

About	This
eBook

ePUB	is	an	open,	industry-
standard	format	for	eBooks.
However,	support	of	ePUB
and	its	many	features	varies
across	reading	devices	and
applications.	Use	your	device
or	app	settings	to	customize
the	presentation	to	your
liking.	Settings	that	you	can

customize	often	include	font,
font	size,	single	or	double
column,	landscape	or	portrait
mode,	and	figures	that	you
can	click	or	tap	to	enlarge.
For	additional	information
about	the	settings	and
features	on	your	reading
device	or	app,	visit	the	device
manufacturer’s	Web	site.
Many	titles	include

programming	code	or
configuration	examples.	To

optimize	the	presentation	of
these	elements,	view	the
eBook	in	single-column,
landscape	mode	and	adjust
the	font	size	to	the	smallest
setting.	In	addition	to
presenting	code	and
configurations	in	the
reflowable	text	format,	we
have	included	images	of	the
code	that	mimic	the
presentation	found	in	the
print	book;	therefore,	where
the	reflowable	format	may

compromise	the	presentation
of	the	code	listing,	you	will
see	a	“Click	here	to	view
code	image”	link.	Click	the
link	to	view	the	print-fidelity
code	image.	To	return	to	the
previous	page	viewed,	click
the	Back	button	on	your
device	or	app.

Learn	C	The
Hard	Way
Practical	Exercises

on	the
Computational

Subjects	You	Keep
Avoiding	(Like	C)

Zed	A.	Shaw

New	York	•	Boston	•
Indianapolis	•	San	Francisco
Toronto	•	Montreal	•	London
•	Munich	•	Paris	•	Madrid

Capetown	•	Sydney	•	Tokyo	•

Singapore	•	Mexico	City

Many	of	the	designations
used	by	manufacturers	and
sellers	to	distinguish	their
products	are	claimed	as
trademarks.	Where	those
designations	appear	in	this
book,	and	the	publisher	was
aware	of	a	trademark	claim,
the	designations	have	been
printed	with	initial	capital
letters	or	in	all	capitals.

The	author	and	publisher
have	taken	care	in	the

preparation	of	this	book,	but
make	no	expressed	or	implied
warranty	of	any	kind	and
assume	no	responsibility	for
errors	or	omissions.	No
liability	is	assumed	for
incidental	or	consequential
damages	in	connection	with
or	arising	out	of	the	use	of	the
information	or	programs
contained	herein.

For	information	about	buying
this	title	in	bulk	quantities,	or

for	special	sales	opportunities
(which	may	include
electronic	versions;	custom
cover	designs;	and	content
particular	to	your	business,
training	goals,	marketing
focus,	or	branding	interests),
please	contact	our	corporate
sales	department	at
corpsales@pearsoned.com	or
(800)	382-3419.

For	government	sales
inquiries,	please	contact

mailto:corpsales@pearsoned.com

governmentsales@pearsoned.com

For	questions	about	sales
outside	the	U.S.,	please
contact
international@pearsoned.com.

Visit	us	on	the	Web:
informit.com/aw

Library	of	Congress
Cataloging-in-Publication
Data

Shaw,	Zed,	author.
		Learn	C	the	hard	way	:

mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com
http://informit.com/aw

practical	exercises	on	the
computational	subjects	you
keep	avoiding	(like	C)	/
Zed	A.	Shaw.
							pages	cm
		Includes	index.
		ISBN	978-0-321-88492-3
(pbk.	:	alk.	paper)—ISBN	0-
321-88492-2	(pbk.	:	alk.
paper)
		1.	C	(Computer	program
language)—Problems,
exercises,	etc.	I.	Title.
		QA76.73.C15S473	2016

		005.13’3—
dc23																																																																																																																					2015020858

Copyright	©	2016	Zed	A.
Shaw

All	rights	reserved.	Printed	in
the	United	States	of	America.
This	publication	is	protected
by	copyright,	and	permission
must	be	obtained	from	the
publisher	prior	to	any
prohibited	reproduction,
storage	in	a	retrieval	system,
or	transmission	in	any	form

or	by	any	means,	electronic,
mechanical,	photocopying,
recording,	or	likewise.	To
obtain	permission	to	use
material	from	this	work,
please	submit	a	written
request	to	Pearson	Education,
Inc.,	Permissions	Department,
200	Old	Tappan	Road,	Old
Tappan,	New	Jersey	07657,
or	you	may	fax	your	request
to	(201)	236-3290.

ISBN-13:	978-0-321-88492-3

ISBN-10:	0-321-88492-2

Text	printed	in	the	United
States	on	recycled	paper	at
RR	Donnelley	in
Crawfordsville,	Indiana.
First	printing,	August	2015

Contents

Acknowledgments

This	Book	Is	Not	Really
about	C
The	Undefined
Behaviorists
C	Is	a	Pretty	and	Ugly
Language
What	You	Will	Learn
How	to	Read	This	Book

The	Videos
The	Core	Competencies
Reading	and	Writing
Attention	to	Detail
Spotting	Differences
Planning	and
Debugging

Exercise	0	The	Setup
Linux
Mac	OS	X
Windows

Text	Editor
Do	Not	Use	an	IDE

Exercise	1	Dust	Off	That
Compiler
Breaking	It	Down
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	2	Using
Makefiles	to	Build
Using	Make

What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	3	Formatted
Printing
What	You	Should	See
External	Research
How	to	Break	It
Extra	Credit

Exercise	4	Using	a
Debugger

GDB	Tricks
GDB	Quick	Reference
LLDB	Quick	Reference

Exercise	5	Memorizing	C
Operators
How	to	Memorize
The	List	of	Operators

Exercise	6	Memorizing	C
Syntax
The	Keywords
Syntax	Structures

A	Word	of
Encouragement
A	Word	of	Warning

Exercise	7	Variables	and
Types
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	8	If,	Else-If,
Else

What	You	Should	See

How	to	Break	It
Extra	Credit

Exercise	9	While-Loop
and	Boolean	Expressions
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	10	Switch
Statements
What	You	Should	See
How	to	Break	It

Extra	Credit

Exercise	11	Arrays	and
Strings
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	12	Sizes	and
Arrays
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	13	For-Loops
and	Arrays	of	Strings
What	You	Should	See
Understanding	Arrays	of
Strings
How	to	Break	It
Extra	Credit

Exercise	14	Writing	and
Using	Functions
What	You	Should	See
How	to	Break	It

Extra	Credit

Exercise	15	Pointers,
Dreaded	Pointers
What	You	Should	See
Explaining	Pointers
Practical	Pointer	Usage
The	Pointer	Lexicon
Pointers	Aren’t	Arrays
How	to	Break	It
Extra	Credit

Exercise	16	Structs	and
Pointers	to	Them
What	You	Should	See
Explaining	Structures
How	to	Break	It
Extra	Credit

Exercise	17	Heap	and
Stack	Memory	Allocation
What	You	Should	See
Heap	versus	Stack
Allocation

How	to	Break	It
Extra	Credit

Exercise	18	Pointers	to
Functions
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	19	Zed’s
Awesome	Debug	Macros
The	C	Error-Handling
Problem

The	Debug	Macros
Using	dbg.h
What	You	Should	See
How	the	CPP	Expands
Macros
Extra	Credit

Exercise	20	Advanced
Debugging	Techniques
Debug	Printing	versus
GDB
A	Debugging	Strategy

Extra	Credit

Exercise	21	Advanced
Data	Types	and	Flow
Control
Available	Data	Types
Type	Modifiers
Type	Qualifiers
Type	Conversion
Type	Sizes

Available	Operators
Math	Operators

Data	Operators
Logic	Operators
Bit	Operators
Boolean	Operators
Assignment	Operators

Available	Control
Structures
Extra	Credit

Exercise	22	The	Stack,
Scope,	and	Globals
ex22.h	and	ex22.c

ex22_main.c

What	You	Should	See
Scope,	Stack,	and	Bugs
How	to	Break	It
Extra	Credit

Exercise	23	Meet	Duff’s
Device
What	You	Should	See
Solving	the	Puzzle
Why	Bother?

Extra	Credit

Exercise	24	Input,	Output,
Files
What	You	Should	See
How	to	Break	It
The	I/O	Functions
Extra	Credit

Exercise	25	Variable
Argument	Functions
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	26	Project
logfind

The	logfind
Specification

Exercise	27	Creative	and
Defensive	Programming
The	Creative
Programmer	Mind-Set
The	Defensive
Programmer	Mind-Set
The	Eight	Defensive
Programmer	Strategies

Applying	the	Eight
Strategies
Never	Trust	Input
Prevent	Errors
Fail	Early	and	Openly
Document	Assumptions
Prevention	over
Documentation
Automate	Everything
Simplify	and	Clarify
Question	Authority

Order	Is	Not	Important
Extra	Credit

Exercise	28	Intermediate
Makefiles
The	Basic	Project
Structure
Makefile

The	Header
The	Target	Build
The	Unit	Tests
The	Cleaner

The	Install
The	Checker

What	You	Should	See
Extra	Credit

Exercise	29	Libraries	and
Linking
Dynamically	Loading	a
Shared	Library
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	30	Automated
Testing
Wiring	Up	the	Test
Framework
Extra	Credit

Exercise	31	Common
Undefined	Behavior
UB	20
Common	UBs

Exercise	32	Double
Linked	Lists

What	Are	Data	Structures
Making	the	Library
Doubly	Linked	Lists
Definition
Implementation

Tests
What	You	Should	See
How	to	Improve	It
Extra	Credit

Exercise	33	Linked	List
Algorithms

Bubble	and	Merge	Sort
The	Unit	Test
The	Implementation
What	You	Should	See
How	to	Improve	It
Extra	Credit

Exercise	34	Dynamic
Array
Advantages	and
Disadvantages
How	to	Improve	It

Extra	Credit

Exercise	35	Sorting	and
Searching
Radix	Sort	and	Binary
Search
C	Unions
The	Implementation
RadixMap_find	and
Binary	Search
RadixMap_sort	and
radix_sort

How	to	Improve	It
Extra	Credit

Exercise	36	Safer	Strings
Why	C	Strings	Were	a
Horrible	Idea
Using	bstrlib
Learning	the	Library

Exercise	37	Hashmaps
The	Unit	Test
How	to	Improve	It

Extra	Credit

Exercise	38	Hashmap
Algorithms
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	39	String
Algorithms
What	You	Should	See
Analyzing	the	Results
Extra	Credit

Exercise	40	Binary	Search
Trees
How	to	Improve	It
Extra	Credit

Exercise	41	Project
devpkg

What	Is	devpkg?
What	We	Want	to
Make
The	Design
The	Apache	Portable

Runtime
Project	Layout
Other	Dependencies

The	Makefile
The	Source	Files
The	DB	Functions
The	Shell	Functions
The	Command
Functions
The	devpkg	Main
Function

The	Final	Challenge

Exercise	42	Stacks	and
Queues
What	You	Should	See
How	to	Improve	It
Extra	Credit

Exercise	43	A	Simple
Statistics	Engine
Rolling	Standard
Deviation	and	Mean
Implemention

How	to	Use	It
Extra	Credit

Exercise	44	Ring	Buffer
The	Unit	Test
What	You	Should	See
How	to	Improve	It
Extra	Credit

Exercise	45	A	Simple
TCP/IP	Client
Augment	the	Makefile

The	netclient	Code
What	You	Should	See
How	to	Break	It
Extra	Credit

Exercise	46	Ternary
Search	Tree
Advantages	and
Disadvantages
How	to	Improve	It
Extra	Credit

Exercise	47	A	Fast	URL

Router
What	You	Should	See
How	to	Improve	It
Extra	Credit

Exercise	48	A	Simple
Network	Server
The	Specification

Exercise	49	A	Statistics
Server
Specification

Exercise	50	Routing	the
Statistics

Exercise	51	Storing	the
Statistics
The	Specification

Exercise	52	Hacking	and
Improving	Your	Server

Next	Steps

Index

Acknowledgments

I	would	like	to	thank	three
kinds	of	people	who	helped
make	this	book	what	it	is
today:	the	haters,	the	helpers,
and	the	painters.
The	haters	helped	make	this
book	stronger	and	more	solid
through	their	inflexibility	of
mind,	irrational	hero	worship
of	old	C	gods,	and	complete

lack	of	pedagogical	expertise.
Without	their	shining
example	of	what	not	to	be,	I
would	have	never	worked	so
hard	to	make	this	book	a
complete	introduction	to
becoming	a	better
programmer.
The	helpers	are	Debra
Williams	Cauley,	Vicki
Rowland,	Elizabeth	Ryan,	the
whole	team	at	Addison-
Wesley,	and	everyone	online

who	sent	in	fixes	and
suggestions.	Their	work
producing,	fixing,	editing,
and	improving	this	book	has
formed	it	into	a	more
professional	and	better	piece
of	writing.
The	painters,	Brian,
Arthur,	Vesta,	and
Sarah,	helped	me	find	a
new	way	to	express	myself
and	to	distract	me	from
deadlines	that	Deb	and	Vicki

clearly	set	for	me	but	that	I
kept	missing.	Without
painting	and	the	gift	of	art
these	artists	gave	me,	I	would
have	a	less	meaningful	and
rich	life.
Thank	you	to	all	of	you	for
helping	me	write	this	book.	It
may	not	be	perfect,	because
no	book	is	perfect,	but	it’s	at
least	as	good	as	I	can	possibly
make	it.

This	Book	Is	Not
Really	about	C

Please	don’t	feel	cheated,	but
this	book	is	not	about
teaching	you	C	programming.
You’ll	learn	to	write
programs	in	C,	but	the	most
important	lesson	you’ll	get
from	this	book	is	rigorous
defensive	programming.
Today,	too	many

programmers	simply	assume
that	what	they	write	works,
but	one	day	it	will	fail
catastrophically.	This	is
especially	true	if	you’re	the
kind	of	person	who	has
learned	mostly	modern
languages	that	solve	many
problems	for	you.	By	reading
this	book	and	following	my
exercises,	you’ll	learn	how	to
create	software	that	defends
itself	from	malicious	activity
and	defects.

I’m	using	C	for	a	very
specific	reason:	C	is	broken.
It	is	full	of	design	choices
that	made	sense	in	the	1970s
but	make	zero	sense	now.
Everything	from	its
unrestricted,	wild	use	of
pointers	to	its	severely	broken
NUL	terminated	strings	are	to
blame	for	nearly	all	of	the
security	defects	that	hit	C.	It’s
my	belief	that	C	is	so	broken
that,	while	it’s	in	wide	use,
it’s	the	most	difficult

language	to	write	securely.	I
would	fathom	that	Assembly
is	actually	easier	to	write
securely	than	C.	To	be
honest,	and	you’ll	find	out
that	I’m	very	honest,	I	don’t
think	that	anybody	should	be
writing	new	C	code.
If	that’s	the	case,	then	why
am	I	teaching	you	C?
Because	I	want	you	to
become	a	better,	stronger
programmer,	and	there	are

two	reasons	why	C	is	an
excellent	language	to	learn	if
you	want	to	get	better.	First,
C’s	lack	of	nearly	every
modern	safety	feature	means
you	have	to	be	more	vigilant
and	more	aware	of	what’s
going	on.	If	you	can	write
secure,	solid	C	code,	you	can
write	secure,	solid	code	in
any	programming	language.
The	techniques	you	learn	will
translate	to	every	language
you	use	from	now	on.

Second,	learning	C	gives	you
direct	access	to	a	mountain	of
legacy	code,	and	teaches	you
the	base	syntax	of	a	large
number	of	descendant
languages.	Once	you	learn	C,
you	can	more	easily	learn
C++,	Java,	Objective-C,	and
JavaScript,	and	even	other
languages	become	easier	to
learn.
I	don’t	want	to	scare	you
away	by	telling	you	this,

because	I	plan	to	make	this
book	incredibly	fun,	easy,
and	devious.	I’ll	make	it	fun
to	learn	C	by	giving	you
projects	that	you	might	not
have	done	in	other
programming	languages.	I’ll
make	this	book	easy	by	using
my	proven	pattern	of
exercises	that	has	you	doing
C	programming	and	building
your	skills	slowly.	I’ll	make	it
devious	by	teaching	you	how
to	break	and	then	secure	your

code	so	you	understand	why
these	issues	matter.	You’ll
learn	how	to	cause	stack
overflows,	illegal	memory
access,	and	other	common
flaws	that	plague	C	programs
so	that	you	know	what	you’re
up	against.
Getting	through	this	book
will	be	challenging,	like	all	of
my	books,	but	when	you’re
done	you	will	be	a	far	better
and	more	confident

programmer.

The	Undefined
Behaviorists
By	the	time	you’re	done	with
this	book,	you’ll	be	able	to
debug,	read,	and	fix	almost
any	C	program	you	run	into,
and	then	write	new,	solid	C
code	should	you	need	to.
However,	I’m	not	really
going	to	teach	you	official	C.
You’ll	learn	the	language,

and	you’ll	learn	how	to	use	it
well,	but	official	C	isn’t	very
secure.	The	vast	majority	of
C	programmers	out	there
simply	don’t	write	solid	code,
and	it’s	because	of	something
called	Undefined	Behavior
(UB).	UB	is	a	part	of	the
American	National	Standards
Institute	(ANSI)	C	standard
that	lists	all	of	the	ways	that	a
C	compiler	can	disregard
what	you’ve	written.	There’s
actually	a	part	of	the	standard

that	says	if	you	write	code
like	this,	then	all	bets	are	off
and	the	compiler	doesn’t	have
to	do	anything	consistently.
UB	occurs	when	a	C	program
reads	off	the	end	of	a	string,
which	is	an	incredibly
common	programming	error
in	C.	For	a	bit	of	background,
C	defines	strings	as	blocks	of
memory	that	end	in	a	NUL
byte,	or	a	0	byte	(to	simplify
the	definition).	Since	many
strings	come	from	outside	the

program,	it’s	common	for	a	C
program	to	receive	a	string
without	this	NUL	byte.	When
it	does,	the	C	program
attempts	to	read	past	the	end
of	this	string	and	into	the
memory	of	the	computer,
causing	your	program	to
crash.	Every	other	language
developed	after	C	attempts	to
prevent	this,	but	not	C.	C
does	so	little	to	prevent	UB
that	every	C	programmer
seems	to	think	it	means	they

don’t	have	to	deal	with	it.
They	write	code	full	of
potential	NUL	byte	overruns,
and	when	you	point	them	out
to	these	programmers,	they
say,	“Well	that’s	UB,	and	I
don’t	have	to	prevent	it.”	This
reliance	on	C’s	large	number
of	UBs	is	why	most	C	code	is
so	horribly	insecure.
I	write	C	code	to	try	to	avoid
UB	by	either	writing	code
that	doesn’t	trigger	it,	or

writing	code	that	attempts	to
prevent	it.	This	turns	out	to	be
an	impossible	task	because
there	is	so	much	UB	that	it
becomes	a	Gordian	knot	of
interconnected	pitfalls	in	your
C	code.	As	you	go	through
this	book,	I’ll	point	out	ways
you	can	trigger	UB,	how	to
avoid	it	if	you	can,	and	how
to	trigger	it	in	other	people’s
code	if	possible.	However,
you	should	keep	in	mind	that
avoiding	the	nearly	random

nature	of	UB	is	almost
impossible,	and	you’ll	just
have	to	do	your	best.

Warning!
You’ll	find	that
hardcore	C	fans
frequently	will	try	to
beat	you	up	about	UB.
There’s	a	class	of	C
programmers	who
don’t	write	very	much
C	code	but	have

memorized	all	of	the
UB	just	so	they	could
beat	up	a	beginner
intellectually.	If	you
run	into	one	of	these
abusive	programmers,
please	ignore	them.
Often,	they	aren’t
practicing	C
programmers,	they	are
arrogant,	abusive,	and
will	only	end	up	asking
you	endless	questions
in	an	attempt	to	prove

their	superiority	rather
than	helping	you	with
your	code.	Should	you
ever	need	help	with
your	C	code,	simply
email	me	at
help@learncodethehardway.org
and	I	will	gladly	help
you.

C	Is	a	Pretty	and
Ugly	Language

mailto:help@learncodethehardway.org

The	presence	of	UB	though	is
one	more	reason	why
learning	C	is	a	good	move	if
you	want	to	be	a	better
programmer.	If	you	can	write
good,	solid	C	code	in	the	way
I	teach	you,	then	you	can
survive	any	language.	On	the
positive	side,	C	is	a	really
elegant	language	in	many
ways.	Its	syntax	is	actually
incredibly	small	given	the
power	it	has.	There’s	a	reason
why	so	many	other	languages

have	copied	its	syntax	over
the	last	45	or	so	years.	C	also
gives	you	quite	a	lot	using
very	little	technology.	When
you’re	done	learning	C,
you’ll	have	an	appreciation
for	a	something	that	is	very
elegant	and	beautiful	but	also
a	little	ugly	at	the	same	time.
C	is	old,	so	like	a	beautiful
monument,	it	will	look
fantastic	from	about	20	feet
away,	but	when	you	step	up
close,	you’ll	see	all	the	cracks

and	flaws	it	has.
Because	of	this,	I’m	going	to
teach	you	the	most	recent
version	of	C	that	I	can	make
work	with	recent	compilers.
It’s	a	practical,
straightforward,	simple,	yet
complete	subset	of	C	that
works	well,	works
everywhere,	and	avoids	many
pitfalls.	This	is	the	C	that	I
use	to	get	real	work	done,	and
not	the	encyclopedic	version

of	C	that	hardcore	fans	try
and	fail	to	use.
I	know	the	C	that	I	use	is
solid	because	I	spent	two
decades	writing	clean,	solid	C
code	that	powered	large
operations	without	much
failure	at	all.	My	C	code	has
probably	processed	trillions
of	transactions	because	it
powered	the	operations	of
companies	like	Twitter	and
airbnb.	It	rarely	failed	or	had

security	attacks	against	it.	In
the	many	years	that	my	code
powered	the	Ruby	on	Rails
Web	world,	it’s	run
beautifully	and	even
prevented	security	attacks,
while	other	Web	servers	fell
repeatedly	to	the	simplest	of
attacks.
My	style	of	writing	C	code	is
solid,	but	more	importantly,
my	mind-set	when	writing	C
is	one	every	programmer

should	have.	I	approach	C,
and	any	programming,	with
the	idea	of	preventing	errors
as	best	I	can	and	assuming
that	nothing	will	work	right.
Other	programmers,	even
supposedly	good	C
programmers,	tend	to	write
code	and	assume	everything
will	work,	but	rely	on	UB	or
the	operating	system	to	save
them,	neither	of	which	will
work	as	a	solution.	Just
remember	that	if	people	try	to

tell	you	that	the	code	I	teach
in	this	book	isn’t	“real	C.”	If
they	don’t	have	the	same
track	record	as	me,	maybe
you	can	use	what	I	teach	you
to	show	them	why	their	code
isn’t	very	secure.
Does	that	mean	my	code	is
perfect?	No,	not	at	all.	This	is
C	code.	Writing	perfect	C
code	is	impossible,	and	in
fact,	writing	perfect	code	in
any	language	is	impossible.

That’s	half	the	fun	and
frustration	of	programming.	I
could	take	someone	else’s
code	and	tear	it	apart,	and
someone	could	take	my	code
and	tear	it	apart.	All	code	is
flawed,	but	the	difference	is
that	I	try	to	assume	my	code
is	always	flawed	and	then
prevent	the	flaws.	My	gift	to
you,	should	you	complete	this
book,	is	to	teach	you	the
defensive	programming
mind-set	that	has	served	me

well	for	two	decades,	and	has
helped	me	make	high-quality,
robust	software.

What	You	Will
Learn
The	purpose	of	this	book	is	to
get	you	strong	enough	in	C
that	you’ll	be	able	to	write
your	own	software	with	it	or
modify	someone	else’s	C
code.	After	this	book,	you
should	read	Brian	Kernighan

and	Dennis	Ritchie’s	The	C
Programming	Language,
Second	Edition	(Prentice
Hall,	1988),	a	book	by	the
creators	of	the	C	language,
also	called	K&R	C.	What	I’ll
teach	you	is

•	The	basics	of	C	syntax
and	idioms
•	Compilation,	make
files,	linkers
•	Finding	bugs	and
preventing	them

•	Defensive	coding
practices
•	Breaking	C	code
•	Writing	basic	UNIX
systems	software

By	the	final	exercise,	you	will
have	more	than	enough
ammunition	to	tackle	basic
systems	software,	libraries,
and	other	smaller	projects.

How	to	Read	This

Book
This	book	is	intended	for
programmers	who	have
learned	at	least	one	other
programming	language.	I
refer	you	to	my	book	Learn
Python	the	Hard	Way
(Addison-Wesley,	2013)	if
you	haven’t	learned	a
programming	language	yet.
It’s	meant	for	beginners	and
works	very	well	as	a	first
book	on	programming.	Once

you’ve	completed	Learn
Python	the	Hard	Way,	then
you	can	come	back	and	start
this	book.
For	those	who’ve	already
learned	to	code,	this	book
may	seem	strange	at	first.	It’s
not	like	other	books	where
you	read	paragraph	after
paragraph	of	prose	and	then
type	in	a	bit	of	code	here	and
there.	Instead,	there	are
videos	of	lectures	for	each

exercise,	you	code	right
away,	and	then	I	explain	what
you	just	did.	This	works
better	because	it’s	easier	for
me	to	explain	something
you’ve	already	done	than	to
speak	in	an	abstract	sense
about	something	you	aren’t
familiar	with	at	all.
Because	of	this	structure,
there	are	a	few	rules	that	you
must	follow	in	this	book:

•	Watch	the	lecture	video

first,	unless	the	exercise
says	otherwise.
•	Type	in	all	of	the	code.
Don’t	copy-paste!
•	Type	in	the	code
exactly	as	it	appears,
even	the	comments.
•	Get	it	to	run	and	make
sure	it	prints	the	same
output.
•	If	there	are	bugs,	fix
them.

•	Do	the	Extra	Credit,	but
it’s	all	right	to	skip
anything	you	can’t
figure	out.
•	Always	try	to	figure	it
out	first	before	trying	to
get	help.

If	you	follow	these	rules,	do
everything	in	the	book,	and
still	can’t	code	C,	then	you	at
least	tried.	It’s	not	for
everyone,	but	just	trying	will
make	you	a	better

programmer.

The	Videos
Included	in	this	course	are
videos	for	every	exercise,	and
in	many	cases,	more	than	one
video	for	an	exercise.	These
videos	should	be	considered
essential	to	get	the	full	impact
of	the	book’s	educational
method.	The	reason	for	this	is
that	many	of	the	problems
with	writing	C	code	are

interactive	issues	with	failure,
debugging,	and	commands.	C
requires	much	more
interaction	to	get	the	code
running	and	to	fix	problems,
unlike	languages	like	Python
and	Ruby	where	code	just
runs.	It’s	also	much	easier	to
show	you	a	video	lecture	on	a
topic,	such	as	pointers	or
memory	management,	where
I	can	demonstrate	how	the
machine	is	actually	working.

I	recommend	that	as	you	go
through	the	course,	you	plan
to	watch	the	videos	first,	and
then	do	the	exercises	unless
directed	to	do	otherwise.	In
some	of	the	exercises,	I	use
one	video	to	present	a
problem	and	then	another	to
demonstrate	the	solution.	In
most	of	the	other	exercises,	I
use	a	video	to	present	a
lecture,	and	then	you	do	the
exercise	and	complete	it	to
learn	the	topic.

The	Core
Competencies
I’m	going	to	guess	that	you
have	experience	using	a
lesser	language.	One	of	those
usable	languages	that	lets	you
get	away	with	sloppy
thinking	and	half-baked
hackery	like	Python	or	Ruby.
Or,	maybe	you	use	a
language	like	LISP	that
pretends	the	computer	is
some	purely	functional

fantasy	land	with	padded
walls	for	little	babies.	Maybe
you’ve	learned	Prolog,	and
you	think	the	entire	world
should	just	be	a	database
where	you	walk	around	in	it
looking	for	clues.	Even
worse,	I’m	betting	you’ve
been	using	an	integrated
development	environment
(IDE),	so	your	brain	is
riddled	with	memory	holes,
and	you	can’t	even	type	an
entire	function’s	name

without	hitting	CTRL-
SPACE	after	every	three
characters.
No	matter	what	your
background	is,	you	could
probably	use	some
improvement	in	these	areas:

Reading	and	Writing
This	is	especially	true	if	you
use	an	IDE,	but	generally	I
find	programmers	do	too
much	skimming	and	have

problems	reading	for
comprehension.	They’ll	just
skim	code	that	they	need	to
understand	in	detail	without
taking	the	time	to	understand
it.	Other	languages	provide
tools	that	let	programmers
avoid	actually	writing	any
code,	so	when	faced	with	a
language	like	C,	they	break
down.	The	simplest	thing	to
do	is	just	understand	that
everyone	has	this	problem,
and	you	can	fix	it	by	forcing

yourself	to	slow	down	and	be
meticulous	about	your
reading	and	writing.	At	first,
it’ll	feel	painful	and
annoying,	but	take	frequent
breaks,	and	then	eventually
it’ll	be	easier	to	do.

Attention	to	Detail
Everyone	is	bad	at	this,	and
it’s	the	biggest	cause	of	bad
software.	Other	languages	let
you	get	away	with	not	paying

attention,	but	C	demands	your
full	attention	because	it’s
right	in	the	machine,	and	the
machine	is	very	picky.	With
C,	there	is	no	“kind	of
similar”	or	“close	enough,”	so
you	need	to	pay	attention.
Double	check	your	work.
Assume	everything	you	write
is	wrong	until	you	prove	it’s
right.

Spotting	Differences

A	key	problem	that	people
who	are	used	to	other
languages	have	is	that	their
brains	have	been	trained	to
spot	differences	in	that
language,	not	in	C.	When	you
compare	code	you’ve	written
to	my	exercise	code,	your
eyes	will	jump	right	over
characters	you	think	don’t
matter	or	that	aren’t	familiar.
I’ll	be	giving	you	strategies
that	force	you	to	see	your
mistakes,	but	keep	in	mind

that	if	your	code	is	not
exactly	like	the	code	in	this
book,	it’s	wrong.

Planning	and
Debugging
I	love	other,	easier	languages
because	I	can	just	hang	out.	I
can	type	the	ideas	I	have	into
their	interpreter	and	see
results	immediately.	They’re
great	for	just	hacking	out
ideas,	but	have	you	noticed

that	if	you	keep	doing	hack
until	it	works,	eventually
nothing	works?	C	is	harder	on
you	because	it	requires	you	to
first	plan	out	what	you	want
to	create.	Sure,	you	can	hack
for	a	bit,	but	you	have	to	get
serious	much	earlier	in	C	than
in	other	languages.	I’ll	be
teaching	you	ways	to	plan	out
key	parts	of	your	program
before	you	start	coding,	and
this	will	likely	make	you	a
better	programmer	at	the

same	time.	Even	just	a	little
planning	can	smooth	things
out	down	the	road.
Learning	C	makes	you	a
better	programmer	because
you	are	forced	to	deal	with
these	issues	earlier	and	more
frequently.	You	can’t	be
sloppy	about	what	you	write
or	nothing	will	work.	The
advantage	of	C	is	that	it’s	a
simple	language	that	you	can
figure	out	on	your	own,

which	makes	it	a	great
language	for	learning	about
the	machine	and	getting
stronger	in	these	core
programming	skills.

Exercise	0.	The
Setup

The	traditional	first	exercise,
Excercise	0,	is	where	you	set
up	your	computer	for	the	rest
of	this	book.	In	this	exercise
you’ll	install	packages	and
software	depending	on	the
type	of	computer	you	have.
If	you	have	problems

following	this	exercise,	then
simply	watch	the	Exercise	0
video	for	your	computer	and
follow	along	with	my	setup
instructions.	That	video
should	demonstrate	how	to	do
each	step	and	help	you	solve
any	problems	that	might
come	up.

Linux
Linux	is	most	likely	the
easiest	system	to	configure
for	C	development.	For
Debian	systems	you	run	this
command	from	the	command
line:
Click	here	to	view	code	image

$	sudo	apt−get
install	build
−essential

Here’s	how	you	would	install

the	same	setup	on	an	RPM-
based	Linux	like	Fedora,
RedHat,	or	CentOS	7:
Click	here	to	view	code	image

$	sudo	yum
groupinstall
development−tools

If	you	have	a	different	variant
of	Linux,	simply	search	for	“c
development	tools”	and	your
brand	of	Linux	to	find	out
what’s	required.	Once	you
have	that	installed,	you

should	be	able	to	type:
$	cc	--version

to	see	what	compiler	was
installed.	You	will	most
likely	have	the	GNU	C
Compiler	(GCC)	installed	but
don’t	worry	if	it’s	a	different
one	from	what	I	use	in	the
book.	You	could	also	try
installing	the	Clang	C
compiler	using	the	Clang’s
Getting	Started	instructions
for	your	version	of	Linux,	or

searching	online	if	those
don’t	work.

Mac	OS	X
On	Mac	OS	X,	the	install	is
even	easier.	First,	you’ll	need
to	either	download	the	latest
XCode	from	Apple,	or	find
your	install	DVD	and	install
it	from	there.	The	download
will	be	massive	and	could
take	forever,	so	I	recommend
installing	from	the	DVD.

Also,	search	online	for
“installing	xcode”	for
instructions	on	how	to	do	it.
You	can	also	use	the	App
Store	to	install	it	just	as	you
would	any	other	app,	and	if
you	do	it	that	way	you’ll
receive	updates
automatically.
To	confirm	that	your	C
compiler	is	working,	type
this:

$	cc	−−version

You	should	see	that	you	are
using	a	version	of	the	Clang
C	Compiler,	but	if	your
XCode	is	older	you	may	have
GCC	installed.	Either	is	fine.

Windows
For	Microsoft	Windows,	I
recommend	you	use	the
Cygwin	system	to	acquire
many	of	the	standard	UNIX
software	development	tools.
It	should	be	easy	to	install

and	use,	but	watch	the	videos
for	this	exercise	to	see	how	I
do	it.	An	alternative	to
Cygwin	is	the	MinGW
system;	it	is	more	minimalist
but	should	also	work.	I	will
warn	you	that	Microsoft
seems	to	be	phasing	out	C
support	in	their	development
tools,	so	you	may	have
problems	using	Microsoft’s
compilers	to	build	the	code	in
this	book.

A	slightly	more	advanced
option	is	to	use	VirtualBox	to
install	a	Linux	distribution
and	run	a	complete	Linux
system	on	your	Windows
computer.	This	has	the	added
advantage	that	you	can
completely	destroy	this
virtual	machine	without
worrying	about	destroying
your	Windows	configuration.
It’s	also	an	opportunity	to
learn	to	use	Linux,	which	is
both	fun	and	beneficial	to

your	development	as	a
programmer.	Linux	is
currently	deployed	as	the
main	operating	system	for
many	distributed	computer
and	cloud	infrastructure
companies.	Learning	Linux
will	definitely	improve	your
knowledge	of	the	future	of
computing.

Text	Editor
The	choice	of	text	editor	for	a
programmer	is	a	tough	one.
For	beginners,	I	say	just	use
Gedit	since	it’s	simple	and	it
works	for	code.	However,	it
doesn’t	work	in	certain
international	situations,	and	if
you’ve	been	programming	for
a	while,	chances	are	you
already	have	a	favorite	text
editor.
With	this	in	mind,	I	want	you

to	try	out	a	few	of	the
standard	programmer	text
editors	for	your	platform	and
then	stick	with	the	one	that
you	like	best.	If	you’ve	been
using	GEdit	and	like	it,	then
stick	with	it.	If	you	want	to
try	something	different,	then
try	it	out	real	quick	and	pick
one.
The	most	important	thing	is
do	not	get	stuck	trying	to	pick
the	perfect	editor.	Text

editors	all	just	kind	of	suck	in
odd	ways.	Just	pick	one,	stick
with	it,	and	if	you	find
something	else	you	like,	try	it
out.	Don’t	spend	days	on	end
configuring	it	and	making	it
perfect.
Some	text	editors	to	try	out:

•	GEdit	on	Linux	and	OS
X.
•	TextWrangler	on	OS	X.
•	Nano,	which	runs	in
Terminal	and	works

nearly	everywhere.
•	Emacs	and	Emacs	for
OS	X;	be	prepared	to	do
some	learning,	though.
•	Vim	and	MacVim.

There	is	probably	a	different
editor	for	every	person	out
there,	but	these	are	just	a	few
of	the	free	ones	that	I	know
work.	Try	out	a	few	of	these
—and	maybe	some
commercial	ones—until	you
find	one	that	you	like.

Do	Not	Use	an	IDE

Warning!
Avoid	using	an
integrated	development
environment	(IDE)
while	you	are	learning
a	language.	They	are
helpful	when	you	need
to	get	things	done,	but
their	help	tends	also	to
prevent	you	from
really	learning	the

language.	In	my
experience,	the
stronger	programmers
don’t	use	an	IDE	and
also	have	no	problem
producing	code	at	the
same	speed	as	IDE
users.	I	also	find	that
the	code	produced	with
an	IDE	is	of	lower
quality.	I	have	no	idea
why	that	is	the	case,
but	if	you	want	deep,
solid	skills	in	a

programming
language,	I	highly
recommend	that	you
avoid	IDEs	while
you’re	learning.
Knowing	how	to	use

a	professional
programmer’s	text
editor	is	also	a	useful
skill	in	your
professional	life.	When
you’re	dependent	on	an
IDE,	you	have	to	wait

for	a	new	IDE	before
you	can	learn	the
newer	programming
languages.	This	adds	a
cost	to	your	career:	It
prevents	you	from
getting	ahead	of	shifts
in	language	popularity.
With	a	generic	text
editor,	you	can	code	in
any	language,	any	time
you	like,	without
waiting	for	anyone	to
add	it	to	an	IDE.	A

generic	text	editor
means	freedom	to
explore	on	your	own
and	manage	your
career	as	you	see	fit.

Exercise	1.	Dust
Off	That
Compiler

After	you	have	everything
installed,	you	need	to	confirm
that	your	compiler	works.
The	easiest	way	to	do	that	is
to	write	a	C	program.	Since
you	should	already	know	at
least	one	programming

language,	I	believe	you	can
start	with	a	small	but
extensive	example.

ex1.c

Click	here	to	view	code	image

	1			#include
<stdio.h>
	2
	3			/*	This	is	a
comment.	*/
	4			int	main(int
argc,	char	*argv[])

	5			{
	6							int	distance
=	100;
	7
	8							//	this	is
also	a	comment
	9							printf("You
are	%d	miles
away.\n",	distance);
10
11							return	0;
12			}

If	you	have	problems	getting
the	code	up	and	running,
watch	the	video	for	this

exercise	to	see	me	do	it	first.

Breaking	It	Down
There	are	a	few	features	of
the	C	language	in	this	code
that	you	might	or	might	not
have	figured	out	while	you
were	typing	it.	I’ll	break	this
down,	line	by	line,	quickly,
and	then	we	can	do	exercises
to	understand	each	part	better.
Don’t	worry	if	you	don’t
understand	everything	in	this

breakdown.	I	am	simply
giving	you	a	quick	dive	into
C	and	promise	you	will	learn
all	of	these	concepts	later	in
the	book.
Here’s	a	line-by-line
description	of	the	code:

ex1.c:1	An	include,
and	it	is	the	way	to
import	the	contents	of
one	file	into	this	source
file.	C	has	a	convention
of	using	.h	extensions

for	header	files,	which
contain	lists	of
functions	to	use	in	your
program.

ex1.c:3	This	is	a	multiline
comment,	and	you
could	put	as	many	lines
of	text	between	the
opening	/*	and	closing
*/	characters	as	you
want.

ex1.c:4	A	more	complex
version	of	the	main

function	you’ve	been
using	so	far.	How	C
programs	work	is	that
the	operating	system
loads	your	program,
and	then	it	runs	the
function	named	main.
For	the	function	to	be
totally	complete	it
needs	to	return	an	int
and	take	two
parameters:	an	int	for
the	argument	count	and

an	array	of	char	*
strings	for	the
arguments.	Did	that	just
fly	over	your	head?
Don’t	worry,	we’ll
cover	this	soon.

ex1.c:5	To	start	the	body
of	any	function,	you
write	a	{	character	that
indicates	the	beginning
of	a	block.	In	Python,
you	just	did	a	:	and
indented.	In	other

languages,	you	might
have	a	begin	or	do
word	to	start.

ex1.c:6	A	variable
declaration	and
assignment	at	the	same
time.	This	is	how	you
create	a	variable,	with
the	syntax	type	name
=	value;.	In	C,
statements	(except	for
logic)	end	in	a	;
(semicolon)	character.

ex1.c:8	Another	kind	of
comment.	It	works	like
in	Python	or	Ruby,
where	the	comment
starts	at	the	//	and
goes	until	the	end	of	the
line.

ex1.c:9	A	call	to	your	old
friend	printf.	Like	in
many	languages,
function	calls	work	with
the	syntax
name(arg1,

arg2);	and	can	have
no	arguments	or	any
number	of	them.	The
printf	function	is
actually	kind	of	weird
in	that	it	can	take
multiple	arguments.
You’ll	see	that	later.

ex1.c:11	A	return	from	the
main	function	that	gives
the	operating	system
(OS)	your	exit	value.
You	may	not	be

familiar	with	how
UNIX	software	uses
return	codes,	so	we’ll
cover	that	as	well.

ex1.c:12	Finally,	we	end
the	main	function	with
a	closing	brace	}
character,	and	that’s	the
end	of	the	program.

There’s	a	lot	of	information
in	this	breakdown,	so	study	it
line	by	line	and	make	sure
you	at	least	have	a	grasp	of

what’s	going	on.	You	won’t
know	everything,	but	you	can
probably	guess	before	we
continue.

What	You	Should
See
You	can	put	this	into	an
ex1.c	and	then	run	the
commands	shown	here	in	this
sample	shell	output.	If	you’re
not	sure	how	this	works,
watch	the	video	that	goes
with	this	exercise	to	see	me
do	it.

Exercise	1	Session

Click	here	to	view	code	image

$	make	ex1
cc	-Wall	-
g				ex1.c		-o	ex1
$./ex1
You	are	100	miles
away.
$

The	first	command	make	is	a
tool	that	knows	how	to	build
C	programs	(and	many
others).	When	you	run	it	and
give	it	ex1	you	are	telling
make	to	look	for	the	ex1.c

file,	run	the	compiler	to	build
it,	and	leave	the	results	in	a
file	named	ex1.	This	ex1
file	is	an	executable	that	you
can	run	with	./ex1,	which
outputs	your	results.

How	to	Break	It
In	this	book,	I’m	going	to
have	a	small	section	for	each
program	teaching	you	how	to
break	the	program	if	it’s
possible.	I’ll	have	you	do	odd
things	to	the	programs,	run
them	in	weird	ways,	or
change	code	so	that	you	can
see	crashes	and	compiler
errors.
For	this	program,	simply	try
removing	things	at	random

and	still	get	it	to	compile.	Just
make	a	guess	at	what	you	can
remove,	recompile	it,	and
then	see	what	you	get	for	an
error.

Extra	Credit
•	Open	the	ex1	file	in
your	text	editor	and
change	or	delete
random	parts.	Try
running	it	and	see	what
happens.

•	Print	out	five	more
lines	of	text	or
something	more
complex	than	“hello
world.”
•	Run	man	3	printf
and	read	about	this
function	and	many
others.
•	For	each	line,	write	out
the	symbols	you	don’t
understand	and	see	if
you	can	guess	what

they	mean.	Write	a	little
chart	on	paper	with
your	guess	so	you	can
check	it	later	to	see	if
you	got	it	right.

Exercise	2.	Using
Makefiles	to
Build

We’re	going	to	use	a	program
called	make	to	simplify
building	your	exercise	code.
The	make	program	has	been
around	for	a	very	long	time,
and	because	of	this	it	knows
how	to	build	quite	a	few

types	of	software.	In	this
exercise,	I’ll	teach	you	just
enough	Makefile	syntax	to
continue	with	the	course,	and
then	an	exercise	later	will
teach	you	more	complete
Makefile	usage.

Using	Make
How	make	works	is	you
declare	dependencies,	and
then	describe	how	to	build
them	or	rely	on	the	program’s
internal	knowledge	of	how	to
build	most	common	software.
It	has	decades	of	knowledge
about	building	a	wide	variety
of	files	from	other	files.	In	the
last	exercise,	you	did	this
already	using	commands:

$	make	ex1
#	or	this	one	too
$	CFLAGS="-Wall"	make
ex1

In	the	first	command,	you’re
telling	make,	“I	want	a	file
named	ex1	to	be	created.”
The	program	then	asks	and
does	the	following:

1.	Does	the	file	ex1	exist
already?

2.	No.	Okay,	is	there
another	file	that	starts

with	ex1?
3.	Yes,	it’s	called	ex1.c.
Do	I	know	how	to	build
.c	files?

4.	Yes,	I	run	this
command	cc	ex1.c
-o	ex1	to	build	them.

5.	I	shall	make	you	one
ex1	by	using	cc	to
build	it	from	ex1.c.

The	second	command	in	the
listing	above	is	a	way	to	pass

modifiers	to	the	make
command.	If	you’re	not
familiar	with	how	the	UNIX
shell	works,	you	can	create
these	environment	variables
that	will	get	picked	up	by
programs	you	run.	Sometimes
you	do	this	with	a	command
like	export	CFLAGS="-
Wall"	depending	on	the
shell	you	use.	You	can,
however,	also	just	put	them
before	the	command	you

want	to	run,	and	that
environment	variable	will	be
set	only	while	that	command
runs.
In	this	example,	I	did
CFLAGS="-Wall"	make
ex1	so	that	it	would	add	the
command	line	option	-Wall
to	the	cc	command	that
make	normally	runs.	That
command	line	option	tells	the
compiler	cc	to	report	all
warnings	(which,	in	a	sick

twist	of	fate,	isn’t	actually	all
the	warnings	possible).
You	can	actually	get	pretty
far	with	just	using	make	in
that	way,	but	let’s	get	into
making	a	Makefile	so	you
can	understand	make	a	little
better.	To	start	off,	create	a
file	with	just	the	following	in
it.

ex2.1.mak

CFLAGS=-Wall	-g

clean:
				rm	-f	ex1

Save	this	file	as	Makefile
in	your	current	directory.	The
program	automatically
assumes	there’s	a	file	called
Makefile	and	will	just	run
it.

Warning!
Make	sure	you	are
only	entering	TAB
characters,	not
mixtures	of	TAB	and
spaces.

This	Makefile	is	showing
you	some	new	stuff	with
make.	First,	we	set	CFLAGS
in	the	file	so	we	never	have	to
set	it	again,	as	well	as	adding

the	-g	flag	to	get	debugging.
Then,	we	have	a	section
named	clean	that	tells
make	how	to	clean	up	our
little	project.
Make	sure	it’s	in	the	same
directory	as	your	ex1.c	file,
and	then	run	these
commands:

$	make	clean
$	make	ex1

What	You	Should
See
If	that	worked,	then	you
should	see	this:

Exercise	2	Session

Click	here	to	view	code	image

$	make	clean
rm	-f	ex1
$	make	ex1
cc	-Wall	-
g				ex1.c			-o	ex1

ex1.c:	In	function
'main':
ex1.c:3:	warning:
implicit	declaration
of	function	'puts'
$

Here	you	can	see	that	I’m
running	make	clean,
which	tells	make	to	run	our
clean	target.	Go	look	at	the
Makefile	again	and	you’ll
see	that	under	this	command,
I	indent	and	then	put	in	the
shell	commands	I	want	make

to	run	for	me.	You	could	put
as	many	commands	as	you
wanted	in	there,	so	it’s	a	great
automation	tool.

Warning!
If	you	fixed	ex1.c	to
have	#include
<stdio.h>,	then
your	output	won’t	have
the	warning	(which
should	really	be	an
error)	about	puts.	I
have	the	error	here
because	I	didn’t	fix	it.

Notice	that	even	though	we

don’t	mention	ex1	in	the
Makefile,	make	still
knows	how	to	build	it	and	use
our	special	settings.

How	to	Break	It
That	should	be	enough	to	get
you	started,	but	first	let’s
break	this	Makefile	in	a
particular	way	so	you	can	see
what	happens.	Take	the	line
rm	-f	ex1	and	remove	the
indent	(move	it	all	the	way
left)	so	you	can	see	what
happens.	Rerun	make
clean,	and	you	should	get
something	like	this:
Click	here	to	view	code	image

$	make	clean
Makefile:4:	***
missing
separator.		Stop.

Always	remember	to	indent,
and	if	you	get	weird	errors
like	this,	double	check	that
you’re	consistently	using	tab
characters	because	some
make	variants	are	very	picky.

Extra	Credit
•	Create	an	all:	ex1
target	that	will	build
ex1	with	just	the
command	make.
•	Read	man	make	to
find	out	more
information	on	how	to
run	it.
•	Read	man	cc	to	find
out	more	information
on	what	the	flags	-

Wall	and	-g	do.
•	Research	Makefiles
online	and	see	if	you
can	improve	this	one.
•	Find	a	Makefile	in
another	C	project	and
try	to	understand	what
it’s	doing.

Exercise	3.
Formatted
Printing

Keep	that	Makefile	around
since	it’ll	help	you	spot
errors,	and	we’ll	be	adding	to
it	when	we	need	to	automate
more	things.
Many	programming
languages	use	the	C	way	of

formatting	output,	so	let’s	try
it:

ex3.c

Click	here	to	view	code	image

	1			#include
<stdio.h>
	2
	3			int	main()
	4			{
	5							int	age	=
10;
	6							int	height	=

72;
	7
	8							printf("I	am
%d	years	old.\n",
age);
	9							printf("I	am
%d	inches	tall.\n",
height);
10
11							return	0;
12			}

Once	you’ve	finished	that,	do
the	usual	make	ex3	to	build
and	run	it.	Make	sure	you	fix
all	warnings.

This	exercise	has	a	whole	lot
going	on	in	a	small	amount	of
code,	so	let’s	break	it	down:

•	First	we’re	including
another	header	file
called	stdio.h.	This
tells	the	compiler	that
you’re	going	to	use	the
standard	Input/Output
functions.	One	of	those
is	printf.
•	Then	we’re	using	a
variable	named	age

and	setting	it	to	10.
•	Next	we’re	using	a
variable	height	and
setting	it	to	72.
•	Then	we’re	adding	the
printf	function	to
print	the	age	and	height
of	the	tallest	10-year-
old	on	the	planet.
•	In	printf,	you’ll
notice	we’re	including	a
format	string,	as	seen	in
many	other	languages.

•	After	this	format	string,
we’re	putting	in	the
variables	that	should	be
“replaced”	into	the
format	string	by
printf.

The	result	is	giving	printf
some	variables	and	it’s
constructing	a	new	string	and
then	printing	it	to	the
terminal.

What	You	Should
See
When	you	do	the	whole
build,	you	should	see
something	like	this:

Exercise	3	Session

Click	here	to	view	code	image

$	make	ex3
cc	-Wall	-
g				ex3.c				-o	ex3
$./ex3

I	am	10	years	old.
I	am	72	inches	tall.
$

Pretty	soon	I’m	going	to	stop
telling	you	to	run	make	and
what	the	build	looks	like,	so
please	make	sure	you’re
getting	this	right	and	that	it’s
working.

External	Research
In	the	Extra	Credit	section	of
each	exercise,	you	may	have

you	go	find	information	on
your	own	and	figure	things
out.	This	is	an	important	part
of	being	a	self-sufficient
programmer.	If	you’re
constantly	running	to	ask
someone	a	question	before
trying	to	figure	things	out
yourself,	then	you’ll	never
learn	how	to	solve	problems
independently.	You’ll	never
build	confidence	in	your
skills	and	will	always	need
someone	else	around	to	do

your	work.
The	way	to	break	this	habit	is
to	force	yourself	to	try	to
answer	your	own	question
first,	and	then	confirm	that
your	answer	is	right.	You	do
this	by	trying	to	break	things,
experimenting	with	your
answer,	and	doing	your	own
research.
For	this	exercise,	I	want	you
to	go	online	and	find	out	all
of	the	printf	escape	codes

and	format	sequences.	Escape
codes	are	\n	or	\t	that	let
you	print	a	newline	or	tab,
respectively.	Format
sequences	are	the	%s	or	%d
that	let	you	print	a	string	or
integer.	Find	them	all,	learn
how	to	modify	them,	and	see
what	kind	of	“precisions”	and
widths	you	can	do.
From	now	on,	these	kinds	of
tasks	will	be	in	the	Extra
Credit	sections,	and	you

should	do	them.

How	to	Break	It
Try	a	few	of	these	ways	to
break	this	program,	which
may	or	may	not	cause	it	to
crash	on	your	computer:

•	Take	the	age	variable
out	of	the	first	printf
call,	then	recompile.
You	should	get	a	couple
of	warnings.
•	Run	this	new	program

and	it	will	either	crash
or	print	out	a	really
crazy	age.
•	Put	the	printf	back
the	way	it	was,	and	then
don’t	set	age	to	an
initial	value	by
changing	that	line	to
int	age;,	and	then
rebuild	it	and	run	it
again.

Exercise	3.bad
Session

Click	here	to	view	code	image

#	edit	ex3.c	to	break
printf
$	make	ex3
cc	-Wall	-
g				ex3.c			-o	ex3
ex3.c:	In	function
'main':
ex3.c:8:	warning:	too
few	arguments	for
format
ex3.c:5:	warning:

unused	variable	'age'
$./ex3
I	am	-919092456	years
old.
I	am	72	inches	tall.
#	edit	ex3.c	again	to
fix	printf,	but	don't
init	age
$	make	ex3
cc	-Wall	-
g				ex3.c			-o	ex3
ex3.c:	In	function
'main':
ex3.c:8:	warning:
'age'	is	used
uninitialized	in	this
function

$./ex3
I	am	0	years	old.
I	am	72	inches	tall.
$

Extra	Credit
•	Find	as	many	other
ways	to	break	ex3.c
as	you	can.
•	Run	man	3	printf
and	read	about	the	other
%	format	characters	you
can	use.	These	should

look	familiar	if	you
used	them	in	other
languages	(they	come
from	printf).
•	Add	ex3	to	the	all
list	in	your	Makefile.
Use	this	to	make
clean	all	and	build
all	of	your	exercises
thus	far.
•	Add	ex3	to	the	clean
list	in	your	Makefile
as	well.	Use	make

clean	to	remove	it
when	you	need	to.

Exercise	4.	Using
a	Debugger

This	is	a	video-focused
exercise	where	I	show	you
how	to	use	the	debugger	that
comes	with	your	computer	to
debug	your	programs,	detect
errors,	and	even	debug
processes	that	are	currently
running.	Please	watch	the
accompanying	video	to	learn

more	about	this	topic.

GDB	Tricks
Here’s	a	list	of	simple	tricks
you	can	do	with	GNU
Debugger	(GDB):

gdb	--args	Normally,	gdb
takes	arguments	you
give	it	and	assumes
they	are	for	itself.	Using
--args	passes	them	to
the	program.

thread	apply	all	bt	Dump

a	backtrace	for	all
threads.	It’s	very	useful.

gdb	--batch	--ex	r	--ex	bt
--ex	q	--args	Run	the
program	so	that	if	it
bombs,	you	get	a
backtrace.

