 63, 'northern fulmar': 1}
>>> 'snow goose' in bird_to_observations
True
>>> 183 in bird_to_observations
False

Notice that the values in the dictionary are ignored; the in operator only looks

at the keys.

report erratum • discuss

Using the in Operator on Tuples, Sets, and Dictionaries • 223

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Comparing Collections

You’ve now seen strings, lists, sets, tuples, and dictionaries. They all have

their uses. Here is a table comparing them:

Use When…Ordered?Mutable?Collection

You want to keep track of text.YesNostr
You want to keep track of an ordered

sequence that you want to update.

YesYeslist

You want to build an ordered sequence that

you know won’t change or that you want to

YesNotuple

use as a key in a dictionary or as a value

in a set.

You want to keep track of values, but order

doesn’t matter, and you don’t want to keep

duplicates. The values must be immutable.

NoYesset

You want to keep a mapping of keys to val-

ues. The keys must be immutable.

NoYesdictionary

Table 17—Features of Python Collections

Creating New Type Annotations

In addition to type annotations for built-in types such as int and str, module

typing provides types List, Set, Tuple, and Dict. For each, you can specify the kind

of thing it contains, including type Any for function parameters that work with

a mixed set of types.

To explore this, we’ll revisit atoms and molecules from Multiline Records, on

page 195, using dictionaries and tuples in addition to lists.

Recall functions read_molecule and read_all_molecules; here are the headers and

docstrings:

def read_molecule(reader: TextIO) -> list:
"""Read a single molecule from reader and return it, or return None to
signal end of file. The first item in the result is the name of the
compound; each list contains an atom type and the X, Y, and Z coordinates
of that atom.

>>> instring = 'COMPND TEST\\nATOM 1 N 0.1 0.2 0.3\\nATOM 2 N 0.2 0.1 0.0\\nEND\\n'
>>> infile = StringIO(instring)
>>> read_molecule(infile)
['TEST', ['N', '0.1', '0.2', '0.3'], ['N', '0.2', '0.1', '0.0']]
"""

Chapter 11. Storing Data Using Other Collection Types • 224

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

def read_all_molecules(reader: TextIO) -> list:
"""Read zero or more molecules from reader, returning a list of the
molecule information.

>>> cmpnd1 = 'COMPND T1\\nATOM 1 N 0.1 0.2 0.3\\nATOM 2 N 0.2 0.1 0.0\\nEND\\n'
>>> cmpnd2 = 'COMPND T2\\nATOM 1 A 0.1 0.2 0.3\\nATOM 2 A 0.2 0.1 0.0\\nEND\\n'
>>> infile = StringIO(cmpnd1 + cmpnd2)
>>> result = read_all_molecules(infile)
>>> result[0]
['T1', ['N', '0.1', '0.2', '0.3'], ['N', '0.2', '0.1', '0.0']]
>>> result[1]
['T2', ['A', '0.1', '0.2', '0.3'], ['A', '0.2', '0.1', '0.0']]
"""

Assuming that molecules have unique names, it would make sense to have

read_all_molecules return a dictionary where the keys are the names of compounds

and the values are atoms.

Also, instead of using a four-item list for atoms, each atom will be a tuple where the

first item is the type of the atom and the second item is a tuple of three coordinates.

You can introduce new names for these compound types (pun unintended). Here,

we define new types called Atom and CompoundDict:

Atom = Tuple[str, Tuple[str, str, str]]
CompoundDict = Dict[str, Atom]

That leads to these new function specifications:

def read_molecule(reader: TextIO) -> CompoundDict:
"""Read a single molecule from reader and return it, or return None to
signal end of file. The returned dictionary has one key/value pair where
the key is the name of the compound and the value is a list of Atoms.

>>> instring = 'COMPND TEST\\nATOM 1 N 0.1 0.2 0.3\\nATOM 2 N 0.2 0.1 0.0\\nEND\\n'
>>> infile = StringIO(instring)
>>> read_molecule(infile)
{'TEST': [('N', ('0.1', '0.2', '0.3')), ('N', ('0.2', '0.1', '0.0'))]}
"""

def read_all_molecules(reader: TextIO) -> CompoundDict:
"""Read zero or more molecules from reader, returning a list of the
molecule information.

>>> cmpnd1 = 'COMPND T1\\nATOM 1 N 0.1 0.2 0.3\\nATOM 2 N 0.2 0.1 0.0\\nEND\\n'
>>> cmpnd2 = 'COMPND T2\\nATOM 1 A 0.1 0.2 0.3\\nATOM 2 A 0.2 0.1 0.0\\nEND\\n'
>>> infile = StringIO(cmpnd1 + cmpnd2)
>>> result = read_all_molecules(infile)
>>> result['T1']
[('N', ('0.1', '0.2', '0.3')), ('N', ('0.2', '0.1', '0.0'))]
>>> result['T2']
[('A', ('0.1', '0.2', '0.3')), ('A', ('0.2', '0.1', '0.0'))]
"""

report erratum • discuss

Creating New Type Annotations • 225

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

A Collection of New Information

In this chapter, you learned the following:

• Sets are used in Python to store unordered collections of unique values.

They support the same operations as sets in mathematics.

• Tuples are another kind of Python sequence. Tuples are ordered sequences

like lists, except they are immutable.

• Dictionaries are used to store unordered collections of key/value pairs.

The keys must be immutable, but the values need not be.

• Looking things up in sets and dictionaries is much faster than searching

through lists. If you have a program that is doing the latter, consider

changing your choice of data structures.

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. Write a function called find_dups that takes a list of integers as its input argu-

ment and returns a set of those integers occurring two or more times in the list.

2. Write the bodies of the new versions of functions read_molecule and read_all_molecules
from Creating New Type Annotations, on page 224.

3. Python’s set objects have a method called pop that removes and returns an

arbitrary element from the set. If the set gerbils contains five cuddly little ani-

mals, for example, calling gerbils.pop() five times will return those animals one

by one, leaving the set empty at the end. Use this to write a function called

mating_pairs that takes two equal-sized sets called males and females as input and

returns a set of pairs; each pair must be a tuple containing one male and one

female. (The elements of males and females may be strings containing gerbil

names or gerbil ID numbers—your function must work with both.)

4. The PDB file format is often used to store information about molecules. A

PDB file may contain zero or more lines that begin with the word AUTHOR (which

may be in uppercase, lowercase, or mixed case), followed by spaces or tabs,

followed by the name of the person who created the file. Write a function that

takes a list of filenames as an input argument and returns the set of all author

names found in those files.

5. The keys in a dictionary are guaranteed to be unique, but the values are not.

Write a function called count_values that takes a single dictionary as an argument

Chapter 11. Storing Data Using Other Collection Types • 226

report erratum • discuss

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

and returns the number of distinct values it contains. Given the input {'red':
1, 'green': 1, 'blue': 2}, for example, it should return 2.

6. After doing a series of experiments, you have compiled a dictionary showing

the probability of detecting certain kinds of subatomic particles. The particles’

names are the dictionary’s keys, and the probabilities are the values: {'neutron':
0.55, 'proton': 0.21, 'meson': 0.03, 'muon': 0.07, 'neutrino': 0.14}. Write a function that takes

a single dictionary of this kind as input and returns the particle that is least

likely to be observed. Given the dictionary shown earlier, for example, the

function would return 'meson'.

7. Write a function called count_duplicates that takes a dictionary as an argument

and returns the number of values that appear two or more times.

8. A balanced color is one whose red, green, and blue values add up to 1.0. Write

a function called is_balanced that takes a dictionary whose keys are 'R', 'G', and

'B' and whose values are between 0 and 1 as input and that returns True if
they represent a balanced color.

9. Write a function called dict_intersect that takes two dictionaries as arguments

and returns a dictionary that contains only the key/value pairs found in both

of the original dictionaries.

10. Programmers sometimes use a dictionary of dictionaries as a simple database.

For example, to keep track of information about famous scientists, you might

have a dictionary where the keys are strings and the values are dictionaries,

like this:

{
'jgoodall' : {'surname' : 'Goodall',

'forename' : 'Jane',
'born' : 1934,
'died' : None,
'notes' : 'primate researcher',
'author' : ['In the Shadow of Man',

'The Chimpanzees of Gombe']},
'rfranklin' : {'surname' : 'Franklin',

'forename' : 'Rosalind',
'born' : 1920,
'died' : 1957,
'notes' : 'contributed to discovery of DNA'},

'rcarson' : {'surname' : 'Carson',
'forename' : 'Rachel',
'born' : 1907,
'died' : 1964,
'notes' : 'raised awareness of effects of DDT',
'author' : ['Silent Spring']}

}

report erratum • discuss

Exercises • 227

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Write a function called db_headings that returns the set of keys used in any

of the inner dictionaries. In this example, the function should return

set('author', 'forename', 'surname', 'notes', 'born', 'died').

11. Write another function called db_consistent that takes a dictionary of dictio-

naries in the format described in the previous question and returns True
if and only if every one of the inner dictionaries has exactly the same keys.

(This function would return False for the previous example, since Rosalind

Franklin’s entry doesn’t contain the 'author' key.)

12. A sparse vector is a vector whose entries are almost all zero, like [1, 0, 0, 0,
0, 0, 3, 0, 0, 0]. Storing all those zeros in a list wastes memory, so program-

mers often use dictionaries instead to keep track of just the nonzero

entries. For example, the vector shown earlier would be represented as

{0:1, 6:3}, because the vector it is meant to represent has the value 1 at

index 0 and the value 3 at index 6.

a. The sum of two vectors is just the element-wise sum of their elements.

For example, the sum of [1, 2, 3] and [4, 5, 6] is [5, 7, 9]. Write a function

called sparse_add that takes two sparse vectors stored as dictionaries

and returns a new dictionary representing their sum.

b. The dot product of two vectors is the sum of the products of corre-

sponding elements. For example, the dot product of [1, 2, 3] and [4, 5, 6]
is 4+10+18, or 32. Write another function called sparse_dot that calculates

the dot product of two sparse vectors.

c. Your boss has asked you to write a function called sparse_len that will

return the length of a sparse vector (just as Python’s len returns the

length of a list). What do you need to ask her before you can start

writing it?

Chapter 11. Storing Data Using Other Collection Types • 228

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 12

Designing Algorithms

An algorithm is a set of steps that accomplishes a task, such as the steps

involved in synthesizing caffeine. Each function in a program, as well as the

program itself, is an algorithm that is written in a programming language like

Python. Writing a program directly in Python, without careful planning, can

waste hours, days, or even weeks of effort. Instead, programmers often write

algorithms in a combination of English and mathematics and then translate

it into Python.

In this chapter, you’ll learn an algorithm-writing technique called top-down

design. You start by describing your solution in English and then mark the

phrases that correspond directly to Python statements. Those that don’t cor-

respond are then rewritten in more detail in English, until everything in your

description can be written in Python.

Looking Ahead: Testing Your Algorithms

Top-down design is easy to describe, but doing it requires a little practice. Often,

parts of an algorithm written in English will be tricky to translate into Python; in fact,

an implementation may look reasonable but will contain bugs. This is common in

many fields. In mathematics, for example, the first versions of “proofs” often handle

common cases well but fail for odd cases (Proofs and Refutations [Lak76]). Mathemati-

cians deal with this by looking for counterexamples, and programmers (good program-

mers, at least) deal with it by testing their code as they write it.

In this chapter, we have skipped a discussion of how we tested the algorithms we

present. The first versions we wrote had minor bugs in them, and we found them

only by doing thorough testing. We will talk more about testing in Chapter 15, Testing

and Debugging, on page 303.

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Searching for the Two Smallest Values

This section will explore how to find the index of the two smallest items in an

unsorted list using three quite different algorithms. We’ll go through a top-

down design using each approach.

To start, suppose we have data showing the number of humpback whales

sighted off the coast of British Columbia over the past ten years:

47632410296122307478477834809

The first value, 809, represents the number of sightings ten years ago; the last

one, 476, represents the number of sightings last year.

We’ll start with a simpler problem: what is the smallest value during those

years? This code tells us just that:

>>> counts = [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
>>> min(counts)
96

If we want to know in which year the population bottomed out, we can use

list.index to find the index of the smallest value:

>>> counts = [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
>>> low = min(counts)
>>> counts.index(low)
6

Or, more succinctly:

>>> counts = [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
>>> counts.index(min(counts))
6

Now, what if we want to find the indices of the two smallest values? Lists

don’t have a method to do this directly, so we’ll have to design an algorithm

ourselves and then translate it to a Python function. Here is the header for

a function that does this:

from typing import List, Tuple

def find_two_smallest(L: List[float]) -> Tuple[int, int]:
"""Return a tuple of the indices of the two smallest values in list L.

>>> items = [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
>>> find_two_smallest(items)
(6, 7)
>>> items == [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
True
"""

Chapter 12. Designing Algorithms • 230

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

As you may recall from Designing New Functions: A Recipe, on page 47, the

next step in the function design recipe is to write the function body.

There are at least three distinct algorithms, each of which will be subjected to

top-down design. We’ll start by giving a high-level description of each. Each of

these descriptions is the first step in doing a top-down design for that approach.

• Find, remove, find. Find the index of the minimum, remove it from the list,

and find the index of the new minimum item in the list. After we have the

second index, we need to put back the value we removed and, if necessary,

adjust the second index to account for that removal and reinsertion.

• Sort, identify minimums, get indices. Sort the list, get the two smallest

numbers, and then find their indices in the original list.

• Walk through the list. Examine each value in the list in order, keep track

of the two smallest values found so far, and update these values when a

new smaller value is found.

The first two algorithms mutate the list, either by removing an item or by

sorting the list. It is vital that our algorithms put things back the way we

found them, or the people who call our functions are going to be annoyed

with us. The last two lines of the docstring checks this for us.

While you are investigating these algorithms in the next few pages, consider

this question: Which one is the fastest?

Find, Remove, Find

Here is the algorithm again, rewritten with one instruction per line and

explicitly discussing the parameter L:

from typing import List, Tuple

def find_two_smallest(L: List[float]) -> Tuple[int, int]:
"""Return a tuple of the indices of the two smallest values in list L.

>>> items = [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
>>> find_two_smallest(items)
(6, 7)
>>> items == [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
True
"""
Find the index of the minimum item in L
Remove that item from the list
Find the index of the new minimum item in the list
Put the smallest item back in the list
If necessary, adjust the second index
Return the two indices

report erratum • discuss

Searching for the Two Smallest Values • 231

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

To address the first step, Find the index of the minimum item in L, we skim

the output produced by calling help(list) and find that there are no methods

that do exactly that. We’ll refine it:

def find_two_smallest(L):
""" (see above) """

Get the minimum item in L <-- This line is new
Find the index of that minimum item <-- This line is new
Remove that item from the list
Find the index of the new minimum item in the list
Put the smallest item back in the list
If necessary, adjust the second index
Return the two indices

Those first two statements match Python functions and methods: min does

the first, and list.index does the second. (There are other ways; for example, we

could have written a loop to do the search.)

We see that list.remove does the third statement, and the refinement of “Find

the index of the new minimum item in the list” is also straightforward.

Notice that we’ve left some of our English statements in as comments, which

makes it easier to understand the problem that each chunk of code solves:

def find_two_smallest(L):
""" (see above) """

Find the index of the minimum and remove that item
smallest = min(L)
min1 = L.index(smallest)
L.remove(smallest)

Find the index of the new minimum
next_smallest = min(L)
min2 = L.index(next_smallest)

Put the smallest item back in the list
If necessary, adjust the second index
Return the two indices

Since we removed the smallest item, we need to put it back where it was. Because

removing a value affects the indices of the following values, we might need to

add 1 to min2 if the smallest item came before the second-smallest item:

def find_two_smallest(L):
""" (see above) """

Find the index of the minimum and remove that item
smallest = min(L)
min1 = L.index(smallest)
L.remove(smallest)

Chapter 12. Designing Algorithms • 232

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Find the index of the new minimum
next_smallest = min(L)
min2 = L.index(next_smallest)

Put smallest back into L
Fix min2 in case it was affected by the removal and reinsertion:
If min1 comes before min2, add 1 to min2
Return the two indices

That’s enough refinement (finally!) to do it all in Python:

from typing import List, Tuple

def find_two_smallest(L: List[float]) -> Tuple[int, int]:
"""Return a tuple of the indices of the two smallest values in list L.

>>> items = [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
>>> find_two_smallest(items)
(6, 7)
>>> items == [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
True
"""

Find the index of the minimum and remove that item
smallest = min(L)
min1 = L.index(smallest)
L.remove(smallest)

Find the index of the new minimum
next_smallest = min(L)
min2 = L.index(next_smallest)

Put smallest back into L
L.insert(min1, smallest)

Fix min2 in case it was affected by the removal and reinsertion:
if min1 <= min2:

min2 += 1

return (min1, min2)

That seems like a lot of thought and care, and it is. However, even if you go right

to code, you’ll have to think through all those steps. By writing them down first,

you have a better chance of getting it right with a minimum amount of work.

Sort, Identify Minimums, Get Indices

Here is the second algorithm rewritten with one instruction per line:

from typing import List, Tuple

def find_two_smallest(L: List[float]) -> Tuple[int, int]:
"""Return a tuple of the indices of the two smallest values in list L.

>>> items = [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
>>> find_two_smallest(items)

report erratum • discuss

Searching for the Two Smallest Values • 233

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

(6, 7)
>>> items == [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
True
"""

Sort a copy of L
Get the two smallest numbers
Find their indices in the original list L
Return the two indices

That looks straightforward; we can use built-in function sorted, which returns a

copy of the list with the items in order from smallest to largest. We could have

used method list.sort to sort L, but that breaks a fundamental rule: never mutate

the contents of parameters unless the docstring says to.

def find_two_smallest(L):
""" (see above) """

Get a sorted copy of the list so that the two smallest items are at the
front
temp_list = sorted(L)
smallest = temp_list[0]
next_smallest = temp_list[1]

Find their indices in the original list L
Return the two indices

Now we can find the indices and return them the same way we did in find-

remove-find:

from typing import List, Tuple

def find_two_smallest(L: List[float]) -> Tuple[int, int]:
"""Return a tuple of the indices of the two smallest values in list L.

>>> items = [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
>>> find_two_smallest(items)
(6, 7)
>>> items == [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
True
"""

Get a sorted copy of the list so that the two smallest items are at the
front
temp_list = sorted(L)
smallest = temp_list[0]
next_smallest = temp_list[1]

Find the indices in the original list L
min1 = L.index(smallest)
min2 = L.index(next_smallest)

return (min1, min2)

Chapter 12. Designing Algorithms • 234

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Walk Through the List

Our last algorithm starts the same way as for the first two:

from typing import List, Tuple

def find_two_smallest(L: List[float]) -> Tuple[int, int]:
"""Return a tuple of the indices of the two smallest values in list L.

>>> items = [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
>>> find_two_smallest(items)
(6, 7)
>>> items == [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
True
"""

Examine each value in the list in order
Keep track of the indices of the two smallest values found so far
Update the indices when a new smaller value is found
Return the two indices

We’ll move the second line before the first one because it describes the whole

process; it isn’t a single step. Also, when we see phrases like each value, we think

of iteration; the third line is part of that iteration, so we’ll indent it:

def find_two_smallest(L):
""" (see above) """

Keep track of the indices of the two smallest values found so far
Examine each value in the list in order
Update the indices when a new smaller value is found
Return the two indices

Every loop has three parts: an initialization section to set up the variables we’ll

need, a loop condition, and a loop body. Here, the initialization will set up min1
and min2, which will be the indices of the smallest two items encountered so far.

A natural choice is to set them to the first two items of the list:

def find_two_smallest(L):
""" (see above) """

Set min1 and min2 to the indices of the smallest and next-smallest
values at the beginning of L
Examine each value in the list in order
Update the indices when a new smaller value is found
Return the two indices

We can turn that first line into a couple lines of code; we’ve left our English

version in as a comment:

report erratum • discuss

Searching for the Two Smallest Values • 235

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

def find_two_smallest(L):
""" (see above) """

Set min1 and min2 to the indices of the smallest and next-smallest
Values at the beginning of L
if L[0] < L[1]:

min1, min2 = 0, 1
else:

min1, min2 = 1, 0

Examine each value in the list in order
Update the indices when a new smaller value is found
Return the two indices

We have a couple of choices now. We can iterate with a for loop over the values,

a for loop over the indices, or a while loop over the indices. Since we’re trying

to find indices and we want to look at all of the items in the list, we’ll use a

for loop over the indices—and we’ll start at index 2 because we’ve examined

the first two values already. At the same time, we’ll refine the statement in

the body of the loop to mention min1 and min2.

def find_two_smallest(L):
""" (see above) """

Set min1 and min2 to the indices of the smallest and next-smallest
values at the beginning of L
if L[0] < L[1]:

min1, min2 = 0, 1
else:

min1, min2 = 1, 0

Examine each value in the list in order
for i in range(2, len(values)):
Update min1 and/or min2 when a new smaller value is found
Return the two indices

Now for the body of the loop. We’ll pick apart “update min1 and/or min2

when a new smaller value is found.” Here are the possibilities:

• If L[i] is smaller than both min1 and min2, then we have a new smallest item;

so min1 currently holds the second smallest, and min2 currently holds the

third smallest. We need to update both of them.

• If L[i] is larger than min1 and smaller than min2, we have a new second

smallest.

• If L[i] is larger than both, we skip it.

Chapter 12. Designing Algorithms • 236

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

def find_two_smallest(L):
""" (see above) """

Set min1 and min2 to the indices of the smallest and next-smallest
values at the beginning of L
if L[0] < L[1]:

min1, min2 = 0, 1
else:

min1, min2 = 1, 0

Examine each value in the list in order
for i in range(2, len(L)):
#
L[i] is smaller than both min1 and min2, in between, or
larger than both:
If L[i] is smaller than min1 and min2, update them both
If L[i] is in between, update min2
If L[i] is larger than both min1 and min2, skip it

return (min1, min2)

All of those are easily translated to Python; in fact, we don’t even need code

for the “larger than both” case:

from typing import List, Tuple

def find_two_smallest(L: List[float]) -> Tuple[int, int]:
"""Return a tuple of the indices of the two smallest values in list L.

>>> items = [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
>>> find_two_smallest(items)
(6, 7)
>>> items == [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]
True
"""

Set min1 and min2 to the indices of the smallest and next-smallest
values at the beginning of L
if L[0] < L[1]:

min1, min2 = 0, 1
else:

min1, min2 = 1, 0

Examine each value in the list in order
for i in range(2, len(L)):

L[i] is smaller than both min1 and min2, in between, or
larger than both

New smallest?
if L[i] < L[min1]:

min2 = min1
min1 = i

report erratum • discuss

Searching for the Two Smallest Values • 237

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

New second smallest?
elif L[i] < L[min2]:

min2 = i

return (min1, min2)

Timing the Functions

Profiling a program means measuring how long it takes to run and how much

memory it uses. These measures—time and space—are fundamental to the

theoretical study of algorithms. They are also important from a pragmatic point

of view. Fast programs are more useful than slow ones, and programs that need

more memory than what your computer has aren’t particularly useful at all.

This section introduces one way to time how long code takes to run. You’ll

see how to run the three functions we developed to find the two lowest values

in a list on 1,400 monthly readings of air pressure in Darwin, Australia, from

1882 to 1998.1

Module time contains functions related to time. One of these functions is

perf_counter, which returns a time in seconds. We can call it before and after the

code we want to time and take the difference to find out how many seconds

elapsed. We multiply by 1000 in order to convert from seconds to milliseconds:

import time

t1 = time.perf_counter()

Code to time goes here

t2 = time.perf_counter()
print('The code took {:.2f}ms'.format((t2 - t1) * 1000.))

We’ll want to time all three of our find_two_smallest functions. Rather than

copying and pasting the timing code three times, we’ll write a function that

takes another function as a parameter as well as the list to search in. We use

type annotation typing.Callable for this parameter:

Callable[[«parameter types»], «return type»]
Since we’re not interested in what this function parameter returns, we use

typing.Any as the return type. This timing function will return how many mil-

liseconds it takes to execute a call on the function. After the timing function

is the main program that reads the file of sea level pressures and then calls

the timing function with each of the find_two_smallest functions:

1. See http://www.stat.duke.edu/~mw/ts_data_sets.html.

Chapter 12. Designing Algorithms • 238

report erratum • discuss

http://www.stat.duke.edu/~mw/ts_data_sets.html
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

import time
import find_remove_find5
import sort_then_find3
import walk_through7

from typing import Callable, List, Any

def time_find_two_smallest(find_func: Callable[[List[float]], Any],
lst: List[float]) -> float:

"""Return how many seconds find_func(lst) took to execute.
"""

t1 = time.perf_counter()
find_func(lst)
t2 = time.perf_counter()
return (t2 - t1) * 1000.0

if __name__ == '__main__':
Gather the sea level pressures
sea_levels = []
sea_levels_file = open('sea_levels.txt', 'r')
for line in sea_levels_file:

sea_levels.append(float(line))
sea_levels_file.close()

Time each of the approaches
find_remove_find_time = time_find_two_smallest(

find_remove_find5.find_two_smallest, sea_levels)

sort_get_minimums_time = time_find_two_smallest(
sort_then_find3.find_two_smallest, sea_levels)

walk_through_time = time_find_two_smallest(
walk_through7.find_two_smallest, sea_levels)

print('"Find, remove, find" took {:.2f}ms.'.format(find_remove_find_time))
print('"Sort, get minimums" took {:.2f}ms.'.format(

sort_get_minimums_time))
print('"Walk through the list" took {:.2f}ms.'.format(walk_through_time))

The execution times were as follows:

Running Time (ms)Algorithm

0.09msFind, remove, find

0.30msSort, identify, index

0.28msWalk through the list

report erratum • discuss

Timing the Functions • 239

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Notice how small these times are. No human being can notice the difference

between values that are less than a millisecond; if this code never has to

process lists with more than 1,400 values, we would be justified in choosing

an implementation based on simplicity or clarity rather than on speed.

But what if we wanted to process millions of values? Find-remove-find outper-

forms the other two algorithms on 1,400 values, but how much does that tell

us about how each will perform on data sets that are a thousand times larger?

That will be covered in Chapter 13, Searching and Sorting, on page 243.

At a Minimum, You Saw This

In this chapter, you learned the following:

• The most effective way to design algorithms is to use top-down design, in

which goals are broken down into subgoals until the steps are small

enough to be translated directly into a programming language.

• Almost all problems have more than one correct solution. Choosing be-

tween them often involves a trade-off between simplicity and performance.

• The performance of a program can be characterized by how much time

and memory it uses. This can be determined experimentally by profiling

its execution. One way to profile time is with function perf_counter from

module time.

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. A DNA sequence is a string made up of the letters A, T, G, and C. To find

the complement of a DNA sequence, As are replaced by Ts, Ts by As, Gs

by Cs, and Cs by Gs. For example, the complement of AATTGCCGT is

TTAACGGCA.

a. Write an outline in English of the algorithm you would use to find the

complement.

b. Review your algorithm. Will any characters be changed to their com-

plement and then changed back to their original value? If so, rewrite

your outline. Hint: Convert one character at a time, rather than all of

the As, Ts, Gs, or Cs at once.

Chapter 12. Designing Algorithms • 240

report erratum • discuss

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

c. Using the algorithm that you have developed, write a function named

complement that takes a DNA sequence (a str) and returns the comple-

ment of it.

2. In this exercise, you’ll develop a function that finds the minimum or

maximum value in a list, depending on the caller’s request.

a. Write a loop (including initialization) to find both the minimum value

in a list and that value’s index in one pass through the list.

b. Write a function named min_index that takes one parameter (a list) and

returns a tuple containing the minimum value in the list and that

value’s index in the list.

c. You might also want to find the maximum value and its index. Write

a function named min_or_max_index that has two parameters: a list and

a bool. If the Boolean parameter refers to True, the function returns a

tuple containing the minimum and its index; if it refers to False, it
returns a tuple containing the maximum and its index.

3. In The Readline Technique, on page 181, you learned how to read some files

from the Time Series Data Library. In particular, you learned about the

Hopedale data set, which describes the number of colored fox fur pelts

produced from 1834 to 1842. This file contains one value per year per line.

a. Write an outline in English of the algorithm you would use to read

the values from this data set to compute the average number of pelts

produced per year.

b. Translate your algorithm into Python by writing a function named

hopedale_average that takes a filename as a parameter and returns the

average number of pelts produced per year.

4. Write a set of doctests for the find-two-smallest functions. Think about

what kinds of data are interesting, long lists or short lists, and what order

the items are in. Here is one list to test with: [1, 2]. What other interesting

ones are there?

5. What happens if the functions to find the two smallest values in a list are

passed a list of length one? What should happen, and why? How about

length zero? Modify one of the docstrings to describe what happens.

6. One or more of the three functions to find the two smallest values don’t

work if there are duplicate values, and particularly if the two smallest

report erratum • discuss

Exercises • 241

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

values are the same. Write doctests to demonstrate the problem, run

them, and fix the algorithms that exhibit this bug.

7. This one is a fun challenge.

Edsgar Dijkstra is known for his work on programming languages. He

came up with a neat problem that he called the Dutch National Flag

problem: given a list of strings, each of which is either 'red', 'green', or 'blue'
(each is repeated several times in the list), rearrange the list so that the

strings are in the order of the Dutch national flag—all the 'red' strings

first, then all the 'green' strings, then all the 'blue' strings.

Write a function called dutch_flag that takes a list and solves this problem.

Chapter 12. Designing Algorithms • 242

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 13

Searching and Sorting

A huge part of computer science involves studying how to organize, store,

and retrieve data. There are many ways to organize and process data, and

you need to develop an understanding of how to analyze how good an approach

is. This chapter introduces you to some tools and concepts that you can use

to tell whether a particular approach is faster or slower than another.

As you know, there are many solutions to each programming problem. If a

problem involves a large amount of data, a slow algorithm will mean the

problem can’t be solved in a reasonable amount of time, even with an

incredibly powerful computer. This chapter includes several examples of both

slower and faster algorithms. Try running them yourself; experiencing just

how slow (or fast) something is has a much more profound effect on your

understanding than the data we include in this chapter.

Searching and sorting data are fundamental parts of programming. In this

chapter, we will develop several algorithms for searching and sorting lists,

and then we will use them to explore what it means for one algorithm to be

faster than another. As a bonus, this approach will give you another set of

examples of how there are many solutions to any problem, and that the

approach you take to solving a problem will dictate which solution you come

up with.

Searching a List

As you have already seen in Table 11, List Methods, on page 142, Python lists

have a method called index that searches for a particular item:

index(...)
L.index(value, [start, [stop]]) -> integer -- return first index of value

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

List method index starts at the front of the list and examines each item in turn.

For reasons that will soon become clear, this technique is called linear search.

Linear search is used to find an item in an unsorted list. If there are duplicate

values, our algorithms will find the leftmost one:

>>> ['d', 'a', 'b', 'a'].index('a')
1

We’re going to write several versions of linear search in order to demonstrate

how to compare different algorithms that all solve the same problem.

After we do this analysis, we will see that we can search a sorted list much

faster than we can search an unsorted list.

An Overview of Linear Search

Linear search starts at index 0 and looks at each item one by one. At each

index, we ask this question: Is the value we are looking for at the current

index? We’ll show three variations of this. All of them use a loop of some kind,

and they are all implementations of this function:

from typing import Any

def linear_search(lst: list, value: Any) -> int:
"""Return the index of the first occurrence of value in lst, or return
-1 if value is not in lst.

>>> linear_search([2, 5, 1, -3], 5)
1
>>> linear_search([2, 4, 2], 2)
0
>>> linear_search([2, 5, 1, -3], 4)
-1
>>> linear_search([], 5)
-1
"""

examine the items at each index i in lst, starting at index 0:
is lst[i] the value we are looking for? if so, stop searching.

The algorithm in the function body describes what every variation will do to

look for the value.

We’ve found it to be helpful to have a picture of how linear search works. (We

will use pictures throughout this chapter for both searching and sorting.)

Chapter 13. Searching and Sorting • 244

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Because our versions examine index 0 first, then index 1, then 2, and so on,

that means that partway through our searching process we have this situation:

0

the part we've examined the part we haven't examined yet

i len(lst)

we examine lst[i] next

lst

There is a part of the list that we’ve examined and another part that remains

to be examined. We use variable i to mark the current index.

Here’s a concrete example of where we are searching for a value in a list that

starts like this: [2, -3, 5, 9, 8, -6, 4, 15, …]. We don’t know how long the list is, but

let’s say that after six iterations we have examined items at indices 0, 1, 2, 3,
4, and 5. Index 6 is the index of the next item to examine:

That vertical line divides the list in two: the part we have examined and the

part we haven’t. Because we stop when we find the value, we know that the

value isn’t in the first part:

0

value not here unknown; still to be examined

i len(lst)

lst

This picture is sometimes called an invariant of linear search. An invariant

is something that remains unchanged throughout a process. But variable i
is changing—how can that picture be an invariant?

Here is a text version of the picture:

lst[0:i] doesn't contain value, and 0 <= i <= len(lst)

report erratum • discuss

Searching a List • 245

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

This word version says that we know that value wasn’t found before index i
and that i is somewhere between 0 and the length of the list. If our code

matches that word version, that word version is an invariant of the code, and

so is the picture version.

We can use invariants to come up with the initial values of our variables. For

example, with linear search, at the very beginning the entire list is unknown

—we haven’t examined anything:

0

unknown; still to be examined

i

len(lst)

lst

Variable i refers to 0 at the beginning, because then the section with the label

value not here is empty; further, list[0:0] is an empty list, which is exactly what

we want according to the word version of the invariant. So the initial value

of i should be 0 in all of our versions of linear search.