GDB	Quick
Reference
The	video	is	good	for
learning	how	to	use	a
debugger,	but	you’ll	need	to
refer	back	to	the	commands
as	you	work.	Here	is	a	quick
reference	to	the	GDB
commands	that	I	used	in	the
video	so	you	can	use	them
later	in	the	book:

run	[args]	Start	your

program	with	[args].
break	[file:]function	Set
a	break	point	at
[file:]function.	You	can
also	use	b.

backtrace	Dump	a
backtrace	of	the	current
calling	stack.	Shorthand
is	bt.

print	expr	Print	the	value
of	expr.	Shorthand	is
p.

continue	Continue
running	the	program.
Shorthand	is	c.

next	Next	line,	but	step
over	function	calls.
Shorthand	is	n.

step	Next	line,	but	step
into	function	calls.
Shorthand	is	s.

quit	Exit	GDB.
help	List	the	types	of
commands.	You	can

then	get	help	on	the
class	of	command	as
well	as	the	command.

cd,	pwd,	make	This	is
just	like	running	these
commands	in	your
shell.

shell	Quickly	start	a	shell
so	you	can	do	other
things.

clear	Clear	a	breakpoint.
info	break,	info	watch
Show	information	about

breakpoints	and
watchpoints.

attach	pid	Attach	to	a
running	process	so	you
can	debug	it.

detach	Detach	from	the
process.

list	List	out	the	next	ten
source	lines.	Add	a	-	to
list	the	previous	ten
lines.

LLDB	Quick
Reference
In	OS	X,	you	no	longer	have
GDB	and	instead	must	use	a
similar	program	called	LLDB
Debugger	(LLDB).	The
commands	are	almost	the
same,	but	here’s	a	quick
reference	for	LLDB:

run	[args]	Start	your
program	with	[args].

breakpoint	set	-	-name

[file:]function	Set	a
break	point	at
[file:]function.
You	can	also	use	b,
which	is	way	easier.

thread	backtrace	Dump	a
backtrace	of	the	current
calling	stack.	Shorthand
is	bt.

print	expr	Print	the	value
of	expr.	Shorthand	is	p.

continue	Continue
running	the	program.

Shorthand	is	c.
next	Next	line,	but	step
over	function	calls.
Shorthand	is	n.

step	Next	line,	but	step
into	function	calls.
Shorthand	is	s.

quit	Exit	LLDB.
help	List	the	types	of
commands.	You	can
then	get	help	on	the
class	of	command	as

well	as	the	command
itself.

cd,	pwd,	make	just	like
running	these
commands	in	your
shell.

shell	Quickly	start	a	shell
so	you	can	do	other
things.

clear	Clear	a	breakpoint.
info	break,	info	watch
Show	information	about
breakpoints	and

watchpoints.
attach	-p	pid	Attach	to	a
running	process	so	you
can	debug	it.

detach	Detach	from	the
process.

list	List	out	the	next	ten
source	lines.	Add	a	-	to
list	the	previous	ten
sources.

You	can	also	search	online
for	quick	reference	cards	and
tutorials	for	both	GDB	and

LLDB.

Exercise	5.
Memorizing	C
Operators

When	you	learned	your	first
programming	language,	it
most	likely	involved	going
through	a	book,	typing	in
code	you	didn’t	quite
understand,	and	then	trying	to
figure	out	how	it	worked.

That’s	how	I	wrote	most	of
my	other	books,	and	that
works	very	well	for
beginners.	In	the	beginning,
there	are	complex	topics	you
need	to	understand	before
you	can	grasp	what	all	the
symbols	and	words	mean,	so
it’s	an	easy	way	to	learn.
However,	once	you	already
know	one	programming
language,	this	method	of
fumbling	around	learning	the

syntax	by	osmosis	isn’t	the
most	efficient	way	to	learn	a
language.	It	works,	but	there
is	a	much	faster	way	to	build
both	your	skills	in	a	language
and	your	confidence	in	using
it.	This	method	of	learning	a
programming	language	might
seem	like	magic,	but	you’ll
have	to	trust	me	that	it	works
surprisingly	well.
How	I	want	you	to	learn	C	is
to	first	memorize	all	the	basic

symbols	and	syntax,	then
apply	them	through	a	series
of	exercises.	This	method	is
very	similar	to	how	you
might	learn	human	languages
by	memorizing	words	and
grammar,	and	then	applying
what	you	memorize	in
conversations.	With	just	a
simple	amount	of
memorization	effort	in	the
beginning,	you	can	gain
foundational	knowledge	and
have	an	easier	time	reading

and	writing	C	code.

Warning!
Some	people	are	dead
against	memorization.
Usually,	they	claim	it
makes	you	uncreative
and	boring.	I’m	proof
that	memorizing	things
doesn’t	make	you
uncreative	and	boring.
I	paint,	play	and	build
guitars,	sing,	code,

write	books,	and	I
memorize	lots	of
things.	This	belief	is
entirely	unfounded	and
detrimental	to	efficient
learning.	Please	ignore
anyone	telling	you	this.

How	to	Memorize
The	best	way	to	memorize
something	is	a	fairly	simple
process:

1.	Create	a	set	of	flash
cards	that	have	a
symbol	on	one	side	and
the	description	on	the
other.	You	could	also
use	a	program	called
Anki	to	do	this	on	your
computer.	I	prefer
creating	my	own
because	it	helps	me
memorize	them	as	I
make	them.

2.	Randomize	the	flash

cards	and	start	going
through	them	on	one
side.	Try	your	best	to
remember	the	other	side
of	the	card	without
looking.

3.	If	you	can’t	recall	the
other	side	of	the	card,
then	look	at	it	and
repeat	the	answer	to
yourself,	then	put	that
card	into	a	separate	pile.

4.	Once	you	go	through

all	the	cards	you’ll	have
two	piles:	one	pile	of
cards	you	recalled
quickly,	and	another
you	failed	to	recall.
Pick	up	the	fail	pile	and
drill	yourself	on	only
those	cards.

5.	At	the	very	end	of	the
session,	which	is
usually	15–30	minutes,
you’ll	have	a	set	of
cards	you	just	can’t

recall.	Take	those	cards
with	you	wherever	you
go,	and	when	you	have
free	time,	practice
memorizing	them.

There	are	many	other	tricks	to
memorizing	things,	but	I’ve
found	that	this	is	the	best	way
to	build	instant	recall	on
things	you	need	to	be	able	to
use	immediately.	The
symbols,	keywords,	and
syntax	of	C	are	things	you

need	instant	recall	on,	so	this
method	is	the	best	one	for	this
task.
Also	remember	that	you	need
to	do	both	sides	of	the	cards.
You	should	be	able	to	read
the	description	and	know
what	symbol	matches	it,	as
well	as	knowing	the
description	for	a	symbol.
Finally,	you	don’t	have	to
stop	while	you’re	memorizing
these	operators.	The	best

approach	is	to	combine	this
with	exercises	in	this	book	so
you	can	apply	what	you’ve
memorized.	See	the	next
exercise	for	more	on	this.

The	List	of	Operators
The	first	operators	are	the
arithmetic	operators,	which
are	very	similar	to	almost
every	other	programming
language.	When	you	write	the
cards,	the	description	side
should	say	that	it’s	an
arithmetic	operator,	and	what
it	does.

Relational	operators	test
values	for	equality,	and	again,

they	are	very	common	in
programming	languages.

Logical	operators	perform
logic	tests,	and	you	should
already	know	what	these	do.

The	only	odd	one	is	the
logical	ternary,	which	you’ll
learn	later	in	this	book.

Bitwise	operators	do
something	you	likely	won’t
experience	often	in	modern
code.	They	alter	the	bits	that

make	up	bytes	and	other	data
types	in	various	ways.	I	won’t
cover	this	in	my	book,	but
they	are	very	handy	when
working	with	certain	types	of
lower-level	systems.

Assignment	operators	simply
assign	expressions	to
variables,	but	C	combines	a
large	number	of	other
operators	with	assignment.	So
when	I	say	and-equal,	I
mean	the	bitwise	operators,
not	the	logical	operators.

I’m	calling	these	data
operators	but	they	really	deal
with	aspects	of	pointers,

member	access,	and	various
elements	of	data	structures	in
C.

Finally,	there	are	a	few
miscellaneous	symbols	that
are	either	frequently	used	for
different	roles	(like	,),	or

don’t	fit	into	any	of	the
previous	categories	for
various	reasons.

Study	your	flash	cards	while
you	continue	with	the	book.
If	you	spent	15–30	minutes	a
day	before	studying,	and

another	15–30	minutes	before
bed,	you	could	most	likely
memorize	all	of	these	in	a
few	weeks.

Exercise	6.
Memorizing	C
Syntax

After	learning	the	operators,
it’s	time	to	memorize	the
keywords	and	basic	syntax
structures	you’ll	be	using.
Trust	me	when	I	tell	you	that
the	small	amount	of	time
spent	memorizing	these

things	will	pay	huge
dividends	later	as	you	go
through	the	book.
As	I	mentioned	in	Exercise	5,
you	don’t	have	to	stop
reading	the	book	while	you
memorize	these	things.	You
can	and	should	do	both.	Use
your	flash	cards	as	a	warm	up
before	coding	that	day.	Take
them	out	and	drill	on	them	for
15–30	minutes,	then	sit	down
and	do	some	more	exercises

in	the	book.	As	you	go
through	the	book,	try	to	use
the	code	you’re	typing	as
more	of	a	way	to	practice
what	you’re	memorizing.	One
trick	is	to	build	a	pile	of	flash
cards	containing	operators
and	keywords	that	you	don’t
immediately	recognize	while
you’re	coding.	After	you’re
done	for	the	day,	practice
those	flash	cards	for	another
15–30	minutes.

Keep	this	up	and	you’ll	learn
C	much	faster	and	more
solidly	than	you	would	if	you
just	stumbled	around	typing
code	until	you	memorized	it
secondhand.

The	Keywords
The	keywords	of	a	language
are	words	that	augment	the
symbols	so	that	the	language
reads	well.	There	are	some
languages	like	APL	that	don’t

really	have	keywords.	There
are	other	languages	like	Forth
and	LISP	that	are	almost
nothing	but	keywords.	In	the
middle	are	languages	like	C,
Python,	Ruby,	and	many
more	that	mix	sets	of
keywords	with	symbols	to
create	the	basis	of	the
language.

Warning!
The	technical	term	for
processing	the	symbols
and	keywords	of	a
programming	language
is	lexical	analysis.	The
word	for	one	of	these
symbols	or	keywords
is	a	lexeme.

Syntax	Structures
I	suggest	you	memorize	those
keywords,	as	well	as
memorizing	the	syntax
structures.	A	syntax	structure

is	a	pattern	of	symbols	that
make	up	a	C	program	code
form,	such	as	the	form	of	an
if-statement	or	a
while-loop.	You	should
find	most	of	these	familiar,
since	you	already	know	one
language.	The	only	trouble	is
then	learning	how	C	does	it.
Here’s	how	you	read	these:

1.	Anything	in	ALLCAPS
is	meant	as	a
replacement	spot	or

hole.
2.	Seeing	[ALLCAPS]
means	that	part	is
optional.

3.	The	best	way	to	test
your	memory	of	syntax
structures	is	to	open	a
text	editor,	and	where
you	see	switch-
statement,	try	to
write	the	code	form
after	saying	what	it
does.

An	if-statement	is	your
basic	logic	branching	control:

if(TEST)	{
				CODE;
}	else	if(TEST)	{
				CODE;
}	else	{
				CODE;
}

A	switch-statement	is
like	an	if-statement	but
works	on	simple	integer
constants:

switch	(OPERAND)	{
				case	CONSTANT:
								CODE;
								break;
				default:
								CODE;
}

A	while-loop	is	your
most	basic	loop:

while(TEST)	{
				CODE;
}

You	can	also	use	continue

to	cause	it	to	loop.	Call	this
form	while-continue-
loop	for	now:

while(TEST)	{
				if(OTHER_TEST)	{
								continue;
				}
				CODE;
}

You	can	also	use	break	to
exit	a	loop.	Call	this	form
while-break-loop:

while(TEST)	{

				if(OTHER_TEST)	{
								break;
				}
				CODE;
}

The	do-while-loop	is	an
inverted	version	of	a	while-
loop	that	runs	the	code	then
tests	to	see	if	it	should	run
again:

do	{
				CODE;
}	while(TEST);

It	can	also	have	continue
and	break	inside	to	control
how	it	operates.
The	for-loop	does	a
controlled	counted	loop
through	a	(hopefully)	fixed
number	of	iterations	using	a
counter:

for(INIT;	TEST;	POST)
{
				CODE;
}

An	enum	creates	a	set	of

integer	constants:
Click	here	to	view	code	image

enum	{	CONST1,
CONST2,	CONST3	}
NAME;

A	goto	will	jump	to	a	label,
and	is	only	used	in	a	few
useful	situations	like	error
detection	and	exiting:

if(ERROR_TEST)	{
				goto	fail;
}

fail:
				CODE;

A	function	is	defined	this
way:

TYPE	NAME(ARG1,	ARG2,
..)	{
				CODE;
				return	VALUE;
}

That	may	be	hard	to
remember,	so	try	this
example	to	see	what’s	meant
by	TYPE,	NAME,	ARG	and

VALUE:

int	name(arg1,	arg2)
{
				CODE;
				return	0;
}

A	typedef	defines	a	new
type:
Click	here	to	view	code	image

typedef	DEFINITION
IDENTIFIER;

A	more	concrete	form	of	this

is:
Click	here	to	view	code	image

typedef	unsigned	char
byte;

Don’t	let	the	spaces	fool	you;
the	DEFINITION	is
unsigned	char	and	the
IDENTIFIER	is	byte	in
that	example.
A	struct	is	a	packaging	of
many	base	data	types	into	a
single	concept,	which	are

used	heavily	in	C:
struct	NAME	{
				ELEMENTS;
}	[VARIABLE_NAME];

The	[VARIABLE_NAME]	is
optional,	and	I	prefer	not	to
use	it	except	in	a	few	small
cases.	This	is	commonly
combined	with	typedef
like	this:
Click	here	to	view	code	image

typedef	struct

[STRUCT_NAME]	{
				ELEMENTS;
}	IDENTIFIER;

Finally,	union	creates
something	like	a	struct,
but	the	elements	will	overlap
in	memory.	This	is	strange	to
understand,	so	simply
memorize	the	form	for	now:

union	NAME	{
				ELEMENTS;
}	[VARIABLE_NAME];

A	Word	of
Encouragement
Once	you’ve	created	flash
cards	for	each	of	these,	drill
on	them	in	the	usual	way	by
starting	with	the	name	side,
and	then	reading	the
description	and	form	on	the
other	side.	In	the	video	for
this	exercise,	I	show	you	how
to	use	Anki	to	do	this
efficiently,	but	you	can
replicate	the	experience	with

simple	index	cards,	too.
I’ve	noticed	some	fear	or
discomfort	in	students	who
are	asked	to	memorize
something	like	this.	I’m	not
exactly	sure	why,	but	I
encourage	you	to	do	it
anyway.	Look	at	this	as	an
opportunity	to	improve	your
memorization	and	learning
skills.	The	more	you	do	it,	the
better	at	it	you	get	and	the
easier	it	gets.

It’s	normal	to	feel	discomfort
and	frustration.	Don’t	take	it
personally.	You	might	spend
15	minutes	and	simply	hate
doing	it	and	feel	like	a	total
failure.	This	is	normal,	and	it
doesn’t	mean	you	actually	are
a	failure.	Perseverance	will
get	you	past	the	initial
frustration,	and	this	little
exercise	will	teach	you	two
things:

1.	You	can	use

memorization	as	a	self-
evaluation	of	your
competence.	Nothing
tells	you	how	well	you
really	know	a	subject
like	a	memory	test	of	its
concepts.

2.	The	way	to	conquer
difficulty	is	a	little
piece	at	a	time.
Programming	is	a	great
way	to	learn	this
because	it’s	so	easy	to

break	down	into	small
parts	and	focus	on
what’s	lacking.	Take
this	as	an	opportunity	to
build	your	confidence
in	tackling	large	tasks
in	small	pieces.

A	Word	of	Warning
I’ll	add	a	final	word	of
warning	about	memorization.
Memorizing	a	large	quantity
of	facts	doesn’t	automatically

make	you	good	at	applying
those	facts.	You	can
memorize	the	entire	ANSI	C
standards	document	and	still
be	a	terrible	programmer.	I’ve
encountered	many	supposed
C	experts	who	know	every
square	inch	of	standard	C
grammar	but	still	write
terrible,	buggy,	weird	code,
or	don’t	code	at	all.
Never	confuse	an	ability	to
regurgitate	memorized	facts

with	ability	to	actually	do
something	well.	To	do	that
you	need	to	apply	these	facts
in	different	situations	until
you	know	how	to	use	them.
That’s	what	the	rest	of	this
book	will	help	you	do.

Exercise	7.
Variables	and
Types

You	should	be	getting	a	grasp
of	how	a	simple	C	program	is
structured,	so	let’s	do	the	next
simplest	thing	and	make
some	variables	of	different
types:

ex7.c

Click	here	to	view	code	image

	1			#include
<stdio.h>
	2
	3			int
main(intargc,
char*argv[])
	4			{
	5							int	distance
=	100;
	6							float	power
=	2.345f;
	7							double

super_power	=
56789.4532;
	8							char	initial
=	'A';
	9							char
first_name[]	=	"Zed";
10							char
last_name[]	=	"Shaw";
11
12							printf("You
are	%d	miles
away.\n",	distance);
13							printf("You
have	%f	levels	of
power.\n",	power);
14							printf("You

have	%f	awesome	super
powers.\n",
super_power);
15							printf("I
have	an	initial
%c.\n",	initial);
16							printf("I
have	a	first	name
%s.\n",	first_name);
17							printf("I
have	a	last	name
%s.\n",	last_name);
18							printf("My
whole	name	is	%s	%c.
%s.\n",
19															first_name

initial,	last_name);
20
21							int	bugs	=
100;
22							double
bug_rate	=	1.2;
23
24							printf("You
have	%d	bugs	at	the
imaginary	rate	of
%f.\n",
25															bugs,
bug_rate);
26
27							long
universe_of_defects	=

1L	*	1024L	*	1024L	*
1024L;
28							printf("The
entire	universe	has
%ld	bugs.\n",
universe_of_defects);
29
30							double
expected_bugs	=	bugs
*	bug_rate;
31							printf("You
are	expected	to	have
%f	bugs.\n",
expected_bugs);
32
33							double

part_of_universe	=
expected_bugs	/
universe_of_defects;
34							printf("That
is	only	a	%e	portion
of	the	universe.\n",
35															part_of_universe
36
37							//	this
makes	no	sense,	just
a	demo	of	something
weird
38							char
nul_byte	=	'\0';
39							int
care_percentage	=

bugs	*	nul_byte;
40							printf("Which
means	you	should	care
%d%%.\n",
care_percentage);
41
42							return	0;
43			}

In	this	program,	we’re
declaring	variables	of
different	types	and	then
printing	them	using	different
printf	format	strings.	I	can
break	it	down	as	follows:

ex7.c:1-4	The	usual	start
of	a	C	program.

ex7.c:5-6	Declare	an	int
and	double	for	some
fake	bug	data.

ex7.c:8-9	Print	out	those
two,	so	nothing	new
here.

ex7.c:11	Declare	a	huge
number	using	a	new
type,	long,	for	storing
big	numbers.

ex7.c:12-13	Print	out	that
number	using	%ld	that
adds	a	modifier	to	the
usual	%d.	Adding	l	(the
letter)	tells	the	program
to	print	the	number	as	a
long	decimal.

ex7.c:15-17	This	is	just
more	math	and	printing.

ex7.c:19-21	Craft	a
depiction	of	your	bug
rate	compared	to	the
bugs	in	the	universe,

which	is	a	completely
inaccurate	calculation.
It’s	so	small	that	we
have	to	use	%e	to	print
it	in	scientific	notation.

ex7.c:24	Make	a
character,	with	a	special
syntax	'\0'	that
creates	a	nul	byte
character.	This	is
effectively	the	number
0.

ex7.c:25	Multiply	bugs	by

this	character,	which
produces	0,	as	in	how
much	you	should	care.
This	demonstrates	an
ugly	hack	you	might
see	sometimes.

ex7.c:26-27	Print	that	out,
and	notice	we’ve	used
%%	(two	percent	signs)
so	that	we	can	print	a	%
(percent)	character.

ex7.c:28-30	The	end	of
the	main	function.

This	source	file	demonstrates
how	some	math	works	with
different	types	of	variables.
At	the	end	of	the	program,	it
also	demonstrates	something
you	see	in	C	but	not	in	many
other	languages.	To	C,	a
character	is	just	an	integer.
It’s	a	really	small	integer,	but
that’s	all	it	is.	This	means	you
can	do	math	on	them,	and	a
lot	of	software	does	just	that
—for	good	or	bad.

This	last	bit	is	your	first
glance	at	how	C	gives	you
direct	access	to	the	machine.
We’ll	be	exploring	that	more
in	later	exercises.

What	You	Should
See
As	usual,	here’s	what	you
should	see	for	the	output:

Exercise	7	Session

Click	here	to	view	code	image

$	make	ex7
cc	-Wall	-
g				ex7.c			-o	ex7
$./ex7
You	have	100	bugs	at
the	imaginary	rate	of
1.200000.
The	entire	universe
has	1073741824	bugs.
You	are	expected	to
have	120.000000	bugs.
That	is	only	a
1.117587e-07	portion
of	the	universe.
Which	means	you

should	care	0%.
$

How	to	Break	It
Again,	go	through	this	and	try
to	break	the	printf	by
passing	in	the	wrong
arguments.	See	what	happens
if	you	try	to	print	out	the
nul_byte	variable	along
with	%s	versus	%c.	When
you	break	it,	run	it	under	the
debugger	to	see	what	it	says
about	what	you	did.

Extra	Credit
•	Make	the	number	you
assign	to
universe_of_defects
various	sizes	until	you
get	a	warning	from	the
compiler.
•	What	do	these	really
huge	numbers	actually
print	out?
•	Change	long	to
unsigned	long	and

try	to	find	the	number
that	makes	it	too	big.
•	Go	search	online	to	find
out	what	unsigned
does.
•	Try	to	explain	to
yourself	(before	I	do	in
the	next	exercise)	why
you	can	multiply	a
char	and	an	int.

Exercise	8.	If,
Else-If,	Else

In	C,	there	really	isn’t	a
Boolean	type.	Instead,	any
integer	that’s	0	is	false	or
otherwise	it’s	true.	In	the	last
exercise,	the	expression
argc	>	1	actually	resulted
in	1	or	0,	not	an	explicit
True	or	False	like	in

Python.	This	is	another
example	of	C	being	closer	to
how	a	computer	works,
because	to	a	computer,	truth
values	are	just	integers.
However,	C	does	have	a
typical	if-statement	that
uses	this	numeric	idea	of	true
and	false	to	do	branching.	It’s
fairly	similar	to	what	you
would	do	in	Python	and
Ruby,	as	you	can	see	in	this
exercise:

ex8.c

Click	here	to	view	code	image

	1			#include
<stdio.h>
	2
	3			int	main(int
argc,	char	*argv[])
	4			{
	5							int	i	=	0;
	6
	7							if	(argc	==
1)	{
	8											printf("You
only	have	one

argument.	You
suck.\n");
	9							}	else	if
(argc	>	1	&&	argc	<
4)	{
10											printf("Here's
your	arguments:\n");
11
12											for	(i	=
0;	i	<	argc;	i++)	{
13															printf
",	argv[i]);
14											}
15											printf("\n"
16							}	else	{
17											printf("You

have	too	many
arguments.	You
suck.\n");
18							}
19
20							return	0;
21			}

The	format	for	the	if-
statement	is	this:

if(TEST)	{
				CODE;
}	else	if(TEST)	{
				CODE;
}	else	{
				CODE;

}

This	is	like	most	other
languages	except	for	some
specific	C	differences:

•	As	mentioned	before,
the	TEST	parts	are	false
if	they	evaluate	to	0,	or
otherwise	true.
•	You	have	to	put
parentheses	around	the
TEST	elements,	while
some	other	languages
let	you	skip	that.

•	You	don’t	need	the	{}
braces	to	enclose	the
code,	but	it	is	very	bad
form	to	not	use	them.
The	braces	make	it
clear	where	one	branch
of	code	begins	and
ends.	If	you	don’t
include	them	then
obnoxious	errors	come
up.

Other	than	that,	the	code
works	the	way	it	does	in	most

other	languages.	You	don’t
need	to	have	either	else	if
or	else	parts.

What	You	Should
See
This	one	is	pretty	simple	to
run	and	try	out:

Exercise	8	Session

Click	here	to	view	code	image

$	make	ex8
cc	-Wall	-
g				ex8.c			-o	ex8
$./ex8
You	only	have	one
argument.	You	suck.
$./ex8	one
Here's	your
arguments:
./ex8	one
$./ex8	one	two
Here's	your
arguments:
./ex8	one	two
$./ex8	one	two	three
You	have	too	many
arguments.	You	suck.

$

How	to	Break	It
This	one	isn’t	easy	to	break
because	it’s	so	simple,	but	try
messing	up	the	tests	in	the
if-statement:

•	Remove	the	else	at
the	end,	and	the
program	won’t	catch
the	edge	case.
•	Change	the	&&	to	a	||
so	you	get	an	or	instead

of	an	and	test	and	see
how	that	works.

Extra	Credit
•	You	were	briefly
introduced	to	&&,	which
does	an	and
comparison,	so	go
research	online	the
different	Boolean
operators.
•	Write	a	few	more	test
cases	for	this	program

to	see	what	you	can
come	up	with.
•	Is	the	first	test	really
saying	the	right	thing?
To	you,	the	first
argument	isn’t	the	same
first	argument	a	user
entered.	Fix	it.

Exercise	9.
While-Loop
and	Boolean
Expressions

The	first	looping	construct
I’ll	show	you	is	the	while-
loop,	and	it’s	the	simplest,
useful	loop	you	could
possibly	use	in	C.	Here’s	this

exercise’s	code	for
discussion:

ex9.c

Click	here	to	view	code	image

	1			#include
<stdio.h>
	2
	3			int	main(int
argc,	char	*argv[])
	4			{
	5							int	i	=	0;
	6							while	(i	<

25)	{
	7											printf("%d"
i);
	8											i++;
	9							}
10
11							return	0;
12			}

From	this	code,	and	from
your	memorization	of	the
basic	syntax,	you	can	see	that
a	while-loop	is	simply
this:

while(TEST)	{

				CODE;
}

It	simply	runs	the	CODE	as
long	as	TEST	is	true	(1).	So
to	replicate	how	the	for-
loop	works,	we	need	to	do
our	own	initializing	and
incrementing	of	i.	Remember
that	i++	increments	i	with
the	post-increment
operator.	Refer	back	to
your	list	of	tokens	if	you
didn’t	recognize	that.

What	You	Should
See
The	output	is	basically	the
same,	so	I	just	did	it	a	little
differently	so	that	you	can	see
it	run	another	way.

Exercise	9	Session

Click	here	to	view	code	image

$	make	ex9
cc	-Wall	-

g				ex9.c			-o	ex9
$./ex9
arg	0:	./ex9
state	0:	California
state	1:	Oregon
state	2:	Washington
state	3:	Texas
$
$./ex9	test	it
arg	0:	./ex9
arg	1:	test
arg	2:	it
state	0:	California
state	1:	Oregon
state	2:	Washington
state	3:	Texas
$

How	to	Break	It
There	are	several	ways	to	get
a	while-loop	wrong,	so	I
don’t	recommend	you	use	it
unless	you	must.	Here	are	a
few	easy	ways	to	break	it:

•	Forget	to	initialize	the
first	int	i;.
Depending	on	what	i
starts	with,	the	loop
might	not	run	at	all,	or
run	for	an	extremely

long	time.
•	Forget	to	initialize	the
second	loop’s	i	so	that
it	retains	the	value	from
the	end	of	the	first	loop.
Now	your	second	loop
might	or	might	not	run.
•	Forget	to	do	a	i++
increment	at	the	end	of
the	loop	and	you’ll	get	a
forever	loop,	one	of	the
dreaded	problems
common	in	the	first

decade	or	two	of
programming.

Extra	Credit
•	Make	the	loop	count
backward	by	using	i--
to	start	at	25	and	go	to
0.
•	Write	a	few	more
complex	while-
loops	using	what	you
know	so	far.

Exercise	10.
Switch
Statements

In	other	languages,	like	Ruby,
you	have	a	switch-
statement	that	can	take
any	expression.	Some
languages,	like	Python,	don’t
have	a	switch-
statement	because	an	if-

statement	with	Boolean
expressions	is	about	the	same
thing.	For	these	languages,
switch-statements	are
more	like	alternatives	to	if-
statements	and	work	the
same	internally.
In	C,	the	switch-
statement	is	actually	quite
different	and	is	really	a	jump
table.	Instead	of	random
Boolean	expressions,	you	can
only	put	expressions	that

result	in	integers.	These
integers	are	used	to	calculate
jumps	from	the	top	of	the
switch	to	the	part	that
matches	that	value.	Here’s
some	code	to	help	you
understand	this	concept	of
jump	tables:

ex10.c

Click	here	to	view	code	image

	1			#include

<stdio.h>
	2
	3			int	main(int
argc,	char	*argv[])
	4			{
	5							int	i	=	0;
	6
	7							//	go
through	each	string
in	argv
	8							//	why	am	I
skipping	argv[0]?
	9							for	(i	=	1;
i	<	argc;	i++)	{
10											printf("arg
%d:	%s\n",	i,

argv[i]);
11							}
12
13							//	let's
make	our	own	array	of
strings
14							char
*states[]	=	{
15											"California"
"Oregon",
16											"Washington"
"Texas"
17							};
18
19							int
num_states	=	4;

20
21							for	(i	=	0;
i	<	num_states;	i++)
{
22											printf("state
%d:	%s\n",	i,
states[i]);
23							}
24
25							return	0;
26			}

In	this	program,	we	take	a
single	command	line
argument	and	print	out	all
vowels	in	an	incredibly

tedious	way	to	demonstrate	a
switch-statement.
Here’s	how	the	switch-
statement	works:

•	The	compiler	marks	the
place	in	the	program
where	the	switch-
statement	starts.
Let’s	call	this	location
Y.
•	It	then	evaluates	the
expression	in
switch(letter)	to

come	up	with	a	number.
In	this	case,	the	number
will	be	the	raw	ASCII
code	of	the	letter	in
argv[1].
•	The	compiler	also
translates	each	of	the
case	blocks	like	case
'A':	into	a	location	in
the	program	that’s	that
far	away.	So	the	code
under	case	'A'	is	at
Y	+	A	in	the	program.

•	It	then	does	the	math	to
figure	out	where	Y	+
letter	is	located	in	the
switch-
statement,	and	if	it’s
too	far,	then	it	adjusts	it
to	Y	+	default.
•	Once	it	knows	the
location,	the	program
jumps	to	that	spot	in	the
code,	and	then
continues	running.	This
is	why	you	have

break	on	some	of	the
case	blocks	but	not	on
others.
•	If	'a'	is	entered,	then
it	jumps	to	case	'a'.
There’s	no	break,	so	it
“falls	through”	to	the
one	right	under	it,
case	'A',	which	has
code	and	a	break.
•	Finally,	it	runs	this
code,	hits	the	break,	and
then	exits	out	of	the

switch-statement
entirely.

This	is	a	deep	dive	into	how
the	switch-statement
works,	but	in	practice	you
just	have	to	remember	a	few
simple	rules:

•	Always	include	a
default:	branch	so
that	you	catch	any
missing	inputs.
•	Don’t	allow	fall
through	unless	you

really	want	it.	It’s	also	a
good	idea	to	add	a
//fallthrough
comment	so	people
know	it’s	on	purpose.
•	Always	write	the	case
and	the	break	before
you	write	the	code	that
goes	in	it.
•	Try	to	use	if-
statements	instead
if	you	can.

What	You	Should
See
Here’s	an	example	of	me
playing	with	this,	and	also
demonstrating	various	ways
to	pass	in	the	argument:

Exercise	10	Session

Click	here	to	view	code	image

$	make	ex10
cc	-Wall	-gex10.c			-

o	ex10
$./ex10
ERROR:	You	need	one
argument.
$
$./ex10	Zed
0:	Z	is	not	a	vowel
1:	'E'
2:	d	is	not	a	vowel
$
$./ex10	Zed	Shaw
ERROR:	You	need	one
argument.
$
$./ex10	"Zed	Shaw"
0:	Z	is	not	a	vowel
1:	'E'

2:	d	is	not	a	vowel
3:			is	not	a	vowel
4:	S	is	not	a	vowel
5:	h	is	not	a	vowel
6:	'A'
7:	w	is	not	a	vowel
$

Remember	that	there’s	an
if-statement	at	the	top
that	exits	with	a	return	1;
when	you	don’t	provide
enough	arguments.	A	return
that’s	not	0	indicates	to	the
OS	that	the	program	had	an

error.	You	can	test	for	any
value	that’s	greater	than	0	in
scripts	and	other	programs	to
figure	out	what	happened.

How	to	Break	It
It’s	incredibly	easy	to	break	a
switch-statement.	Here
are	just	a	few	ways	you	can
mess	one	of	these	up:

•	Forget	a	break,	and
it’ll	run	two	or	more
blocks	of	code	you

don’t	want	it	to	run.
•	Forget	a	default,	and
it’ll	silently	ignore
values	you	forgot.
•	Accidentally	put	a
variable	into	the
switch	that	evaluates
to	something
unexpected,	like	an
int,	which	becomes
weird	values.
•	Use	uninitialized	values
in	the	switch.

You	can	also	break	this
program	in	a	few	other	ways.
See	if	you	can	bust	it
yourself.

Extra	Credit
•	Write	another	program
that	uses	math	on	the
letter	to	convert	it	to
lowercase,	and	then
remove	all	of	the
extraneous	uppercase
letters	in	the	switch.

•	Use	the	','	(comma)
to	initialize	letter	in
the	for-loop.
•	Make	it	handle	all	of
the	arguments	you	pass
it	with	yet	another
for-loop.
•	Convert	this	switch-
statement	to	an	if-
statement.	Which
do	you	like	better?
•	In	the	case	for	'Y'	I
have	the	break	outside

of	the	if-
statement.	What’s
the	impact	of	this,	and
what	happens	if	you
move	it	inside	of	the
if-statement.
Prove	to	yourself	that
you’re	right.

Exercise	11.
Arrays	and
Strings

This	exercise	shows	you	that
C	stores	its	strings	simply	as
an	array	of	bytes,	terminated
with	the	'\0'	(nul)	byte.
You	probably	clued	in	to	this
in	the	last	exercise	since	we
did	it	manually.	Here’s	how

we	do	it	in	another	way	to
make	it	even	clearer	by
comparing	it	to	an	array	of
numbers:

ex11.c

Click	here	to	view	code	image

	1			#include
<stdio.h>
	2
	3			int	main(int
argc,	char	*argv[])
	4			{

	5							int
numbers[4]	=	{	0	};
	6							char	name[4]
=	{	'a'	};
	7
	8							//	first,
print	them	out	raw
	9							printf("numbers:
%d	%d	%d	%d\n",
10															numbers
numbers[1],
numbers[2],
numbers[3]);
11
12							printf("name
each:	%c	%c	%c	%c\n",

13															name[
name[1],	name[2],
name[3]);
14
15							printf("name:
%s\n",	name);
16
17							//	set	up
the	numbers
18							numbers[0]	=
1;
19							numbers[1]	=
2;
20							numbers[2]	=
3;
21							numbers[3]	=
4;

22
23							//	set	up
the	name
24							name[0]	=
'Z';
25							name[1]	=
'e';
26							name[2]	=
'd';
27							name[3]	=
'\0';
28
29							//	then
print	them	out
initialized
30							printf("numbers:
%d	%d	%d	%d\n",

31															numbers
numbers[1],
numbers[2],
numbers[3]);
32
33							printf("name
each:	%c	%c	%c	%c\n",
34															name[
name[1],	name[2],
name[3]);
35
36							//	print	the
name	like	a	string
37							printf("name:
%s\n",	name);
38

39							//	another
way	to	use	name
40							char
*another	=	"Zed";
41
42							printf("another:
%s\n",	another);
43
44							printf("another
each:	%c	%c	%c	%c\n",
45															another
another[1],
another[2],
another[3]);
46
47							return	0;

48			}

In	this	code,	we	set	up	some
arrays	the	tedious	way,	by
assigning	a	value	to	each
element.	In	numbers,	we	are
setting	up	numbers;	but	in
name,	we’re	actually
building	a	string	manually.

What	You	Should
See
When	you	run	this	code,	you
should	first	see	the	arrays
printed	with	their	contents
initialized	to	0	(zero),	then	in
its	initialized	form.

Exercise	11	Session

Click	here	to	view	code	image

$	make	ex11

cc	-Wall	-
g				ex11.c		-o	ex11
$./ex11
numbers:	0	0	0	0
name	each:	a
name:	a
numbers:	1	2	3	4
name	each:	Z	e	d
name:	Zed
another:	Zed
another	each:	Z	e	d
$

You’ll	notice	some
interesting	things	about	this
program:

•	I	didn’t	have	to	give	all
four	elements	of	the
arrays	to	initialize	them.
This	is	a	shortcut	in	C.
If	you	set	just	one
element,	it’ll	fill	in	the
rest	with	0.
•	When	each	element	of
numbers	is	printed,
they	all	come	out	as	0.
•	When	each	element	of
name	is	printed,	only
the	first	element	'a'

shows	up	because	the
'\0'	character	is
special	and	won’t
display.
•	Then	the	first	time	we
print	name,	it	only
prints	the	letter	a.	This
is	because	the	array	will
be	filled	with	0	after	the
first	'a'	in	the
initializer,	so	the	string
is	correctly	terminated
by	a	'\0'	character.

•	We	then	set	up	the
arrays	with	a	tedious,
manual	assignment	to
each	thing	and	print
them	out	again.	Look	at
how	they	changed.	Now
the	numbers	are	set,	but
do	you	see	how	the
name	string	prints	my
name	correctly?
•	There	are	also	two
syntaxes	for	doing	a
string:	char

name[4]	=	{'a'}
on	line	6	versus	char
*another	=
"name"	on	line	44.
The	first	one	is	less
common	and	the	second
is	what	you	should	use
for	string	literals	like
this.

Notice	that	I’m	using	the
same	syntax	and	style	of	code
to	interact	with	both	an	array
of	integers	and	an	array	of

characters,	but	printf
thinks	that	the	name	is	just	a
string.	Again,	this	is	because
the	C	language	doesn’t
differentiate	between	a	string
and	an	array	of	characters.
Finally,	when	you	make
string	literals	you	should
typically	use	the	char
*another	=	"Literal"
syntax.	This	works	out	to	be
the	same	thing,	but	it’s	more
idiomatic	and	easier	to	write.

How	to	Break	It
The	source	of	almost	all	bugs
in	C	come	from	forgetting	to
have	enough	space,	or
forgetting	to	put	a	'\0'	at
the	end	of	a	string.	In	fact,	it’s
so	common	and	hard	to	get
right	that	the	majority	of	good
C	code	just	doesn’t	use	C-
style	strings.	In	later
exercises,	we’ll	actually	learn
how	to	avoid	C	strings
completely.

In	this	program,	the	key	to
breaking	it	is	to	forget	to	put
the	'\0'	character	at	the	end
of	the	strings.	There	are	a	few
ways	to	do	this:

•	Get	rid	of	the
initializers	that	set	up
name.
•	Accidentally	set
name[3]	=	'A';	so
that	there’s	no
terminator.
•	Set	the	initializer	to

{'a','a','a','a'}
so	that	there	are	too
many	'a'	characters
and	no	space	for	the
'\0'	terminator.

Try	to	come	up	with	some
other	ways	to	break	this,	and
run	all	of	these	under	the
debugger	so	you	can	see
exactly	what’s	going	on	and
what	the	errors	are	called.
Sometimes	you’ll	make	these
mistakes	and	even	a	debugger

can’t	find	them.	Try	moving
where	you	declare	the
variables	to	see	if	you	get	an
error.	This	is	part	of	the
voodoo	of	C:	Sometimes	just
where	the	variable	is	located
changes	the	bug.

Extra	Credit
•	Assign	the	characters
into	numbers,	and
then	use	printf	to
print	them	one	character
at	a	time.	What	kind	of
compiler	warnings	do
you	get?
•	Do	the	inverse	for
name,	trying	to	treat	it
like	an	array	of	int
and	print	it	out	one	int
at	a	time.	What	does	the

debugger	think	of	that?
•	In	how	many	other
ways	can	you	print	this
out?
•	If	an	array	of	characters
is	4	bytes	long,	and	an
integer	is	4	bytes	long,
then	can	you	treat	the
whole	name	array	like
it’s	just	an	integer?
How	might	you
accomplish	this	crazy
hack?

•	Take	out	a	piece	of
paper	and	draw	each	of
these	arrays	as	a	row	of
boxes.	Then	do	the
operations	you	just	did
on	paper	to	see	if	you
get	them	right.
•	Convert	name	to	be	in
the	style	of	another
and	see	if	the	code
keeps	working.

Exercise	12.
Sizes	and	Arrays

In	the	last	exercise,	you	did
math	but	with,	a	'\0'	(nul)
character.	This	may	seem	odd
if	you’re	coming	from	other
languages,	since	they	try	to
treat	strings	and	byte	arrays
as	different	beasts.	C	treats
strings	as	just	arrays	of	bytes,
and	it’s	only	the	different

printing	functions	that
recognize	a	difference.
Before	I	can	really	explain
the	significance	of	this,	I	have
to	introduce	a	couple	more
concepts:	sizeof	and
arrays.	Here’s	the	code	we’ll
be	talking	about:

ex12.c

Click	here	to	view	code	image

	1			#include

<stdio.h>
	2
	3			int	main(int
argc,	char	*argv[])
	4			{
	5							int	areas[]
=	{	10,	12,	13,	14,
20	};
	6							char	name[]
=	"Zed";
	7							char
full_name[]	=	{
	8											'Z',
'e',	'd',
	9											'	',
'A',	'.',	'	',
10											'S',

'h',	'a',	'w',	'\0'
11							};
12
13							//	WARNING:
On	some	systems	you
may	have	to	change
the
14							//	%ld	in
this	code	to	a	%u
since	it	will	use
unsigned	ints
15							printf("The
size	of	an	int:
%ld\n",	sizeof(int));
16							printf("The
size	of	areas

(int[]):	%ld\n",
sizeof(areas));
17							printf("The
number	of	ints	in
areas:	%ld\n",
18															sizeof
/	sizeof(int));
19							printf("The
first	area	is	%d,	the
2nd	%d.\n",	areas[0],
areas[1]);
20
21							printf("The
size	of	a	char:
%ld\n",
sizeof(char));
22							printf("The

size	of	name
(char[]):	%ld\n",
sizeof(name));
23							printf("The
number	of	chars:
%ld\n",	sizeof(name)
/	sizeof(char));
24
25							printf("The
size	of	full_name
(char[]):	%ld\n",
sizeof(full_name));
26							printf("The
number	of	chars:
%ld\n",
27															sizeof

/	sizeof(char));
28
29							printf("name=\"%s\"
and
full_name=\"%s\"\n",
name,	full_name);
30
31							return	0;
32			}

In	this	code,	we	create	a	few
arrays	with	different	data
types	in	them.	Because	arrays
of	data	are	so	central	to	how
C	works,	there	are	a	huge
number	of	ways	to	create

them.	For	now,	just	use	the
syntax	type	name[]	=
{initializer};	and
we’ll	explore	more	later.
What	this	syntax	means	is,	“I
want	an	array	of	type	that	is
initialized	to	{..}.”	When	C
sees	this,	it	knows	to:

•	Look	at	the	type,	and	in
this	first	case,	it’s	int.
•	Look	at	the	[]	and	see
that	there’s	no	length
given.

•	Look	at	the	initializer
{10,	12,	13,	14,
20}	and	figure	out	that
you	want	those	five
integers	in	your	array.
•	Create	a	piece	of
memory	in	the
computer	that	can	hold
5	integers	one	after
another.
•	Take	the	name	you
want,	areas,	and
assign	it	this	location.

In	the	case	of	areas,	it’s
creating	an	array	of	five
integers	that	contain	those
numbers.	When	it	gets	to
char	name[]	=	"Zed";
it’s	doing	the	same	thing,
except	it’s	creating	an	array
of	three	characters	and
assigning	that	to	name.	The
final	array	we	make	is
full_name,	but	we	use	the
annoying	syntax	of	spelling	it
out	one	character	at	a	time.

To	C,	name	and
full_name	are	identical
methods	of	creating	a	char
array.
In	the	rest	of	the	file,	we’re
using	a	keyword	called
sizeof	to	ask	C	how	big
things	are	in	bytes.	C	is	all
about	the	size	and	location	of
pieces	of	memory,	and	what
you	do	with	them.	To	help
you	keep	this	straight,	it	gives
you	sizeof	so	that	you	can

ask	how	big	something	is
before	you	work	with	it.
This	is	where	stuff	gets
tricky,	so	let’s	run	this	code
first	and	then	explain	it	later.

What	You	Should
See

Exercise	12	Session

Click	here	to	view	code	image

$	make	ex12
cc	-Wall	-
g				ex12.c			-o	ex12
$./ex12
The	size	of	an	int:	4
The	size	of	areas
(int[]):	20
The	number	of	ints	in
areas:	5
The	first	area	is	10,
the	2nd	12.
The	size	of	a	char:	1
The	size	of	name
(char[]):	4
The	number	of	chars:
4
The	size	of	full_name

(char[]):	12
The	number	of	chars:
12
name="Zed"	and
full_name="Zed	A.
Shaw"
$

Now	you	see	the	output	of
these	different	printf	calls
and	start	to	get	a	glimpse	of
what	C	is	doing.	Your	output
could	actually	be	totally
different	from	mine,	since
your	computer	might	have

different	size	integers.	I’ll	go
through	my	output:

5	My	computer	thinks	an
int	is	4	bytes	in	size.
Your	computer	might
use	a	different	size	if
it’s	a	32-bit	versus	64-
bit	CPU.

6	The	areas	array	has
five	integers	in	it,	so	it
makes	sense	that	my
computer	requires	20
bytes	to	store	it.

7	If	we	divide	the	size	of
areas	by	the	size	of
an	int,	then	we	get
five	elements.	Looking
at	the	code,	this
matches	what	we	put	in
the	initializer.

8	We	then	did	an	array
access	to	get
areas[0]	and
areas[1],	which
means	C	is	zero	indexed
like	Python	and	Ruby.

9-11	We	repeat	this	for
the	name	array,	but	do
you	notice	something
odd	about	the	size	of
the	array?	It	says	it’s	4
bytes	long,	but	we	only
typed	“Zed”	for	three
characters.	Where’s	the
fourth	one	coming
from?

12-13	We	do	the	same
thing	with
full_name,	and	now

notice	it	gets	this
correct.
13	Finally,	we	just	print
out	the	name	and
full_name	to	prove
that	they	actually	are
“strings”	according	to
printf.

Make	sure	you	can	go
through	and	see	how	these
output	lines	match	what	was
created.	We’ll	be	building	on
this,	and	exploring	more

about	arrays	and	storage	next.

How	to	Break	It
Breaking	this	program	is
fairly	easy.	Try	some	of
these:

•	Get	rid	of	the	'\0'	at
the	end	of	full_name
and	rerun	it.	Run	it
under	the	debugger	too.
Now,	move	the
definition	of
full_name	to	the	top

of	main	before
areas.	Try	running	it
under	the	debugger	a
few	times	and	see	if	you
get	some	new	errors.	In
some	cases,	you	might
still	get	lucky	and	not
catch	any	errors.
•	Change	it	so	that
instead	of	areas[0]
you	try	to	print
areas[10].	See	what
the	debugger	thinks	of

that.
•	Try	other	ways	to	break
it	like	this,	doing	it	to
name	and
full_name,	too.

Extra	Credit
•	Try	assigning	to
elements	in	the	areas
array	with	areas[0]
=	100;	and	similar.
•	Try	assigning	to

elements	of	name	and
full_name.
•	Try	setting	one	element
of	areas	to	a	character
from	name.
•	Search	online	for	the
different	sizes	used	for
integers	on	different
CPUs.

Exercise	13.
For-Loops	and
Arrays	of
Strings

You	can	make	an	array	of
various	types	with	the	idea
that	a	string	and	an	array	of
bytes	are	the	same	thing.	The
next	step	is	to	do	an	array	that

has	strings	in	it.	We’ll	also
introduce	your	first	looping
construct,	the	for-loop,	to
help	print	out	this	new	data
structure.
The	fun	part	of	this	is	that
there’s	been	an	array	of
strings	hiding	in	your
programs	for	a	while	now:	the
char	*argv[]	in	the
main	function	arguments.
Here’s	code	that	will	print	out
any	command	line	arguments

you	pass	it:

ex13.c

Click	here	to	view	code	image

	1			#include
<stdio.h>
	2
	3			int	main(int
argc,	char	*argv[])
	4			{
	5							if	(argc	!=
2)	{
	6											printf("ERROR:

You	need	one
argument.\n");
	7											//	this
is	how	you	abort	a
program
	8											return
1;
	9							}
10
11							int	i	=	0;
12							for	(i	=	0;
argv[1][i]	!=	'\0';
i++)	{
13											char
letter	=	argv[1][i];
14

15											switch
(letter)	{
16															case
'a':
17															case
'A':
18																			printf
'A'\n",	i);
19																			break
20
21															case
'e':
22															case
'E':
23																			printf
'E'\n",	i);

24																			break
25
26															case
'i':
27															case
'I':
28																			printf
'I'\n",	i);
29																			break
30
31															case
'o':
32															case
'O':
33																			printf
'O'\n",	i);

34																			break
35
36															case
'u':
37															case
'U':
38																			printf
'U'\n",	i);
39																			break
40
41															case
'y':
42															case
'Y':
43																			if
(i	>	2)	{

44																							
it's	only	sometimes	Y
45																							printf
'Y'\n",	i);
46																			}
47																			break
48
49															default
50																			printf
%c	is	not	a	vowel\n",
i,	letter);
51											}
52							}
53
54							return	0;
55			}

The	format	of	a	for-loop
is	this:
Click	here	to	view	code	image

for(INITIALIZER;
TEST;	INCREMENTER)	{
					CODE;
}

Here’s	how	the	for-loop
works:

•	The	INITIALIZER	is
code	that’s	run	to	set	up
the	loop,	which	in	this

case	is	i	=	0.
•	Next,	the	TEST
Boolean	expression	is
checked.	If	it’s	false
(0),	then	CODE	is
skipped,	doing	nothing.
•	The	CODE	runs	and
does	whatever	it	does.
•	After	the	CODE	runs,
the	INCREMENTER
part	is	run,	usually
incrementing
something,	such	as	in

i++.
•	And	it	continues	again
with	step	2	until	the
TEST	is	false	(0).

This	for-loop	is	going
through	the	command	line
arguments	using	argc	and
argv	like	this:

•	The	OS	passes	each
command	line	argument
as	a	string	in	the	argv
array.	The	program’s
name	(./ex10)	is	at	0,

with	the	rest	coming
after	it.
•	The	OS	also	sets	argc
to	the	number	of
arguments	in	the	argv
array,	so	you	can
process	them	without
going	past	the	end.
Remember	that	if	you
give	one	argument,	the
program’s	name	is	the
first,	so	argc	is	2.
•	The	for-loop	sets	up

with	i	=	1	in	the
initializer.
•	It	then	tests	that	i	is
less	than	argc	with	the
test	i	<	argc.	Since
$1	<	2$,	it’ll	pass.
•	It	then	runs	the	code
that	just	prints	out	the	i
and	uses	i	to	index	into
argv.
•	The	incrementer	is	then
run	using	the	i++

syntax,	which	is	a
handy	way	of	writing	i
=	i	+	1.
•	This	then	repeats	until
i	<	argc	is	finally
false	(0),	the	loop	exits,
and	the	program
continues	on.

What	You	Should
See
To	play	with	this	program,
then,	you	have	to	run	it	two
ways.	The	first	way	is	to	pass
in	some	command	line
arguments	so	that	argc	and
argv	get	set.	The	second	is
to	run	it	with	no	arguments	so
you	can	see	that	the	first
for-loop	doesn’t	run	if	i
<	argc	is	false.

Exercise	13	Session

Click	here	to	view	code	image

$	make	ex13
cc	-Wall	-
g				ex13.c			-o	ex13
$./ex13	i	am	a	bunch
of	arguments
arg	1:	i
arg	2:	am
arg	3:	a
arg	4:	bunch
arg	5:	of
arg	6:	arguments
state	0:	California

state	1:	Oregon
state	2:	Washington
state	3:	Texas
$
$./ex13
state	0:	California
state	1:	Oregon
state	2:	Washington
state	3:	Texas
$

Understanding
Arrays	of	Strings
In	C	you	make	an	array	of

strings	by	combining	the
char	*str	=	"blah"
syntax	with	the	char
str[]	=
{'b','l','a','h'}
syntax	to	construct	a	two-
dimensional	array.	The
syntax	char	*states[]
=	{...}	on	line	14	is	this
two-dimensional
combination,	each	string
being	one	element,	and	each
character	in	the	string	being

another.
Confusing?	The	concept	of
multiple	dimensions	is
something	most	people	never
think	about,	so	what	you
should	do	is	build	this	array
of	strings	on	paper:

•	Make	a	grid	with	the
index	of	each	string	on
the	left.
•	Then	put	the	index	of
each	character	on	the
top.

•	Then	fill	in	the	squares
in	the	middle	with	what
single	character	goes	in
each	square.
•	Once	you	have	the	grid,
trace	through	the	code
using	this	grid	of	paper.

Another	way	to	figure	this	is
out	is	to	build	the	same
structure	in	a	programming
language	you	are	more
familiar	with,	like	Python	or
Ruby.

How	to	Break	It
•	Take	your	favorite
other	language	and	use
it	to	run	this	program,
but	include	as	many
command	line
arguments	as	possible.
See	if	you	can	bust	it	by
giving	it	way	too	many
arguments.
•	Initialize	i	to	0	and	see
what	that	does.	Do	you
have	to	adjust	argc	as

well,	or	does	it	just
work?	Why	does	0-
based	indexing	work
here?
•	Set	num_states
wrong	so	that	it’s	a
higher	value	and	see
what	it	does.

Extra	Credit
•	Figure	out	what	kind	of
code	you	can	put	into
the	parts	of	a	for-
loop.
•	Look	up	how	to	use	the
comma	character	(,)	to
separate	multiple
statements	in	the	parts
of	the	for-loop,	but
between	the	semicolon
characters	(;).

•	Read	about	what	a
NULL	is	and	try	to	use
it	in	one	of	the	elements
from	the	states	array
to	see	what	it’ll	print.
•	See	if	you	can	assign	an
element	from	the
states	array	to	the
argv	array	before
printing	both.	Try	the
inverse.