The while Loop Version of Linear Search

Let’s develop our first version of linear search. We need to refine our comments

to get them closer to Python:

Examine every index i in lst, starting at index 0:
Is lst[i] the value we are looking for? if so, stop searching

Here’s a refinement:

i = 0 # The index of the next item in lst to examine

While the unknown section isn't empty, and lst[i] isn't
the value we are looking for:

add 1 to i

That’s easier to translate. The unknown section is empty when i == len(lst), so

it isn’t empty as long as i != len(lst). Here is the code:

from typing import Any

def linear_search(lst: list, value: Any) -> int:
"""Return the index of the first occurrence of value in lst, or return
-1 if value is not in lst.

>>> linear_search([2, 5, 1, -3], 5)
1
>>> linear_search([2, 4, 2], 2)
0
>>> linear_search([2, 5, 1, -3], 4)

Chapter 13. Searching and Sorting • 246

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

-1
>>> linear_search([], 5)
-1
"""

i = 0 # The index of the next item in lst to examine.

Keep going until we reach the end of lst or until we find value.
while i != len(lst) and lst[i] != value:

i = i + 1

If we fell off the end of the list, we didn't find value.
if i == len(lst):

return -1
else:

return i

This version uses variable i as the current index and marches through the

values in lst, stopping in one of two situations: when we have run out of values

to examine or when we find the value we are looking for.

The first check in the loop condition, i != len(lst), makes sure that we still have

values to look at; if we were to omit that check, then if value isn’t in lst, we

would end up trying to access lst[len(lst)]. This would result in an IndexError.

The second check, lst[i] != value, causes the loop to exit when we find value. The

loop body increments i; we enter the loop when we haven’t reached the end

of lst, and when lst[i] isn’t the value we are looking for.

After the loop terminates, if i == len(lst) then value wasn’t in lst, so we return -1.
Otherwise, the loop terminated because we found value at index i.

The for Loop Version of Linear Search

The first version evaluates two Boolean subexpressions each time through

the loop. But the first check, i != len(lst), is almost unnecessary; it evaluates

to True almost every time through the loop, so the only effect it has is to make

sure we don’t attempt to index past the end of the list. We can instead exit

the function as soon as we find the value:

i = 0 # The index of the next item in lst to examine

For each index i in lst:
If lst[i] is the value we are looking for:

return i

If we get here, value was not in lst, so we return -1

report erratum • discuss

Searching a List • 247

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

In this version, we use Python’s for loop to examine each index.

from typing import Any

def linear_search(lst: list, value: Any) -> int:
"""… Exactly the same docstring goes here …
"""

for i in range(len(lst)):
if lst[i] == value:

return i

return -1

With this version, we no longer need the first check because the for loop con-

trols the number of iterations. This for loop version is significantly faster than

our first version; we’ll see in a bit how much faster.

Sentinel Search

The last linear search we will study is called sentinel search. (A sentinel is a

guard whose job it is to stand watch.) Remember that one problem with the

while loop linear search is that we check i != len(lst) every time through the loop

even though it can never evaluate to False except when value is not in lst. So

we’ll play a trick: we’ll add value to the end of lst before we search. That way

we are guaranteed to find it! We also need to remove it before the function

exits so that the list looks unchanged to whoever called this function:

Set up the sentinel: append value to the end of lst

i = 0 # The index of the next item in lst to examine

While lst[i] isn't the value we are looking for:
Add 1 to i

Remove the sentinel

return i

Let’s translate that to Python:

from typing import Any

def linear_search(lst: list, value: Any) -> int:
"""… Exactly the same docstring goes here …
"""

Add the sentinel.
lst.append(value)

i = 0

Keep going until we find value.
while lst[i] != value:

i = i + 1

Chapter 13. Searching and Sorting • 248

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Remove the sentinel.
lst.pop()

If we reached the end of the list we didn't find value.
if i == len(lst):

return -1
else:

return i

All three of our linear search functions are correct. Which one you prefer is

largely a matter of taste: some programmers dislike returning in the middle

of a loop, so they won’t like the second version. Others dislike modifying

parameters in any way, so they won’t like the third version. Still others will

dislike that extra check that happens in the first version.

Timing the Searches

Here is a program that we used to time the three searches on a list with about

ten million values:

import time
import linear_search_1
import linear_search_2
import linear_search_3

from typing import Callable, Any

def time_it(search: Callable[[list, Any], Any], L: list, v: Any) -> float:
"""Time how long it takes to run function search to find
value v in list L.
"""

t1 = time.perf_counter()
search(L, v)
t2 = time.perf_counter()
return (t2 - t1) * 1000.0

def print_times(v: Any, L: list) -> None:
"""Print the number of milliseconds it takes for linear_search(v, L)
to run for list.index, the while loop linear search, the for loop
linear search, and sentinel search.
"""

Get list.index's running time.
t1 = time.perf_counter()
L.index(v)
t2 = time.perf_counter()
index_time = (t2 - t1) * 1000.0

Get the other three running times.
while_time = time_it(linear_search_1.linear_search, L, v)
for_time = time_it(linear_search_2.linear_search, L, v)
sentinel_time = time_it(linear_search_3.linear_search, L, v)

report erratum • discuss

Searching a List • 249

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

print("{0}\t{1:.2f}\t{2:.2f}\t{3:.2f}\t{4:.2f}".format(
v, while_time, for_time, sentinel_time, index_time))

L = list(range(10000001)) # A list with just over ten million values

print_times(10, L) # How fast is it to search near the beginning?
print_times(5000000, L) # How fast is it to search near the middle?
print_times(10000000, L) # How fast is it to search near the end?

This program makes use of function perf_counter in built-in module time. Func-

tion time_it will call whichever search function it’s given on v and L and returns

how long that search took. Function print_times calls time_it with the various

linear search functions we have been exploring and prints those search times.

Linear Search Running Time

The running times of the three linear searches with that of Python’s list.index
are compared in Table 18. This comparison used a list of 10,000,001 items

and three test cases: an item near the front, an item roughly in the middle,

and the last item. Except for the first case, where the speeds differ by very

little, our while loop linear search takes about thirteen times as long as the

one built into Python, and the for loop search and sentinel search take about

five and seven times as long, respectively.

list.indexsentinelforwhileCase

0.010.010.010.01First

1066975151261Middle

212139410292673Last

Table 18—Running Times for Linear Search (in milliseconds)

What is more interesting is the way the running times of these functions

increase with the number of items they have to examine. Roughly speaking,

when they have to look through twice as much data, every one of them takes

twice as long. This is reasonable because indexing a list, adding 1 to an inte-

ger, and evaluating the loop control expression require the computer to do a

fixed amount of work. Doubling the number of times the loop has to be exe-

cuted therefore doubles the total number of operations, which in turn should

double the total running time. This is why this kind of search is called linear:

the time to do it grows linearly with the amount of data being processed.

Binary Search

Consider a list of 1 million sorted values. Linear search starts at the beginning

of the list and asks, “Is this value what I’m looking for?” If it isn’t, the same is

Chapter 13. Searching and Sorting • 250

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

asked about the second value, and then the third. Up to 1 million questions

are asked. This algorithm doesn’t take advantage of the list being sorted.

Here’s a new algorithm, called binary search, that relies on the list being

sorted: look at the middle value and ask, “Is this value bigger than or smaller

than the one I’m looking for?” With that one question, we can eliminate

500,000 values! That leaves a list of 500,000 values to search. We’ll do it

again: look at the middle value, ask the same question, and eliminate

another 250,000 values. We have eliminated 3/4 of the list with only two

questions! Asking only 20 questions, we can locate a particular value in a list

of 1 million sorted values.

Logarithms

The logarithm of a number is how many times that number can be divided until we

get to 1. We’ll need to know what number we are dividing by—we’ll call that the base.

For binary search, we use base 2, because we divide the list in half each iteration.

The logarithm base 2 of 1, which we’ll write as log2 1, is 0: we don’t need to divide 1

at all in order to reach 1.

log2 2 is 1, because 2⁄2 is 1.

log2 4 is 2: 4⁄2 is 2, and 2⁄2 is 1, so we divided by 2 twice to reach 1.

log2 8 is 3: 8⁄2 is 4, 4⁄2 is 2, and 2⁄2 is 1. Every time we double the number, the logarithm

base 2 increases by 1.

Here’s a table of base 2 logarithms:

log2 NN as a power of 2N (the # of items)

0201

1212

2224

3238

42416

52532

62664

727128

828256

929512

102101024

Table 19—Logarithmic Growth

report erratum • discuss

Binary Search • 251

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

To figure out how fast it is, we’ll think about how big a list we can search

with a certain number of questions. With only one question, we can determine

whether a list of length 1 contains a value. With two questions, we can search

a list of length 2. With three questions, we can search a list of length 4. Four

questions, length 8. Five questions, length 16. Every time we get to ask

another question, we can search a list twice as big.

Using logarithmic notation, N sorted values can be searched in ceiling(log2 N)

steps, where ceiling() is the ceiling function that rounds a value up to the

nearest integer. As shown in Table 20, this increases much less quickly than

the time needed for linear search.

Worst Case—Binary SearchWorst Case—Linear SearchSearching N Items

7100100

1010001000

1410,00010,000

17100,000100,000

201,000,0001,000,000

2410,000,00010,000,000

Table 20—Logarithmic Growth

The key to binary search is to keep track of three parts of the list: the left

part, which contains values that are smaller than the value we are searching

for; the right part, which contains values that are equal to or larger than the

value we are searching for; and the middle part, which contains values that

we haven’t yet examined—the unknown section. If there are duplicate values,

we will return the index of the leftmost one, which is why the “equal to” section

belongs on the right.

We’ll use two variables to keep track of the boundaries: i will mark the index of

the first unknown value, and j will mark the index of the last unknown value:

0

unknown

i len(lst)

lst

j

value < v value >= v

At the beginning of the algorithm, the unknown section makes up the entire

list, so we will set i to 0 and j to the length of the list minus one as shown in

the figure on page 253.

Chapter 13. Searching and Sorting • 252

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

0

unknown; still to be examined

i

lst

len(lst) - 1

j

We are done when that unknown section is empty—when we’ve examined

every item in the list. This happens when i == j + 1—when the values cross.

(When i == j, there is still one item left in the unknown section.) Here is a

picture of what the values are when the unknown section is empty:

0 i len(lst)

lst

j

value < v value >= v

To make progress, we will set either i or j to near the middle of the range

between them. Let’s call this index m, which is at (i + j) // 2. (Notice the use of

integer division: we are calculating an index, so we need an integer.)

Think for a moment about the value at m. If it is less than v, we need to move

i up, while if it is greater than v, we should move j down. But where exactly

do we move them?

When we move i up, we don’t want to set it to the midpoint exactly, because

L[m] isn’t included in the range; instead, we set it to one past the middle—in

other words, to m + 1.

new i

len(lst)

lst

j

unknownvalue < v

i m

Similarly, when we move j down, we move it to m - 1:

0

unknown

i len(lst)

lst

j

value < v value >= v

new j

m

report erratum • discuss

Binary Search • 253

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The completed function is as follows:

from typing import Any

def binary_search(L: list, v: Any) -> int:
"""Return the index of the first occurrence of value in L, or return
-1 if value is not in L.

>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], 1)
0
>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], 4)
2
>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], 5)
4
>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], 10)
7
>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], -3)
-1
>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], 11)
-1
>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], 2)
-1
>>> binary_search([], -3)
-1
>>> binary_search([1], 1)
0
"""

Mark the left and right indices of the unknown section.
i = 0
j = len(L) - 1

while i != j + 1:
m = (i + j) // 2
if L[m] < v:

i = m + 1
else:

j = m - 1

if 0 <= i < len(L) and L[i] == v:
return i

else:
return -1

if __name__ == '__main__':
import doctest
doctest.testmod()

There are a lot of tests because the algorithm is quite complicated and we

wanted to test pretty thoroughly. Our tests cover these cases:

Chapter 13. Searching and Sorting • 254

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

• The value is the first item.

• The value occurs twice. We want the index of the first one.

• The value is in the middle of the list.

• The value is the last item.

• The value is smaller than everything in the list.

• The value is larger than everything in the list.

• The value isn’t in the list, but it is larger than some and smaller than others.

• The list has no items.

• The list has one item.

In Chapter 15, Testing and Debugging, on page 303, you’ll learn a different

testing framework that allows you to write tests in a separate Python file (thus

making docstrings shorter and easier to read; only a couple of examples are

necessary), and you’ll learn strategies for coming up with your own test cases.

Binary Search Running Time

Binary search is much more complicated to write and understand than linear

search. Is it fast enough to make the extra effort worthwhile? To find out, we

can compare it to list.index. As before, we search for the first, middle, and last

items in a list with about ten million elements as shown in Table 21.

Ratiobinary_searchlist.indexCase

0.320.020.007First

59100.02105Middle

116610.02 (Wow!)211Last

Table 21—Running Times for Binary Search

The results are impressive. Binary search is up to several thousand times

faster than its linear counterpart when searching ten million items. Most

importantly, if we double the number of items, binary search takes only one

more iteration, whereas the time for list.index nearly doubles.

Note also that although the time taken for linear search grows in step with

the index of the item found, there is no such pattern for binary search. No

matter where the item is, it takes the same number of steps.

Built-In Binary Search

The Python standard library’s bisect module includes binary search functions

that are slightly faster than our binary search. Function bisect_left returns the

index where an item should be inserted in a list to keep it in sorted order,

assuming it is sorted to begin with. insort_left actually does the insertion.

report erratum • discuss

Binary Search • 255

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The word left in the name signals that these functions find the leftmost (lowest

index) position where they can do their jobs; the complementary functions

bisect_right and insort_right find the rightmost.

There is one minor drawback to binary search: the algorithm assumes that

the list is sorted, and sorting is time and memory intensive. We’ll look at

that next.

Sorting

Now let’s look at a slightly harder problem. The following table1 shows the

number of acres burned in forest fires in Canada from 1918 to 1987. What

were the worst years?

47218241316198561973323214217087590563

427130278561475100924642094267060291346

6131017742240382818384253269111153126

452201613752641358975896222725993185

221211445212993470864931314715383292

20732764898196380819272445261623312212

1479132913281419228428181085685921740500

Table 22—Acres Lost to Forest Fires in Canada (in thousands), 1918–1987

One way to find out how much forest was destroyed in the N worst years

is to sort the list and then take the last N values, as shown in the following

code:

def find_largest(n: int, L: list) -> list:
"""Return the n largest values in L in order from smallest to largest.

>>> L = [3, 4, 7, -1, 2, 5]
>>> find_largest(3, L)
[4, 5, 7]
"""

copy = sorted(L)
return copy[-n:]

This algorithm is short, clean, and easy to understand, but it relies on a bit

of black magic. How does function sorted (and also method list.sort) work? And

how efficient are they?

It turns out that many sorting algorithms have been developed over the years,

each with its own strengths and weaknesses. Broadly speaking, they can be

divided into two categories: those that are simple but inefficient and those

1. http://robjhyndman.com/tsdldata/annual/canfire.dat: Number of acres burned in forest fires in

Canada, 1918–1987.

Chapter 13. Searching and Sorting • 256

report erratum • discuss

http://robjhyndman.com/tsdldata/annual/canfire.dat
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

that are efficient but harder to understand and implement. We’ll examine two

of the former kind. The rest rely on techniques that are more advanced; we’ll

show you one of these, rewritten to use only material seen so far.

Both of the simple sorting algorithms keep track of two sections in the list

being sorted. The section at the front contains values that are now in sorted

order; the section at the back contains values that have yet to be sorted. Here

is the main part of the invariant that we will use for our two simple sorts:

One of the two algorithms has an additional property in its invariant: the

items in the sorted section must be smaller than all the items in the unknown

section.

Both of these sorting algorithms will work their way through the list, making

the sorted section one item longer on each iteration. We’ll see that there are

two ways to do this. Here is an outline for our code:

i = 0 # The index of the first unknown item in lst; lst[:i] is sorted
while i != len(L):

Do something to incorporate L[i] into the sorted section

i = i + 1

Most Python programmers would probably write the loop header as for i in
range(len(L)) rather than incrementing i explicitly in the body of the loop. We’re

doing the latter here to explicitly initialize i (to set up the loop invariant) and

to show the increment separately from the work this particular algorithm is

doing. The “do something…” part is where the two simple sorting algorithms

will differ.

Selection Sort

Selection sort works by searching the unknown section for the smallest item

and moving it to the index i. Here is our algorithm:

i = 0 # The index of the first unknown item in lst

lst[:i] is sorted and those items are smaller than those in list[i:]
while i != len(L):

Find the index of the smallest item in lst[i:]
Swap that smallest item with the item at index i
i = i + 1

report erratum • discuss

Sorting • 257

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

As you can probably guess from this description, selection sort works by

repeatedly selecting the smallest item in the unsorted section and placing it

just after the sorted section. This works because we are selecting the items

in order. On the first iteration, i is 0, and lst[0:] is the entire list. That means

that on the first iteration we select the smallest item and move it to the front.

On the second iteration we select the second-smallest item and move it to

the second spot, and so on:

0

-1

1

4

2

7

3

3

4 5

2 5

sorted unsorted

next
smallest

0

-1

1

2

2

7

3

3

4 5

4 5

sorted unsorted

next
smallest

0

3

1

4

2

7

3

-1

4 5

2 5

unsorted

next
smallest

0

-1

1

2

2

3

3

7

4 5

4 5

sorted unsorted

next
smallest

Chapter 13. Searching and Sorting • 258

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

In a file named sorts.py, we have started writing a selection sort function,

partially in English, as shown in the following code:

def selection_sort(L: list) -> None:
"""Reorder the items in L from smallest to largest.

>>> L = [3, 4, 7, -1, 2, 5]
>>> selection_sort(L)
>>> L
[-1, 2, 3, 4, 5, 7]
"""

i = 0
while i != len(L):

Find the index of the smallest item in L[i:]
Swap that smallest item with L[i]
i = i + 1

We can replace the second comment with a single line of code.

def selection_sort(L: list) -> None:
"""Reorder the items in L from smallest to largest.

>>> L = [3, 4, 7, -1, 2, 5]
>>> selection_sort(L)
>>> L
[-1, 2, 3, 4, 5, 7]
"""

i = 0
while i != len(L):

Find the index of the smallest item in L[i:]
L[i], L[smallest] = L[smallest], L[i]
i = i + 1

Now all that’s left is finding the index of the smallest item in L[i:]. This is

complex enough that it’s worth putting it in a function of its own:

def find_min(L: list, b: int) -> int:
"""Precondition: L[b:] is not empty.
Return the index of the smallest value in L[b:].

>>> find_min([3, -1, 7, 5], 0)
1
>>> find_min([3, -1, 7, 5], 1)
1
>>> find_min([3, -1, 7, 5], 2)
3
"""

smallest = b # The index of the smallest so far.
i = b + 1
while i != len(L):

if L[i] < L[smallest]:

report erratum • discuss

Sorting • 259

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

We found a smaller item at L[i].
smallest = i

i = i + 1

return smallest

def selection_sort(L: list) -> None:
"""Reorder the items in L from smallest to largest.

>>> L = [3, 4, 7, -1, 2, 5]
>>> selection_sort(L)
>>> L
[-1, 2, 3, 4, 5, 7]
"""

i = 0
while i != len(L):

smallest = find_min(L, i)
L[i], L[smallest] = L[smallest], L[i]
i = i + 1

Function find_min examines each item in L[b:], keeping track of the index of the

minimum item so far in variable smallest. Whenever it finds a smaller item, it

updates smallest. (Because it is returning the index of the smallest value, it

won’t work if L[b:] is empty; hence the precondition.)

This is complicated enough that a couple of doctests may not test enough.

Here’s a list of test cases for sorting:

• An empty list

• A list of length 1

• A list of length 2 (this is the shortest case where items can move)

• An already-sorted list

• A list with all the same values

• A list with duplicates

Here are our expanded doctests:

def selection_sort(L: list) -> None:
"""Reorder the items in L from smallest to largest.

>>> L = [3, 4, 7, -1, 2, 5]
>>> selection_sort(L)
>>> L
[-1, 2, 3, 4, 5, 7]
>>> L = []
>>> selection_sort(L)
>>> L
[]
>>> L = [1]
>>> selection_sort(L)

Chapter 13. Searching and Sorting • 260

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> L
[1]
>>> L = [2, 1]
>>> selection_sort(L)
>>> L
[1, 2]
>>> L = [1, 2]
>>> selection_sort(L)
>>> L
[1, 2]
>>> L = [3, 3, 3]
>>> selection_sort(L)
>>> L
[3, 3, 3]
>>> L = [-5, 3, 0, 3, -6, 2, 1, 1]
>>> selection_sort(L)
>>> L
[-6, -5, 0, 1, 1, 2, 3, 3]
"""

i = 0

while i != len(L):
smallest = find_min(L, i)
L[i], L[smallest] = L[smallest], L[i]
i = i + 1

As with binary search, the doctest is so long that, as documentation for the

function, it obscures rather than helps clarify. Again, we’ll see how to fix this

in Chapter 15, Testing and Debugging, on page 303.

Insertion Sort

Like selection sort, insertion sort keeps a sorted section at the beginning of

the list. Rather than scan all of the unsorted section for the next smallest

item, though, it takes the next item from the unsorted section—the one at

index i—and inserts it where it belongs in the sorted section, increasing the

size of the sorted section by one.

i = 0 # The index of the first unknown item in lst; lst[:i] is sorted

while i != len(L):
Move the item at index i to where it belongs in lst[:i + 1]

i = i + 1

The reason why we use lst[i + 1] is because the item at index i may be larger

than everything in the sorted section, and if that is the case then the current

item won’t move.

In outline, this is as follows (save this in sorts.py as well):

report erratum • discuss

Sorting • 261

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

def insertion_sort(L: list) -> None:
"""Reorder the items in L from smallest to largest.

>>> L = [3, 4, 7, -1, 2, 5]
>>> insertion_sort(L)
>>> L
[-1, 2, 3, 4, 5, 7]
"""

i = 0
while i != len(L):

Insert L[i] where it belongs in L[0:i+1].
i = i + 1

This is the same approach as selection sort; the difference is the comment in the

loop. Like we did with selection sort, we’ll write a helper function to do the work:

def insert(L: list, b: int) -> None:
"""Precondition: L[0:b] is already sorted.
Insert L[b] where it belongs in L[0:b + 1].

>>> L = [3, 4, -1, 7, 2, 5]
>>> insert(L, 2)
>>> L
[-1, 3, 4, 7, 2, 5]
>>> insert(L, 4)
>>> L
[-1, 2, 3, 4, 7, 5]
"""

Find where to insert L[b] by searching backwards from L[b]
for a smaller item.
i = b
while i != 0 and L[i - 1] >= L[b]:

i = i - 1

Move L[b] to index i, shifting the following values to the right.
value = L[b]
del L[b]
L.insert(i, value)

def insertion_sort(L: list) -> None:
"""Reorder the items in L from smallest to largest.

>>> L = [3, 4, 7, -1, 2, 5]
>>> insertion_sort(L)
>>> L
[-1, 2, 3, 4, 5, 7]
"""

i = 0

while i != len(L):
insert(L, i)
i = i + 1

Chapter 13. Searching and Sorting • 262

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

How does insert work? It works by finding out where L[b] belongs and then

moving it. Where does it belong? It belongs after every value less than or equal

to it and before every value that is greater than it. We need the check i != 0 in
case L[b] is smaller than every value in L[0:b], which will place the current item

at the beginning of the list. This passes all the tests we wrote earlier for

selection sort. The following illustrates the process:

0

3

1

4

2

7

3

-1

4 5

2 5

sorted unsorted

0

3

1

4

2

7

3

-1

4 5

2 5

sorted unsorted

stays
put

0

3

1

4

2

7

3

-1

4 5

2 5

sorted unsorted

0

3

1

4

2

7

3

-1

4 5

2 5

sorted unsorted

Performance

We now have two sorting algorithms. Which should we use? Because both

are not too difficult to understand, it’s reasonable to decide based on how

fast they are.

report erratum • discuss

Sorting • 263

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

It’s easy enough to write a program to compare their running times, along

with that for list.sort:

import time
import random
from sorts import selection_sort
from sorts import insertion_sort

def built_in(L: list) -> None:
"""Call list.sort --- we need our own function to do this so that we can
treat it as we treat our own sorts.
"""

L.sort()

def print_times(L: list) -> None:
"""Print the number of milliseconds it takes for selection sort, insertion
sort, and list.sort to run.
"""

print(len(L), end='\t')
for func in (selection_sort, insertion_sort, built_in):

if func in (selection_sort, insertion_sort) and len(L) > 10000:
continue

L_copy = L[:]
t1 = time.perf_counter()
func(L_copy)
t2 = time.perf_counter()
print("{0:7.1f}".format((t2 - t1) * 1000.), end='\t')

print() # Print a newline.

for list_size in [10, 1000, 2000, 3000, 4000, 5000, 10000]:
L = list(range(list_size))
random.shuffle(L)
print_times(L)

The results are shown in Table 23, Running Times for Selection, Insertion, and

list.sort (in milliseconds), on page 265.

Something is very clearly wrong, because our sorting functions are thousands

of times slower than the built-in function. What’s more, the time required by

our routines is growing faster than the size of the data. On a thousand items,

for example, selection sort takes about 0.15 milliseconds per item, but on ten

thousand items, it needs about 1.45 milliseconds per item—far more than a

tenfold increase! What is going on?

To answer this, we examine what happens in the inner loops of our two

algorithms. On the first iteration of selection sort, the inner loop examines

every element to find the smallest. On the second iteration, it looks at all but

one; on the third, it looks at all but two, and so on.

Chapter 13. Searching and Sorting • 264

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

list.sortInsertion SortSelection SortList Length

0.3641481000

0.62685832000

0.959413173000

1.3105523374000

1.6166636995000

3.565501457410000

Table 23—Running Times for Selection, Insertion, and list.sort (in milliseconds)

If there are N items in the list, then the number of iterations of the inner loop,

in total, is roughly N + (N - 1) + (N - 2) + … + 1, or N(N + 1)⁄2. Putting it another

way, the number of steps required to sort N items is roughly proportional to

N
2 + N. For large values of N, we can ignore the second term and say that the

time needed by selection sort grows as the square of the number of values

being sorted. And indeed, examining the timing data further shows that

doubling the size of the list increases the running time by four.

The same analysis can be used for insertion sort, since it also examines one

element on the first iteration, two on the second, and so on. (It’s just examining

the already sorted values rather than the unsorted values.)

So why is insertion sort slightly faster? The reason is that, on average, only

half of the values need to be scanned in order to find the location in which

to insert the new value, while with selection sort, every value in the unsorted

section needs to be examined in order to select the smallest one. But, wow,

list.sort is so much faster!

More Efficient Sorting Algorithms

The analysis of selection and insertion sort begs the question, how can list.sort
be so much more efficient? The answer is the same as it was for binary search:

by taking advantage of the fact that some values are already sorted.

A First Attempt

Consider the following function:

import bisect

def bin_sort(values: list) -> list:
"""Return a sorted version of the values. (This does not mutate values.)
>>> L = [3, 4, 7, -1, 2, 5]
>>> bin_sort(L)
[-1, 2, 3, 4, 5, 7]
"""

report erratum • discuss

More Efficient Sorting Algorithms • 265

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

result = []
for v in values:

bisect.insort_left(result, v)

return result

This code uses bisect.insort_left to figure out where to put each value from the

original list into a new list that is kept in sorted order. As we have already

seen, doing this takes time proportional to log2 N, where N is the length of

the list. Since N values have to be inserted, the overall running time ought

to be N log2 N.

As shown in the following table, this grows much more slowly with the length

of the list than N2.

N log2 NN
2

N

3310010

66410,000100

99651,000,0001000

Table 24—Sorting Times

Unfortunately, there’s a flaw in this analysis. It’s correct to say that

bisect.insort_left needs only log2 N time to figure out where to insert a value, but

actually inserting it takes time as well. To create an empty slot in the list, we

have to move all the values above that slot up one place. On average, this

means copying half of the list’s values, so the cost of insertion is proportional

to N. Since there are N values to insert, our total time is N(N + log2 N). For

large values of N, this is once again roughly proportional to N2.

Merge Sort: A Faster Sorting Algorithm

There are several well-known, fast sorting algorithms; merge sort, quick sort,

and heap sort are the ones you are most likely to encounter in a future com-

puter science course. Most of them involve techniques that we haven’t taught

you yet, but merge sort can be written to be more accessible. Merge sort is

built around the idea that taking two sorted lists and merging them is propor-

tional to the number of items in both lists. The running time for merge sort

is N log2 N.

We’ll start with very small lists and keep merging them until we have a single

sorted list.

Chapter 13. Searching and Sorting • 266

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Merging Two Sorted Lists

Given two sorted lists L1 and L2, we can produce a new sorted list by running

along L1 and L2 and comparing pairs of elements. (We’ll see how to produce

these two sorted lists in a bit.)

Here is the code for merge:

def merge(L1: list, L2: list) -> list:
"""Merge sorted lists L1 and L2 into a new list and return that new list.
>>> merge([1, 3, 4, 6], [1, 2, 5, 7])
[1, 1, 2, 3, 4, 5, 6, 7]
"""

newL = []
i1 = 0
i2 = 0

For each pair of items L1[i1] and L2[i2], copy the smaller into newL.
while i1 != len(L1) and i2 != len(L2):

if L1[i1] <= L2[i2]:
newL.append(L1[i1])
i1 += 1

else:
newL.append(L2[i2])
i2 += 1

Gather any leftover items from the two sections.
Note that one of them will be empty because of the loop condition.
newL.extend(L1[i1:])
newL.extend(L2[i2:])
return newL

i1 and i2 are the indices into L1 and L2, respectively; in each iteration, we

compare L1[i1] to L2[i2] and copy the smaller item to the resulting list. At the

end of the loop, we have run out of items in one of the two lists, and the two

extend calls will append the rest of the items to the result.

Merge Sort

Here is the header for mergesort:

def mergesort(L: list) -> None:
"""Reorder the items in L from smallest to largest.

>>> L = [3, 4, 7, -1, 2, 5]
>>> mergesort(L)
>>> L
[-1, 2, 3, 4, 5, 7]
"""

report erratum • discuss

Merge Sort: A Faster Sorting Algorithm • 267

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Function mergesort uses merge to do the bulk of the work. Here is the algorithm,

which creates and keeps track of a list of lists:

• Take list L and make a list of one-item lists from it.

• As long as there are two lists left to merge, merge them, and append the

new list to the list of lists.

The first step is straightforward:

Make a list of 1-item lists so that we can start merging.
workspace = []
for i in range(len(L)):

workspace.append([L[i]])

The second step is trickier. If we remove the two lists, then we’ll run into the

same problem that we ran into in bin_sort: all the following lists will need to

shift over, which takes time proportional to the number of lists.

Instead, we’ll keep track of the index of the next two lists to merge. Initially,

they will be at indices 0 and 1, and then 2 and 3, and so on:

0 1 2 3

workspace

4 5 6

i

Here is our refined algorithm:

• Take list L and make a list of one-item lists from it.

• Start index i off at 0.

• As long as there are two lists (at indices i and i + 1), merge them, append

the new list to the list of lists, and increment i by 2.

With that, we can go straight to code:

def mergesort(L: list) -> None:
"""Reorder the items in L from smallest to largest.

>>> L = [3, 4, 7, -1, 2, 5]
>>> mergesort(L)
>>> L
[-1, 2, 3, 4, 5, 7]
"""

Chapter 13. Searching and Sorting • 268

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Make a list of 1-item lists so that we can start merging.
workspace = []
for i in range(len(L)):

workspace.append([L[i]])

The next two lists to merge are workspace[i] and workspace[i + 1].
i = 0
As long as there are at least two more lists to merge, merge them.
while i < len(workspace) - 1:

L1 = workspace[i]
L2 = workspace[i + 1]
newL = merge(L1, L2)
workspace.append(newL)
i += 2

Copy the result back into L.
if len(workspace) != 0:

L[:] = workspace[-1][:]

Notice that since we’re always making new lists, we need to copy the last of

the merged lists back into the parameter L.

Merge Sort Analysis

Merge sort, it turns out, is N log2 N, where N is the number of items in L. The

following diagram shows the one-item lists getting merged into two-item lists,

then four-item lists, and so on until there is one N-item list:

Merge

Merge Merge

Merge Merge Merge Merge

The first part of the function, creating the list of one-item lists, takes N itera-

tions, one for each item.

The second loop, in which we continually merge lists, will take some care to

analyze. We’ll start with the very last iteration, in which we are merging two

report erratum • discuss

Merge Sort: A Faster Sorting Algorithm • 269

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

lists with about N⁄2 items. As we’ve seen, function merge copies each element

into its result exactly once, so with these two lists, this merge step takes

roughly N steps.

On the previous iteration, there are four lists of size N⁄4 to merge into two lists

of size N⁄2. Each of these two merges takes roughly N⁄2 steps, so the two merges

together take roughly N steps total.

On the iteration before that, there are a total of eight lists of size N⁄8 to merge

into the four lists of size N⁄4. Four merges of this size together also take

roughly N steps.

We can subdivide a list with N items a total of log2 N times using an analysis

much like we used for binary search. Since at each “level” there are a total

of N items to be merged, each of these log2 N levels takes roughly N steps.

Hence, merge sort takes time proportional to N log2 N.

That’s an awful lot of code to sort a list! There are shorter and clearer versions

—but again, they rely on techniques that we haven’t yet introduced.