Exercise	14.
Writing	and
Using	Functions

Up	until	now,	we’ve	just	used
functions	that	are	part	of	the
stdio.h	header	file.	In	this
exercise,	you’ll	write	some
functions	and	use	some	other
functions.

ex14.c

Click	here	to	view	code	image

	1			#include
<stdio.h>
	2			#include
<ctype.h>
	3
	4			//	forward
declarations
	5			int
can_print_it(char
ch);
	6			void
print_letters(char

arg[]);
	7
	8			void
print_arguments(int
argc,	char	*argv[])
	9			{
10							int	i	=	0;
11
12							for	(i	=	0;
i	<	argc;	i++)	{
13											print_letters
14							}
15			}
16
17			void
print_letters(char

arg[])
18			{
19							int	i	=	0;
20
21							for	(i	=	0;
arg[i]	!=	'\0';	i++)
{
22											char	ch
=	arg[i];
23
24											if
(can_print_it(ch))	{
25															printf
==	%d	",	ch,	ch);
26											}
27							}

28
29							printf("\n");
30			}
31
32			int
can_print_it(char	ch)
33			{
34							return
isalpha(ch)	||
isblank(ch);
35			}
36
37			int	main(int
argc,	char	*argv[])
38			{
39							print_arguments

argv);
40							return	0;
41			}

In	this	example	we’re
creating	functions	to	print	out
the	characters	and	ASCII
codes	for	any	that	are	alpha
or	blanks.	Here’s	the
breakdown:

ex14.c:2	Include	a	new
header	file,	so	we	can
gain	access	to
isalpha	and

isblank.
ex14.c:5-6	Tell	C	that
you’ll	be	using	some
functions	later	in	your
program	without
actually	having	to
define	them.	This	is	a
forward	declaration
and	it	solves	the
chicken-and-egg
problem	of	needing	to
use	a	function	before
you’ve	defined	it.

ex14.c:8-15	Define	the
print_arguments
function,	which	knows
how	to	print	the	same
array	of	strings	that
main	typically	gets.

ex14.c:17-30	Define	the
next	function,
print_letters,
which	is	called	by
print_arguments
and	knows	how	to	print
each	of	the	characters

and	their	codes.
ex14.c:32-35	Define
can_print_it,
which	simply	returns
the	truth	value	(0	or	1)
of	isalpha(ch)	||
isblank(ch)	back	to
its	caller,
print_letters.

ex14.c:38-42	Finally,
main	simply	calls
print_arguments
to	make	the	whole

chain	of	functions	go.
I	shouldn’t	have	to	describe
what’s	in	each	function,
because	they’re	all	things
you’ve	run	into	before.	What
you	should	be	able	to	see,
though,	is	that	I’ve	simply
defined	functions	the	same
way	you’ve	been	defining
main.	The	only	difference	is
you	have	to	help	C	out	by
telling	it	ahead	of	time	if
you’re	going	to	use	functions

it	hasn’t	encountered	yet	in
the	file.	That’s	what	the
forward	declarations	do.

What	You	Should
See
To	play	with	this	program,
you	just	feed	it	different
command	line	arguments,
which	get	passed	through
your	functions.	Here’s	me
playing	with	it	to
demonstrate:

Exercise	14	Session

Click	here	to	view	code	image

$	make	ex14
cc	-Wall	-
g				ex14.c			-o	ex14

$./ex14
'e'	==	101	'x'	==	120

$./ex14	hi	this	is
cool
'e'	==	101	'x'	==	120
'h'	==	104	'i'	==	105
't'	==	116	'h'	==	104

'i'	==	105	's'	==	115
'i'	==	105	's'	==	115
'c'	==	99	'o'	==	111
'o'	==	111	'l'	==	108

$./ex14	"I	go	3
spaces"
'e'	==	101	'x'	==	120
'I'	==	73	'	'	==	32
'g'	==	103	'o'	==	111
'	'	==	32	'	'	==	32\
								's'	==	115
'p'	==	112	'a'	==	97
'c'	==	99	'e'	==	101
's'	==	115
$

The	isalpha	and
isblank	do	all	the	work	of
figuring	out	if	the	given
character	is	a	letter	or	a	blank.
When	I	do	the	last	run,	it
prints	everything	but	the	3
character	since	that’s	a	digit.

How	to	Break	It
There	are	two	different	kinds
of	breaking	in	this	program:

•	Remove	the	forward
declarations	to	confuse

the	compiler	and	cause
it	to	complain	about
can_print_it	and
print_letters.
•	When	you	call
print_arguments
inside	main,	try	adding
1	to	argc	so	that	it
goes	past	the	end	of	the
argv	array.

Extra	Credit
•	Rework	these	functions
so	that	you	have	fewer
functions.	For	example,
do	you	really	need
can_print_it?
•	Have
print_arguments
figure	out	how	long
each	argument	string	is
by	using	the	strlen
function,	and	then	pass
that	length	to

print_letters.
Then,	rewrite
print_letters	so	it
only	processes	this
fixed	length	and	doesn’t
rely	on	the	'\0'
terminator.	You’ll	need
the	#include
<string.h>	for	this.
•	Use	man	to	look	up
information	on
isalpha	and
isblank.	Use	other

similar	functions	to
print	out	only	digits	or
other	characters.
•	Go	read	about	how
other	people	like	to
format	their	functions.
Never	use	the	K&R
syntax	(it’s	antiquated
and	confusing)	but
understand	what	it’s
doing	in	case	you	run
into	someone	who	likes
it.

Exercise	15.
Pointers,
Dreaded
Pointers

Pointers	are	famous	mystical
creatures	in	C.	I’ll	attempt	to
demystify	them	by	teaching
you	the	vocabulary	to	deal
with	them.	They	actually

aren’t	that	complex,	but
they’re	frequently	abused	in
weird	ways	that	make	them
hard	to	use.	If	you	avoid	the
stupid	ways	to	use	pointers,
then	they’re	fairly	easy.
To	demonstrate	pointers	in	a
way	that	we	can	talk	about
them,	I’ve	written	a	frivolous
program	that	prints	a	group	of
people’s	ages	in	three
different	ways.

ex15.c

Click	here	to	view	code	image

	1			#include
<stdio.h>
	2
	3			int	main(int
argc,	char	*argv[])
	4			{
	5							//	create
two	arrays	we	care
about
	6							int	ages[]	=
{	23,	43,	12,	89,	2
};

	7							char
*names[]	=	{
	8											"Alan",
"Frank",
	9											"Mary",
"John",	"Lisa"
10							};
11
12							//	safely
get	the	size	of	ages
13							int	count	=
sizeof(ages)	/
sizeof(int);
14							int	i	=	0;
15
16							//	first	way
using	indexing

17							for	(i	=	0;
i	<	count;	i++)	{
18											printf("%s
has	%d	years
alive.\n",	names[i],
ages[i]);
19							}
20
21							printf("---
\n");
22
23							//	set	up
the	pointers	to	the
start	of	the	arrays
24							int	*cur_age
=	ages;

25							char
**cur_name	=	names;
26
27							//	second
way	using	pointers
28							for	(i	=	0;
i	<	count;	i++)	{
29											printf("%s
is	%d	years	old.\n",
30																			*
(cur_name	+	i),	*
(cur_age	+	i));
31							}
32
33							printf("---
\n");

34
35							//	third
way,	pointers	are
just	arrays
36							for	(i	=	0;
i	<	count;	i++)	{
37											printf("%s
is	%d	years	old
again.\n",
cur_name[i],
cur_age[i]);
38							}
39
40							printf("---
\n");
41

42							//	fourth
way	with	pointers	in
a	stupid	complex	way
43							for
(cur_name	=	names,
cur_age	=	ages;
44															(cur_age
-	ages)	<	count;
cur_name++,
cur_age++)	{
45											printf("%s
lived	%d	years	so
far.\n",	*cur_name,
*cur_age);
46							}
47

48							return	0;
49			}

Before	explaining	how
pointers	work,	let’s	break	this
program	down	line	by	line	so
you	get	an	idea	of	what’s
going	on.	As	you	go	through
this	detailed	description,	try
to	answer	the	questions	for
yourself	on	a	piece	of	paper,
then	see	if	what	you	guessed
matches	my	description	of
pointers	later.

ex15.c:6-10	Create	two
arrays:	ages	storing
some	int	data,	and
names	storing	an	array
of	strings.

ex15.c:12-13	These	are
some	variables	for	our
for-loops	later.

ex15.c:16-19	This	is	just
looping	through	the	two
arrays	and	printing	how
old	each	person	is.	This
is	using	i	to	index	into

the	array.
ex15.c:24	Create	a	pointer
that	points	at	ages.
Notice	the	use	of	int
*	to	create	a	pointer	to
integer	type	of	pointer.
That’s	similar	to	char
*,	which	is	a	pointer	to
char,	and	a	string	is	an
array	of	chars.	Seeing
the	similarity	yet?

ex15.c:25	Create	a	pointer
that	points	at	names.	A

char	*	is	already	a
pointer	to	char,	so	that’s
just	a	string.	However,
you	need	two	levels
since	names	is	two-
dimensional,	which
then	means	you	need
char	**	for	a	pointer
to	(a	pointer	to	char)
type.	Study	that	and	try
to	explain	it	to	yourself,
too.

ex15.c:28-31	Loop

through	ages	and
names	but	use	the
pointers	plus	an	offset
of	i	instead.	Writing	*
(cur_name+i)	is	the
same	as	writing
name[i],	and	you
read	it	as	“the	value	of
(pointer	cur_name
plus	i).”

ex15.c:35-39	This	shows
how	the	syntax	to
access	an	element	of	an

array	is	the	same	for	a
pointer	and	an	array.

ex15.c:44-50	This	is
another	admittedly
insane	loop	that	does
the	same	thing	as	the
other	two,	but	instead	it
uses	various	pointer
arithmetic	methods:
ex15.c:44	Initialize	our
for-loop	by
setting	cur_name
and	cur_age	to	the

beginning	of	the
names	and	ages
arrays.

ex15.c:45	The	test
portion	of	the	for-
loop	then	compares
the	distance	of	the
pointer	cur_age
from	the	start	of
ages.	Why	does	that
work?

ex15.c:46	The
increment	part	of	the

for-loop	then
increments	both
cur_name	and
cur_age	so	that
they	point	at	the	next
element	of	the	name
and	age	arrays.

ex15.c:48-49	The
pointers	cur_name
and	cur_age	are
now	pointing	at	one
element	of	the	arrays
that	they	work	on,

and	we	can	print
them	out	using	just
*cur_name	and
*cur_age,	which
means	“the	value	of
wherever
cur_name	is
pointing.”

This	seemingly	simple
program	has	a	large	amount
of	information,	and	my	goal
is	to	get	you	to	attempt	to
figure	pointers	out	for

yourself	before	I	explain
them.	Don’t	continue	until
you’ve	written	down	what	you
think	a	pointer	does.

What	You	Should
See
After	you	run	this	program,
try	to	trace	back	each	line
printed	out	to	the	line	in	the
code	that	produced	it.	If	you
have	to,	alter	the	printf
calls	to	make	sure	you’ve	got
the	right	line	number.

Exercise	15	Session

Click	here	to	view	code	image

$	make	ex15
cc	-Wall	-
g				ex15.c			-o	ex15
$./ex15
Alan	has	23	years
alive.
Frank	has	43	years
alive.
Mary	has	12	years
alive.
John	has	89	years
alive.
Lisa	has	2	years
alive.

Alan	is	23	years	old.
Frank	is	43	years
old.
Mary	is	12	years	old.
John	is	89	years	old.
Lisa	is	2	years	old.

Alan	is	23	years	old
again.
Frank	is	43	years	old
again.
Mary	is	12	years	old
again.
John	is	89	years	old
again.
Lisa	is	2	years	old
again.

Alan	lived	23	years
so	far.
Frank	lived	43	years
so	far.
Mary	lived	12	years
so	far.
John	lived	89	years
so	far.
Lisa	lived	2	years	so
far.
$

Explaining	Pointers
When	you	type	something

like	ages[i],	you’re
indexing	into	the	array	ages,
and	you’re	using	the	number
that’s	held	in	i	to	do	it.	If	i	is
set	to	zero	then	it’s	the	same
as	typing	ages[0].	We’ve
been	calling	this	number	i	an
index	since	it’s	a	location
inside	ages	that	we	want.	It
could	also	be	called	an
address,	which	is	a	way	of
saying	“I	want	the	integer	in
ages	that’s	at	address	i.”

If	i	is	an	index,	then	what’s
ages?	To	C,	ages	is	a
location	in	the	computer’s
memory	where	all	of	these
integers	start.	It’s	also	an
address,	and	the	C	compiler
will	replace	ages	anywhere
you	type	it	with	the	address
of	the	very	first	integer	in
ages.	Another	way	to	think	of
ages	is	that	it’s	the	“address
of	the	first	integer	in	ages.”
But	here’s	the	trick:	ages	is

an	address	inside	the	entire
computer.	It’s	not	like	i
that’s	just	an	address	inside
ages.	The	ages	array	name
is	actually	an	address	in	the
computer.
That	leads	to	a	certain
realization:	C	thinks	your
whole	computer	is	one
massive	array	of	bytes.
Obviously,	this	isn’t	very
useful,	but	then	what	C	does
is	layer	on	top	of	this	massive

array	of	bytes	the	concept	of
types	and	sizes	of	those	types.
You	already	saw	how	this
worked	in	previous	exercises,
but	now	you	start	to	get	an
idea	of	how	C	is	doing	the
following	with	your	arrays:

•	Creating	a	block	of
memory	inside	your
computer
•	Pointing	the	name
ages	at	the	beginning
of	that	block

•	Indexing	into	the	block
by	taking	the	base
address	of	ages	and
getting	the	element
that’s	i	away	from
there
•	Converting	that	address
at	ages+i	into	a	valid
int	of	the	right	size,
such	that	the	index
works	to	return	what
you	want:	the	int	at
index	i

If	you	can	take	a	base
address,	like	ages,	and	add
to	it	with	another	address	like
i	to	produce	a	new	address,
then	can	you	just	make
something	that	points	right	at
this	location	all	the	time?
Yes,	and	that	thing	is	called	a
pointer.	This	is	what	the
pointers	cur_age	and
cur_name	are	doing:	They
are	variables	pointing	at	the
location	where	ages	and

names	live	in	your
computer’s	memory.	The
example	program	is	then
moving	them	around	or	doing
math	on	them	to	get	values
out	of	the	memory.	In	one
instance,	they	just	add	i	to
cur_age,	which	is	the	same
as	what	the	program	does
with	array[i].	In	the	last
for-loop,	though,	these
two	pointers	are	being	moved
on	their	own,	without	i	to

help	out.	In	that	loop,	the
pointers	are	treated	like	a
combination	of	array	and
integer	offset	rolled	into	one.
A	pointer	is	simply	an
address	pointing	somewhere
inside	the	computer’s
memory	with	a	type	specifier
so	that	you	get	the	right	size
of	data	with	it.	It’s	kind	of
like	a	combination	of	ages
and	i	rolled	into	one	data
type.	C	knows	where	pointers

are	pointing,	knows	the	data
type	they	point	at,	the	size	of
those	types,	and	how	to	get
the	data	for	you.	Just	like
with	i,	you	can	increment,
decrement,	subtract,	or	add	to
them.	But,	just	like	ages,
you	can	also	get	values	out,
put	new	values	in,	and	use	all
of	the	array	operations.
The	purpose	of	a	pointer	is	to
let	you	manually	index	data
into	blocks	or	memory	when

an	array	won’t	do	it	right.	In
almost	all	other	cases,	you
actually	want	to	use	an	array.
But,	there	are	times	when	you
have	to	work	with	a	raw
block	of	memory	and	that’s
where	a	pointer	comes	in.	A
pointer	gives	you	raw,	direct
access	to	a	block	of	memory
so	you	can	work	with	it.
The	final	thing	to	grasp	at	this
stage	is	that	you	can	use
either	syntax	for	most	array

or	pointer	operations.	You
can	take	a	pointer	to
something,	but	use	the	array
syntax	to	access	it.	You	can
take	an	array	and	do	pointer
arithmetic	with	it.

Practical	Pointer
Usage
There	are	primarily	four
useful	things	you	can	do	with
pointers	in	C	code:

•	Ask	the	OS	for	a	chunk

of	memory	and	use	a
pointer	to	work	with	it.
This	includes	strings
and	something	you
haven’t	seen	yet,
structs.
•	Pass	large	blocks	of
memory	(like	large
structs)	to	functions
with	a	pointer,	so	you
don’t	have	to	pass	the
whole	thing	to	them.
•	Take	the	address	of	a

function,	so	you	can	use
it	as	a	dynamic
callback.
•	Scan	complex	chunks
of	memory,	converting
bytes	off	of	a	network
socket	into	data
structures	or	parsing
files.

For	nearly	everything	else,
you	might	see	people	use
pointers	when	they	should	be
using	arrays.	In	the	early	days

of	C	programming,	people
used	pointers	to	speed	up
their	programs,	because	the
compilers	were	really	bad	at
optimizing	array	usage.	These
days,	the	syntax	to	access	an
array	versus	a	pointer	are
translated	into	the	same
machine	code	and	optimized
in	the	same	way,	so	it’s	not	as
necessary.	Instead,	you
should	go	with	arrays
whenever	you	can,	and	then
only	use	pointers	as	a

performance	optimization	if
you	absolutely	have	to.

The	Pointer	Lexicon
I’m	now	going	to	give	you	a
little	lexicon	to	use	for
reading	and	writing	pointers.
Whenever	you	run	into	a
complex	pointer	statement,
just	refer	to	this	and	break	it
down	bit	by	bit	(or	just	don’t
use	it	since	it’s	probably	not
good	code.)

type	*ptr	A	pointer	of
type	named	ptr

*ptr	The	value	of
whatever	ptr	is	pointed
at

*(ptr	+	i)	The	value
of	(whatever	ptr	is
pointed	at	plus	i)

&thing	The	address	of
thing

type	*ptr	=
&thing	A	pointer	of

type	named	ptr	set	to
the	address	of	thing

ptr++	Increment	where
ptr	points

We’ll	be	using	this	simple
lexicon	to	break	down	all	of
the	pointers	we	use	from	now
on	in	the	book.

Pointers	Aren’t
Arrays
No	matter	what,	you	should

never	think	that	pointers	and
arrays	are	the	same	thing.
They	aren’t	the	same	thing,
even	though	C	lets	you	work
with	them	in	many	of	the
same	ways.	For	example,	if
you	do	sizeof(cur_age)
in	the	code	above,	you	would
get	the	size	of	the	pointer,	not
the	size	of	what	it	points	at.	If
you	want	the	size	of	the	full
array,	you	have	to	use	the
array’s	name,	age,	as	I	did

on	line	12.
To	do:	Expand	on	this	some
more	with	what	doesn’t	work
the	same	on	pointers	and
arrays.

How	to	Break	It
You	can	break	this	program
by	simply	pointing	the
pointers	at	the	wrong	things:

•	Try	to	make	cur_age
point	at	names.	You’ll
need	to	use	a	C	cast

to	force	it,	so	go	look
that	up	and	try	to	figure
it	out.
•	In	the	final	for-loop,
try	getting	the	math
wrong	in	weird	ways.
•	Try	rewriting	the	loops
so	that	they	start	at	the
end	of	the	arrays	and	go
to	the	beginning.	This	is
harder	than	it	looks.

Extra	Credit
•	Rewrite	all	of	the	arrays
in	this	program	as
pointers.
•	Rewrite	all	of	the
pointers	as	arrays.
•	Go	back	to	some	of	the
other	programs	that	use
arrays	and	try	to	use
pointers	instead.
•	Process	command	line
arguments	using	just

pointers,	similar	to	how
you	did	names	in	this
one.
•	Play	with	combinations
of	getting	the	value	of
and	the	address	of
things.
•	Add	another	for-
loop	at	the	end	that
prints	out	the	addresses
that	these	pointers	are
using.	You’ll	need	the
%p	format	for	printf.

•	Rewrite	this	program	to
use	a	function	for	each
of	the	ways	you’re
printing	out	things.	Try
to	pass	pointers	to	these
functions	so	that	they
work	on	the	data.
Remember	you	can
declare	a	function	to
accept	a	pointer,	but
just	use	it	like	an	array.
•	Change	the	for-
loops	to	while-

loops	and	see	what
works	better	for	which
kind	of	pointer	usage.

Exercise	16.
Structs	And
Pointers	to
Them

In	this	exercise,	you’ll	learn
how	to	make	a	struct,
point	a	pointer	at	it,	and	use	it
to	make	sense	of	internal
memory	structures.	We’ll

also	apply	the	knowledge	of
pointers	from	the	last
exercise,	and	then	get	you
constructing	these	structures
from	raw	memory	using
malloc.
As	usual,	here’s	the	program
we’ll	talk	about,	so	type	it	in
and	make	it	work.

ex16.c

Click	here	to	view	code	image

	1			#include
<stdio.h>
	2			#include
<assert.h>
	3			#include
<stdlib.h>
	4			#include
<string.h>
	5
	6			struct	Person	{
	7							char	*name;
	8							int	age;
	9							int	height;
10							int	weight;
11			};
12
13			struct	Person

*Person_create(char
*name,	int	age,	int
height,
14											int
weight)
15			{
16							struct
Person	*who	=
malloc(sizeof(struct
Person));
17							assert(who
!=	NULL);
18
19							who->name	=
strdup(name);
20							who->age	=
age;

21							who->height
=	height;
22							who->weight
=	weight;
23
24							return	who;
25			}
26
27			void
Person_destroy(struct
Person	*who)
28			{
29							assert(who
!=	NULL);
30
31							free(who-
>name);

32							free(who);
33			}
34
35			void
Person_print(struct
Person	*who)
36			{
37							printf("Name:
%s\n",	who->name);
38							printf("\tAge:
%d\n",	who->age);
39							printf("\tHeight:
%d\n",	who->height);
40							printf("\tWeight:
%d\n",	who->weight);
41			}
42

43			int	main(int
argc,	char	*argv[])
44			{
45							//	make	two
people	structures
46							struct
Person	*joe	=
Person_create("Joe
Alex",	32,	64,	140);
47
48							struct
Person	*frank	=
Person_create("Frank
Blank",	20,	72,	180);
49
50							//	print
them	out	and	where

they	are	in	memory
51							printf("Joe
is	at	memory	location
%p:\n",	joe);
52							Person_print(
53
54							printf("Frank
is	at	memory	location
%p:\n",	frank);
55							Person_print(
56
57							//	make
everyone	age	20	years
and	print	them	again
58							joe->age	+=
20;
59							joe->height

-=	2;
60							joe->weight
+=	40;
61							Person_print(
62
63							frank->age
+=	20;
64							frank-
>weight	+=	20;
65							Person_print(
66
67							//	destroy
them	both	so	we	clean
up
68							Person_destroy
69							Person_destroy
70

71							return	0;
72			}

To	describe	this	program,	I’m
going	to	use	a	different
approach	than	before.	I’m	not
going	to	give	you	a	line-by-
line	breakdown	of	the
program,	I’m	going	to	make
you	write	it.	I’m	giving	you	a
guide	of	the	program	based
on	the	parts	it	contains,	and
your	job	is	write	out	what
each	line	does.

includes	I	include	some
new	header	files	here	to
gain	access	to	some
new	functions.	What
does	each	give	you?

struct	Person	This	is
where	I’m	creating	a
structure	that	has	four
elements	to	describe	a
person.	The	final	result
is	a	new	compound	type
that	lets	me	reference
these	elements	all	as

one	or	each	piece	by
name.	It’s	similar	to	a
row	of	a	database	table
or	a	class	in	an	object-
oriented	programming
(OOP)	language.

function	Person_create	I
need	a	way	to	create
these	structures,	so	I’ve
made	a	function	to	do
that.	Here	are	the
important	things:
•	I	use	malloc	for

memory	allocate	to
ask	the	OS	to	give	me
a	piece	of	raw
memory.
•	I	pass	to	malloc	the
sizeof(struct
Person),	which
calculates	the	total
size	of	the	structure,
given	all	of	the	fields
inside	it.
•	I	use	assert	to
make	sure	that	I	have

a	valid	piece	of
memory	back	from
malloc.	There’s	a
special	constant	called
NULL	that	you	use	to
mean	“unset	or	invalid
pointer.”	This
assert	is	basically
checking	that
malloc	didn’t	return
a	NULL	invalid
pointer.
•	I	initialize	each	field

of	struct	Person
using	the	x->y
syntax,	to	say	what
part	of	the	structure	I
want	to	set.
•	I	use	the	strdup
function	to	duplicate
the	string	for	the
name,	just	to	make
sure	that	this	structure
actually	owns	it.	The
strdup	actually	is
like	malloc,	and	it

also	copies	the
original	string	into	the
memory	it	creates.

function	Person_destroy
If	I	have	a	create
function,	then	I	always
need	a	destroy
function,	and	this	is
what	destroys	Person
structures.	I	again	use
assert	to	make	sure
I’m	not	getting	bad
input.	Then	I	use	the

function	free	to	return
the	memory	I	got	with
malloc	and	strdup.
If	you	don’t	do	this,	you
get	a	memory	leak.

function	Person_print	I
then	need	a	way	to	print
out	people,	which	is	all
this	function	does.	It
uses	the	same	x->y
syntax	to	get	the	field
from	the	structure	to
print	it.

function	main	In	the
main	function,	I	use	all
of	the	previous
functions	and	the
struct	Person	to
do	the	following:
•	Create	two	people,
joe	and	frank.
•	Print	them	out,	but
notice	I’m	using	the
%p	format	so	you	can
see	where	the	program
has	actually	put	your

structure	in	memory.
•	Age	both	of	them	by
20	years	with	changes
to	their	bodies,	too.
•	Print	each	one	after
aging	them.
•	Finally,	destroy	the
structures	so	we	can
clean	up	correctly.

Go	through	this	description
carefully,	and	do	the
following:

•	Look	up	every	function
and	header	file	you
don’t	know.	Remember
that	you	can	usually	do
man	2	function	or
man	3	function,
and	it’ll	tell	you	about
it.	You	can	also	search
online	for	the
information.
•	Write	a	comment	above
each	and	every	single
line	that	says	what	the

line	does	in	English.
•	Trace	through	each
function	call	and
variable	so	you	know
where	it	comes	from	in
the	program.
•	Look	up	any	symbols
you	don’t	understand.

What	You	Should
See
After	you	augment	the
program	with	your
description	comments,	make
sure	it	really	runs	and
produces	this	output:

Exercise	16	Session

Click	here	to	view	code	image

$	make	ex16

cc	-Wall	-
g				ex16.c			-o	ex16

$./ex16
Joe	is	at	memory
location	0xeba010:
Name:	Joe	Alex
		Age:	32
		Height:	64
		Weight:	140
Frank	is	at	memory
location	0xeba050:
Name:	Frank	Blank
		Age:	20
		Height:	72
		Weight:	180
Name:	Joe	Alex

		Age:	52
		Height:	62
		Weight:	180
Name:	Frank	Blank
		Age:	40
		Height:	72
		Weight:	200

Explaining
Structures
If	you’ve	done	the	work,	then
structures	should	be	making
sense,	but	let	me	explain
them	explicitly	just	to	make
sure	you’ve	understood	it.
A	structure	in	C	is	a
collection	of	other	data	types
(variables)	that	are	stored	in
one	block	of	memory	where
you	can	access	each	variable

independently	by	name.	They
are	similar	to	a	record	in	a
database	table,	or	a	very
simplistic	class	in	an	OOP
language.	We	can	break	one
down	this	way:

•	In	the	above	code,	we
make	a	struct	that
has	fields	for	a	person:
name,	age,	weight,	and
height.
•	Each	of	those	fields	has
a	type,	like	int.

•	C	then	packs	those
together	so	that	they
can	all	be	contained	in
one	single	struct.
•	The	struct	Person
is	now	a	compound
data	type,	which	means
you	can	refer	to
struct	Person
using	the	same	kinds	of
expressions	you	would
for	other	data	types.
•	This	lets	you	pass	the

whole	cohesive
grouping	to	other
functions,	as	you	did
with	Person_print.
•	You	can	then	access	the
individual	parts	of	a
struct	by	their	names
using	x->y	if	you’re
dealing	with	a	pointer.
•	There’s	also	a	way	to
make	a	struct	that
doesn’t	need	a	pointer,
and	you	use	the	x.y

(period)	syntax	to	work
with	it.	We’ll	do	this	in
the	Extra	Credit	section.

If	you	didn’t	have	struct,
you’d	need	to	figure	out	the
size,	packing,	and	location	of
pieces	of	memory	with
contents	like	this.	In	fact,	in
most	early	Assembler	code
(and	even	some	now),	this	is
what	you	would	do.	In	C,	you
can	let	it	handle	the	memory
structuring	of	these

compound	data	types	and
then	focus	on	what	you	do
with	them.

How	to	Break	It
The	ways	in	which	to	break
this	program	involve	how	you
use	the	pointers	and	the
malloc	system:

•	Try	passing	NULL	to
Person_destroy
see	what	it	does.	If	it
doesn’t	abort,	then	you

must	not	have	the	-g
option	in	your
Makefile's
CFLAGS.
•	Forget	to	call
Person_destroy	at
the	end,	and	then	run	it
under	the	debugger	to
see	it	report	that	you
forgot	to	free	the
memory.	Figure	out	the
options	you	need	to
pass	to	the	debugger	to

get	it	to	print	how	you
leaked	this	memory.
•	Forget	to	free	who-
>name	in
Person_destroy
and	compare	the	output.
Again,	use	the	right
options	to	see	how	the
debugger	tells	you
exactly	where	you
messed	up.
•	This	time,	pass	NULL
to	Person_print

and	see	what	the
debugger	thinks	of	that.
You’ll	figure	out	that
NULL	is	a	quick	way	to
crash	your	program.

Extra	Credit
In	this	part	of	the	exercise,	I
want	you	to	attempt
something	difficult	for	the
extra	credit:	Convert	this
program	to	not	use	pointers
and	malloc.	This	will	be
hard,	so	you’ll	want	to
research	the	following:

•	How	to	create	a
struct	on	the	stack,
just	like	you’re	making
any	other	variable.

•	How	to	initialize	it
using	the	x.y	(period)
character	instead	of	the
x->y	syntax.
•	How	to	pass	a	structure
to	other	functions
without	using	a	pointer.

Exercise	17.
Heap	and	Stack
Memory
Allocation

In	this	exercise,	you’re	going
to	make	a	big	leap	in
difficulty	and	create	an	entire
small	program	to	manage	a
database.	This	database	isn’t

very	efficient	and	doesn’t
store	very	much,	but	it	does
demonstrate	most	of	what
you’ve	learned	so	far.	It	also
introduces	memory	allocation
more	formally,	and	gets	you
started	working	with	files.
We	use	some	file	I/O
functions,	but	I	won’t	be
explaining	them	too	well	so
that	you	can	try	to	figure
them	out	first.
As	usual,	type	this	whole

program	in	and	get	it
working,	then	we’ll	discuss	it.

ex17.c

Click	here	to	view	code	image

		1			#include
<stdio.h>
		2			#include
<assert.h>
		3			#include
<stdlib.h>
		4			#include
<errno.h>

		5			#include
<string.h>
		6
		7			#define
MAX_DATA	512
		8			#define
MAX_ROWS	100
		9
	10				struct	Address
{
	11								int	id;
	12								int	set;
	13								char
name[MAX_DATA];
	14								char
email[MAX_DATA];

	15				};
	16
	17				struct
Database	{
	18								struct
Address
rows[MAX_ROWS];
	19				};
	20
	21				struct
Connection	{
	22								FILE
*file;
	23								struct
Database	*db;
	24				};

	25
	26				void	die(const
char	*message)
	27				{
	28								if	(errno)
{
	29												perror(
	30								}	else	{
	31												printf(
%s\n",	message);
	32								}
	33
	34								exit(1);
	35				}
	36
	37				void

Address_print(struct
Address	*addr)
	38				{
	39								printf("%d
%s	%s\n",	addr->id,
addr->name,	addr-
>email);
	40				}
	41
	42				void
Database_load(struct
Connection	*conn)
	43				{
	44								int	rc	=
fread(conn->db,
sizeof(struct

Database),	1,	conn-
>file);
	45								if	(rc	!=
1)
	46												die("Failed
to	load	database.");
	47				}
	48
	49				struct
Connection
*Database_open(const
char	*filename,	char
mode)
	50				{
	51								struct
Connection	*conn	=

malloc(sizeof(struct
Connection));
	52								if	(!conn)
	53												die("Memory
error");
	54
	55								conn->db	=
malloc(sizeof(struct
Database));
	56								if	(!conn-
>db)
	57												die("Memory
error");
	58
	59								if	(mode
==	'c')	{

	60												conn-
>file	=
fopen(filename,	"w");
	61								}	else	{
	62												conn-
>file	=
fopen(filename,
"r+");
	63
	64												if
(conn->file)	{
	65																Database_load
	66												}
	67								}
	68
	69								if	(!conn-

>file)
	70												die("Failed
to	open	the	file");
	71
	72								return
conn;
	73				}
	74
	75				void
Database_close(struct
Connection	*conn)
	76				{
	77								if	(conn)
{
	78												if
(conn->file)

	79																fclose
>file);
	80												if
(conn->db)
	81																free
>db);
	82												free(conn
	83								}
	84				}
	85
	86				void
Database_write(struct
Connection	*conn)
	87				{
	88								rewind(conn
>file);

	89
	90								int	rc	=
fwrite(conn->db,
sizeof(struct
Database),	1,	conn-
>file);
	91								if	(rc	!=
1)
	92												die("Failed
to	write	database.");
	93
	94								rc	=
fflush(conn->file);
	95								if	(rc	==
-1)
	96												die("Cannot
flush	database.");

	97				}
	98
	99				void
Database_create(struct
Connection	*conn)
100				{
101								int	i	=	0;
102
103								for	(i	=
0;	i	<	MAX_ROWS;	i++)
{
104												//
make	a	prototype	to
initialize	it
105												struct
Address	addr	=	{.id	=

i,.set	=	0	};
106												//
then	just	assign	it
107												conn-
>db->rows[i]	=	addr;
108								}
109				}
110
111				void
Database_set(struct
Connection	*conn,	int
id,	const	char	*name,
112												const
char	*email)
113				{
114								struct

Address	*addr	=
&conn->db->rows[id];
115								if	(addr-
>set)
116												die("Already
set,	delete	it
first");
117
118								addr->set
=	1;
119								//
WARNING:	bug,	read
the	"How	To	Break	It"
and	fix	this
120								char	*res
=	strncpy(addr->name,

name,	MAX_DATA);
121								//
demonstrate	the
strncpy	bug
122								if	(!res)
123												die("Name
copy	failed");
124
125								res	=
strncpy(addr->email,
email,	MAX_DATA);
126								if	(!res)
127												die("Email
copy	failed");
128				}
129

130				void
Database_get(struct
Connection	*conn,	int
id)
131				{
132								struct
Address	*addr	=
&conn->db->rows[id];
133
134								if	(addr-
>set)	{
135												Address_print
136								}	else	{
137												die("ID
is	not	set");
138								}

139				}
140
141				void
Database_delete(struct
Connection	*conn,	int
id)
142				{
143								struct
Address	addr	=	{.id	=
id,.set	=	0	};
144								conn->db-
>rows[id]	=	addr;
145				}
146
147				void
Database_list(struct

Connection	*conn)
148				{
149								int	i	=	0;
150								struct
Database	*db	=	conn-
>db;
151
152								for	(i	=
0;	i	<	MAX_ROWS;	i++)
{
153												struct
Address	*cur	=	&db-
>rows[i];
154
155												if
(cur->set)	{

156																Address_print
157												}
158								}
159				}
160
161				int	main(int
argc,	char	*argv[])
162				{
163								if	(argc	<
3)
164												die("USAGE:
ex17	<dbfile>
<action>	[action
params]");
165
166								char

*filename	=	argv[1];
167								char
action	=	argv[2][0];
168								struct
Connection	*conn	=
Database_open(filename
action);
169								int	id	=
0;
170
171								if	(argc	>
3)	id	=
atoi(argv[3]);
172								if	(id	>=
MAX_ROWS)
die("There's	not	that
many	records.");

173
174								switch
(action)	{
175												case
'c':
176																Database_create
177																Database_write
178																break
179
180												case
'g':
181																if
(argc	!=	4)
182																				die
an	id	to	get");
183

184																Database_get
id);
185																break
186
187												case
's':
188																if
(argc	!=	6)
189																				die
id,	name,	email	to
set");
190
191																Database_set
id,	argv[4],
argv[5]);
192																Database_write

193																break
194
195												case
'd':
196																if
(argc	!=	4)
197																				die
id	to	delete");
198
199																Database_delete
id);
200																Database_write
201																break
202
203												case
'l':

204																Database_list
205																break
206												default
207																die
action:	c=create,
g=get,	s=set,	d=del,
l=list");
208								}
209
210								Database_close
211
212								return	0;
213				}

In	this	program,	we’re	using	a
set	of	structures,	or	structs,	to

create	a	simple	database	for
an	address	book.	There	are
some	things	you’ve	never
seen,	so	you	should	go
through	it	line	by	line,
explain	what	each	line	does,
and	look	up	any	functions
that	you	don’t	recognize.
There	are	a	few	key	things
that	you	should	pay	attention
to,	as	well:

#define	for	constants	We
use	another	part	of	the

C	preprocessor	(CPP)	to
create	constant	settings
of	MAX_DATA	and
MAX_ROWS.	I’ll	cover
more	of	what	the	CPP
does	later,	but	this	is	a
way	to	create	a	constant
that	will	work	reliably.
There	are	other	ways,
but	they	don’t	apply	in
certain	situations.

Fixed	sized	structs	The
Address	struct	then

uses	these	constants	to
create	a	piece	of	data
that	is	fixed	in	size,
making	it	less	efficient
but	easier	to	store	and
read.	The	Database
struct	is	then	also	a
fixed	size	because	it’s	a
fixed	length	array	of
Address	structs.	That
lets	you	write	the	whole
thing	to	disk	in	one
move	later.

die	function	to	abort
with	an	error	In	a
small	program	like	this,
you	can	make	a	single
function	that	kills	the
program	with	an	error	if
there’s	anything	wrong.
I	call	this	die,	and	it’s
used	to	exit	the	program
with	an	error	after	any
failed	function	calls	or
bad	inputs.

errno	and	perror()	for

error	reporting	When
you	have	an	error	return
from	a	function,	it	will
usually	set	an	external
variable	called	errno
to	say	exactly	what
happened.	These	are
just	numbers,	so	you
can	use	perror	to
print	the	error	message.

FILE	functions	I’m	using
all	new	functions	like
fopen,	fread,

fclose,	and	rewind
to	work	with	files.	Each
of	these	functions
works	on	a	FILE	struct
that’s	just	like	your
other	structs,	but	it’s
defined	by	the	C
standard	library.

nested	struct	pointers
There’s	a	use	for	nested
structures	and	getting
the	address	of	array
elements	that	you

should	study.
Specifically,	code	like
&conn->db-
>rows[i]	that	reads
“get	the	i	element	of
rows,	which	is	in	db,
which	is	in	conn,	then
get	the	address	of	(&)
it.”

copying	struct
prototypes	Best	shown
in
Database_delete,

you	can	see	I’m	using	a
temporary	local
Address,	initializing
its	id	and	set	fields,
and	then	simply
copying	it	into	the
rows	array	by
assigning	it	to	the
element	I	want.	This
trick	makes	sure	that	all
fields	except	set	and
id	are	initialized	to
zeros	and	it’s	actually

easier	to	write.
Incidentally,	you
shouldn’t	be	using
memcpy	to	do	these
kinds	of	struct	copying
operations.	Modern	C
allows	you	to	simply
assign	one	struct	to
another	and	it’ll	handle
the	copying	for	you.

processing	complex
arguments	I’m	doing
some	more	complex

argument	parsing,	but
this	isn’t	really	the	best
way	to	do	it.	We’ll	get
into	a	better	option	for
parsing	later	in	the
book.

converting	strings	to	ints
I	use	the	atoi	function
to	take	the	string	for	the
id	on	the	command	line
and	convert	it	to	the
int	id	variable.	Read
up	on	this	and	similar

functions.
allocating	large	data	on
the	heap	The	whole
point	of	this	program	is
that	I’m	using	malloc
to	ask	the	OS	for	a	large
amount	of	memory
when	I	create	the
Database.	We’ll
cover	this	in	more	detail
later.

NULL	is	0,	so	Boolean
works	In	many	of	the

checks,	I’m	testing	that
a	pointer	is	not	NULL
by	simply	doing
if(!ptr)
die("fail!"),
because	NULL	will
evaluate	to	false.	You
could	be	explicit	and
say	if(ptr	==
NULL)
die("fail!"),	as
well.	In	some	rare
systems,	NULL	will	be

stored	in	the	computer
(represented)	as
something	not	0,	but	the
C	standard	says	you
should	still	be	able	to
write	code	as	if	it	has	a
0	value.	From	now	on
when	I	say	“NULL	is
0,”	I	mean	its	value	for
anyone	who	is	overly
pedantic.

What	You	Should
See
You	should	spend	as	much
time	as	you	can	testing	that	it
works,	and	running	it	with	a
debugger	to	confirm	that
you’ve	got	all	of	the	memory
usage	right.	Here’s	a	session
of	me	testing	it	normally,	and
then	using	the	debugger	to
check	the	operations:

Exercise	17	Session

Click	here	to	view	code	image

$	make	ex17
cc	-Wall	-
g				ex17.c			-o	ex17
$./ex17	db.dat	c
$./ex17	db.dat	s	1
zed	zed@zedshaw.com
$./ex17	db.dat	s	2
frank
frank@zedshaw.com
$./ex17	db.dat	s	3
joe	joe@zedshaw.com
$
$./ex17	db.dat	l
1	zed	zed@zedshaw.com

http://zed@zedshaw.com

2	frank
frank@zedshaw.com
3	joe	joe@zedshaw.com
$./ex17	db.dat	d	3
$./ex17	db.dat	l
1	zed	zed@zedshaw.com
2	frank
frank@zedshaw.com
$./ex17	db.dat	g	2
2	frank
frank@zedshaw.com

Heap	versus	Stack
Allocation
You	kids	have	it	great	these

http://frank@zedshaw.com
http://joe@zedshaw.com
http://zed@zedshaw.com
http://frank@zedshaw.com
http://frank@zedshaw.com

days.	You	play	with	your
Ruby	or	Python	and	just
make	objects	and	variables
without	any	care	for	where
they	live.	You	don’t	care	if
it’s	on	the	stack,	and	what
about	on	the	heap?
Fuggedaboutit.	You	don’t
even	know,	and	you	know
what,	chances	are	your
language	of	choice	doesn’t
even	put	the	variables	on
stack	at	all.	It’s	all	heap,	and
you	don’t	even	know	if	it	is.

C	is	different	because	it’s
using	the	real	CPU’s	actual
machinery	to	do	its	work,	and
that	involves	a	chunk	of
RAM	called	the	stack	and
another	called	the	heap.
What’s	the	difference?	It	all
depends	on	where	you	get	the
storage.
The	heap	is	easier	to	explain
since	it’s	just	all	the
remaining	memory	in	your
computer,	and	you	access	it

with	the	function	malloc	to
get	more.	Each	time	you	call
malloc,	the	OS	uses
internal	functions	to	register
that	piece	of	memory	to	you,
and	then	returns	a	pointer	to
it.	When	you’re	done	with	it,
you	use	free	to	return	it	to
the	OS	so	that	it	can	be	used
by	other	programs.	Failing	to
do	this	will	cause	your
program	to	leak	memory,	but
Valgrind	will	help	you	track

these	leaks	down.
The	stack	is	a	special	region
of	memory	that	stores
temporary	variables,	which
each	function	creates	as
locals	to	that	function.	How	it
works	is	that	each	argument
to	a	function	is	pushed	onto
the	stack	and	then	used	inside
the	function.	It’s	really	a
stack	data	structure,	so	the
last	thing	in	is	the	first	thing
out.	This	also	happens	with

all	local	variables	like	char
action	and	int	id	in
main.	The	advantage	of
using	a	stack	for	this	is
simply	that	when	the	function
exits,	the	C	compiler	pops
these	variables	off	of	the
stack	to	clean	up.	This	is
simple	and	prevents	memory
leaks	if	the	variable	is	on	the
stack.
The	easiest	way	to	keep	this
straight	is	with	this	mantra:	If

you	didn’t	get	it	from
malloc,	or	a	function	that
got	it	from	malloc,	then	it’s
on	the	stack.
There	are	three	primary
problems	with	stacks	and
heaps	to	watch	out	for:

•	If	you	get	a	block	of
memory	from	malloc,
and	have	that	pointer	on
the	stack,	then	when	the
function	exits	the
pointer	will	get	popped

off	and	lost.
•	If	you	put	too	much
data	on	the	stack	(like
large	structs	and
arrays),	then	you	can
cause	a	stack	overflow
and	the	program	will
abort.	In	this	case,	use
the	heap	with	malloc.
•	If	you	take	a	pointer	to
something	on	the	stack,
and	then	pass	or	return
it	from	your	function,

then	the	function
receiving	it	will
segmentation	fault
(segfault),	because	the
actual	data	will	get
popped	off	and
disappear.	You’ll	be
pointing	at	dead	space.

This	is	why	I	created	a
Database_open	that
allocates	memory	or	dies,	and
then	a	Database_close
that	frees	everything.	If	you

create	a	create	function	that
makes	the	whole	thing	or
nothing,	and	then	a	destroy
function	that	safely	cleans	up
everything,	then	it’s	easier	to
keep	it	all	straight.
Finally,	when	a	program
exits,	the	OS	will	clean	up	all
of	the	resources	for	you,	but
sometimes	not	immediately.
A	common	idiom	(and	one	I
use	in	this	exercise)	is	to	just
abort	and	let	the	OS	clean	up

on	error.

How	to	Break	It
This	program	has	a	lot	of
places	where	you	can	break
it,	so	try	some	of	these	but
also	come	up	with	your	own:

•	The	classic	way	is	to
remove	some	of	the
safety	checks	so	that
you	can	pass	in
arbitrary	data.	For
example,	remove	the

check	on	line	160	that
prevents	you	from
passing	in	any	record
number.
•	You	can	also	try
corrupting	the	data	file.
Open	it	in	any	editor
and	change	random
bytes,	and	then	close	it.
•	You	could	also	find
ways	to	pass	bad
arguments	to	the
program	when	it’s	run.

For	example,	getting
the	file	and	action
backward	will	make	it
create	a	file	named	after
the	action,	and	then	do
an	action	based	on	the
first	character.
•	There’s	a	bug	in	this
program	because
strncpy	is	poorly
designed.	Go	read	about
strncpy	and	try	to
find	out	what	happens

when	the	name	or
address	you	give	is
greater	than	512	bytes.
Fix	this	by	simply
forcing	the	last
character	to	'\0'	so
that	it’s	always	set	no
matter	what	(which	is
what	strncpy	should
do).
•	In	the	Extra	Credit
section,	I	have	you
augment	the	program	to

create	arbitrary	size
databases.	Try	to	see
what	the	biggest
database	is	before	you
cause	the	program	to
die	due	to	lack	of
memory	from	malloc.

Extra	Credit
•	The	die	function
needs	to	be	augmented
to	let	you	pass	the
conn	variable,	so	it	can
close	it	and	clean	up.
•	Change	the	code	to
accept	parameters	for
MAX_DATA	and
MAX_ROWS,	store	them
in	the	Database
struct,	and	write	that	to
the	file,	thus	creating	a

database	that	can	be
arbitrarily	sized.
•	Add	more	operations
you	can	do	with	the
database,	like	find.
•	Read	about	how	C	does
it’s	struct	packing,	and
then	try	to	see	why	your
file	is	the	size	it	is.	See
if	you	can	calculate	a
new	size	after	adding
more	fields.
•	Add	some	more	fields

to	Address	and	make
them	searchable.
•	Write	a	shell	script	that
will	do	your	testing
automatically	for	you
by	running	commands
in	the	right	order.	Hint:
Use	set	-e	at	the	top
of	a	bash	to	make	it
abort	the	whole	script	if
any	command	has	an
error.
•	Try	reworking	the

program	to	use	a	single
global	for	the	database
connection.	How	does
this	new	version	of	the
program	compare	to	the
other	one?
•	Go	research	stack	data
structure	and	write	one
in	your	favorite
language,	then	try	to	do
it	in	C.

Exercise	18.
Pointers	to
Functions

Functions	in	C	are	actually
just	pointers	to	a	spot	in	the
program	where	some	code
exists.	Just	like	you’ve	been
creating	pointers	to	structs,
strings,	and	arrays,	you	can
point	a	pointer	at	a	function,

too.	The	main	use	for	this	is
to	pass	callbacks	to	other
functions,	or	to	simulate
classes	and	objects.	In	this
exercise,	we’ll	do	some
callbacks,	and	in	the	next
exercise,	we’ll	make	a	simple
object	system.
The	format	of	a	function
pointer	looks	like	this:
Click	here	to	view	code	image

int	(*POINTER_NAME)
(int	a,	int	b)

A	way	to	remember	how	to
write	one	is	to	do	this:

•	Write	a	normal	function
declaration:	int
callme(int	a,
int	b)

•	Wrap	the	function	name
with	the	pointer	syntax:
int	(*callme)
(int	a,	int	b)

•	Change	the	name	to	the
pointer	name:	int
(*compare_cb)

(int	a,	int	b)

The	key	thing	to	remember	is
that	when	you’re	done	with
this,	the	variable	name	for	the
pointer	is	called	compare_cb
and	you	use	it	just	like	it’s	a
function.	This	is	similar	to
how	pointers	to	arrays	can	be
used	just	like	the	arrays	they
point	to.	Pointers	to	functions
can	be	used	like	the	functions
they	point	to	but	with	a
different	name.

Click	here	to	view	code	image

int	(*tester)(int	a,
int	b)	=
sorted_order;
printf("TEST:	%d	is
same	as	%d\n",
tester(2,	3),
sorted_order(2,	3));

This	will	work	even	if	the
function	pointer	returns	a
pointer	to	something:

•	Write	it:	char
*make_coolness(int

awesome_levels)

•	Wrap	it:	char	*
(*make_coolness)
(int
awesome_levels)

•	Rename	it:	char	*
(*coolness_cb)
(int
awesome_levels)

The	next	problem	to	solve
with	using	function	pointers
is	that	it’s	hard	to	give	them
as	parameters	to	a	function,

such	as	when	you	want	to
pass	the	function	callback	to
another	function.	The
solution	is	to	use	typedef,
which	is	a	C	keyword	for
making	new	names	for	other,
more	complex	types.
The	only	thing	you	need	to	do
is	put	typedef	before	the
same	function	pointer	syntax,
and	then	after	that	you	can
use	the	name	like	it’s	a	type.	I
demonstrate	this	in	the

following	exercise	code:

ex18.c

Click	here	to	view	code	image

		1			#include
<stdio.h>
		2			#include
<stdlib.h>
		3			#include
<errno.h>
		4			#include
<string.h>
		5

		6			/**	Our	old
friend	die	from	ex17.
*/
		7			void	die(const
char	*message)
		8			{
		9							if	(errno)
{
	10											perror(message
	11							}	else	{
	12											printf("ERROR:
%s\n",	message);
	13							}
	14
	15							exit(1);
	16				}

	17
	18				//	a	typedef
creates	a	fake	type,
in	this
	19				//	case	for	a
function	pointer
	20				typedef	int
(*compare_cb)	(int	a,
int	b);
	21
	22				/**
	23					*	A	classic
bubble	sort	function
that	uses	the
	24					*	compare_cb
to	do	the	sorting.

	25					*/
	26				int
*bubble_sort(int
*numbers,	int	count,
compare_cb	cmp)
	27				{
	28								int	temp	=
0;
	29								int	i	=	0;
	30								int	j	=	0;
	31								int
*target	=
malloc(count	*
sizeof(int));
	32
	33								if

(!target)
	34												die("Memory
error.");
	35
	36								memcpy(target
numbers,	count	*
sizeof(int));
	37
	38								for	(i	=
0;	i	<	count;	i++)	{
	39												for	(j
=	0;	j	<	count	-	1;
j++)	{
	40																if
(cmp(target[j],
target[j	+	1])	>	0)	{

	41																				temp
=	target[j	+	1];
	42																				target
+	1]	=	target[j];
	43																				target
=	temp;
	44																}
	45												}
	46								}
	47
	48								return
target;
	49				}
	50
	51				int
sorted_order(int	a,

int	b)
	52				{
	53								return	a	-
b;
	54				}
	55
	56				int
reverse_order(int	a,
int	b)
	57				{
	58								return	b	-
a;
	59				}
	60
	61				int
strange_order(int	a,

int	b)
	62				{
	63								if	(a	==	0
||	b	==	0)	{
	64												return
0;
	65								}	else	{
	66												return
a	%	b;
	67								}
	68				}
	69
	70				/**
	71					*	Used	to
test	that	we	are
sorting	things
correctly

	72					*	by	doing
the	sort	and	printing
it	out.
	73					*/
	74				void
test_sorting(int
*numbers,	int	count,
compare_cb	cmp)
	75				{
	76								int	i	=	0;
	77								int
*sorted	=
bubble_sort(numbers,
count,	cmp);
	78
	79								if

(!sorted)
	80												die("Failed
to	sort	as
requested.");
	81
	82								for	(i	=
0;	i	<	count;	i++)	{
	83												printf(
",	sorted[i]);
	84								}
	85								printf("\n"
	86
	87								free(sorted
	88				}
	89
	90				int	main(int

argc,	char	*argv[])
	91				{
	92								if	(argc	<
2)	die("USAGE:	ex18	4
3	1	5	6");
	93
	94								int	count
=	argc	-	1;
	95								int	i	=	0;
	96								char
**inputs	=	argv	+	1;
	97
	98								int
*numbers	=
malloc(count	*
sizeof(int));

	99								if
(!numbers)
die("Memory	error.");
100
101								for	(i	=
0;	i	<	count;	i++)	{
102												numbers
=	atoi(inputs[i]);
103								}
104
105								test_sorting
count,	sorted_order);
106								test_sorting
count,
reverse_order);
107								test_sorting

count,
strange_order);
108
109								free(numbers
110
111								return	0;
112				}

In	this	program,	you’re
creating	a	dynamic	sorting
algorithm	that	can	sort	an
array	of	integers	using	a
comparison	callback.	Here’s
the	breakdown	of	this
program,	so	you	can	clearly

understand	it:
ex18.c:1-6	The	usual
includes	that	are	needed
for	all	of	the	functions
that	we	call.

ex18.c:7-17	This	is	the
die	function	from	the
previous	exercise	that
I’ll	use	to	do	error
checking.

ex18.c:21	This	is	where
the	typedef	is	used,
and	later	I	use

compare_cb	like	it’s
a	type	similar	to	int	or
char	in
bubble_sort	and
test_sorting.

ex18.c:27-49	A	bubble
sort	implementation,
which	is	a	very
inefficient	way	to	sort
some	integers.	Here’s	a
breakdown:
ex18.c:27	I	use	the
typedef	for

compare_cb	as	the
last	parameter	cmp.
This	is	now	a
function	that	will
return	a	comparison
between	two	integers
for	sorting.

ex18.c:29-34	The	usual
creation	of	variables
on	the	stack,
followed	by	a	new
array	of	integers	on
the	heap	using

malloc.	Make	sure
you	understand	what
count	*
sizeof(int)	is
doing.

ex18.c:38	The	outer
loop	of	the	bubble
sort.

ex18.c:39	The	inner
loop	of	the	bubble
sort.

ex18.c:40	Now	I	call
the	cmp	callback	just

like	it’s	a	normal
function,	but	instead
of	being	the	name	of
something	that	we
defined,	it’s	just	a
pointer	to	it.	This	lets
the	caller	pass	in
anything	it	wants	as
long	as	it	matches	the
signature	of	the
compare_cb
typedef.

ex18.c:41-43	The	actual

swapping	operation
where	a	bubble	sort
needs	to	do	what	it
does.

ex18.c:48	Finally,	this
returns	the	newly
created	and	sorted
result	array	target.

ex18.c:51-68	Three
different	versions	of	the
compare_cb	function
type,	which	needs	to
have	the	same

definition	as	the
typedef	that	we
created.	The	C	compiler
will	complain	to	you	if
you	get	this	wrong	and
say	the	types	don’t
match.

ex18.c:74-87	This	is	a
tester	for	the
bubble_sort
function.	You	can	see
now	how	I’m	also	using
compare_cb	to	pass

to	bubble_sort,
demonstrating	how
these	can	be	passed
around	like	any	other
pointers.

ex18.c:90-103	A	simple
main	function	that	sets
up	an	array	based	on
integers	to	pass	on	the
command	line,	and	then
it	calls	the
test_sorting
function.

ex18.c:105-107	Finally,
you	get	to	see	how	the
compare_cb	function
pointer	typedef	is
used.	I	simply	call
test_sorting	but
give	it	the	name	of
sorted_order,
reverse_order,	and
strange_order	as
the	function	to	use.	The
C	compiler	then	finds
the	address	of	those

functions,	and	makes	it
a	pointer	for
test_sorting	to
use.	If	you	look	at
test_sorting,
you’ll	see	that	it	then
passes	each	of	these	to
bubble_sort,	but	it
actually	has	no	idea
what	they	do.	The
compiler	only	knows
that	they	match	the
compare_cb

prototype	and	should
work.

ex18.c:109	Last	thing	we
do	is	free	up	the	array
of	numbers	that	we
made.