Despite all the code and our somewhat messy approach (it creates a lot of

sublists), merge sort turns out to be much faster than selection sort and

insertion sort. More importantly, it grows at the same rate as the built-in sort:

list.sortMerge SortInsertion SortSelection SortList Length

0.37641481000

0.6152685832000

0.92359413173000

1.332105523374000

1.641166636995000

3.58865501457410000

Table 25—Running Times for Selection, Insertion, Merge, and list.sort (in milliseconds)

Sorting Out What You Learned

In this chapter, you learned the following:

• An invariant describes the data being used in a loop. The initial values

for the variables used in the loop will establish the invariant, and the

work done inside the loop will make progress toward the solution. When

the loop terminates, the invariant is still true, but the solution will have

been reached.

Chapter 13. Searching and Sorting • 270

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Big-Oh and All That

Our method of analyzing the performance of searching and sorting algorithms might

seem like hand-waving, but there is actually a well-developed mathematical theory

behind it. If f and g are functions, then the expression f(x) = O(g(x)) is read “f is big-oh

of g” and means that for sufficiently large values of x, f(x) is bounded above by some

constant multiple of g(x), or equivalently that function g gives us an upper bound on

the values of function f. Computer scientists use this to group algorithms into families,

such as those sorting functions that execute in N2 time and those that execute in N

log2 N time.

These distinctions have important practical applications. In particular, one of the biggest

puzzles in theoretical computer science today is whether two families of algorithms

(called P and NP for reasons that we won’t go into here) are the same or not. Almost

everyone thinks they aren’t, but no one has been able to prove it (despite the offer of a

million-dollar prize for the first correct proof). If it turns out that they are the same,

then many of the algorithms used to encrypt data in banking and military applications

(as well as on the web) will be much more vulnerable to attack than expected.

• Linear search is the simplest way to find a value in a list, but on average,

the time required is directly proportional to the length of the list.

• Binary search is much faster—the average time is proportional to the

logarithm of the list’s length—but it works only if the list is in sorted order.

• Similarly, the average running time of simple sorting algorithms like

selection sort is proportional to the square of the input size N, whereas

the running time of more complex sorting algorithms grows as N log2 N.

• Looking at how the running time of an algorithm grows as a function of

the size of its inputs is the standard way to analyze and compare the

algorithm’s efficiency.

• Selection sort and insertion sort have almost the same invariant; the only

difference is that with selection sort, the sorted section contains values

that are smaller than all the values in the unsorted section. The two

algorithms differ by how they make progress: selection sort selects the

next-smallest item to put at the end of the sorted section, whereas inser-

tion sort inserts the next item into the sorted section.

report erratum • discuss

Sorting Out What You Learned • 271

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. All three versions of linear search start at index 0. Rewrite all to search from

the end of the list instead of from the beginning. Make sure you test them.

2. For the new versions of linear search: if there are duplicate values, which

do they find?

3. Binary search is significantly faster than the built-in search but requires

that the list is sorted. As you know, the running time for the best sorting

algorithm is on the order of N log2 N, where N is the length of the list. If

we search a lot of times on the same list of data, it makes sense to sort

it once before doing the searching. Roughly how many times do we need

to search in order to make sorting and then searching faster than using

the built-in search?

4. Given the unsorted list [6, 5, 4, 3, 7, 1, 2], show what the contents of the list

would be after each iteration of the loop as it is sorted using the following:

a. Selection sort

b. Insertion sort

5. Another sorting algorithm is bubble sort. Bubble sort involves keeping a

sorted section at the end of the list. The list is traversed, pairs of elements

are compared, and larger elements are swapped into the higher position.

This is repeated until all elements are sorted.

a. Using the English description of bubble sort, write an outline of the

bubble sort algorithm in English.

b. Continue using top-down design until you have a Python algorithm.

c. Turn it into a function called bubble_sort(L).

d. Try it out on the test cases from selection_sort.

6. In the description of bubble sort in the previous exercise, the sorted section

of the list was at the end of the list. In this exercise, bubble sort will

maintain the sorted section at the beginning of the list. Make sure that

you are still implementing bubble sort!

Chapter 13. Searching and Sorting • 272

report erratum • discuss

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

a. Rewrite the English description of bubble sort from the previous

exercise with the necessary changes so that the sorted elements are

at the beginning of the list instead of at the end.

b. Using your English description of bubble sort, write an outline of the

bubble sort algorithm in English.

c. Write function bubble_sort_2(L).

d. Try it out on the test cases from selection_sort.

7. Modify the timing program to compare bubble sort with insertion and

selection sort. Explain the results.

8. The analysis of bin_sort said, “Since N values have to be inserted, the

overall running time is N log2 N.” Point out a flaw in this reasoning, and

explain whether it affects the overall conclusion.

9. There are at least two ways to come up with loop conditions. One of them

is to answer the question, “When is the work done?” and then negate it.

In function merge in Merging Two Sorted Lists, on page 267, the answer is,

“When we run out of items in one of the two lists,” which is described by

this expression: i1 == len(L1) or i2 == len(L2). Negating this leads to our condi-

tion i1 != len(L1) and i2 != len(L2).

Another way to come up with a loop condition is to ask, “What are the

valid values of the loop index?” In function merge, the answer to this is 0
<= i1 < len(L1) and 0 <= i2 < len(L2); since i1 and i2 start at zero, we can drop

the comparisons with zero, giving us i1 < len(L1) and i2 < len(L2).

Is there another way to do it? Have you tried both approaches? Which do

you prefer?

10. In function mergesort in Merge Sort, on page 267, there are two calls to extend.
They are there because when the preceding loop ends, one of the two lists

still has items in it that haven’t been processed. Rewrite that loop so that

these extend calls aren’t needed.

report erratum • discuss

Exercises • 273

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 14

Object-Oriented Programming

Imagine you’ve been hired to help write a program to keep track of books in

a bookstore. Every record about a book would probably include the title,

authors, publisher, price, and ISBN, which stands for International Standard

Book Number, a unique identifier for a book.

Read this code and try to guess what it prints:

python_book = Book(
'Practical Programming',
['Campbell', 'Gries', 'Montojo'],
'Pragmatic Bookshelf',
'978-1-6805026-8-8',
25.0)

survival_book = Book(
"New Programmer's Survival Manual",
['Carter'],
'Pragmatic Bookshelf',
'978-1-93435-681-4',
19.0)

print('{0} was written by {1} authors and costs ${2}'.format(
python_book.title, python_book.num_authors(), python_book.price))

print('{0} was written by {1} authors and costs ${2}'.format(
survival_book.title, survival_book.num_authors(), survival_book.price))

You might guess that this code creates two book objects, one called Practical

Programming and one called New Programmer’s Survival Manual. You might

even guess the output:

Practical Programming was written by 3 authors and costs $25.0
New Programmer's Survival Manual was written by 1 authors and costs $19.0

There’s a problem, though: this code doesn’t run. Python doesn’t have a Book type.

And that is what this chapter is about: how to define and use your own types.

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Understanding a Problem Domain

In our book example, we wrote the code based on what we wanted to do with

books. The idea of a Book type comes from the problem domain: keeping track

of books in a bookstore. We thought about this problem domain and figured

out what features of a book we cared about.

We might have decided to keep track of the number of pages, the date it was

published, and much more; what you decide to keep track of depends exactly

on what your program is supposed to do.

It’s common to define multiple related types. For example, if this code was

part of an online store, we might also have an Inventory type, perhaps a Shop-
pingCart type, and much more.

Object-oriented programming revolves around defining and using new types.

As you learned in Modules, Classes, and Methods, on page 115, a class is how

Python represents a type. Object-oriented programming involves at least these

phases:

1. Understanding the problem domain. This step is crucial: you need to know

what your customer wants (your boss, perhaps a friend or business con-

tact, perhaps yourself) before you can write a program that does what the

customer wants.

2. Figuring out what type(s) you might want. A good starting point is to read

the description of the problem domain and look for the main nouns and

noun phrases.

3. Figuring out what features you want your type to have. Here you should

write some code that uses the type you’re thinking about, much like we

did with the Book code at the beginning of this chapter. This is a lot like

the Examples step in the function design recipe, where you decide what

the code that you’re about to write should do.

4. Writing a class that represents this type. You now need to tell Python about

your type. To do this, you will write a class, including a set of methods

inside that class. (You will use the function design recipe as you design

and implement each of your methods.)

5. Testing your code. Your methods will have been tested separately as you

followed the function design recipe, but it’s important to think about how

the various methods will interact.

Chapter 14. Object-Oriented Programming • 276

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Function isinstance, Class object, and Class Book

Function isinstance reports whether an object is an instance of a class—that

is, whether an object has a particular type:

>>> isinstance('abc', str)
True
>>> isinstance(55.2, str)
False

'abc' is an instance of str, but 55.2 is not.

Python has a class called object. Every other class is based on it:

>>> help(object)
Help on class object in module builtins:

class object
| The most base type

Function isinstance reports that both 'abc' and 55.2 are instances of class object:

>>> isinstance(55.2, object)
True
>>> isinstance('abc', object)
True

Even classes and functions are instances of object:

>>> isinstance(str, object)
True
>>> isinstance(max, object)
True

What’s happening here is that every class in Python is derived from class

object, and so every instance of every class is an object.

Using object-oriented lingo, we say that class object is the superclass of class

str, and class str is a subclass of class object. The superclass information is

available in the help documentation for a type:

>>> help(int)
Help on class int in module builtins:

class int(object)

Here we see that class SyntaxError is a subclass of class Exception:

>>> help(SyntaxError)
Help on class SyntaxError in module builtins:

class SyntaxError(Exception)

report erratum • discuss

Function isinstance, Class object, and Class Book • 277

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Class object has the following attributes (attributes are variables inside a class that

refer to methods, functions, variables, or even other classes):

>>> dir(object)
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__',
'__ge__', '__getattribute__', '__gt__', '__hash__', '__init__',
'__init_subclass__', '__le__', '__lt__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__']

Every class in Python, including ones that you define, automatically inherits these

attributes from class object. More generally, every subclass inherits the features

of its superclass. This is a powerful tool; it helps avoid a lot of duplicate code and

makes interactions between related types consistent.

Let’s try this out. Here is the simplest class that we can write:

>>> class Book:
... """Information about a book."""
...

Just as keyword def tells Python that we’re defining a new function, keyword class
signals that we’re defining a new type.

Much like str is a type, Book is a type:

>>> type(str)
<class 'type'>
>>> type(Book)
<class 'type'>

Our Book class isn’t empty, either, because it has inherited all the attributes of

class object:

>>> dir(Book)
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__',
'__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '__weakref__']

If you look carefully, you’ll see that this list is nearly identical to the output for

dir(object). There are three extra attributes in class Book; every subclass of class

object automatically has these attributes in addition to the inherited ones:

>>> set(dir(Book)) - set(dir(object))
{'__module__', '__weakref__', '__dict__'}

We’ll get to those attributes later on in this chapter in What Are Those Special

Attributes?, on page 289. First, let’s create a Book object and give that Book a title

and a list of authors:

Chapter 14. Object-Oriented Programming • 278

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> ruby_book = Book()
>>> ruby_book.title = 'Programming Ruby'
>>> ruby_book.authors = ['Thomas', 'Fowler', 'Hunt']

The first assignment statement creates a Book object and then assigns that

object to variable ruby_book. The second assignment statement creates a title
variable inside the Book object; that variable refers to the string 'Programming
Ruby'. The third assignment statement creates variable authors, also inside the

Book object, which refers to the list of strings ['Thomas', 'Fowler', 'Hunt'].

Variables title and authors are called instance variables because they are vari-

ables inside an instance of a class. We can access these instance variables

through variable ruby_book:

>>> ruby_book.title
'Programming Ruby'
>>> ruby_book.authors
['Thomas', 'Fowler', 'Hunt']

In the expression ruby_book.title, Python finds variable ruby_book, then sees the

dot and goes to the memory location of the Book object, and then looks for

variable title. Here is a model of computer memory for this situation:

id1:Book class
id1Book

Book

title
authors

id2:Book instance

"Programming Ruby"
id3:str

id3

id7

id2ruby_book

Book

"Thomas"
id4:str

"Fowler"
id5:str

"Hunt"
id6:str

id7:list
0
id4

1
id5

2
id6

We can even get help on our Book class:

>>> help(Book)
Help on class Book in module __main__:

class Book(builtins.object)
| Information about a book.
|
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)

report erratum • discuss

Function isinstance, Class object, and Class Book • 279

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The first line tells us that we asked for help on class Book. After that is the

header for class Book; the (builtins.object) part tells us that Book is a subclass of

class object. The next line shows the Book docstring. Last is a section called

“data descriptors,” which are special pieces of information that Python keeps

with every user-defined class that it uses for its own purposes. Again, we’ll

get to those in What Are Those Special Attributes?, on page 289.

Writing a Method in Class Book

As you saw in Chapter 7, Using Methods, on page 115, there are two ways to

call a method. One way is to access the method through the class, and the

other is to use object-oriented syntax. These two calls are equivalent:

>>> str.capitalize('browning')
'Browning'
>>> 'browning'.capitalize()
'Browning'

We’d like to be able to write similar code involving class Book. For example,

we might want to be able to ask how many authors a Book has:

>>> Book.num_authors(ruby_book)
3
>>> ruby_book.num_authors()
3

To get this to work, we’ll define a method called num_authors inside Book. Here it is:

class Book:
"""Information about a book."""

def num_authors(self) -> int:
"""Return the number of authors of this book.
"""

return len(self.authors)

Book method num_authors looks just like a function except that it has a parameter

called self, which refers to a Book. Assuming this class is defined in the file book.py,
we can import it, create a Book object, and call num_authors in two different ways:

>>> import book
>>> ruby_book = book.Book()
>>> ruby_book.title = 'Programming Ruby'
>>> ruby_book.authors = ['Thomas', 'Fowler', 'Hunt']
>>> book.Book.num_authors(ruby_book)
3
>>> ruby_book.num_authors()
3

Chapter 14. Object-Oriented Programming • 280

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Let’s take a close look at the first call on method num_authors:

>>> book.Book.num_authors(ruby_book)

The book part says to look in the imported module. In that module is class Book.
Inside Book is method num_authors. The argument to the call, ruby_book, is passed to

parameter self.

Python treats the second call on num_authors exactly as it did the first; the first call

is equivalent to this one:

>>> ruby_book.num_authors()

The second version is much more common because it lists the object first; we

think of that version as asking the book how many authors it has. Thinking of

method calls this way can really help develop an object-oriented mentality.

In the ruby_book example, we assigned the title and list of authors after the Book object

was created. That approach isn’t scalable; we don’t want to have to type those extra

assignment statements every time we create a Book. Instead, we’ll write a method

that does this for us as we create the Book. This is a special method and is called

__init__. We’ll also include the publisher, ISBN, and price as parameters of __init__:

from typing import List, Any

class Book:
"""Information about a book, including title, list of authors,
publisher, ISBN, and price.
"""

def __init__(self, title: str, authors: List[str], publisher: str,
isbn: str, price: float) -> None:

"""Create a new book entitled title, written by the people in authors,
published by publisher, with ISBN isbn and costing price dollars.

>>> python_book = Book(\
'Practical Programming', \
['Campbell', 'Gries', 'Montojo'], \
'Pragmatic Bookshelf', \
'978-1-6805026-8-8', \
25.0)

>>> python_book.title
'Practical Programming'
>>> python_book.authors
['Campbell', 'Gries', 'Montojo']
>>> python_book.publisher
'Pragmatic Bookshelf'
>>> python_book.ISBN
'978-1-6805026-8-8'
>>> python_book.price
25.0
"""

report erratum • discuss

Writing a Method in Class Book • 281

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

self.title = title
Copy the authors list in case the caller modifies that list later.
self.authors = authors[:]
self.publisher = publisher
self.ISBN = isbn
self.price = price

def num_authors(self) -> int:
"""Return the number of authors of this book.

>>> python_book = Book(\
'Practical Programming', \
['Campbell', 'Gries', 'Montojo'], \
'Pragmatic Bookshelf', \
'978-1-6805026-8-8', \
25.0)

>>> python_book.num_authors()
3
"""

return len(self.authors)

Notice that we can include doctests for methods just as we do for functions. Notice

also that we do not specify the type of the first parameter of a method, since its

type is always the class in which it is defined.

This module contains a single (complicated) statement: the class definition. When

Python executes this module, it creates a class object and assigns it to variable Book:

Frames

shell

book id4

Objects

Book

__init__
num_authors

id3:Book class

id1

id2

__init__(self, title, authors,
 publisher, isbn, price)

id1:method

num_authors(self)
id2:method

Book

id4:module

id3

Method __init__ is called whenever a Book object is created. Its purpose is to initialize

the new object; this method is sometimes called a constructor. Here are the steps

that Python follows when creating an object:

1. It creates an object at a particular memory address.

2. It calls method __init__, passing in the new object into the parameter self.

3. It produces that object’s memory address.

Let’s try it out in the shell:

Chapter 14. Object-Oriented Programming • 282

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> import book
>>> python_book = book.Book(
... 'Practical Programming',
... ['Campbell', 'Gries', 'Montojo'],
... 'Pragmatic Bookshelf',
... '978-1-6805026-8-8',
... 25.0)
>>> python_book.title
'Practical Programming'
>>> python_book.authors
['Campbell', 'Gries', 'Montojo']
>>> python_book.publisher
'Pragmatic Bookshelf'
>>> python_book.ISBN
'978-1-6805026-8-8'
>>> python_book.price
25.0

What’s in an Object?

Methods belong to classes. Instance variables belong to objects. If we try to access

an instance variable as we do a method, we get an error:

>>> import book
>>> book.Book.title
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: type object 'Book' has no attribute 'title'
>>> dir(book.Book)
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__',
'__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '__weakref__', 'num_authors']

Instances of class Book contain instance variables and have access to the methods in Book:

>>> python_book = book.Book(
... 'Practical Programming',
... ['Campbell', 'Gries', 'Montojo'],
... 'Pragmatic Bookshelf',
... '978-1-6805026-8-8',
... 25.0)
>>> dir(python_book)
['ISBN', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__',
'__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'authors',
'num_authors', 'price', 'publisher', 'title']

Notice that ISBN, authors, price, publisher, and title are all available in the object as instance

variables in addition to the contents of class Book.

report erratum • discuss

Writing a Method in Class Book • 283

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The following image shows the memory model that results from this code:

shell

book

python_book

Frames

id4

Objects

Book

__init__

num_authors

id3:Book class

id1

id2

__init__(self, title, authors,
 publisher, isbn, price)

id1:method

num_authors(self)

id2:method

Book

⋮

id4:module

id3

id5

"Practical Programming"

id6:str

"Pragmatic Bookshelf"

id11:str

"978-1-6805026-8-8"

id12:str "Campbell"

id7:str

"Gries"

id8:str

"Montojo"

id9:str

id10:list

0
id7

1
id8

2
id9

id5:Book instance

Book

title

authors

publisher

ISBN

price

id6

id10

id11

id12

id13

25.0

id13:float

Let’s trace method call python_book.num_authors(). (As a reminder, this is equivalent

to Book.num_authors(python_book).) Python first finds the object that python_book refers

to and calls its method num_authors. There are no explicit arguments, so Python

only passes in the Book object that python_book refers to, assigning that object to

the self parameter:

shell

book

python_book

Frames

id4

Objects

Book

__init__

num_authors

id3:Book class

id1

id2

__init__(self, title, authors,
 publisher, isbn, price)

id1:method

num_authors(self)

id2:method

Book

⋮

id4:module

id3

id5

Book.num_authors

self id5

"Practical Programming"

id6:str

"Pragmatic Bookshelf"

id11:str

"978-1-6805026-8-8"

id12:str "Campbell"

id7:str

"Gries"

id8:str

"Montojo"

id9:str

id10:list

0
id7

1
id8

2
id9

id5:Book instance

Book

title

authors

publisher

ISBN

price

id6

id10

id11

id12

id13

25.0

id13:float

Chapter 14. Object-Oriented Programming • 284

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The return statement, return len(self.authors), is then executed. The expression,

len(self.authors), is a function call. Python evaluates the argument, self.authors, by

finding the object that self refers to and then, in that object, finds instance variable

authors. This is a list, and the length of that list is the value that Python returns,

as shown here:

shell

book

python_book

Frames

id4

Objects

Book

__init__

num_authors

id3:Book class

id1

id2

__init__(self, title, authors,
 publisher, isbn, price)

id1:method

num_authors(self)

id2:method

Book

⋮

id4:module

id3

id5

Book.num_authors

self

Return value

id5

id14 "Practical Programming"

id6:str

"Pragmatic Bookshelf"

id11:str

"978-1-6805026-8-8"

id12:str "Campbell"

id7:str

"Gries"

id8:str

"Montojo"

id9:str

id10:list

0
id7

1
id8

2
id9

id5:Book instance

Book

title

authors

publisher

ISBN

price

id6

id10

id11

id12

3

id14:int

id13

25.0

id13:float

With constructors, methods, and instance variables in hand, we can now create

classes that look and work like those that come with Python itself.

Plugging into Python Syntax: More Special Methods

In What Are Those Underscores?, on page 123, you learned that some Python syntax,

such as + or ==, triggers method calls. For example, when Python sees 'abc' + '123',
it turns that into 'abc'.__add__('123'). When we call print(obj), then obj.__str__() is called

to find out what string to print.

You can do this too. All you need to do is define these special methods inside

your classes.

The output Python produces when we print a Book isn’t particularly useful:

>>> python_book = Book(
... 'Practical Programming',
... ['Campbell', 'Gries', 'Montojo'],
... 'Pragmatic Bookshelf',
... '978-1-6805026-8-8',
... 25.0)
>>> print(python_book)
<book.Book object at 0x59f410>

report erratum • discuss

Plugging into Python Syntax: More Special Methods • 285

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

This is the default behavior for converting objects to strings: it just shows us

where the object is in memory. This is the behavior defined in class object’s method

__str__, which our Book class has inherited.

If we want to present a more useful string, we need to explore two more special

methods, __str__ and __repr__. __str__ is called when an informal, human-readable

version of an object is needed, and __repr__ is called when unambiguous, but pos-

sibly less readable, output is desired. In particular, __str__ is called when print is
used, and it is also called by function str and by string method format. Method

__repr__ is called when you ask for the value of a variable in the Python shell, and

it is also called when a collection such as list is printed.

Let’s define method Book.__str__ to provide useful output; this method goes inside

class Book, along with __init__ and num_authors:

def __str__(self) -> str:
"""Return a human-readable string representation of this Book.
"""

return """Title: {0}
Authors: {1}
Publisher: {2}
ISBN: {3}
Price: ${4}""".format(

self.title, ', '.join(self.authors), self.publisher, self.ISBN, self.price)

Printing a Book now gives more useful information:

>>> python_book = Book(
... 'Practical Programming',
... ['Campbell', 'Gries', 'Montojo'],
... 'Pragmatic Bookshelf',
... '978-1-6805026-8-8',
... 25.0)
>>> print(python_book)
Title: Practical Programming
Authors: Campbell, Gries, Montojo
Publisher: Pragmatic Bookshelf
ISBN: 978-1-6805026-8-8
Price: $25.0

Method __repr__ is called to get an unambiguous string representation of an object.

The string should include the type of the object as well as the values of any

instance variables—ideally, if we were to evaluate the string, it would create an

object that is equivalent to the one that owns method __repr__. We will show an

example of __repr__ in A Case Study: Molecules, Atoms, and PDB Files, on page 293.

The operator == triggers a call on method __eq__. This method is defined in class

object, and so class Book has inherited it; object’s __eq__ produces True exactly when

Chapter 14. Object-Oriented Programming • 286

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

an object is compared to itself. That means that even if two objects contain iden-

tical information they will not be considered equal:

>>> python_book_1 = book.Book(
... 'Practical Programming',
... ['Campbell', 'Gries', 'Montojo'],
... 'Pragmatic Bookshelf',
... '978-1-6805026-8-8',
... 25.0)
>>> python_book_2 = book.Book(
... 'Practical Programming',
... ['Campbell', 'Gries', 'Montojo'],
... 'Pragmatic Bookshelf',
... '978-1-6805026-8-8',
... 25.0)
>>> python_book_1 == python_book_2
False
>>> python_book_1 == python_book_1
True
>>> python_book_2 == python_book_2
True

We can override an inherited method by defining a new version in our subclass.

This replaces the inherited method so that it is no longer used. As an example,

we’ll define method Book.__eq__ to compare two books for equality. Because ISBNs

are unique, we can compare using them, but we first need to check whether the

object we are comparing to is in fact a Book. We’ll add this method to class Book:

def __eq__(self, other: Any) -> bool:
"""Return True iff other is a book, and this book and other have
the same ISBN.

>>> python_book = Book(\
'Practical Programming', \
['Campbell', 'Gries', 'Montojo'], \
'Pragmatic Bookshelf', \
'978-1-6805026-8-8', \
25.0)

>>> python_book_discounted = Book(\
'Practical Programming', \
['Campbell', 'Gries', 'Montojo'], \
'Pragmatic Bookshelf', \
'978-1-6805026-8-8', \
5.0)

>>> python_book == python_book_discounted
True
>>> python_book == ['Not', 'a', 'book']
False
"""

return isinstance(other, Book) and self.ISBN == other.ISBN

report erratum • discuss

Plugging into Python Syntax: More Special Methods • 287

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Here is our new method __eq__ in action:

>>> python_book_1 = book.Book(
... 'Practical Programming', ['Campbell', 'Gries', 'Montojo'],
... 'Pragmatic Bookshelf', '978-1-6805026-8-8', 25.0)
>>> python_book_2 = book.Book(
... 'Practical Programming', ['Campbell', 'Gries', 'Montojo'],
... 'Pragmatic Bookshelf', '978-1-6805026-8-8', 25.0)
>>> survival_book = book.Book(
... "New Programmer's Survival Manual", ['Carter'],
... 'Pragmatic Bookshelf', '978-1-93435-681-4', 19.0)
>>> python_book_1 == python_book_2
True
>>> python_book_1 == survival_book
False
>>> python_book_1 == ['Not', 'a', 'book']
False

Here, then, are the lookup rules for a method call obj.method(...):

1. Look in the current object’s class. If we find a method with the right name,

use it.

2. If we didn’t find it, look in the superclass. Continue up the class hierarchy

until the method is found.

Python has lots of other special methods; the official Python website gives a

full list.

A Little Bit of OO Theory

Classes and objects are two of programming’s power tools. They let good

programmers do a lot in very little time, but with them, bad programmers

can create a real mess. This section will introduce some underlying theory

that will help you design reliable, reusable object-oriented software.

Encapsulation

To encapsulate something means to enclose it in some kind of container. In

programming, encapsulation means keeping data and the code that uses it

in one place and hiding the details of exactly how they work together. For

example, each instance of class file keeps track of what file on the disk it is

reading or writing and where it currently is in that file. The class hides the

details of how this is done so that programmers can use it without needing

to know the details of how it was implemented.

Chapter 14. Object-Oriented Programming • 288

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

What Are Those Special Attributes?

In Function isinstance, Class object, and Class Book, on page 277, we encountered

these four special class attributes:

{'__module__', '__weakref__', '__dict__'}

Every class that you have defined contains these four attributes, plus several more.

The first one, __dict__, unsurprisingly refers to a dictionary. What you might find sur-

prising is that this dictionary is used to keep track of the instance variables and their

values! Here it is for our running python_book example:

>>> python_book.__dict__
{'publisher': 'Pragmatic Bookshelf', 'ISBN': '978-1-6805026-8-8',
'title': 'Practical Programming', 'price': 25.0,
'authors': ['Campbell', 'Gries', 'Montojo']}

Whenever you assign to an instance variable, it changes the contents of the object’s

dictionary. You can even change it yourself directly, although we don’t recommend it.

Here are brief descriptions of some of the other special attributes of classes:

Variable __module__ refers to the module object in which the class of the object was

defined.

Variable __weakref__ is used by Python to manage when the memory for an object can

be reused.

Variables __name__ and __qualname__ refer to strings containing the simple and fully

qualified names of classes, respectively; their values are usually identical, except

when a class is defined inside another class, in which case the fully qualified name

contains both the outer class name and the inner class name.

Variable __class__ refers to an object’s class object.

There are several more special attributes, and they are all used by Python to properly

manage information about a program as it executes.

Polymorphism

Polymorphism means “having more than one form.” In programming, it means

that an expression involving a variable can do different things depending on

the type of the object to which the variable refers. For example, if obj refers to

a string, then obj[1:3] produces a two-character string. If obj refers to a list, on

the other hand, the same expression produces a two-element list. Similarly,

the expression left + right can produce a number, a string, or a list, depending

on the types of left and right.

report erratum • discuss

A Little Bit of OO Theory • 289

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Polymorphism is used throughout modern programs to cut down on the

amount of code programmers need to write and test. It lets us write a generic

function to count nonblank lines:

def non_blank_lines(thing):
"""Return the number of nonblank lines in thing."""

count = 0
for line in thing:

if line.strip():
count += 1

return count

And then we can apply it to a list of strings, a file, or a web page on a site

halfway around the world (see Files over the Internet, on page 183). Each of

those three types knows how to be the subject of a loop; in other words, each

one knows how to produce its “next” element as long as there is one and then

say “all done.” That means that instead of writing four functions to count

interesting lines or copying the lines into a list and then applying one function

to that list, we can apply one function to all those types directly.

Inheritance

Giving one class the same methods as another is one way to make them

polymorphic, but it suffers from the same flaw as initializing an object’s

instance variables from outside the object. If a programmer forgets just one

line of code, the whole program can fail for reasons that will be difficult to

track down. A better approach is to use a third fundamental feature of object-

oriented programming called inheritance, which allows you to recycle code in

yet another way.

Whenever you create a class, you are using inheritance: your new class

automatically inherits all of the attributes of class object, much like a child

inherits attributes from his or her parents. You can also declare that your

new class is a subclass of some other class.

Here is an example. Let’s say we’re managing people at a university. There

are students and faculty. (This is a gross oversimplification for purposes of

illustrating inheritance; we’re ignoring administrative staff, caretakers, food

providers, and more.)

Both students and faculty have names, postal addresses, and email

addresses; each student also has a student number, a list of courses taken,

and a list of courses he or she is currently taking. Each faculty member has

a faculty number and a list of courses he or she is currently teaching. (Again,

this is a simplification.)

Chapter 14. Object-Oriented Programming • 290

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

We’ll have a Faculty class and a Student class. We need both of them to have names,

addresses, and email addresses, but duplicate code is generally a bad thing; so we’ll

avoid it by also defining a class, perhaps called Member, and keeping track of those

features in Member. Then we’ll make both Faculty and Student subclasses of Member:

class Member:
""" A member of a university. """

def __init__(self, name: str, address: str, email: str) -> None:
"""Create a new member named name, with home address and email address.
"""

self.name = name
self.address = address
self.email = email

class Faculty(Member):
""" A faculty member at a university. """

def __init__(self, name: str, address: str, email: str,
faculty_num: str) -> None:

"""Create a new faculty named name, with home address, email address,
faculty number faculty_num, and empty list of courses.
"""

super().__init__(name, address, email)
self.faculty_number = faculty_num
self.courses_teaching = []

class Student(Member):
""" A student member at a university. """

def __init__(self, name: str, address: str, email: str,
student_num: str) -> None:

"""Create a new student named name, with home address, email address,
student number student_num, an empty list of courses taken, and an
empty list of current courses.
"""

super().__init__(name, address, email)
self.student_number = student_num
self.courses_taken = []
self.courses_taking = []

Both class headers—class Faculty(Member): and class Student(Member):—tell Python that

Faculty and Student are subclasses of class Member. That means that they inherit all

of the attributes of class Member.

The first line of both Faculty.__init__ and Student.__init__ call function super, which pro-

duces a reference to the superclass part of the object, Member. That means that

both of those first lines call method __init__, which was inherited from class Member.
Notice that we just pass the relevant parameters in as arguments to this call, just

as we would with any method call.

report erratum • discuss

A Little Bit of OO Theory • 291

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

If we import these into the shell, we can create both faculty and students:

>>> paul = Faculty('Paul Gries', 'Ajax', 'pgries@cs.toronto.edu', '1234')
>>> paul.name
Paul Gries
>>> paul.email
pgries@cs.toronto.edu
>>> paul.faculty_number
1234
>>> jen = Student('Jen Campbell', 'Toronto', 'campbell@cs.toronto.edu',
... '4321')
>>> jen.name
Jen Campbell
>>> jen.email
campbell@cs.toronto.edu
>>> jen.student_number
4321

Both the Faculty and Student objects have inherited the features defined in class

Member.

Often, you’ll want to extend the behavior inherited from a superclass. As an

example, we might write a __str__ method inside class Member:

def __str__(self) -> str:
"""Return a string representation of this Member.

>>> member = Member('Paul', 'Ajax', 'pgries@cs.toronto.edu')
>>> member.__str__()
'Paul\\nAjax\\npgries@cs.toronto.edu'
"""

return '{}\n{}\n{}'.format(self.name, self.address, self.email)

With this method added to class Member, both Faculty and Student inherit it:

>>> paul = Faculty('Paul', 'Ajax', 'pgries@cs.toronto.edu', '1234')
>>> str(paul)
'Paul\nAjax\npgries@cs.toronto.edu'
>>> print(paul)
Paul
Ajax
pgries@cs.toronto.edu

That isn’t quite enough, though: for class Faculty, we want to extend what the

Member’s __str__ does, adding the faculty number and the list of courses the

faculty member is teaching, and a Student string should include the equivalent

student-specific information.

We’ll use super again to access the inherited Member.__str__ method and to append

the Faculty-specific information:

Chapter 14. Object-Oriented Programming • 292

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

def __str__(self) -> str:
"""Return a string representation of this Faculty.