What	You	Should
See
Running	this	program	is
simple,	but	you	should	try
different	combinations	of
numbers,	or	even	other
characters,	to	see	what	it
does.

Exercise	18	Session

Click	here	to	view	code	image

$	make	ex18
cc	-Wall	-
g				ex18.c			-o	ex18
$./ex18	4	1	7	3	2	0
8
0	1	2	3	4	7	8
8	7	4	3	2	1	0
3	4	2	7	1	0	8
$

How	to	Break	It
I’m	going	to	have	you	do
something	kind	of	weird	to
break	this.	These	function
pointers	are	like	every	other

pointer,	so	they	point	at
blocks	of	memory.	C	has	this
ability	to	take	one	pointer	and
convert	it	to	another	so	you
can	process	the	data	in
different	ways.	It’s	usually
not	necessary,	but	to	show
you	how	to	hack	your
computer,	I	want	you	to	add
this	at	the	end	of
test_sorting:
Click	here	to	view	code	image

unsigned	char	*data	=

(unsigned	char	*)cmp;

for(i	=	0;	i	<	25;
i++)		{
					printf("%02x:",
data[i]);
}

printf("\n");

This	loop	is	sort	of	like
converting	your	function	to	a
string,	and	then	printing	out
its	contents.	This	won’t	break
your	program	unless	the	CPU
and	OS	you’re	on	has	a

problem	with	you	doing	this.
What	you’ll	see	after	it	prints
the	sorted	array	is	a	string	of
hexadecimal	numbers,	like
this:
Click	here	to	view	code	image

55:48:89:e5:89:7d:fc:89:75:f8:8b:55:fc:8b:45:

That	should	be	the	raw
assembler	byte	code	of	the
function	itself,	and	you
should	see	that	they	start	the
same	but	then	have	different

endings.	It’s	also	possible	that
this	loop	isn’t	getting	all	of
the	function,	or	it’s	getting
too	much	and	stomping	on
another	piece	of	the	program.
Without	more	analysis	you
won’t	know.

Extra	Credit
•	Get	a	hex	editor	and
open	up	ex18,	and	then
find	the	sequence	of
hex	digits	that	start	a
function	to	see	if	you
can	find	the	function	in
the	raw	program.
•	Find	other	random
things	in	your	hex
editor	and	change	them.
Rerun	your	program
and	see	what	happens.

Strings	you	find	are	the
easiest	things	to	change.
•	Pass	in	the	wrong
function	for	the
compare_cb	and	see
what	the	C	compiler
complains	about.
•	Pass	in	NULL	and
watch	your	program
seriously	bite	it.	Then,
run	the	debugger	and
see	what	that	reports.
•	Write	another	sorting

algorithm,	then	change
test_sorting	so
that	it	takes	both	an
arbitrary	sort	function
and	the	sort	function’s
callback	comparison.
Use	it	to	test	both	of
your	algorithms.

Exercise	19.
Zed’s	Awesome
Debug	Macros

There’s	a	reoccurring
problem	in	C	that	we’ve	been
dancing	around,	but	I’m
going	to	solve	it	in	this
exercise	using	a	set	of	macros
I	developed.	You	can	thank
me	later	when	you	realize

how	insanely	awesome	these
macros	are.	Right	now,	you
don’t	know	how	awesome
they	are,	so	you’ll	just	have	to
use	them,	and	then	you	can
walk	up	to	me	one	day	and
say,	“Zed,	those	debug
macros	were	the	bomb.	I	owe
you	my	firstborn	child
because	you	saved	me	a
decade	of	heartache	and
prevented	me	from	killing
myself	more	than	once.
Thank	you,	good	sir,	here’s	a

million	dollars	and	the
original	Snakehead	Telecaster
prototype	signed	by	Leo
Fender.”
Yes,	they	are	that	awesome.

The	C	Error-
Handling	Problem
Handling	errors	is	a	difficult
activity	in	almost	every
programming	language.
There	are	entire	programming
languages	that	try	as	hard	as

they	can	to	avoid	even	the
concept	of	an	error.	Other
languages	invent	complex
control	structures	like
exceptions	to	pass	error
conditions	around.	The
problem	exists	mostly
because	programmers	assume
errors	don’t	happen,	and	this
optimism	infects	the	types	of
languages	they	use	and
create.
C	tackles	the	problem	by

returning	error	codes	and
setting	a	global	errno	value
that	you	check.	This	makes
for	complex	code	that	simply
exists	to	check	if	something
you	did	had	an	error.	As	you
write	more	and	more	C	code,
you’ll	write	code	with	this
pattern:

•	Call	a	function.
•	Check	if	the	return
value	is	an	error	(and	it
must	look	that	up	each

time,	too).
•	Then,	clean	up	all	the
resources	created	so	far.
•	Lastly,	print	out	an
error	message	that
hopefully	helps.

This	means	for	every	function
call	(and	yes,	every	function),
you	are	potentially	writing
three	or	four	more	lines	just
to	make	sure	it	worked.	That
doesn’t	include	the	problem
of	cleaning	up	all	of	the	junk

you’ve	built	to	that	point.	If
you	have	ten	different
structures,	three	files,	and	a
database	connection,	you’d
have	14	more	lines	when	you
get	an	error.
In	the	past,	this	wasn’t	a
problem	because	C	programs
did	what	you’ve	been	doing
when	there	was	an	error:	die.
No	point	in	bothering	with
cleanup	when	the	OS	will	do
it	for	you.	Today,	though,

many	C	programs	need	to	run
for	weeks,	months,	or	years,
and	handle	errors	from	many
different	sources	gracefully.
You	can’t	just	have	your	Web
server	die	at	the	slightest
touch,	and	you	definitely
can’t	have	a	library	that
you’ve	written	nuke	the
program	it’s	used	in.	That’s
just	rude.
Other	languages	solve	this
problem	with	exceptions,	but

those	have	problems	in	C
(and	in	other	languages,	too).
In	C,	you	only	have	one
return	value,	but	exceptions
make	up	an	entire	stack-based
return	system	with	arbitrary
values.	Trying	to	marshal
exceptions	up	the	stack	in	C
is	difficult,	and	no	other
libraries	will	understand	it.

The	Debug	Macros
The	solution	I’ve	been	using
for	years	is	a	small	set	of
debug	macros	that
implements	a	basic
debugging	and	error-handling
system	for	C.	This	system	is
easy	to	understand,	works
with	every	library,	and	makes
C	code	more	solid	and
clearer.
It	does	this	by	adopting	the
convention	that	whenever

there’s	an	error,	your	function
will	jump	to	an	error:	part
of	the	function	that	knows
how	to	clean	up	everything
and	return	an	error	code.	You
can	use	a	macro	called
check	to	check	return	codes,
print	an	error	message,	and
then	jump	to	the	cleanup
section.	You	can	combine
that	with	a	set	of	logging
functions	for	printing	out
useful	debug	messages.

I’ll	now	show	you	the	entire
contents	of	the	most	awesome
set	of	brilliance	you’ve	ever
seen.

dbg.h

Click	here	to	view	code	image

#ifndef	__dbg_h__
#define	__dbg_h__

#include	<stdio.h>
#include	<errno.h>
#include	<string.h>

#ifdef	NDEBUG
#define	debug(M,	...)
#else
#define	debug(M,	...)
fprintf(stderr,
"DEBUG	%s:%d:	"	M
"\n",\
								__FILE__,
__LINE__,
##__VA_ARGS__)
#endif

#define	clean_errno()
(errno	==	0	?	"None"
:	strerror(errno))

#define	log_err(M,
...)	fprintf(stderr,\
								"[ERROR]
(%s:%d:	errno:	%s)	"
M	"\n",	__FILE__,
__LINE__,\
								clean_errno(),
##__VA_ARGS__)

#define	log_warn(M,
...)	fprintf(stderr,\
								"[WARN]
(%s:%d:	errno:	%s)	"
M	"\n",\
								__FILE__,

__LINE__,
clean_errno(),
##__VA_ARGS__)

#define	log_info(M,
...)	fprintf(stderr,
"[INFO]	(%s:%d)	"	M
"\n",\
								__FILE__,
__LINE__,
##__VA_ARGS__)

#define	check(A,	M,
...)	if(!(A))	{\
				log_err(M,
##__VA_ARGS__);

errno=0;	goto	error;
}

#define	sentinel(M,
...)	{	log_err(M,
##__VA_ARGS__);\
				errno=0;	goto
error;	}

#define	check_mem(A)
check((A),	"Out	of
memory.")

#define
check_debug(A,	M,
...)	if(!(A))	{

debug(M,
##__VA_ARGS__);\
				errno=0;	goto
error;	}

#endif

Yes,	that’s	it,	and	here’s	a
breakdown	of	every	line:

dbg.h:1-2	The	usual
defense	against
accidentally	including
the	file	twice,	which
you	saw	in	the	last
exercise.

dbg.h:4-6	Includes	for
the	functions	that	these
macros	need.

dbg.h:8	The	start	of	a
#ifdef	that	lets	you
recompile	your	program
so	that	all	of	the	debug
log	messages	are
removed.

dbg.h:9	If	you	compile
with	NDEBUG	defined,
then	“no	debug”
messages	will	remain.

You	can	see	in	this	case
the	#define
debug()	is	just
replaced	with	nothing
(the	right	side	is
empty).

dbg.h:10	The	matching
#else	for	the	above
#ifdef.

dbg.h:11	The	alternative
#define	debug	that
translates	any	use	of
debug("format",

arg1,	arg2)	into	an
fprintf	call	to
stderr.	Many	C
programmers	don’t
know	this,	but	you	can
create	macros	that
actually	work	like
printf	and	take
variable	arguments.
Some	C	compilers
(actually	CPP)	don’t
support	this,	but	the
ones	that	matter	do.	The

magic	here	is	the	use	of
##__VA_ARGS__	that
says	“put	whatever	they
had	for	extra	arguments
(...)	here.”	Also	notice
the	use	of	__FILE__
and	__LINE__	to	get
the	current
file:line	for	the
debug	message.	Very
helpful.

dbg.h:12	The	end	of	the
#ifdef.

dbg.h:14	The
clean_errno	macro
that’s	used	in	the	others
to	get	a	safe,	readable
version	of	errno.	That
strange	syntax	in	the
middle	is	a	ternary
operator	and	you’ll
learn	what	it	does	later.

dbg.h:16-20	The
log_err,	log_warn,
and	log_info,
macros	for	logging

messages	that	are	meant
for	the	end	user.	They
work	like	debug	but
can’t	be	compiled	out.

dbg.h:22	The	best	macro
ever,	check,	will	make
sure	the	condition	A	is
true,	and	if	not,	it	logs
the	error	M	(with
variable	arguments	for
log_err),	and	then
jumps	to	the	function’s
error:	for	cleanup.

dbg.h:24	The	second	best
macro	ever,
sentinel,	is	placed
in	any	part	of	a	function
that	shouldn’t	run,	and
if	it	does,	it	prints	an
error	message	and	then
jumps	to	the	error:
label.	You	put	this	in
if-statements	and
switch-
statements	to	catch
conditions	that

shouldn’t	happen,	like
the	default:.

dbg.h:26	A	shorthand
macro	called
check_mem	that
makes	sure	a	pointer	is
valid,	and	if	it	isn’t,	it
reports	it	as	an	error
with	“Out	of	memory.”

dbg.h:28	An	alternative
macro,
check_debug,	which
still	checks	and	handles

an	error,	but	if	the	error
is	common,	then	it
doesn’t	bother	reporting
it.	In	this	one,	it	will	use
debug	instead	of
log_err	to	report	the
message.	So	when	you
define	NDEBUG,	the
check	still	happens,	and
the	error	jump	goes	off,
but	the	message	isn’t
printed.

Using	dbg.h
Here’s	an	example	of	using
all	of	dbg.h	in	a	small
program.	This	doesn’t
actually	do	anything	but
demonstrate	how	to	use	each
macro.	However,	we’ll	be
using	these	macros	in	all	of
the	programs	we	write	from
now	on,	so	be	sure	to
understand	how	to	use	them.

ex19.c

Click	here	to	view	code	image

		1			#include
"dbg.h"
		2			#include
<stdlib.h>
		3			#include
<stdio.h>
		4
		5			void
test_debug()
		6			{
		7							//	notice
you	don't	need	the	\n
		8							debug("I
have	Brown	Hair.");

		9
	10							//	passing
in	arguments	like
printf
	11							debug("I	am
%d	years	old.",	37);
	12			}
	13
	14			void
test_log_err()
	15			{
	16							log_err("I
believe	everything	is
broken.");
	17							log_err("There
are	%d	problems	in

%s.",	0,	"space");
	18			}
	19
	20			void
test_log_warn()
	21			{
	22							log_warn("You
can	safely	ignore
this.");
	23							log_warn("Maybe
consider	looking	at:
%s.",	"/etc/passwd");
	24			}
	25
	26			void
test_log_info()

	27			{
	28							log_info("Well
I	did	something
mundane.");
	29							log_info("It
happened	%f	times
today.",	1.3f);
	30			}
	31
	32			int
test_check(char
*file_name)
	33			{
	34							FILE	*input
=	NULL;
	35							char	*block

=	NULL;
	36
	37							block	=
malloc(100);
	38							check_mem(block
should	work
	39
	40							input	=
fopen(file_name,
"r");
	41							check(input,
"Failed	to	open	%s.",
file_name);
	42
	43							free(block);
	44							fclose(input

	45							return	0;
	46
	47			error:
	48							if	(block)
free(block);
	49							if	(input)
fclose(input);
	50							return	-1;
	51			}
	52
	53			int
test_sentinel(int
code)
	54			{
	55							char	*temp
=	malloc(100);

	56							check_mem(temp
	57
	58							switch
(code)	{
	59											case	1:
	60															log_info
worked.");
	61															break
	62											default:
	63															sentinel
shouldn't	run.");
	64							}
	65
	66							free(temp);
	67							return	0;
	68

	69			error:
	70							if	(temp)
	71											free(temp
	72							return	-1;
	73			}
	74
	75			int
test_check_mem()
	76			{
	77							char	*test
=	NULL;
	78							check_mem(test
	79
	80							free(test);
	81							return	1;
	82

	83			error:
	84							return	-1;
	85			}
	86
	87			int
test_check_debug()
	88			{
	89							int	i	=	0;
	90							check_debug(
!=	0,	"Oops,	I	was
0.");
	91
	92							return	0;
	93			error:
	94							return	-1;
	95			}

	96
	97			int	main(int
argc,	char	*argv[])
	98			{
	99							check(argc
==	2,	"Need	an
argument.");
100
101							test_debug();
102							test_log_err
103							test_log_warn
104							test_log_info
105
106							check(test_check
==	0,	"failed	with
ex19.c");

107							check(test_check
==	-1,	"failed	with
argv");
108							check(test_sentinel
==	0,	"test_sentinel
failed.");
109							check(test_sentinel
==	-1,	"test_sentinel
failed.");
110							check(test_check_mem
==	-1,
"test_check_mem
failed.");
111							check(test_check_debug
==	-1,
"test_check_debug
failed.");

112
113							return	0;
114
115			error:
116							return	1;
117			}

Pay	attention	to	how	check
is	used,	and	when	it’s
false,	it	jumps	to	the
error:	label	to	do	a
cleanup.	The	way	to	read
those	lines	is,	“check	that	A	is
true,	and	if	not,	say	M	and
jump	out.”

What	You	Should
See
When	you	run	this,	give	it
some	bogus	first	parameter	to
see	this:

Exercise	19	Session

Click	here	to	view	code	image

$	make	ex19
cc	-Wall	-g	-
DNDEBUG				ex19.c			-
o	ex19

$./ex19	test
[ERROR]	(ex19.c:16:
errno:	None)	I
believe	everything	is
broken.
[ERROR]	(ex19.c:17:
errno:	None)	There
are	0	problems	in
space.
[WARN]	(ex19.c:22:
errno:	None)	You	can
safely	ignore	this.
[WARN]	(ex19.c:23:
errno:	None)	Maybe
consider	looking	at:
/etc/passwd.
[INFO]	(ex19.c:28)

Well	I	did	something
mundane.
[INFO]	(ex19.c:29)	It
happened	1.300000
times	today.
[ERROR]	(ex19.c:38:
errno:	No	such	file
or	directory)	Failed
to	open	test.
[INFO]	(ex19.c:57)	It
worked.
[ERROR]	(ex19.c:60:
errno:	None)	I
shouldn't	run.
[ERROR]	(ex19.c:74:
errno:	None)	Out	of

memory.

See	how	it	reports	the	exact
line	number	where	the
check	failed?	That’s	going
to	save	you	hours	of
debugging	later.	Also,	see
how	it	prints	the	error
message	for	you	when
errno	is	set?	Again,	that
will	save	you	hours	of
debugging.

How	the	CPP
Expands	Macros
It’s	now	time	for	you	to	get	a
short	introduction	to	the	CPP
so	that	you	know	how	these
macros	actually	work.	To	do
this,	I’m	going	to	break	down
the	most	complex	macro	from
dbg.h,	and	have	you	run
cpp	so	you	can	see	what	it’s
actually	doing.
Imagine	that	I	have	a	function

called	dosomething()
that	returns	the	typical	0	for
success	and	-1	for	an	error.
Every	time	I	call
dosomething,	I	have	to
check	for	this	error	code,	so
I’d	write	code	like	this:
Click	here	to	view	code	image

int	rc	=
dosomething();

if(rc	!=	0)	{
				fprintf(stderr,
"There	was	an	error:

%s\n",	strerror());
				goto	error;
}

What	I	want	to	use	the	CPP
for	is	to	encapsulate	this	if-
statement	into	a	more
readable	and	memorable	line
of	code.	I	want	what	you’ve
been	doing	in	dbg.h	with
the	check	macro:
Click	here	to	view	code	image

int	rc	=
dosomething();

check(rc	==	0,	"There
was	an	error.");

This	is	much	clearer	and
explains	exactly	what’s	going
on:	Check	that	the	function
worked,	and	if	not,	report	an
error.	To	do	this,	we	need
some	special	CPP	tricks	that
make	the	CPP	useful	as	a
code	generation	tool.	Take	a
look	at	the	check	and
log_err	macros	again:
Click	here	to	view	code	image

#define	log_err(M,
...)	fprintf(stderr,\
				"[ERROR]	(%s:%d:
errno:	%s)	"	M	"\n",
__FILE__,	__LINE__,\
				clean_errno(),
##__VA_ARGS__)
#define	check(A,	M,
...)	if(!(A))	{\
				log_err(M,
##__VA_ARGS__);
errno=0;	goto	error;
}

The	first	macro,	log_err,	is
simpler.	It	simply	replaces

itself	with	a	call	to	fprintf
to	stderr.	The	only	tricky
part	of	this	macro	is	the	use
of	...	in	the	definition
log_err(M,	...).	What
this	does	is	let	you	pass
variable	arguments	to	the
macro,	so	you	can	pass	in	the
arguments	that	should	go	to
fprintf.	How	do	they	get
injected	into	the	fprintf
call?	Look	at	the	end	for	the
##__VA_ARGS__,	which	is

telling	the	CPP	to	take	the
args	entered	where	the	...
is,	and	inject	them	at	that	part
of	the	fprintf	call.	You
can	then	do	things	like	this:
Click	here	to	view	code	image

log_err("Age:	%d,
name:	%s",	age,
name);

The	arguments	age,	name
are	the	...	part	of	the
definition,	and	those	get
injected	into	the	fprintf

output:
Click	here	to	view	code	image

fprintf(stderr,	"
[ERROR]	(%s:%d:
errno:	%s)	Age	%d:
name	%d\n",
				__FILE__,
__LINE__,
clean_errno(),	age,
name);

See	the	age,	name	at	the
end?	That’s	how	...	and
##__VA_ARGS__	work

together,	which	will	work	in
macros	that	call	other	variable
argument	macros.	Look	at	the
check	macro	now	and	see
that	it	calls	log_err,	but
check	is	also	using	the	...
and	##__VA_ARGS__	to	do
the	call.	That’s	how	you	can
pass	full	printf	style
format	strings	to	check,
which	go	to	log_err,	and
then	make	both	work	like
printf.

The	next	thing	to	study	is
how	check	crafts	the	if-
statement	for	the	error
checking.	If	we	strip	out	the
log_err	usage,	we	see	this:
Click	here	to	view	code	image

if(!(A))	{	errno=0;
goto	error;	}

Which	means:	If	A	is	false,
then	clear	errno	and	goto
the	error	label.	The	check
macro	is	being	replaced	with

the	if-statement,	so	if
we	manually	expand	out	the
macro	check(rc	==	0,
"There	was	an
error."),	we	get	this:
Click	here	to	view	code	image

if(!(rc	==	0))	{
				log_err("There
was	an	error.");
				errno=0;
				goto	error;
}

What	you	should	be	getting

from	this	trip	through	these
two	macros	is	that	the	CPP
replaces	macros	with	the
expanded	version	of	their
definition,	and	it	will	do	this
recursively,	expanding	all	of
the	macros	in	macros.	The
CPP,	then,	is	just	a	recursive
templating	system,	as	I
mentioned	before.	Its	power
comes	from	its	ability	to
generate	whole	blocks	of
parameterized	code,	thus
becoming	a	handy	code

generation	tool.
That	leaves	one	question:
Why	not	just	use	a	function
like	die?	The	reason	is	that
you	want	file:line
numbers	and	the	goto
operation	for	an	error
handling	exit.	If	you	did	this
inside	a	function,	you
wouldn’t	get	a	line	number
where	the	error	actually
happened,	and	the	goto	would
be	much	more	complicated.

Another	reason	is	that	you
still	have	to	write	the	raw
if-statement,	which
looks	like	all	of	the	other	if-
statements	in	your	code,
so	it’s	not	as	clear	that	this
one	is	an	error	check.	By
wrapping	the	if-
statement	in	a	macro
called	check,	you	make	it
clear	that	this	is	just	error
checking,	and	not	part	of	the
main	flow.

Finally,	CPP	has	the	ability	to
conditionally	compile
portions	of	code,	so	you	can
have	code	that’s	only	present
when	you	build	a	developer
or	debug	version	of	the
program.	You	can	see	this
already	in	the	dbg.h	file
where	the	debug	macro	only
has	a	body	if	the	compiler
asks	for	it.	Without	this
ability,	you’d	need	a	wasted
if-statement	that	checks

for	debug	mode,	and	then
wastes	CPU	capacity	doing
that	check	for	no	value.

Extra	Credit
•	Put	#define
NDEBUG	at	the	top	of
the	file	and	check	that
all	of	the	debug
messages	go	away.
•	Undo	that	line,	and	add
-DNDEBUG	to	CFLAGS
at	the	top	of	the

Makefile,	and	then
recompile	to	see	the
same	thing.
•	Modify	the	logging	so
that	it	includes	the
function	name,	as	well
as	the	file:line.

Exercise	20.
Advanced
Debugging
Techniques

I’ve	already	taught	you	about
my	awesome	debug	macros,
and	you’ve	been	using	them.
When	I	debug	code	I	use	the
debug()	macro	almost

exclusively	to	analyze	what’s
going	on	and	track	down	the
problem.	In	this	exercise,	I’m
going	to	teach	you	the	basics
of	using	GDB	to	inspect	a
simple	program	that	runs	and
doesn’t	exit.	You’ll	learn	how
to	use	GDB	to	attach	to	a
running	process,	stop	it,	and
see	what’s	happening.	After
that,	I’ll	give	you	some	little
tips	and	tricks	that	you	can
use	with	GDB.

This	is	another	video-focused
exercise	where	I	show	you
advanced	debugging	tricks
with	my	technique.	The
discussion	below	reinforces
the	video,	so	watch	the	video
first.	Debugging	will	be	much
easier	to	learn	by	watching
me	do	it	first.

Debug	Printing
versus	GDB
I	approach	debugging

primarily	with	a	“scientific
method”	style:	I	come	up
with	possible	causes	and	then
rule	them	out	or	prove	that
they	cause	the	defect.	The
problem	many	programmers
have	with	this	approach	is
that	they	feel	like	it	will	slow
them	down.	They	panic	and
rush	to	solve	the	bug,	but	in
their	rush	they	fail	to	notice
that	they’re	really	just	flailing
around	and	gathering	no
useful	information.	I	find	that

logging	(debug	printing)
forces	me	to	solve	a	bug
scientifically,	and	it’s	also
just	easier	to	gather
information	in	most
situations.
In	addition,	I	have	these
reasons	for	using	debug
printing	as	my	primary
debugging	tool:

•	You	see	an	entire
tracing	of	a	program’s
execution	with	debug

printing	of	variables,
which	lets	you	track
how	things	are	going
wrong.	With	GDB,	you
have	to	place	watch
and	debug	statements
all	over	the	place	for
everything	you	want,
and	it’s	difficult	to	get	a
solid	trace	of	the
execution.
•	The	debug	prints	can
stay	in	the	code,	and

when	you	need	them,
you	can	recompile	and
they	come	back.	With
GDB,	you	have	to
configure	the	same
information	uniquely
for	every	defect	you
have	to	hunt	down.
•	It’s	easier	to	turn	on
debug	logging	on	a
server	that’s	not
working	right,	and	then
inspect	the	logs	while	it

runs	to	see	what’s	going
on.	System
administrators	know
how	to	handle	logging,
but	they	don’t	know
how	to	use	GDB.
•	Printing	things	is	just
easier.	Debuggers	are
always	obtuse	and
weird	with	their	own
quirky	interfaces	and
inconsistencies.	There’s
nothing	complicated

about	debug("Yo,
dis	right?	%d",
my_stuff);.
•	When	you	write	debug
prints	to	find	a	defect,
you’re	forced	to
actually	analyze	the
code	and	use	the
scientific	method.	You
can	think	of	debug
usage	as,	“I	hypothesize
that	the	code	is	broken
here.”	Then	when	you

run	it,	you	get	your
hypothesis	tested,	and	if
it’s	not	broken,	then
you	can	move	to
another	part	where	it
could	be.	This	may
seem	like	it	takes
longer,	but	it’s	actually
faster	because	you	go
through	a	process	of
differential	diagnosis
and	rule	out	possible
causes	until	you	find
the	real	one.

•	Debug	printing	works
better	with	unit	testing.
You	can	actually	just
compile	the	debugs
while	you	work,	and
when	a	unit	test
explodes,	just	go	look	at
the	logs	at	any	time.
With	GDB,	you’d	have
to	rerun	the	unit	test
under	GDB	and	then
trace	through	it	to	see
what’s	going	on.

Despite	all	of	these	reasons
that	I	rely	on	debug	over
GDB,	I	still	use	GDB	in	a	few
situations,	and	I	think	you
should	have	any	tool	that
helps	you	get	your	work
done.	Sometimes,	you	just
have	to	connect	to	a	broken
program	and	poke	around.
Or,	maybe	you’ve	got	a
server	that’s	crashing	and	you
can	only	get	at	core	files	to
see	why.	In	these	and	a	few

other	cases,	GDB	is	the	way
to	go,	and	it’s	always	good	to
have	as	many	tools	as
possible	to	help	solve
problems.
Here’s	a	breakdown	of	when
I	use	GDB	versus	Valgrind
versus	debug	printing:

•	I	use	Valgrind	to	catch
all	memory	errors.	I	use
GDB	if	Valgrind	is
having	problems	or	if
using	Valgrind	would

slow	the	program	down
too	much.
•	I	use	print	with	debug
to	diagnose	and	fix
defects	related	to	logic
or	usage.	This	amounts
to	about	90%	of	the
defects	after	you	start
using	Valgrind.
•	I	use	GDB	for	the
remaining	mysteriously
weird	stuff	or
emergency	situations	to

gather	information.	If
Valgrind	isn’t	turning
anything	up,	and	I	can’t
even	print	out	the
information	that	I	need,
then	I	bust	out	GDB
and	start	poking	around.
My	use	of	GDB	in	this
case	is	entirely	to	gather
information.	Once	I
have	an	idea	of	what’s
going	on,	I’ll	go	back	to
writing	a	unit	test	to
cause	the	defect,	and

then	do	print	statements
to	find	out	why.

A	Debugging
Strategy
This	process	will	actually
work	with	any	debugging
technique	you’re	using.	I’m
going	to	describe	it	in	terms
of	using	GDB	since	it	seems
people	skip	this	process	the
most	when	using	debuggers.
Use	this	for	every	bug	until
you	only	need	it	on	the	very
difficult	ones.

•	Start	a	little	text	file
called	notes.txt	and
use	it	as	a	kind	of	lab
notes	for	ideas,	bugs,
problems,	and	so	on.
•	Before	you	use	GDB,
write	out	the	bug	you’re
going	to	fix	and	what
could	be	causing	it.
•	For	each	cause,	write
out	the	files	and
functions	where	you
think	the	cause	is

coming	from,	or	just
write	that	you	don’t
know.
•	Now	start	GDB	and	pick
the	first	possible	cause
with	good	file	and
function	variables	and
set	breakpoints	there.
•	Use	GDB	to	then	run	the
program	and	confirm
whether	that	is	the
cause.	The	best	way	is
to	see	if	you	can	use	the

set	command	to	either
fix	the	program	easily
or	cause	the	error
immediately.
•	If	this	isn’t	the	cause,
then	mark	in	the
notes.txt	that	it
wasn’t,	and	why.	Move
on	to	the	next	possible
cause	that’s	easiest	to
debug,	and	keep	adding
information.

In	case	you	haven’t	noticed,

this	is	basically	the	scientific
method.	You	write	down	a	set
of	hypotheses,	then	you	use
debugging	to	prove	or
disprove	them.	This	gives	you
insight	into	more	possible
causes	and	eventually	you
find	it.	This	process	helps	you
avoid	going	over	the	same
possible	causes	repeatedly
after	you’ve	found	that	they
aren’t	possible.
You	can	also	do	this	with

debug	printing,	the	only
difference	is	that	you	actually
write	out	your	hypotheses	in
the	source	code	instead	of	in
the	notes.txt.	In	a	way,
debug	printing	forces	you	to
tackle	bugs	scientifically
because	you	have	to	write	out
hypotheses	as	print
statements.

Extra	Credit
•	Find	a	graphical
debugger	and	compare
using	it	to	raw	GDB.
These	are	useful	when
the	program	you’re
looking	at	is	local,	but
they	are	pointless	if	you
have	to	debug	a
program	on	a	server.
•	You	can	enable	core
dumps	on	your	OS,	and
when	a	program

crashes,	you’ll	get	a
core	file.	This	core	file
is	like	a	postmortem	of
the	program	that	you
can	load	up	to	see	what
happened	right	at	the
crash	and	what	caused
it.	Change	ex18.c	so
that	it	crashes	after	a
few	iterations,	then	try
to	get	a	core	dump	and
analyze	it.

Exercise	21.
Advanced	Data
Types	and	Flow
Control

This	exercise	will	be	a
complete	compendium	of	the
available	C	data	types	and
flow	control	structures	you
can	use.	It	will	work	as	a

reference	to	complete	your
knowledge,	and	won’t	have
any	code	for	you	to	enter.	I’ll
have	you	memorize	some	of
the	information	by	creating
flash	cards	so	you	can	get	the
important	concepts	solid	in
your	mind.
For	this	exercise	to	be	useful,
you	should	spend	at	least	a
week	hammering	in	the
content	and	filling	out	all	of
the	elements	that	are	missing

here.	You’ll	be	writing	out
what	each	one	means,	and
then	writing	a	program	to
confirm	what	you’ve
researched.

Available	Data	Types

Type	Modifiers

Type	Qualifiers

Type	Conversion

C	uses	a	sort	of	stepped	type
promotion	mechanism,	where
it	looks	at	two	operands	on
either	side	of	an	expression,
and	promotes	the	smaller	side
to	match	the	larger	side
before	doing	the	operation.	If
one	side	of	an	expression	is
on	this	list,	then	the	other	side
is	converted	to	that	type
before	the	operation	is	done.
It	goes	in	this	order:

1.	long	double

2.	double
3.	float
4.	int	(but	only	char
and	short	int);

5.	long
If	you	find	yourself	trying	to
figure	out	how	your
conversions	are	working	in	an
expression,	then	don’t	leave	it
to	the	compiler.	Use	explicit
casting	operations	to	make	it
exactly	what	you	want.	For

example,	if	you	have
Click	here	to	view	code	image

long	+	char	-	int	*
double

Rather	than	trying	to	figure
out	if	it	will	be	converted	to
double	correctly,	just	use
casts:
Click	here	to	view	code	image

(double)long	-
(double)char	-
(double)int	*	double

Putting	the	type	you	want	in
parentheses	before	the
variable	name	is	how	you
force	it	into	the	type	you
really	need.	The	important
thing,	though,	is	always
promote	up,	not	down.	Don’t
cast	long	into	char	unless
you	know	what	you’re	doing.

Type	Sizes
The	stdint.h	defines	both
a	set	of	typdefs	for	exact-
sized	integer	types,	as	well	as
a	set	of	macros	for	the	sizes
of	all	the	types.	This	is	easier
to	work	with	than	the	older
limits.h	since	it	is
consistent.	Here	are	the	types
defined:

The	pattern	here	is	in	the
form	(u)int(BITS)_t	where	a	u
is	put	in	front	to	indicate
“unsigned,”	and	BITS	is	a
number	for	the	number	of

bits.	This	pattern	is	then
repeated	for	macros	that
return	the	maximum	values	of
these	types:

INT(N)_MAX	Maximum
positive	number	of	the
signed	integer	of	bits
(N),	such	as
INT16_MAX.

INT(N)_MIN	Minimum
negative	number	of
signed	integer	of	bits
(N).

UINT(N)_MAX
Maximum	positive
number	of	unsigned
integer	of	bits	(N).
Since	it’s	unsigned,	the
minimum	is	0	and	it
can’t	have	a	negative
value.

Warning!
Pay	attention!	Don’t	go
looking	for	a	literal
INT(N)_MAX

definition	in	any
header	file.	I’m	using
the	(N)	as	a
placeholder	for	any
number	of	bits	your
platform	currently
supports.	This	(N)
could	be	any	number—
8,	16,	32,	64,	maybe
even	128.	I	use	this
notation	in	this
exercise	so	that	I	don’t
have	to	literally	write

out	every	possible
combination.

There	are	also	macros	in
stdint.h	for	sizes	of	the
size_t	type,	integers	large
enough	to	hold	pointers,	and
other	handy	size	defining
macros.	Compilers	have	to	at
least	have	these,	and	then
they	can	allow	other,	larger
types.
Here	is	a	full	list	that	should

be	in	stdint.h:

Available	Operators
This	is	a	comprehensive	list
of	all	the	operators	in	the	C
language.	In	this	list,	I’m
indicating	the	following:

Math	Operators
These	perform	your	basic
math	operations,	plus	I
include	()	since	it	calls	a
function	and	is	close	to	a
math	operation.

Data	Operators
These	are	used	to	access	data
in	different	ways	and	forms.

Logic	Operators
These	handle	testing	equality
and	inequality	of	variables.

Bit	Operators
These	are	more	advanced	and
are	for	shifting	and	modifying
the	raw	bits	in	integers.

Boolean	Operators
These	are	used	in	truth
testing.	Study	the	ternary
operator	carefully.	It’s	very
handy.

Assignment
Operators
Here	are	compound
assignment	operators	that
assign	a	value,	and/or
perform	an	operation	at	the
same	time.	Most	of	the	above
operations	can	also	be
combined	into	a	compound
assignment	operator.

Available	Control
Structures
There	are	a	few	control
structures	that	you	haven’t
encountered	yet.

do-while	do	{	...	}
while(X);	First	does
the	code	in	the	block,
then	tests	the	X
expression	before
exiting.

break	Puts	a	break	in	a

loop,	ending	it	early.
continue	Stops	the	body
of	a	loop	and	jumps	to
the	test	so	it	can
continue.

goto	Jumps	to	a	spot	in
the	code	where	you’ve
placed	a	label:,	and
you’ve	been	using	this
in	the	dbg.h	macros	to
go	to	the	error:
label.

Extra	Credit
•	Read	stdint.h	or	a
description	of	it,	and
write	out	all	the
available	size
identifiers.
•	Go	through	each	item
here	and	write	out	what
it	does	in	code.
Research	it	online	so
you	know	you	got	it
right.

•	Get	this	information
memorized	by	making
flash	cards	and
spending	15	minutes	a
day	practicing	it.
•	Create	a	program	that
prints	out	examples	of
each	type,	and	confirm
that	your	research	is
right.

Exercise	22.	The
Stack,	Scope,
and	Globals

The	concept	of	scope	seems
to	confuse	quite	a	few	people
when	they	first	start
programming.	It	originally
came	from	the	use	of	the
system	stack	(which	we
lightly	covered	earlier),	and

how	it	was	used	to	store
temporary	variables.	In	this
exercise,	we’ll	learn	about
scope	by	learning	how	a	stack
data	structure	works,	and	then
feeding	that	concept	back	in
to	how	modern	C	does
scoping.
The	real	purpose	of	this
exercise,	though,	is	to	learn
where	the	hell	things	live	in
C.	When	someone	doesn’t
grasp	the	concept	of	scope,

it’s	almost	always	a	failure	in
understanding	where
variables	are	created,	exist,
and	die.	Once	you	know
where	things	are,	the	concept
of	scope	becomes	easier.
This	exercise	will	require
three	files:

ex22.h	A	header	file	that
sets	up	some	external
variables	and	some
functions.

ex22.c	This	isn’t	your

main	like	normal,	but
instead	a	source	file	that
will	become	the	object
file	ex22.o,	which
will	have	some
functions	and	variables
in	it	defined	from
ex22.h.

ex22_main.c	The	actual
main	that	will	include
the	other	two,	and
demonstrate	what	they
contain,	as	well	as	other

scope	concepts.

ex22.h	and	ex22.c
Your	first	step	is	to	create
your	own	header	file	named
ex22.h	that	defines	the
functions	and	extern
variables:

ex22.h

Click	here	to	view	code	image

#ifndef	_ex22_h
#define	_ex22_h

//	makes	THE_SIZE	in
ex22.c	available	to
other	.c	files
extern	int	THE_SIZE;

//	gets	and	sets	an
internal	static
variable	in	ex22.c
int	get_age();
void	set_age(int
age);

//	updates	a	static
variable	that's

inside	update_ratio
double
update_ratio(double
ratio);

void	print_size();

#endif

The	important	thing	to	see
here	is	the	use	of	extern
int	THE_SIZE,	which	I’ll
explain	after	you	create	this
matching	ex22.c:

ex22.c

Click	here	to	view	code	image

		1			#include
<stdio.h>
		2			#include
"ex22.h"
		3			#include
"dbg.h"
		4
		5			int	THE_SIZE	=
1000;
		6
		7			static	int
THE_AGE	=	37;

		8
		9			int	get_age()
	10			{
	11							return
THE_AGE;
	12			}
	13
	14			void
set_age(int	age)
	15			{
	16							THE_AGE	=
age;
	17			}
	18
	19			double
update_ratio(double

new_ratio)
	20			{
	21							static
double	ratio	=	1.0;
	22
	23							double
old_ratio	=	ratio;
	24							ratio	=
new_ratio;
	25
	26							return
old_ratio;
	27			}
	28
	29			void
print_size()

	30			{
	31							log_info("I
think	size	is:	%d",
THE_SIZE);
	32			}

These	two	files	introduce
some	new	kinds	of	storage	for
variables:

extern	This	keyword	is	a
way	to	tell	the	compiler
“the	variable	exists,	but
it’s	in	another	‘external’
location.”	Typically	this
means	that	one	.c	file	is

going	to	use	a	variable
that’s	been	defined	in
another	.c	file.	In	this
case,	we’re	saying
ex22.c	has	a	variable
THE_SIZE	that	will	be
accessed	from
ex22_main.c.

static	(file)	This	keyword
is	kind	of	the	inverse	of
extern,	and	says	that
the	variable	is	only	used
in	this	.c	file	and	should

not	be	available	to	other
parts	of	the	program.
Keep	in	mind	that
static	at	the	file
level	(as	with
THE_AGE	here)	is
different	than	in	other
places.

static	(function)	If	you
declare	a	variable	in	a
function	static,	then
that	variable	acts	like	a
static	defined	in	the

file,	but	it’s	only
accessible	from	that
function.	It’s	a	way	of
creating	constant	state
for	a	function,	but	in
reality	it’s	rarely	used
in	modern	C
programming	because
they	are	hard	to	use
with	threads.

In	these	two	files,	you	should
understand	the	following
variables	and	functions:

THE_SIZE	This	is	the
variable	you	declared
extern	that	you’ll
play	with	from
ex22_main.c.

get_age	and	set_age
These	are	taking	the
static	variable
THE_AGE,	but
exposing	it	to	other
parts	of	the	program
through	functions.	You
can’t	access	THE_AGE

directly,	but	these
functions	can.

update_ratio	This	takes	a
new	ratio	value,	and
returns	the	old	one.	It
uses	a	function	level
static	variable	ratio
to	keep	track	of	what
the	ratio	currently	is.

print_size	This	prints	out
what	ex22.c	thinks
THE_SIZE	is
currently.

ex22_main.c
Once	you	have	that	file
written,	you	can	then	make
the	main	function,	which
uses	all	of	these	and
demonstrates	some	more
scope	conventions.

ex22_main.c

Click	here	to	view	code	image

		1			#include

"ex22.h"
		2			#include
"dbg.h"
		3
		4			const	char
*MY_NAME	=	"Zed	A.
Shaw";
		5
		6			void
scope_demo(int	count)
		7			{
		8							log_info("count
is:	%d",	count);
		9
	10							if	(count	>
10)	{
	11											int

count	=	100;				//
BAD!	BUGS!
	12
	13											log_info
in	this	scope	is	%d",
count);
	14							}
	15
	16							log_info("count
is	at	exit:	%d",
count);
	17
	18							count	=
3000;
	19
	20							log_info("count

after	assign:	%d",
count);
	21			}
	22
	23			int	main(int
argc,	char	*argv[])
	24			{
	25							//	test	out
THE_AGE	accessors
	26							log_info("My
name:	%s,	age:	%d",
MY_NAME,	get_age());
	27
	28							set_age(100);
	29
	30							log_info("My
age	is	now:	%d",

get_age());
	31
	32							//	test	out
THE_SIZE	extern
	33							log_info("THE_SIZE
is:	%d",	THE_SIZE);
	34							print_size();
	35
	36							THE_SIZE	=
9;
	37
	38							log_info("THE
SIZE	is	now:	%d",
THE_SIZE);
	39							print_size();
	40

	41							//	test	the
ratio	function	static
	42							log_info("Ratio
at	first:	%f",
update_ratio(2.0));
	43							log_info("Ratio
again:	%f",
update_ratio(10.0));
	44							log_info("Ratio
once	more:	%f",
update_ratio(300.0));
	45
	46							//	test	the
scope	demo
	47							int	count	=
4;
	48							scope_demo(count

	49							scope_demo(count
*	20);
	50
	51							log_info("count
after	calling
scope_demo:	%d",
count);
	52
	53							return	0;
	54			}

I’ll	break	this	file	down	line
by	line,	but	as	I	do,	you
should	find	each	variable	and
where	it	lives.

ex22_main.c:4	A	const,
which	stands	for
constant,	and	is	an
alternative	to	using	a
define	to	create	a
constant	variable.

ex22_main.c:6	A	simple
function	that
demonstrates	more
scope	issues	in	a
function.

ex22_main.c:8	This	prints
out	the	value	of	count

as	it	is	at	the	top	of	the
function.

ex22_main.c:10	An	if-
statement	that	starts
a	new	scope	block,	and
then	has	another
count	variable	in	it.
This	version	of	count
is	actually	a	whole	new
variable.	It’s	kind	of
like	the	if-
statement	started	a
new	mini	function.

ex22_main.c:11	The
count	that	is	local	to
this	block	is	actually
different	from	the	one
in	the	function’s
parameter	list.

ex22_main.c:13	This
prints	it	out	so	you	can
see	it’s	actually	100
here,	not	what	was
passed	to
scope_demo.

ex22_main.c:16	Now	for

the	freaky	part.	You
have	count	in	two
places:	the	parameters
to	this	function,	and	in
the	if-statement.
The	if-statement
created	a	new	block,	so
the	count	on	line	11
does	not	impact	the
parameter	with	the
same	name.	This	line
prints	it	out,	and	you’ll
see	that	it	prints	the

value	of	the	parameter,
not	100.

ex22_main.c:18-20	Then,
I	set	the	parameter
count	to	3000	and
print	that	out,	which
will	demonstrate	that
you	can	change
function	parameters	and
they	don’t	impact	the
caller’s	version	of	the
variable.

Make	sure	that	you	trace

through	this	function,	but
don’t	think	that	you
understand	scope	quite	yet.
Just	start	to	realize	that	if	you
make	a	variable	inside	a
block	(as	in	if-
statements	or	while-
loops),	then	those	variables
are	new	variables	that	exist
only	in	that	block.	This	is
crucial	to	understand,	and	is
also	a	source	of	many	bugs.
We’ll	address	why	you

shouldn’t	make	a	variable
inside	a	block	shortly.
The	rest	of	the
ex22_main.c	then
demonstrates	all	of	these	by
manipulating	and	printing
them	out:

ex22_main.c:26	This
prints	out	the	current
values	of	MY_NAME,
and	gets	THE_AGE
from	ex22.c	by	using
the	accessor	function

get_age.
ex22_main.c:27-30	This
uses	set_age	in
ex22.c	to	change
THE_AGE	and	then
print	it	out.

ex22_main.c:33-39	Then
I	do	the	same	thing	to
THE_SIZE	from
ex22.c,	but	this	time
I’m	accessing	it
directly.	I’m	also
demonstrating	that	it’s

actually	changing	in
that	file	by	printing	it
here	and	with
print_size.

ex22_main.c:42-44	Here,
I	show	how	the	static
variable	ratio	inside
update_ratio	is
maintained	between
function	calls.

ex22_main.c:46-51
Finally,	I’m	running
scope_demo	a	few

times	so	you	can	see	the
scope	in	action.	The	big
thing	to	notice	is	that
the	local	count
variable	remains
unchanged.	You	must
understand	that	passing
in	a	variable	like	this
won’t	let	you	change	it
in	the	function.	To	do
that,	you	need	our	old
friend	the	pointer.	If
you	were	to	pass	a

pointer	to	this	count,
then	the	called	function
would	have	the	address
of	it	and	could	change
it.

That	explains	what’s	going
on,	but	you	should	trace
through	these	files	and	make
sure	you	know	where
everything	is	as	you	study	it.

What	You	Should
See
This	time,	instead	of	using
your	Makefile,	I	want	you
to	build	these	two	files
manually	so	you	can	see	how
the	compiler	actually	puts
them	together.	Here’s	what
you	should	do	and	see	for
output:

Exercise	22	Session

Click	here	to	view	code	image

$	cc	-Wall	-g	-
DNDEBUG		-c	-o	ex22.o
ex22.c
$	cc	-Wall	-g	-
DNDEBUG			ex22_main.c
ex22.o			-o	ex22_main
$./ex22_main
[INFO]
(ex22_main.c:26)	My
name:	Zed	A.	Shaw,
age:	37
[INFO]
(ex22_main.c:30)	My
age	is	now:	100
[INFO]

(ex22_main.c:33)
THE_SIZE	is:	1000
[INFO]	(ex22.c:32)	I
think	size	is:	1000
[INFO]
(ex22_main.c:38)	THE
SIZE	is	now:	9
[INFO]	(ex22.c:32)	I
think	size	is:	9
[INFO]
(ex22_main.c:42)
Ratio	at	first:
1.000000
[INFO]
(ex22_main.c:43)
Ratio	again:	2.000000

[INFO]
(ex22_main.c:44)
Ratio	once	more:
10.000000
[INFO]
(ex22_main.c:8)	count
is:	4
[INFO]
(ex22_main.c:16)
count	is	at	exit:	4
[INFO]
(ex22_main.c:20)
count	after	assign:
3000
[INFO]
(ex22_main.c:8)	count
is:	80

[INFO]
(ex22_main.c:13)
count	in	this	scope
is	100
[INFO]
(ex22_main.c:16)
count	is	at	exit:	80
[INFO]
(ex22_main.c:20)
count	after	assign:
3000
[INFO]
(ex22_main.c:51)
count	after	calling
scope_demo:	4

Make	sure	you	trace	how

each	variable	is	changing	and
match	it	to	the	line	that	gets
output.	I’m	using	log_info
from	the	dbg.h	macros	so
you	can	get	the	exact	line
number	where	each	variable
is	printed,	and	find	it	in	the
files	for	tracing.

Scope,	Stack,	and
Bugs
If	you’ve	done	this	right,	you
should	now	see	many	of	the

different	ways	you	can	place
variables	in	your	C	code.	You
can	use	extern	or	access
functions	like	get_age	to
create	globals.	You	can	make
new	variables	inside	any
blocks,	and	they’ll	retain	their
own	values	until	that	block
exits,	leaving	the	outer
variables	alone.	You	also	can
pass	a	value	to	a	function,	and
change	the	parameter	but
without	changing	the	caller’s

version	of	it.
The	most	important	thing	to
realize	is	that	all	of	this
causes	bugs.	C’s	ability	to
place	things	in	many	places	in
your	machine,	and	then	let
you	access	it	in	those	places,
means	that	you	can	get	easily
confused	about	where
something	lives.	If	you	don’t
know	where	it	lives,	then
there’s	a	chance	you	won’t
manage	it	properly.

With	that	in	mind,	here	are
some	rules	to	follow	when
writing	C	code	so	you	can
avoid	bugs	related	to	the
stack:

•	Do	not	shadow	a
variable	like	I’ve	done
here	with	count	in
scope_demo.	It
leaves	you	open	to
subtle	and	hidden	bugs
where	you	think	you’re
changing	a	value	but

you’re	actually	not.
•	Avoid	using	too	many
globals,	especially	if
across	multiple	files.	If
you	have	to	use	them,
then	use	accessor
functions	like	I’ve	done
with	get_age.	This
doesn’t	apply	to
constants,	since	those
are	read-only.	I’m
talking	about	variables
like	THE_SIZE.	If	you

want	people	to	modify
or	set	this	variable,	then
make	accessor
functions.
•	When	in	doubt,	put	it
on	the	heap.	Don’t	rely
on	the	semantics	of	the
stack	or	specialized
locations.	Just	create
things	with	malloc.
•	Don’t	use	function
static	variables	like	I
did	in

update_ratio.
They’re	rarely	useful
and	end	up	being	a	huge
pain	when	you	need	to
make	your	code
concurrent	in	threads.
They’re	also	hard	as
hell	to	find	compared	to
a	well-done	global
variable.
•	Avoid	reusing	function
parameters.	It’s
confusing	as	to	whether

you’re	just	reusing	it	or
if	you	think	you’re
changing	the	caller’s
version	of	it.

As	with	all	things,	these	rules
can	be	broken	when	it’s
practical.	In	fact,	I	guarantee
you’ll	run	into	code	that
breaks	all	of	these	rules	and	is
perfectly	fine.	The	constraints
of	different	platforms	even
make	it	necessary	sometimes.

How	to	Break	It
For	this	exercise,	try	to	access
or	change	some	things	you
can’t	to	break	the	program.

•	Try	to	directly	access
variables	in	ex22.c
from	ex22_main.c
that	you	think	you	can’t
access.	For	example,
can	you	get	at	ratio
inside
update_ratio?
What	if	you	had	a

pointer	to	it?
•	Ditch	the	extern
declaration	in	ex22.h
to	see	what	errors	or
warnings	you	get.
•	Add	static	or
const	specifiers	to
different	variables,	and
then	try	to	change	them.

Extra	Credit
•	Research	the	concept	of
pass	by	value	versus
pass	by	reference.	Write
an	example	of	both.
•	Use	pointers	to	gain
access	to	things	you
shouldn’t	have	access
to.
•	Use	your	debugger	to
see	what	this	kind	of
access	looks	like	when
you	do	it	wrong.

•	Write	a	recursive
function	that	causes	a
stack	overflow.	Don’t
know	what	a	recursive
function	is?	Try	calling
scope_demo	at	the
bottom	of
scope_demo	itself	so
that	it	loops.
•	Rewrite	the	Makefile
so	that	it	can	build	this.

Exercise	23.
Meet	Duff’s
Device

This	exercise	is	a	brain	teaser
where	I	introduce	you	to	one
of	the	most	famous	hacks	in
C	called	Duff’s	device,
named	after	Tom	Duff,	its
inventor.	This	little	slice	of
awesome	(evil?)	has	nearly

everything	you’ve	been
learning	wrapped	in	one	tiny,
little	package.	Figuring	out
how	it	works	is	also	a	good,
fun	puzzle.

Warning!
Part	of	the	fun	of	C	is
that	you	can	come	up
with	crazy	hacks	like
this,	but	this	is	also
what	makes	C
annoying	to	use.	It’s

good	to	learn	about
these	tricks	because	it
gives	you	a	deeper
understanding	of	the
language	and	your
computer.	But	you
should	never	use	this.
Always	strive	for	easy-
to-read	code.