>>> faculty = Faculty('Paul', 'Ajax', 'pgries@cs.toronto.edu', '1234')
>>> faculty.__str__()
'Paul\\nAjax\\npgries@cs.toronto.edu\\n1234\\nCourses: '
"""

member_string = super().__str__()

return '''{}\n{}\nCourses: {}'''.format(
member_string,
self.faculty_number,
' '.join(self.courses_teaching))

With this, we get the desired output:

>>> paul = Faculty('Paul', 'Ajax', 'pgries@cs.toronto.edu', '1234')
>>> str(paul)
'Paul\nAjax\npgries@cs.toronto.edu\n1234\nCourses: '
>>> print(paul)
Paul
Ajax
pgries@cs.toronto.edu
1234
Courses:

A Case Study: Molecules, Atoms, and PDB Files

Molecular graphic visualization tools allow for interactive exploration of molecular

structures. Most read PDB-formatted files, which we describe in Multiline Records,

on page 195. For example, Jmol (in the following graphic) is a Java-based open

source 3D viewer for these structures.

report erratum • discuss

A Case Study: Molecules, Atoms, and PDB Files • 293

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

In a molecular visualizer, every atom, molecule, bond, and so on has a location

in 3D space, usually defined as a vector, which is an arrow from the origin

to where the structure is. All of these structures can be rotated and translated.

A vector is usually represented by x, y, and z coordinates that specify how

far along the x-axis, y-axis, and z-axis the vector extends.

Here is how ammonia can be specified in PDB format:

COMPND AMMONIA
ATOM 1 N 0.257 -0.363 0.000
ATOM 2 H 0.257 0.727 0.000
ATOM 3 H 0.771 -0.727 0.890
ATOM 4 H 0.771 -0.727 -0.890
END

In our simplified PDB format, a molecule is made up of numbered atoms. In

addition to the number, an atom has a symbol and (x, y, z) coordinates. For

example, one of the atoms in ammonia is nitrogen, with symbol N at coordi-

nates (0.257, -0.363, 0.0). In the following sections, we will look at how we could

translate these ideas into object-oriented Python.

Class Atom

We might want to create an atom like this using information we read from

the PDB file:

nitrogen = Atom(1, "N", 0.257, -0.363, 0.0)

To do this, we’ll need a class called Atom with a constructor that creates all

the appropriate instance variables:

class Atom:
""" An atom with a number, symbol, and coordinates. """

def __init__(self, num: int, sym: str, x: float, y: float,
z: float) -> None:

"""Create an Atom with number num, string symbol sym, and float
coordinates (x, y, z).
"""

self.number = num
self.center = (x, y, z)
self.symbol = sym

To inspect an Atom, we’ll want to provide __repr__ and __str__ methods:

def __str__(self) -> str:
"""Return a string representation of this Atom in this format:

(SYMBOL, X, Y, Z)
"""

Chapter 14. Object-Oriented Programming • 294

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

return '({0}, {1}, {2}, {3})'.format(
self.symbol, self.center[0], self.center[1], self.center[2])

def __repr__(self) -> str:
"""Return a string representation of this Atom in this format:

Atom(NUMBER, "SYMBOL", X, Y, Z)
"""

return 'Atom({0}, "{1}", {2}, {3}, {4})'.format(
self.number, self.symbol,
self.center[0], self.center[1], self.center[2])

We’ll use those later when we define a class for molecules.

In visualizers, one common operation is translation, or moving an atom to a

different location. We’d like to be able to write this in order to tell the nitrogen

atom to move up by 0.2 units:

nitrogen.translate(0, 0, 0.2)

This code works as expected if we add the following method to class Atom:

def translate(self, x: float, y: float, z: float) -> None:
"""Move this Atom by adding (x, y, z) to its coordinates.
"""

self.center = (self.center[0] + x,
self.center[1] + y,
self.center[2] + z)

Class Molecule

Remember that we read PDB files one line at a time. When we reach the line

containing COMPND AMMONIA, we know that we’re building a complex structure:

a molecule with a name and a list of atoms. Here’s the start of a class for this,

including an add method that adds an Atom to the molecule:

class Molecule:
"""A molecule with a name and a list of Atoms. """

def __init__(self, name: str) -> None:
"""Create a Molecule named name with no Atoms.
"""

self.name = name
self.atoms = []

def add(self, a: Atom) -> None:
"""Add a to my list of Atoms.
"""

self.atoms.append(a)

report erratum • discuss

A Case Study: Molecules, Atoms, and PDB Files • 295

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

As we read through the ammonia PDB information, we add atoms as we find

them; here is the code from Multiline Records, on page 195, rewritten to return a

Molecule object instead of a list of lists:

from molecule import Molecule
from atom import Atom
from typing import TextIO

def read_molecule(r: TextIO) -> Molecule:
"""Read a single molecule from r and return it,
or return None to signal end of file.
"""
If there isn't another line, we're at the end of the file.
line = r.readline()
if not line:

return None

Name of the molecule: "COMPND name"
key, name = line.split()

Other lines are either "END" or "ATOM num kind x y z"
molecule = Molecule(name)
reading = True

while reading:
line = r.readline()
if line.startswith('END'):

reading = False
else:

key, num, kind, x, y, z = line.split()
molecule.add(Atom(int(num), kind, float(x), float(y), float(z)))

return molecule

If we compare the two versions, we can see the code is nearly identical. It’s just

as easy to read the new version as the old—more so even, because it includes

type information. Here are the __str__ and __repr__ methods:

def __str__(self) -> str:
"""Return a string representation of this Molecule in this format:

(NAME, (ATOM1, ATOM2, ...))
"""

res = ''
for atom in self.atoms:

res = res + str(atom) + ', '

Strip off the last comma.
res = res[:-2]
return '({0}, ({1}))'.format(self.name, res)

def __repr__(self) -> str:
"""Return a string representation of this Molecule in this format:

Molecule("NAME", (ATOM1, ATOM2, ...))
"""

Chapter 14. Object-Oriented Programming • 296

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

res = ''
for atom in self.atoms:

res = res + repr(atom) + ', '

Strip off the last comma.
res = res[:-2]
return 'Molecule("{0}", ({1}))'.format(self.name, res)

We’ll add a translate method to Molecule to make it easier to move:

def translate(self, x: float, y: float, z: float) -> None:
"""Move this Molecule, including all Atoms, by (x, y, z).
"""

for atom in self.atoms:
atom.translate(x, y, z)

And here we’ll call it:

ammonia = Molecule("AMMONIA")
ammonia.add(Atom(1, "N", 0.257, -0.363, 0.0))
ammonia.add(Atom(2, "H", 0.257, 0.727, 0.0))
ammonia.add(Atom(3, "H", 0.771, -0.727, 0.890))
ammonia.add(Atom(4, "H", 0.771, -0.727, -0.890))
ammonia.translate(0, 0, 0.2)

Classifying What You’ve Learned

In this chapter, you learned the following:

• In object-oriented languages, new types are defined by creating classes. Classes

support encapsulation; in other words, they combine data and the operations

on it so that other parts of the program can ignore implementation details.

• Classes also support polymorphism. If two classes have methods that work

the same way, instances of those classes can replace one another without

the rest of the program being affected. This enables “plug-and-play” program-

ming, in which one piece of code can perform different operations depending

on the objects it is operating on.

• Finally, new classes can be defined by inheriting features from existing ones.

The new class can override the features of its parent and/or add new features.

• When a method is defined in a class, its first argument must be a variable

that represents the object the method is being called on. By convention, this

argument is called self.

• Some methods have special predefined meanings in Python; to signal this,

their names begin and end with two underscores. Some of these methods are

called when constructing objects (__init__) or converting them to strings (__str__
and __repr__); others, like __add__ and __sub__, are used to imitate arithmetic.

report erratum • discuss

Classifying What You’ve Learned • 297

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. In this exercise, you will implement class Country, which represents a

country with a name, a population, and an area.

a. Here is a sample interaction from the Python shell:

>>> canada = Country('Canada', 34482779, 9984670)
>>> canada.name
'Canada'
>>> canada.population
34482779
>>> canada.area
9984670

This code cannot be executed yet because class Country does not exist.

Define Country with a constructor (method __init__) that has four parameters:

a country, its name, its population, and its area.

b. Consider this code:

>>> canada = Country('Canada', 34482779, 9984670)
>>> usa = Country('United States of America', 313914040, 9826675)
>>> canada.is_larger(usa)
True

In class Country, define a method named is_larger that takes two Country
objects and returns True if and only if the first has a larger area than the

second.

c. Consider this code:

>>> canada.population_density()
3.4535722262227995

In class Country, define a method named population_density that returns

the population density of the country (people per square kilometer).

d. Consider this code:

>>> usa = Country('United States of America', 313914040, 9826675)
>>> print(usa)
United States of America has a population of 313914040 and is 9826675
square km.

In class Country, define a method named __str__ that returns a string

representation of the country in the format shown here.

Chapter 14. Object-Oriented Programming • 298

report erratum • discuss

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

e. After you have written __str__, this session shows that a __repr__ method

would be useful:

>>> canada = Country('Canada', 34482779, 9984670)
>>> canada
<exercise_country.Country object at 0x7f2aba30b550>
>>> print(canada)
Canada has population 34482779 and is 9984670 square km.
>>> [canada]
[<exercise_country.Country object at 0x7f2aba30b550>]
>>> print([canada])
[<exercise_country.Country object at 0x7f2aba30b550>]

Define the __repr__ method in Country to produce a string that behaves

like this:

>>> canada = Country('Canada', 34482779, 9984670)
>>> canada
Country('Canada', 34482779, 9984670)
>>> [canada]
[Country('Canada', 34482779, 9984670)]

2. In this exercise, you will implement a Continent class, which represents a

continent with a name and a list of countries. Class Continent will use class

Country from the previous exercise. If Country is defined in another module,

you’ll need to import it.

a. Here is a sample interaction from the Python shell:

>>> canada = country.Country('Canada', 34482779, 9984670)
>>> usa = country.Country('United States of America', 313914040,
... 9826675)
>>> mexico = country.Country('Mexico', 112336538, 1943950)
>>> countries = [canada, usa, mexico]
>>> north_america = Continent('North America', countries)
>>> north_america.name
'North America'
>>> for country in north_america.countries:

print(country)

Canada has a population of 34482779 and is 9984670 square km.
United States of America has a population of 313914040 and is 9826675
square km.
Mexico has a population of 112336538 and is 1943950 square km.
>>>

The code cannot be executed yet, because class Continent does not exist.

Define Continent with a constructor (method __init__) that has three

parameters: a continent, its name, and its list of Country objects.

report erratum • discuss

Exercises • 299

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

b. Consider this code:

>>> north_america.total_population()
460733357

In class Continent, define a method named total_population that returns

the sum of the populations of the countries on this continent.

c. Consider this code:

>>> print(north_america)
North America
Canada has a population of 34482779 and is 9984670 square km.
United States of America has a population of 313914040 and is 9826675
square km.
Mexico has a population of 112336538 and is 1943950 square km.

In class Continent, define a method named __str__ that returns a string

representation of the continent in the format shown here.

3. In this exercise, you’ll write __str__ and __repr__ methods for several classes.

a. In class Student, write a __str__ method that includes all the Member
information and in addition includes the student number, the list of

courses taken, and the list of current courses.

b. Write __repr__ methods in classes Member, Student, and Faculty.

Create a few Student and Faculty objects and call str and repr on them to ver-

ify that your code does what you want it to.

4. Write a class called Nematode to keep track of information about C. elegans,

including a variable for the body length (in millimeters; they are about

1 mm in length), gender (either hermaphrodite or male), and age (in days).

Include methods __init__, __repr__, and __str__.

5. Consider this code:

>>> segment = LineSegment(Point(1, 1), Point(3, 2))
>>> segment.slope()
0.5
>>> segment.length()
2.23606797749979

Chapter 14. Object-Oriented Programming • 300

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

In this exercise, you will write two classes, Point and LineSegment, so that

you can run this code and get the same results.

a. Write a Point class with an __init__ method that takes two numbers as

parameters.

b. In the same file, write a LineSegment class whose constructor takes two

Points as parameters. The first Point should be the start of the segment.

c. Write a slope method in the class LineSegment that computes the slope

of the segment. (Hint: The slope of a line is rise over run.)

d. Write a length method in class LineSegment that computes the length of

the segment. (Hint: Use x ** n to raise x to the nth power. To compute

the square root, raise a number to the (1/2) power or use math.sqrt.)

report erratum • discuss

Exercises • 301

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 15

Testing and Debugging

How can you tell whether the programs you write work correctly? Following the

function design recipe from Designing New Functions: A Recipe, on page 47, you

include an example call or two in the docstring. The last step of the recipe is

calling your function to make sure it returns what you expect. But are one or

two calls enough? If not, how many do you need? How do you pick the arguments

for those function calls? In this chapter, you’ll learn how to choose good test

cases and how to test your code using Python’s unittest module.

Finally, what happens if your tests fail, revealing a bug? (See What's a Bug?,

on page 4.) How can you tell where the problem is in your code? This chapter

will also teach you how to find and fix bugs in your programs.

Why Do You Need to Test?

Quality assurance, or QA, checks that software is working correctly. Over the

last fifty years, programmers have learned that quality isn’t some kind of

magic pixie dust that you can sprinkle on a program after it has been written.

Quality has to be designed in, and software must be tested and retested to

check that it meets standards.

The good news is that putting effort into QA actually makes you more produc-

tive overall. The later you find a bug, the more expensive it is to fix, so

catching bugs early reduces overall effort. The reason can be seen in Boehm’s

curve as shown on page 304.

Most good programmers today don’t just test their software while writing it;

they build their tests so that other people can rerun them months later and

a dozen time zones away. This takes a little more time up front but makes

programmers more productive overall, since every hour invested in preventing

bugs saves two, three, or ten frustrating hours tracking bugs down.

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Requirements Design Coding Testing Deployment

C
o
st

In Testing Your Code Semiautomatically, on page 110, you learned how to run tests

using Python’s doctest module. As part of the function design recipe (see Designing

New Functions: A Recipe, on page 47), you learned to include example calls on

your function in the docstring. You can then use module doctest to execute those

function calls and have it compare the output you expect with the actual output

produced by that function call.

Case Study: Testing above_freezing

The first function that we’ll test is above_freezing from Testing Your Code Semiauto-

matically, on page 110:

def above_freezing(celsius: float) -> bool:
"""Return True iff temperature celsius degrees is above freezing.

>>> above_freezing(5.2)
True
>>> above_freezing(-2)
False
"""

return celsius > 0

In that section, we ran the example calls from the docstring using doctest. But

we’re missing a test: what happens if the temperature is zero? In the next section,

we’ll write another version of this function that behaves differently at zero and

we’ll discuss how our current set of tests is incomplete.

Choosing Test Cases for above_freezing

Before writing our testing code, we must decide which test cases to use.

Function above_freezing takes one argument, a number, so for each test case,

Chapter 15. Testing and Debugging • 304

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

we need to choose the value of that argument. There are billions of numbers

to choose from and we can’t possibly test them all, so how do we decide which

values to use? For above_freezing, there are two categories of numbers: values

below freezing and values above freezing. We’ll pick one value from each cat-

egory to use in our test cases.

Looking at it another way, this particular function returns a Boolean, so we

need at least two tests: one that causes the function to return True and

another that causes it to return False. In fact, that’s what we already did in

our example function calls in the docstring.

In above_freezing’s docstring, the first example call uses 5.2 as the value of the

argument, and that value is above freezing so the function should return True.
This test case represents the temperatures that are above freezing. We chose that

value from among the billions of possible positive floating-point values; any one

of them would work just as well. For example, we could have used 100.6, 29, 357.32,
or any other number greater than 0 to represent the “above freezing” category.

The second example call uses -2, which represents the temperatures that are

below freezing. As before, we could have used -16, -294.3, -56.97, or any other value

less than 0 to represent the “below freezing” category, but we chose to use -2.
Again, our choice is arbitrary.

Are we missing any test case categories? Imagine that we had written our

code using the >= operator instead of the > operator:

def above_freezing_v2(celsius: float) -> bool:
"""Return True iff temperature celsius degrees is above freezing.

>>> above_freezing_v2(5.2)
True
>>> above_freezing_v2(-2)
False
"""

return celsius >= 0

Both versions of the function produce the expected results for the two doc-

string examples, but the code is different from before, and it won’t produce

the same result in all cases. We neglected to test one category of inputs:

temperatures at the freezing mark. Test cases like the one at the freezing

mark are often called boundary cases since they lie on the boundary between

two different possible behaviors of the function (in this case, between temper-

atures above freezing and temperatures below freezing). Experience shows

that boundary cases are much more likely to contain bugs than other cases,

so it’s always worth figuring out what they are and testing them.

report erratum • discuss

Case Study: Testing above_freezing • 305

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Sometimes there are multiple boundary cases. For example, if we had a

function that determined which state water was in—solid, liquid, or gas—then

the two boundary cases would be the freezing point and the boiling point.

To summarize, the following table shows each category of inputs, the value

we chose to represent that category, and the value that we expect the call on

the function to return in that case:

Expected Return ValueArgument ValueTest Case Description

True5.2Temperatures above freezing

False-2Temperatures below freezing

False0Temperatures at freezing

Table 26—Test Cases for above_freezing

Now that all categories of inputs are covered, we need to run the third test.

Running the third test in the Python shell reveals that the value returned by

above_freezing_v2 isn’t False, which is what we expected:

>>> above_freezing(0)
False
>>> above_freezing_v2(0)
True

It took three test cases to cover all the categories of inputs for this function,

but three isn’t a magic number. The three tests had to be carefully chosen.

If the three tests had all fallen into the same category (say, temperatures

above freezing: 5, 70, and 302) they wouldn’t have been sufficient. It’s the

quality of the tests that matters, not the quantity.

Testing above_freezing Using unittest

Once you decide which test cases are needed, you can use one of two

approaches that you’ve learned about so far to actually test the code. The

first is to call the functions and read the results yourself to see if they match

what you expected. The second is to run the functions from the docstring

using module doctest. The latter approach is preferable because the comparison

of the actual value returned by the function to the value we expect to be

returned is done by the program and not by a human, so it’s faster and less

error prone.

In this section, we’ll introduce another of Python’s modules, unittest. A unit

test exercises just one isolated component of a program. Like we did with

doctest, we’ll use module unittest to test each function in our module indepen-

dently from the others. This approach contrasts with system testing, which

looks at the behavior of the system as a whole, just as its eventual users will.

Chapter 15. Testing and Debugging • 306

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

In Inheritance, on page 290, you learned how to write classes that inherit code

from others. Now you’ll write test classes that inherit from class unittest.TestCase.
Our first test class tests function above_freezing:

import unittest
import temperature

class TestAboveFreezing(unittest.TestCase):
"""Tests for temperature.above_freezing."""

def test_above_freezing_above(self):
"""Test a temperature that is above freezing."""

expected = True
actual = temperature.above_freezing(5.2)
self.assertEqual(expected, actual,

"The temperature is above freezing.")

def test_above_freezing_below(self):
"""Test a temperature that is below freezing."""

expected = False
actual = temperature.above_freezing(-2)
self.assertEqual(expected, actual,

"The temperature is below freezing.")

def test_above_freezing_at_zero(self):
"""Test a temperature that is at freezing."""

expected = False
actual = temperature.above_freezing(0)
self.assertEqual(expected, actual,

"The temperature is at the freezing mark.")

unittest.main()

The name of our new class is TestAboveFreezing, and it’s saved in the file

test_above_freezing.py. The class has three of its own methods, one per each test

case. Each test case follows this pattern:

expected = «the value we expect will be returned»
actual = «call on the function being tested»
self.assertEqual(expected, actual,

"Error message in case of failure")

In each test method, there is a call on method assertEqual, which has been

inherited from class unittest.TestCase. To assert something is to claim that it is

true; here we are asserting that the expected value and the actual value should

be equal. Method assertEqual compares its first two arguments (which are the

expected return value and the actual return value from calling the function

being tested) to see whether they are equal. If they aren’t equal, the third

argument, a string, is displayed as part of the failure message.

report erratum • discuss

Case Study: Testing above_freezing • 307

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

At the bottom of the file, the call on unittest.main() executes every method that

begins with the name test.

When the program in test_above_freezing.py is executed, the following results are

produced:

...
--
Ran 3 tests in 0.000s

OK

The first line of output has three dots, one dot per test method. A dot indicates

that a test was run successfully—that the test case passed.

The summary after the dashed line tells you that unittest found and ran three

tests, that it took less than a millisecond to do so, and that everything was

successful (OK).

If our faulty function above_freezing_v2 was renamed above_freezing and our

test_above_freezing unit test program was rerun, instead of three passes (as

indicated by the three dots), there would be two passes and a failure:

.F.
==
FAIL: test_above_freezing_at_zero (__main__.TestAboveFreezing)
Test a temperature that is at freezing.
--
Traceback (most recent call last):

File "test_above_freezing.py", line 30, in test_above_freezing_at_zero
"The temperature is at the freezing mark.")

AssertionError: False != True : The temperature is at the freezing mark.

--
Ran 3 tests in 0.001s

FAILED (failures=1)

The F indicates that a test case failed. The error message tells you that the

failure happened in method test_above_freezing_at_zero. The error is an AssertionError,
which indicates that when we asserted that the expected and actual value

should be equal, we were wrong.

The expression False != True comes from our call on assertEqual: variable expected
was False, variable actual was True, and of course those aren’t equal. Additionally,

the string that was passed as the third argument to assertEqual is part of that

error message: "The temperature is at the freezing mark."

Notice that the three calls on assertEqual were placed in three separate methods.

We could have put them all in the same method, but that method would have

Chapter 15. Testing and Debugging • 308

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

been considered a single test case. That is, when the module was run, we

would see only one result; if any of the three calls on assertEqual failed, the

entire test case would have failed. Only when all three passed would we see

the coveted dot.

As a rule, each test case you design should be implemented in its own test

method.

Now that you’ve seen both doctest and unittest, which should you use? We prefer

unittest, for several reasons:

• For large test suites, it is nice to have the testing code in a separate file

rather than in a very long docstring.

• Each test case can be in a separate method, so the tests are independent of

each other. With doctest, the changes to objects made by one test persist for

the subsequent test, so more care needs to be taken to properly set up the

objects for each doctest test case to make sure they are independent.

• Because each test case is in a separate method, we can write a docstring

that describes the test case tested so that other programmers understand

how the test cases differ from each other.

• The third argument to assertEqual is a string that appears as part of the

error message produced by a failed test, which is helpful for providing a

better description of the test case. With doctest, there is no straightforward

way to customize the error messages.

Case Study: Testing running_sum

In Case Study: Testing above_freezing, on page 304, we tested a program that

involved only immutable types. In this section, you’ll learn how to test func-

tions involving mutable types, like lists and dictionaries.

Suppose we need to write a function that modifies a list so that it contains a

running sum of the values in it. For example, if the list is [1, 2, 3], the list

should be mutated so that the first value is 1, the second value is the sum of

the first two numbers, 1 + 2, and the third value is the sum of the first three

numbers, 1 + 2 + 3, so we expect that the list [1, 2, 3] will be modified to be

[1, 3, 6].

Following the function design recipe (see Designing New Functions: A Recipe,

on page 47), here is a file named sums.py that contains the completed function

with one (passing) example test:

report erratum • discuss

Case Study: Testing running_sum • 309

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

from typing import List

def running_sum(L: List[float]) -> None:
"""Modify L so that it contains the running sums of its original items.

>>> L = [4, 0, 2, -5, 0]
>>> running_sum(L)
>>> L
[4, 4, 6, 1, 1]
"""

for i in range(len(L)):
L[i] = L[i - 1] + L[i]

The structure of the test in the docstring is different from what you’ve seen

before. Because there is no return statement, running_sum returns None. Writing

a test that checks whether None is returned isn’t enough to know whether the

function call worked as expected. You also need to check whether the list

passed to the function is mutated in the way you expect it to be. To do this,

we follow these steps:

• Create a variable that refers to a list.

• Call the function, passing that variable as an argument to it.

• Check whether the list that the variable refers to was mutated correctly.

Following those steps, we created a variable, L, that refers to the list [4, 0, 2, -5, 0],
called running_sum(L), and confirmed that L now refers to [4, 4, 6, 1, 1].

Although this test case passes, it doesn’t guarantee that the function will

always work—and in fact there is a bug. In the next section, we’ll design a

set of test cases to more thoroughly test this function and discover the bug.

Choosing Test Cases for running_sum

Function running_sum has one parameter, which is a List[float]. For our test cases,

we need to decide both on the size of the list and the values of the items. For

size, we should test with the empty list, a short list with one item and

another with two items (the shortest case where two numbers interact), and

a longer list with several items.

When passed either the empty list or a list of length one, the modified list

should be the same as the original.

When passed a two-number list, the first number should be unchanged and

the second number should be changed to be the sum of the two original

numbers.

For longer lists, things get more interesting. The values can be negative,

positive, or zero, so the resulting values might be bigger than, the same as,

Chapter 15. Testing and Debugging • 310

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

or less than they were originally. We’ll divide our test of longer lists into four

cases: all negative values, all zero, all positive values, and a mix of negative,

zero, and positive values. The resulting tests are shown in this table:

List AfterList BeforeTest Case Description

[][]Empty list

[5][5]One-item list

[2, 7][2, 5]Two-item list

[-1, -6, -9, -13][-1, -5, -3, -4]Multiple items, all negative

[0, 0, 0, 0][0, 0, 0, 0]Multiple items, all zero

[4, 6, 9, 15][4, 2, 3, 6]Multiple items, all positive

[4, 4, 6, 1, 1][4, 0, 2, -5, 0]Multiple items, mixed

Table 27—Test Cases for running_sum
Now that we’ve decided on our test cases, the next step is to implement them

using unittest.

Testing running_sum Using unittest

To test running_sum, we’ll use this subclass of unittest.TestCase named TestRunningSum:

import unittest
import sums as sums

class TestRunningSum(unittest.TestCase):
"""Tests for sums.running_sum."""

def test_running_sum_empty(self):
"""Test an empty list."""

argument = []
expected = []
sums.running_sum(argument)
self.assertEqual(expected, argument, "The list is empty.")

def test_running_sum_one_item(self):
"""Test a one-item list."""

argument = [5]
expected = [5]
sums.running_sum(argument)
self.assertEqual(expected, argument, "The list contains one item.")

def test_running_sum_two_items(self):
"""Test a two-item list."""

argument = [2, 5]
expected = [2, 7]
sums.running_sum(argument)
self.assertEqual(expected, argument, "The list contains two items.")

report erratum • discuss

Case Study: Testing running_sum • 311

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

def test_running_sum_multi_negative(self):
"""Test a list of negative values."""

argument = [-1, -5, -3, -4]
expected = [-1, -6, -9, -13]
sums.running_sum(argument)
self.assertEqual(expected, argument,

"The list contains only negative values.")

def test_running_sum_multi_zeros(self):
"""Test a list of zeros."""

argument = [0, 0, 0, 0]
expected = [0, 0, 0, 0]
sums.running_sum(argument)
self.assertEqual(expected, argument, "The list contains only zeros.")

def test_running_sum_multi_positive(self):
"""Test a list of positive values."""

argument = [4, 2, 3, 6]
expected = [4, 6, 9, 15]
sums.running_sum(argument)
self.assertEqual(expected, argument,

"The list contains only positive values.")

def test_running_sum_multi_mix(self):
"""Test a list containing mixture of negative values, zeros and
positive values."""

argument = [4, 0, 2, -5, 0]
expected = [4, 4, 6, 1, 1]
sums.running_sum(argument)
self.assertEqual(expected, argument,

"The list contains a mixture of negative values, zeros and"
+ "positive values.")

unittest.main()

Next we run the tests and see only three of them pass (the empty list, a list with

several zeros, and a list with a mixture of negative values, zeros, and positive values):

..FF.FF
==
FAIL: test_running_sum_multi_negative (__main__.TestRunningSum)
Test a list of negative values.
--
Traceback (most recent call last):

File "test_running_sum.py", line 38, in test_running_sum_multi_negative
"The list contains only negative values.")

AssertionError: Lists differ: [-1, -6, -9, -13] != [-5, -10, -13, -17]

First differing element 0:
-1
-5

Chapter 15. Testing and Debugging • 312

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

- [-1, -6, -9, -13]
+ [-5, -10, -13, -17] : The list contains only negative values.

==
FAIL: test_running_sum_multi_positive (__main__.TestRunningSum)
Test a list of positive values.
--
Traceback (most recent call last):

File "test_running_sum.py", line 55, in test_running_sum_multi_positive
"The list contains only positive values.")

AssertionError: Lists differ: [4, 6, 9, 15] != [10, 12, 15, 21]

First differing element 0:
4
10

- [4, 6, 9, 15]
+ [10, 12, 15, 21] : The list contains only positive values.

==
FAIL: test_running_sum_one_item (__main__.TestRunningSum)
Test a one-item list.
--
Traceback (most recent call last):

File "test_running_sum.py", line 21, in test_running_sum_one_item
self.assertEqual(expected, argument, "The list contains one item.")

AssertionError: Lists differ: [5] != [10]

First differing element 0:
5
10

- [5]
+ [10] : The list contains one item.

==
FAIL: test_running_sum_two_items (__main__.TestRunningSum)
Test a two-item list.
--
Traceback (most recent call last):

File "test_running_sum.py", line 29, in test_running_sum_two_items
self.assertEqual(expected, argument, "The list contains two items.")

AssertionError: Lists differ: [2, 7] != [7, 12]

First differing element 0:
2
7

- [2, 7]
+ [7, 12] : The list contains two items.

--
Ran 7 tests in 0.002s

FAILED (failures=4)

report erratum • discuss

Case Study: Testing running_sum • 313

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The four that failed were a list with one item, a list with two items, a list with all

negative values, and a list with all positive values. To find the bug, let’s focus on

the simplest test case, the single-item list:

==
FAIL: test_running_sum_one_item (__main__.TestRunningSum)
Test a one-item list.
--
Traceback (most recent call last):

File "/Users/campbell/pybook/gwpy2/Book/code/testdebug/test_running_sum.
py", line 21, in test_running_sum_one_item
self.assertEqual(expected, argument, "The list contains one item.")

AssertionError: Lists differ: [5] != [10]
First differing element 0:
5
10

- [5]
+ [10] : The list contains one item.

For this test, the list argument was [5]. After the function call, we expected the

list to be [5], but the list was mutated to become [10]. Looking back at the function

definition of running_sum, when i refers to 0, the for loop body executes the statement

L[0] = L[-1] + L[0]. L[-1] refers to the last element of the list—the 5—and L[0] refers to

that same value. Oops! L[0] shouldn’t be changed, since the running sum of L[0]
is simply L[0].

Looking at the other three failing tests, the failure messages indicate that the first

different elements are those at index 0. The same problem that we describe for

the single-item list happened for these test cases as well.

So how did those other three tests pass? In those cases, L[-1] + L[0] produced the

same value that L[0] originally referred to. For example, for the list containing a

mixture of values, [4, 0, 2, -5, 0], the item at index -1 happened to be 0, so 0 + 4
evaluated to 4, and that matched L[0]’s original value. Interestingly, the simple

single-item list test case revealed the problem, whereas the more complex test

case that involved a list of multiple values hid it!

To fix the problem, we can adjust the for loop header to start the running sum

from index 1 rather than from index 0:

from typing import List

def running_sum(L: List[float]) -> None:
"""Modify L so that it contains the running sums of its original items.

>>> L = [4, 0, 2, -5, 0]
>>> running_sum(L)
>>> L
[4, 4, 6, 1, 1]
"""

Chapter 15. Testing and Debugging • 314

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

for i in range(1, len(L)):
L[i] = L[i - 1] + L[i]

When the tests are rerun, all seven tests pass:

.......
--
Ran 7 tests in 0.000s

OK

In the next section, you’ll see some general guidelines for choosing test cases.

Choosing Test Cases

Having a set of tests that pass is good; it shows that your code does what it

should in the situations you’ve thought of. However, for any large project

there will be situations that don’t occur to you. Tests can show the absence

of many bugs, but it can’t show that a program is fully correct.

It’s important to make sure you have good test coverage: that your test cases

cover important situations. In this section, we provide some heuristics that

will help you come up with a fairly thorough set of test cases.

Now that you’ve seen two example sets of tests, we’ll give you an overview of

things to think about while you’re developing tests for other functions. Some

of them overlap and not all will apply in every situation, but they are all worth

thinking about while you are figuring out what to test.

• Think about size. When a test involves a collection such as a list, string,

dictionary, or file, you need to do the following:

– Test the empty collection.

– Test a collection with one item in it.

– Test a general case with several items.

– Test the smallest interesting case, such as sorting a list containing

two values.

• Think about dichotomies. A dichotomy is a contrast between two things.

Examples of dichotomies are empty/full, even/odd, positive/negative,

and alphabetic/nonalphabetic. If a function deals with two or more differ-

ent categories or situations, make sure you test all of them.

• Think about boundaries. If a function behaves differently around a partic-

ular boundary or threshold, test exactly that boundary case.

• Think about order. If a function behaves differently when values appear

in different orders, identify those orders and test each one of them. For

report erratum • discuss

Choosing Test Cases • 315

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

the sorting example mentioned earlier, you’ll want one test case where

the items are in order and one where they are not.

If you carefully plan your test cases according to these ideas and your code

passes the tests, there’s a very good chance that it will work for all other

cases as well. Over time you’ll commit fewer and fewer errors. Whenever you

find an error, figure out why it happened; as you mentally catalog them, you’ll

subsequently become more conscious of them. And that’s really the whole

point of focusing on quality. The more you do it, the less likely it is for prob-

lems to arise.

Hunting Bugs

Bugs are discovered through testing and through program use, although the

latter is what good testing can help avoid. Regardless of how they are discov-

ered, tracking down and eliminating bugs in your programs is part of every

programmer’s life. This section introduces some techniques that can make

debugging more efficient and give you more time to do the things you’d rather

be doing.

Debugging a program is like diagnosing a medical condition. To find the cause,

you start by working backward from the symptoms (or, in a program, its

incorrect behavior), then you come up with a solution and test it to make

sure it actually fixes the problem.

At least, that’s the right way to do it. Many beginners make the mistake of

skipping the diagnosis stage and trying to cure the program by changing

things at random. Renaming a variable or swapping the order in which two

functions are defined might actually fix the program, but millions of such

changes are possible. Trying them one after another in no particular order

can be an inefficient waste of many, many hours.

Here are some rules for tracking down the cause of a problem:

1. Make sure you know what the program is supposed to do. Sometimes this

means doing the calculation by hand to see what the correct answer is.

Other times it means reading the documentation (or the assignment

handout) carefully or writing a test.

2. Repeat the failure. You can debug things only when they go wrong, so find

a test case that makes the program fail reliably. Once you have one, try

to find a simpler one; doing this often provides enough clues to allow you

to fix the underlying problem.

Chapter 15. Testing and Debugging • 316

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

3. Divide and conquer. Once you have a test that makes the program fail,

try to find the first moment where something goes wrong. Examine the

inputs to the function or block of code where the problem first becomes

visible. If those inputs are not what you expected, look at how they were

created, and so on.

4. Change one thing at a time, for a reason. Replacing random bits of code

on the off-chance they might be responsible for your problem is unlikely

to do much good. (After all, you got it wrong the first time…) Each time

you make a change, rerun your test cases immediately.

5. Keep records. After working on a problem for an hour, you won’t be able

to remember the results of the tests you’ve run. Like any other scientist,

you should keep records. Some programmers use a lab notebook; others

keep a file open in an editor. Whatever works for you, make sure that

when the time comes to seek help, you can tell your colleagues exactly

what you’ve learned.

Bugs We’ve Put in Your Ear

In this chapter, you learned the following:

• Finding and fixing bugs early reduces overall effort.

• When choosing test cases, you should consider size, dichotomies,

boundary cases, and order.

• To test your functions, you can write subclasses of unittest’s TestCase class.

The advantages of using unittest include keeping the testing code separate

from the code being tested, being able to keep the tests independent of

one another, and being able to document each individual test case.

• To debug software, you have to know what it is supposed to do and be

able to repeat the failure. Simplifying the conditions that make the program

fail is an effective way to narrow down the set of possible causes.

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. Your lab partner claims to have written a function that replaces each

value in a list with twice the preceding value (and the first value with 0).

For example, if the list [1, 2, 3] is passed as an argument, the function is

supposed to turn it into [0, 2, 4]. Here’s the code:

report erratum • discuss

Bugs We’ve Put in Your Ear • 317

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

from typing import List

def double_preceding(values: List[float]) -> None:
"""Replace each item in the list with twice the value of the
preceding item, and replace the first item with 0.

>>> L = [1, 2, 3]
>>> double_preceding(L)
>>> L
[0, 2, 4]
"""

if values != []:
temp = values[0]
values[0] = 0
for i in range(1, len(values)):

values[i] = 2 * temp
temp = values[i]

Although the example test passes, this code contains a bug. Write a set

of unittest tests to identify the bug. Explain what the bug in this function

is, and fix it.

2. Your job is to come up with tests for a function called line_intersect, which

takes two lines as input and returns their intersection. More specifically:

• Lines are represented as pairs of distinct points, such as

[[0.0,0.0], [1.0, 3.0]] .

• If the lines don’t intersect, line_intersect returns None.

• If the lines intersect in one point, line_intersect returns the point of

intersection, such as [0.5, 0.75].

• If the lines are coincident (that is, lie on top of each other), the function

returns its first argument (that is, a line).

What are the six most informative test cases you can think of? (That is,

if you were allowed to run only six tests, which would tell you the most

about whether the function was implemented correctly?)

Write out the inputs and expected outputs of these six tests, and explain

why you would choose them.

3. Using unittest, write four tests for a function called all_prefixes in a module

called TestPrefixes.py that takes a string as its input and returns the set of

all nonempty substrings that start with the first character. For example,

given the string "lead" as input, all_prefixes would return the set {"l", "le", "lea",
"lead"}.

Chapter 15. Testing and Debugging • 318

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

4. Using unittest, write the five most informative tests you can think of for a

function called is_sorted in a module called TestSorting.py that takes a list of

integers as input and returns True if they are sorted in nondecreasing

order (as opposed to strictly increasing order, because of the possibility

of duplicate values), and False otherwise.

5. The following function is broken. The docstring describes what it’s sup-

posed to do:

def find_min_max(values: list):
"""Print the minimum and maximum value from values.
"""

min = None
max = None
for value in values:

if value > max:
max = value

if value < min:
min = value

print('The minimum value is {0}'.format(min))
print('The maximum value is {0}'.format(max))

What does it actually do? What line(s) do you need to change to fix it?

6. Suppose you have a data set of survey results where respondents can

optionally give their age. Missing values are read in as None. Here is a

function that computes the average age from that list:

from typing import List

def average(values: List[float]) -> float:
"""Return the average of the numbers in values. Some items in values are
None, and they are not counted toward the average.

>>> average([20, 30])
25.0
>>> average([None, 20, 30])
25.0
"""

count = 0 # The number of values seen so far.
total = 0 # The sum of the values seen so far.
for value in values:

if value is not None:
total += value

count += 1

return total / count

report erratum • discuss

Exercises • 319

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Unfortunately it does not work as expected:

>>> import test_average
>>> test_average.average([None, 30, 20])
16.666666666666668

a. Using unittest, write a set of tests for function average in a module called

test_average.py. The tests should cover cases involving lists with and

without missing values.

b. Modify function average so it correctly handles missing values and

passes all of your tests.

Chapter 15. Testing and Debugging • 320

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 16

Creating Graphical User Interfaces

Most of the programs in previous chapters are not interactive. Once launched,

they run to completion without giving us a chance to steer them or provide

new input. The few that do communicate with us do so through the kind of

text-only command-line user interface, or CLUI, that would have already been

considered old-fashioned in the early 1980s.

As you already know, most modern programs interact with users via a

graphical user interface, or GUI, which is made up of windows, menus, buttons,

and so on. In this chapter, we will show you how to build simple GUIs using

a Python module called tkinter. Along the way, we will introduce a different

way of structuring programs called event-driven programming. A traditionally

structured program usually has control over what happens when, but an

event-driven program must be able to respond to input at unpredictable

moments.

tkinter is one of several toolkits you can use to build GUIs in Python. It is the

only one that comes with a standard Python installation.

Using Module tkinter

Every tkinter program consists of these things:

• Windows, buttons, scrollbars, text areas, and other widgets—anything

that you can see on the computer screen. (Generally, the term widget

means any useful object; in programming, it is short for “window gadget.”)

• Modules, functions, and classes that manage the data that is being shown

in the GUI—you are familiar with these; they are the tools you’ve seen so

far in this book.

• An event manager that listens for events such as mouse clicks and

keystrokes and reacts to these events by calling event handler functions.

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Here is a small but complete tkinter program:

import tkinter
window = tkinter.Tk()
window.mainloop()

Tk is a class that represents the root window of a tkinter GUI. This root window’s

mainloop method handles all the events for the GUI, so it’s important to create

only one instance of Tk.

Here is the resulting GUI:

The root window is initially empty; you’ll see in the next section how to add

widgets to it. If the window on the screen is closed, the window object is

destroyed (though we can create a new root window by calling Tk() again). All

of the applications we will create have only one root window, but additional

windows can be created using the TopLevel widget.

The call on method mainloop doesn’t exit until the window is destroyed (which

happens when you click the appropriate widget in the title bar of the window),

so any code following that call won’t be executed until later:

import tkinter
window = tkinter.Tk()
window.mainloop()
print('Anybody home?')

When you try this code, you’ll see that the call on function print doesn’t get

executed until after the window is destroyed. That means that if you want to

make changes to the GUI after you have called mainloop, you need to do it in

an event-handling function.

In Table 28, tkinter Widgets, on page 323, there’s a list of some of the available

tkinter widgets.

Chapter 16. Creating Graphical User Interfaces • 322

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

DescriptionWidget

A clickable buttonButton
An area used for drawing or displaying imagesCanvas
A clickable box that can be selected or unselectedCheckbutton
A single-line text field that the user can type inEntry
A container for widgetsFrame
A single-line display for textLabel
A drop-down list that the user can select fromListbox
A drop-down menuMenu
A multiline display for textMessage
An item in a drop-down menuMenubutton
A multiline text field that the user can type inText
An additional windowTopLevel

Table 28—tkinter Widgets

Building a Basic GUI

Labels are widgets that are used to display short pieces of text. Here we create

a Label that belongs to the root window—its parent widget—and we specify

the text to be displayed by assigning it to the Label’s text parameter.

import tkinter

window = tkinter.Tk()
label = tkinter.Label(window, text='This is our label.')
label.pack()

window.mainloop()

Here is the resulting GUI:

Method call label.pack() is crucial. Each widget has a method called pack that

places it in its parent widget and then tells the parent to resize itself as nec-

essary. If we forget to call this method, the child widget (in this case, Label)
won’t be displayed or will be displayed improperly.

Labels display text. Often, applications will want to update a label’s text as

the program runs to show things like the name of a file or the time of day.

One way to do this is simply to assign a new value to the widget’s text using

method config:

report erratum • discuss

Building a Basic GUI • 323

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

import tkinter

window = tkinter.Tk()
label = tkinter.Label(window, text='First label.')
label.pack()
label.config(text='Second label.')

Run the previous code one line at a time from the Python shell to see how

the label changes. (This code will not display the window at all if you run it

as a program because we haven’t called method mainloop.)

Using Mutable Variables with Widgets

Suppose you want to display a string, such as the current time or a score in

a game, in several places in a GUI—the application’s status bar, some dialog

boxes, and so on. Calling method config on each widget every time there is new

information isn’t hard, but as the application grows, so too do the odds that

we’ll forget to update at least one of the widgets that’s displaying the string.

What we really want is a string that “knows” which widgets care about its

value and can alert them itself when that value changes.

Python’s strings, integers, floating-point numbers, and Booleans are

immutable, so module tkinter provides one class for each of the immutable

types: StringVar for str, IntVar for int, BooleanVar for bool, and DoubleVar for float. (The

use of the word double is historical; it is short for “double-precision floating-

point number.”) These mutable types can be used instead of the immutable

ones; here we show how to use a StringVar instead of a str:

import tkinter

window = tkinter.Tk()
data = tkinter.StringVar()
data.set('Data to display')
label = tkinter.Label(window, textvariable=data)
label.pack()

window.mainloop()

Notice that this time we assign to the textvariable parameter of the label rather

than the text parameter.

The values in tkinter containers are set and retrieved using the methods set
and get. Whenever a set method is called, it tells the label, and any other

widgets it has been assigned to, that it’s time to update the GUI.

There is one small trap here for newcomers: because of the way module tkinter
is structured, you cannot create a StringVar or any other mutable variable until

you have created the root Tk window.

Chapter 16. Creating Graphical User Interfaces • 324

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Grouping Widgets with the Frame Type

A tkinter Frame is a container, much like the root window is a container. Frames

are not directly visible on the screen; instead, they are used to organize other

widgets. The following code creates a frame, puts it in the root window, and

then adds three Labels to the frame:

import tkinter

window = tkinter.Tk()
frame = tkinter.Frame(window)
frame.pack()
first = tkinter.Label(frame, text='First label')
first.pack()
second = tkinter.Label(frame, text='Second label')
second.pack()
third = tkinter.Label(frame, text='Third label')
third.pack()

window.mainloop()

Note that we call pack on every widget; if we omit one of these calls, that widget

will not be displayed.

Here is the resulting GUI:

In this particular case, putting the three Labels in a frame looks the same as

when we put the Labels directly into the root window. However, with a more

complicated GUI, we can use multiple frames to format the window’s content

and layout.

Here’s an example with the same three Labels but with two frames instead of

one. The second frame has a visual border around it:

import tkinter

window = tkinter.Tk()
frame = tkinter.Frame(window)
frame.pack()
frame2 = tkinter.Frame(window, borderwidth=4, relief=tkinter.GROOVE)
frame2.pack()
first = tkinter.Label(frame, text='First label')
first.pack()

report erratum • discuss

Building a Basic GUI • 325

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

second = tkinter.Label(frame2, text='Second label')
second.pack()
third = tkinter.Label(frame2, text='Third label')
third.pack()

window.mainloop()

We specify the border width using the borderwidth keyword argument (0 is the

default) and the border style using relief (FLAT is the default). The other border

styles are SUNKEN, RAISED, GROOVE, and RIDGE.

Here is the resulting GUI:

Getting Information from the User with the Entry Type

Two widgets let users enter text. The simplest one is Entry, which allows for a

single line of text. If we associate a StringVar with the Entry, then whenever a

user types anything into that Entry, the StringVar’s value will automatically be

updated to the contents of the Entry.

Here’s an example that associates a single StringVar with both a Label and an

Entry. When the user enters text in the Entry, the StringVar’s contents will change.

This will cause the Label to be updated, and so the Label will display whatever

is currently in the Entry.

import tkinter
window = tkinter.Tk()

frame = tkinter.Frame(window)
frame.pack()
var = tkinter.StringVar()
label = tkinter.Label(frame, textvariable=var)
label.pack()
entry = tkinter.Entry(frame, textvariable=var)
entry.pack()
window.mainloop()

Here is the resulting GUI:

Chapter 16. Creating Graphical User Interfaces • 326

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Models, Views, and Controllers, Oh My!

Using a StringVar to connect a text-entry box and a label is the first step toward

separating models (How do we represent the data?), views (How do we display

the data?), and controllers (How do we modify the data?), which is the key to

building larger GUIs (as well as many other kinds of applications). This MVC

design helps separate the parts of an application, which will make the appli-

cation easier to understand and modify. The main goal of this design is to

keep the representation of the data separate from the parts of the program

that the user interacts with; that way, it is easier to make changes to the GUI

code without affecting the code that manipulates the data.

As its name suggests, a view is something that displays information to the

user, like Label. Many views, like Entry, also accept input, which they display

immediately. The key is that they don’t do anything else: they don’t calculate

average temperatures, move robot arms, or do any other calculations.

Models, on the other hand, store data, like a piece of text or the current

inclination of a telescope. They also don’t do calculations; their job is simply

to keep track of the application’s current state (and, in some cases, to save

that state to a file or database and reload it later).

Controllers are the pieces that convert user input into calls on functions in

the model that manipulate the data. The controller is what decides whether

two gene sequences match well enough to be colored green or whether

someone is allowed to overwrite an old results file. Controllers may update

an application’s models, which in turn can trigger changes to its views.

The following code shows what all of this looks like in practice. Here the

model is kept track of by variable counter, which refers to an IntVar so that the

view will update itself automatically. The controller is function click, which

updates the model whenever a button is clicked. Four objects make up the

view: the root window, a Frame, a Label that shows the current value of counter,
and a button that the user can click to increment the counter’s value:

import tkinter

The controller.
def click():

counter.set(counter.get() + 1)

if __name__ == '__main__':
window = tkinter.Tk()
The model.
counter = tkinter.IntVar()
counter.set(0)

report erratum • discuss

Models, Views, and Controllers, Oh My! • 327

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The views.
frame = tkinter.Frame(window)
frame.pack()

button = tkinter.Button(frame, text='Click', command=click)
button.pack()

label = tkinter.Label(frame, textvariable=counter)
label.pack()

Start the machinery!
window.mainloop()

The first two arguments used to construct the Button should be familiar by

now. The third, command=click, tells it to call function click each time the user

presses the button. This makes use of the fact that in Python a function

is just another kind of object and can be passed as an argument like any-

thing else.

Function click in the previous code does not have any parameters but uses

variable counter, which is defined outside the function. Variables like this are

called global variables, and their use should be avoided, since they make

programs hard to understand. It would be better to pass any variables the

function needs into it as parameters. We can’t do this using the tools we have

seen so far, because the functions that our buttons can call must not have

any parameters. We will show you one way to avoid using global variables in

the next section.

Using Lambda

The simple counter GUI shown earlier does what it’s supposed to, but there

is room for improvement. For example, suppose we want to be able to lower

the counter’s value as well as raise it.

Using only the tools we have seen so far, we could add another button and

another controller function like this:

import tkinter

window = tkinter.Tk()

The model.
counter = tkinter.IntVar()
counter.set(0)

Two controllers.
def click_up():

counter.set(counter.get() + 1)
def click_down():

counter.set(counter.get() - 1)

Chapter 16. Creating Graphical User Interfaces • 328

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The views.
frame = tkinter.Frame(window)
frame.pack()
button = tkinter.Button(frame, text='Up', command=click_up)
button.pack()
button = tkinter.Button(frame, text='Down', command=click_down)
button.pack()
label = tkinter.Label(frame, textvariable=counter)
label.pack()

window.mainloop()

This seems a little clumsy, though. Functions click_up and click_down are doing

almost the same thing; surely we ought to be able to combine them into one.

While we’re at it, we’ll pass counter into the function explicitly rather than using

it as a global variable:

The model.
counter = tkinter.IntVar()
counter.set(0)

One controller with parameters.
def click(variable, value):

variable.set(variable.get() + value)

The problem with this is figuring out what to pass into the buttons, since we

can’t provide any arguments for the functions assigned to the buttons’ command
keyword arguments when creating those buttons. tkinter cannot read our

minds—it can’t magically know how many arguments our functions require

or what values to pass in for them. For that reason, it requires that the con-

troller functions triggered by buttons and other widgets take zero arguments

so they can all be called the same way. It is our job to figure out how to take

the two-argument function we want to use and turn it into one that needs

no arguments at all.

We could do this by writing a couple of wrapper functions:

def click_up():
click(counter, 1)

def click_down():
click(counter, -1)

But this gets us back to two nearly identical functions that rely on global variables.

A better way is to use a lambda function, which allows us to create a one-line

function anywhere we want without giving it a name. Here’s a very simple example:

>>> lambda: 3
<function <lambda> at 0x00A89B30>
>>> (lambda: 3)()
3

report erratum • discuss

Models, Views, and Controllers, Oh My! • 329

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The expression lambda: 3 on the first line creates a nameless function that

always returns the number 3. The second expression creates this function

and immediately calls it, which has the same effect as this:

>>> def f():
... return 3
...
>>> f()
3

However, the lambda form does not create a new variable or change an existing

one. Finally, lambda functions can take arguments, just like other functions:

>>> (lambda x: 2 * x)(3)
6

Why Lambda?

The name lambda function comes from lambda calculus, a mathematical system for

investigating function definition and application that was developed in the 1930s by

Alonzo Church and Stephen Kleene.

So how does this help us with GUIs? It lets us write one controller function

to handle different buttons in a general way and then wrap up calls to that

function when and as needed. Here’s the two-button GUI once again using

lambda functions:

import tkinter

window = tkinter.Tk()

The model.
counter = tkinter.IntVar()
counter.set(0)

General controller.
def click(var, value):

var.set(var.get() + value)

The views.
frame = tkinter.Frame(window)
frame.pack()
button = tkinter.Button(frame, text='Up', command=lambda: click(counter, 1))
button.pack()

button = tkinter.Button(frame, text='Down', command=lambda: click(counter, -1))
button.pack()

label = tkinter.Label(frame, textvariable=counter)
label.pack()

window.mainloop()

Chapter 16. Creating Graphical User Interfaces • 330

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

This code creates a zero-argument lambda function to pass into each button

just where it’s needed. Those lambda functions then pass the right values

into click. This is cleaner than the preceding code because the function defini-

tions are enclosed in the call that uses them—there is no need to clutter the

GUI with little functions that are used only in one place.

Note, however, that it is a very bad idea to repeat the same function several

times in different places—if you do that, the odds are very high that you will

one day want to change them all but will miss one or two. If you find yourself

wanting to do this, reorganize the code so that the function is defined only

once.

Customizing the Visual Style

Every windowing system has its own look and feel—square or rounded corners,

particular colors, and so on. In this section, we’ll see how to change the

appearance of GUI widgets to make applications look more distinctive.

A note of caution before we begin: the default styles of some windowing

systems have been chosen by experts trained in graphic design and human-

computer interaction. The odds are that any radical changes on your part

will make things worse, not better. In particular, be careful about color

(Roughly 8% percent of the male population with Northern European ancestry

have red-green color blindness1) and font size (many people, particularly the

elderly, cannot read small text).

Changing Fonts

Let’s start by changing the size, weight, slant, and family of the font used to

display text. To specify the size, we provide the height as an integer in points.

We can set the weight to either bold or normal and the slant to either italic

(slanted) or roman (not slanted).

The font families we can use depend on what system the program is running

on. Common families include Times, Courier, and Verdana, but dozens of

others are usually available. One note of caution, though: if you choose an

unusual font, people running your program on other computers might not

have it, so your GUI might appear different than you’d like for them. Every

operating system has a default font that will be used if the requested font

isn’t installed.

1. See https://nei.nih.gov/health/color_blindness/facts_about.

report erratum • discuss

Customizing the Visual Style • 331

https://nei.nih.gov/health/color_blindness/facts_about
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The following sets the font of a button to be 14 point, bold, italic, and Courier.

import tkinter

window = tkinter.Tk()
button = tkinter.Button(window, text='Hello',

font=('Courier', 14, 'bold italic'))
button.pack()
window.mainloop()

Here is the resulting GUI:

Using this technique, you can set the font of any widget that displays text.

Changing Colors

Almost all background and foreground colors can be set using the bg and fg
keyword arguments, respectively. As the following code shows, we can set

either of these to a standard color by specifying the color’s name, such as

white, black, red, green, blue, cyan, yellow, or magenta:

import tkinter

window = tkinter.Tk()
button = tkinter.Label(window, text='Hello', bg='green', fg='white')
button.pack()
window.mainloop()

Here is the resulting GUI:

As you can see, white text on a bright green background is not particularly

readable.

We can choose more colors by specifying them using the RGB color model.

RGB is an abbreviation for “red, green, blue”; it turns out that every color

can be created using different amounts of these three colors. The amount of

each color is usually specified by a number between 0 and 255 (inclusive).

These numbers are conventionally written in hexadecimal (base 16) notation;

the best way to understand them is to play with them. Base 10 uses the digits

0 through 9; base 16 uses those ten digits plus another six: A, B, C, D, E, and

F. In base 16, the number 255 is written FF.

Chapter 16. Creating Graphical User Interfaces • 332

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The following color picker does this by updating a piece of text to show the

color specified by the red, green, and blue values entered in the text boxes;

choose any two base-16 digits for the RGB values and click the Update button:

import tkinter
def change(widget, colors):

""" Update the foreground color of a widget to show the RGB color value
stored in a dictionary with keys 'red', 'green', and 'blue'. Does
not check the color value.
"""

new_val = '#'
for name in ('red', 'green', 'blue'):

new_val += colors[name].get()
widget['bg'] = new_val

Create the application.
window = tkinter.Tk()
frame = tkinter.Frame(window)
frame.pack()

Set up text entry widgets for red, green, and blue, storing the
associated variables in a dictionary for later use.
colors = {}
for (name, col) in (('red', '#FF0000'),

('green', '#00FF00'),
('blue', '#0000FF')):

colors[name] = tkinter.StringVar()
colors[name].set('00')
entry = tkinter.Entry(frame, textvariable=colors[name], bg=col,

fg='white')
entry.pack()

Display the current color.
current = tkinter.Label(frame, text=' ', bg='#FFFFFF')
current.pack()

Give the user a way to trigger a color update.
update = tkinter.Button(frame, text='Update',

command=lambda: change(current, colors))
update.pack()
tkinter.mainloop()

This is the most complicated GUI we have seen so far, but it can be understood

by breaking it down into a model, some views, and a controller. The model is

three StringVars that store the hexadecimal strings representing the current

red, green, and blue components of the color to display. These three variables

are kept in a dictionary indexed by name for easy access. The controller is

function change, which concatenates the strings to create an RGB color and

applies that color to the background of a widget. The views are the text-entry

report erratum • discuss

Customizing the Visual Style • 333

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

boxes for the color components, the label that displays the current color, and

the button that tells the GUI to update itself.

This program works, but neither the GUI nor the code is very attractive. It’s

annoying to have to click the update button, and if a user ever types anything

that isn’t a two-digit hexadecimal value into one of the text boxes, it results

in an error. The exercises will ask you to redesign both the appearance and

the structure of this program.

Laying Out the Widgets

One of the things that makes the color picker GUI ugly is the fact that

everything is arranged top to bottom. tkinter uses this layout by default, but

we can usually come up with something better.

To see how, let’s revisit the example from Getting Information from the User

with the Entry Type, on page 326, placing the label and button horizontally.

We tell tkinter to do this by providing a side argument to method pack:

import tkinter

window = tkinter.Tk()
frame = tkinter.Frame(window)
frame.pack()
label = tkinter.Label(frame, text='Name')
label.pack(side='left')
entry = tkinter.Entry(frame)
entry.pack(side='left')

window.mainloop()

Here is the resulting GUI:

Setting side to "left" tells tkinter that the leftmost part of the label is to be placed

next to the left edge of the frame, and then the leftmost part of the entry field

is placed next to the right edge of the label—in short, that widgets are to be

packed using their left edges. We could equally well pack to the right, top, or

bottom edges, or we could mix packings (though that can quickly become

confusing).

For even more control of our window layout, we can use a different layout

manager called grid. As its name implies, it treats windows and frames as

grids of rows and columns. To add the widget to the window, we call grid

Chapter 16. Creating Graphical User Interfaces • 334

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

instead of pack. Do not call both on the same widget; they conflict with each

other. The grid call can take several parameters, as shown in Table 29.

DescriptionParameter

The number of the row to insert the widget into—row numbers

begin at 0.

row

The number of the column to insert the widget into—column

numbers begin at 0.

column

The number of rows the widget occupies—the default

number is 1.

rowspan

The number of columns the widget occupies—the default

number is 1.

columnspan

Table 29—grid() Parameters

In the following code, we place the label in the upper left (row 0, column 0)

and the entry field in the lower right (row 1, column 1).

import tkinter

window = tkinter.Tk()
frame = tkinter.Frame(window)
frame.pack()
label = tkinter.Label(frame, text='Name:')
label.grid(row=0, column=0)
entry = tkinter.Entry(frame)
entry.grid(row=1, column=1)

window.mainloop()

Here is the resulting GUI; as you can see, this leaves the bottom-left and

upper-right corners empty:

Introducing a Few More Widgets

To end this chapter, we will look at a few more commonly used widgets.

Using Text

The Entry widget that we have been using since the start of this chapter allows

for only a single line of text. If we want multiple lines of text, we use the Text
widget instead, as shown here:

report erratum • discuss

Introducing a Few More Widgets • 335

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

import tkinter

def cross(text):
text.insert(tkinter.INSERT, 'X')

window = tkinter.Tk()
frame = tkinter.Frame(window)
frame.pack()

text = tkinter.Text(frame, height=3, width=10)
text.pack()

button = tkinter.Button(frame, text='Add', command=lambda: cross(text))
button.pack()

window.mainloop()

Here is the resulting GUI:

Text provides a much richer set of methods than the other widgets we have seen

so far. We can embed images in the text area, put in tags, select particular lines,

and so on. The exercises will give you a chance to explore its capabilities.

Using Checkbuttons

Checkbuttons, often called checkboxes, have two states: on and off. When a

user clicks a checkbutton, the state changes. We use a tkinter mutable variable

to keep track of the user’s selection. Typically, an IntVar variable is used, and

the values 1 and 0 indicate on and off, respectively. In the following code, we

use three checkbuttons to create a simpler color picker, and we use method

config to change the configuration of a widget after it has been created:

import tkinter

window = tkinter.Tk()
frame = tkinter.Frame(window)
frame.pack()
red = tkinter.IntVar()
green = tkinter.IntVar()
blue = tkinter.IntVar()

for (name, var) in (('R', red), ('G', green), ('B', blue)):
check = tkinter.Checkbutton(frame, text=name, variable=var)
check.pack(side='left')

Chapter 16. Creating Graphical User Interfaces • 336

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

def recolor(widget, r, g, b):
color = '#'
for var in (r, g, b):

color += 'FF' if var.get() else '00'
widget.config(bg=color)

label = tkinter.Label(frame, text='[]')
button = tkinter.Button(frame, text='update',

command=lambda: recolor(label, red, green, blue))
button.pack(side='left')
label.pack(side='left')
window.mainloop()

Here is the resulting GUI:

Using Menu

The last widget we will look at is Menu. The following code uses this to create

a simple text editor:

import tkinter
import tkinter.filedialog as dialog

def save(root, text):
data = text.get('0.0', tkinter.END)
filename = dialog.asksaveasfilename(

parent=root,
filetypes=[('Text', '*.txt')],
title='Save as...')

writer = open(filename, 'w')
writer.write(data)
writer.close()

def quit(root):
root.destroy()

window = tkinter.Tk()
text = tkinter.Text(window)
text.pack()

menubar = tkinter.Menu(window)
filemenu = tkinter.Menu(menubar)
filemenu.add_command(label='Save', command=lambda : save(window, text))
filemenu.add_command(label='Quit', command=lambda : quit(window))

menubar.add_cascade(label = 'File', menu=filemenu)
window.config(menu=menubar)

window.mainloop()

report erratum • discuss

Introducing a Few More Widgets • 337

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The program begins by defining two functions: save, which saves the contents of

a text widget, and quit, which closes the application. Function save uses tkFileDialog
to create a standard “Save as...” dialog box, which will prompt the user for the

name of a text file.

After creating and packing the Text widget, the program creates a menu bar, which

is the horizontal bar into which we can put one or more menus. It then creates

a File menu and adds two menu items to it called Save and Quit. We then add

the File menu to the menu bar and run mainloop.

Here is the resulting GUI:

Object-Oriented GUIs

The GUIs we have built so far have not been particularly well structured. Most

of the code to construct them has not been modularized in functions, and they

have relied on global variables. We can get away with this for very small examples,

but if we try to build larger applications this way, they will be difficult to under-

stand and debug.

For this reason, almost all real GUIs are built using classes and objects that tie

models, views, and controllers together in one tidy package. In the counter shown

next, for example, the application’s model is a member variable of class Counter,
accessed using self.state, and its controllers are the methods up_click and quit_click.

import tkinter

class Counter:
"""A simple counter GUI using object-oriented programming."""
def __init__(self, parent):

"""Create the GUI."""

Framework.
self.parent = parent
self.frame = tkinter.Frame(parent)
self.frame.pack()

Chapter 16. Creating Graphical User Interfaces • 338

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Model.
self.state = tkinter.IntVar()
self.state.set(1)

Label displaying current state.
self.label = tkinter.Label(self.frame, textvariable=self.state)
self.label.pack()

Buttons to control application.
self.up = tkinter.Button(self.frame, text='up', command=self.up_click)
self.up.pack(side='left')

self.right = tkinter.Button(self.frame, text='quit',
command=self.quit_click)

self.right.pack(side='left')

def up_click(self):
"""Handle click on 'up' button."""

self.state.set(self.state.get() + 1)

def quit_click(self):
"""Handle click on 'quit' button."""

self.parent.destroy()
if __name__ == '__main__':

window = tkinter.Tk()
myapp = Counter(window)
window.mainloop()

Keeping the Concepts from Being a GUI Mess

In this chapter, you learned the following:

• Most modern programs provide a graphical user interface (GUI) for dis-

playing information and interacting with users. GUIs are built out of

widgets, such as buttons, sliders, and text panels; all modern programming

languages provide at least one GUI toolkit.

• Unlike command-line programs, GUI applications are usually event-driven.

In other words, they react to events such as keystrokes and mouse clicks

when and as they occur.

• Experience shows that GUIs should be built using the model-view-con-

troller pattern. The model is the data being manipulated; the view displays

the current state of the data and gathers input from the user, while the

controller decides what to do next.

• Lambda expressions create functions that have no names. These are often

used to define the actions that widgets should take when users provide

input, without requiring global variables.

report erratum • discuss

Keeping the Concepts from Being a GUI Mess • 339

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

• Designing usable GUIs is as challenging a craft as designing software.

Being good at the latter doesn’t guarantee that you can do the former,

but dozens of good books can help you get started.

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. Write a GUI application with a button labeled “Goodbye.” When the button

is clicked, the window closes.

2. Write a GUI application with a single button. Initially the button is labeled

0, but each time it is clicked, the value on the button increases by 1.

3. What is a more readable way to write the following?

x = lambda: y

4. A DNA sequence is a string made up of As, Ts, Cs, and Gs. Write a GUI

application in which a DNA sequence is entered, and when the Count

button is clicked, the number of As, Ts, Cs, and Gs are counted and dis-

played in the window (see the following image).

5. In Defining Our Own Functions, on page 35, we wrote a function to convert

degrees Fahrenheit to degrees Celsius. Write a GUI application that looks

like the following image.

Chapter 16. Creating Graphical User Interfaces • 340

report erratum • discuss

http://pragprog.com/titles/gwpy3/practical-programming
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

When a value is entered in the text field and the Convert button is clicked,

the value should be converted from Fahrenheit to Celsius and displayed

in the window, as shown in the following image.

6. Rewrite the text editor code from Using Menu, on page 337, as an object-

oriented GUI.

report erratum • discuss

Exercises • 341

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

CHAPTER 17

Databases

In earlier chapters, we used files to store data. This is fine for small problems,

but as our data sets become larger and more complex, we need something

that will let us search for data in many different ways, control who can view

and modify the data, and ensure that the data is correctly formatted. In short,

we need a database.

Many different kinds of databases exist. Some are like a dictionary that

automatically saves itself on disk, whereas others store backup copies of the

objects in a program. The most popular by far, however, are relational

databases, which are at the heart of most large commercial and scientific

software systems. In this chapter, you will learn about the key concepts behind

relational databases and how to perform a few common operations.