Discovered	by	Tom	Duff,
Duff’s	device	is	a	trick	with
the	C	compiler	that	actually

shouldn’t	work.	I	won’t	tell
you	what	it	does	yet	since	this
is	meant	to	be	a	puzzle	for
you	to	ponder	and	try	to
solve.	You’ll	get	this	code
running	and	then	try	to	figure
out	what	it	does,	and	why	it
does	it	this	way.

ex23.c

Click	here	to	view	code	image

		1			#include

<stdio.h>
		2			#include
<string.h>
		3			#include
"dbg.h"
		4
		5			int
normal_copy(char
*from,	char	*to,	int
count)
		6			{
		7							int	i	=	0;
		8
		9							for	(i	=	0;
i	<	count;	i++)	{
	10											to[i]	=

from[i];
	11							}
	12
	13							return	i;
	14			}
	15
	16			int
duffs_device(char
*from,	char	*to,	int
count)
	17			{
	18							{
	19											int	n	=
(count	+	7)	/	8;
	20
	21											switch

(count	%	8)	{
	22															case
0:
	23																			
{
	24																							
=	*from++;
	25																							
7:
	26																							
=	*from++;
	27																							
6:
	28																							
=	*from++;
	29																							
5:

	30																							
=	*from++;
	31																							
4:
	32																							
=	*from++;
	33																							
3:
	34																							
=	*from++;
	35																							
2:
	36																							
=	*from++;
	37																							
1:

	38																							
=	*from++;
	39																			
while	(--n	>	0);
	40												}
	41								}
	42
	43								return
count;
	44				}
	45
	46				int
zeds_device(char
*from,	char	*to,	int
count)
	47				{

	48								{
	49												int	n
=	(count	+	7)	/	8;
	50
	51												switch
(count	%	8)	{
	52																case
0:
	53				again:				*to++
=	*from++;
	54
	55																case
7:
	56														*to++
=	*from++;
	57																case
6:

	58														*to++
=	*from++;
	59																case
5:
	60														*to++
=	*from++;
	61																case
4:
	62														*to++
=	*from++;
	63																case
3:
	64														*to++
=	*from++;
	65																case
2:

	66														*to++
=	*from++;
	67																case
1:
	68														*to++
=	*from++;
	69														if
(--n	>	0)
	70																		goto
again;
	71												}
	72								}
	73
	74								return
count;
	75				}

	76
	77				int
valid_copy(char
*data,	int	count,
char	expects)
	78				{
	79								int	i	=	0;
	80								for	(i	=
0;	i	<	count;	i++)	{
	81												if
(data[i]	!=	expects)
{
	82																log_err
[%d]	%c	!=	%c",	i,
data[i],	expects);
	83																return
0;

	84												}
	85								}
	86
	87								return	1;
	88				}
	89
	90				int	main(int
argc,	char	*argv[])
	91				{
	92								char
from[1000]	=	{	'a'	};
	93								char
to[1000]	=	{	'c'	};
	94								int	rc	=
0;
	95

	96								//	set	up
the	from	to	have	some
stuff
	97								memset(from
'x',	1000);
	98								//	set	it
to	a	failure	mode
	99								memset(to,
'y',	1000);
100								check(valid_copy
1000,	'y'),	"Not
initialized	right.");
101
102								//	use
normal	copy	to
103								rc	=

normal_copy(from,	to,
1000);
104								check(rc
==	1000,	"Normal	copy
failed:	%d",	rc);
105								check(valid_copy
1000,	'x'),	"Normal
copy	failed.");
106
107								//	reset
108								memset(to,
'y',	1000);
109
110								//	duffs
version
111								rc	=

duffs_device(from,
to,	1000);
112								check(rc
==	1000,	"Duff's
device	failed:	%d",
rc);
113								check(valid_copy
1000,	'x'),	"Duff's
device	failed
copy.");
114
115								//	reset
116								memset(to,
'y',	1000);
117
118								//	my
version

119								rc	=
zeds_device(from,	to,
1000);
120								check(rc
==	1000,	"Zed's
device	failed:	%d",
rc);
121								check(valid_copy
1000,	'x'),	"Zed's
device	failed
copy.");
122
123								return	0;
124				error:
125								return	1;
126				}

In	this	code,	I	have	three
versions	of	a	copy	function:

normal_copy	This	is	just
a	plain	for-loop	that
copies	characters	from
one	array	to	another.

duffs_device	This	is
called	Duff’s	device,
named	after	Tom	Duff,
the	person	to	blame	for
this	delicious	evil.

zeds_device	A	version	of
Duff’s	device	that	just

uses	a	goto	so	you	can
clue	in	to	what’s
happening	with	the
weird	do-while
placement	in
duffs_device.

Study	these	three	functions
before	continuing.	Try	to
explain	what’s	going	on	to
yourself.

What	You	Should
See
There’s	no	output	from	this
program,	it	just	runs	and
exits.	Run	it	under	your
debugger	to	see	if	you	can
catch	any	more	errors.	Try
causing	some	of	your	own,	as
I	showed	you	in	Exercise	4.

Solving	the	Puzzle
The	first	thing	to	understand

is	that	C	is	rather	loose
regarding	some	of	its	syntax.
This	is	why	you	can	put	half
of	a	do-while	in	one	part
of	a	switch-statement,
then	the	other	half
somewhere	else,	and	the	code
will	still	work.	If	you	look	at
my	version	with	the	goto
again,	it’s	actually	more
clear	what’s	going	on,	but
make	sure	you	understand
how	that	part	works.

The	second	thing	is	how	the
default	fallthrough	semantics
of	switch-statements
let	you	jump	to	a	particular
case,	and	then	it	will	just	keep
running	until	the	end	of	the
switch.
The	final	clue	is	the	count
%	8	and	the	calculation	of	n
at	the	top.
Now,	to	solve	how	these
functions	work,	do	the
following:

•	Print	this	code	out	so
that	you	can	write	on
some	paper.
•	Write	each	of	the
variables	in	a	table	as
they	look	when	they	get
initialized	right	before
the	switch-
statement.
•	Follow	the	logic	to	the
switch,	then	do	the
jump	to	the	right	case.
•	Update	the	variables,

including	the	to,
from,	and	the	arrays
they	point	at.
•	When	you	get	to	the
while	part	or	my
goto	alternative,	check
your	variables,	and	then
follow	the	logic	either
back	to	the	top	of	the
do-while	or	to	where
the	again	label	is
located.
•	Follow	through	this

manual	tracing,
updating	the	variables,
until	you’re	sure	you
see	how	this	flows.

Why	Bother?
When	you’ve	figured	out	how
it	actually	works,	the	final
question	is:	Why	would	you
ever	want	to	do	this?	The
purpose	of	this	trick	is	to
manually	do	loop	unrolling.
Large,	long	loops	can	be

slow,	so	one	way	to	speed
them	up	is	to	find	some	fixed
chunk	of	the	loop,	and	then
just	duplicate	the	code	in	the
loop	that	many	times
sequentially.	For	example,	if
you	know	a	loop	runs	a
minimum	of	20	times,	then
you	can	put	the	contents	of
the	loop	20	times	in	the
source	code.
Duff’s	device	is	basically
doing	this	automatically	by

chunking	up	the	loop	into
eight	iteration	chunks.	It’s
clever	and	actually	works,	but
these	days	a	good	compiler
will	do	this	for	you.	You
shouldn’t	need	this	except	in
the	rare	case	where	you	have
proven	it	would	improve	your
speed.

Extra	Credit
•	Never	use	this	again.
•	Go	look	at	the

Wikipedia	entry	for
Duff’s	device	and	see	if
you	can	spot	the	error.
Read	the	article,
compare	it	to	the
version	I	have	here,	and
try	to	understand	why
the	Wikipedia	code
won’t	work	for	you	but
worked	for	Tom	Duff.
•	Create	a	set	of	macros
that	lets	you	create	any
length	of	device	like

this.	For	example,	what
if	you	wanted	to	have
32	case	statements	and
didn’t	want	to	write	out
all	of	them?	Can	you	do
a	macro	that	lays	down
eight	at	a	time?
•	Change	the	main	to
conduct	some	speed
tests	to	see	which	one	is
really	the	fastest.
•	Read	about	memcpy,
memmove,	and

memset,	and	also
compare	their	speed.
•	Never	use	this	again!

Exercise	24.
Input,	Output,
Files

You’ve	been	using	printf
to	print	things,	and	that’s
great	and	all,	but	you	need
more.	In	this	exercise,	you’ll
be	using	the	functions
fscanf	and	fgets	to	build
information	about	a	person	in

a	structure.	After	this	simple
introduction	about	reading
input,	you’ll	get	a	full	list	of
the	functions	that	C	has	for
I/O.	Some	of	these	you’ve
already	seen	and	used,	so	this
will	be	another	memorization
exercise.

ex24.c

Click	here	to	view	code	image

		1			#include

<stdio.h>
		2			#include
"dbg.h"
		3
		4			#define
MAX_DATA	100
		5
		6			typedef	enum
EyeColor	{
		7							BLUE_EYES,
GREEN_EYES,
BROWN_EYES,
		8							BLACK_EYES,
OTHER_EYES
		9			}	EyeColor;
	10

	11			const	char
*EYE_COLOR_NAMES[]	=
{
	12							"Blue",
"Green",	"Brown",
"Black",	"Other"
	13			};
	14
	15			typedef	struct
Person	{
	16							int	age;
	17							char
first_name[MAX_DATA];
	18							char
last_name[MAX_DATA];
	19							EyeColor

eyes;
	20							float
income;
	21			}	Person;
	22
	23			int	main(int
argc,	char	*argv[])
	24			{
	25							Person	you
=	{.age	=	0	};
	26							int	i	=	0;
	27							char	*in	=
NULL;
	28
	29							printf("What's
your	First	Name?	");

	30							in	=
fgets(you.first_name,
MAX_DATA	-	1,	stdin);
	31							check(in	!=
NULL,	"Failed	to	read
first	name.");
	32
	33							printf("What's
your	Last	Name?	");
	34							in	=
fgets(you.last_name,
MAX_DATA	-	1,	stdin);
	35							check(in	!=
NULL,	"Failed	to	read
last	name.");
	36

	37							printf("How
old	are	you?	");
	38							int	rc	=
fscanf(stdin,	"%d",
&you.age);
	39							check(rc	>
0,	"You	have	to	enter
a	number.");
	40
	41							printf("What
color	are	your
eyes:\n");
	42							for	(i	=	0;
i	<=	OTHER_EYES;	i++)
{
	43											printf("%d)

%s\n",	i	+	1,
EYE_COLOR_NAMES[i]);
	44							}
	45							printf(">
");
	46
	47							int	eyes	=
-1;
	48							rc	=
fscanf(stdin,	"%d",
&eyes);
	49							check(rc	>
0,	"You	have	to	enter
a	number.");
	50
	51							you.eyes	=

eyes	-	1;
	52							check(you.eyes
<=	OTHER_EYES
	53															&&
you.eyes	>=	0,	"Do	it
right,	that's	not	an
option.");
	54
	55							printf("How
much	do	you	make	an
hour?	");
	56							rc	=
fscanf(stdin,	"%f",
&you.income);
	57							check(rc	>
0,	"Enter	a	floating
point	number.");

	58
	59							printf("---
--	RESULTS	-----\n");
	60
	61							printf("First
Name:	%s",
you.first_name);
	62							printf("Last
Name:	%s",
you.last_name);
	63							printf("Age:
%d\n",	you.age);
	64							printf("Eyes:
%s\n",
EYE_COLOR_NAMES[you.eyes
	65							printf("Income:

%f\n",	you.income);
	66
	67							return	0;
	68			error:
	69
	70							return	-1;
	71			}

This	program	is	deceptively
simple,	and	introduces	a
function	called	fscanf,
which	is	the	file	scanf.	The
scanf	family	of	functions
are	the	inverse	of	the
printf	versions.	Where

printf	printed	out	data
based	on	a	format,	scanf
reads	(or	scans)	input	based
on	a	format.
There’s	nothing	original	in
the	beginning	of	the	file,	so
here’s	what	the	main	is
doing	in	the	program:

ex24.c:24-28	Sets	up
some	variables	we’ll
need.

ex24.c:30-32	Gets	your
first	name	using	the

fgets	function,	which
reads	a	string	from	the
input	(in	this	case
stdin),	but	makes
sure	it	doesn’t	overflow
the	given	buffer.

ex24.c:34-36	Same	thing
for	you.last_name,
again	using	fgets.

ex24.c:38-39	Uses
fscanf	to	read	an
integer	from	stdin
and	put	it	into

you.age.	You	can	see
that	the	same	format
string	is	used	as
printf	to	print	an
integer.	You	should
also	see	that	you	have
to	give	the	address	of
you.age	so	that
fscanf	has	a	pointer
to	it	and	can	modify	it.
This	is	a	good	example
of	using	a	pointer	to	a
piece	of	data	as	an	out

parameter.
ex24.c:41-45	Prints	out	all
of	the	options	available
for	eye	color,	with	a
matching	number	that
works	with	the
EyeColor	enum
above.

ex24.c:47-50	Using
fscanf	again,	gets	a
number	for	the
you.eyes,	but	make
sure	the	input	is	valid.

This	is	important
because	someone	can
enter	a	value	outside	the
EYE_COLOR_	NAMES
array	and	cause	a
segmentation	fault.

ex24.c:52-53	Gets	how
much	you	make	as	a
float	for	the
you.income.

ex24.c:55-61	Prints
everything	out	so	you
can	see	if	you	have	it

right.	Notice	that
EYE_COLOR_NAMES
is	used	to	print	out	what
the	EyeColor	enum	is
actually	called.

What	You	Should
See
When	you	run	this	program,
you	should	see	your	inputs
being	properly	converted.
Make	sure	you	try	to	give	it
bogus	input	too,	so	you	can
see	how	it	protects	against	the
input.

Exercise	24	Session

Click	here	to	view	code	image

$	make	ex24
cc	-Wall	-g	-
DNDEBUG				ex24.c				-
o	ex24
$./ex24
What's	your	First
Name?	Zed
What's	your	Last
Name?	Shaw
How	old	are	you?	37
What	color	are	your
eyes:
1)	Blue
2)	Green
3)	Brown

4)	Black
5)	Other
>	1
How	much	do	you	make
an	hour?	1.2345
-----	RESULTS	-----
First	Name:	Zed
Last	Name:	Shaw
Age:	37
Eyes:	Blue
Income:	1.234500

How	to	Break	It
This	is	all	fine	and	good,	but
the	really	important	part	of

this	exercise	is	how	scanf
actually	sucks.	It’s	fine	for	a
simple	conversion	of
numbers,	but	fails	for	strings
because	it’s	difficult	to	tell
scanf	how	big	a	buffer	is
before	you	read	it.	There’s
also	a	problem	with	the
function	gets	(not	fgets,
the	non-f	version),	which	we
avoided.	That	function	has	no
idea	how	big	the	input	buffer
is	at	all	and	will	just	trash

your	program.
To	demonstrate	the	problems
with	fscanf	and	strings,
change	the	lines	that	use
fgets	so	they	are
fscanf(stdin,
"%50s",
you.first_name),	and
then	try	to	use	it	again.	Notice
it	seems	to	read	too	much	and
then	eat	your	enter	key?	This
doesn’t	do	what	you	think	it
does,	and	rather	than	deal

with	weird	scanf	issues,
you	should	just	use	fgets.
Next,	change	the	fgets	to
use	gets,	then	run	your
debugger	on	ex24.	Do
this	inside:

"run	<<	/dev/urandom"

This	feeds	random	garbage
into	your	program.	This	is
called	fuzzing	your	program,
and	it’s	a	good	way	to	find
input	bugs.	In	this	case,

you’re	feeding	garbage	from
the	/dev/urandom	file
(device),	and	then	watching	it
crash.	In	some	platforms,	you
may	have	to	do	this	a	few
times,	or	even	adjust	the
MAX_DATA	define	so	it’s
small	enough.
The	gets	function	is	so	bad
that	some	platforms	actually
warn	you	when	the	program
runs	that	you’re	using	gets.
You	should	never	use	this

function,	ever.
Finally,	take	the	input	for
you.eyes	and	remove	the
check	that	the	number	is
within	the	right	range.	Then,
feed	it	bad	numbers	like	-1	or
1000.	Do	this	under	the
debugger	so	you	can	see	what
happens	there,	too.

The	I/O	Functions
This	is	a	short	list	of	various
I/O	functions	that	you	should
look	up.	Create	flash	cards
that	have	the	function	name
and	all	the	variants	similar	to
it.

•	fscanf
•	fgets
•	fopen
•	freopen
•	fdopen

•	fclose
•	fcloseall
•	fgetpos
•	fseek
•	ftell
•	rewind
•	fprintf
•	fwrite
•	fread

Go	through	these	and
memorize	the	different

variants	and	what	they	do.
For	example,	for	the	card
fscanf,	you’ll	have
scanf,	sscanf,	vscanf,
etc.,	and	then	what	each	of
those	does	on	the	back.
Finally,	use	man	to	read	the
help	for	each	variant	to	get
the	information	you	need	for
the	flash	cards.	For	example,
the	page	for	fscanf	comes
from	man	fscanf.

Extra	Credit
•	Rewrite	this	to	not	use
fscanf	at	all.	You’ll
need	to	use	functions
like	atoi	to	convert
the	input	strings	to
numbers.
•	Change	this	to	use	plain
scanf	instead	of
fscanf	to	see	what
the	difference	is.
•	Fix	it	so	that	their	input

names	get	stripped	of
the	trailing	newline
characters	and	any
white	space.
•	Use	scanf	to	write	a
function	that	reads	one
character	at	a	time	and
fills	in	the	names	but
doesn’t	go	past	the	end.
Make	this	function
generic	so	it	can	take	a
size	for	the	string,	but
just	make	sure	you	end

the	string	with	'\0'	no
matter	what.

Exercise	25.
Variable
Argument
Functions

In	C,	you	can	create	your	own
versions	of	functions	like
printf	and	scanf	by
creating	a	variable	argument
function,	or	vararg	function.

These	functions	use	the
header	stdarg.h,	and	with
them,	you	can	create	nicer
interfaces	to	your	library.
They	are	handy	for	certain
types	of	builder	functions,
formatting	functions,	and
anything	that	takes	variable
arguments.
Understanding	vararg
functions	is	not	essential	to
creating	C	programs.	I	think
I’ve	used	it	maybe	20	times

in	my	code	in	all	of	the	years
I’ve	been	programming.
However,	knowing	how	a
vararg	function	works	will
help	you	debug	the	programs
you	use	and	gives	you	a
better	understanding	of	the
computer.

ex25.c

Click	here	to	view	code	image

		1

		2
		3			#include
<stdlib.h>
		4			#include
<stdio.h>
		5			#include
<stdarg.h>
		6			#include
"dbg.h"
		7
		8			#define
MAX_DATA	100
		9
	10			int
read_string(char
**out_string,	int

max_buffer)
	11			{
	12							*out_string
=	calloc(1,
max_buffer	+	1);
	13							check_mem(*out_string
	14
	15							char
*result	=
fgets(*out_string,
max_buffer,	stdin);
	16							check(result
!=	NULL,	"Input
error.");
	17
	18							return	0;

	19
	20			error:
	21							if
(*out_string)
free(*out_string);
	22							*out_string
=	NULL;
	23							return	-1;
	24			}
	25
	26			int
read_int(int
*out_int)
	27			{
	28							char	*input
=	NULL;

	29							int	rc	=
read_string(&input,
MAX_DATA);
	30							check(rc	==
0,	"Failed	to	read
number.");
	31
	32							*out_int	=
atoi(input);
	33
	34							free(input);
	35							return	0;
	36
	37			error:
	38							if	(input)
free(input);

	39							return	-1;
	40			}
	41
	42			int
read_scan(const	char
*fmt,	...)
	43			{
	44							int	i	=	0;
	45							int	rc	=	0;
	46							int
*out_int	=	NULL;
	47							char
*out_char	=	NULL;
	48							char
**out_string	=	NULL;
	49							int

max_buffer	=	0;
	50
	51							va_list
argp;
	52							va_start(argp
fmt);
	53
	54							for	(i	=	0;
fmt[i]	!=	'\0';	i++)
{
	55											if
(fmt[i]	==	'%')	{
	56															i++;
	57															switch
(fmt[i])	{
	58																			
'\0':

	59																							sentinel
format,	you	ended
with	%%.");
	60																							
	61
	62																			
'd':
	63																							out_int
=	va_arg(argp,	int
*);
	64																							rc
=	read_int(out_int);
	65																							check
==	0,	"Failed	to	read
int.");
	66																							

	67
	68																			
'c':
	69																							out_char
=	va_arg(argp,	char
*);
	70																							
=	fgetc(stdin);
	71																							
	72
	73																			
's':
	74																							max_buffer
=	va_arg(argp,	int);
	75																							out_string
=	va_arg(argp,	char
**);

	76																							rc
=
read_string(out_string
max_buffer);
	77																							check
==	0,	"Failed	to	read
string.");
	78																							
	79
	80																			
	81																							sentinel
format.");
	82															}
	83											}	else
{
	84															fgetc

	85											}
	86
	87											check(!feof
&&	!ferror(stdin),
"Input	error.");
	88							}
	89
	90							va_end(argp);
	91							return	0;
	92
	93			error:
	94							va_end(argp);
	95							return	-1;
	96			}
	97
	98			int	main(int

argc,	char	*argv[])
	99			{
100							char
*first_name	=	NULL;
101							char
initial	=	'	';
102							char
*last_name	=	NULL;
103							int	age	=
0;
104
105							printf("What's
your	first	name?	");
106							int	rc	=
read_scan("%s",
MAX_DATA,

&first_name);
107							check(rc	==
0,	"Failed	first
name.");
108
109							printf("What's
your	initial?	");
110							rc	=
read_scan("%c\n",
&initial);
111							check(rc	==
0,	"Failed
initial.");
112
113							printf("What's
your	last	name?	");

114							rc	=
read_scan("%s",
MAX_DATA,
&last_name);
115							check(rc	==
0,	"Failed	last
name.");
116
117							printf("How
old	are	you?	");
118							rc	=
read_scan("%d",
&age);
119
120							printf("---
-	RESULTS	----\n");

121							printf("First
Name:	%s",
first_name);
122							printf("Initial:
'%c'\n",	initial);
123							printf("Last
Name:	%s",
last_name);
124							printf("Age:
%d\n",	age);
125
126							free(first_name
127							free(last_name
128							return	0;
129			error:
130							return	-1;

131			}

This	program	is	similar	to	the
previous	exercise,	except	I
have	written	my	own	scanf
function	to	handle	strings	the
way	I	want.	The	main
function	should	be	clear	to
you,	as	well	as	the	two
functions	read_string
and	read_int,	since	they
do	nothing	new.
The	varargs	function	is	called
read_scan,	and	it	does	the

same	thing	that	scanf	is
doing	using	the	va_list
data	structure	and	supporting
macros	and	functions.	Here’s
how:

•	I	set	as	the	last
parameter	of	the
function	the	keyword
...	to	indicate	to	C
that	this	function	will
take	any	number	of
arguments	after	the	fmt
argument.	I	could	put

many	other	arguments
before	this,	but	I	can’t
put	any	more	after	this.
•	After	setting	up	some
variables,	I	create	a
va_list	variable	and
initialize	it	with
va_start.	This
configures	the	gear	in
stdarg.h	that
handles	variable
arguments.
•	I	then	use	a	for-loop

to	loop	through	the
format	string	fmt	and
process	the	same	kind
of	formats	that	scanf
has,	only	much	simpler.
I	just	have	integers,
characters,	and	strings.
•	When	I	hit	a	format,	I
use	the	switch-
statement	to	figure
out	what	to	do.
•	Now,	to	get	a	variable
from	the	va_list

argp,	I	use	the	macro
va_arg(argp,
TYPE)	where	TYPE	is
the	exact	type	of	what	I
will	assign	this	function
parameter	to.	The
downside	to	this	design
is	that	you’re	flying
blind,	so	if	you	don’t
have	enough
parameters,	then	oh
well,	you’ll	most	likely
crash.

•	The	interesting
difference	from	scanf
is	I’m	assuming	that
people	want
read_scan	to	create
the	strings	it	reads	when
it	hits	an	's'	format
sequence.	When	you
give	this	sequence,	the
function	takes	two
parameters	off	the
va_list	argp
stack:	the	max	function

size	to	read,	and	the
output	character	string
pointer.	Using	that
information,	it	just	runs
read_string	to	do
the	real	work.
•	This	makes
read_scan	more
consistent	than	scanf,
since	you	always	give
an	address-of	&	on
variables	to	have	them
set	appropriately.

•	Finally,	if	the	function
encounters	a	character
that’s	not	in	the	correct
format,	it	just	reads	one
char	to	skip	it.	It
doesn’t	care	what	that
char	is,	just	that	it
should	skip	it.

What	You	Should
See
When	you	run	this	one,	it’s
similar	to	the	last	one.

Exercise	25	Session

Click	here	to	view	code	image

$	make	ex25
cc	-Wall	-g	-
DNDEBUG				ex25.c			-
o	ex25
$./ex25
What's	your	first
name?	Zed
What's	your	initial?
A
What's	your	last
name?	Shaw
How	old	are	you?	37

----	RESULTS	----
First	Name:	Zed
Initial:	'A'
Last	Name:	Shaw
Age:	37

How	to	Break	It
This	program	should	be	more
robust	against	buffer
overflows,	but	it	doesn’t
handle	the	formatted	input	as
well	as	scanf.	To	try	to
break	this,	change	the	code	so
that	you	forget	to	pass	in	the

initial	size	for	‘%s’	formats.
Try	giving	it	more	data	than
MAX_DATA,	and	then	see
how	omitting	calloc	in
read_string	changes	how
it	works.	Finally,	there’s	a
problem	where	fgets	eats
the	newlines,	so	try	to	fix	that
using	fgetc,	but	leave	out
the	\0	that	ends	the	string.

Extra	Credit
•	Make	double	and	triple

sure	that	you	know
what	each	of	the	out_
variables	is	doing.	Most
importantly,	you	should
know	what
out_string	is	and
how	it’s	a	pointer	to	a
pointer,	so	that	you
understand	when	you’re
setting	the	pointer
versus	the	contents	is
important.
•	Write	a	similar	function

to	printf	that	uses
the	varargs	system,	and
rewrite	main	to	use	it.
•	As	usual,	read	the	man
page	on	all	of	this	so
that	you	know	what	it
does	on	your	platform.
Some	platforms	will	use
macros,	others	will	use
functions,	and	some
will	have	these	do
nothing.	It	all	depends
on	the	compiler	and	the

platform	you	use.

Exercise	26.
Project
logfind

This	is	a	small	project	for	you
to	attempt	on	your	own.	To
be	effective	at	C,	you’ll	need
to	learn	to	apply	what	you
know	to	problems.	In	this
exercise,	I	describe	a	tool	I
want	you	to	implement,	and	I

describe	it	in	a	vague	way	on
purpose.	This	is	done	so	that
you	will	try	to	implement
whatever	you	can,	however
you	can.	When	you’re	done,
you	can	then	watch	a	video
for	the	exercise	that	shows
you	how	I	did	it,	and	then	you
can	get	the	code	and	compare
it	to	yours.
Think	of	this	project	as	a	real-
world	puzzle	that	you	might
have	to	solve.

The	logfind
Specification
I	want	a	tool	called
logfind	that	lets	me	search
through	log	files	for	text.	This
tool	is	a	specialized	version
of	another	tool	called	grep,
but	designed	only	for	log	files
on	a	system.	The	idea	is	that	I
can	type:

logfind	zedshaw

And,	it	will	search	all	the
common	places	that	log	files
are	stored,	and	print	out	every
file	that	has	the	word
“zedshaw”	in	it.
The	logfind	tool	should
have	these	basic	features:

1.	This	tool	takes	any
sequence	of	words	and
assumes	I	mean	“and”
for	them.	So	logfind
zedshaw	smart
guy	will	find	all	files

that	have	zedshaw
and	smart	and	guy	in
them.

2.	It	takes	an	optional
argument	of	-o	if	the
parameters	are	meant	to
be	or	logic.

3.	It	loads	the	list	of
allowed	log	files	from
~/.logfind.

4.	The	list	of	file	names
can	be	anything	that	the
glob	function	allows.

Refer	to	man	3	glob
to	see	how	this	works.	I
suggest	starting	with
just	a	flat	list	of	exact
files,	and	then	add
glob	functionality.

5.	You	should	output	the
matching	lines	as	you
scan,	and	try	to	match
them	as	fast	as	possible.

That’s	the	entire	description.
Remember	that	this	may	be
very	hard,	so	take	it	a	tiny	bit

at	a	time.	Write	some	code,
test	it,	write	more,	test	that,
and	so	on	in	little	chunks
until	you	have	it	working.
Start	with	the	simplest	thing
that	gets	it	working,	and	then
slowly	add	to	it	and	refine	it
until	every	feature	is	done.

Exercise	27.
Creative	and
Defensive
Programming

You	have	now	learned	most
of	the	basics	of	C
programming	and	are	ready
to	start	becoming	a	serious
programmer.	This	is	where

you	go	from	beginner	to
expert,	both	with	C	and
hopefully	with	core	computer
science	concepts.	I	will	be
teaching	you	a	few	of	the
core	data	structures	and
algorithms	that	every
programmer	should	know,
and	then	a	few	very
interesting	ones	I’ve	used	in
real	software	for	years.
Before	I	can	do	that,	I	have	to
teach	you	some	basic	skills

and	ideas	that	will	help	you
make	better	software.
Exercises	27	through	31	will
teach	you	advanced	concepts,
featuring	more	talking	than
coding.	After	that,	you’ll
apply	what	you’ve	learned	to
make	a	core	library	of	useful
data	structures.
The	first	step	in	getting	better
at	writing	C	code	(and	really
any	language)	is	to	learn	a
new	mind-set	called	defensive

programming.	Defensive
programming	assumes	that
you	are	going	to	make	many
mistakes,	and	then	attempts	to
prevent	them	at	every
possible	step.	In	this	exercise,
I’m	going	to	teach	you	how
to	think	about	programming
defensively.

The	Creative
Programmer	Mind-
Set

It’s	not	possible	to	show	you
how	to	be	creative	in	a	short
exercise	like	this,	but	I	will
tell	you	that	creativity
involves	taking	risks	and
being	open-minded.	Fear	will
quickly	kill	creativity,	so	the
mind-set	I	adopt,	and	many
programmers	copy,	is	that
accidents	are	designed	to
make	you	unafraid	of	taking
chances	and	looking	like	an
idiot.	Here’s	my	mind-set:

•	I	can’t	make	a	mistake.
•	It	doesn’t	matter	what
people	think.
•	Whatever	my	brain
comes	up	with	is	going
to	be	a	great	idea.

I	only	adopt	this	mind-set
temporarily,	and	even	have
little	tricks	to	turn	it	on.	By
doing	this,	I	can	come	up
with	ideas,	find	creative
solutions,	open	my	thoughts
to	odd	connections,	and	just

generally	invent	weirdness
without	fear.	In	this	mind-set,
I’ll	typically	write	a	horrible
first	version	of	something	just
to	get	the	idea	out.
However,	when	I’ve	finished
my	creative	prototype,	I	will
throw	it	out	and	get	serious
about	making	it	solid.	Where
other	people	make	a	mistake
is	carrying	the	creative	mind-
set	into	their	implementation
phase.	This	then	leads	to	a

very	different,	destructive
mind-set:	the	dark	side	of	the
creative	mind-set:

•	It’s	possible	to	write
perfect	software.
•	My	brain	tells	me	the
truth,	and	it	can’t	find
any	errors:	I	have
therefore	written	perfect
software.
•	My	code	is	who	I	am
and	people	who
criticize	its	perfection

are	criticizing	me.
These	are	lies.	You	will
frequently	run	into
programmers	who	feel
intense	pride	about	what
they’ve	created,	which	is
natural,	but	this	pride	gets	in
the	way	of	their	ability	to
objectively	improve	their
craft.	Because	of	this	pride
and	attachment	to	what
they’ve	written,	they	can
continue	to	believe	that	what

they	write	is	perfect.	As	long
as	they	ignore	other	people’s
criticism	of	their	code,	they
can	protect	their	fragile	egos
and	never	improve.
The	trick	to	being	creative
and	making	solid	software	is
the	ability	to	adopt	a
defensive	programming
mind-set.

The	Defensive
Programmer	Mind-
Set
After	you	have	a	working,
creative	prototype	and	you’re
feeling	good	about	the	idea,
it’s	time	to	switch	to	being	a
defensive	programmer.	The
defensive	programmer
basically	hates	your	code	and
believes	these	things:

•	Software	has	errors.

•	You	aren’t	your
software,	yet	you’re
responsible	for	the
errors.
•	You	can	never	remove
the	errors,	only	reduce
their	probability.

This	mind-set	lets	you	be
honest	about	your	work	and
critically	analyze	it	for
improvements.	Notice	that	it
doesn’t	say	you	are	full	of
errors?	It	says	your	code	is

full	of	errors.	This	is	a
significant	thing	to
understand	because	it	gives
you	the	power	of	objectivity
for	the	next	implementation.
Just	like	the	creative	mind-
set,	the	defensive
programming	mind-set	has	a
dark	side,	as	well.	Defensive
programmers	are	paranoid,
and	this	fear	prevents	them
from	ever	possibly	being
wrong	or	making	mistakes.

That’s	great	when	you’re
trying	to	be	ruthlessly
consistent	and	correct,	but	it’s
murder	on	creative	energy
and	concentration.

The	Eight	Defensive
Programmer
Strategies
Once	you’ve	adopted	this
mind-set,	you	can	then
rewrite	your	prototype	and

follow	a	set	of	eight	strategies
to	make	your	code	as	solid	as
possible.	While	I	work	on	the
real	version,	I	ruthlessly
follow	these	strategies	and	try
to	remove	as	many	errors	as	I
can,	thinking	like	someone
who	wants	to	break	the
software.

Never	Trust	Input	Never
trust	the	data	you’re
given	and	always
validate	it.

Prevent	Errors	If	an
error	is	possible,	no
matter	how	probable,
try	to	prevent	it.

Fail	Early	and	Openly
Fail	early,	cleanly,	and
openly,	stating	what
happened,	where,	and
how	to	fix	it.

Document	Assumptions
Clearly	state	the	pre-
conditions,	post-
conditions,	and

invariants.
Prevention	over
Documentation	Don’t
do	with	documentation
that	which	can	be	done
with	code	or	avoided
completely.

Automate	Everything
Automate	everything,
especially	testing.

Simplify	and	Clarify
Always	simplify	the
code	to	the	smallest,

cleanest	form	that
works	without
sacrificing	safety.

Question	Authority
Don’t	blindly	follow	or
reject	rules.

These	aren’t	the	only
strategies,	but	they’re	the	core
things	I	feel	programmers
have	to	focus	on	when	trying
to	make	good,	solid	code.
Notice	that	I	don’t	really	say
exactly	how	to	do	these.	I’ll

go	into	each	of	these	in	more
detail,	and	some	of	the
exercises	will	actually	cover
them	extensively.

Applying	the	Eight
Strategies
These	ideas	are	all	as	great
pop-psychology	platitudes,
but	how	do	you	actually
apply	them	to	working	code?
I’m	now	going	to	give	you	a
set	of	things	to	always	do	in

this	book’s	code	that
demonstrates	each	one	with	a
concrete	example.	The	ideas
aren’t	limited	to	just	these
examples,	so	you	should	use
these	as	a	guide	to	making
your	own	code	more	solid.

Never	Trust	Input
Let’s	look	at	an	example	of
bad	design	and	better	design.
I	won’t	say	good	design
because	this	could	be	done
even	better.	Take	a	look	at
these	two	functions	that	both
copy	a	string	and	a	simple
main	to	test	out	the	better
one.

ex27_1.c

Click	here	to	view	code	image

		1			#undef	NDEBUG
		2			#include
"dbg.h"
		3			#include
<stdio.h>
		4			#include
<assert.h>
		5
		6			/*
		7				*	Naive	copy
that	assumes	all
inputs	are	always
valid
		8				*	taken	from
K&R	C	and	cleaned	up

a	bit.
		9				*/
	10			void	copy(char
to[],	char	from[])
	11			{
	12							int	i	=	0;
	13
	14							//	while
loop	will	not	end	if
from	isn't	'\0'
terminated
	15							while
((to[i]	=	from[i])	!=
'\0')	{
	16											++i;
	17							}

	18			}
	19
	20			/*
	21				*	A	safer
version	that	checks
for	many	common
errors	using	the
	22				*	length	of
each	string	to
control	the	loops	and
termination.
	23				*/
	24			int
safercopy(int
from_len,	char	*from,
int	to_len,	char	*to)

	25			{
	26							assert(from
!=	NULL	&&	to	!=	NULL
&&	"from	and	to	can't
be	NULL");
	27							int	i	=	0;
	28							int	max	=
from_len	>	to_len	-	1
?	to_len	-	1	:
from_len;
	29
	30							//	to_len
must	have	at	least	1
byte
	31							if
(from_len	<	0	||

to_len	<=	0)
	32											return
-1;
	33
	34							for	(i	=	0;
i	<	max;	i++)	{
	35											to[i]	=
from[i];
	36							}
	37
	38							to[to_len	-
1]	=	'\0';
	39
	40							return	i;
	41			}
	42

	43			int	main(int
argc,	char	*argv[])
	44			{
	45							//	careful
to	understand	why	we
can	get	these	sizes
	46							char	from[]
=	"0123456789";
	47							int
from_len	=
sizeof(from);
	48
	49							//	notice
that	it's	7	chars	+
\0
	50							char	to[]	=
"0123456";

	51							int	to_len
=	sizeof(to);
	52
	53							debug("Copying
'%s':%d	to	'%s':%d",
from,	from_len,	to,
to_len);
	54
	55							int	rc	=
safercopy(from_len,
from,	to_len,	to);
	56							check(rc	>
0,	"Failed	to
safercopy.");
	57							check(to[to_len
-	1]	==	'\0',	"String
not	terminated.");

	58
	59							debug("Result
is:	'%s':%d",	to,
to_len);
	60
	61							//	now	try
to	break	it
	62							rc	=
safercopy(from_len	*
-1,	from,	to_len,
to);
	63							check(rc	==
-1,	"safercopy	should
fail	#1");
	64							check(to[to_len
-	1]	==	'\0',	"String
not	terminated.");

	65
	66							rc	=
safercopy(from_len,
from,	0,	to);
	67							check(rc	==
-1,	"safercopy	should
fail	#2");
	68							check(to[to_len
-	1]	==	'\0',	"String
not	terminated.");
	69
	70							return	0;
	71
	72			error:
	73							return	1;
	74			}

The	copy	function	is	typical
C	code	and	it’s	the	source	of
a	huge	number	of	buffer
overflows.	It’s	flawed
because	it	assumes	that	it	will
always	receive	a	valid,
terminated	C	string	(with
'\0'),	and	just	uses	a
while-loop	to	process	it.
Problem	is,	to	ensure	that	is
incredibly	difficult,	and	if	it’s
not	handled	right,	it	causes
the	while-loop	to	loop

infinitely.	A	cornerstone	of
writing	solid	code	is	never
writing	loops	that	can
possibly	loop	forever.
The	safercopy	function
tries	to	solve	this	by	requiring
the	caller	to	give	the	lengths
of	the	two	strings	it	must	deal
with.	By	doing	this,	it	can
make	certain	checks	about
these	strings	that	the	copy
function	can’t.	It	can	check
that	the	lengths	are	right,	and

that	the	to	string	has	enough
space,	and	it	will	always
terminate.	It’s	impossible	for
this	function	to	run	on	forever
like	the	copy	function.
This	is	the	idea	behind	never
trusting	the	inputs	you
receive.	If	you	assume	that
your	function	is	going	to	get	a
string	that’s	not	terminated
(which	is	common),	then	you
can	design	your	function	so
that	it	doesn’t	rely	on	it	to

work	properly.	If	you	need
the	arguments	to	never	be
NULL,	then	you	should	check
for	that,	too.	If	the	sizes
should	be	within	sane	levels,
then	check	that.	You	simply
assume	that	whoever	is
calling	you	got	it	wrong,	and
then	try	to	make	it	difficult
for	them	to	give	you	another
bad	state.
This	extends	to	software	you
write	that	gets	input	from	the

external	universe.	The
famous	last	words	of	the
programmer	are,	“Nobody’s
going	to	do	that.”	I’ve	seen
them	say	that	and	then	the
next	day	someone	does
exactly	that,	crashing	or
hacking	their	application.	If
you	say	nobody	is	going	to	do
that,	just	throw	in	the	code	to
make	sure	they	simply	can’t
hack	your	application.	You’ll
be	glad	you	did.

There	is	a	diminishing	return
on	this,	but	here’s	a	list	of
things	I	try	to	do	in	all	of	the
functions	I	write	in	C:

•	For	each	parameter,
identify	what	its
preconditions	are,	and
whether	the
precondition	should
cause	a	failure	or	return
an	error.	If	you	are
writing	a	library,	favor
errors	over	failures.

•	Add	assert	calls	at
the	beginning	that
check	for	each	failure
precondition	using
assert(test	&&
"message");.	This
little	hack	does	the	test,
and	when	it	fails,	the
OS	will	typically	print
the	assert	line	for
you	that	includes	that
message.	This	is	very
helpful	when	you’re

trying	to	figure	out	why
that	assert	is	there.
•	For	the	other
preconditions,	return
the	error	code	or	use	my
check	macro	to	give
an	error	message.	I
didn’t	use	check	in
this	example	since	it
would	confuse	the
comparison.
•	Document	why	these
preconditions	exist	so

that	when	a
programmer	hits	the
error,	he	or	she	can
figure	out	if	they’re
really	necessary	or	not.
•	If	you’re	modifying	the
inputs,	make	sure	that
they	are	correctly
formed	when	the
function	exits,	or	abort
if	they	aren’t.
•	Always	check	the	error
codes	of	functions	you

use.	For	example,
people	frequently	forget
to	check	the	return
codes	from	fopen	or
fread,	which	causes
them	to	use	the
resources	the	return
codes	give	despite	the
error.	This	causes	your
program	to	crash	or
open	an	avenue	for	an
attack.
•	You	also	need	to	be

returning	consistent
error	codes	so	that	you
can	do	this	for	all	of
your	functions.	Once
you	get	in	this	habit,
you’ll	then	understand
why	my	check	macros
work	the	way	they	do.

Just	doing	these	simple	things
will	improve	your	resource
handling	and	prevent	quite	a
few	errors.

Prevent	Errors
In	response	to	the	previous
example,	you	might	hear
people	say,	“Well,	it’s	not
very	likely	someone	will	use
copy	wrong.”	Despite	the
mountain	of	attacks	made
against	this	very	kind	of
function,	some	people	still
believe	that	the	probability	of
this	error	is	very	low.
Probability	is	a	funny	thing
because	people	are	incredibly

bad	at	guessing	the
probability	of	any	event.
People	are,	however,	much
better	at	determining	if
something	is	possible.	They
might	say	the	error	in	copy
is	not	probable,	but	they
can’t	deny	that	it’s
possible.
The	key	reason	is	that	for
something	to	be	probable,	it
first	has	to	be	possible.
Determining	the	possibility	is

easy,	since	we	can	all
imagine	something
happening.	What’s	not	so
easy	is	determining	its
probability	after	that.	Is	the
chance	that	someone	might
use	copy	wrong	20%,	10%,
or	1%?	Who	knows?	You’d
need	to	gather	evidence,	look
at	rates	of	failure	in	many
software	packages,	and
probably	survey	real
programmers	about	how	they
use	the	function.

This	means,	if	you’re	going
to	prevent	errors,	you	still
need	to	try	to	prevent	what’s
possible	but	first	focus	your
energies	on	what’s	most
probable.	It	may	not	be
feasible	to	handle	all	of	the
possible	ways	your	software
can	be	broken,	but	you	have
to	attempt	it.	But	at	the	same
time,	if	you	don’t	constrain
your	efforts	to	the	most
probable	events,	then	you’ll

be	wasting	time	on	irrelevant
attacks.
Here’s	a	process	for
determining	what	to	prevent
in	your	software:

•	List	all	the	possible
errors	that	can	happen,
no	matter	how	probable
(within	reason,	of
course).	No	point	listing
“aliens	sucking	your
memories	out	to	steal
your	passwords.”

•	Give	each	possible
error	a	probability	that’s
a	percentage	of	the
operations	that	can	be
vulnerable.	If	you	are
handling	requests	from
the	Internet,	then	it’s
the	percentage	of
requests	that	can	cause
the	error.	If	they	are
function	calls,	then	it’s
what	percentage	of
function	calls	can	cause
the	error.

•	Calculate	the	effort	in
number	of	hours	or
amount	of	code	to
prevent	it.	You	could
also	just	give	an	easy	or
hard	metric,	or	any
metric	that	prevents	you
from	working	on	the
impossible	when	there
are	easier	things	to	fix
still	on	the	list.
•	Rank	them	by	effort
(lowest	to	highest),	and

probability	(highest	to
lowest).	This	is	now
your	task	list.
•	Prevent	all	of	the	errors
you	can	in	this	list,
aiming	for	removing	the
possibility,	then
reducing	the	probability
if	you	can’t	make	it
impossible.
•	If	there	are	errors	you
can’t	fix,	then
document	them	so

someone	else	can	fix
them.

This	little	process	will	give
you	a	nice	list	of	things	to	do,
but	more	importantly,	keep
you	from	working	on	useless
things	when	there	are	other
more	important	things	to
work	on.	You	can	also	be
more	or	less	formal	with	this
process.	If	you’re	doing	a	full
security	audit,	this	will	be
better	done	with	a	whole	team

and	a	nice	spreadsheet.	If
you’re	just	writing	a	function,
then	simply	review	the	code
and	scratch	these	out	into
some	comments.	What’s
important	is	that	you	stop
assuming	that	errors	don’t
happen,	and	you	work	on
removing	them	when	you	can
without	wasting	effort.

Fail	Early	and
Openly
If	you	encounter	an	error	in	C
you	have	two	choices:

•	Return	an	error	code.
•	Abort	the	process.

This	is	just	how	it	is,	so	what
you	need	to	do	is	make	sure
the	failures	happen	quickly,
are	clearly	documented,	give
an	error	message,	and	are
easy	for	the	programmer	to

avoid.	This	is	why	the
check	macros	I’ve	given
you	work	the	way	they	do.
For	every	error	you	find,	it
prints	a	message,	the	file	and
line	number	where	it
happened,	and	forces	a	return
code.	If	you	just	use	my
macros,	you’ll	end	up	doing
the	right	thing	anyway.
I	tend	to	prefer	returning	an
error	code	to	aborting	the
program.	If	it’s	catastrophic,

then	I	will,	but	very	few
errors	are	truly	catastrophic.
A	good	example	of	when	I’ll
abort	a	program	is	if	I’m
given	an	invalid	pointer,	as	I
did	in	safercopy.	Instead
of	having	the	programmer
experience	a	segmentation
fault	explosion	somewhere,	I
catch	it	right	away	and	abort.
However,	if	it’s	common	to
pass	in	a	NULL,	then	I’ll
probably	change	that	to	a

check	instead	so	that	the
caller	can	adapt	and	keep
running.
In	libraries,	however,	I	try	my
hardest	to	never	abort.	The
software	using	my	library	can
decide	if	it	should	abort,	and
I’ll	typically	abort	only	if	the
library	is	very	badly	used.
Finally,	a	big	part	of	being
open	about	errors	is	not	using
the	same	message	or	error
code	for	more	than	one

possible	error.	You	typically
see	this	with	errors	in	external
resources.	A	library	will
receive	an	error	on	a	socket,
and	then	simply	report	“bad
socket.”	What	they	should	do
is	return	the	error	on	the
socket	so	that	it	can	be
properly	debugged	and	fixed.
When	designing	your	error
reporting,	make	sure	you	give
a	different	error	message	for
the	different	possible	errors.

Document
Assumptions
If	you’re	following	along	and
using	this	advice,	then	what
you’re	doing	is	building	a
contract	of	how	your
functions	expect	the	world	to
be.	You’ve	created
preconditions	for	each
argument,	you’ve	handled
possible	errors,	and	you’re
failing	elegantly.	The	next
step	is	to	complete	the

contract	and	add	invariants
and	postconditions.
An	invariant	is	a	condition
that	must	be	held	true	in	some
state	while	the	function	runs.
This	isn’t	very	common	in
simple	functions,	but	when
you’re	dealing	with	complex
structures,	it	becomes	more
necessary.	A	good	example	of
an	invariant	is	a	condition
where	a	structure	is	always
initialized	properly	while	it’s

being	used.	Another	example
would	be	that	a	sorted	data
structure	is	always	sorted
during	processing.
A	postcondition	is	a
guarantee	on	the	exit	value	or
result	of	a	function	running.
This	can	blend	together	with
invariants,	but	this	is
something	as	simple	as
“function	always	returns	0	or
-1	on	error.”	Usually	these
are	documented,	but	if	your

function	returns	an	allocated
resource,	you	can	add	a
postcondition	that	checks	to
make	sure	it’s	returning
something,	and	not	NULL.
Or,	you	can	use	NULL	to
indicate	an	error,	so	that	your
postcondition	checks	that	the
resource	is	deallocated	on	any
errors.
In	C	programming,	invariants
and	postconditions	are
usually	used	more	in

documentation	than	actual
code	or	assertions.	The	best
way	to	handle	them	is	to	add
assert	calls	for	the	ones
you	can,	then	document	the
rest.	If	you	do	that,	when
people	hit	an	error	they	can
see	what	assumptions	you
made	when	writing	the
function.

Prevention	over
Documentation

A	common	problem	when
programmers	write	code	is
that	they	will	document	a
common	bug	rather	than
simply	fix	it.	My	favorite	is
when	the	Ruby	on	Rails
system	simply	assumed	that
all	months	had	30	days.
Calendars	are	hard,	so	rather
than	fix	it,	programmers
threw	a	tiny	little	comment
somewhere	that	said	this	was
on	purpose,	and	then	they
refused	to	fix	it	for	years.

Every	time	someone	would
complain,	they	would	bluster
and	yell,	“But	it’s
documented!”
Documentation	doesn’t
matter	if	you	can	actually	fix
the	problem,	and	if	the
function	has	a	fatal	flaw,	then
just	don’t	include	it	until	you
can	fix	it.	In	the	case	of	Ruby
on	Rails,	not	having	date
functions	would	have	been
better	than	including

purposefully	broken	ones	that
nobody	could	use.
As	you	go	through	your
defensive	programming
cleanups,	try	to	fix	everything
you	can.	If	you	find	yourself
documenting	more	and	more
problems	you	can’t	fix,	then
consider	redesigning	the
feature	or	simply	removing	it.
If	you	really	have	to	keep	this
horribly	broken	feature,	then	I
suggest	you	write	it,

document	it,	and	then	find	a
new	job	before	you	are
blamed	for	it.

Automate	Everything
You	are	a	programmer,	and
that	means	your	job	is	putting
other	people	out	of	jobs	with
automation.	The	pinnacle	of
this	is	putting	yourself	out	of
a	job	with	your	own
automation.	Obviously,	you
won’t	completely	eliminate

what	you	do,	but	if	you’re
spending	your	whole	day
rerunning	manual	tests	in
your	terminal,	then	your	job
isn’t	programming.	You	are
doing	QA,	and	you	should
automate	yourself	out	of	this
QA	job	that	you	probably
don’t	really	want	anyway.
The	easiest	way	to	do	this	is
to	write	automated	tests,	or
unit	tests.	In	this	book	I’m
going	to	get	into	how	to	do

this	easily,	but	I’ll	avoid	most
of	the	dogma	about	when	you
should	write	tests.	I’ll	focus
on	how	to	write	them,	what	to
test,	and	how	to	be	efficient	at
the	testing.
Here	are	common	things
programmers	fail	to	automate
when	they	should:

•	Testing	and	validation
•	Build	processes
•	Deployment	of
software

•	System	administration
•	Error	reporting

Try	to	devote	some	of	your
time	to	automating	this	and
you’ll	have	more	time	to
work	on	the	fun	stuff.	Or,	if
this	is	fun	to	you,	then	maybe
you	should	work	on	software
that	makes	automating	these
things	easier.

Simplify	and	Clarify
The	concept	of	simplicity	is	a

slippery	one	to	many	people,
especially	smart	people.	They
generally	confuse
comprehension	with
simplicity.	If	they	understand
it,	clearly	it’s	simple.	The
actual	test	of	simplicity	is
comparing	something	with
something	else	that	could	be
simpler.	But	you’ll	see	people
who	write	code	go	running	to
the	most	complex,	obtuse
structures	possible	because
they	think	the	simpler	version

of	the	same	thing	is	dirty.	A
love	affair	with	complexity	is
a	programming	sickness.
You	can	fight	this	disease	by
first	telling	yourself,	“Simple
and	clear	is	not	dirty,	no
matter	what	everyone	else	is
doing.”	If	everyone	else	is
writing	insane	visitor	patterns
involving	19	classes	over	12
interfaces,	and	you	can	do	it
with	two	string	operations,
then	you	win.	They	are

wrong,	no	matter	how	elegant
they	think	their	complex
monstrosity	is.
Here’s	the	simplest	test	of
which	function	is	better:

•	Make	sure	both
functions	have	no
errors.	It	doesn’t	matter
how	fast	or	simple	a
function	is	if	it	has
errors.
•	If	you	can’t	fix	one,
then	pick	the	other.

•	Do	they	produce	the
same	result?	If	not,	then
pick	the	one	that	has	the
result	you	need.
•	If	they	produce	the
same	result,	then	pick
the	one	that	either	has
fewer	features,	fewer
branches,	or	you	just
think	is	simpler.
•	Make	sure	you’re	not
just	picking	the	one	that
is	most	impressive.

Simple	and	dirty	beats
complex	and	clean	any
day.

You’ll	notice	that	I	mostly
give	up	at	the	end	and	tell	you
to	use	your	judgment.
Simplicity	is	ironically	a	very
complex	thing,	so	using	your
taste	as	a	guide	is	the	best
way	to	go.	Just	make	sure	that
you	adjust	your	view	of
what’s	“good”	as	you	grow
and	gain	more	experience.

Question	Authority
The	final	strategy	is	the	most
important	because	it	breaks
you	out	of	the	defensive
programming	mind-set	and
lets	you	transition	into	the
creative	mind-set.	Defensive
programming	is	authoritarian
and	can	be	cruel.	The	job	of
this	mind-set	is	to	make	you
follow	rules,	because	without
them	you’ll	miss	something
or	get	distracted.

This	authoritarian	attitude	has
the	disadvantage	of	disabling
independent	creative	thought.
Rules	are	necessary	for
getting	things	done,	but	being
a	slave	to	them	will	kill	your
creativity.
This	final	strategy	means	you
should	periodically	question
the	rules	you	follow	and
assume	that	they	could	be
wrong,	just	like	the	software
you	are	reviewing.	What	I

will	typically	do	is	go	take	a
nonprogramming	break	and
let	the	rules	go	after	a	session
of	defensive	programming.
Then	I’ll	be	ready	to	do	some
creative	work	or	more
defensive	coding	if	I	need	to.

Order	Is	Not
Important
The	final	thing	I’ll	say	on	this
philosophy	is	that	I’m	not
telling	you	to	do	this	in	a

strict	order	of	“CREATE!
DEFEND!	CREATE!
DEFEND!”	At	first	you
might	want	to	do	that,	but	I’d
actually	do	either	in	varying
amounts	depending	on	what	I
wanted	to	do,	and	I	might
even	meld	them	together	with
no	defined	boundary.
I	also	don’t	think	one	mind-
set	is	better	than	another,	or
that	there’s	a	strict	separation
between	them.	You	need	both

creativity	and	strictness	to	do
programming	well,	so	work
on	both	if	you	want	to
improve.

Extra	Credit
•	The	code	in	the	book	up
to	this	point	(and	for	the
rest	of	it)	potentially
violates	these	rules.	Go
back	and	apply	what
you’ve	learned	to	one
exercise	to	see	if	you
can	improve	it	or	find
bugs.
•	Find	an	open	source
project	and	give	some
of	the	files	a	similar

code	review.	Submit	a
patch	that	fixes	a	bug.

Exercise	28.
Intermediate
Makefiles

In	the	next	three	exercises
you’ll	create	a	skeleton
project	directory	to	use	in
building	your	C	programs
later.	This	skeleton	directory
will	be	used	for	the	rest	of	the
book.	In	this	exercise,	I’ll

cover	just	the	Makefile	so
you	can	understand	it.
The	purpose	of	this	structure
is	to	make	it	easy	to	build
medium-sized	programs
without	having	to	resort	to
configure	tools.	If	done	right,
you	can	get	very	far	with	just
GNU	make	and	some	small
shell	scripts.

The	Basic	Project
Structure
The	first	thing	to	do	is	make	a
c-skeleton	directory,	and
then	put	a	set	of	basic	files
and	directories	in	it	that	many
projects	have.	Here’s	my
starter:

Exercise	28	Session

Click	here	to	view	code	image

$	mkdir	c-skeleton
$	cd	c-skeleton/
$	touch	LICENSE
README.md	Makefile
$	mkdir	bin	src	tests
$	cp	dbg.h	src/			#
this	is	from	Ex19
$	ls	-l
total	8
-rw-r--r--		1
zedshaw			staff					0		Mar
31	16:38	LICENSE
-rw-r--r--		1
zedshaw			staff		1168		Apr		1
17:00	Makefile
-rw-r--r--		1
zedshaw			staff					0		Mar

31	16:38	README.md
drwxr-xr-x		2
zedshaw			staff				68		Mar
31	16:38	bin
drwxr-xr-x		2
zedshaw			staff				68		Apr		1
10:07	build
drwxr-xr-x		3
zedshaw			staff			102		Apr		3
16:28	src
drwxr-xr-x		2
zedshaw			staff				68		Mar
31	16:38	tests
$	ls	-l	src
total	8
-rw-r--r--		1
zedshaw			staff			982		Apr		3

16:28	dbg.h
$

At	the	end	you	see	me	do	a
ls	-l	so	that	you	can	see
the	final	results.
Here’s	a	breakdown:

LICENSE	If	you	release
the	source	of	your
projects,	you’ll	want	to
include	a	license.	If	you
don’t,	though,	the	code
is	copyright	by	you	and
nobody	else	has	rights

to	it	by	default.
README.md	Basic
instructions	for	using
your	project	go	here.	It
ends	in	.md	so	that	it
will	be	interpreted	as
markdown.