Overview

A relational database is a collection of tables, each of which has a fixed

number of columns and a variable number of rows. Each column in a table

has a name and contains values of the same data type, such as integer or

string. Each row, or record, contains values that are related to each other,

such as a particular patient’s name, date of birth, and blood type.

Patients

name blood_typebirthday

Alice

Carol

Bob

Liz

Wally

1978/04/02

1977/12/15

1963/09/29

1954/03/10

1949/07/05

A

A

AB

B

O

column

row

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Superficially, each table looks like a spreadsheet or a file with one record per

line (see The Readline Technique, on page 181), but behind the scenes, the

database does a lot of work to keep track of which values are where and how

different tables relate to one another.

Many different brands of databases are available to choose from, including

commercial systems like Oracle, IBM’s DB2, and Microsoft Access and open

source databases like MySQL and PostgreSQL. Our examples use one called

SQLite. It isn’t fast enough to handle the heavy loads that sites like Ama-

zon.com experience, but it is free, it is simple to use, and as of Python 3.3.0,

the standard library includes a module called sqlite3 for working with it.

A database is usually stored in a file or in a collection of files. These files

aren’t formatted as plain text—if you open them in an editor, they will look

like garbage, and any changes you make will probably corrupt the data and

make the database unusable. Instead you must interact with the database

in one of two ways:

• By typing commands into a database GUI, just as you type commands into

a Python interpreter. This is good for simple tasks but not for writing

applications of your own.

• By writing programs in Python (or some other language). These programs

import a library that knows how to work with the kind of database you

are using and use that library to create tables, insert records, and fetch

the data you want. Your code can then format the results in a web page,

calculate statistics, or do whatever else you like.

In the examples in this chapter, our programs all start with this line:

>>> import sqlite3

To put data into a database or to get information out, we’ll write commands

in a special-purpose language called SQL, which stands for Structured Query

Language and is pronounced either as the three letters “S-Q-L” or as the word

“sequel.”

Creating and Populating

As a running example, we will use the predictions for regional populations in

the year 2300, which is taken from http://www.worldmapper.org. The first table that

we’ll work with, Table 30, Estimated World Population in 2300, on page 345,

has one column that contains the names of regions and another that contains

the populations of regions, so each row of the table represents a region and

its population.

Chapter 17. Databases • 344

report erratum • discuss

http://www.worldmapper.org
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Population (in thousands)Region

330,993Central Africa

743,112Southeastern Africa

1,037,463Northern Africa

2,051,941Southern Asia

785,468Asia Pacific

687,630Middle East

1,362,955Eastern Asia

593,121South America

223,427Eastern Europe

661,157North America

387,933Western Europe

100,562Japan

Table 30—Estimated World Population in 2300

If the countries were sized by their estimated populations, they would look

like this:

As promised earlier, we start by telling Python that we want to use sqlite3:

>>> import sqlite3

Next we must make a connection to our database by calling the database

module’s connect method. This method takes one string as a parameter, which

identifies the database to connect to. Because SQLite stores each entire

database in a single file on disk, this is just the path to the file. Since the

database population.db doesn’t exist, it will be created:

>>> con = sqlite3.connect('population.db')

report erratum • discuss

Creating and Populating • 345

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Once we have a connection, we need to get a cursor. Like the cursor in an

editor, this keeps track of where we are in the database so that if several

programs are accessing the database at the same time, the database can keep

track of who is trying to do what:

>>> cur = con.cursor()

We can now actually start working with the database. The first step is to

create a database table to store the population data. To do this, we have to

describe the operation we want using SQL. The general form of a SQL state-

ment for table creation is as follows:

CREATE TABLE «TableName»(«ColumnName» «Type», ...)

The types of the data in each of the table’s columns are chosen from the types

the database supports:

UsePython EquivalentType

Means “know nothing about it”NoneTypeNULL
IntegersintINTEGER
8-byte floating-point numbersfloatREAL
Strings of charactersstrTEXT
Binary databytesBLOB

Table 31—SQLite Data Types

To create a two-column table named PopByRegion to store region names as

strings in the Region column and projected populations as integers in the Pop-
ulation column, we use this SQL statement:

CREATE TABLE PopByRegion(Region TEXT, Population INTEGER)

Now, we put that SQL statement in a string and pass it as an argument to a

Python method that will execute the SQL command:

>>> cur.execute('CREATE TABLE PopByRegion(Region TEXT, Population INTEGER)')
<sqlite3.Cursor object at 0x102e3e490>

When method execute is called, it returns the cursor object that it was called

on. Since cur refers to that same cursor object, we don’t need to do anything

with the value returned by execute.

The most commonly used data types in SQLite databases are listed in Table

31 along with the corresponding Python data types. The BLOB type needs more

explanation. The term BLOB stands for Binary Large Object, which to a database

means a image, an MP3, or any other lump of bytes that isn’t of a more spe-

cific type. The Python equivalent is a type we haven’t seen before called bytes,

Chapter 17. Databases • 346

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

which also stores a sequence of bytes that have no particular predefined

meaning. We won’t use BLOBs in our examples, but the exercises will give

you a chance to experiment with them.

After we create a table, our next task is to insert data into it. We do this one

record at a time using the INSERT command, whose general form is as follows:

INSERT INTO «TableName» VALUES(«Value», ...)

As with the arguments to a function call, the values are matched left to right against

the columns. For example, we insert data into the PopByRegion table like this:

>>> cur.execute('INSERT INTO PopByRegion VALUES("Central Africa", 330993)')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.execute('INSERT INTO PopByRegion VALUES("Southeastern Africa", '
... '743112)')
<sqlite3.Cursor object at 0x102e3e490>
...
>>> cur.execute('INSERT INTO PopByRegion VALUES("Japan", 100562)')
<sqlite3.Cursor object at 0x102e3e490>

Notice that the number and type of values in the INSERT statements matches

the number and type of columns in the database table. If we try to insert a

value of a different type than the one declared for the column, the library will

try to convert it, just as it converts the integer 5 to a floating-point number

when we do 1.2 + 5. For example, if we insert the integer 32 into a TEXT column,

it will automatically be converted to "32"; similarly, if we insert a string into

an INTEGER column, it is parsed to see whether it represents a number. If so,

the number is inserted.

If the number of values being inserted doesn’t match the number of columns

in the table, the database reports an error and the data is not inserted. Sur-

prisingly, though, if we try to insert a value that cannot be converted to the

correct type, such as the string “string” into an INTEGER field, SQLite will

actually do it (though other databases will not).

Another format for the INSERT SQL command uses placeholders for the values

to be inserted. When using this format, method execute has two arguments:

the first is the SQL command with question marks as placeholders for the

values to be inserted, and the second is a tuple. When the command is exe-

cuted, the items from the tuple are substituted for the placeholders from left

to right. For example, the execute method call to insert a row with "Japan" and

100562 can be rewritten like this:

>>> cur.execute('INSERT INTO PopByRegion VALUES (?, ?)', ("Japan", 100562))

report erratum • discuss

Creating and Populating • 347

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

In this example, "Japan" is used in place of the first question mark, and 100562
in place of the second. This placeholder notation can come in handy when

using a loop to insert data from a list or a file into a database, as shown in

Using Joins to Combine Tables, on page 353.

Saving Changes

After we’ve inserted data into the database or made any other changes, we

must commit those changes using the connection’s commit method:

>>> con.commit()

Committing to a database is like saving the changes made to a file in a text

editor. Until we do it, our changes are not actually stored and are not visible

to anyone else who is using the database at the same time. Requiring programs

to commit is a form of insurance. If a program crashes partway through a

long sequence of database operations and commit is never called, then the

database will appear as it did before any of those operations were executed.

Closing the Connection

Finally, when we’ve finished working with a database, we need to close our con-

nection it to using the connection’s close method:

>>> con.close()

Closing a database connection is similar to closing a file. But beware—when you

close your database connection, any uncommitted changes will be lost! Make

sure that you commit your changes before closing the connection.

Retrieving Data

Now that our database has been created and populated, we can run queries to search

for data that meets specified criteria. The general form of a query is as follows:

SELECT «ColumnName» , ... FROM «TableName»
The TableName is the name of the table to get the data from and the column names

specify which columns to get values from. For example, this query retrieves all

the data in the table PopByRegion:

>>> cur.execute('SELECT Region, Population FROM PopByRegion')

Once the database has executed this query for us, we can access the results one

record at a time by calling the cursor’s fetchone method, just as we can read one

line at a time from a file using readline:

>>> cur.fetchone()
('Central Africa', 330993)

Chapter 17. Databases • 348

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The fetchone method returns each record as a tuple (see Storing Data Using

Tuples, on page 209) whose elements are in the order specified in the query.

If there are no more records, fetchone returns None.

Just as files have a readlines method to get all the lines in a file at once,

database cursors have a fetchall method that returns all the data produced by

a query that has not yet been fetched as a list of tuples:

>>> cur.fetchall()
[('Southeastern Africa', 743112), ('Northern Africa', 1037463), ('Southern
Asia', 2051941), ('Asia Pacific', 785468), ('Middle East', 687630),
('Eastern Asia', 1362955), ('South America', 593121), ('Eastern Europe',
223427), ('North America', 661157), ('Western Europe', 387933), ('Japan',
100562)]

Once all of the data produced by the query has been fetched, any subsequent

calls on fetchone and fetchall return None and the empty list, respectively:

>>> cur.fetchone()
>>> cur.fetchall()
[]

Like a dictionary or a set (Chapter 11, Storing Data Using Other Collection

Types, on page 203), a database stores records in whatever order it thinks is

most efficient. To put the data in a particular order, we could sort the list

returned by fetchall. However, it is more efficient to get the database to do the

sorting for us by adding an ORDER BY clause to the query like this:

>>> cur.execute('SELECT Region, Population FROM PopByRegion ORDER BY Region')
>>> cur.fetchall()
[('Asia Pacific', 785468), ('Central Africa', 330993), ('Eastern Asia',
1362955), ('Eastern Europe', 223427), ('Japan', 100562), ('Middle East',
687630), ('North America', 661157), ('Northern Africa', 1037463), ('South
America', 593121), ('Southeastern Africa', 743112), ('Southern Asia',
2051941), ('Western Europe', 387933)]

By changing the column name after the phrase ORDERBY, we can change the way

the database sorts. As the following code demonstrates, we can also specify

whether we want values sorted in ascending (ASC) or descending (DESC) order:

>>> cur.execute('''SELECT Region, Population FROM PopByRegion
ORDER BY Population DESC''')

<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('Southern Asia', 2051941), ('Eastern Asia', 1362955), ('Northern Africa',
1037463), ('Asia Pacific', 785468), ('Southeastern Africa', 743112),
('Middle East', 687630), ('North America', 661157), ('South America',
593121), ('Western Europe', 387933), ('Central Africa', 330993), ('Eastern
Europe', 223427), ('Japan', 100562)]

report erratum • discuss

Retrieving Data • 349

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

As we’ve seen, we can specify one or more columns by name in a query. We

can also use * to indicate that we want all columns:

>>> cur.execute('SELECT Region FROM PopByRegion')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('Central Africa',), ('Southeastern Africa',), ('Northern Africa',),
('Southern Asia',), ('Asia Pacific',), ('Middle East',), ('Eastern
Asia',), ('South America',), ('Eastern Europe',), ('North America',),
('Western Europe',), ('Japan',)]
>>> cur.execute('SELECT * FROM PopByRegion')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('Central Africa', 330993), ('Southeastern Africa', 743112),
('Northern Africa', 1037463), ('Southern Asia', 2051941), ('Asia
Pacific', 785468), ('Middle East', 687630), ('Eastern Asia', 1362955),
('South America', 593121), ('Eastern Europe', 223427), ('North America',
661157), ('Western Europe', 387933), ('Japan', 100562)]

Query Conditions

Much of the time, we want only some of the data in the database. (Think about

what would happen if you asked Google for all of the web pages it had stored.)

We can select a subset of the data by using the keyword WHERE to specify condi-

tions that the rows we want must satisfy. For example, we can get the regions

with populations greater than one million using the greater-than operator:

>>> cur.execute('SELECT Region FROM PopByRegion WHERE Population > 1000000')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('Northern Africa',), ('Southern Asia',), ('Eastern Asia',)]

These are the relational operators that may be used with WHERE:

DescriptionOperator

Equal to=

Not equal to!=

Greater than>

Less than<

Greater than or equal to>=

Less than or equal to<=

Table 32—SQL Relational Operators

Not surprisingly, they are the same as the ones that Python and other pro-

gramming languages provide. As well as these relational operators, we can

also use the AND, OR, and NOT operators. To get a list of regions with populations

greater than one million that have names that come before the letter L in the

Chapter 17. Databases • 350

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

alphabet, we would use this (we are using a triple-quoted string for the SQL

statement so that it can span multiple lines):

>>> cur.execute('''SELECT Region FROM PopByRegion
WHERE Population > 1000000 AND Region < "L"''')

<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('Eastern Asia',)]

WHERE conditions are always applied row by row—they cannot be used to compare

two or more rows. We will see how to do that in Using Joins to Combine Tables,

on page 353.

Updating and Deleting

Data often changes over time, so we need to be able to change the information

stored in databases. To do that, we can use the UPDATE command, as shown in

the code on page 351.

>>> cur.execute('SELECT * FROM PopByRegion WHERE Region = "Japan"')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchone()
('Japan', 100562)
>>> cur.execute('''UPDATE PopByRegion SET Population = 100600

WHERE Region = "Japan"''')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.execute('SELECT * FROM PopByRegion WHERE Region = "Japan"')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchone()
('Japan', 100600)

We can also delete records from the database:

>>> cur.execute('DELETE FROM PopByRegion WHERE Region < "L"')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.execute('SELECT * FROM PopByRegion')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('Southeastern Africa', 743112), ('Northern Africa', 1037463),
('Southern Asia', 2051941), ('Middle East', 687630), ('South America',
593121), ('North America', 661157), ('Western Europe', 387933)])]

In both cases, all records that meet the WHERE condition are affected. If we don’t

include a WHERE condition, then all rows in the database are updated or removed.

Of course, we can always put records back into the database:

>>> cur.execute('INSERT INTO PopByRegion VALUES ("Japan", 100562)')

To remove an entire table from the database, we can use the DROP command:

DROP TABLE TableName

report erratum • discuss

Updating and Deleting • 351

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

For example, if we no longer want the table PopByRegion, we would execute this:

>>> cur.execute('DROP TABLE PopByRegion')

When a table is dropped, all the data it contained is lost. You should be very,

very sure you want to do this (and even then, it’s probably a good idea to

make a backup copy of the database before deleting any sizable tables).

Using NULL for Missing Data

In the real world, we often don’t have all the data we want. We might be

missing the time at which an experiment was performed or the postal code

of a patient being given a new kind of treatment. Rather than leave what we

do know out of the database, we may choose to insert it and use the value

NULL to represent the missing values. For example, if there is a region whose

population we don’t know, we could insert this into our database:

>>> cur.execute('INSERT INTO PopByRegion VALUES ("Mars", NULL)')

On the other hand, we probably don’t ever want a record in the database that

has a NULL region name. We can prevent this from ever happening, stating

that the column is NOT NULL when the table is created:

>>> cur.execute('CREATE TABLE Test (Region TEXT NOT NULL, '
... 'Population INTEGER)')

Now when we try to insert a NULL region into our new Test table, we get an

error message:

>>> cur.execute('INSERT INTO Test VALUES (NULL, 456789)')
Traceback (most recent call last):

File "<pyshell#45>", line 1, in <module>
cur.execute('INSERT INTO Test VALUES (NULL, 456789)')

sqlite3.IntegrityError: Test.Region may not be NULL

Stating that the value must not be NULL is not always necessary, and imposing

such a constraint may not be reasonable in some cases. Rather than using

NULL, it may sometimes be more appropriate to use the value zero, an empty

string, or false. You should do so in cases where you know something about

the data and use NULL only in cases where you know nothing at all about it.

In fact, some experts recommend not using NULL at all because its behavior

is counterintuitive (at least until you’ve retrained your intuition). The general

rule is that operations involving NULL produce NULL as a result; the reasoning

is that if the computer doesn’t know what one of the operation’s inputs is, it

can’t know what the output is either. Adding a number to NULL therefore

Chapter 17. Databases • 352

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

produces NULL no matter what the number was, and multiplying by NULL also

produces NULL.

Things are more complicated with logical operations. The expression NULL OR
1 produces 1, rather than NULL, because of the following:

• If the first argument was false (or 0, or the empty string, or some equiva-

lent value), the result would be 1.

• If the first argument was true (or nonzero, or a nonempty string), the

result would also be 1.

The technical term for this is three-valued logic. In SQL’s view of the world,

things aren’t just true or false—they can be true, false, or unknown, and NULL
represents the last. Unfortunately, different databases interpret ambiguities

in the SQL standard in different ways, so their handling of NULL is not consis-

tent. NULL should therefore be used with caution and only when other

approaches won’t work.

Using Joins to Combine Tables

When designing a database, it often makes sense to divide data between two

or more tables. For example, if we are maintaining a database of patient

records, we would probably want at least four tables: one for the patient’s

personal information (such as name and date of birth), a second to keep track

of appointments, a third for information about the doctors who are treating

the patient, and a fourth for information about the hospitals or clinics those

doctors work at.

PatientAppointment

DoctorHospital

patient

doctor

date

name

birthday

name

address

name

hospital

We could store all of this in one table, but then a lot of information would be

needlessly duplicated as shown in the image on page 354.

report erratum • discuss

Using Joins to Combine Tables • 353

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Patient-Doctor-Appointment-Hospital

patient doctor datebirthday hospital address

Alice

Alice

Alice

Zack

Zack

1978/04/02

1964/12/15

1978/04/02

1978/04/02

1964/12/15

Rajani

Newton

Nianiaris

Newton

Vaz

2008/09/01 Central

East

Central

East

East

2008/09/14

2008/10/04

2008/09/18

2008/11/01

52 Walnut St.

8 Elm St.

52 Walnut St.

8 Elm St.

8 Elm St.

If we divide information between tables, though, we need some way to pull

that information back together. For example, if we want to know the hospitals

at which a patient has had appointments, we need to combine data from all

four tables to find out the following:

• Which appointments the patient has had

• Which doctor each appointment was with

• Which hospital/clinic that doctor works at

The right way to do this in a relational database is to use a join. As the name

suggests, a join combines information from two or more tables to create a

new set of records, each of which can contain some or all of the information

in the tables involved.

To begin, let’s add another table that contains the names of countries, the

regions that they are in, and their populations:

>>> cur.execute('''CREATE TABLE PopByCountry(Region TEXT, Country TEXT,
Population INTEGER)''')

Then let’s insert data into the new table:

>>> cur.execute('''INSERT INTO PopByCountry VALUES("Eastern Asia", "China",
1285238)''')

Inserting data one row at a time like this requires a lot of typing. It is simpler

to make a list of tuples to be inserted and write a loop that inserts the values

from these tuples one by one using the placeholder notation from Creating

and Populating, on page 344:

>>> countries = [("Eastern Asia", "DPR Korea", 24056), ("Eastern Asia",
"Hong Kong (China)", 8764), ("Eastern Asia", "Mongolia", 3407), ("Eastern
Asia", "Republic of Korea", 41491), ("Eastern Asia", "Taiwan", 1433),
("North America", "Bahamas", 368), ("North America", "Canada", 40876),
("North America", "Greenland", 43), ("North America", "Mexico", 126875),
("North America", "United States", 493038)]
>>> for c in countries:
... cur.execute('INSERT INTO PopByCountry VALUES (?, ?, ?)', (c[0], c[1], c[2]))
...
>>> con.commit()

Chapter 17. Databases • 354

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Now that we have two tables in our database, we can use joins to combine

the information they contain. Several types of joins exist; you’ll learn about

inner joins and self-joins.

We’ll begin with inner joins, which involve the following. (Note that the num-

bers in this list correspond to circled numbers in the following diagram.)

1. Constructing the cross product of the tables

2. Discarding rows that do not meet the selection criteria

3. Selecting columns from the remaining rows

Eastern Asia
North America

1362955
661157

Eastern Asia
North America

1362955
661157

Eastern Asia
North America

Mongolia
Greenland

3407
43

North America Greenland 43
Eastern Asia Mongolia 3407

Eastern Asia
North America

1362955
661157

Eastern Asia
North America

Mongolia
Greenland

3407
43

Eastern Asia 1362955 Eastern Asia Mongolia 3407

Eastern Asia
North America

1362955
661157

Eastern Asia
North America

Mongolia
Greenland

3407
43

PopByRegion PopByCountry

Keep rows where PopByRegion.Region = PopByCountry.Region2a

Keep rows where PopByRegion.Population > 10000002b

Compute cross product1

Keep columns PopByRegion.Region and PopByCountry.Country3

First, all combinations of all rows in the tables are combined, which makes

the cross product. Second, the selection criteria specified by WHERE are applied,

and rows that don’t match are removed. Finally, the selected columns are

kept, and all others are discarded.

In an earlier query, we retrieved the names of regions with projected popula-

tions greater than one million. Using an inner join, we can get the names of

the countries that are in those regions. The query and its result look like this:

>>> cur.execute('''
SELECT PopByRegion.Region, PopByCountry.Country
FROM PopByRegion INNER JOIN PopByCountry
WHERE (PopByRegion.Region = PopByCountry.Region)
AND (PopByRegion.Population > 1000000)
''')

report erratum • discuss

Using Joins to Combine Tables • 355

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('Eastern Asia', 'China'), ('Eastern Asia', 'DPR Korea'),
('Eastern Asia', 'Hong Kong (China)'), ('Eastern Asia', 'Mongolia'),
('Eastern Asia', 'Republic of Korea'), ('Eastern Asia', 'Taiwan')]

To understand what this query is doing, we can analyze it in terms of the

three steps outlined earlier:

1. Combine every row of PopByRegion with every row of PopByCountry. PopByRegion
has 2 columns and 12 rows, while PopByCountry has 3 columns and 11

rows, so this produces a temporary table with 5 columns and 132 rows:

Central Africa
Southeastern Africa

330993
743112

Northern Africa 1037463
Southern Asia
Asia Pacific

2051941
785468

Middle East 687630
Eastern Asia
South America

1362955
593121

Eastern Europe 223427

DPR Korea

Hong Kong (China)

North America
Western Europe
Japan

661157
387933
100562

Eastern Asia

Eastern Asia

24056

8764

DPR KoreaEastern Asia 24056
DPR KoreaEastern Asia 24056
DPR KoreaEastern Asia 24056
DPR KoreaEastern Asia 24056
DPR KoreaEastern Asia 24056
DPR KoreaEastern Asia 24056
DPR KoreaEastern Asia 24056
DPR KoreaEastern Asia 24056
DPR KoreaEastern Asia 24056
DPR KoreaEastern Asia 24056
DPR KoreaEastern Asia 24056

Central Africa
Southeastern Africa

330993
743112

Northern Africa 1037463
Southern Asia
Asia Pacific

2051941
785468

Middle East 687630
Eastern Asia
South America

1362955
593121

Eastern Europe 223427
North America
Western Europe
Japan

661157
387933
100562

Hong Kong (China)Eastern Asia 8764
Hong Kong (China)Eastern Asia 8764
Hong Kong (China)Eastern Asia 8764
Hong Kong (China)Eastern Asia 8764
Hong Kong (China)Eastern Asia 8764
Hong Kong (China)Eastern Asia 8764
Hong Kong (China)Eastern Asia 8764
Hong Kong (China)Eastern Asia 8764
Hong Kong (China)Eastern Asia 8764
Hong Kong (China)Eastern Asia 8764
Hong Kong (China)Eastern Asia 8764

...

2. Discard rows that do not meet the selection criteria. The join’s WHERE clause

specifies two of these: the region taken from PopByRegion must be the same

as the region taken from PopByCountry, and the region’s population must

be greater than one million. The first criterion ensures that we don’t look

at records that combine countries in North America with regional popula-

tions in East Asia; the second filters out information about countries in

regions whose populations are less than our threshold.

3. Finally, select the region and country names from the rows that have

survived.

Chapter 17. Databases • 356

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Removing Duplicates

To find the regions where one country accounts for more than 10 percent of

the region’s overall population, we would also need to join the two tables.

>>> cur.execute('''
SELECT PopByRegion.Region
FROM PopByRegion INNER JOIN PopByCountry
WHERE (PopByRegion.Region = PopByCountry.Region)
AND ((PopByCountry.Population * 1.0) / PopByRegion.Population > 0.10)''')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('Eastern Asia',), ('North America',), ('North America',)]

We use multiplication and division in our WHERE condition to calculate the

percentage of the region’s population by country as a floating-point number.

The resulting list contains duplicates, since more than one North American

country accounts for more than 10 percent of the region’s population. To

remove the duplicates, we add the keyword DISTINCT to the query:

>>> cur.execute('''
SELECT DISTINCT PopByRegion.Region
FROM PopByRegion INNER JOIN PopByCountry
WHERE (PopByRegion.Region = PopByCountry.Region)
AND ((PopByCountry.Population * 1.0) / PopByRegion.Population > 0.10)''')
>>> cur.fetchall()
[('Eastern Asia',), ('North America',)]

Now in the results, 'North America' appears only once.

Keys and Constraints

Our query in the previous section relied on the fact that our regions and

countries were uniquely identified by their names. A column in a table that

is used this way is called a key. Ideally, a key’s values should be unique, just

like the keys in a dictionary. We can tell the database to enforce this constraint

by adding a PRIMARY KEY clause when we create the table. For example, when

we created the PopByRegion table, we should have specified the primary key:

>>> cur.execute('''CREATE TABLE PopByRegion (
Region TEXT NOT NULL,
Population INTEGER NOT NULL,
PRIMARY KEY (Region))''')

Just as a key in a dictionary can be made up of multiple values, the primary

key for a database table can consist of multiple columns.

report erratum • discuss

Keys and Constraints • 357

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

The following code uses the CONSTRAINT keyword to specify that no two entries in

the table being created will ever have the same values for region and country:

>>> cur.execute('''
CREATE TABLE PopByCountry(
Region TEXT NOT NULL,
Country TEXT NOT NULL,
Population INTEGER NOT NULL,
CONSTRAINT CountryKey PRIMARY KEY (Region, Country))''')

In practice, most database designers don’t use real names as primary keys.

Instead, they usually create a unique integer ID for each “thing” in the

database, such as a driver’s license number or a patient ID. This is partly

done for efficiency’s sake—integers are faster to sort and compare than strings

—but the real reason is that it is a simple way to deal with things that have

the same name. There are a lot of Jane Smiths in the world; using that name

as a primary key in a database is almost guaranteed to lead to confusion.

Giving each person a unique ID, on the other hand, ensures that they can

be told apart.

Advanced Features

The SQL we have seen so far is powerful enough for many everyday tasks,

but other questions require more powerful tools. This section introduces a

handful and shows when and how they are useful.

Aggregation

Our next task is to calculate the total projected world population for the year

2300. We will do this by adding up the values in PopByRegion’s Population column

using the SQL aggregate function SUM:

>>> cur.execute('SELECT SUM (Population) FROM PopByRegion')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchone()
(8965762,)

SQL provides several other aggregate functions (see Table 33, Aggregate Functions,

on page 359). All of these are associative; that is, the result doesn’t depend on the

order of operations. This ensures that the result doesn’t depend on the order in

which records are pulled out of tables.

Addition and multiplication are associative, since 1 + (2 + 3) produces the same

results as (1 + 2) + 3, and 4 * (5 * 6) produces the same result as (4 * 5) * 6. By

contrast, subtraction isn’t associative: 1 - (2 - 3) is not the same thing as (1 - 2) - 3.
Notice that there isn’t a subtraction aggregate function.

Chapter 17. Databases • 358

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

DescriptionAggregate Function

Average of the valuesAVG

Minimum valueMIN

Maximum valueMAX

Number of nonnull valuesCOUNT

Sum of the valuesSUM

Table 33—Aggregate Functions

Grouping

What if we only had the table PopByCountry and wanted to find the projected

population for each region? We could get the table’s contents into a Python

program using SELECT * and then loop over them to add them up by region,

but again, it is simpler and more efficient to have the database do the work

for us. In this case, we use SQL’s GROUP BY to collect results into subsets:

>>> cur.execute('''SELECT Region, SUM (Population) FROM PopByCountry
GROUP BY Region''')

<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('Eastern Asia', 1364389), ('North America', 661200)]

Since we have asked the database to construct groups by Region and there are

two distinct values in this column in the table, the database divides the

records into two subsets. It then applies the SUM function to each group

separately to give us the projected populations of Eastern Asia and North

America. We can verify by computing the sums separately:

>>> cur.execute('''SELECT SUM (Population) FROM PopByCountry
WHERE Region = "North America"''')

<sqlite3.Cursor object at 0x102a3bb20>
>>> cur.fetchall()
[(661200,)]
>>> cur.execute('''SELECT SUM (Population) FROM PopByCountry

WHERE Region = "Eastern Asia"''')
<sqlite3.Cursor object at 0x102a3bb20>
>>> cur.fetchall()
[(1364389,)]

Self-Joins

Let’s consider the problem of comparing a table’s values to themselves.

Suppose that we want to find pairs of countries whose populations are close

to each other—say, within 1,000 of each other. Our first attempt might look

like this:

report erratum • discuss

Advanced Features • 359

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

>>> cur.execute('''SELECT Country FROM PopByCountry
WHERE (ABS(Population - Population) < 1000)''')

<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('China',), ('DPR Korea',), ('Hong Kong (China)',), ('Mongolia',),
('Republic of Korea',), ('Taiwan',), ('Bahamas',), ('Canada',),
('Greenland',), ('Mexico',), ('United States',)]

The output is definitely not what we want, for two reasons. First, the phrase

SELECT Country is going to return only one country per record, but we want pairs

of countries. Second, the expression ABS(Population - Population) is always going

to return zero because we are subtracting each country’s population from

itself. Since every difference will be less than 1,000, the names of all the

countries in the table will be returned by the query.

What we actually want to do is compare the population in one row with the

populations in each of the other rows. To do this, we need to join PopByCountry
with itself using an INNER JOIN:

PopByCountry

North America
North America

Canada
United States

40876
493038

Eastern Asia Taiwan 1433

North America
North America

Canada
United States

40876
493038

Eastern Asia Taiwan 1433
North America
North America

Canada
United States

40876
493038

Eastern Asia Taiwan 1433
North America
North America

Canada
United States

40876
493038

Eastern Asia Taiwan 1433

North America
North America

Canada
United States

40876
493038

Eastern Asia Taiwan 1433

North America

North America

Canada

United States

40876

493038
Eastern Asia Taiwan 1433

North America
North America

Canada
United States

40876
493038

Eastern Asia Taiwan 1433

PopByCountry cross joined with itself

This will result in the rows for each pair of countries being combined into a

single row with six columns: two regions, two countries, and two populations.

To tell them apart, we have to give the two instances of the PopByCountry table

temporary names (in this case, A and B):

>>> cur.execute('''
SELECT A.Country, B.Country
FROM PopByCountry A INNER JOIN PopByCountry B
WHERE (ABS(A.Population - B.Population) <= 1000)
AND (A.Country != B.Country)''')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('Republic of Korea', 'Canada'), ('Bahamas', 'Greenland'), ('Canada',
'Republic of Korea'), ('Greenland', 'Bahamas')]

Chapter 17. Databases • 360

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Notice that we used ABS to get the absolute value of the population difference.

Let’s consider what would happen without ABS:

(A.Population - B.Population) <= 1000

Omitting ABS would result in pairs like ('Greenland', 'China') being included,

because every negative difference is less than 1,000. If we want each pair of

countries to appear only once (in any order), we could rewrite the second half

of the condition as follows:

A.Country < B.Country

By changing the condition above, each pair of countries appears only once.

Nested Queries

Up to now, our queries have involved only one SELECT command. Since the

result of every query looks exactly like a table with a fixed number of columns

and some number of rows, we can run a second query on the result—that is,

run a SELECT on the result of another SELECT, rather than directly on the

database’s tables. Such queries are called nested queries and are analogous

to having one function called on the value returned by another function call.

To see why we would want to do this, let’s write a query on the PopByCountry
table to get the regions that do not have a country with a population of

8,764,000. Our first attempt looks like this (remember that the units are in

thousands of people):

>>> cur.execute('''SELECT DISTINCT Region
FROM PopByCountry
WHERE (PopByCountry.Population != 8764)''')

<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('Eastern Asia',), ('North America',)]

This result is wrong—Hong Kong has a projected population of 8,764,000, so

eastern Asia shouldn’t have been returned. Because other countries in eastern

Asia have populations that are not 8,764,000, though, eastern Asia was

included in the final results.

Let’s rethink our strategy. What we have to do is find out which regions include

countries with a population of 8,764,000 and then exclude those regions from

our final result—basically, find the regions that fail our condition and subtract

them from the set of all countries as shown in the image on page 362.

The first step is to get those regions that have countries with a population of

8,764,000, as shown in the following code:

report erratum • discuss

Advanced Features • 361

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Eastern Asia
North America

Eastern Asia

North America

SELECT DISTINCT Region
FROM PopByCountry

(SELECT DISTINCT Region
 FROM PopByCountry
 WHERE (PopByCountry.Population = 8764))

WHERE Region NOT IN (-

=

>>> cur.execute('''
SELECT DISTINCT Region
FROM PopByCountry
WHERE (PopByCountry.Population = 8764)
''')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('Eastern Asia',)

Now we want to get the names of regions that were not in the results of our

first query. To do this, we will use a WHERE condition and NOT IN:

>>> cur.execute('''
SELECT DISTINCT Region
FROM PopByCountry
WHERE Region NOT IN

(SELECT DISTINCT Region
FROM PopByCountry
WHERE (PopByCountry.Population = 8764))

''')
<sqlite3.Cursor object at 0x102e3e490>
>>> cur.fetchall()
[('North America',)]

This time we got what we were looking for. Nested queries are often used for

situations like this one, where negation is involved.

Transactions

A transaction is a sequence of database operations that are interdependent.

No operation in a transaction can be committed unless every single one can

be successfully committed in sequence. For example, if an employer is paying

an employee, there are two interdependent operations: withdrawing funds

from the employer’s account and depositing funds in the employee’s account.

Chapter 17. Databases • 362

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

By grouping the operations into a single transaction, it is guaranteed that

either both operations occur or neither operation occurs. When executing the

operations in a transaction, if one operation fails, the transaction must be

rolled back. That causes all the operations in the transaction to be undone.

Using transactions ensures the database doesn’t end up in an unintended

state (such as having funds withdrawn from the employer’s account but not

deposited in the employee’s account).

Databases create transactions automatically. As soon as you try to start an

operation (such as by calling the execute method), it becomes part of a trans-

action. When you commit the transaction successfully, the changes become

permanent. At that point, a new transaction begins.

Imagine a library that may have multiple copies of the same book. It uses a

computerized system to track its books by their ISBN numbers. Whenever a

patron signs out a book, a query is executed on the Books table to find out

how many copies of that book are currently signed out, and then the table is

updated to indicate that one more copy has been signed out:

cur.execute('SELECT SignedOut FROM Books WHERE ISBN = ?', isbn)
signedOut = cur.fetchone()[0]
cur.execute('''UPDATE Books SET SignedOut = ?

WHERE ISBN = ?''', signedOut + 1, isbn)
cur.commit()

When a patron returns a book, the reverse happens:

cur.execute('SELECT SignedOut FROM Books WHERE ISBN = ?', isbn)
signedOut = cur.fetchone()[0]
cur.execute('''UPDATE Books SET SignedOut = ?

WHERE ISBN = ?''', signedOut - 1, isbn)
cur.commit()

What if the library had two computers that handled book signouts and

returns? Both computers connect to the same database. What happens if one

patron tried to return a copy of Gray’s Anatomy while another was signing

out a different copy of the same book at the exact same time?

One possibility is that Computers A and B would each execute queries to

determine how many copies of the book have been signed out, then Computer

A would add one to the number of copies signed out and update the table

without Computer B knowing. Computer B would decrease the number of

copies (based on the query result) and update the table.

Here’s the code for that scenario:

report erratum • discuss

Advanced Features • 363

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Computer A: cur.execute('SELECT SignedOut FROM Books WHERE ISBN = ?', isbn)
Computer A: signedOut = cur.fetchone()[0]
Computer B: cur.execute('SELECT SignedOut FROM Books WHERE ISBN = ?', isbn)
Computer B: signedOut = cur.fetchone()[0]
Computer A: cur.execute('''UPDATE Books SET SignedOut = ?

WHERE ISBN = ?''', signedOut + 1, isbn)
Computer A: cur.commit()
Computer B: cur.execute('''UPDATE Books SET SignedOut = ?

WHERE ISBN = ?''', signedOut - 1, isbn)
Computer B: cur.commit()

Notice that Computer B counts the number of signed-out copies before

Computer A updates the database. After Computer A commits its changes,

the value that Computer B fetched is no longer accurate. If Computer B were

allowed to commit its changes, the library database would account for more

books than the library actually has!

Fortunately, databases can detect such a situation and would prevent Com-

puter B from committing its transaction.

Some Data Based On What You Learned

In this chapter, you learned the following:

• Most large applications store information in relational databases. A

database is made up of tables, each of which stores logically related

information. A table has one or more columns—each of which has a name

and a type—and zero or more rows, or records. In most tables, each row

can be identified by a unique key, which consists of one or more of the

values in the row.

• Commands to put data into databases, or to get data out, can be written

in a specialized language called SQL.

• SQL commands can be sent to databases interactively from GUIs or

command-line tools—but for larger jobs, it is more common to write pro-

grams that create SQL and process the results.

• Changes made to a database don’t actually take effect until they are

committed. This ensures that if two or more programs are working with

a database at the same time, it will always be in a consistent state. How-

ever, it also means that operations in one program can fail because of

something that another program is doing.

• SQL queries must specify the table(s) and column(s) that values are to be

taken from. They may also specify Boolean conditions those values must

satisfy and the ordering of results.

Chapter 17. Databases • 364

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

• Simple queries work on one row at a time, but programs can join tables

to combine values from different rows. Queries can also group and

aggregate rows to calculate sums, averages, and other values.

• Databases can use the special value NULL to represent missing information.

However, it must be used with caution, since operations on NULL values

don’t behave in the same way that operations on “real” values do.

Exercises

Here are some exercises for you to try on your own. Solutions are available

at http://pragprog.com/titles/gwpy3/practical-programming.

1. In this exercise, you will create a table to store the population and land

area of the Canadian provinces and territories according to the 2001

census. Our data is taken from http://www12.statcan.ca/english/census01/home/
index.cfm.

Land AreaPopulationProvince/Territory

370501.69512930Newfoundland and Labrador

5684.39135294Prince Edward Island

52917.43908007Nova Scotia

71355.67729498New Brunswick

1357743.087237479Quebec

907655.5911410046Ontario

551937.871119583Manitoba

586561.35978933Saskatchewan

639987.122974807Alberta

926492.483907738British Columbia

474706.9728674Yukon Territory

1141108.3737360Northwest Territories

1925460.1826745Nunavut

Table 34—2001 Canadian Census Data

Write Python code that does the following:

a. Creates a new database called census.db

b. Makes a database table called Density that will hold the name of the

province or territory (TEXT), the population (INTEGER), and the land area

(REAL)

report erratum • discuss

Exercises • 365

http://pragprog.com/titles/gwpy3/practical-programming
http://www12.statcan.ca/english/census01/home/index.cfm
http://www12.statcan.ca/english/census01/home/index.cfm
http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

c. Inserts the data from Table 34, 2001 Canadian Census Data, on

page 365

d. Retrieves the contents of the table

e. Retrieves the populations

f. Retrieves the provinces that have populations of less than one million

g. Retrieves the provinces that have populations of less than one million

or greater than five million

h. Retrieves the provinces that do not have populations of less than one

million or greater than five million

i. Retrieves the populations of provinces that have a land area greater

than 200,000 square kilometers

j. Retrieves the provinces along with their population densities (popula-

tion divided by land area)

2. For this exercise, add a new table called Capitals to the database. Capitals
has three columns—province/territory (TEXT), capital (TEXT), and population

(INTEGER)—and it holds the data shown here:

PopulationCapitalProvince/Territory

172918St. John’sNewfoundland and Labrador

58358CharlottetownPrince Edward Island

359183HalifaxNova Scotia

81346FrederictonNew Brunswick

682757Quebec CityQuebec

4682897TorontoOntario

671274WinnipegManitoba

192800ReginaSaskatchewan

937845EdmontonAlberta

311902VictoriaBritish Columbia

21405WhitehorseYukon Territory

16541YellowknifeNorthwest Territories

5236IqaluitNunavut

Table 35—2001 Canadian Census Data: Capital City Populations

Chapter 17. Databases • 366

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Write SQL queries that do the following:

a. Retrieve the contents of the table

b. Retrieve the populations of the provinces and capitals (in a list of

tuples of the form [province population, capital population])

c. Retrieve the land area of the provinces whose capitals have populations

greater than 100,000

d. Retrieve the provinces with land densities less than two people per

square kilometer and capital city populations more than 500,000

e. Retrieve the total land area of Canada

f. Retrieve the average capital city population

g. Retrieve the lowest capital city population

h. Retrieve the highest province/territory population

i. Retrieve the provinces that have land densities within 0.5 persons per

square kilometer of on another—have each pair of provinces reported

only once

3. Write a Python program that creates a new database and executes the

following SQL statements. How do the results of the SELECT statements

differ from what you would expect Python itself to do? Why?

CREATE TABLE Numbers(Val INTEGER)
INSERT INTO Numbers Values(1)
INSERT INTO Numbers Values(2)
SELECT * FROM Numbers WHERE 1/0
SELECT * FROM Numbers WHERE 1/0 AND Val > 0
SELECT * FROM Numbers WHERE Val > 0 AND 1/0

report erratum • discuss

Exercises • 367

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Bibliography

[DEM02] Allen Downey, Jeff Elkner, and Chris Meyers. How to Think Like a Computer

Scientist: Learning with Python. Green Tea Press, Needham, MA, 2002.

[GE13] Mark J. Guzdial and Barbara Ericson. Introduction to Computing and Pro-

gramming in Python: A Multimedia Approach. Prentice Hall, Englewood

Cliffs, NJ, Third, 2013.

[GL07] Michael H. Goldwasser and David Letscher. Object-Oriented Programming

in Python. Prentice Hall, Englewood Cliffs, NJ, 2007.

[Hoc04] Roger R. Hock. Forty Studies That Changed Psychology. Prentice Hall,

Englewood Cliffs, NJ, 2004.

[Hyn06] R. J. Hyndman. Time Series Data Library. http://www.robjhyndman.com,

http://www.robjhyndman.com, 2006.

[Lak76] Imre Lakatos. Proofs and Refutations. Cambridge University Press, Cam-

bridge, United Kingdom, 1976.

[Lut13] Mark Lutz. Learning Python. O’Reilly & Associates, Inc., Sebastopol, CA,

Fifth, 2013.

[Pyt11] Python EDU-SIG. Python Education Special Interest Group (EDU-SIG). Python

EDU-SIG, http://www.python.org/community/sigs/current/edu-sig, 2011.

[Win06] Jeannette M. Wing. Computational Thinking. Communications of the ACM.

49[3]:33–35, 2006.

[Zel03] John Zelle. Python Programming: An Introduction to Computer Science.

Franklin Beedle & Associates, Wilsonville, OR, 2003.

report erratum • discuss

http://pragprog.com/titles/gwpy3/errata/add
http://forums.pragprog.com/forums/gwpy3

Index

SYMBOLS
& (ampersand), set intersec-

tion, 207

>>> (angle bracket, triple)
prompt, IDLE, 9

* (asterisk)
multiplication operator,

10, 15, 136
string repeat operator, 68

** (asterisk, double) exponen-
tiation operator, 12

**= (asterisk, double, equal
sign) exponentiation assign-
ment operator, 22

*= (asterisk, equal sign), mul-
tiplication assignment oper-
ator, 22

\ (backslash)
directory separator, 177
escape character, 69
line-continuation charac-

ter, 24

{} (braces)
about, 5
enclosing dictionaries,

216
enclosing sets, 203

[] (brackets)
about, 5
enclosing dictionary keys,

216
enclosing lists, 130, 132

^ (caret), set symmetric differ-
ence, 207

: (colon)
in dictionaries, 216
in field numbers, 122

in function definition, 38
in if statements, 86
in list slices, 138
in for loops, 150
in while loops, 160

, (comma), indicating tuples,
210, 213

= (equal sign)
assignment operator, 16,

18
equal to operator, in

queries, 350

== (equal sign, double) equal
to operator, 80

!= (exclamation, equal sign)
not equal to operator, 80,
350

/ (forward slash)
directory separator, 177
division operator, 10, 15

// (forward slash, double) inte-
ger division operator, 11,
15

//= (forward slash, double,
equal sign) integer division
assignment operator, 22

/= (forward slash, equal sign),
division assignment opera-
tor, 22

> (greater than), relational
operator, 80, 350

>= (greater than or equal to)
relational operator, 80,

350
set superset operator,

207

(hash mark) comment sym-
bol, 26

< (less than), relational opera-
tor, 80, 350

<= (less than or equal to)
relational operator, 80,

350
set subset operator, 207

- (minus sign)
negation operator, 12, 15
set difference, 207
subtraction operator, 10,

15

-= (minus sign, equal sign),
subtraction assignment op-
erator, 22

() (parentheses)
about, 5
enclosing tuples, 210
function call, 31
function definition, 38
line breaks within, 24
overriding precedence, 15

% (percent sign) modulo oper-
ator, 11, 15

%= (percent sign, equal sign)
modulo assignment opera-
tor, 22

. (period) dot operator, 101

.. (period, double) directory
up one level, 178

... (period, triple) prompt,
continuation, 24

+ (plus sign)
addition operator, 9, 15
concatenation operator,

66, 136, 142

+= (plus sign, equal sign), ad-
dition assignment operator,
22

’ or " (quotes)
enclosing strings, 65
in strings, 68

""" (quotes, three double), en-
closing docstring, 47

”’ or """ (quotes, three single
or double), enclosing multi-
line strings, 70

__ (underscores, double), en-
closing methods or vari-
ables, 123–125, 285–288

| (vertical bar), set union, 207

A
above_freezing function case

study, 304–309

abs function, 31

__abs__ method, 124

absolute path, 178

absolute value, 31

add method, for sets, 206

__add__ method, 123–124

addition (+) operator, 9, 15

addition assignment (+=) oper-
ator, 22

aggregate functions, 358

algorithms
about, 229, 240
efficiency of, 243
exercises, 240
finding two smallest val-

ues, 230–237
reading files, 188–199
timing, 238–240, 249

aliasing, 36, 139–141

alphabetic ordering, 85

American Standard Code for
Information Interchange
(ASCII), 85

ampersand (&), set intersec-
tion, 207

and operator, 78

angle bracket, triple (>>>)
prompt, IDLE, 9

annotations, type, 48

append method, for lists, 141–
142

append mode, 185

arctic birds observed exam-
ple, 207–208

arguments, of functions, 31,
72

arithmetic operators, 9–12,
82–85

ASC keyword, 349

ASCII (American Standard
Code for Information Inter-
change), 85

assertEqual method, for test
cases, 307

assignment (=) operator, 16,
18

assignment statements
about, 15, 18–22
augmented, 21
exercises, 27
in function header, 72
immutable objects and,

135
mutable objects and, 134

associative operations, 358

asterisk (*)
multiplication operator,

10, 15, 136
string repeat operator, 68

asterisk, double (**) exponen-
tiation operator, 12

asterisk, double, equal sign
(**=) exponentiation assign-
ment operator, 22

asterisk, equal sign (*=), mul-
tiplication assignment oper-
ator, 22

Atom class case study, 293–
297

attributes
about, 278
special, 289

augmented assignment, 21

AVG function, 358

B
backslash (\)

directory separator, 177
escape character, 69
line-continuation charac-

ter, 24

binary operators, 12

binary search, 250–256

bisect module, 255, 266

bisect_left function, 255

bisect_right function, 255

BLOB data type, 346

Book class example, 275, 278–
289

books
Computational Thinking

(Wing), 3
Forty Studies That

Changed Psychology

(Hock), 26
How to Think Like a Com-

puter Scientist: Learn-

ing with Python

(Downey, Elkner, and
Meyers), xiv

Introduction to Computing

and Programming in

Python: A Multimedia

Approach (Guzdial and
Ericson), xiv

Learning Python (Lutz),
xiv

Python Education Special

Interest Group (Python
EDU SIG), xiv

Python Programming: An

Introduction to Comput-

er Science (Zelle), xiv

bool (Boolean) type, 77

Boole, George, 77

Boolean expressions
about, 94
bool type for, 77
combining with other op-

erators, 82–85
exercises, 94
operators for, 78–80
saving results of, 92–94
using numbers and

strings in, 84

Boolean logic, 77

BooleanVar type, for widgets,
324

borders, for frames, 326

borderwidth attribute, for
frames, 326

boundary cases, 305, 315

braces ({})
about, 5
enclosing dictionaries,

216
enclosing sets, 203

brackets ([])
about, 5
enclosing dictionary keys,

216
enclosing lists, 130, 132

break statement, 163–165, 167

bubble sort, 272

Index • 372

bugs, see also testing and
debugging

about, 4
finding, 316–317

building, see creating

built-in functions, 31–34

__builtins__ module, 103

Button widget, 323

bytes, 184

C
C, Boolean operators in, 80

C. elegans phenotypes exam-
ple, 137–141

cache, 36

calculators, compared to
computers, 3

calendar module, 113

Canvas widget, 323

capitalize method, for strings,
116, 119

caret (^), set symmetric differ-
ence, 207

carriage return (\r), 69

case studies, see examples
and case studies

center method, 117

characters, see operators;
special characters; strings;
Symbols at beginning of in-
dex

Checkbutton widget, 323, 336

choices, see Boolean expres-
sions; conditions; if state-
ment; loops

__class__ variable, 289

classes
about, 277–278
attributes of, 278
creating objects from,

278
defining, 278
instances of, determining,

277
methods in, calling, 116
subclasses, 277
superclasses, 277
TestCase, 307
types represented by,

115, 276
using as functions, 116

clear method, for dictionaries,
219

clear method, for lists, 142

clear method, for sets, 206

close method, for databases,
348

CLUI (command-line user in-
terface), 321

code, see programs; Python

collections, comparing, 224,
see also dictionaries; lists;
sets; tuples

colon (:)
in dictionaries, 216
in field numbers, 122
in function definition, 38
in if statements, 86
in list slices, 138
in for loops, 150
in while loops, 160

colors in GUI, 332–334

columns
printing information in,

71
in tables, 343

combining operators, 82–85

comma (,), indicating tuples,
210, 213

command-line user interface
(CLUI), 321

comment symbol (#), 26

comments, 25, see also docu-
mentation for functions

commit method, for databases,
348, 363

committing transactions, 363

comparisons, see conditions;
relational operators

Computational Thinking

(Wing), 3

computer memory, see mem-
ory

computers, see also program-
ming; programs

compared to calculators,
3

components of, 7

concatenation (+) operator,
66, 136, 142

conceptualizing, compared to
programming, 3

conditions
exercises, 94
in if statements, 86–92
in queries, 350
saving results of, 92–94
in while loops, 160

connect method, for databases,
345

constants, 102

CONSTRAINT keyword, 358

constructors, 282

containers, see Frame type;
root window

continue statement, 165–167

control flow statements,
see conditions; if statement;
loops

controllers, 327–328

COUNT function, 358

count method, for lists, 142

count method, for strings,
117, 119

counter GUI example, 327

crashes, 4, see also testing
and debugging

CREATE TABLE statement, 346

creating, see also defining
databases, 345
dictionaries, 216
graphical user interface

(GUI), 323
lists, 130
multiline strings, 70
sets, 204
strings of characters, 65
tables, 346
tuples, 210
variables, 15

curly braces ({}), see braces
({})

current working directory,
177

cursor, for database, 346

D
data collections, see dictionar-

ies; lists; sets; tuples

data in files, see files

data types, see types

databases
about, 343–344, 364
aggregate functions, 358
brands of, 344
closing connection to,

348
connecting to, 345
constraints, 358
creating, 345
data types for, 346
deleting, 351

Index • 373

duplicate results, remov-
ing, 357

exercises, 365
grouping, 359
interacting with, 344
joins, 353–357, 359
keys, 357
nested queries, 361
NULL values in, 352
query conditions, 350
retrieving data from, 348–

351
saving changes to, 348
transactions, 362–364
unique IDs in, 358
updating, 351

days_difference function, 50

debugging, see testing and
debugging

def keyword, 38, 104, 280

default parameter values, 72

defining, see also creating
classes, 278
functions, 35–39, 47–49
methods, 280–285
modules, 104

del operator, 137

DELETE statement, 351

delimiters in files, 173, 192–
194

DESC keyword, 349

describing code, see com-
ments; documentation for
functions

design recipe, for functions,
47–58, 110

dichotomy, 315

dict type, 214–216

__dict__ variable, 289

dictionaries
about, 214–216, 226
adding items to, 217
checking if key exists in,

217, 223
comparing with other

collections, 224
creating, 216
empty, 216
examples of, 220
exercises, 226
getting value of an item

from, 219
inverting, 222–223
looping through items in,

218–219
operations on, 218

order of keys in previous
versions, 220

removing all items from,
219

removing items from, 217
returning all key/value

pairs from, 219
returning all keys from,

219
returning all values from,

219
returning and removing

one item from, 219
setting value of item in,

219
updating values in, 217
updating with contents of

another dictionary, 219

dictionary ordering, 85

difference method, for sets,
206–207

directories
current working directo-

ry, 177
organization of, 177–178

directory separator, 177

DISTINCT keyword, 357

division (/) operator, 10, 15

division assignment (/=) oper-
ator, 22

division, integer (//) operator,
11, 15

division, integer assignment
(//=) operator, 22

__doc__ variable, 125

docstring (documentation
string), 47, 110

doctest module, 111–112, 304,
306, 309

documentation for functions,
47, see also comments

dot operator (.), 101

DoubleVar type, for widgets, 324

Downey, Allen (How to Think

Like a Computer Scientist:

Learning with Python), xiv

drive letter, 177

DROP statement, 351

E
efficiency

about, 243
of binary search, 255
of insertion sort, 263–265
of linear search, 250

mathematical theory be-
hind, 271

of merge sort, 270
of selection sort, 263–265
timing searches, 238–

240, 249

elif clause, 89

Elkner, Jeff (How to Think

Like a Computer Scientist:

Learning with Python), xiv

else clause, 91

empty dictionaries, 216

empty lists, 130, 132

empty sets, 204

empty string, 66

empty tuples, 210

encapsulation, 288

encoding schemes, 184

endswith method, for strings,
119, 121

__enter__ method, 176

Entry widget, 323, 326

EOL (end of line), 66

__eq__ method, 286, 288

equal sign (=)
assignment operator, 16,

18
equal to operator, in

queries, 350

equal sign, double (==) equal
to operator, 80

equal to (=) operator, in
queries, 350

equal to (==) operator, 80

equality operators, 80–82

Ericson, Barbara (Introduction

to Computing and Program-

ming in Python: A Multime-

dia Approach), xiv

errors, see also testing and
debugging

about, 22
EOL (end of line), 66
naming convention for,

103
TypeError, 67
ValueError message, 67

escape character (\), 69

escape sequences, 69, 71

evaluating expressions, 9

event-driven programming,
321

Index • 374

examples and case studies
arctic birds observed,

207–208
Atom and Molecule classes,

293–297
birthday-related func-

tions, 49–58
Book class, 275, 278–289
C. elegans phenotypes,

137–141
counter GUI example,

327
forest fires, 256–257
gray whale census, 129–

132
populations example,

344–348
Protein Data Bank (PDB)

example, 195–198
testing above_freezing func-

tion, 304–309
testing running_sum func-

tion, 309–315

exclamation, equal sign (!=)
not equal to operator, 80,
350

exclusive or, 79, 82

execute method, for SQL state-
ments, 346

exercises
algorithms, 240
arithmetic operators, 27
assignment statements,

27
Booleans, 94
conditions, 94
databases, 365
dictionaries, 226
expressions, 27
files, 201
functions, 63
graphical user interface

(GUI), 340
if statement, 94
lists, 145
loops, 168
methods, 126
modules, 113
object-oriented program-

ming, 298
searching, 272
sets, 226
solutions for, 27
sorting, 272
strings, 75
syntax errors, 27
testing and debugging,

317

tuples, 226
variables, 27

__exit__ method, 176

exponentiation, pow function,
32, 34

exponentiation (**) operator,
12

exponentiation assignment
(**=) operator, 22

expressions, see also opera-
tors

about, 9–12, 27
exercises, 27
short-circuit evaluation

of, 84

extend method, for lists, 141–
142

F
False value, see bool (Boolean)

type

FDR (function design recipe),
47–58, 110

fetchall method, for databases,
349

fetchone method, for databases,
348

fields, in strings, 122

file cursor, 175, 179

file path, 177–178

files, see also databases
about, 173, 200
delimiters in, 173, 192–

194
exercises, 201
headers in, skipping,

182, 188–190
looking ahead when

reading, 198–199
missing values in, han-

dling, 190–191
mock files for testing, 186
multiline records in,

handling, 195–198
opening, 175–178
organization of, 177–178
reading, 179–183
reading, algorithms for,

188–199
reading, over Internet,

183–184
types of, 173–174
whitespace-delimited,

handling, 192–194
writing, 185–186

find method, for strings, 119

float (floating point) type, 10,
12, 14, 122

float function, 33, 67

fonts in GUI, 331

For Line in File technique,
181

for loop
about, 219
over dictionaries, 218
over files, 181, 191
over lists, 149–151, 236
over lists for linear

search, 247

forest fires example, 256–257

format method, for strings,
119, 121

Forty Studies That Changed

Psychology (Hock), 26

forward slash (/)
directory separator, 177
division operator, 10, 15

forward slash, double (//) inte-
ger division operator, 11,
15

forward slash, double, equal
sign (//=) integer division
assignment operator, 22

forward slash, equal sign (/=),
division assignment opera-
tor, 22

Frame type, 323, 325

frames
in graphical user inter-

face, 323, 325
in memory, 41

FROM clause, SELECT statement,
348

frozenset function, 209

function definition, 36, 38

function design recipe (FDR),
47–58, 110

function objects, 101

functions
about, 62
abs, 31
arguments of, 31, 72
AVG, in queries, 358
bisect_left, 255
bisect_right, 255
body of, 37–38
built-in, 31–34
calling, 31, 40–46
COUNT, in queries, 358
days_difference, 50
defining, 35–39, 47–49

Index • 375

design recipe for, 47–58,
110

documentation for, 47,
110

examples of, 49–58
exercises, 63
float, 33, 67
frozenset, 209
getcwd, 178
grouping into modules,

112
header for, 37
help, 33, 100, 115
helper, 193
id, 34
importing from modules

by name, 102
input, 73–74, 87, 162
insort_left, 255, 266
insort_right, 255
int, 33, 67
isinstance, 277
lambda functions, 328–

330
len, 66, 135
local variables in, 39
max, for lists, 135
MAX, in queries, 358
merge, 268
min, for lists, 135, 230,

232
MIN, in queries, 358
in modules, 100–101
open, 175, 178
parameters of, 38–39, 72
perf_counter, 238, 250
pow, 32, 34
preconditions for, 61
print, 59, 70–73, 149
range, 152–154
readline, 181–183, 188–

190
readlines, 179–180
reload, 106
return statement, omitting,

60, 140
return value of, 32
reversed, 180
round, 33
set, 204
sorted, 135, 180, 234
sqrt, 101, 117
startswith, 121
str, 116
sum, for lists, 135
SUM, in queries, 358
tracing in memory model,

40–46
type annotations for, 48

urlopen, 184
using types as, 116
wrapper functions, 329

G
get method, for dictionaries,

219

getcwd function, 178

global variables, 328

graphical user interface (GUI)
about, 321, 339
colors in, 332–334
controllers, 327–328
creating, 323
event manager, 321
exercises, 340
fonts in, 331
frames, 325
lambda functions, 328–

330
models, 327–328
mutable variables with

widgets, 324
object-oriented, 338
root window, 322–324
tkinter module, 321–323
user input, 326
views, 327–328
visual style of, 331–335
widget layout, 334–335
widgets, 321–322, 335

gray whale census example,
129–132

greater than (>), relational
operator, 80, 350

greater than or equal to (>=)
relational operator, 80,

350
set superset operator,

207

grid method, for widgets, 334

GROUP BY clause, 359

__gt__ method, 125

GUI, see graphical user inter-
face

Guo, Philip, 17

Guzdial, Mark J. (Introduction

to Computing and Program-

ming in Python: A Multime-

dia Approach), xiv

H
hard drive, 7

hash mark (#) comment sym-
bol, 26

hashing, 209

headers in files, skipping,
182, 188–190

help documentation, 117, 123

help function, 33, 100, 115

helper functions, 193

Hock, Roger R. (Forty Studies

That Changed Psychology),
26

How to Think Like a Computer

Scientist: Learning with

Python (Downey, Elkner,
and Meyers), xiv

I
id function, 34

identifiers, 17

IDLE, 9, 59

if statement, 86–92
about, 94
elif clause in, 89
else clause, 91
exercises, 94
nested, 92

iff (if and only if), 82

immutable objects
aliasing and, 139
comparing, 224
numbers as, 135
strings as, 135
tuples as, 210

imp module, 106

imperative programming, 119

import statement, 100, 102,
104

importing modules
about, 100–104
code run on import, by

default, 105–106
code run on import, se-

lecting, 107–109

in operator, 217, 223

inclusive or, 78

indentation in programs, 37,
86

index method, for lists, 142,
243

indices, in lists, 131–132,
154–156

infinite loops, 162

inheritance, 278, 290–293

inherited methods, overriding,
287

__init__ method, 281–282

inner joins, 355

Index • 376

input function, 73–74, 87, 162

insert method, for lists, 141–
142

INSERT statement, 347

insertion sort, 261–265

insort_left function, 255, 266

insort_right function, 255

installing Python, 5, 9

instance variables, 279, 283

instances of classes, see isin-
stance function; objects;
types

int (integer) type, 10, 14, 122

int function, 33, 67

INTEGER data type, 346

integer division (//) operator,
11, 15

integer division assignment
(//=) operator, 22

Internet files, reading, 183–
184

interpreter, 8

intersection method, for sets,
206–207

Introduction to Computing and

Programming in Python: A

Multimedia Approach (Guz-
dial and Ericson), xiv

IntVar type, for widgets, 324

invariant
in linear search, 245
in sorting, 257

inverting dictionaries, 222–
223

isinstance function, 277

islower method, for strings, 120

issubset method, for sets, 206–
207

issuperset method, for sets,
206–207

isupper method, for strings,
120

items method, for dictionaries,
219

iteration, 150, see also loops

J
Java, Boolean operators in,

80

Jmol, 293

joins, 353–357, 359

K
keyboard input, see user in-

put

keys
in databases, 357
in dictionaries, 216

keys method, for dictionaries,
219

keyword arguments (kwargs),
72

keywords, 38

L
Label widget, 323–324

lambda functions, 328–330

Learning Python (Lutz), xiv

len function, 66, 135

less than (<), relational opera-
tor, 80, 350

less than or equal to (<=)
relational operator, 80,

350
set subset operator, 207

lexicographic ordering, 85

line-continuation character
(\), 24

linear search, 244–250

list type, 129–133

Listbox widget, 323

lists
about, 129–133, 145
accessing items in, 131–

132
aliasing, 139
appending other lists to,

141–142
appending values to,

141–142
assigning items to vari-

ables, 132
assigning sublists to

variables, 144
assigning to variables,

130
comparing with other

collections, 224
concatenating, 136, 142
creating, 130
deleting all items from,

142
deleting and returning

last item of, 142
deleting specific items

from, 137

deleting specific values
from, 142, 232

empty, 130, 132
exercises, 145
finding two smallest val-

ues in, 230–237
indices in, 131–132, 154–

156
inserting values into,

141–142
items in, finding, 137,

142
looping through items in,

149–151
looping through items

using indices, 154–156
maximum value in, 135
methods for, 141–143
minimum value in, 135,

230, 232
modifying items in, 133
multiple types in, 132
multiplying, 136
as mutable, 134
nested, 142–144, 158
None returned by methods

of, 141, 143
number of items in, 135,

142
operations on, 135–137
parallel, looping through,

156
as parameters, 140–141
ragged, 159
removing items from, 141
reversing order of items

in, 142
searching, 243–256
sets created from, 204
slicing, 137–139
sorting, 135, 142, 234,

256–263
sum of values in, 135
type annotations for, 133

literals, 23

local variables, 39

logarithms, 251

logical (Boolean) operators,
78–80, 353

loops
about, 167
based on a condition,

160–162
based on user input, 162
break statement in, 163–

165, 167
continue statement in,

165–167

Index • 377

controlling, 163–167
exercises, 168
infinite, 162
for loop, 149–151, 181,

191, 218–219, 236,
247

nested, 156
over a range of numbers,

152–154
step size of, 153
through characters in

strings, 151
through dictionary items,

218–219
through list items, 149–

151
through list items using

indices, 154–156
through nested lists, 158
through ragged lists, 159
while loop, 160–162, 246

lower method, for strings, 117,
120

lstrip method, for strings, 120–
121

Lutz, Mark (Learning Python),
xiv

M
__main__ keyword, 107–109

mainloop method, for Tk class,
322

maps, see dictionaries

math module, 100

mathematical expressions,
see arithmetic operators;
expressions

max function, for lists, 135

MAX function, in queries, 358

memory
addresses in, 17, 34
frames in, 41
model of, 16–18
tracing function calls in,

40–46

Menu widget, 323, 337

Menubutton widget, 323

merge function, 268

merge sort, 266–270

merging sorted lists, 267

Message widget, 323

methods
about, 115, 125, 283
__abs__, 124
add, for sets, 206

__add__, 123–124
append, for lists, 141–142
assertEqual, for test cases,

307
calling, 116–118, 280
capitalize, for strings, 116,

119
clear, for dictionaries, 219
clear, for lists, 142
clear, for sets, 206
close, for databases, 348
commit, for databases,

348, 363
connect, 345
count, for lists, 142
count, for strings, 117,

119
defining, 280–285
difference, for sets, 206–

207
endswith, for strings, 119,

121
__enter__, 176
__eq__, 286, 288
execute, for SQL state-

ments, 346
exercises, 126
__exit__, 176
extend, for lists, 141–142
fetchall, for databases, 349
fetchone, for databases,

348
find, for strings, 119
format, for strings, 119,

121
get, for dictionaries, 219
grid, for widgets, 334
__gt__, 125
index, for lists, 142, 243
inherited, overriding, 287
__init__, 281–282
insert, for lists, 141–142
intersection, for sets, 206–

207
islower, for strings, 120
issubset, for sets, 206–207
issuperset, for sets, 206–

207
isupper, for strings, 120
items, for dictionaries, 219
keys, for dictionaries, 219
lower, for strings, 117, 120
lstrip, for strings, 120–121
mainloop, for Tk class, 322
pack, for widgets, 323,