Makefile	The	main	build
file	for	the	project.

bin/	Where	programs	that
users	can	run	go.	This	is
usually	empty,	and	the
Makefile	will	create

it	if	it’s	not	there.
build/	Where	libraries	and
other	build	artifacts	go.
Also	empty,	and	the
Makefile	will	create
it	if	it’s	not	there.

src/	Where	the	source
code	goes,	usually	.c
and	.h	files.

tests/	Where	automated
tests	go.

src/dbg.h	I	copied	the

dbg.h	from	Exercise
19	into	src/	for	later.

I’ll	now	break	down	each	of
the	components	of	this
skeleton	project	so	that	you
can	understand	how	it	works.

Makefile
The	first	thing	I’ll	cover	is	the
Makefile,	because	from
that	you	can	understand	how
everything	else	works.	The
Makefile	in	this	exercise	is
much	more	detailed	than	ones
you’ve	used	so	far,	so	I’ll
break	it	down	after	you	type
it	in:

Makefile

Click	here	to	view	code	image

		1			CFLAGS=-g	-O2	-
Wall	-Wextra	-Isrc	-
rdynamic	-DNDEBUG
$(OPTFLAGS)
		2			LIBS=-ldl
$(OPTLIBS)
		3			PREFIX?
=/usr/local
		4
		5			SOURCES=$(wildcard
src/**/*.c	src/*.c)
		6			OBJECTS=$(patsubst
%.c,%.o,$(SOURCES))
		7
		8			TEST_SRC=$(wildcard

tests/*_tests.c)
		9			TESTS=$(patsubst
%.c,%,$(TEST_SRC))
	10
	11			TARGET=build/libYOUR_LIBRARY.a
	12			SO_TARGET=$(patsubst
%.a,%.so,$(TARGET))
	13
	14			#	The	Target
Build
	15			all:	$(TARGET)
$(SO_TARGET)	tests
	16
	17			dev:	CFLAGS=-g
-Wall	-Isrc	-Wall	-
Wextra	$(OPTFLAGS)

	18			dev:	all
	19
	20			$(TARGET):
CFLAGS	+=	-fPIC
	21			$(TARGET):
build	$(OBJECTS)
	22							ar	rcs	$@
$(OBJECTS)
	23							ranlib	$@
	24			$(SO_TARGET):
$(TARGET)	$(OBJECTS)
	25							$(CC)	-
shared	-o	$@
$(OBJECTS)
	26
	27			build:

	28							@mkdir	-p
build
	29							@mkdir	-p
bin
	30
	31			#	The	Unit
Tests
	32			.PHONY:	tests
	33			tests:	CFLAGS
+=	$(TARGET)
	34			tests:	$(TESTS)
	35							sh
./tests/runtests.sh
	36
	37			#	The	Cleaner
	38			clean:

	39							rm	-rf
build	$(OBJECTS)
$(TESTS)
	40							rm	-f
tests/tests.log
	41							find	.	-
name	"*.gc*"	-exec	rm
{}	\;
	42							rm	-rf
`find	.	-name
"*.dSYM"	-print`
	43
	44			#	The	Install
	45			install:	all
	46							install	-d
$(DESTDIR)/$(PREFIX)/lib/

	47							install
$(TARGET)
$(DESTDIR)/$(PREFIX)/lib/
	48
	49			#	The	Checker
	50			check:
	51							@echo	Files
with	potentially
dangerous	functions.
	52							@egrep
'[^_.>a-zA-Z0-9]
(str(n?cpy|n?
cat|xfrm|n?
dup|str|pbrk|tok|_)\
	53																			
cpy|a?sn?

printf|byte_)'
$(SOURCES)	||	true

Remember	that	you	need	to
consistently	indent	the
Makefile	with	tab
characters.	Your	text	editor
should	know	that	and	do	the
right	thing.	If	it	doesn’t,	get	a
different	text	editor.	No
programmer	should	use	an
editor	that	fails	at	something
so	simple.

The	Header
This	Makefile	is	designed
to	build	a	library	reliably	on
almost	any	platform	using
special	features	of	GNU
make.	We’ll	be	working	on
this	library	later,	so	I’ll	break
down	each	part	in	sections,
starting	with	the	header.

Makefile:1	These	are	the
usual	CFLAGS	that	you
set	in	all	of	your
projects,	along	with	a

few	others	that	may	be
needed	to	build
libraries.	You	may	need
to	adjust	these	for
different	platforms.
Notice	the	OPTFLAGS
variable	at	the	end	that
lets	people	augment	the
build	options	as	needed.

Makefile:2	These	options
are	used	when	linking	a
library.	Someone	else
can	then	augment	the

linking	options	using
the	OPTLIBS	variable.

Makefile:3	This	code	sets
an	optional	variable
called	PREFIX	that
will	only	have	this
value	if	the	person
running	the	Makefile
didn’t	already	give	a
PREFIX	setting.	That’s
what	the	?=	does.

Makefile:5	This	fancy
line	of	awesomeness

dynamically	creates	the
SOURCES	variable	by
doing	a	wildcard
search	for	all	*.c	files
in	the	src/	directory.
You	have	to	give	both
src/**/*.c	and
src/*.c	so	that	GNU
make	will	include	the
files	in	src	and	the
files	below	it.

Makefile:6	Once	you
have	the	list	of	source

files,	you	can	then	use
the	patsubst	to	take
the	SOURCES	list	of
*.c	files	and	make	a
new	list	of	all	the	object
files.	You	do	this	by
telling	patsubst	to
change	all	%.c
extensions	to	%.o,	and
then	those	extensions
are	assigned	to
OBJECTS.

Makefile:8	We’re	using

the	wildcard	again	to
find	all	of	the	test
source	files	for	the	unit
tests.	These	are	separate
from	the	library’s
source	files.

Makefile:9	Then,	we’re
using	the	same
patsubst	trick	to
dynamically	get	all	the
TEST	targets.	In	this
case,	I’m	stripping
away	the	.c	extension

so	that	a	full	program
will	be	made	with	the
same	name.	Previously,
I	had	replaced	the	.c
with	{.o}	so	an	object
file	is	created.

Makefile:11	Finally,	we
say	the	ultimate	target
is
build/libYOUR_LIBRARY.a
which	you	will	change
to	be	whatever	library
you’re	actually	trying	to

build.
This	completes	the	top	of	the
Makefile,	but	I	should
explain	what	I	mean	by	“lets
people	augment	the	build.”
When	you	run	Make,	you
can	do	this:
Click	here	to	view	code	image

#	WARNING!	Just	a
demonstration,	won't
really	work	right
now.
#	this	installs	the

library	into	/tmp
$	make	PREFIX=/tmp
install
#	this	tells	it	to
add	pthreads
$	make	OPTFLAGS=-
pthread

If	you	pass	in	options	that
match	the	same	kind	of
variables	you	have	in	your
Makefile,	then	those	will
show	up	in	your	build.	You
can	then	use	this	to	change
how	the	Makefile	runs.

The	first	variable	alters	the
PREFIX	so	that	it	installs
into	/tmp	instead.	The
second	one	sets	OPTFLAGS
so	that	the	-pthread	option
is	present.

The	Target	Build
Continuing	with	the
breakdown	of	the
Makefile,	I’m	actually
building	the	object	files	and
targets:

Makefile:14	Remember
that	the	first	target	is
what	make	runs	by
default	when	no	target
is	given.	In	this,	it’s
called	all:	and	it
gives	$(TARGET)
tests	as	the	targets	to
build.	Look	up	at	the
TARGET	variable	and
you	see	that’s	the
library,	so	all:	will
first	build	the	library.

The	tests	target	is
further	down	in	the
Makefile	and	builds
the	unit	tests.

Makefile:16	Here’s
another	target	for
making	“developer
builds”	that	introduces	a
technique	for	changing
options	for	just	one
target.	If	I	do	a	“dev
build,”	I	want	the
CFLAGS	to	include

options	like	-Wextra
that	are	useful	for
finding	bugs.	If	you
place	them	on	the	target
line	as	options	like	this,
then	give	another	line
that	says	the	original
target	(in	this	case
all),	then	it	will
change	the	options	you
set.	I	use	this	for	setting
different	flags	on
different	platforms	that

need	it.
Makefile:19	This	builds
the	TARGET	library,
whatever	that	is.	It	also
uses	the	same	trick
from	line	15,	giving	a
target	with	just	options
and	ways	to	alter	them
for	this	run.	In	this	case,
I’m	adding	-fPIC	just
for	the	library	build,
using	the	+=	syntax	to
add	it	on.

Makefile:20	Now	we	see
the	real	target,	where	I
say	first	make	the
build	directory,	and
then	compile	all	of	the
OBJECTS.

Makefile:21	This	runs	the
ar	command	that
actually	makes	the
TARGET.	The	syntax
$@	$(OBJECTS)	is	a
way	of	saying,	“put	the
target	for	this

Makefile	source	here
and	all	the	OBJECTS
after	that.”	In	this	case,
the	$@	maps	back	to	the
$(TARGET)	on	line
19,	which	maps	to
build/libYOUR_LIBRARY.a
It	seems	like	a	lot	to
keep	track	of	in	this
indirection,	and	it	can
be,	but	once	you	get	it
working,	you	just
change	TARGET	at	the

top	and	build	a	whole
new	library.

Makefile:22	Finally,	to
make	the	library,	you
run	ranlib	on	the
TARGET	and	it’s	built.

Makefile:23-24	This	just
makes	the	build/	or
bin/	directories	if	they
don’t	exist.	This	is	then
referenced	from	line	19
when	it	gives	the
build	target	to	make

sure	the	build/
directory	is	made.

You	now	have	all	of	the	stuff
you	need	to	build	the
software,	so	we’ll	create	a
way	to	build	and	run	unit
tests	to	do	automated	testing.

The	Unit	Tests
C	is	different	from	other
languages	because	it’s	easier
to	create	one	tiny	little
program	for	each	thing	you’re

testing.	Some	testing
frameworks	try	to	emulate	the
module	concept	other
languages	have	and	do
dynamic	loading,	but	this
doesn’t	work	well	in	C.	It’s
also	unnecessary,	because
you	can	just	make	a	single
program	that’s	run	for	each
test	instead.
I’ll	cover	this	part	of	the
Makefile,	and	then	later
you’ll	see	the	contents	of	the

tests/	directory	that	make
it	actually	work.

Makefile:29	If	you	have	a
target	that’s	not	real,
but	there	is	a	directory
or	file	with	that	name,
then	you	need	to	tag	the
target	with	.PHONY:
so	make	will	ignore	the
file	and	always	run.

Makefile:30	I	use	the
same	trick	for
modifying	the	CFLAGS

variable	to	add	the
TARGET	to	the	build	so
that	each	of	the	test
programs	will	be	linked
with	the	TARGET
library.	In	this	case,	it
will	add
build/libYOUR_LIBRARY.a
to	the	linking.

Makefile:31	Then	I	have
the	actual	tests:
target,	which	depends
on	all	of	the	programs

listed	in	the	TESTS
variable	that	we	created
in	the	header.	This	one
line	actually	says,
“Make,	use	what	you
know	about	building
programs	and	the
current	CFLAGS
settings	to	build	each
program	in	TESTS.”

Makefile:32	Finally,
when	all	of	the	TESTS
are	built,	there’s	a

simple	shell	script	I’ll
create	later	that	knows
how	to	run	them	all	and
report	their	output.	This
line	actually	runs	it	so
you	can	see	the	test
results.

For	the	unit	testing	to	work,
you’ll	need	to	create	a	little
shell	script	that	knows	how	to
run	the	programs.	Go	ahead
and	create	this
tests/runtests.sh

script:

runtests.sh

Click	here	to	view	code	image

		1			echo	"Running
unit	tests:"
		2
		3			for	i	in
tests/*_tests
		4			do
		5							if	test	-f
$i
		6							then

		7											if
$VALGRIND	./$i	2>>
tests/tests.log
		8											then
		9															echo
$i	PASS
	10												else
	11																echo
"ERROR	in	test	$i:
here's
tests/tests.log"
	12																echo
"------"
	13																tail
tests/tests.log
	14																exit

1
	15												fi
	16									fi
	17					done
	18
	19					echo	""

I’ll	be	using	this	later	when	I
cover	how	unit	tests	work.

The	Cleaner
I	now	have	fully	working	unit
tests,	so	next	up	is	making
things	clean	when	I	need	to
reset	everything.

Makefile:38	The	clean:
target	starts	things	off
when	we	need	to	clean
up	the	project.

Makefile:39-42	This
cleans	out	most	of	the
junk	that	various
compilers	and	tools
leave	behind.	It	also
gets	rid	of	the	build/
directory	and	uses	a
trick	at	the	end	to
cleanly	erase	the	weird

*.dSYM	directories
that	Apple’s	XCode
leaves	behind	for
debugging	purposes.

If	you	run	into	junk	that	you
need	to	clean	out,	simply
augment	the	list	of	things
being	deleted	in	this	target.

The	Install
After	that,	I’ll	need	a	way	to
install	the	project,	and	for	a
Makefile	that’s	building	a
library,	I	just	need	to	put
something	in	the	common
PREFIX	directory,	usually
/usr/local/lib.

Makefile:45	This	makes
install:	depend	on
the	all:	target,	so	that
when	you	run	make

install,	it	will	be
sure	to	build
everything.

Makefile:46	I	then	use	the
program	install	to
create	the	target	lib
directory	if	it	doesn’t
exist.	In	this	case,	I’m
trying	to	make	the
install	as	flexible	as
possible	by	using	two
variables	that	are
conventions	for

installers.	DESTDIR	is
handed	to	make	by
installers,	which	do
their	builds	in	secure	or
odd	locations,	to	build
packages.	PREFIX	is
used	when	people	want
the	project	to	be
installed	in	someplace
other	than
/usr/local.

Makefile:47	After	that,
I’m	just	using

install	to	actually
install	the	library	where
it	needs	to	go.

The	purpose	of	the	install
program	is	to	make	sure
things	have	the	right
permissions	set.	When	you
run	make	install,	you
usually	have	to	do	it	as	the
root	user,	so	the	typical	build
process	is	make	&&	sudo
make	install.

The	Checker
The	very	last	part	of	this
Makefile	is	a	bonus	that	I
include	in	my	C	projects	to
help	me	dig	out	any	attempts
to	use	the	bad	functions	in	C.
These	are	namely	the	string
functions	and	other
unprotected	buffer	functions.

Makefile:50	This	sets	a
variable	that’s	a	big
regex	looking	for	bad
functions	like	strcpy.

Makefile:51	The	check:
target	allows	you	to	run
a	check	whenever	you
need	to.

Makefile:52	This	is	just	a
way	to	print	a	message,
but	doing	@echo	tells
make	to	not	print	the
command,	just	its
output.

Makefile:53	Run	the
egrep	command	on
the	source	files	to	look

for	any	bad	patterns.
The	||	true	at	the
end	is	a	way	to	prevent
make	from	thinking
that	egrep	failed	if	it
doesn’t	find	errors.

When	you	run	this,	it	will
have	the	odd	effect	of
returning	an	error	when
there’s	nothing	bad	going	on.

What	You	Should
See
I	have	two	more	exercises	to
go	before	I’m	done	building
the	project	skeleton	directory,
but	here’s	me	testing	out	the
features	of	the	Makefile.

Exercise	28	Session

Click	here	to	view	code	image

$	make	clean

rm	-rf	build
rm	-f	tests/tests.log
find	.	-name	"*.gc*"
-exec	rm	{}	\;
rm	-rf	`find	.	-name
"*.dSYM"	-print`
$	make	check
$	make

When	I	run	the	clean:
target,	it	works,	but	because	I
don’t	have	any	source	files	in
the	src/	directory,	none	of
the	other	commands	really
work.	I’ll	finish	that	up	in	the

next	exercises.

Extra	Credit
•	Try	to	get	the
Makefile	to	actually
work	by	putting	a
source	and	header	file
in	src/	and	making
the	library.	You
shouldn’t	need	a	main
function	in	the	source
file.
•	Research	what

functions	the	check:
target	is	looking	for	in
the	BADFUNCS	regular
expression	that	it’s
using.
•	If	you	don’t	do
automated	unit	testing,
then	go	read	about	it	so
you’re	prepared	later.

Exercise	29.
Libraries	and
Linking

A	central	part	of	any	C
program	is	the	ability	to	link
it	to	libraries	that	your	OS
provides.	Linking	is	how	you
get	additional	features	for
your	program	that	someone
else	created	and	packaged	on

the	system.	You’ve	been
using	some	standard	libraries
that	are	automatically
included,	but	I’m	going	to
explain	the	different	types	of
libraries	and	what	they	do.
First	off,	libraries	are	poorly
designed	in	every
programming	language.	I
have	no	idea	why,	but	it
seems	language	designers
think	of	linking	as	something
they	just	slap	on	later.

Libraries	are	usually
confusing,	hard	to	deal	with,
can’t	do	versioning	right,	and
end	up	being	linked
differently	everywhere.
C	is	no	different,	but	the	way
linking	and	libraries	are	done
in	C	is	an	artifact	of	how	the
UNIX	operating	system	and
executable	formats	were
designed	years	ago.	Learning
how	C	links	things	helps	you
understand	how	your	OS

works	and	how	it	runs	your
programs.
To	start	off,	there	are	two
basic	types	of	libraries:

static	You	made	one	of
these	when	you	used	ar
and	ranlib	to	create
the
libYOUR_LIBRARY.a
in	the	last	exercise.	This
kind	of	library	is
nothing	more	than	a
container	for	a	set	of	.o

object	files	and	their
functions,	and	you	can
treat	it	like	one	big	.o
file	when	building	your
programs.

dynamic	These	typically
end	in	.so,	.dll	or
about	one	million	other
endings	on	OS	X,
depending	on	the
version	and	who
happened	to	be	working
that	day.	Seriously

though,	OS	X	adds
.dylib,	.bundle,
and	.framework	with
not	much	distinction
among	the	three.	These
files	are	built	and	then
placed	in	a	common
location.	When	you	run
your	program,	the	OS
dynamically	loads	these
files	and	links	them	to
your	program	on	the
fly.

I	tend	to	like	static	libraries
for	small-	to	medium-sized
projects,	because	they	are
easier	to	deal	with	and	work
on	more	operating	systems.	I
also	like	to	put	all	of	the	code
I	can	into	a	static	library	so
that	I	can	then	link	it	to	unit
tests	and	to	the	file	programs
as	needed.
Dynamic	libraries	are	good
for	larger	systems,	when
space	is	tight,	or	if	you	have	a

large	number	of	programs
that	use	common
functionality.	In	this	case,
you	don’t	want	to	statically
link	all	of	the	code	for	the
common	features	to	every
program,	so	you	put	it	in	a
dynamic	library	so	that	it	is
loaded	only	once	for	all	of
them.
In	the	previous	exercise,	I
laid	out	how	to	make	a	static
library	(a	.a	file),	and	that’s

what	I’ll	use	in	the	rest	of	the
book.	In	this	exercise,	I’m
going	to	show	you	how	to
make	a	simple	.so	library,	and
how	to	dynamically	load	it
with	the	UNIX	dlopen
system.	I’ll	have	you	do	this
manually	so	that	you
understand	everything	that’s
actually	happening,	then	for
extra	credit	you’ll	use	the	c-
skeleton	skeleton	to	create
it.

Dynamically	Loading
a	Shared	Library
To	do	this,	I	will	create	two
source	files:	One	will	be	used
to	make	a	libex29.so
library,	the	other	will	be	a
program	called	ex29	that	can
load	this	library	and	run
functions	from	it.

libex29.c

Click	here	to	view	code	image

		1			#include
<stdio.h>
		2			#include
<ctype.h>
		3			#include
"dbg.h"
		4
		5
		6			int
print_a_message(const
char	*msg)
		7			{
		8							printf("A
STRING:	%s\n",	msg);
		9

	10							return	0;
	11			}
	12
	13
	14			int
uppercase(const	char
*msg)
	15			{
	16							int	i	=	0;
	17
	18							//	BUG:	\0
termination	problems
	19							for(i	=	0;
msg[i]	!=	'\0';	i++)
{
	20											printf("%c"

toupper(msg[i]));
	21							}
	22
	23							printf("\n");
	24
	25							return	0;
	26			}
	27
	28			int
lowercase(const	char
*msg)
	29			{
	30							int	i	=	0;
	31
	32							//	BUG:	\0
termination	problems

	33							for(i	=	0;
msg[i]	!=	'\0';	i++)
{
	34											printf("%c"
tolower(msg[i]));
	35							}
	36
	37							printf("\n");
	38
	39							return	0;
	40			}
	41
	42			int
fail_on_purpose(const
char	*msg)
	43			{

	44							return	1;
	45			}

There’s	nothing	fancy	in
there,	although	there	are	some
bugs	I’m	leaving	in	on
purpose	to	see	if	you’ve	been
paying	attention.	You’ll	fix
those	later.
What	we	want	to	do	is	use	the
functions	dlopen,	dlsym,
and	dlclose	to	work	with
the	above	functions.

ex29.c

Click	here	to	view	code	image

		1			#include
<stdio.h>
		2			#include
"dbg.h"
		3			#include
<dlfcn.h>
		4
		5			typedef	int
(*lib_function)
(const	char	*data);
		6
		7			int	main(int

argc,	char	*argv[])
		8			{
		9							int	rc	=	0;
	10							check(argc
==	4,	"USAGE:	ex29
libex29.so	function
data");
	11
	12							char
*lib_file	=	argv[1];
	13							char
*func_to_run	=
argv[2];
	14							char	*data
=	argv[3];
	15

	16							void	*lib	=
dlopen(lib_file,
RTLD_NOW);
	17							check(lib
!=	NULL,	"Failed	to
open	the	library	%s:
%s",	lib_file,
	18															dlerror
	19
	20							lib_function
func	=	dlsym(lib,
func_to_run);
	21							check(func
!=	NULL,
	22															"Did
not	find	%s	function

in	the	library	%s:
%s",	func_to_run,
	23															lib_file,
dlerror());
	24
	25							rc	=
func(data);
	26							check(rc	==
0,	"Function	%s
return	%d	for	data:
%s",	func_to_run,
	27															rc,
data);
	28
	29							rc	=
dlclose(lib);

	30							check(rc	==
0,	"Failed	to	close
%s",	lib_file);
	31
	32							return	0;
	33
	34			error:
	35							return	1;
	36			}

I’ll	now	break	this	down	so
you	can	see	what’s	going	on
in	this	small	bit	of	useful
code:

ex29.c:5	I’ll	use	this

function	pointer
definition	later	to	call
functions	in	the	library.
This	is	nothing	new,	but
make	sure	you
understand	what	it’s
doing.

ex29.c:17	After	the	usual
setup	for	a	small
program,	I	use	the
dlopen	function	to
load	up	the	library
that’s	indicated	by

lib_file.	This
function	returns	a
handle	that	we	use	later,
which	works	a	lot	like
opening	a	file.

ex29.c:18	If	there’s	an
error,	I	do	the	usual
check	and	exit,	but
notice	at	then	end	that
I’m	using	dlerror	to
find	out	what	the
library-related	error
was.

ex29.c:20	I	use	dlsym	to
get	a	function	out	of	the
lib	by	its	string	name
in	func_to_run.
This	is	the	powerful
part,	since	I’m
dynamically	getting	a
pointer	to	a	function
based	on	a	string	I	got
from	the	command	line
argv.

ex29.c:23	I	then	call	the
func	function	that	was

returned,	and	check	its
return	value.

ex29.c:26	Finally,	I	close
the	library	up	just	like	I
would	a	file.	Usually,
you	keep	these	open	the
whole	time	the	program
is	running,	so	closing	it
at	the	end	isn’t	as
useful,	but	I’m
demonstrating	it	here.

What	You	Should
See
Now	that	you	know	what	this
file	does,	here’s	a	shell
session	of	me	building	the
libex29.so,	ex29	and
then	working	with	it.	Follow
along	so	you	learn	how	these
things	are	manually	built.

Exercise	29	Session

Click	here	to	view	code	image

#	compile	the	lib
file	and	make	the	.so
#	you	may	need	-fPIC
here	on	some
platforms.	add	that
if	you	get	an	error
$	cc	-c	libex29.c	-o
libex29.o
$	cc	-shared	-o
libex29.so	libex29.o

#	make	the	loader
program
$	cc	-Wall	-g	-
DNDEBUG	ex29.c	-ldl	-

o	ex29

#	try	it	out	with
some	things	that	work
$	ex29	./libex29.so
print_a_message
"hello	there"
-bash:	ex29:	command
not	found
$./ex29	./libex29.so
print_a_message
"hello	there"
A	STRING:	hello	there
$./ex29	./libex29.so
uppercase	"hello
there"
HELLO	THERE

$./ex29	./libex29.so
lowercase	"HELLO
tHeRe"
hello	there
$./ex29	./libex29.so
fail_on_purpose	"i
fail"
[ERROR]	(ex29.c:23:
errno:	None)	Function
fail_on_purpose
return	1	for\
												data:	i
fail

#	try	to	give	it	bad
args

$./ex29	./libex29.so
fail_on_purpose
[ERROR]	(ex29.c:11:
errno:	None)	USAGE:
ex29	libex29.so
function	data

#	try	calling	a
function	that	is	not
there
$./ex29	./libex29.so
adfasfasdf	asdfadff
[ERROR]	(ex29.c:20:
errno:	None)	Did	not
find	adfasfasdf
		function	in	the

library	libex29.so:
dlsym(0x1076009b0,
adfasfasdf):\
										symbol	not
found

#	try	loading	a	.so
that	is	not	there
$./ex29	./libex.so
adfasfasdf	asdfadfas
[ERROR]	(ex29.c:17:
errno:	No	such	file
or	directory)	Failed
to	open
				the	library
libex.so:

dlopen(libex.so,	2):
image	not	found
$

One	thing	that	you	may	run
into	is	that	every	OS,	every
version	of	every	OS,	and
every	compiler	on	every
version	of	every	OS,	seems	to
want	to	change	the	way	you
build	a	shared	library	every
time	some	new	programmer
thinks	it’s	wrong.	If	the	line	I
use	to	make	the

libex29.so	file	is	wrong,
then	let	me	know	and	I’ll	add
some	comments	for	other
platforms.

Warning!
Sometimes	you’ll	do
what	you	think	is
normal,	and	run	this
command	cc	-Wall
-g	-DNDEBUG	-
ldl	ex29.c	-o
ex29	thinking

everything	will	work,
but	nope.	You	see,	on
some	platforms	the
order	of	where	libraries
go	makes	them	work
or	not,	and	for	no	real
reason.	In	Debian	or
Ubuntu,	you	have	to	do
cc	-Wall	-g	-
DNDEBUG	ex29.c
-ldl	-o	ex29	for
no	reason	at	all.	It’s
just	the	way	it	is.	So
since	this	works	on	OS

X	I’m	doing	it	here,
but	in	the	future,	if	you
link	against	a	dynamic
library	and	it	can’t	find
a	function,	try
shuffling	things
around.
The	irritation	here	is

there’s	an	actual
platform	difference	on
nothing	more	than	the
order	of	command	line
arguments.	On	no

rational	planet	should
putting	an	-ldl	at	one
position	be	different
from	another.	It’s	an
option,	and	having	to
know	these	things	is
incredibly	annoying.

How	to	Break	It
Open	libex29.so	and	edit
it	with	an	editor	that	can
handle	binary	files.	Change	a
couple	of	bytes,	then	close
itlibex29.so.	Try	to	see
if	you	can	get	the	dlopen
function	to	load	it	even
though	you’ve	corrupted	it.

Extra	Credit
•	Were	you	paying

attention	to	the	bad
code	I	have	in	the
libex29.c
functions?	Do	you	see
how,	even	though	I	use
a	for-loop	they	still
check	for	'\0'
endings?	Fix	this	so	that
the	functions	always
take	a	length	for	the
string	to	work	with
inside	the	function.
•	Take	the	c-

skeleton	skeleton,
and	create	a	new	project
for	this	exercise.	Put	the
libex29.c	file	in	the
src/	directory.
Change	the	Makefile
so	that	it	builds	this	as
build/libex29.so.
•	Take	the	ex29.c	file
and	put	it	in
tests/ex29_tests.c
so	that	it	runs	as	a	unit
test.	Make	this	all	work,

which	means	that	you’ll
have	to	change	it	so	that
it	loads	the	build/
libex29.so	file	and
runs	tests	similar	to
what	I	did	manually
above.
•	Read	the	man
dlopen
documentation	and	read
about	all	of	the	related
functions.	Try	some	of
the	other	options	to

dlopen	beside
RTLD_NOW.

Exercise	30.
Automated
Testing

Automated	testing	is	used
frequently	in	other	languages
like	Python	and	Ruby,	but
rarely	used	in	C.	Part	of	the
reason	comes	from	the
difficulty	of	automatically
loading	and	testing	pieces	of

C	code.	In	this	chapter,	we’ll
create	a	very	small	testing
framework	and	get	your
skeleton	directory	to	build	an
example	test	case.
The	framework	I’m	going	to
use,	and	you’ll	include	in
your	c-skeleton	skeleton,
is	called	minunit	which
started	with	a	tiny	snippet	of
code	by	Jera	Design.	I
evolved	it	further,	to	be	this:

minunit.h

Click	here	to	view	code	image

		1			#undef	NDEBUG
		2			#ifndef
_minunit_h
		3			#define
_minunit_h
		4
		5			#include
<stdio.h>
		6			#include
<dbg.h>
		7			#include
<stdlib.h>

		8
		9			#define
mu_suite_start()	char
*message	=	NULL
	10
	11			#define
mu_assert(test,
message)	if	(!(test))
{\
	12							log_err(message);
return	message;	}
	13			#define
mu_run_test(test)
debug("\n-----%s",	"
"	#test);	\
	14							message	=

test();	tests_run++;
if	(message)	return
message;
	15
	16			#define
RUN_TESTS(name)	int
main(int	argc,	char
*argv[])	{\
	17							argc	=	1;	\
	18							debug("----
-	RUNNING:	%s",
argv[0]);\
	19							printf("---
-\nRUNNING:	%s\n",
argv[0]);\
	20							char
*result	=	name();\

	21							if	(result
!=	0)	{\
	22											printf("FAILED:
%s\n",	result);\
	23							}\
	24							else	{\
	25											printf("ALL
TESTS	PASSED\n");\
	26							}\
	27							printf("Tests
run:	%d\n",
tests_run);\
	28							exit(result
!=	0);\
	29			}
	30

	31			int	tests_run;
	32
	33			#endif

There’s	practically	nothing
left	of	the	original,	since	now
I’m	using	the	dbg.h	macros
and	a	large	macro	that	I
created	at	the	end	for	the
boilerplate	test	runner.	Even
with	this	tiny	amount	of	code,
we’ll	create	a	fully
functioning	unit	test	system
that	you	can	use	in	your	C

code	once	it’s	combined	with
a	shell	script	to	run	the	tests.

Wiring	Up	the	Test
Framework
To	continue	this	exercise,	you
should	have	your
src/libex29.c	working.
You	should	have	also
completed	the	Exercise	29
Extra	Credit	to	get	the
ex29.c	loader	program	to
properly	run.	In	Exercise	29,	I

ask	you	to	make	it	work	like	a
unit	test,	but	I’m	going	to
start	over	and	show	you	how
to	do	that	with	minunit.h.
The	first	thing	to	do	is	create
a	simple	empty	unit	test
name,
tests/libex29_tests.c
with	this	in	it:

ex30.c

Click	here	to	view	code	image

		1			#include
"minunit.h"
		2
		3			char
*test_dlopen()
		4			{
		5
		6							return
NULL;
		7			}
		8
		9			char
*test_functions()
	10			{
	11
	12								return
NULL;

	13			}
	14
	15			char
*test_failures()
	16			{
	17
	18							return
NULL;
	19			}
	20
	21			char
*test_dlclose()
	22			{
	23
	24							return
NULL;
	25			}

	26
	27			char
*all_tests()
	28			{
	29							mu_suite_start
	30
	31							mu_run_test(
	32							mu_run_test(
	33							mu_run_test(
	34							mu_run_test(
	35
	36							return
NULL;
	37			}
	38
	39			RUN_TESTS(all_tests

This	code	is	demonstrating
the	RUN_TESTS	macro	in
tests/minunit.h	and
how	to	use	the	other	test
runner	macros.	I	have	the
actual	test	functions	stubbed
out	so	that	you	can	see	how	to
structure	a	unit	test.	I’ll	break
this	file	down	first:

libex29_tests.c:1	This
includes	the
minunit.h
framework.

libex29_tests.c:3-7	A	first
test.	Tests	are	structured
so	that	they	take	no
arguments	and	return	a
char	*	that’s	NULL
on	success.	This	is
important	because	the
other	macros	will	be
used	to	return	an	error
message	to	the	test
runner.

libex29_tests.c:9-25
These	are	more	tests

that	are	the	same	as	the
first.

libex29_tests.c:27	The
runner	function	that	will
control	all	of	the	other
tests.	It	has	the	same
form	as	any	other	test
case,	but	it	gets
configured	with	some
additional	gear.

libex29_tests.c:28	This
sets	up	some	common
stuff	for	a	test	with

mu_suite_start.
libex29_tests.c:30	This	is
how	you	say	what	tests
to	run,	using	the
mu_run_test	macro.

libex29_tests.c:35	After
you	say	what	tests	to
run,	you	then	return
NULL	just	like	a	normal
test	function.

libex29_tests.c:38
Finally,	you	just	use	the
big	RUN_TESTS	macro

to	wire	up	the	main
method	with	all	of	the
goodies,	and	tell	it	to
run	the	all_tests
starter.

That’s	all	there	is	to	running	a
test,	and	now	you	should	try
getting	just	this	to	run	within
the	project	skeleton.	Here’s
what	it	looks	like	when	I	do
it:

Exercise	30	Session

not	printable

I	first	did	a	make	clean
and	then	I	ran	the	build,
which	remade	the	template
libYOUR_LIBRARY.	a
and
libYOUR_LIBRARY.so
files.	Remember	that	you	did
this	in	the	Extra	Credit	for
Exercise	29,	but	just	in	case
you	didn’t	get	it,	here’s	the
diff	for	the	Makefile	I’m

using	now:

ex30.Makefile.diff

Click	here	to	view	code	image

diff	--git	a/code/c-
skeleton/Makefile
b/code/c-
skeleton/Makefile
index
135d538..21b92bf
100644
---	a/code/c-
skeleton/Makefile

+++	b/code/c-
skeleton/Makefile
@@	-9,9	+9,10	@@
TEST_SRC=$(wildcard
tests/*_tests.c)
	TESTS=$(patsubst
%.c,%,$(TEST_SRC))

	TARGET=build/libYOUR_LIBRARY.a
+SO_TARGET=$(patsubst
%.a,%.so,$(TARGET))

	#	The	Target	Build
-all:	$(TARGET)	tests
+all:	$(TARGET)
$(SO_TARGET)	tests

	dev:	CFLAGS=-g	-Wall
-Isrc	-Wall	-Wextra
$(OPTFLAGS)
	dev:	all
@@	-21,6	+22,9	@@
$(TARGET):	build
$(OBJECTS)
				ar	rcs	$@
$(OBJECTS)
				ranlib	$@

+$(SO_TARGET):
$(TARGET)	$(OBJECTS)
+	$(CC)	-shared	-o	$@
$(OBJECTS)
+

	build:
				@mkdir	-p	build
				@mkdir	-p	bin

With	those	changes	you
should	now	be	building
everything	and	finally	be	able
to	fill	in	the	remaining	unit
test	functions:

libex29_tests.c

Click	here	to	view	code	image

		1			#include

"minunit.h"
		2			#include
<dlfcn.h>
		3
		4			typedef	int
(*lib_function)
(const	char	*data);
		5			char	*lib_file
=
"build/libYOUR_LIBRARY.so"
		6			void	*lib	=
NULL;
		7
		8			int
check_function(const
char	*func_to_run,
const	char	*data,

		9												int
expected)
	10			{
	11							lib_function
func	=	dlsym(lib,
func_to_run);
	12							check(func
!=	NULL,
	13															"Did
not	find	%s	function
in	the	library	%s:
%s",	func_to_run,
	14															lib_file,
dlerror());
	15
	16							int	rc	=

func(data);
	17							check(rc	==
expected,	"Function
%s	return	%d	for
data:	%s",
	18															func_to_run
rc,	data);
	19
	20							return	1;
	21			error:
	22							return	0;
	23			}
	24
	25			char
*test_dlopen()
	26			{
	27							lib	=

dlopen(lib_file,
RTLD_NOW);
	28							mu_assert(lib
!=	NULL,	"Failed	to
open	the	library	to
test.");
	29
	30							return
NULL;
	31			}
	32
	33			char
*test_functions()
	34			{
	35							mu_assert(check_function
"Hello",	0),

	36															"print_a_message
failed.");
	37							mu_assert(check_function
"Hello",	0),
	38															"uppercase
failed.");
	39							mu_assert(check_function
"Hello",	0),
	40															"lowercase
failed.");
	41
	42							return
NULL;
	43			}
	44
	45			char
*test_failures()

	46			{
	47							mu_assert(check_function
"Hello",	1),
	48															"fail_on_purpose
should	fail.");
	49
	50							return
NULL;
	51			}
	52
	53			char
*test_dlclose()
	54			{
	55							int	rc	=
dlclose(lib);
	56							mu_assert(rc

==	0,	"Failed	to
close	lib.");
	57
	58							return
NULL;
	59			}
	60
	61			char
*all_tests()
	62			{
	63							mu_suite_start
	64
	65							mu_run_test(
	66							mu_run_test(
	67							mu_run_test(
	68							mu_run_test(
	69

	70							return
NULL;
	71			}
	72
	73			RUN_TESTS(all_tests

Hopefully	by	now	you	can
figure	out	what’s	going	on,
since	there’s	nothing	new	in
this	except	for	the
check_function
function.	This	is	a	common
pattern	where	I	use	a	chunk
of	code	repeatedly,	and	then
simply	automate	it	by	either

creating	a	function	or	a	macro
for	it.	In	this	case,	I’m	going
to	run	functions	in	the	.so
that	I	load,	so	I	just	made	a
little	function	to	do	it.

Extra	Credit
•	This	works	but	it’s
probably	a	bit	messy.
Clean	the	c-
skeleton	directory
up	so	that	it	has	all	of
these	files,	but	remove

any	of	the	code	related
to	Exercise	29.	You
should	be	able	to	copy
this	directory	over	and
kick-start	new	projects
without	much	editing.
•	Study	the
runtests.sh,	and
then	go	read	about
bash	syntax	so	you
know	what	it	does.	Do
you	think	you	could
write	a	C	version	of	this

script?

Exercise	31.
Common
Undefined
Behavior

At	this	point	in	the	book,	it’s
time	to	introduce	you	to	the
most	common	kinds	of	UB
that	you	will	encounter.	C	has
191	behaviors	that	the

standards	committee	has
decided	aren’t	defined	by	the
standard,	and	therefore
anything	goes.	Some	of	these
behaviors	are	legitimately	not
the	compiler’s	job,	but	the
vast	majority	are	simply	lazy
capitulations	by	the	standards
committee	that	cause
annoyances,	or	worse,
defects.	An	example	of
laziness:

An	unmatched

“or”	character	is
encountered	on	a
logical	source
line	during
tokenization.

In	this	instance,	the	C99
standard	actually	allows	a
compiler	writer	to	fail	at	a
parsing	task	that	a	junior	in
college	could	get	right.	Why
is	this?	Who	knows,	but	most
likely	someone	on	the
standards	committee	was

working	on	a	C	compiler	with
this	defect	and	managed	to
get	this	in	the	standard	rather
than	fix	their	compiler.	Or,	as
I	said,	simple	laziness.
The	crux	of	the	issue	with	UB
is	the	difference	between	the
C	abstract	machine,	defined
in	the	standard	and	real
computers.	The	C	standard
describes	the	C	language
according	to	a	strictly	defined
abstract	machine.	This	is	a

perfectly	valid	way	to	design
a	language,	except	where	the
C	standard	goes	wrong:	It
doesn’t	require	compilers	to
implement	this	abstract
machine	and	enforce	its
specification.	Instead,	a
compiler	writer	can
completely	ignore	the	abstract
machine	in	191	instances	of
the	standard.	It	should	really
be	called	an	“abstract
machine,	but”,	as	in,	“It’s	a
strictly	defined	abstract

machine,	but...”
This	allows	the	standards
committee	and	compiler
implementers	to	have	their
cake	and	eat	it,	too.	They	can
have	a	standard	that	is	full	of
omissions,	lax	specification,
and	errors,	but	when	you
encounter	one	of	these,	they
can	point	at	the	abstract
machine	and	simply	say	in
their	best	robot	voice,	“THE
ABSTRACT	MACHINE	IS

ALL	THAT	MATTERS.
YOU	DO	NOT
CONFORM!”	Yet,	in	191
instances	that	compiler
writers	don’t	have	to
conform,	you	do.	You	are	a
second	class	citizen,	even
though	the	language	is	really
written	for	you	to	use.
This	means	that	you,	not	the
compiler	writer,	are	left	to
enforce	the	rules	of	an
abstract	computational

machine,	and	when	you
inevitably	fail,	it’s	your	fault.
The	compiler	doesn’t	have	to
flag	the	UB,	do	anything
reasonable,	and	it’s	your	fault
for	not	memorizing	all	191
rules	that	should	be	avoided.
You	are	just	stupid	for	not
memorizing	191	complex
potholes	on	the	road	to	C.
This	is	a	wonderful	situation
for	the	classic	know-it-all
type	who	can	memorize	these
191	finer	points	of	annoyance

with	which	to	beat	beginners
to	intellectual	death.
There’s	an	additional
hypocrisy	with	UB	that	is
doubly	infuriating.	If	you
show	a	C	fanatic	code	that
properly	uses	C	strings	but
can	overwrite	the	string
terminator,	they	will	say,
“That’s	UB.	It’s	not	the	C
language’s	fault!”	However,
if	you	show	them	UB	that	has
while(x)	x	<<=	1	in	it,

they	will	say,	“That’s	UB
idiot!	Fix	your	damn	code!”
This	lets	the	C	fanatic
simultaneously	use	UB	to
defend	the	purity	of	C’s
design,	and	also	beat	you	up
for	being	an	idiot	who	writes
bad	code.	Some	UB	is	meant
as,	“you	can	ignore	the
security	of	this	since	it’s	not
C’s	fault”,	and	other	UB	is
meant	as,	“you	are	an	idiot
for	writing	this	code,”	and	the
distinction	between	the	two	is

not	specified	in	the	standard.
As	you	can	see,	I	am	not	a	fan
of	the	huge	list	of	UB.	I	had
to	memorize	all	of	these
before	the	C99	standard,	and
just	didn’t	bother	to
memorize	the	changes.	I’d
simply	moved	on	to	a	way
and	found	a	way	to	avoid	as
much	UB	as	I	possibly	could,
trying	to	stay	within	the
abstract	machine	specification
while	also	working	with	real

machines.	This	turns	out	to	be
almost	impossible,	so	I	just
don’t	write	new	code	in	C
anymore	because	of	its
glaringly	obvious	problems.

Warning!
The	technical
explanation	as	to	why
C	UB	is	wrong	comes
from	Alan	Turing:
1.	C	UB	contains
behaviors	that	are

lexical,	semantic,	and
execution	based.

2.	The	lexical	and
semantic	behaviors	can
be	detected	by	the
compiler.

3.	The	execution-based
behaviors	fall	into
Turing’s	definition	of
the	halting	problem,
and	are	therefore	NP-
complete.

4.	This	means	that	to

avoid	C	UB,	it	requires
solving	one	of	the
oldest	proven
unsolvable	problems	in
computer	science,
making	UB	effectively
impossible	for	a
computer	to	avoid.

To	put	it	more	succinctly:	“If
the	only	way	to	know	that
you’ve	violated	the	abstract
machine	with	UB	is	to	run
your	C	program,	then	you

will	never	be	able	to
completely	avoid	UB.”

UB	20
Because	of	this,	I’m	going	to
list	the	top	20	undefined
behaviors	in	C,	and	tell	you
how	to	avoid	them	as	best	I
can.	In	general,	the	way	to
avoid	UB	is	to	write	clean
code,	but	some	of	these
behaviors	are	impossible	to

avoid.	For	example,	writing
past	the	end	of	a	C	string	is
an	undefined	behavior,	yet
it’s	easily	done	by	accident
and	externally	accessible	to
an	attacker.	This	list	will	also
include	related	UB	that	all
fall	into	the	same	category
but	with	differing	contexts.

Common	UBs
1.	An	object	is	referred	to
outside	of	its	lifetime
(6.2.4).
•	The	value	of	a
pointer	to	an	object
whose	lifetime	has
ended	is	used	(6.2.4).
•	The	value	of	an
object	with	automatic
storage	duration	is
used	while	it	is
indeterminate	(6.2.4,

6.7.8,	6.8).
2.	Conversion	to	or	from
an	integer	type
produces	a	value
outside	the	range	that
can	be	represented
(6.3.1.4).
•	Demotion	of	one	real
floating	type	to
another	produces	a
value	outside	the
range	that	can	be
represented	(6.3.1.5).

3.	Two	declarations	of	the
same	object	or	function
specify	types	that	are
not	compatible	(6.2.7).

4.	An	lvalue	having	array
type	is	converted	to	a
pointer	to	the	initial
element	of	the	array,
and	the	array	object	has
register	storage	class
(6.3.2.1).
•	An	attempt	is	made
to	use	the	value	of	a

void	expression,	or
an	implicit	or	explicit
conversion	(except	to
void)	is	applied	to	a
void	expression
(6.3.2.2).
•	Conversion	of	a
pointer	to	an	integer
type	produces	a	value
outside	the	range	that
can	be	represented
(6.3.2.3).
•	Conversion	between

two	pointer	types
produces	a	result	that
is	incorrectly	aligned
(6.3.2.3).
•	A	pointer	is	used	to
call	a	function	whose
type	is	not
compatible	with	the
pointed-to	type
(6.3.2.3).
•	The	operand	of	the
unary	*	operator	has
an	invalid	value

(6.5.3.2).
•	A	pointer	is
converted	to	other
than	an	integer	or
pointer	type	(6.5.4).
•	Addition	or
subtraction	of	a
pointer	into,	or	just
beyond,	an	array
object	and	an	integer
type	produces	a	result
that	does	not	point
into,	or	just	beyond,

the	same	array	object
(6.5.6).
•	Addition	or
subtraction	of	a
pointer	into,	or	just
beyond,	an	array
object	and	an	integer
type	produces	a	result
that	points	just
beyond	the	array
object	and	is	used	as
the	operand	of	a
unary	*	operator	that

is	evaluated	(6.5.6).
•	Pointers	that	do	not
point	into,	or	just
beyond,	the	same
array	object	are
subtracted	(6.5.6).
•	An	array	subscript	is
out	of	range,	even	if
an	object	is
apparently	accessible
with	the	given
subscript	(as	in	the
lvalue	expression

a[1][7]	given	the
declaration	int
a[4][5])	(6.5.6).
•	The	result	of
subtracting	two
pointers	is	not
representable	in	an
object	of	type
ptrdiff_t(6.5.6).
•	Pointers	that	do	not
point	to	the	same
aggregate	or	union
(nor	just	beyond	the

same	array	object)
are	compared	using
relational	operators
(6.5.8).
•	An	attempt	is	made
to	access,	or	generate
a	pointer	to	just	past,
a	flexible	array
member	of	a
structure	when	the
referenced	object
provides	no	elements
for	that	array

(6.7.2.1).
•	Two	pointer	types
that	are	required	to
be	compatible	are	not
identically	qualified,
or	are	not	pointers	to
compatible	types
(6.7.5.1).
•	The	size	expression
in	an	array
declaration	is	not	a
constant	expression
and	evaluates	at

program	execution
time	to	a	nonpositive
value	(6.7.5.2).
•	The	pointer	passed	to
a	library	function
array	parameter	does
not	have	a	value	such
that	all	address
computations	and
object	accesses	are
valid	(7.1.4).

5.	The	program	attempts
to	modify	a	string	literal

(6.4.5).
6.	An	object	has	its	stored
value	accessed	other
than	by	an	lvalue	of	an
allowable	type	(6.5).

7.	An	attempt	is	made	to
modify	the	result	of	a
function	call,	a
conditional	operator,	an
assignment	operator,	or
a	comma	operator,	or	to
access	it	after	the	next
sequence	point	(6.5.2.2,

6.5.15,	6.5.16,	6.5.17).
8.	The	value	of	the	second
operand	of	the	/	or	%
operator	is	zero	(6.5.5).

9.	An	object	is	assigned	to
an	inexactly
overlapping	object	or	to
an	exactly	overlapping
object	with
incompatible	type
(6.5.16.1).

10.	A	constant	expression
in	an	initializer	is	not,

or	does	not	evaluate	to,
one	of	the	following:	an
arithmetic	constant
expression,	a	null
pointer	constant,	an
address	constant,	or	an
address	constant	for	an
object	type	plus	or
minus	an	integer
constant	expression
(6.6).
•	An	arithmetic
constant	expression

does	not	have
arithmetic	type;	has
operands	that	are	not
integer	constants,
floating	constants,
enumeration
constants,	character
constants,	or	sizeof
expressions;	or
contains	casts
(outside	operands	to
sizeof	operators)
other	than
conversions	of

arithmetic	types	to
arithmetic	types
(6.6).

11.	An	attempt	is	made	to
modify	an	object
defined	with	a	const-
qualified	type	through
use	of	an	lvalue	with
non-const-qualified
type	(6.7.3).

12.	A	function	with
external	linkage	is
declared	with	an	inline

function	specifier,	but	is
not	also	defined	in	the
same	translation	unit
(6.7.4).

13.	The	value	of	an
unnamed	member	of	a
structure	or	union	is
used	(6.7.8).

14.	The	}	that	terminates	a
function	is	reached,	and
the	value	of	the
function	call	is	used	by
the	caller	(6.9.1).

15.	A	file	with	the	same
name	as	one	of	the
standard	headers,	not
provided	as	part	of	the
implementation,	is
placed	in	any	of	the
standard	places	that	are
searched	for	included
source	files	(7.1.2).

16.	The	value	of	an
argument	to	a	character
handling	function	is
neither	equal	to	the

value	of	EOF	nor
representable	as	an
unsigned	char	(7.4).

17.	The	value	of	the	result
of	an	integer	arithmetic
or	conversion	function
cannot	be	represented
(7.8.2.1,	7.8.2.2,
7.8.2.3,	7.8.2.4,
7.20.6.1,	7.20.6.2,
7.20.1).

18.	The	value	of	a	pointer
to	a	FILE	object	is	used

after	the	associated	file
is	closed	(7.19.3).
•	The	stream	for	the
fflush	function
points	to	an	input
stream	or	to	an
update	stream	in
which	the	most
recent	operation	was
input	(7.19.5.2).
•	The	string	pointed	to
by	the	mode
argument	in	a	call	to

the	fopen	function
does	not	exactly
match	one	of	the
specified	character
sequences	(7.19.5.3).
•	An	output	operation
on	an	update	stream
is	followed	by	an
input	operation
without	an
intervening	call	to	the
fflush	function	or
a	file	positioning

function,	or	an	input
operation	on	an
update	stream	is
followed	by	an
output	operation	with
an	intervening	call	to
a	file	positioning
function	(7.19.5.3).

19.	A	conversion
specification	for	a
formatted	output
function	uses	a	#	or	0
flag	with	a	conversion

specifier	other	than
those	described
(7.19.6.1,	7.24.2.1).	*
An	s	conversion
specifier	is	encountered
by	one	of	the	formatted
output	functions,	and
the	argument	is	missing
the	null	terminator
(unless	a	precision	is
specified	that	does	not
require	null
termination)	(7.19.6.1,
7.24.2.1).	*	The

contents	of	the	array
supplied	in	a	call	to	the
fgets,	gets,	or
fgetws	function	are
used	after	a	read	error
occurred	(7.19.7.2,
7.19.7.7,	7.24.3.2).

20.	A	non-null	pointer
returned	by	a	call	to	the
calloc,	malloc,	or
realloc	function
with	a	zero	requested
size	is	used	to	access	an

object	(7.20.3).	*	The
value	of	a	pointer	that
refers	to	space
deallocated	by	a	call	to
the	free	or	realloc
function	is	used
(7.20.3).	*	The	pointer
argument	to	the	free
or	realloc	function
does	not	match	a
pointer	earlier	returned
by	calloc,	malloc,
or	realloc,	or	the

space	has	been
deallocated	by	a	call	to
free	or	realloc
(7.20.3.2,	7.20.3.4).

There	are	many	more,	but
these	seem	to	be	the	ones	that
I	run	into	the	most	often	or
that	come	up	the	most	often
in	C	code.	They	are	also	the
most	difficult	to	avoid,	so	if
you	at	least	remember	these,
you’ll	be	able	to	avoid	the
major	ones.

Exercise	32.
Double	Linked
Lists

The	purpose	of	this	book	is	to
teach	you	how	your	computer
really	works,	and	included	in
that	is	how	various	data
structures	and	algorithms
function.	Computers	by
themselves	don’t	do	a	lot	of

useful	processing.	To	make
them	do	useful	things,	you
need	to	structure	the	data	and
then	organize	the	processing
of	these	structures.	Other
programming	languages
either	include	libraries	that
implement	all	of	these
structures,	or	they	have	direct
syntax	for	them.	C	makes	you
implement	all	of	the	data
structures	that	you	need
yourself,	which	makes	it	the
perfect	language	to	learn	how

they	actually	work.
My	goal	is	to	help	you	do
three	things:

•	Understand	what’s
really	going	on	in
Python,	Ruby,	or
JavaScript	code	like
this:	data	=
{"name":	"Zed"}

•	Get	even	better	at	C
code	by	using	data
structures	to	apply	what
you	know	to	a	set	of

solved	problems.
•	Learn	a	core	set	of	data
structures	and
algorithms	so	that	you
are	better	informed
about	what	works	best
in	certain	situations.

What	Are	Data
Structures
The	name	data	structure	is
self-explanatory.	It’s	an
organization	of	data	that	fits	a

certain	model.	Maybe	the
model	is	designed	to	allow
processing	the	data	in	a	new
way.	Maybe	it’s	just
organized	to	store	it	on	disk
efficiently.	In	this	book,	I’ll
follow	a	simple	pattern	for
making	data	structures	that
work	reliably:

•	Define	a	structure	for
the	main	outer
structure.
•	Define	a	structure	for

the	contents,	usually
nodes	with	links
between	them.
•	Create	functions	that
operate	on	these	two
structures.

There	are	other	styles	of	data
structures	in	C,	but	this
pattern	works	well	and	is
consistent	for	making	most
data	structures.

Making	the	Library
For	the	rest	of	this	book,
you’ll	be	creating	a	library
that	you	can	use	when	you’re
done.	This	library	will	have
the	following	elements:

•	Header	(.h)	files	for
each	data	structure.
•	Implementation	(.c)
files	for	the	algorithms.
•	Unit	tests	that	test	all	of
them	to	make	sure	they

keep	working.
•	Documentation	that
we’ll	auto-generate
from	the	header	files.

You	already	have	the	c-
skeleton,	so	use	it	to
create	a	liblcthw	project:

Exercise	32	Session

Click	here	to	view	code	image

$	cp	-r	c-skeleton
liblcthw

$	cd	liblcthw/
$	ls
LICENSE					Makefile							README.md					bin				build			src			tests
$	vim	Makefile
$	ls	src/
dbg.h													libex29.c							libex29.o
$	mkdir	src/lcthw
$	mv	src/dbg.h
src/lcthw
$	vim	tests/minunit.h
$	rm	src/libex29.*
tests/libex29*
$	make	clean
rm	-rf	build
tests/libex29_tests
rm	-f	tests/tests.log
find	.	-name	"*.gc*"

-exec	rm	{}	\;
rm	-rf	`find	.	-name
"*.dSYM"	-print`
$	ls	tests/
minunit.h	runtests.sh
$

In	this	session	I	do	the
following:

•	Copy	the	c-
skeleton	over.
•	Edit	the	Makefile	to
change
libYOUR_LIBRARY.a

to	liblcthw.a	as	the
new	TARGET.
•	Make	the	src/lcthw
directory,	where	we’ll
put	our	code.
•	Move	the	src/dbg.h
into	this	new	directory.
•	Edit
tests/minunit.h
so	that	it	uses
#include
<lcthw/dbg.h>	as
the	include.

•	Get	rid	of	the	source
and	test	files	that	we
don’t	need	for
libex29.*.
•	Clean	up	everything
that’s	left	over.

Now	that	you’re	ready	to	start
building	the	library,	the	first
data	structure	that	I’ll	build	is
the	doubly	linked	list.

Doubly	Linked	Lists
The	first	data	structure	that

we’ll	add	to	liblcthw	is	a
doubly	linked	list.	This	is	the
simplest	data	structure	you
can	make,	and	it	has	useful
properties	for	certain
operations.	A	linked	list
works	by	nodes	having
pointers	to	their	next	or
previous	element.	A	doubly
linked	list	contains	pointers	to
both,	while	a	singly	linked
list	only	points	at	the	next
element.

Because	each	node	has
pointers	to	the	next	and
previous	elements,	and
because	you	keep	track	of	the
first	and	last	elements	of	the
list,	you	can	do	some
operations	very	quickly	with
doubly	linked	lists.	Anything
that	involves	inserting	or
deleting	an	element	will	be
very	fast.	They’re	also	easy	to
implement	by	most
programmers.

The	main	disadvantage	of	a
linked	list	is	that	traversing	it
involves	processing	every
single	pointer	along	the	way.
This	means	that	searching,
most	sorting,	and	iterating
over	the	elements	will	be
slow.	It	also	means	that	you
can’t	really	jump	to	random
parts	of	the	list.	If	you	had	an
array	of	elements,	you	could
just	index	right	into	the
middle	of	the	list,	but	a	linked
list	uses	a	stream	of	pointers.

That	means	if	you	want	the
tenth	element,	you	have	to	go
through	the	first	nine
elements.

Definition
As	I	said	in	the	introduction
to	this	exercise,	first	write	a
header	file	with	the	right	C
structure	statements	in	it.

list.h

Click	here	to	view	code	image

#ifndef	lcthw_List_h
#define	lcthw_List_h

#include	<stdlib.h>

struct	ListNode;
typedef	struct
ListNode	{
				struct	ListNode
*next;
				struct	ListNode
*prev;
				void	*value;
}	ListNode;

typedef	struct	List	{
				int	count;
				ListNode	*first;
				ListNode	*last;
}	List;

List	*List_create();
void
List_destroy(List	*
list);
void	List_clear(List
*	list);
void
List_clear_destroy(List
*	list);

#define	List_count(A)
((A)->count)
#define	List_first(A)
((A)->first	!=	NULL	?
(A)->first->value	:
NULL)
#define	List_last(A)
((A)->last	!=	NULL	?
(A)->last->value	:
NULL)

void	List_push(List	*
list,	void	*value);
void	*List_pop(List	*
list);

void
List_unshift(List	*
list,	void	*value);
void	*List_shift(List
*	list);

void
*List_remove(List	*
list,	ListNode	*
node);

#define
LIST_FOREACH(L,	S,	M,
V)	ListNode	*_node	=
NULL;\
																																																			
*V	=	NULL;\

for(V	=	_node	=	L->S;
_node	!=	NULL;	V	=
_node	=	_node->M)

#endif

The	first	thing	I	do	is	create
two	structures	for	the
ListNode	and	the	List
that	will	contain	those	nodes.
This	creates	the	data
structure,	which	I’ll	use	in	the
functions	and	macros	that	I
define	after	that.	If	you	read
these	functions,	you’ll	see

that	they’re	rather	simple.	I’ll
be	explaining	them	when	I
cover	the	implementation,	but
hopefully	you	can	guess	what
they	do.
Each	ListNode	has	three
components	within	the	data
structure:

•	A	value,	which	is	a
pointer	to	anything,	and
stores	the	thing	we	want
to	put	in	the	list.
•	A	ListNode	*next

pointer,	which	points	at
another	ListNode	that
holds	the	next	element
in	the	list.
•	A	ListNode	*prev
that	holds	the	previous
element.	Complex,
right?	Calling	the
previous	thing
“previous.”	I	could
have	used	“anterior”
and	“posterior,”	but
only	a	jerk	would	do

that.
The	List	struct	is	then
nothing	more	than	a	container
for	these	ListNode	structs
that	have	been	linked	together
in	a	chain.	It	keeps	track	of
the	count,	first,	and
last	elements	of	the	list.
Finally,	take	a	look	at
src/lcthw/list.h:37
where	I	define	the
LIST_FOREACH	macro.
This	is	a	common

programming	idiom	where
you	make	a	macro	that
generates	iteration	code	so
people	can’t	mess	it	up.
Getting	this	kind	of
processing	right	can	be
difficult	with	data	structures,
so	writing	macros	helps
people	out.	You’ll	see	how	I
use	this	when	I	talk	about	the
implementation.

Implementation
You	should	mostly
understand	how	a	doubly
linked	list	works.	It’s	nothing
more	than	nodes	with	two
pointers	to	the	next	and
previous	elements	of	the	list.
You	can	then	write	the
src/lcthw	/list.c
code	to	see	how	each
operation	is	implemented.

list.c

Click	here	to	view	code	image

		1			#include
<lcthw/list.h>
		2			#include
<lcthw/dbg.h>
		3
		4			List
*List_create()
		5			{
		6							return
calloc(1,
sizeof(List));
		7			}
		8
		9			void

List_destroy(List	*
list)
	10			{
	11							LIST_FOREACH
first,	next,	cur)	{
	12											if
(cur->prev)	{
	13															free
>prev);
	14											}
	15							}
	16
	17							free(list-
>last);
	18							free(list);
	19			}

	20
	21			void
List_clear(List	*
list)
	22			{
	23							LIST_FOREACH
first,	next,	cur)	{
	24											free(cur
>value);
	25							}
	26			}
	27
	28			void
List_clear_destroy(List
*	list)
	29			{

	30							List_clear(list
	31							List_destroy
	32			}
	33
	34			void
List_push(List	*
list,	void	*value)
	35			{
	36							ListNode
*node	=	calloc(1,
sizeof(ListNode));
	37							check_mem(node
	38
	39							node->value
=	value;
	40

	41							if	(list-
>last	==	NULL)	{
	42											list-
>first	=	node;
	43											list-
>last	=	node;
	44							}	else	{
	45											list-
>last->next	=	node;
	46											node-
>prev	=	list->last;
	47											list-
>last	=	node;
	48							}
	49
	50							list-

>count++;
	51
	52			error:
	53							return;
	54			}
	55
	56			void
*List_pop(List	*
list)
	57			{
	58							ListNode
*node	=	list->last;
	59							return	node
!=	NULL	?
List_remove(list,
node)	:	NULL;

	60			}
	61
	62			void
List_unshift(List	*
list,	void	*value)
	63			{
	64							ListNode
*node	=	calloc(1,
sizeof(ListNode));
	65							check_mem(node
	66
	67							node->value
=	value;
	68
	69							if	(list-
>first	==	NULL)	{

	70											list-
>first	=	node;
	71											list-
>last	=	node;
	72							}	else	{
	73											node-
>next	=	list->first;
	74											list-
>first->prev	=	node;
	75											list-
>first	=	node;
	76							}
	77
	78							list-
>count++;
	79

	80			error:
	81							return;
	82			}
	83
	84			void
*List_shift(List	*
list)
	85			{
	86							ListNode
*node	=	list->first;
	87							return	node
!=	NULL	?
List_remove(list,
node)	:	NULL;
	88			}
	89

	90			void
*List_remove(List	*
list,	ListNode	*
node)
	91			{
	92							void
*result	=	NULL;
	93
	94							check(list-
>first	&&	list->last,
"List	is	empty.");
	95							check(node,
"node	can't	be
NULL");
	96
	97							if	(node	==

list->first	&&	node
==	list->last)	{
	98											list-
>first	=	NULL;
	99											list-
>last	=	NULL;
100							}	else	if
(node	==	list->first)
{
101											list-
>first	=	node->next;
102											check(list
>first	!=	NULL,
103																			
list,	somehow	got	a
first	that	is
NULL.");

104											list-
>first->prev	=	NULL;
105							}	else	if
(node	==	list->last)
{
106											list-
>last	=	node->prev;
107											check(list
>last	!=	NULL,
108																			
list,	somehow	got	a
next	that	is	NULL.");
109											list-
>last->next	=	NULL;
110							}	else	{
111											ListNode

*after	=	node->next;
112											ListNode
*before	=	node->prev;
113											after-
>prev	=	before;
114											before-
>next	=	after;
115							}
116
117							list-
>count--;
118							result	=
node->value;
119							free(node);
120
121			error:

122							return
result;
123			}

I	then	implement	all	of	the
operations	on	a	doubly	linked
list	that	can’t	be	done	with
simple	macros.	Rather	than
cover	every	tiny,	little	line	of
this	file,	I’m	going	to	give	a
high-level	overview	of	every
operation	in	both	the
list.h	and	list.c	files,
and	then	leave	you	to	read	the

code.
list.h:List_count	Returns
the	number	of	elements
in	the	list,	which	is
maintained	as	elements
are	added	and	removed.

list.h:List_first	Returns
the	first	element	of	the
list,	but	doesn’t	remove
it.

list.h:List_last	Returns
the	last	element	of	the
list,	but	doesn’t	remove

it.
list.h:LIST_FOREACH
Iterates	over	the
elements	in	the	list.

list.c:List_create	Simply
creates	the	main	List
struct.

list.c:List_destroy
Destroys	a	List	and
any	elements	it	might
have.

list.c:List_clear	A
convenient	function	for

freeing	the	values	in
each	node,	not	the
nodes.

list.c:List_clear_destroy
Clears	and	destroys	a
list.	It’s	not	very
efficient	since	it	loops
through	them	twice.

list.c:List_push	The	first
operation	that
demonstrates	the
advantage	of	a	linked
list.	It	adds	a	new

element	to	the	end	of
the	list,	and	because
that’s	just	a	couple	of
pointer	assignments,	it
does	it	very	fast.

list.c:List_pop	The
inverse	of
List_push,	this	takes
the	last	element	off	and
returns	it.

list.c:List_unshift	The
other	thing	you	can
easily	do	to	a	linked	list

is	add	elements	to	the
front	of	the	list	very
quickly.	In	this	case,	I
call	that
List_unshift	for
lack	of	a	better	term.

list.c:List_shift	Just	like
List_pop,	this
removes	the	first
element	and	returns	it.

list.c:List_remove	This	is
actually	doing	all	of	the
removal	when	you	do

List_pop	or	List_
shift.	Something	that
seems	to	always	be
difficult	in	data
structures	is	removing
things,	and	this	function
is	no	different.	It	has	to
handle	quite	a	few
conditions	depending
on	if	the	element	being
removed	is	at	the	front,
the	end,	both	the	front
and	the	end,	or	the

middle.
Most	of	these	functions	are
nothing	special,	and	you
should	be	able	to	easily	digest
this	and	understand	it	from
just	the	code.	You	should
definitely	focus	on	how	the
LIST_FOREACH	macro	is
used	in	List_destroy	so
that	you	can	understand	how
much	it	simplifies	this
common	operation.

Tests
After	you	have	those
compiling,	it’s	time	to	create
the	test	that	makes	sure	they
operate	correctly.

list_tests.c

Click	here	to	view	code	image

		1			#include
"minunit.h"
		2			#include
<lcthw/list.h>

		3			#include
<assert.h>
		4
		5			static	List
*list	=	NULL;
		6			char	*test1	=
"test1	data";
		7			char	*test2	=
"test2	data";
		8			char	*test3	=
"test3	data";
		9
	10			char
*test_create()
	11			{
	12							list	=
List_create();

	13							mu_assert(list
!=	NULL,	"Failed	to
create	list.");
	14
	15							return
NULL;
	16			}
	17
	18			char
*test_destroy()
	19			{
	20							List_clear_destroy
	21
	22							return
NULL;
	23

	24			}
	25
	26			char
*test_push_pop()
	27			{
	28							List_push(list
test1);
	29							mu_assert(List_last
==	test1,	"Wrong	last
value.");
	30
	31							List_push(list
test2);
	32							mu_assert(List_last
==	test2,	"Wrong	last
value");
	33

	34							List_push(list
test3);
	35							mu_assert(List_last
==	test3,	"Wrong	last
value.");
	36							mu_assert(List_count
==	3,	"Wrong	count	on
push.");
	37
	38							char	*val	=
List_pop(list);
	39							mu_assert(val
==	test3,	"Wrong
value	on	pop.");
	40
	41							val	=

List_pop(list);
	42							mu_assert(val
==	test2,	"Wrong
value	on	pop.");
	43
	44							val	=
List_pop(list);
	45							mu_assert(val
==	test1,	"Wrong
value	on	pop.");
	46							mu_assert(List_count
==	0,	"Wrong	count
after	pop.");
	47
	48							return
NULL;
	49			}

	50
	51			char
*test_unshift()
	52			{
	53							List_unshift
test1);
	54							mu_assert(List_first
==	test1,	"Wrong
first	value.");
	55
	56							List_unshift
test2);
	57							mu_assert(List_first
==	test2,	"Wrong
first	value");
	58

	59							List_unshift
test3);
	60							mu_assert(List_first
==	test3,	"Wrong	last
value.");
	61							mu_assert(List_count
==	3,	"Wrong	count	on
unshift.");
	62
	63							return
NULL;
	64			}
	65
	66			char
*test_remove()
	67			{
	68							//	we	only

need	to	test	the
middle	remove	case
since	push/shift
	69							//	already
tests	the	other	cases
	70
	71							char	*val	=
List_remove(list,
list->first->next);
	72							mu_assert(val
==	test2,	"Wrong
removed	element.");
	73							mu_assert(List_count
==	2,	"Wrong	count
after	remove.");
	74							mu_assert(List_first

==	test3,	"Wrong
first	after
remove.");
	75							mu_assert(List_last
==	test1,	"Wrong	last
after	remove.");
	76
	77							return
NULL;
	78			}
	79
	80			char
*test_shift()
	81			{
	82							mu_assert(List_count
!=	0,	"Wrong	count
before	shift.");

	83
	84							char	*val	=
List_shift(list);
	85							mu_assert(val
==	test3,	"Wrong
value	on	shift.");
	86
	87							val	=
List_shift(list);
	88							mu_assert(val
==	test1,	"Wrong
value	on	shift.");
	89							mu_assert(List_count
==	0,	"Wrong	count
after	shift.");
	90

	91							return
NULL;
	92			}
	93
	94			char
*all_tests()
	95			{
	96							mu_suite_start
	97
	98							mu_run_test(
	99							mu_run_test(
100							mu_run_test(
101							mu_run_test(
102							mu_run_test(
103							mu_run_test(
104
105							return

NULL;
106			}
107
108			RUN_TESTS(all_tests

This	test	simply	goes	through
every	operation	and	makes
sure	it	works.	I	use	a
simplification	in	the	test
where	I	create	just	one	List
*list	for	the	whole
program,	and	then	have	the
tests	work	on	it.	This	saves
the	trouble	of	building	a
List	for	every	test,	but	it

could	mean	that	some	tests
only	pass	because	of	how	the
previous	test	ran.	In	this	case,
I	try	to	make	each	test	keep
the	list	clear	or	actually	use
the	results	from	the	previous
test.

What	You	Should
See
If	you	did	everything	right,
then	when	you	do	a	build	and
run	the	unit	tests,	it	should
look	like	this:

Exercise	32.build
Session

Click	here	to	view	code	image

$	make

cc	-g	-O2	-Wall	-
Wextra	-Isrc	-
rdynamic	-DNDEBUG	-
fPIC			-c	-o\
							src/lcthw/list.o
src/lcthw/list.c
ar	rcs
build/liblcthw.a
src/lcthw/list.o
ranlib
build/liblcthw.a
cc	-shared	-o
build/liblcthw.so
src/lcthw/list.o
cc	-g	-O2	-Wall	-
Wextra	-Isrc	-
rdynamic	-

DNDEBUG		build/liblcthw.a
				tests/list_tests.c			-
o	tests/list_tests
sh
./tests/runtests.sh
Running	unit	tests:

RUNNING:
./tests/list_tests
ALL	TESTS	PASSED
Tests	run:	6
tests/list_tests	PASS
$

Make	sure	six	tests	ran,	it
builds	without	warnings	or

errors,	and	it’s	making	the
build	/liblcthw.a	and
build/liblcthw.so
files.

How	to	Improve	It
Instead	of	breaking	this,	I’m
going	to	tell	you	how	to
improve	the	code:

•	You	can	make
List_clear_destroy
more	efficient	by	using
LIST_FOREACH	and

doing	both	free	calls
inside	one	loop.
•	You	can	add	asserts	for
preconditions	so	that
the	program	isn’t	given
a	NULL	value	for	the
List	*list
parameters.
•	You	can	add	invariants
that	check	that	the	list’s
contents	are	always
correct,	such	as	count
is	never	<	0,	and	if

count	>	0,	then
first	isn’t	NULL.
•	You	can	add
documentation	to	the
header	file	in	the	form
of	comments	before
each	struct,	function,
and	macro	that
describes	what	it	does.

These	improvements	speak	to
the	defensive	programming
practices	I	talked	about
earlier,	hardening	this	code

against	flaws	and	improving
usability.	Go	ahead	and	do
these	things,	and	then	find	as
many	other	ways	to	improve
the	code	as	you	can.

Extra	Credit
•	Research	doubly	versus
singly	linked	lists	and
when	one	is	preferred
over	the	other.
•	Research	the	limitations
of	a	doubly	linked	list.

For	example,	while	they
are	efficient	for
inserting	and	deleting
elements,	they	are	very
slow	for	iterating	over
them	all.
•	What	operations	are
missing	that	you	can
imagine	needing?	Some
examples	are	copying,
joining,	and	splitting.
Implement	these
operations	and	write	the

unit	tests	for	them.

Exercise	33.
Linked	List
Algorithms

Im	going	to	cover	two
algorithms	for	a	linked	list
that	involve	sorting.	I’m
going	to	warn	you	first	that	if
you	need	to	sort	the	data,	then
don’t	use	a	linked	list.	These
are	horrible	for	sorting	things,

and	there	are	much	better	data
structures	you	can	use	if
that’s	a	requirement.	I’m
covering	these	two	algorithms
because	they	are	slightly
difficult	to	pull	off	with	a
linked	list,	and	to	get	you
thinking	about	how	to
efficiently	manipulate	them.
In	the	interest	of	writing	this
book,	I’m	going	to	put	the
algorithms	in	two	different
files	list_algos.h	and

list_algos.c	then	write
a	test	in
list_algos_test.c.	For
now,	just	follow	my	structure,
since	it	keeps	things	clean,
but	if	you	ever	work	on	other
libraries,	remember	that	this
isn’t	a	common	structure.
In	this	exercise,	I’m	also
going	to	give	you	an	extra
challenge	and	I	want	you	to
try	not	to	cheat.	I’m	going	to
give	you	the	unit	test	first,

and	I	want	you	to	type	it	in.
Then,	I	want	you	to	try	and
implement	the	two	algorithms
based	on	their	descriptions	in
Wikipedia	before	seeing	if
your	code	looks	like	my	code.

Bubble	and	Merge
Sorts
You	know	what’s	awesome
about	the	Internet?	I	can	just
refer	you	to	the	“bubble	sort”
and	“merge	sort”	pages	on

Wikipedia	and	tell	you	to
read	those.	Man,	that	saves
me	a	boatload	of	typing.	Now
I	can	tell	you	how	to	actually
implement	each	of	these
using	the	pseudo-code	they
have	there.	Here’s	how	you
can	tackle	an	algorithm	like
this:

•	Read	the	description
and	look	at	any
visualizations	it	has.
•	Either	draw	the

algorithm	on	paper
using	boxes	and	lines,
or	actually	take	a	deck
of	playing	cards	(or
cards	with	numbers)
and	try	to	do	the
algorithm	manually.
This	gives	you	a
concrete	demonstration
of	how	the	algorithm
works.
•	Create	the	skeleton
functions	in	your

list_algos.c	file
and	make	a	working
list_algos.h	file,
then	set	up	your	test
harness.
•	Write	your	first	failing
test	and	get	everything
to	compile.
•	Go	back	to	the
Wikipedia	page	and
copy-paste	the	pseudo-
code	(not	the	C	code!)
into	the	guts	of	the	first

function	that	you’re
making.
•	Translate	this	pseudo-
code	into	good	C	code
the	way	I’ve	taught	you,
using	your	unit	test	to
make	sure	it’s	working.
•	Fill	out	some	more	tests
for	edge	cases	like
empty	lists,	already
sorted	lists,	and	the	like.
•	Repeat	this	for	the	next
algorithm	and	test	it.

I	just	gave	you	the	secret	to
figuring	out	most	of	the
algorithms	out	there—until
you	get	to	some	of	the	more
insane	ones,	that	is.	In	this
case,	you’re	just	doing	the
bubble	and	merge	sorts	from
Wikipedia,	but	those	will	be
good	starters.

The	Unit	Test
Here	is	the	unit	test	you
should	use	for	the	pseudo-
code:

list_algos_tests.c

Click	here	to	view	code	image

		1			#include
"minunit.h"
		2			#include
<lcthw/list_algos.h>
		3			#include

<assert.h>
		4			#include
<string.h>
		5
		6			char	*values[]
=	{	"XXXX",	"1234",
"abcd",	"xjvef",
"NDSS"	};
		7
		8			#define
NUM_VALUES	5
		9
	10			List
*create_words()
	11			{
	12							int	i	=	0;
	13							List	*words

=	List_create();
	14
	15							for	(i	=	0;
i	<	NUM_VALUES;	i++)
{
	16											List_push
values[i]);
	17							}
	18
	19							return
words;
	20			}
	21
	22			int
is_sorted(List	*
words)

	23			{
	24							LIST_FOREACH
first,	next,	cur)	{
	25											if
(cur->next	&&
strcmp(cur->value,
cur->next->value)	>
0)	{
	26															debug
%s",	(char	*)cur-
>value,
	27																							
*)cur->next->value);
	28															return
0;
	29											}
	30							}

	31
	32							return	1;
	33			}
	34
	35			char
*test_bubble_sort()
	36			{
	37							List	*words
=	create_words();
	38
	39							//	should
work	on	a	list	that
needs	sorting
	40							int	rc	=
List_bubble_sort(words
(List_compare)

strcmp);
	41							mu_assert(rc
==	0,	"Bubble	sort
failed.");
	42							mu_assert(is_sorted
	43															"Words
are	not	sorted	after
bubble	sort.");
	44
	45							//	should
work	on	an	already
sorted	list
	46							rc	=
List_bubble_sort(words
(List_compare)
strcmp);
	47							mu_assert(rc

==	0,	"Bubble	sort	of
already	sorted
failed.");
	48							mu_assert(is_sorted
	49															"Words
should	be	sort	if
already	bubble
sorted.");
	50
	51							List_destroy
	52
	53							//	should
work	on	an	empty	list
	54							words	=
List_create(words);
	55							rc	=

List_bubble_sort(words
(List_compare)
strcmp);
	56							mu_assert(rc
==	0,	"Bubble	sort
failed	on	empty
list.");
	57							mu_assert(is_sorted
"Words	should	be
sorted	if	empty.");
	58
	59							List_destroy
	60
	61							return
NULL;
	62			}
	63

	64			char
*test_merge_sort()
	65			{
	66							List	*words
=	create_words();
	67
	68							//	should
work	on	a	list	that
needs	sorting
	69							List	*res	=
List_merge_sort(words,
(List_compare)
strcmp);
	70							mu_assert(is_sorted
"Words	are	not	sorted
after	merge	sort.");

	71
	72							List	*res2
=
List_merge_sort(res,
(List_compare)
strcmp);
	73							mu_assert(is_sorted
	74															"Should
still	be	sorted	after
merge	sort.");
	75							List_destroy
	76							List_destroy
	77
	78							List_destroy
	79							return
NULL;
	80			}

	81
	82			char
*all_tests()
	83			{
	84							mu_suite_start
	85
	86							mu_run_test(
	87							mu_run_test(
	88
	89							return
NULL;
	90			}
	91
	92			RUN_TESTS(all_tests

I	suggest	that	you	start	with

the	bubble	sort	and	get	that
working,	and	then	move	on	to
the	merge	sort.	What	I	would
do	is	lay	out	the	function
prototypes	and	skeletons	that
get	all	three	files	compiling,
but	not	passing	the	test.	Then,
I’d	just	fill	in	the
implementation	until	it	starts
working.

The	Implementation
Are	you	cheating?	In	future
exercises,	I’ll	just	give	you	a
unit	test	and	tell	you	to
implement	it,	so	it’s	good
practice	for	you	to	not	look	at
this	code	until	you	get	your
own	working.	Here’s	the	code
for	the	list_algos.c	and
list_algos.h:

list_algos.h

Click	here	to	view	code	image

#ifndef
lcthw_List_algos_h
#define
lcthw_List_algos_h

#include
<lcthw/list.h>

typedef	int
(*List_compare)
(const	void	*a,	const
void	*b);

int
List_bubble_sort(List

*	list,	List_compare
cmp);

List
*List_merge_sort(List
*	list,	List_compare
cmp);

#endif

list_algos.c

Click	here	to	view	code	image

		1			#include
<lcthw/list_algos.h>

		2			#include
<lcthw/dbg.h>
		3
		4			inline	void
ListNode_swap(ListNode
*	a,	ListNode	*	b)
		5			{
		6							void	*temp
=	a->value;
		7							a->value	=
b->value;
		8							b->value	=
temp;
		9			}
	10
	11			int

List_bubble_sort(List
*	list,	List_compare
cmp)
	12			{
	13							int	sorted
=	1;
	14
	15							if
(List_count(list)	<=
1)	{
	16											return
0;														//
already	sorted
	17							}
	18
	19							do	{

	20											sorted
=	1;
	21											LIST_FOREACH
first,	next,	cur)	{
	22															if
(cur->next)	{
	23																			
(cmp(cur->value,	cur-
>next->value)	>	0)	{
	24																							ListNode_swap
cur->next);
	25																							sorted
=	0;
	26																			
	27															}
	28											}

	29							}	while
(!sorted);
	30
	31							return	0;
	32			}
	33
	34			inline	List
*List_merge(List	*
left,	List	*	right,
List_compare	cmp)
	35			{
	36							List
*result	=
List_create();
	37							void	*val	=
NULL;

	38
	39							while
(List_count(left)	>	0
||	List_count(right)
>	0)	{
	40											if
(List_count(left)	>	0
&&	List_count(right)
>	0)	{
	41															if
(cmp(List_first(left),
List_first(right))	<=
0)	{
	42																			val
=	List_shift(left);
	43															}

else	{
	44																			val
=	List_shift(right);
	45															}
	46
	47															List_push
val);
	48											}	else
if	(List_count(left)
>	0)	{
	49															val
=	List_shift(left);
	50															List_push
val);
	51											}	else
if	(List_count(right)

>	0)	{
	52															val
=	List_shift(right);
	53															List_push
val);
	54											}
	55							}
	56
	57							return
result;
	58			}
	59
	60			List
*List_merge_sort(List
*	list,	List_compare
cmp)

	61			{
	62							if
(List_count(list)	<=
1)	{
	63											return
list;
	64							}
	65
	66							List	*left
=	List_create();
	67							List	*right
=	List_create();
	68							int	middle
=	List_count(list)	/
2;
	69

	70							LIST_FOREACH
first,	next,	cur)	{
	71											if
(middle	>	0)	{
	72															List_push
cur->value);
	73											}	else
{
	74															List_push
cur->value);
	75											}
	76
	77											middle-
-;
	78							}
	79

	80							List
*sort_left	=
List_merge_sort(left,
cmp);
	81							List
*sort_right	=
List_merge_sort(right,
cmp);
	82
	83							if
(sort_left	!=	left)
	84											List_destroy
	85							if
(sort_right	!=	right)
	86											List_destroy
	87

	88							return
List_merge(sort_left,
sort_right,	cmp);
	89			}

The	bubble	sort	isn’t	too	hard
to	figure	out,	although	it’s
really	slow.	The	merge	sort	is
much	more	complicated,	and
honestly,	I	could	probably
spend	a	bit	more	time
optimizing	this	code	if	I
wanted	to	sacrifice	clarity.
There	is	another	way	to

implement	a	merge	sort	using
a	bottom-up	method,	but	it’s
a	little	harder	to	understand,
so	I	didn’t	do	it.	As	I’ve
already	said,	sorting
algorithms	on	linked	lists	are
entirely	pointless.	You	could
spend	all	day	trying	to	make
this	faster	and	it	will	still	be
slower	than	almost	any	other
sortable	data	structure.
Simply	don’t	use	linked	lists
if	you	need	to	sort	things.

What	You	Should
See
If	everything	works,	then	you
should	get	something	like
this:

Exercise	33	Session

Click	here	to	view	code	image

$	make	clean	all
rm	-rf	build
src/lcthw/list.o
src/lcthw/list_algos.o\

							tests/list_algos_tests
tests/list_tests
rm	-f	tests/tests.log
find	.	-name	"*.gc*"
-exec	rm	{}	\;
rm	-rf	`find	.	-name
"*.dSYM"	-print`
cc	-g	-O2	-Wall	-
Wextra	-Isrc	-
rdynamic	-DNDEBUG		-
fPIC			-c	-o\
							src/lcthw/list.o
src/lcthw/list.c
cc	-g	-O2	-Wall	-
Wextra	-Isrc	-
rdynamic	-DNDEBUG		-
fPIC			-c	-o\

							src/lcthw/list_algos.o
src/lcthw/list_algos.c
ar	rcs
build/liblcthw.a
src/lcthw/list.o
src/lcthw/list_algos.o
ranlib
build/liblcthw.a
cc	-shared	-o
build/liblcthw.so
src/lcthw/list.o
src/lcthw/list_algos.o
cc	-g	-O2	-Wall	-
Wextra	-Isrc	-
rdynamic	-
DNDEBUG		build/liblcthw.a\

							tests/list_algos_tests.c				-
o
tests/list_algos_tests
cc	-g	-O2	-Wall	-
Wextra	-Isrc	-
rdynamic	-
DNDEBUG		build/liblcthw.a\
							tests/list_tests.c			-
o	tests/list_tests
sh
./tests/runtests.sh
Running	unit	tests:

RUNNING:
./tests/list_algos_tests
ALL	TESTS	PASSED
Tests	run:	2

tests/list_algos_tests
PASS

RUNNING:
./tests/list_tests
ALL	TESTS	PASSED
Tests	run:	6
tests/list_tests	PASS
$

After	this	exercise,	I’m	not
going	to	show	you	this	output
unless	it’s	necessary	to	show
you	how	it	works.	From	now
on,	you	should	know	that	I
ran	the	tests	and	that	they	all

passed	and	everything
compiled.

How	to	Improve	It
Going	back	to	the	description
of	the	algorithms,	there	are
several	ways	to	improve	these
implementations.	Here	are	a
few	obvious	ones:

•	The	merge	sort	does	a
crazy	amount	of
copying	and	creating
lists,	so	find	ways	to

reduce	this.
•	The	bubble	sort
description	in
Wikipedia	mentions	a
few	optimizations.	Try
to	implement	them.
•	Can	you	use	the
List_split	and
List_join	(if	you
implemented	them)	to
improve	merge	sort?
•	Go	through	all	of	the
defensive	programming

checks	and	improve	the
robustness	of	this
implementation,
protecting	against	bad
NULL	pointers,	and
then	create	an	optional
debug	level	invariant
that	works	like
is_sorted	does	after
a	sort.

Extra	Credit
•	Create	a	unit	test	that
compares	the
performance	of	the	two
algorithms.	You’ll	want
to	look	at	man	3
time	for	a	basic	timer
function,	and	run
enough	iterations	to	at
least	have	a	few
seconds	of	samples.
•	Play	with	the	amount	of
data	in	the	lists	that

need	to	be	sorted	and
see	if	that	changes	your
timing.
•	Find	a	way	to	simulate
filling	different	sized
random	lists,	measuring
how	long	they	take.
Then,	graph	the	result
to	see	how	it	compares
to	the	description	of	the
algorithm.
•	Try	to	explain	why
sorting	linked	lists	is	a

really	bad	idea.
•	Implement	a
List_insert_sorted
that	will	take	a	given
value,	and	using	the
List_compare,
insert	the	element	at	the
right	position	so	that	the
list	is	always	sorted.
How	does	using	this
method	compare	to
sorting	a	list	after
you’ve	built	it?

•	Try	implementing	the
bottom-up	merge	sort
described	on	the
Wikipedia	page.	The
code	there	is	already	C,
so	it	should	be	easy	to
recreate,	but	try	to
understand	how	it’s
working	compared	to
the	slower	one	I	have
here.

Exercise	34.
Dynamic	Array

This	is	an	array	that	grows	on
its	own	and	has	most	of	the
same	features	as	a	linked	list.
It	will	usually	take	up	less
space,	run	faster,	and	has
other	beneficial	properties.
This	exercise	will	cover	a	few
of	the	disadvantages,	like
very	slow	removal	from	the

front,	with	a	solution	to	just
do	it	at	the	end.
A	dynamic	array	is	simply	an
array	of	void	**	pointers
that’s	pre-allocated	in	one
shot	and	that	point	at	the	data.
In	the	linked	list,	you	had	a
full	structure	that	stored	the
void	*value	pointer,	but
in	a	dynamic	array,	there’s
just	a	single	array	with	all	of
them.	This	means	you	don’t
need	any	other	pointers	for

next	and	previous	records
since	you	can	just	index	into
the	dynamic	array	directly.
To	start,	I’ll	give	you	the
header	file	you	should	type	in
for	the	implementation:

darray.h

Click	here	to	view	code	image

#ifndef	_DArray_h
#define	_DArray_h
#include	<stdlib.h>

#include	<assert.h>
#include
<lcthw/dbg.h>

typedef	struct	DArray
{
				int	end;
				int	max;
				size_t
element_size;
				size_t
expand_rate;
				void	**contents;
}	DArray;

DArray
*DArray_create(size_t

element_size,	size_t
initial_max);

void
DArray_destroy(DArray
*	array);

void
DArray_clear(DArray	*
array);

int
DArray_expand(DArray
*	array);

int

DArray_contract(DArray
*	array);

int
DArray_push(DArray	*
array,	void	*el);

void
*DArray_pop(DArray	*
array);

void
DArray_clear_destroy(DArray
*	array);

#define
DArray_last(A)	((A)-

>contents[(A)->end	-
1])
#define
DArray_first(A)	((A)-
>contents[0])
#define	DArray_end(A)
((A)->end)
#define
DArray_count(A)
DArray_end(A)
#define	DArray_max(A)
((A)->max)

#define
DEFAULT_EXPAND_RATE
300

static	inline	void
DArray_set(DArray	*
array,	int	i,	void
*el)
{
				check(i	<	array-
>max,	"darray	attempt
to	set	past	max");
				if	(i	>	array-
>end)
								array->end	=
i;
				array-
>contents[i]	=	el;
error:

				return;
}

static	inline	void
*DArray_get(DArray	*
array,	int	i)
{
				check(i	<	array-
>max,	"darray	attempt
to	get	past	max");
				return	array-
>contents[i];
error:
				return	NULL;
}

static	inline	void
*DArray_remove(DArray
*	array,	int	i)
{
				void	*el	=	array-
>contents[i];

				array-
>contents[i]	=	NULL;

				return	el;
}

static	inline	void
*DArray_new(DArray	*
array)
{

				check(array-
>element_size	>	0,
												"Can't
use	DArray_new	on	0
size	darrays.");

				return	calloc(1,
array->element_size);

error:
				return	NULL;
}

#define
DArray_free(E)
free((E))

#endif

This	header	file	is	showing
you	a	new	technique	where	I
put	static	inline
functions	right	in	the	header.
These	function	definitions
will	work	similarly	to	the
#define	macros	that
you’ve	been	making,	but
they’re	cleaner	and	easier	to
write.	If	you	need	to	create	a
block	of	code	for	a	macro	and

you	don’t	need	code
generation,	then	use	a
static	inline	function.
Compare	this	technique	to	the
LIST_FOREACH	that
generates	a	proper	for-
loop	for	a	list.	This	would
be	impossible	to	do	with	a
static	inline	function
because	it	actually	has	to
generate	the	inner	block	of
code	for	the	loop.	The	only
way	to	do	that	is	with	a

callback	function,	but	that’s
not	as	fast	and	it’s	harder	to
use.
I’ll	then	change	things	up	and
have	you	create	the	unit	test
for	DArray:

darray_tests.c

Click	here	to	view	code	image

		1			#include
"minunit.h"
		2			#include

<lcthw/darray.h>
		3
		4			static	DArray
*array	=	NULL;
		5			static	int
*val1	=	NULL;
		6			static	int
*val2	=	NULL;
		7
		8			char
*test_create()
		9			{
	10							array	=
DArray_create(sizeof(int
100);
	11							mu_assert(array
!=	NULL,

"DArray_create
failed.");
	12							mu_assert(array
>contents	!=	NULL,
"contents	are	wrong
in	darray");
	13							mu_assert(array
>end	==	0,	"end	isn't
at	the	right	spot");
	14							mu_assert(array
>element_size	==
sizeof(int),
	15															"element
size	is	wrong.");
	16							mu_assert(array
>max	==	100,	"wrong

max	length	on	initial
size");
	17
	18							return
NULL;
	19			}
	20
	21			char
*test_destroy()
	22			{
	23							DArray_destroy
	24
	25							return
NULL;
	26			}
	27
	28			char

*test_new()
	29			{
	30							val1	=
DArray_new(array);
	31							mu_assert(val1
!=	NULL,	"failed	to
make	a	new	element");
	32
	33							val2	=
DArray_new(array);
	34							mu_assert(val2
!=	NULL,	"failed	to
make	a	new	element");
	35
	36							return
NULL;

	37			}
	38
	39			char
*test_set()
	40			{
	41							DArray_set(array
0,	val1);
	42							DArray_set(array
1,	val2);
	43
	44							return
NULL;
	45			}
	46
	47			char
*test_get()
	48			{

	49							mu_assert(DArray_get
0)	==	val1,	"Wrong
first	value.");
	50							mu_assert(DArray_get
1)	==	val2,	"Wrong
second	value.");
	51
	52							return
NULL;
	53			}
	54
	55			char
*test_remove()
	56			{
	57							int
*val_check	=

DArray_remove(array,
0);
	58							mu_assert(val_check
!=	NULL,	"Should	not
get	NULL.");
	59							mu_assert(*val_check
==	*val1,	"Should	get
the	first	value.");
	60							mu_assert(DArray_get
0)	==	NULL,	"Should
be	gone.");
	61							DArray_free(
	62
	63							val_check	=
DArray_remove(array,
1);
	64							mu_assert(val_check

!=	NULL,	"Should	not
get	NULL.");
	65							mu_assert(*val_check
==	*val2,	"Should	get
the	first	value.");
	66							mu_assert(DArray_get
1)	==	NULL,	"Should
be	gone.");
	67							DArray_free(
	68
	69							return
NULL;
	70			}
	71
	72			char
*test_expand_contract()

	73			{
	74							int	old_max
=	array->max;
	75							DArray_expand
	76							mu_assert((unsigned
int)array->max	==
old_max	+	array-
>expand_rate,
	77															"Wrong
size	after	expand.");
	78
	79							DArray_contract
	80							mu_assert((unsigned
int)array->max	==
array->expand_rate	+
1,
	81															"Should

stay	at	the
expand_rate	at
least.");
	82
	83							DArray_contract
	84							mu_assert((unsigned
int)array->max	==
array->expand_rate	+
1,
	85															"Should
stay	at	the
expand_rate	at
least.");
	86
	87							return
NULL;

	88			}
	89
	90			char
*test_push_pop()
	91			{
	92							int	i	=	0;
	93							for	(i	=	0;
i	<	1000;	i++)	{
	94											int
*val	=
DArray_new(array);
	95											*val	=
i	*	333;
	96											DArray_push
val);
	97							}
	98

	99							mu_assert(array
>max	==	1201,	"Wrong
max	size.");
100
101							for	(i	=
999;	i	>=	0;	i--)	{
102											int
*val	=
DArray_pop(array);
103											mu_assert
!=	NULL,	"Shouldn't
get	a	NULL.");
104											mu_assert
==	i	*	333,	"Wrong
value.");
105											DArray_free

106							}
107
108							return
NULL;
109			}
110
111			char
*all_tests()
112			{
113							mu_suite_start
114
115							mu_run_test(
116							mu_run_test(
117							mu_run_test(
118							mu_run_test(
119							mu_run_test(
120							mu_run_test(

121							mu_run_test(
122							mu_run_test(
123
124							return
NULL;
125			}
126
127			RUN_TESTS(all_tests

This	shows	you	how	all	of	the
operations	are	used,	which
then	makes	implementing	the
DArray	much	easier:

darray.c

Click	here	to	view	code	image

		1			#include
<lcthw/darray.h>
		2			#include
<assert.h>
		3
		4			DArray
*DArray_create(size_t
element_size,	size_t
initial_max)
		5			{
		6							DArray
*array	=
malloc(sizeof(DArray));
		7							check_mem(array

		8							array->max
=	initial_max;
		9							check(array-
>max	>	0,	"You	must
set	an	initial_max	>
0.");
	10
	11							array-
>contents	=
calloc(initial_max,
sizeof(void	*));
	12							check_mem(array
>contents);
	13
	14							array->end
=	0;
	15							array-

>element_size	=
element_size;
	16							array-
>expand_rate	=
DEFAULT_EXPAND_RATE;
	17
	18							return
array;
	19
	20			error:
	21							if	(array)
	22											free(array
	23							return
NULL;
	24			}
	25
	26			void

DArray_clear(DArray	*
array)
	27			{
	28							int	i	=	0;
	29							if	(array-
>element_size	>	0)	{
	30											for	(i
=	0;	i	<	array->max;
i++)	{
	31															if
(array->contents[i]
!=	NULL)	{
	32																			free
>contents[i]);
	33															}
	34											}
	35							}

	36			}
	37
	38			static	inline
int
DArray_resize(DArray
*	array,	size_t
newsize)
	39			{
	40							array->max
=	newsize;
	41							check(array-
>max	>	0,	"The
newsize	must	be	>
0.");
	42
	43							void
*contents	=	realloc(

	44															array
>contents,	array->max
*	sizeof(void	*));
	45							//	check
contents	and	assume
realloc	doesn't	harm
the	original	on	error
	46
	47							check_mem(contents
	48
	49							array-
>contents	=	contents;
	50
	51							return	0;
	52			error:
	53							return	-1;
	54			}

	55
	56			int
DArray_expand(DArray
*	array)
	57			{
	58							size_t
old_max	=	array->max;
	59							check(DArray_resize
array->max	+	array-
>expand_rate)	==	0,
	60															"Failed
to	expand	array	to
new	size:	%d",
	61															array
>max	+	(int)array-
>expand_rate);
	62

	63							memset(array
>contents	+	old_max,
0,	array->expand_rate
+	1);
	64							return	0;
	65
	66			error:
	67							return	-1;
	68			}
	69
	70			int
DArray_contract(DArray
*	array)
	71			{
	72							int
new_size	=	array->end
<	(int)array-

>expand_rate	?
	73															(int
>expand_rate	:	array-
>end;
	74
	75							return
DArray_resize(array,
new_size	+	1);
	76			}
	77
	78			void
DArray_destroy(DArray
*	array)
	79			{
	80							if	(array)
{
	81											if

(array->contents)
	82															free
>contents);
	83											free(array
	84							}
	85			}
	86
	87			void
DArray_clear_destroy(DArray
*	array)
	88			{
	89							DArray_clear
	90							DArray_destroy
	91			}
	92
	93			int
DArray_push(DArray	*

array,	void	*el)
	94			{
	95							array-
>contents[array->end]
=	el;
	96							array-
>end++;
	97
	98							if
(DArray_end(array)	>=
DArray_max(array))	{
	99											return
DArray_expand(array);
100							}	else	{
101											return
0;
102							}

103			}
104
105			void
*DArray_pop(DArray	*
array)
106			{
107							check(array-
>end	-	1	>=	0,
"Attempt	to	pop	from
empty	array.");
108
109							void	*el	=
DArray_remove(array,
array->end	-	1);
110							array->end-
-;
111

112							if
(DArray_end(array)	>
(int)array-
>expand_rate
113															&&
DArray_end(array)	%
array->expand_rate)	{
114											DArray_contract
115							}
116
117							return	el;
118			error:
119							return
NULL;
120			}

This	shows	you	another	way

to	tackle	complex	code.
Instead	of	diving	right	into
the	.c	implementation,	look
at	the	header	file,	and	then
read	the	unit	test.	This	gives
you	an	abstract-to-concrete
understanding	of	how	the
pieces	work	together,	making
it	easier	to	remember.

Advantages	and
Disadvantages
A	DArray	is	better	when
you	need	to	optimize	these
operations:

•	Iteration:	You	can	just
use	a	basic	for-loop
and	DArray_count
with	DArray_get,
and	you’re	done.	No
special	macros	needed,
and	it’s	faster	because

you	aren’t	walking
through	pointers.
•	Indexing:	You	can	use
DArray_get	and
DArray_set	to
access	any	element	at
random,	but	with	a
List	you	have	to	go
through	N	elements	to
get	to	N+1.
•	Destroying:	You	can
just	free	the	struct	and
the	contents	in	two

operations.	A	List
requires	a	series	of
free	calls	and	walking
every	element.
•	Cloning:	You	can	also
clone	it	in	just	two
operations	(plus
whatever	it’s	storing)
by	copying	the	struct
and	contents.	Again,
a	list	requires	walking
through	the	whole	thing
and	copying	every

ListNode	plus	its
value.
•	Sorting:	As	you	saw,
List	is	horrible	if	you
need	to	keep	the	data
sorted.	A	DArray
opens	up	a	whole	class
of	great	sorting
algorithms,	because
now	you	can	access
elements	randomly.
•	Large	Data:	If	you	need
to	keep	around	a	lot	of

data,	then	a	DArray
wins	since	its	base,
contents,	takes	up
less	memory	than	the
same	number	of
ListNode	structs.

However,	the	List	wins	on
these	operations:

•	Insert	and	remove	on
the	front	(what	I	called
shift):	A	DArray	needs
special	treatment	to	be
able	to	do	this

efficiently,	and	usually
it	has	to	do	some
copying.
•	Splitting	or	joining:	A
List	can	just	copy
some	pointers	and	it’s
done,	but	with	a
DArray,	you	have
copy	all	of	the	arrays
involved.
•	Small	Data:	If	you	only
need	to	store	a	few
elements,	then	typically

the	storage	will	be
smaller	in	a	List	than
a	generic	DArray.	This
is	because	the	DArray
needs	to	expand	the
backing	store	to
accommodate	future
inserts,	while	a	List
only	makes	what	it
needs.

With	this,	I	prefer	to	use	a
DArray	for	most	of	the
things	you	see	other	people

use	a	List	for.	I	reserve
using	List	for	any	data
structure	that	requires	a	small
number	of	nodes	to	be	added
and	removed	from	either	end.
I’ll	show	you	two	similar	data
structures	called	a	Stack
and	Queue	where	this	is
important.

How	to	Improve	It
As	usual,	go	through	each
function	and	operation	and
add	the	defensive
programming	checks,	pre-
conditions,	invariants,	and
anything	else	you	can	find	to
make	the	implementation
more	bulletproof.

Extra	Credit
•	Improve	the	unit	tests
to	cover	more	of	the
operations,	and	test
them	using	a	for-
loop	to	ensure	that
they	work.
•	Research	what	it	would
take	to	implement
bubble	sort	and	merge
sort	for	DArray,	but
don’t	do	it	yet.	I’ll	be
implementing	DArray

algorithms	next,	so
you’ll	do	this	then.
•	Write	some
performance	tests	for
common	operations	and
compare	them	to	the
same	operations	in
List.	You	did	some	of
this	already,	but	this
time,	write	a	unit	test
that	repeatedly	does	the
operation	in	question
and	then,	in	the	main

runner,	do	the	timing.
•	Look	at	how	the
DArray_expand	is
implemented	using	a
constant	increase	(size
+	300).	Typically,
dynamic	arrays	are
implemented	with	a
multiplicative	increase
(size	×	2),	but	I’ve
found	this	to	cost
needless	memory	for	no
real	performance	gain.

Test	my	assertion	and
see	when	you’d	want	a
multiplicative	increase
instead	of	a	constant
increase.

Exercise	35.
Sorting	and
Searching

In	this	exercise,	I’m	going	to
cover	four	sorting	algorithms
and	one	search	algorithm.
The	sorting	algorithms	are
going	to	be	quick	sort,	heap
sort,	merge	sort,	and	radix
sort.	I’m	then	going	to	show

you	how	do	a	to	binary	search
after	you’ve	done	a	radix	sort.
However,	I’m	a	lazy	guy,	and
in	most	standard	C	libraries
you	have	existing
implementations	of	the
heapsort,	quicksort,	and
merge	sort	algorithms.	Here’s
how	you	use	them:

darray_algos.c

Click	here	to	view	code	image

		1			#include
<lcthw/darray_algos.h>
		2			#include
<stdlib.h>
		3
		4			int
DArray_qsort(DArray	*
array,	DArray_compare
cmp)
		5			{
		6							qsort(array-
>contents,
DArray_count(array),
sizeof(void	*),	cmp);
		7							return	0;
		8			}
		9

	10			int
DArray_heapsort(DArray
*	array,
DArray_compare	cmp)
	11			{
	12							return
heapsort(array-
>contents,
DArray_count(array),
	13															sizeof
*),	cmp);
	14			}
	15
	16			int
DArray_mergesort(DArray
*	array,
DArray_compare	cmp)

	17			{
	18							return
mergesort(array-
>contents,
DArray_count(array),
	19															sizeof
*),	cmp);
	20			}

That’s	the	whole
implementation	of	the
darray_algos.c	file,	and
it	should	work	on	most
modern	UNIX	systems.	What
each	of	these	does	is	sort	the

contents	store	of	void
pointers	using	the
DArray_compare	that	you
give	it.	I’ll	show	you	the
header	file	for	this,	too:

darray_algos.h

Click	here	to	view	code	image

#ifndef
darray_algos_h
#define
darray_algos_h

#include
<lcthw/darray.h>

typedef	int
(*DArray_compare)
(const	void	*a,	const
void	*b);

int
DArray_qsort(DArray	*
array,	DArray_compare
cmp);

int
DArray_heapsort(DArray
*	array,

DArray_compare	cmp);

int
DArray_mergesort(DArray
*	array,
DArray_compare	cmp);

#endif

It’s	about	the	same	size	and
should	be	what	you	expect.
Next,	you	can	see	how	these
functions	are	used	in	the	unit
test	for	these	three:

darray_algos_tests.c

Click	here	to	view	code	image

		1			#include
"minunit.h"
		2			#include
<lcthw/darray_algos.h>
		3
		4			int
testcmp(char	**a,
char	**b)
		5			{
		6							return
strcmp(*a,	*b);
		7			}

		8
		9			DArray
*create_words()
	10			{
	11							DArray
*result	=
DArray_create(0,	5);
	12							char
*words[]	=	{
"asdfasfd",
	13											"werwar"
"13234",	"asdfasfd",
"oioj"	};
	14							int	i	=	0;
	15
	16							for	(i	=	0;

i	<	5;	i++)	{
	17											DArray_push
words[i]);
	18							}
	19
	20							return
result;
	21			}
	22
	23			int
is_sorted(DArray	*
array)
	24			{
	25							int	i	=	0;
	26
	27							for	(i	=	0;

i	<
DArray_count(array)	-
1;	i++)	{
	28											if
(strcmp(DArray_get(array
i),	DArray_get(array,
i	+	1))	>	0)	{
	29															return
0;
	30											}
	31							}
	32
	33							return	1;
	34			}
	35
	36			char

*run_sort_test(int
(*func)	(DArray	*,
DArray_compare),
	37											const
char	*name)
	38			{
	39							DArray
*words	=
create_words();
	40							mu_assert(!is_sorted
"Words	should	start
not	sorted.");
	41
	42							debug("---
Testing	%s	sorting
algorithm",	name);

	43							int	rc	=
func(words,
(DArray_compare)
testcmp);
	44							mu_assert(rc
==	0,	"sort	failed");
	45							mu_assert(is_sorted
"didn't	sort	it");
	46
	47							DArray_destroy
	48
	49							return
NULL;
	50			}
	51
	52			char

*test_qsort()
	53			{
	54							return
run_sort_test(DArray_qsort
"qsort");
	55			}
	56
	57			char
*test_heapsort()
	58			{
	59							return
run_sort_test(DArray_heapsort
"heapsort");
	60			}
	61
	62			char

*test_mergesort()
	63			{
	64							return
run_sort_test(DArray_mergesort
"mergesort");
	65			}
	66
	67			char
*all_tests()
	68			{
	69							mu_suite_start
	70
	71							mu_run_test(
	72							mu_run_test(
	73							mu_run_test(
	74

	75							return
NULL;
	76			}
	77
	78			RUN_TESTS(all_tests

The	thing	to	notice,	and
actually	what	tripped	me	up
for	a	whole	day,	is	the
definition	of	testcmp	on
line	4.	You	have	to	use	a
char	**	and	not	a	char	*
because	qsort	gives	you	a
pointer	to	the	pointers	in	the
contents	array.	The

function	qsort	and	friends
are	scanning	the	array,	and
handing	pointers	to	each
element	in	the	array	to	your
comparison	function.	Since
what	I	have	in	the
contents	array	are
pointers,	that	means	you	get	a
pointer	to	a	pointer.
With	that	out	of	the	way,	you
have	just	implemented	three
difficult	sorting	algorithms	in
about	20	lines	of	code.	You

could	stop	there,	but	part	of
this	book	is	learning	how
these	algorithms	work,	so	the
Extra	Credit	section	is	going
to	involve	implementing	each
of	these.