325, 334
pop, for dictionaries, 219
pop, for lists, 142
read, for files, 179

remove, for lists, 141–142,
232

remove, for sets, 206
replace, for strings, 120
__repr__, 286
reverse, for lists, 142
rstrip, for strings, 120–121
set operations, 205–207
setdefault, for dictionaries,

219
sort, for lists, 142, 263–

265
split, for strings, 120
startswith, for strings, 120
__str__, 286
strip, for strings, 120–121
swapcase, for strings, 120–

121
symmetric_difference, for sets,

206–207
underscores enclosing,

123–125, 285–288
union, for sets, 206–207
update, for dictionaries,

219
upper, for strings, 120
values, for dictionaries,

219
write, for files, 185

Meyers, Chris (How to Think

Like a Computer Scientist:

Learning with Python), xiv

min function, for lists, 135,
230, 232

MIN function, in queries, 358

minus sign (-)
negation operator, 12, 15
set difference, 207
subtraction operator, 10,

15

minus sign, equal sign (-=),
subtraction assignment op-
erator, 22

models, 327–328

module objects, 100

module type, 100

__module__ variable, 289

modules
about, 99–100, 113, 115
bisect, 255, 266
__builtins__, 103
calendar, 113
code run on import, by

default, 105–106
code run on import, se-

lecting, 107–109
defining, 104

Index • 378

doctest, 111–112, 304,
306, 309

exercises, 113
functions in, 33
grouping functions and

variables into, 112
imp, 106
importing, 100–104
importing specific objects

from, 102
math, 100
name conflicts with ob-

jects in, 103
os, 178
restoring, 106
time, 238, 250
tkinter, 321–323
typing, 133
unittest, 306–309, 311–315
urllib, 184

modulo (%) operator, 11, 15

modulo (%=) assignment oper-
ator, 22

Molecule class case study, 293–
297

multiline records in files,
195–198

multiline statements, 23–25

multiline strings, 70

multiplication (*) operator,
10, 15, 136

multiplication assignment (*=)
operator, 22

mutable objects
aliasing and, 139
comparing, 224
dictionaries as, 215
lists as, 134
sets as, 203, 205

mutable parameters, 140–141

mutable variables, with wid-
gets, 324

MVC design, 327–328

N
__name__ variable, 107–109,

289

namespace, 40

negation (-) operator, 12, 15

negative operands, 11

nested if statements, 92

nested lists, 142–144, 158

nested loops, 156

nested queries, 361

newline character (\n), 69–71

None value, 60

normalizing strings, 70

not equal to (!=) operator, 80,
350

NOT NULL keywords, 352

not operator, 78

NULL data type, 346

NULL values, in database, 352

numbers, see also float (float-
ing point) type; int (integer)
type

looping over ranges of,
152–154

using with Boolean oper-
ators, 84

numeric precision, 12, 14

numerical analysis, 14

O
object class, 277–278

object-oriented GUIs, 338

object-oriented programming,
119, 275, see also classes;
methods; objects

about, 275, 288–293, 297
encapsulation, 288
exercises, 298
inheritance, 278, 290–

293
isinstance function, 277
polymorphism, 289–290
problem domain, 276
special methods, using,

285–288

objects
about, 123, 277
constructors for, 282
creating from classes,

278
function objects, 101
immutable, 135, 139
instance variables in,

279, 283
list objects, 130
in memory, 17, 34
methods for, defining,

280–285
module objects, 100
mutable, 134, 139
StringIO, 186

online resources, see websites

open function, 175, 178

opening files, 175–178

operating system (OS), 7, 27

operations
on lists, 135–137
on dictionaries, 218
on sets, 205–207
on strings, 66–68, 85

in operator, 85, 137

operators, see also specific
operators; Symbols at begin-
ning of index

about, 94
and, 78
arithmetic, 9–12
binary, 12
Boolean (logical), 78–80,

84, 353
combining, 82–85
concatenation (+), 66,

136, 142
del, 137
dot (.), 101
equality, 80–82
in, 85, 137, 217, 223
not, 78
or, 78
overloaded, 12
precedence of, 13–15, 82–

85
relational, 80–82
unary, 12, 78

or operator, 78

ORDER BY clause, SELECT state-
ment, 349

organization of files, 177–178

OS (operating system), 7, 27

os module, 178

out-of-range indices, 131

overloaded operators, 12

overriding inherited methods,
287

P
pack method, for widgets,

323, 325, 334

parallel lists, looping through,
156

parameters
of functions, 38–39, 72
mutable, 140–141

parent widget, 323

parentheses ()
about, 5
enclosing tuples, 210
function call, 31
function definition, 38
line breaks within, 24
overriding precedence, 15

Index • 379

PDB (Protein Data Bank) for-
mat, 195–198

percent sign (%) modulo oper-
ator, 11, 15

percent sign, equal sign (%=)
modulo assignment opera-
tor, 22

perf_counter function, 238, 250

performance, see efficiency

period (.) dot operator, 101

period, double (..) directory
up one level, 178

period, triple (...) prompt,
continuation, 24

pi variable, 101

plus sign (+)
addition operator, 9, 15
concatenation operator,

66, 136, 142

plus sign, equal sign (+=), ad-
dition assignment operator,
22

polymorphism, 289–290

pop method, for dictionaries,
219

pop method, for lists, 142

populations example, 344–
348

pow function, 32, 34

precedence of operators, 13–
15, 82–85

precision, numeric, 12, 14

preconditions, for functions,
61

PRIMARY KEY clause, 357

print function, 59, 70–73, 149

printing, 70–73

problem domain, 276

processor, 7

profiling programs, 238, see

also efficiency

programming, 1–3, 367, see

also object-oriented pro-
gramming

programming languages, xiv,
3, see also Python

programs, see also efficiency;
Python; testing and debug-
ging

about, 2–3
comments, 25
imperative, 119
indentation in, 37, 86

readability of, 26
running, 7–8, 58
style guide for, 26
writing, 58

prompt, for user input, 87

prompt, IDLE (>>>), 9

prompt, continuation (...), 24

Protein Data Bank (PDB) for-
mat, 195–198

punctuation, 5, see also oper-
ators; special characters;
strings; Symbols at begin-
ning of index

.py extension, 59

Python, see also expressions;
functions; loops; modules;
statements; types; variables

about, xiii, 4
installing, 5, 9
interpreter, 8
online tutor, 17
running programs, 7–8

Python Education Special Inter-

est Group (Python EDU
SIG), xiv

Python Programming: An Intro-

duction to Computer Science

(Zelle), xiv

Q
QA (quality assurance), 303

__qualname__ variable, 289

queries, 348–351, 361

quotes (’ or ")
enclosing strings, 65
in strings, 68

quotes, three double ("""), en-
closing docstring, 47

quotes, three single or double
(”’ or """), enclosing multi-
line strings, 70

R
ragged lists, 159

range function, 152–154

range type, 152, 205

ranges of numbers, looping
over, 152–154

read method, for files, 179

Read technique, 179

readability of code, 26

reading files, 179–184, 188–
199

readline function, 181–183,
188–190

readlines function, 179–180

REAL data type, 346

real numbers, see float (float-
ing point) type

records
multiline, in files, 195–

198
in tables, 343

relational databases,
see databases

relational operators, 80–85

relative path, 178

relief attribute, for frames, 326

reload function, 106

remove method, for lists, 141–
142, 232

remove method, for sets, 206

replace method, for strings,
120

__repr__ method, 286

resources, see books; web-
sites

restoring modules, 106

return character (\tr), 69

return statement
about, 39
omitting, 60, 140

return type, of function, 48

return value, of function, 32

reverse method, for lists, 142

reversed function, 180

RGB color model, 332

rolled back transactions, 362

root window, 322–325

round function, 33

rounding
of floating point numbers,

14
of integers, 11
round function, 33

rows, in tables, 343

rstrip method, for strings, 120–
121

running programs, 7–8, 58

running times, see efficiency

running_sum function case
study, 309–315

Index • 380

S
Scheme programming lan-

guage, 4

scope, of local variables, 40

searching algorithms
about, 243, 270
binary search, 250–256
efficiency of, 250, 255
exercises, 272
linear search, 244–250
lists, 243–256
sentinel search, 248
for smallest values, 230–

237
timing searches, 238–

240, 249

SELECT statement, 348, 361

selection sort, 257–261, 263–
265

self parameter, 280

self-joins, 359

semantic errors, 22

sentinel search, 248

set function, 204

set type, 203

setdefault method, for dictionar-
ies, 219

sets
about, 203–205, 226
adding items to, 206
checking if item exists in,

223
comparing with other

collections, 224
creating, 204
difference between two

sets, 206–207
empty, 204
exercises, 226
frozen, 209
hashing used for, 209
intersection of two sets,

206–207
operations on, 205–207
removing all items from,

206
removing items from, 206
subsets of, determining,

206–207
supersets of, determin-

ing, 206–207
symmetric difference be-

tween two sets, 206–
207

union of two sets, 206–
207

Shannon, Claude, 77

shell, 8

short-circuit evaluation, 84

slicing lists, 137–139

sort method, for lists, 142,
263–265

sorted function, 135, 180, 234

sorted lists, searching, 250–
256

sorting algorithms
about, 243, 256–257, 270
efficiency of, 263–266,

270
exercises, 272
insertion sort, 261–265
merge sort, 266–270
selection sort, 257–261,

263–265

sparse vectors, 228

special attributes, 289

special characters
names for, 5
in strings, 68

special methods, 285–288

split method, for strings, 120

SQL (Structured Query Lan-
guage), 344

SQLite, 344–345

sqrt function, 101, 117

square brackets [], see brack-
ets ([])

startswith function, 121

startswith method, for strings,
120

statements, Python, see al-

so loops
about, 7
assignment, 15, 18–22,

72, 134–135
augmented assignment,

21
break, 163–165, 167
conditionally executing,

86–92
continue, 165–167
if, 86–92
import, 100, 102, 104
return statement, 39
return statement, omitting,

60
spanning multiple lines,

23–25
with, 176, 181, 191

statements, SQL
CREATE TABLE, 346

DELETE, 351
DROP, 351
INSERT, 347
SELECT, 348, 361
UPDATE, 351

storage, see data collections;
databases; files; memory;
variables

str (string) type, 65, 115

str function, 116

__str__ method, 286

StringIO object, 186

strings
about, 74
aliasing, 140
assigning to variables, 68
beginning characters of,

determining, 120–121
capitalizing, 116, 119
centering, 117
comparing, 85
comparing with other

collections, 224
concatenating, 66
creating, 65, 116
empty, 66
ending characters of, de-

termining, 119, 121
exercises, 75
fields in, 122
formatting, 119, 121
as immutable, 135
length of, 66
looping through charac-

ters in, 151
lowercase, determining,

120
lowercasing, 117, 120
methods for, 116, 119–

123
multiline, 70
normalizing, 70
operations on, 66–68
reading keyboard input

into, 73–74
repeating, 68
representing as int or float

types, 67
special characters in, 68
splitting, 120
substrings in, 85
substrings in, counting,

117, 119
substrings in, finding,

119
substrings in, replacing,

120

Index • 381

swapping case of, 120–
121

uppercase, determining,
120

uppercasing, 120
using with Boolean oper-

ators, 84
whitespace in, stripping,

120–121

StringVar type, for widgets, 324

strip method, for strings, 120–
121

Structured Query Language
(SQL), 344

subclasses, 277

subtraction (-) operator, 10,
15

subtraction assignment (-=)
operator, 22

sum function, for lists, 135

SUM function, in queries, 358

superclasses, 277

swapcase method, for strings,
120–121

symmetric_difference method, for
sets, 206–207

syntax, 23

syntax errors, 22

T
tab character (\t), 69, 71

tables
about, 343
creating, 346
deleting, 351
joins, 353–357
populating, 347

TestCase class, 307

testing and debugging
about, 229, 303, 317
boundary cases, testing,

305, 315
bugs and crashes, 4
case study, 304–315
debugging, 316–317
doctest module, 304, 306,

309
exercises, 317
reasons for, 303
semiautomatically, 110–

112
test cases, choosing,

304–306, 310–311,
315–316

test coverage, 315

unit tests, 306
unittest module, 306–309,

311–315

text, see printing; strings;
user input

TEXT data type, 346

text files, 173–174, see al-

so files

Text widget, 323, 335

textvariable parameter, for la-
bels, 324

three-valued logic, 353

time module, 238, 250

Time Series Data Library (TS-
DL), 182

timing, see efficiency

tkinter module, 321–323

top-down design, 229

TopLevel widget, 323

tracing function calls in
memory model, 40–46

transactions, in databases,
362–364

True value, see bool (Boolean)
type

truth table, 79

TSDL (Time Series Data Li-
brary), 182

tuple type, 210

tuples
about, 209–212, 226
assigning multiple vari-

ables using, 213
checking if item exists in,

223
comparing with other

collections, 224
creating, 210
empty, 210
exercises, 226
sets created from, 205

type annotations, 48, 133,
224–226

TypeError message, 67

types
about, 10, 12–15, 27
BLOB, in databases, 346
bool (Boolean), 77
BooleanVar, for widgets,

324
classes representing,

115, 276
conversion functions for,

33

dict, 214–216
DoubleVar, for widgets, 324
float (floating point), 10,

122
Frame, 323, 325
int (integer), 10, 122
INTEGER, in databases, 346
IntVar, for widgets, 324
list, 129–133
module, 100
NULL, in databases, 346
range, 152, 205
REAL, in databases, 346
return type, of function,

48
set, 203
str (string), 65, 115
StringVar, for widgets, 324
TEXT, in databases, 346
tuple, 210
using as functions, 116

typing module, 133

U
unary operators, 12, 78

underscores, double (__), en-
closing methods or vari-
ables, 123–125, 285–288

union method, for sets, 206–
207

unique IDs, in databases, 358

unit tests, 306

unittest module, 306–309, 311–
315

unordered collections, 203

unsorted lists, searching,
244–250

update method, for dictionar-
ies, 219

UPDATE statement, 351

upper method, for strings, 120

urllib module, 184

urlopen function, 184

user input
Entry widget, 326
looping based on, 162
prompts for, 74, 87
reading from keyboard,

73–74

user interfaces, see com-
mand-line user interface;
graphical user interface

UTF-8 encoding scheme, 184

Index • 382

V
ValueError message, 67

values, see also types
about, 9–12
assigning to variables,

15, 18–22
finding two smallest val-

ues, 230–237
in memory, 16–18
missing in data, han-

dling, 190–191
None value, 60
tracking in memory, 34
True or False, 77

values method, for dictionaries,
219

variables
about, 15–22, 27
assigning list items to,

132
assigning lists to, 130
assigning strings to, 68
assigning sublists to, 144
assigning using tuples,

213
assigning values to, 15,

18–22
Boolean expression re-

sults assigned to, 92–
94

__class__, 289
__dict__, 289
__doc__, 125
exercises, 27
global, 328
grouping into modules,

112
importing from modules

by name, 102
instance variables, 279,

283

local, 39
in memory, 16–18
__module__, 289
module objects assigned

to, 101
in modules, 100–101
mutable, 324
__name__, 107–109, 289
pi, 101
__qualname__, 289
reassigning to, 19
reusing names of, 41
scope of, 40
underscores enclosing,

125
__weakref__, 289

vector, 294

vertical bar (|), set union, 207

views, 327–328

virtual machine, 8

visual style for GUI, 331–335

W
__weakref__ variable, 289

websites
encoding schemes, 184
exercise solutions, 27
online Python tutor, 17
programming style guide,

26
Python installation, 5, 9
Python module library,

104
Python resources, xiv
for this book, xv

WHERE clause
SELECT statement, 350
UPDATE or DELETE state-

ment, 351

while loop, 160–162, 246

whitespace-delimited data,
192–194

widgets, 335
about, 321
Button, 323
Canvas, 323
Checkbutton, 323, 336
Entry, 323, 326
Frame, 323
grouping into frames, 325
Label, 323–324
layout of, 334–335
Listbox, 323
Menu, 323, 337
Menubutton, 323
Message, 323
mutable variables with,

324
pack method, 323, 325
parent widget, 323
Text, 323, 335
TopLevel, 323

windows, see graphical user
interface

Wing, Jeannette, Computation-

al Thinking, 3

with statement, 176, 181, 191

working directory, 177

wrapper functions, 329

write method, for files, 185

write mode, 185

writing files, 185–186

writing programs, see pro-
gramming; programs

Z
Zelle, John (Python Program-

ming: An Introduction to

Computer Science), xiv

Index • 383

More Python, More Exercises
Learn how to properly test your Python code, and strengthen your skills with these coding

challenges.

Python Testing with pytest
Do less work when testing your Python code, but be

just as expressive, just as elegant, and just as readable.

The pytest testing framework helps you write tests

quickly and keep them readable and maintain-

able—with no boilerplate code. Using a robust yet

simple fixture model, it’s just as easy to write small

tests with pytest as it is to scale up to complex func-

tional testing for applications, packages, and libraries.

This book shows you how.

Brian Okken

(220 pages) ISBN: 9781680502404. $43.95

https://pragprog.com/book/bopytest

Exercises for Programmers
When you write software, you need to be at the top of

your game. Great programmers practice to keep their

skills sharp. Get sharp and stay sharp with more than

fifty practice exercises rooted in real-world scenarios.

If you’re a new programmer, these challenges will help

you learn what you need to break into the field, and if

you’re a seasoned pro, you can use these exercises to

learn that hot new language for your next gig.

Brian P. Hogan

(118 pages) ISBN: 9781680501223. $24

https://pragprog.com/book/bhwb

https://pragprog.com/book/bopytest
https://pragprog.com/book/bhwb

Level Up
From data structures to architecture and design, we have what you need.

A Common-Sense Guide to Data Structures and Algorithms
If you last saw algorithms in a university course or at

a job interview, you’re missing out on what they can

do for your code. Learn different sorting and searching

techniques, and when to use each. Find out how to

use recursion effectively. Discover structures for spe-

cialized applications, such as trees and graphs. Use

Big O notation to decide which algorithms are best for

your production environment. Beginners will learn how

to use these techniques from the start, and experienced

developers will rediscover approaches they may have

forgotten.

Jay Wengrow

(218 pages) ISBN: 9781680502442. $45.95

https://pragprog.com/book/jwdsal

Design It!
Don’t engineer by coincidence—design it like you mean

it! Grounded by fundamentals and filled with practical

design methods, this is the perfect introduction to

software architecture for programmers who are ready

to grow their design skills. Ask the right stakeholders

the right questions, explore design options, share your

design decisions, and facilitate collaborative workshops

that are fast, effective, and fun. Become a better pro-

grammer, leader, and designer. Use your new skills to

lead your team in implementing software with the right

capabilities—and develop awesome software!

Michael Keeling

(358 pages) ISBN: 9781680502091. $41.95

https://pragprog.com/book/mkdsa

https://pragprog.com/book/jwdsal
https://pragprog.com/book/mkdsa

Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

tmux 2
Your mouse is slowing you down. The time you spend

context switching between your editor and your con-

soles eats away at your productivity. Take control of

your environment with tmux, a terminal multiplexer

that you can tailor to your workflow. With this updated

second edition for tmux 2.3, you’ll customize, script,

and leverage tmux’s unique abilities to craft a produc-

tive terminal environment that lets you keep your fin-

gers on your keyboard’s home row.

Brian P. Hogan

(102 pages) ISBN: 9781680502213. $21.95

https://pragprog.com/book/bhtmux2

Modern Vim
Turn Vim into a full-blown development environment

using Vim 8’s new features and this sequel to the

beloved bestseller Practical Vim. Integrate your editor

with tools for building, testing, linting, indexing, and

searching your codebase. Discover the future of Vim

with Neovim: a fork of Vim that includes a built-in

terminal emulator that will transform your workflow.

Whether you choose to switch to Neovim or stick with

Vim 8, you’ll be a better developer.

Drew Neil

(190 pages) ISBN: 9781680502626. $39.95

https://pragprog.com/book/modvim

https://pragprog.com/book/bhtmux2
https://pragprog.com/book/modvim

The Modern Web
Get up to speed on the latest HTML, CSS, and JavaScript techniques, and secure your Node

applications.

HTML5 and CSS3 (2nd edition)
HTML5 and CSS3 are more than just buzzwords –

they’re the foundation for today’s web applications.

This book gets you up to speed on the HTML5 elements

and CSS3 features you can use right now in your cur-

rent projects, with backwards compatible solutions

that ensure that you don’t leave users of older browsers

behind. This new edition covers even more new fea-

tures, including CSS animations, IndexedDB, and

client-side validations.

Brian P. Hogan

(314 pages) ISBN: 9781937785598. $38

https://pragprog.com/book/bhh52e

Secure Your Node.js Web Application
Cyber-criminals have your web applications in their

crosshairs. They search for and exploit common secu-

rity mistakes in your web application to steal user data.

Learn how you can secure your Node.js applications,

database and web server to avoid these security holes.

Discover the primary attack vectors against web appli-

cations, and implement security best practices and

effective countermeasures. Coding securely will make

you a stronger web developer and analyst, and you’ll

protect your users.

Karl Düüna

(230 pages) ISBN: 9781680500851. $36

https://pragprog.com/book/kdnodesec

https://pragprog.com/book/bhh52e
https://pragprog.com/book/kdnodesec

Kick your Career up a Notch
Ready to blog or promote yourself for real? Time to refocus your personal priorities? We’ve

got you covered.

Technical Blogging
Technical Blogging is the first book to specifically teach

programmers, technical people, and technically-orient-

ed entrepreneurs how to become successful bloggers.

There is no magic to successful blogging; with this

book you’ll learn the techniques to attract and keep a

large audience of loyal, regular readers and leverage

this popularity to achieve your goals.

Antonio Cangiano

(288 pages) ISBN: 9781934356883. $33

https://pragprog.com/book/actb

New Programmer’s Survival Manual
It’s your first day on the new job. You’ve got the pro-

gramming chops, you’re up on the latest tech, you’re

sitting at your workstation… now what? New Program-

mer’s Survival Manual gives your career the jolt it needs

to get going: essential industry skills to help you apply

your raw programming talent and make a name for

yourself. It’s a no-holds-barred look at what really goes

on in the office—and how to not only survive, but thrive

in your first job and beyond.

Josh Carter

(256 pages) ISBN: 9781934356814. $29

https://pragprog.com/book/jcdeg

https://pragprog.com/book/actb
https://pragprog.com/book/jcdeg

Seven in Seven
You need to learn at least one new language every year. Here are fourteen excellent sugges-

tions to get started.

Seven Languages in Seven Weeks
You should learn a programming language every year,

as recommended by The Pragmatic Programmer. But

if one per year is good, how about Seven Languages in

Seven Weeks? In this book you’ll get a hands-on tour

of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.

Whether or not your favorite language is on that list,

you’ll broaden your perspective of programming by

examining these languages side-by-side. You’ll learn

something new from each, and best of all, you’ll learn

how to learn a language quickly.

Bruce A. Tate

(330 pages) ISBN: 9781934356593. $34.95

https://pragprog.com/book/btlang

Seven More Languages in Seven Weeks
Great programmers aren’t born—they’re made. The

industry is moving from object-oriented languages to

functional languages, and you need to commit to radi-

cal improvement. New programming languages arm

you with the tools and idioms you need to refine your

craft. While other language primers take you through

basic installation and “Hello, World,” we aim higher.

Each language in Seven More Languages in Seven

Weeks will take you on a step-by-step journey through

the most important paradigms of our time. You’ll learn

seven exciting languages: Lua, Factor, Elixir, Elm,

Julia, MiniKanren, and Idris.

Bruce Tate, Fred Daoud, Jack Moffitt, Ian Dees

(318 pages) ISBN: 9781941222157. $38

https://pragprog.com/book/7lang

https://pragprog.com/book/btlang
https://pragprog.com/book/7lang

Seven in Seven
From Web Frameworks to Concurrency Models, see what the rest of the world is doing with

this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks
Whether you need a new tool or just inspiration, Seven

Web Frameworks in Seven Weeks explores modern

options, giving you a taste of each with ideas that will

help you create better apps. You’ll see frameworks that

leverage modern programming languages, employ

unique architectures, live client-side instead of server-

side, or embrace type systems. You’ll see everything

from familiar Ruby and JavaScript to the more exotic

Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud

(302 pages) ISBN: 9781937785635. $38

https://pragprog.com/book/7web

Seven Concurrency Models in Seven Weeks
Your software needs to leverage multiple cores, handle

thousands of users and terabytes of data, and continue

working in the face of both hardware and software

failure. Concurrency and parallelism are the keys, and

Seven Concurrency Models in Seven Weeks equips you

for this new world. See how emerging technologies

such as actors and functional programming address

issues with traditional threads and locks development.

Learn how to exploit the parallelism in your computer’s

GPU and leverage clusters of machines with MapRe-

duce and Stream Processing. And do it all with the

confidence that comes from using tools that help you

write crystal clear, high-quality code.

Paul Butcher

(296 pages) ISBN: 9781937785659. $38

https://pragprog.com/book/pb7con

https://pragprog.com/book/7web
https://pragprog.com/book/pb7con

Put the “Fun” in Functional
Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,

industrial-strength environment of Erlang.

Programming Elixir 1.3
Explore functional programming without the academic

overtones (tell me about monads just one more time).

Create concurrent applications, but get them right

without all the locking and consistency headaches.

Meet Elixir, a modern, functional, concurrent language

built on the rock-solid Erlang VM. Elixir’s pragmatic

syntax and built-in support for metaprogramming will

make you productive and keep you interested for the

long haul. Maybe the time is right for the Next Big

Thing. Maybe it’s Elixir. This book is the introduction

to Elixir for experienced programmers, completely up-

dated for Elixir 1.3.

Dave Thomas

(362 pages) ISBN: 9781680502008. $38

https://pragprog.com/book/elixir13

Programming Phoenix
Don’t accept the compromise between fast and beauti-

ful: you can have it all. Phoenix creator Chris McCord,

Elixir creator José Valim, and award-winning author

Bruce Tate walk you through building an application

that’s fast and reliable. At every step, you’ll learn from

the Phoenix creators not just what to do, but why.

Packed with insider insights, this definitive guide will

be your constant companion in your journey from

Phoenix novice to expert, as you build the next gener-

ation of web applications.

Chris McCord, Bruce Tate, and José Valim

(298 pages) ISBN: 9781680501452. $34

https://pragprog.com/book/phoenix

https://pragprog.com/book/elixir13
https://pragprog.com/book/phoenix

The Joy of Mazes and Math
Rediscover the joy and fascinating weirdness of mazes and pure mathematics.

Mazes for Programmers
A book on mazes? Seriously?

Yes!

Not because you spend your day creating mazes, or

because you particularly like solving mazes.

But because it’s fun. Remember when programming

used to be fun? This book takes you back to those days

when you were starting to program, and you wanted

to make your code do things, draw things, and solve

puzzles. It’s fun because it lets you explore and grow

your code, and reminds you how it feels to just think.

Sometimes it feels like you live your life in a maze of

twisty little passages, all alike. Now you can code your

way out.

Jamis Buck

(286 pages) ISBN: 9781680500554. $38

https://pragprog.com/book/jbmaze

Good Math
Mathematics is beautiful—and it can be fun and excit-

ing as well as practical. Good Math is your guide to

some of the most intriguing topics from two thousand

years of mathematics: from Egyptian fractions to Tur-

ing machines; from the real meaning of numbers to

proof trees, group symmetry, and mechanical compu-

tation. If you’ve ever wondered what lay beyond the

proofs you struggled to complete in high school geom-

etry, or what limits the capabilities of the computer on

your desk, this is the book for you.

Mark C. Chu-Carroll

(282 pages) ISBN: 9781937785338. $34

https://pragprog.com/book/mcmath

https://pragprog.com/book/jbmaze
https://pragprog.com/book/mcmath

Past and Present
To see where we’re going, remember how we got here, and learn how to take a healthier

approach to programming.

Fire in the Valley
In the 1970s, while their contemporaries were

protesting the computer as a tool of dehumanization

and oppression, a motley collection of college dropouts,

hippies, and electronics fanatics were engaged in

something much more subversive. Obsessed with the

idea of getting computer power into their own hands,

they launched from their garages a hobbyist movement

that grew into an industry, and ultimately a social and

technological revolution. What they did was invent the

personal computer: not just a new device, but a water-

shed in the relationship between man and machine.

This is their story.

Michael Swaine and Paul Freiberger

(422 pages) ISBN: 9781937785765. $34

https://pragprog.com/book/fsfire

The Healthy Programmer
To keep doing what you love, you need to maintain

your own systems, not just the ones you write code

for. Regular exercise and proper nutrition help you

learn, remember, concentrate, and be creative—skills

critical to doing your job well. Learn how to change

your work habits, master exercises that make working

at a computer more comfortable, and develop a plan

to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for

those wishing to know more about health issues. In no

way is this book intended to replace, countermand, or

conflict with the advice given to you by your own

healthcare provider including Physician, Nurse Practi-

tioner, Physician Assistant, Registered Dietician, and

other licensed professionals.

Joe Kutner

(254 pages) ISBN: 9781937785314. $36

https://pragprog.com/book/jkthp

https://pragprog.com/book/fsfire
https://pragprog.com/book/jkthp

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers will

be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page

https://pragprog.com/book/gwpy3
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with

our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: https://pragprog.com/book/gwpy3

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/gwpy3
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/gwpy3
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	Online Resources

	1. What's Programming?
	Programs and Programming
	What's a Programming Language?
	What's a Bug?
	The Difference Between Brackets, Braces, and Parentheses
	Installing Python

	2. Hello, Python
	How Does a Computer Run a Python Program?
	Expressions and Values: Arithmetic in Python
	What Is a Type?
	Variables and Computer Memory: Remembering Values
	How Python Tells You Something Went Wrong
	A Single Statement That Spans Multiple Lines
	Describing Code
	Making Code Readable
	The Object of This Chapter
	Exercises

	3. Designing and Using Functions
	Functions That Python Provides
	Memory Addresses: How Python Keeps Track of Values
	Defining Our Own Functions
	Using Local Variables for Temporary Storage
	Tracing Function Calls in the Memory Model
	Designing New Functions: A Recipe
	Writing and Running a Program
	Omitting a return Statement: None
	Dealing with Situations That Your Code Doesn’t Handle
	What Did You Call That?
	Exercises

	4. Working with Text
	Creating Strings of Characters
	Using Special Characters in Strings
	Creating a Multiline String
	Printing Information
	Getting Information from the Keyboard
	Quotes About Strings
	Exercises

	5. Making Choices
	A Boolean Type
	Choosing Which Statements to Execute
	Nested if Statements
	Remembering Results of a Boolean Expression Evaluation
	You Learned About Booleans: True or False?
	Exercises

	6. A Modular Approach to Program Organization
	Importing Modules
	Defining Your Own Modules
	Testing Your Code Semiautomatically
	Tips for Grouping Your Functions
	Organizing Our Thoughts
	Exercises

	7. Using Methods
	Modules, Classes, and Methods
	Calling Methods the Object-Oriented Way
	Exploring String Methods
	What Are Those Underscores?
	A Methodical Review
	Exercises

	8. Storing Collections of Data Using Lists
	Storing and Accessing Data in Lists
	Type Annotations for Lists
	Modifying Lists
	Operations on Lists
	Slicing Lists
	Aliasing: What's in a Name?
	List Methods
	Working with a List of Lists
	A Summary List
	Exercises

	9. Repeating Code Using Loops
	Processing Items in a List
	Processing Characters in Strings
	Looping Over a Range of Numbers
	Processing Lists Using Indices
	Nesting Loops in Loops
	Looping Until a Condition Is Reached
	Repetition Based on User Input
	Controlling Loops Using break and continue
	Repeating What You've Learned
	Exercises

	10. Reading and Writing Files
	What Kinds of Files Are There?
	Opening a File
	Techniques for Reading Files
	Files over the Internet
	Writing Files
	Writing Example Calls Using StringIO
	Writing Algorithms That Use the File-Reading Techniques
	Multiline Records
	Looking Ahead
	Notes to File Away
	Exercises

	11. Storing Data Using Other Collection Types
	Storing Data Using Sets
	Storing Data Using Tuples
	Storing Data Using Dictionaries
	Inverting a Dictionary
	Using the in Operator on Tuples, Sets, and Dictionaries
	Comparing Collections
	Creating New Type Annotations
	A Collection of New Information
	Exercises

	12. Designing Algorithms
	Searching for the Two Smallest Values
	Timing the Functions
	At a Minimum, You Saw This
	Exercises

	13. Searching and Sorting
	Searching a List
	Binary Search
	Sorting
	More Efficient Sorting Algorithms
	Merge Sort: A Faster Sorting Algorithm
	Sorting Out What You Learned
	Exercises

	14. Object-Oriented Programming
	Understanding a Problem Domain
	Function isinstance, Class object, and Class Book
	Writing a Method in Class Book
	Plugging into Python Syntax: More Special Methods
	A Little Bit of OO Theory
	A Case Study: Molecules, Atoms, and PDB Files
	Classifying What You've Learned
	Exercises

	15. Testing and Debugging
	Why Do You Need to Test?
	Case Study: Testing above_freezing
	Case Study: Testing running_sum
	Choosing Test Cases
	Hunting Bugs
	Bugs We've Put in Your Ear
	Exercises

	16. Creating Graphical User Interfaces
	Using Module tkinter
	Building a Basic GUI
	Models, Views, and Controllers, Oh My!
	Customizing the Visual Style
	Introducing a Few More Widgets
	Object-Oriented GUIs
	Keeping the Concepts from Being a GUI Mess
	Exercises

	17. Databases
	Overview
	Creating and Populating
	Retrieving Data
	Updating and Deleting
	Using NULL for Missing Data
	Using Joins to Combine Tables
	Keys and Constraints
	Advanced Features
	Some Data Based On What You Learned
	Exercises

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Z –