Radix	Sort	and
Binary	Search
Since	you’re	going	to
implement	quicksort,
heapsort,	and	merge	sort	on
your	own,	I’m	going	to	show

you	a	funky	algorithm	called
radix	sort.	It	has	a	slightly
narrow	usefulness	in	sorting
arrays	of	integers,	but	seems
to	work	like	magic.	In	this
case,	I’m	going	to	create	a
special	data	structure	called	a
RadixMap	that’s	used	to
map	one	integer	to	another.
Here’s	the	header	file	for	the
new	algorithm,	which	is	both
algorithm	and	data	structure
in	one:

radixmap.h

Click	here	to	view	code	image

#ifndef	_radixmap_h
#include	<stdint.h>

typedef	union
RMElement	{
				uint64_t	raw;
				struct	{
								uint32_t	key;
								uint32_t
value;
				}	data;
}	RMElement;

typedef	struct
RadixMap	{
				size_t	max;
				size_t	end;
				uint32_t	counter;
				RMElement
*contents;
				RMElement	*temp;
}	RadixMap;

RadixMap
*RadixMap_create(size_t
max);

void

RadixMap_destroy(RadixMap
*	map);

void
RadixMap_sort(RadixMap
*	map);

RMElement
*RadixMap_find(RadixMap
*	map,	uint32_t	key);

int
RadixMap_add(RadixMap
*	map,	uint32_t	key,
uint32_t	value);

int
RadixMap_delete(RadixMap
*	map,	RMElement	*
el);

#endif

You	see	that	I	have	a	lot	of
the	same	operations	as	in	a
Dynamic	Array	or	a
List	data	structure,	but	the
difference	is	I’m	working
only	with	fixed	size	32-bit
uin32_t	integers.	I’m	also
introducing	you	to	a	new	C

concept	called	the	union
here.

C	Unions
A	union	is	a	way	to	refer	to
the	same	piece	of	memory	in
a	number	of	different	ways.
You	define	it	like	a	struct,
except	every	element	is
sharing	the	same	space	with
all	of	the	others.	You	can
think	of	a	union	as	a	picture
of	the	memory,	and	the
elements	in	the	union	as
different	colored	lenses	to
view	the	picture.

What	they	are	used	for	is	to
either	save	memory	or
convert	chunks	of	memory
between	formats.	The	first
usage	is	typically	done	with
variant	types,	where	you
create	a	structure	that	has	tag
for	the	type,	and	then	a	union
inside	it	for	each	type.	When
used	for	converting	between
formats	of	memory,	you	can
simply	define	the	two
structures,	and	then	access	the
right	one.

First,	let	me	show	you	how	to
make	a	variant	type	with	C
unions:

ex35.c

Click	here	to	view	code	image

		1			#include
<stdio.h>
		2
		3			typedef	enum	{
		4							TYPE_INT,
		5							TYPE_FLOAT,
		6							TYPE_STRING,

		7			}	VariantType;
		8
		9			struct	Variant
{
	10						VariantType
type;
	11						union	{
	12										int
as_integer;
	13										float
as_float;
	14										char
*as_string;
	15						}	data;
	16			};
	17

	18			typedef	struct
Variant	Variant;
	19
	20			void
Variant_print(Variant
*	var)
	21			{
	22							switch
(var->type)	{
	23											case
TYPE_INT:
	24															printf
%d\n",	var-
>data.as_integer);
	25															break
	26											case
TYPE_FLOAT:

	27															printf
%f\n",	var-
>data.as_float);
	28															break
	29											case
TYPE_STRING:
	30															printf
%s\n",	var-
>data.as_string);
	31															break
	32											default:
	33															printf
TYPE:	%d",	var-
>type);
	34							}
	35			}

	36
	37			int	main(int
argc,	char	*argv[])
	38			{
	39							Variant
a_int	=	{.type	=
TYPE_INT,
.data.as_integer	=
100	};
	40							Variant
a_float	=	{.type	=
TYPE_FLOAT,
.data.as_float	=
100.34	};
	41							Variant
a_string	=	{.type	=

TYPE_STRING,
	42											.data.as_string
=	"YO	DUDE!"	};
	43
	44							Variant_print
	45							Variant_print
	46							Variant_print
	47
	48							//	here's
how	you	access	them
	49							a_int.data.as_integer
=	200;
	50							a_float.data
=	2.345;
	51							a_string.data
=	"Hi	there.";

	52
	53							Variant_print
	54							Variant_print
	55							Variant_print
	56
	57							return	0;
	58			}

You	find	this	in	many
implementations	of	dynamic
languages.	The	language	will
define	some	base	variant	type
with	tags	for	all	the	base
types	of	the	language,	and
then	usually	there’s	a	generic

object	tag	for	the	types	you
can	create.	The	advantage	of
doing	this	is	that	the
Variant	only	takes	up	as
much	space	as	the
VariantType	type	tag
and	the	largest	member	of	the
union.	This	is	because	C	is
layering	each	element	of	the
Variant.data	union
together,	so	they	overlap.	To
do	that,	C	sizes	the	union	big
enough	to	hold	the	largest

element.
In	the	radixmap.h	file,	I
have	the	RMElement	union,
which	demonstrates	using	a
union	to	convert	blocks	of
memory	between	types.	In
this	case,	I	want	to	store	a
uint64_t-sized	integer	for
sorting	purposes,	but	I	want
two	uint32_t	integers	for
the	data	to	represent	a	key
and	value	pair.	By	using	a
union,	I’m	able	to	cleanly

access	the	same	block	of
memory	in	the	two	different
ways	I	need.

The	Implementation
I	next	have	the	actual
RadixMap	implementation
for	each	of	these	operations:

radixmap.c

Click	here	to	view	code	image

		1			/*
		2			*	Based	on	code
by	Andre	Reinald	then
heavily	modified	by
Zed	A.	Shaw.
		3			*/
		4
		5			#include
<stdio.h>
		6			#include
<stdlib.h>
		7			#include
<assert.h>
		8			#include
<lcthw/radixmap.h>
		9			#include
<lcthw/dbg.h>

	10
	11			RadixMap
*RadixMap_create(size_t
max)
	12			{
	13							RadixMap
*map	=
calloc(sizeof(RadixMap
1);
	14							check_mem(map
	15
	16							map-
>contents	=
calloc(sizeof(RMElement
max	+	1);
	17							check_mem(map
>contents);

	18
	19							map->temp	=
calloc(sizeof(RMElement
max	+	1);
	20							check_mem(map
>temp);
	21
	22							map->max	=
max;
	23							map->end	=
0;
	24
	25							return	map;
	26			error:
	27							return
NULL;

	28			}
	29
	30			void
RadixMap_destroy(RadixMap
*	map)
	31			{
	32							if	(map)	{
	33											free(map
>contents);
	34											free(map
>temp);
	35											free(map
	36							}
	37			}
	38
	39			#define
ByteOf(x,y)

(((uint8_t	*)x)[(y)])
	40
	41			static	inline
void	radix_sort(short
offset,	uint64_t	max,
	42											uint64_t
*	source,	uint64_t	*
dest)
	43			{
	44							uint64_t
count[256]	=	{	0	};
	45							uint64_t
*cp	=	NULL;
	46							uint64_t
*sp	=	NULL;
	47							uint64_t
*end	=	NULL;

	48							uint64_t	s
=	0;
	49							uint64_t	c
=	0;
	50
	51							//	count
occurences	of	every
byte	value
	52							for	(sp	=
source,	end	=	source
+	max;	sp	<	end;
sp++)	{
	53											count[ByteOf
offset)]++;
	54							}
	55

	56							//
transform	count	into
index	by	summing
	57							//	elements
and	storing	into	same
array
	58							for	(s	=	0,
cp	=	count,	end	=
count	+	256;	cp	<
end;	cp++)	{
	59											c	=
*cp;
	60											*cp	=
s;
	61											s	+=	c;
	62							}
	63

	64							//	fill
dest	with	the	right
values	in	the	right
place
	65							for	(sp	=
source,	end	=	source
+	max;	sp	<	end;
sp++)	{
	66											cp	=
count	+	ByteOf(sp,
offset);
	67											dest[*cp
=	*sp;
	68											++
(*cp);
	69							}

	70			}
	71
	72			void
RadixMap_sort(RadixMap
*	map)
	73			{
	74							uint64_t
*source	=	&map-
>contents[0].raw;
	75							uint64_t
*temp	=	&map-
>temp[0].raw;
	76
	77							radix_sort(0
map->end,	source,
temp);
	78							radix_sort(1

map->end,	temp,
source);
	79							radix_sort(2
map->end,	source,
temp);
	80							radix_sort(3
map->end,	temp,
source);
	81			}
	82
	83			RMElement
*RadixMap_find(RadixMap
*	map,	uint32_t
to_find)
	84			{
	85							int	low	=

0;
	86							int	high	=
map->end	-	1;
	87							RMElement
*data	=	map-
>contents;
	88
	89							while	(low
<=	high)	{
	90											int
middle	=	low	+	(high
-	low)	/	2;
	91											uint32_t
key	=
data[middle].data.key;
	92
	93											if

(to_find	<	key)	{
	94															high
=	middle	-	1;
	95											}	else
if	(to_find	>	key)	{
	96															low
=	middle	+	1;
	97											}	else
{
	98															return
&data[middle];
	99											}
100							}
101
102							return
NULL;

103			}
104
105			int
RadixMap_add(RadixMap
*	map,	uint32_t	key,
uint32_t	value)
106			{
107							check(key	<
UINT32_MAX,	"Key
can't	be	equal	to
UINT32_MAX.");
108
109							RMElement
element	=	{.data	=
{.key	=	key,.value	=
value}	};
110							check(map-

>end	+	1	<	map->max,
"RadixMap	is	full.");
111
112							map-
>contents[map->end++]
=	element;
113
114							RadixMap_sort
115
116							return	0;
117
118			error:
119							return	-1;
120			}
121
122			int

RadixMap_delete(RadixMap
*	map,	RMElement	*
el)
123			{
124							check(map-
>end	>	0,	"There	is
nothing	to	delete.");
125							check(el	!=
NULL,	"Can't	delete	a
NULL	element.");
126
127							el-
>data.key	=
UINT32_MAX;
128
129							if	(map-
>end	>	1)	{

130											//
don't	bother
resorting	a	map	of	1
length
131											RadixMap_sort
132							}
133
134							map->end--;
135
136							return	0;
137			error:
138							return	-1;
139			}

As	usual,	enter	this	in	and	get
it	working,	along	with	the

unit	test,	and	then	I’ll	explain
what’s	happening.	Take
special	care	with	the
radix_sort	function	since
it’s	very	particular	in	how	it’s
implemented.

radixmap_tests.c

Click	here	to	view	code	image

		1			#include
"minunit.h"
		2			#include

<lcthw/radixmap.h>
		3			#include
<time.h>
		4
		5			static	int
make_random(RadixMap
*	map)
		6			{
		7							size_t	i	=
0;
		8
		9							for	(i	=	0;
i	<	map->max	-	1;
i++)	{
	10											uint32_t
key	=	(uint32_t)

(rand()	|	(rand()	<<
16));
	11											check(RadixMap_add
key,	i)	==	0,	"Failed
to	add	key	%u.",
	12											key);
	13							}
	14
	15							return	i;
	16
	17			error:
	18							return	0;
	19			}
	20
	21			static	int
check_order(RadixMap

*	map)
	22			{
	23							RMElement
d1,	d2;
	24							unsigned
int	i	=	0;
	25
	26							//	only
signal	errors	if	any
(should	not	be)
	27							for	(i	=	0;
map->end	>	0	&&	i	<
map->end	-	1;	i++)	{
	28											d1	=
map->contents[i];
	29											d2	=

map->contents[i	+	1];
	30
	31											if
(d1.data.key	>
d2.data.key)	{
	32															debug
key:	%u,	value:	%u,
equals	max?	%d\n",	i,
	33																							d1
d1.data.value,
	34																							d2
==	UINT32_MAX);
	35															return
0;
	36											}
	37							}

	38
	39							return	1;
	40			}
	41
	42			static	int
test_search(RadixMap
*	map)
	43			{
	44							unsigned	i
=	0;
	45							RMElement
*d	=	NULL;
	46							RMElement
*found	=	NULL;
	47
	48							for	(i	=

map->end	/	2;	i	<
map->end;	i++)	{
	49											d	=
&map->contents[i];
	50											found	=
RadixMap_find(map,	d-
>data.key);
	51											check(found
!=	NULL,	"Didn't	find
%u	at	%u.",	d-
>data.key,	i);
	52											check(found
>data.key	==	d-
>data.key,
	53																			
the	wrong	result:

%p:%u	looking	for	%u
at	%u",	found,
	54																			found
>data.key,	d-
>data.key,	i);
	55							}
	56
	57							return	1;
	58			error:
	59							return	0;
	60			}
	61
	62			//	test	for	big
number	of	elements
	63			static	char
*test_operations()

	64			{
	65							size_t	N	=
200;
	66
	67							RadixMap
*map	=
RadixMap_create(N);
	68							mu_assert(map
!=	NULL,	"Failed	to
make	the	map.");
	69							mu_assert(make_random
"Didn't	make	a	random
fake	radix	map.");
	70
	71							RadixMap_sort
	72							mu_assert(check_order

	73															"Failed
to	properly	sort	the
RadixMap.");
	74
	75							mu_assert(test_search
"Failed	the	search
test.");
	76							mu_assert(check_order
	77															"RadixMap
didn't	stay	sorted
after	search.");
	78
	79							while	(map-
>end	>	0)	{
	80											RMElement
*el	=

RadixMap_find(map,
	81																			map
>contents[map->end	/
2].data.key);
	82											mu_assert
!=	NULL,	"Should	get
a	result.");
	83
	84											size_t
old_end	=	map->end;
	85
	86											mu_assert
el)	==	0,	"Didn't
delete	it.");
	87											mu_assert
-	1	==	map->end,

"Wrong	size	after
delete.");
	88
	89											//	test
that	the	end	is	now
the	old	value,
	90											//	but
uint32	max	so	it
trails	off
	91											mu_assert
	92																			
didn't	stay	sorted
after	delete.");
	93							}
	94
	95							RadixMap_destroy

	96
	97							return
NULL;
	98			}
	99
100			char
*all_tests()
101			{
102							mu_suite_start
103							srand(time(NULL
104
105							mu_run_test(
106
107							return
NULL;
108			}

109
110			RUN_TESTS(all_tests

I	shouldn’t	have	to	explain
too	much	about	the	test.	It’s
simply	simulating	placing
random	integers	into	the
RadixMap,	and	then	making
sure	it	can	get	them	out
reliably.	Not	too	interesting.
In	the	radixmap.c	file,
most	of	the	operations	are
easy	to	understand	if	you	read
the	code.	Here’s	a	description

of	what	the	basic	functions
are	doing	and	how	they	work:

RadixMap_create	As
usual,	I’m	allocating	all
of	the	memory	needed
for	the	structures
defined	in
radixmap.h.	I’ll	be
using	the	temp	and
contents	later	when
I	talk	about
radix_sort.

RadixMap_destroy

Again,	I’m	just
destroying	what	was
created.

radix_sort	Here’s	the
meat	of	the	data
structure,	but	I’ll
explain	what	it’s	doing
in	the	next	section.

RadixMap_sort	This	uses
the	radix_sort
function	to	actually	sort
the	contents.	It	does
this	by	sorting	between

the	contents	and
temp	until	finally
contents	is	sorted.
You’ll	see	how	this
works	when	I	describe
radix_sort	later.

RadixMap_find	This	is
using	a	binary	search
algorithm	to	find	a	key
you	give	it.	I’ll	explain
how	this	works	shortly.

RadixMap_add	Using
the	RadixMap_sort

function,	this	will	add
the	key	and	value	you
request	at	the	end,	then
simply	sort	it	again	so
that	everything	is	in	the
right	place.	Once
everything	is	sorted,	the
RadixMap_find	will
work	properly	because
it’s	a	binary	search.

RadixMap_delete	This
works	the	same	as
RadixMap_add,

except	it	deletes
elements	of	the
structure	by	setting	their
values	to	the	max	for	a
unsigned	32-bit	integer,
UINT32_MAX.	This
means	that	you	can’t
use	that	value	as	an	key
value,	but	it	makes
deleting	elements	easy.
Simply	set	it	to	that	and
then	sort,	and	it’ll	get
moved	to	the	end.	Now
it’s	deleted.

Study	the	code	for	the
functions	I	described.	That
just	leaves
RadixMap_sort,
radix_sort,	and
RadixMap_find	to
understand.

RadixMap_find
and	Binary	Search
I’ll	start	with	how	the	binary
search	is	implemented.
Binary	search	is	a	simple
algorithm	that	most	people
can	understand	intuitively.	In
fact,	you	could	take	a	deck	of
playing	cards	and	do	this
manually.	Here’s	how	this
function	works,	and	how	a
binary	search	is	done,	step	by
step:

•	Set	a	high	and	low
mark	based	on	the	size
of	the	array.
•	Get	the	middle	element
between	the	low	and
high	marks.
•	If	the	key	is	less-than,
then	the	key	must	be
below	the	middle.	Set
high	to	one	less	than
middle.
•	If	the	key	is	greater-
than,	then	the	key	must

be	above	the	middle.
Set	the	low	mark	one
greater	than	the	middle.
•	If	it’s	equal,	you	found
it.	Stop.
•	Keep	looping	until	low
and	high	pass	each
other.	You	won’t	find	it
if	you	exit	the	loop.

What	you’re	effectively	doing
is	guessing	where	the	key
might	be	by	picking	the
middle	and	comparing	it	to

the	high	and	low	marks.
Since	the	data	is	sorted,	you
know	that	the	the	key	has	to
be	above	or	below	your
guess.	If	it’s	below,	then	you
just	divided	the	search	space
in	half.	You	keep	going	until
you	either	find	it	or	you
overlap	the	boundaries	and
exhaust	the	search	space.

RadixMap_sort
and	radix_sort

A	radix	sort	is	easy	to
understand	if	you	try	to	do	it
manually	first.	What	this
algorithm	does	is	exploit	the
fact	that	numbers	are	stored
with	a	sequence	of	digits	that
go	from	least	significant	to
most	significant.	It	then	takes
the	numbers	and	buckets
them	by	the	digit,	and	when	it
has	processed	all	of	the	digits,
the	numbers	come	out	sorted.
At	first	it	seems	like	magic,
and	honestly,	looking	at	the

code	sure	seems	like	it	is,	so
try	doing	it	manually	once.
To	do	this	algorithm,	write
out	a	bunch	of	three-digit
numbers	in	a	random	order.
Let’s	say	we	do	223,	912,
275,	100,	633,	120,	and	380.

•	Place	the	number	in
buckets	by	the	ones
digit:	[380,	100,
120],	[912],
[633,	223],
[275].

•	I	now	have	to	go
through	each	of	these
buckets	in	order,	and
then	sort	it	by	the	tens
digit:	[100],
[912],	[120,
223],	[633],
[275],	[380].
•	Now	each	bucket
contains	numbers	that
are	sorted	by	the	ones
digit	and	then	the	tens
digit.	I	need	to	then	go

through	these	in	order
and	fill	in	the	final
hundreds	digit:	[100,
120],	[223,
275],	[380],
[633],	[912].
•	At	this	point	each
bucket	is	sorted	by
hundreds,	tens	and
ones,	and	if	I	take	each
bucket	in	order,	I	get
the	final	sorted	list:
100,	120,	223,

275,	380,	633,
912.

Make	sure	you	do	this	a	few
times	so	you	understand	how
it	works.	It	really	is	a	slick
little	algorithm.	Most
importantly,	it	will	work	on
numbers	of	arbitrary	size,	so
you	can	sort	really	huge
numbers	because	you’re	just
doing	them	1	byte	at	a	time.
In	my	situation,	the	digits
(also	called	place	values)	are

individual	8-bit	bytes,	so	I
need	256	buckets	to	store	the
distribution	of	the	numbers
by	their	digits.	I	also	need	a
way	to	store	them	such	that	I
don’t	use	too	much	space.	If
you	look	at	radix_sort,
you’ll	see	that	the	first	thing	I
do	is	build	a	count
histogram	so	I	know	how
many	occurrences	of	each
digit	there	are	for	the	given
offset.

Once	I	know	the	counts	for
each	digit	(all	256	of	them),	I
can	then	use	them	as
distribution	points	into	a
target	array.	For	example,	if	I
have	10	bytes	that	are	0x00,
then	I	know	I	can	place	them
in	the	first	ten	slots	of	the
target	array.	This	gives	me	an
index	for	where	they	go	in	the
target	array,	which	is	the
second	for-loop	in
radix_sort.

Finally,	once	I	know	where
they	can	go	in	the	target	array
I	simply	go	through	all	of	the
digits	in	the	source	array
for	this	offset,	and	place
the	numbers	in	their	slots	in
order.	Using	the	ByteOf
macro	helps	keep	the	code
clean,	since	there’s	a	bit	of
pointer	hackery	to	make	it
work.	However,	the	end
result	is	that	all	of	the
integers	will	be	placed	in	the

bucket	for	their	digit	when
the	final	for-loop	is	done.
What	becomes	interesting	is
how	I	use	this	in
RadixMap_sort	to	sort
these	64-bit	integers	by	just
the	first	32	bits.	Remember
how	I	have	the	key	and	value
in	a	union	for	the
RMElement	type?	That
means	that	to	sort	this	array
by	the	key,	I	only	need	to	sort
the	first	4	bytes	(32	bits	/	8

bits	per	byte)	of	every
integer.
If	you	look	at	the
RadixMap_sort,	you	see
that	I	grab	a	quick	pointer	to
the	contents	and	temp	for
source	and	target	arrays,	and
then	I	call	radix_sort
four	times.	Each	time	I	call	it,
I	alternate	source	and	target,
and	do	the	next	byte.	When
I’m	done,	the	radix_sort
has	done	its	job	and	the	final

copy	has	been	sorted	into	the
contents.

How	to	Improve	It
There	is	a	big	disadvantage	to
this	implementation	because
it	has	to	process	the	entire
array	four	times	on	every
insertion.	It	does	do	it	fast,
but	it’d	be	better	if	you	could
limit	the	amount	of	sorting	by
the	size	of	what	needs	to	be
sorted.

There	are	two	ways	you	can
improve	this	implementation:

•	Use	a	binary	search	to
find	the	minimum
position	for	the	new
element,	then	only	sort
from	there	to	the	end.
You	find	the	minimum,
put	the	new	element	on
the	end,	and	then	just
sort	from	the	minimum
on.	This	will	cut	your
sort	space	down

considerably	most	of
the	time.
•	Keep	track	of	the
biggest	key	currently
being	used,	and	then
only	sort	enough	digits
to	handle	that	key.	You
can	also	keep	track	of
the	smallest	number,
and	then	only	sort	the
digits	necessary	for	the
range.	To	do	this,	you’ll
have	to	start	caring

about	CPU	integer
ordering	(endianness).

Try	these	optimizations,	but
only	after	you	augment	the
unit	test	with	some	timing
information	so	you	can	see	if
you’re	actually	improving	the
speed	of	the	implementation.

Extra	Credit
•	Implement	quicksort,
heapsort,	and	merge
sort	and	then	provide	a

#define	that	lets	you
pick	among	the	three,	or
create	a	second	set	of
functions	you	can	call.
Use	the	technique	I
taught	you	to	read	the
Wikipedia	page	for	the
algorithm,	and	then
implement	it	with	the
pseudo-code.
•	Compare	the
performance	of	your
optimizations	to	the

original
implementations.
•	Use	these	sorting
functions	to	create	a
DArray_sort_add
that	adds	elements	to
the	DArray	but	sorts
the	array	afterward.
•	Write	a
DArray_find	that
uses	the	binary	search
algorithm	from
RadixMap_find	and

the
DArray_compare	to
find	elements	in	a
sorted	DArray.

Exercise	36.
Safer	Strings

This	exercise	is	designed	to
get	you	using	bstring	from
now	on,	explain	why	C’s
strings	are	an	incredibly	bad
idea,	and	then	have	you
change	the	liblcthw	code
to	use	bstring.

Why	C	Strings	Were
a	Horrible	Idea
When	people	talk	about
problems	with	C,	they	say	its
concept	of	a	string	is	one	of
the	top	flaws.	You’ve	been
using	these	extensively,	and
I’ve	talked	about	the	kinds	of
flaws	they	have,	but	there
isn’t	much	that	explains
exactly	why	C	strings	are
flawed	and	always	will	be.
I’ll	try	to	explain	that	right

now,	and	after	decades	of
using	C’s	strings,	there’s
enough	evidence	for	me	to
say	that	they	are	just	a	bad
idea.
It’s	impossible	to	confirm
that	any	given	C	string	is
valid:

•	A	C	string	is	invalid	if
it	doesn’t	end	in	'\0'.
•	Any	loop	that	processes
an	invalid	C	string	will
loop	infinitely	(or	just

create	a	buffer
overflow).
•	C	strings	don’t	have	a
known	length,	so	the
only	way	to	check	if
they’re	terminated
correctly	is	to	loop
through	them.
•	Therefore,	it	isn’t
possible	to	validate	a	C
string	without	possibly
looping	infinitely.

This	is	simple	logic.	You

can’t	write	a	loop	that	checks
if	a	C	string	is	valid	because
invalid	C	strings	cause	loops
to	never	terminate.	That’s	it,
and	the	only	solution	is	to
include	the	size.	Once	you
know	the	size,	you	can	avoid
the	infinite	loop	problem.	If
you	look	at	the	two	functions
I	showed	you	from	Exercise
27,	you	see	this:

ex36.c

Click	here	to	view	code	image

		1			void	copy(char
to[],	char	from[])
		2			{
		3							int	i	=	0;
		4
		5							//	while
loop	will	not	end	if
from	isn't	'\0'
terminated
		6							while
((to[i]	=	from[i])	!=
'\0')	{
		7											++i;
		8							}
		9			}

	10
	11			int
safercopy(int
from_len,	char	*from,
int	to_len,	char	*to)
	12			{
	13							int	i	=	0;
	14							int	max	=
from_len	>	to_len	-	1
?	to_len	-	1	:
from_len;
	15
	16							//	to_len
must	have	at	least	1
byte
	17							if

(from_len	<	0	||
to_len	<=	0)
	18											return
-1;
	19
	20							for	(i	=	0;
i	<	max;	i++)	{
	21											to[i]	=
from[i];
	22							}
	23
	24							to[to_len	-
1]	=	'\0';
	25
	26							return	i;
	27			}

Imagine	that	you	want	to	add
a	check	to	the	copy	function
to	confirm	that	the	from
string	is	valid.	How	would
you	do	that?	You’d	write	a
loop	that	checked	that	the
string	ended	in	'\0'.	Oh
wait.	If	the	string	doesn’t	end
in	'\0',	then	how	does	the
checking	loop	end?	It	doesn’t.
Checkmate.
No	matter	what	you	do,	you
can’t	check	that	a	C	string	is

valid	without	knowing	the
length	of	the	underlying
storage,	and	in	this	case,	the
safercopy	includes	those
lengths.	This	function	doesn’t
have	the	same	problem	since
its	loops	will	always
terminate,	and	even	if	you	lie
to	it	about	the	size,	you	still
have	to	give	it	a	finite	size.
What	the	Better	String
Library	does	is	create	a
structure	that	always	includes

the	length	of	the	string’s
storage.	Because	the	length	is
always	available	to	a
bstring,	then	all	of	its
operations	can	be	safer.	The
loops	will	terminate,	the
contents	can	be	validated,	and
it	won’t	have	this	major	flaw.
The	library	also	comes	with	a
ton	of	operations	you	need
with	strings,	like	splitting,
formatting,	and	searching,
and	they’re	most	likely	done
right	and	are	safer.

There	could	be	flaws	in
bstring,	but	it’s	been	around	a
long	time,	so	those	are
probably	minimal.	They	still
find	flaws	in	glibc,	so
what’s	a	programmer	to	do,
right?

Using	bstrlib
There	are	quite	a	few
improved	string	libraries,	but
I	like	bstrlib	because	it
fits	in	one	file	for	the	basics,
and	has	most	of	the	stuff	you
need	to	deal	with	strings.	In
this	exercise	you’ll	need	to
get	two	files,	bstrlib.c
and	bstrlib.h,	from	the
Better	String	Library.
Here’s	me	doing	this	in	the

liblcthw	project	directory:

Exercise	36	Session

Click	here	to	view	code	image

$	mkdir	bstrlib
$	cd	bstrlib/
$	unzip
~/Downloads/bstrlib-
05122010.zip
Archive:			/Users/zedshaw/Downloads/bstrlib-
05122010.zip
...
$	ls

bsafe.c											bstraux.c							bstrlib.h
bstrwrap.h								license.txt					test.cpp
bsafe.h											bstraux.h							bstrlib.txt
cpptest.cpp							porting.txt					testaux.c
bstest.c		bstrlib.c							bstrwrap.cpp
gpl.txt											security.txt
$	mv	bstrlib.h
bstrlib.c
../src/lcthw/
$	cd	../
$	rm	-rf	bstrlib
#	make	the	edits
$	vim
src/lcthw/bstrlib.c
$	make	clean	all
...

$

On	line	14,	you	see	me	edit
the	bstrlib.c	file	to	move
it	to	a	new	location	and	fix	a
bug	on	OS	X.	Here’s	the	diff
file:

ex36.diff

Click	here	to	view	code	image

25c25
<	#include
"bstrlib.h"

>	#include
<lcthw/bstrlib.h>
2759c2759
<	#ifdef	__GNUC__

>	#if
defined(__GNUC__)	&&
!defined(__APPLE__)

Here	I	change	the	include
to	be
<lcthw/bstrlib.h>,
and	then	fix	one	of	the
ifdef	at	line	2759.

Learning	the	Library
This	exercise	is	short,	and	it’s
meant	to	simply	get	you
ready	for	the	remaining
exercises	that	use	the	Better
String	Library.	In	the	next
two	exercises,	I’ll	use
bstrlib.c	to	create	a
hashmap	data	structure.
You	should	now	get	familiar
with	this	library	by	reading
the	header	file	and	the
implementations,	and	then

write	a
tests/bstr_tests.c
that	tests	out	the	following
functions:

bfromcstr
Create	a	bstring
from	a	C	style
constant.
blk2bstr	Do
the	same	thing,
but	give	the
length	of	the
buffer.

bstrcpy	Copy	a
bstring.
bassign	Set	one
bstring	to	another.
bassigncstr
Set	a	bstring	to	a
C	string’s
contents.
bassignblk
Set	a	bstring	to	a
C	string	but	give
the	length.
bdestroy

Destroy	a	bstring.
bconcat
Concatenate	one
bstring	onto
another.
bstricmp
Compare	two
bstrings	returning
the	same	result	as
strcmp.
biseq	Test	if
two	bstrings	are
equal.

binstr	Tell	if
one	bstring	is	in
another.
bfindreplace
Find	one	bstring
in	another,	then
replace	it	with	a
third.
bsplit	Split	a
bstring	into	a
bstrList.
bformat	Do	a
format	string,

which	is	super
handy.
blength	Get	the
length	of	a
bstring.
bdata	Get	the
data	from	a
bstring.
bchar	Get	a	char
from	a	bstring.

Your	test	should	try	out	all	of
these	operations,	and	a	few

more	that	you	find	interesting
from	the	header	file.

Exercise	37.
Hashmaps

Hash	maps	(hashmaps,
hashes,	or	sometimes
dictionaries)	are	used
frequently	in	dynamic
programming	for	storing
key/value	data.	A	hashmap
works	by	performing	a
hashing	calculation	on	the
keys	to	produce	an	integer,

then	uses	that	integer	to	find	a
bucket	to	get	or	set	the	value.
It’s	a	very	fast,	practical	data
structure	because	it	works	on
nearly	any	data	and	is	easy	to
implement.
Here’s	an	example	of	using	a
hashmap	(aka,	dictionary)	in
Python:

ex37.py

Click	here	to	view	code	image

fruit_weights	=
{'Apples':	10,
'Oranges':	100,
'Grapes':	1.0}

for	key,	value	in
fruit_weights.items():
				print	key,	"=",
value

Almost	every	modern
language	has	something	like
this,	so	many	people	end	up
writing	code	and	never
understand	how	this	actually
works.	By	creating	the

Hashmap	data	structure	in	C,
I’ll	show	you	how	this	works.
I’ll	start	with	the	header	file
so	I	can	talk	about	the	data
structure.

hashmap.h

Click	here	to	view	code	image

#ifndef
_lcthw_Hashmap_h
#define
_lcthw_Hashmap_h

#include	<stdint.h>
#include
<lcthw/darray.h>

#define
DEFAULT_NUMBER_OF_BUCKETS
100

typedef	int
(*Hashmap_compare)
(void	*a,	void	*b);
typedef
uint32_t(*Hashmap_hash
(void	*key);

typedef	struct

Hashmap	{
				DArray	*buckets;
				Hashmap_compare
compare;
				Hashmap_hash
hash;
}	Hashmap;

typedef	struct
HashmapNode	{
				void	*key;
				void	*data;
				uint32_t	hash;
}	HashmapNode;

typedef	int

(*Hashmap_traverse_cb)
(HashmapNode	*	node);

Hashmap
*Hashmap_create(Hashmap_compare
compare,
Hashmap_hash);
void
Hashmap_destroy(Hashmap
*	map);

int
Hashmap_set(Hashmap	*
map,	void	*key,	void
*data);
void

*Hashmap_get(Hashmap
*	map,	void	*key);

int
Hashmap_traverse(Hashmap
*	map,
Hashmap_traverse_cb
traverse_cb);

void
*Hashmap_delete(Hashmap
*	map,	void	*key);

#endif

The	structure	consists	of	a

Hashmap	that	contains	any
number	of	HashmapNode
structs.	Looking	at
Hashmap,	you	can	see	that
it’s	structured	like	this:

DArray	*buckets	A
dynamic	array	that	will
be	set	to	a	fixed	size	of
100	buckets.	Each
bucket	will	in	turn
contain	a	DArray	that
will	hold
HashmapNode	pairs.

Hashmap_compare
compare	This	is	a
comparison	function
that	the	Hashmap	uses
to	find	elements	by
their	key.	It	should
work	like	all	of	the
other	compare
functions,	and	it
defaults	to	using
bstrcmp	so	that	keys
are	just	bstrings.

Hashmap_hash	hash

This	is	the	hashing
function,	and	it’s
responsible	for	taking	a
key,	processing	its
contents,	and	producing
a	single	uint32_t
index	number.	You’ll
see	the	default	one
soon.

This	almost	tells	you	how	the
data	is	stored,	but	the
buckets	DArray	hasn’t
been	created	yet.	Just

remember	that	it’s	kind	of	a
two-level	mapping:

•	There	are	100	buckets
that	make	up	the	first
level,	and	things	are	in
these	buckets	based	on
their	hash.
•	Each	bucket	is	a
DArray	that	contains
HashmapNode	structs
that	are	simply
appended	to	the	end	as
they’re	added.

The	HashmapNode	is	then
composed	of	these	three
elements:

void	*key	The	key	for	this
key=value	pair.

void	*value	The	value.
uint32_t	hash	The
calculated	hash,	which
makes	finding	this	node
quicker.	We	can	just
check	the	hash	and	skip
any	that	don’t	match,
only	checking	the	key	if

it’s	equal.
The	rest	of	the	header	file	is
nothing	new,	so	now	I	can
show	you	the	implementation
hashmap.c	file:

hashmap.c

Click	here	to	view	code	image

		1			#undef	NDEBUG
		2			#include
<stdint.h>
		3			#include

<lcthw/hashmap.h>
		4			#include
<lcthw/dbg.h>
		5			#include
<lcthw/bstrlib.h>
		6
		7			static	int
default_compare(void
*a,	void	*b)
		8			{
		9							return
bstrcmp((bstring)	a,
(bstring)	b);
	10			}
	11
	12			/**
	13				*	Simple	Bob

Jenkins's	hash
algorithm	taken	from
the
	14				*	wikipedia
description.
	15				*/
	16			static	uint32_t
default_hash(void	*a)
	17			{
	18							size_t	len
=	blength((bstring)
a);
	19							char	*key	=
bdata((bstring)	a);
	20							uint32_t
hash	=	0;

	21							uint32_t	i
=	0;
	22
	23							for	(hash	=
i	=	0;	i	<	len;	++i)
{
	24											hash	+=
key[i];
	25											hash	+=
(hash	<<	10);
	26											hash	^=
(hash	>>	6);
	27							}
	28
	29							hash	+=
(hash	<<	3);
	30							hash	^=

(hash	>>	11);
	31							hash	+=
(hash	<<	15);
	32
	33							return
hash;
	34			}
	35
	36			Hashmap
*Hashmap_create(Hashmap_compare
compare,	Hashmap_hash
hash)
	37			{
	38							Hashmap
*map	=	calloc(1,
sizeof(Hashmap));

	39							check_mem(map
	40
	41							map-
>compare	=	compare	==
NULL	?
default_compare	:
compare;
	42							map->hash	=
hash	==	NULL	?
default_hash	:	hash;
	43							map-
>buckets	=
DArray_create(
	44															sizeof
*),
DEFAULT_NUMBER_OF_BUCKETS
	45							map-

>buckets->end	=	map-
>buckets->max;	//
fake	out	expanding	it
	46							check_mem(map
>buckets);
	47
	48							return	map;
	49
	50			error:
	51							if	(map)	{
	52											Hashmap_destroy
	53							}
	54
	55							return
NULL;
	56			}

	57
	58			void
Hashmap_destroy(Hashmap
*	map)
	59			{
	60							int	i	=	0;
	61							int	j	=	0;
	62
	63							if	(map)	{
	64											if
(map->buckets)	{
	65															for
(i	=	0;	i	<
DArray_count(map-
>buckets);	i++)	{
	66																			DArray
*bucket	=

DArray_get(map-
>buckets,	i);
	67																			
(bucket)	{
	68																							
(j	=	0;	j	<
DArray_count(bucket);
j++)	{
	69																											free
j));
	70																							
	71																							DArray_destroy
	72																			
	73															}
	74															DArray_destroy
>buckets);

	75											}
	76
	77											free(map
	78							}
	79			}
	80
	81			static	inline
HashmapNode
*Hashmap_node_create(int
hash,	void	*key,
	82											void
*data)
	83			{
	84							HashmapNode
*node	=	calloc(1,
sizeof(HashmapNode));
	85							check_mem(node

	86
	87							node->key	=
key;
	88							node->data
=	data;
	89							node->hash
=	hash;
	90
	91							return
node;
	92
	93			error:
	94							return
NULL;
	95			}
	96

	97			static	inline
DArray
*Hashmap_find_bucket(Hashmap
*	map,	void	*key,
	98											int
create,
	99											uint32_t
*	hash_out)
100			{
101							uint32_t
hash	=	map-
>hash(key);
102							int
bucket_n	=	hash	%
DEFAULT_NUMBER_OF_BUCKETS
103							check(bucket_n
>=	0,	"Invalid	bucket

found:	%d",
bucket_n);
104							//	store	it
for	the	return	so	the
caller	can	use	it
105							*hash_out	=
hash;
106
107							DArray
*bucket	=
DArray_get(map-
>buckets,	bucket_n);
108
109							if	(!bucket
&&	create)	{
110											//	new

bucket,	set	it	up
111											bucket
=	DArray_create(
112																			
*),
DEFAULT_NUMBER_OF_BUCKETS
113											check_mem
114											DArray_set
>buckets,	bucket_n,
bucket);
115							}
116
117							return
bucket;
118
119			error:
120							return

NULL;
121			}
122
123			int
Hashmap_set(Hashmap	*
map,	void	*key,	void
*data)
124			{
125							uint32_t
hash	=	0;
126							DArray
*bucket	=
Hashmap_find_bucket(map
key,	1,	&hash);
127							check(bucket
"Error	can't	create
bucket.");

128
129							HashmapNode
*node	=
Hashmap_node_create(hash
key,	data);
130							check_mem(node
131
132							DArray_push(
node);
133
134							return	0;
135
136			error:
137							return	-1;
138			}
139

140			static	inline
int
Hashmap_get_node(Hashmap
*	map,	uint32_t	hash,
141											DArray
*	bucket,	void	*key)
142			{
143							int	i	=	0;
144
145							for	(i	=	0;
i	<
DArray_end(bucket);
i++)	{
146											debug("TRY:
%d",	i);
147											HashmapNode
*node	=

DArray_get(bucket,
i);
148											if
(node->hash	==	hash
&&	map->compare(node-
>key,	key)	==	0)	{
149															return
i;
150											}
151							}
152
153							return	-1;
154			}
155
156			void
*Hashmap_get(Hashmap

*	map,	void	*key)
157			{
158							uint32_t
hash	=	0;
159							DArray
*bucket	=
Hashmap_find_bucket(map
key,	0,	&hash);
160							if
(!bucket)	return
NULL;
161
162							int	i	=
Hashmap_get_node(map,
hash,	bucket,	key);
163							if	(i	==
-1)	return	NULL;

164
165							HashmapNode
*node	=
DArray_get(bucket,
i);
166							check(node
!=	NULL,
167															"Failed
to	get	node	from
bucket	when	it	should
exist.");
168
169							return
node->data;
170
171			error:																			

fallthrough
172							return
NULL;
173			}
174
175			int
Hashmap_traverse(Hashmap
*	map,
Hashmap_traverse_cb
traverse_cb)
176			{
177							int	i	=	0;
178							int	j	=	0;
179							int	rc	=	0;
180
181							for	(i	=	0;
i	<	DArray_count(map-

>buckets);	i++)	{
182											DArray
*bucket	=
DArray_get(map-
>buckets,	i);
183											if
(bucket)	{
184															for
(j	=	0;	j	<
DArray_count(bucket);
j++)	{
185																			HashmapNode
*node	=
DArray_get(bucket,
j);
186																			rc

=	traverse_cb(node);
187																			
(rc	!=	0)
188																							
rc;
189															}
190											}
191							}
192
193							return	0;
194			}
195
196			void
*Hashmap_delete(Hashmap
*	map,	void	*key)
197			{
198							uint32_t

hash	=	0;
199							DArray
*bucket	=
Hashmap_find_bucket(map
key,	0,	&hash);
200							if
(!bucket)
201											return
NULL;
202
203							int	i	=
Hashmap_get_node(map,
hash,	bucket,	key);
204							if	(i	==
-1)
205											return

NULL;
206
207							HashmapNode
*node	=
DArray_get(bucket,
i);
208							void	*data
=	node->data;
209							free(node);
210
211							HashmapNode
*ending	=
DArray_pop(bucket);
212
213							if	(ending
!=	node)	{
214											//

alright	looks	like
it's	not	the	last
one,	swap	it
215											DArray_set
i,	ending);
216							}
217
218							return
data;
219			}

There’s	nothing	very
complicated	in	the
implementation,	but	the
default_hash	and
Hashmap_find_bucket

functions	will	need	some
explanation.	When	you	use
Hashmap_create,	you	can
pass	in	any	compare	and	hash
functions	you	want,	but	if	you
don’t,	it	uses	the
default_compare	and
default_hash	functions.
The	first	thing	to	look	at	is
how	default_hash	does
its	thing.	This	is	a	simple
hash	function	called	a	Jenkins
hash	after	Bob	Jenkins.	I	got

the	algorithm	from	the
“Jenkins	hash”	page	on
Wikipedia.	It	simply	goes
through	each	byte	of	the	key
to	hash	(a	bstring),	and	then	it
works	the	bits	so	that	the	end
result	is	a	single	uint32_t.
It	does	this	with	some	adding
and	exclusive	or	(XOR)
operations.
There	are	many	different	hash
functions,	all	with	different
properties,	but	once	you	have

one,	you	need	a	way	to	use	it
to	find	the	right	buckets.	The
Hashmap_find_bucket
does	it	like	this:

•	First,	it	calls	map-
>hash(key)	to	get
the	hash	for	the	key.
•	It	then	finds	the	bucket
using	hash	%
DEFAULT_NUMBER_OF_BUCKETS
so	every	hash	will
always	find	some
bucket	no	matter	how

big	it	is.
•	It	then	gets	the	bucket,
which	is	also	a
DArray,	and	if	it’s	not
there,	it	will	create	the
bucket.	However,	that
depends	on	if	the
create	variable	says
to	do	so.
•	Once	it	has	found	the
DArray	bucket	for	the
right	hash,	it	returns	it,
and	the	hash_out

variable	is	used	to	give
the	caller	the	hash	that
was	found.

All	of	the	other	functions	then
use
Hashmap_find_bucket
to	do	their	work:

•	Setting	a	key/value
involves	finding	the
bucket,	making	a
HashmapNode,	and
then	adding	it	to	the
bucket.

•	Getting	a	key	involves
finding	the	bucket,	and
then	finding	the
HashmapNode	that
matches	the	hash	and
key	that	you	want.
•	Deleting	an	item	finds
the	bucket,	finds	where
the	requested	node	is,
and	then	removes	it	by
swapping	the	last	node
into	its	place.

The	only	other	function	that

you	should	study	is	the
Hashmap_traverse.	This
simply	walks	through	every
bucket,	and	for	any	bucket
that	has	possible	values,	it
calls	the	traverse_cb	on
each	value.	This	is	how	you
scan	a	whole	Hashmap	for
its	values.

The	Unit	Test
Finally,	you	have	the	unit	test
to	test	all	of	these	operations:

hashmap_tests.c

Click	here	to	view	code	image

		1			#include
"minunit.h"
		2			#include
<lcthw/hashmap.h>
		3			#include
<assert.h>
		4			#include
<lcthw/bstrlib.h>
		5
		6			Hashmap	*map	=
NULL;
		7			static	int

traverse_called	=	0;
		8			struct
tagbstring	test1	=
bsStatic("test	data
1");
		9			struct
tagbstring	test2	=
bsStatic("test	data
2");
	10			struct
tagbstring	test3	=
bsStatic("xest	data
3");
	11			struct
tagbstring	expect1	=
bsStatic("THE	VALUE
1");

	12			struct
tagbstring	expect2	=
bsStatic("THE	VALUE
2");
	13			struct
tagbstring	expect3	=
bsStatic("THE	VALUE
3");
	14
	15			static	int
traverse_good_cb(HashmapNode
*	node)
	16			{
	17							debug("KEY:
%s",	bdata((bstring)
node->key));

	18							traverse_called
	19							return	0;
	20			}
	21
	22			static	int
traverse_fail_cb(HashmapNode
*	node)
	23			{
	24							debug("KEY:
%s",	bdata((bstring)
node->key));
	25							traverse_called
	26
	27							if
(traverse_called	==
2)	{

	28											return
1;
	29							}	else	{
	30											return
0;
	31							}
	32			}
	33
	34			char
*test_create()
	35			{
	36							map	=
Hashmap_create(NULL,
NULL);
	37							mu_assert(map
!=	NULL,	"Failed	to
create	map.");

	38
	39							return
NULL;
	40			}
	41
	42			char
*test_destroy()
	43			{
	44							Hashmap_destroy
	45
	46							return
NULL;
	47			}
	48
	49			char
*test_get_set()

	50			{
	51							int	rc	=
Hashmap_set(map,
&test1,	&expect1);
	52							mu_assert(rc
==	0,	"Failed	to	set
&test1");
	53							bstring
result	=
Hashmap_get(map,
&test1);
	54							mu_assert(result
==	&expect1,	"Wrong
value	for	test1.");
	55
	56							rc	=

Hashmap_set(map,
&test2,	&expect2);
	57							mu_assert(rc
==	0,	"Failed	to	set
test2");
	58							result	=
Hashmap_get(map,
&test2);
	59							mu_assert(result
==	&expect2,	"Wrong
value	for	test2.");
	60
	61							rc	=
Hashmap_set(map,
&test3,	&expect3);
	62							mu_assert(rc

==	0,	"Failed	to	set
test3");
	63							result	=
Hashmap_get(map,
&test3);
	64							mu_assert(result
==	&expect3,	"Wrong
value	for	test3.");
	65
	66							return
NULL;
	67			}
	68
	69			char
*test_traverse()
	70			{

	71							int	rc	=
Hashmap_traverse(map,
traverse_good_cb);
	72							mu_assert(rc
==	0,	"Failed	to
traverse.");
	73							mu_assert(traverse_called
==	3,	"Wrong	count
traverse.");
	74
	75							traverse_called
=	0;
	76							rc	=
Hashmap_traverse(map,
traverse_fail_cb);
	77							mu_assert(rc

==	1,	"Failed	to
traverse.");
	78							mu_assert(traverse_called
==	2,	"Wrong	count
traverse	for	fail.");
	79
	80							return
NULL;
	81			}
	82
	83			char
*test_delete()
	84			{
	85							bstring
deleted	=	(bstring)
Hashmap_delete(map,

&test1);
	86							mu_assert(deleted
!=	NULL,	"Got	NULL	on
delete.");
	87							mu_assert(deleted
==	&expect1,	"Should
get	test1");
	88							bstring
result	=
Hashmap_get(map,
&test1);
	89							mu_assert(result
==	NULL,	"Should
delete.");
	90
	91							deleted	=

(bstring)
Hashmap_delete(map,
&test2);
	92							mu_assert(deleted
!=	NULL,	"Got	NULL	on
delete.");
	93							mu_assert(deleted
==	&expect2,	"Should
get	test2");
	94							result	=
Hashmap_get(map,
&test2);
	95							mu_assert(result
==	NULL,	"Should
delete.");
	96

	97							deleted	=
(bstring)
Hashmap_delete(map,
&test3);
	98							mu_assert(deleted
!=	NULL,	"Got	NULL	on
delete.");
	99							mu_assert(deleted
==	&expect3,	"Should
get	test3");
100							result	=
Hashmap_get(map,
&test3);
101							mu_assert(result
==	NULL,	"Should
delete.");

102
103							return
NULL;
104			}
105
106			char
*all_tests()
107			{
108							mu_suite_start
109
110							mu_run_test(
111							mu_run_test(
112							mu_run_test(
113							mu_run_test(
114							mu_run_test(
115

116							return
NULL;
117			}
118
119			RUN_TESTS(all_tests

The	only	thing	to	learn	about
this	unit	test	is	that	at	the	top
I	use	a	feature	of	bstring
to	create	static	strings	to	work
within	the	tests.	I	use	the
tagbstring	and
bsStatic	to	create	them	on
lines	7–13.

How	to	Improve	It
This	is	a	very	simple
implementation	of	Hashmap,
as	are	most	of	the	other	data
structures	in	this	book.	My
goal	isn’t	to	give	you	insanely
great,	hyper-speed,	well-
tuned	data	structures.	Usually
those	are	much	too
complicated	to	discuss	and
only	distract	you	from	the
real,	basic	data	structure	at
work.	My	goal	is	to	give	you

an	understandable	starting
point	to	then	improve	upon	or
better	understand	the
implementation.
In	this	case,	there	are	some
things	you	can	do	with	this
implementation:

•	You	can	use	a	sort	on
each	bucket	so	that
they’re	always	sorted.
This	increases	your
insert	time	but
decreases	your	find

time,	because	you	can
then	use	a	binary	search
to	find	each	node.	Right
now,	it’s	looping
through	all	of	the	nodes
in	a	bucket	just	to	find
one.
•	You	can	dynamically
size	the	number	of
buckets,	or	let	the	caller
specify	the	number	for
each	Hashmap	created.
•	You	can	use	a	better

default_hash.
There	are	tons	of	them.
•	This	(and	nearly	every
Hashmap)	is
vulnerable	to	someone
picking	keys	that	will
fill	only	one	bucket,	and
then	tricking	your
program	into	processing
them.	This	then	makes
your	program	run
slower	because	it
changes	from

processing	a	Hashmap
to	effectively
processing	a	single
DArray.	If	you	sort	the
nodes	in	the	bucket,	this
helps,	but	you	can	also
use	better	hashing
functions,	and	for	the
really	paranoid
programmer,	add	a
random	salt	so	that	keys
can’t	be	predicted.
•	You	could	have	it

delete	buckets	that	are
empty	of	nodes	to	save
space,	or	put	empty
buckets	into	a	cache	so
you	can	save	on	time
lost	creating	and
destroying	them.
•	Right	now,	it	just	adds
elements	even	if	they
already	exist.	Write	an
alternative	set	method
that	only	adds	an
element	if	it	isn’t	set

already.
As	usual,	you	should	go
through	each	function	and
make	it	bulletproof.	The
Hashmap	could	also	use	a
debug	setting	for	doing	an
invariant	check.

Extra	Credit
•	Research	the	Hashmap
implementation	in	your
favorite	programming
language	to	see	what
features	it	has.
•	Find	out	what	the	major
disadvantages	of	a
Hashmap	are	and	how
to	avoid	them.	For
example,	it	doesn’t
preserve	order	without
special	changes,	nor

does	it	work	when	you
need	to	find	things
based	on	parts	of	keys.
•	Write	a	unit	test	that
demonstrates	the	defect
of	filling	a	Hashmap
with	keys	that	land	in
the	same	bucket,	then
test	how	this	impacts
performance.	A	good
way	to	do	this	is	to	just
reduce	the	number	of
buckets	to	something

stupid,	like	five.

Exercise	38.
Hashmap
Algorithms

There	are	three	hash
functions	that	you’ll
implement	in	this	exercise:

FNV-1a	Named	after	the
creators	Glenn	Fowler,
Phong	Vo,	and	Landon
Curt	Noll,	this	hash

produces	good	numbers
and	is	reasonably	fast.

Adler-32	Named	after
Mark	Adler,	this	is	a
horrible	hash	algorithm,
but	it’s	been	around	a
long	time	and	it’s	good
for	studying.

DJB	Hash	This	hash
algorithm	is	attributed
to	Dan	J.	Bernstein
(DJB),	but	it’s	difficult
to	find	his	discussion	of

the	algorithm.	It’s
shown	to	be	fast,	but
possibly	not	great
numbers.

You’ve	already	seen	the
Jenkins	hash	as	the	default
hash	for	the	Hashmap	data
structure,	so	this	exercise	will
be	looking	at	these	three	new
hash	functions.	The	code	for
them	is	usually	small,	and	it’s
not	optimized	at	all.	As	usual,
I’m	going	for	understanding

and	not	blinding	speed.
The	header	file	is	very
simple,	so	I’ll	start	with	that:

hashmap_algos.h

Click	here	to	view	code	image

#ifndef
hashmap_algos_h
#define
hashmap_algos_h

#include	<stdint.h>

uint32_t
Hashmap_fnv1a_hash(void
*data);

uint32_t
Hashmap_adler32_hash(void
*data);

uint32_t
Hashmap_djb_hash(void
*data);

#endif

I’m	just	declaring	the	three
functions	I’ll	implement	in

the	hashmap_algos.c
file:

hashmap_algos.c

Click	here	to	view	code	image

		1			#include
<lcthw/hashmap_algos.h>
		2			#include
<lcthw/bstrlib.h>
		3
		4			//	settings
taken	from
		5			//

http://www.isthe.com/chongo/tech/comp/fnv/index.html#FNV-
param
		6			const	uint32_t
FNV_PRIME	=	16777619;
		7			const	uint32_t
FNV_OFFSET_BASIS	=
2166136261;
		8
		9			uint32_t
Hashmap_fnv1a_hash(void
*data)
	10			{
	11							bstring	s	=
(bstring)	data;
	12							uint32_t
hash	=

FNV_OFFSET_BASIS;
	13							int	i	=	0;
	14
	15							for	(i	=	0;
i	<	blength(s);	i++)
{
	16											hash	^=
bchare(s,	i,	0);
	17											hash	*=
FNV_PRIME;
	18							}
	19
	20							return
hash;
	21			}
	22

	23			const	int
MOD_ADLER	=	65521;
	24
	25			uint32_t
Hashmap_adler32_hash(void
*data)
	26			{
	27							bstring	s	=
(bstring)	data;
	28							uint32_t	a
=	1,	b	=	0;
	29							int	i	=	0;
	30
	31							for	(i	=	0;
i	<	blength(s);	i++)
{

	32											a	=	(a
+	bchare(s,	i,	0))	%
MOD_ADLER;
	33											b	=	(b
+	a)	%	MOD_ADLER;
	34							}
	35
	36							return	(b
<<	16)	|	a;
	37			}
	38
	39			uint32_t
Hashmap_djb_hash(void
*data)
	40			{
	41							bstring	s	=

(bstring)	data;
	42							uint32_t
hash	=	5381;
	43							int	i	=	0;
	44
	45							for	(i	=	0;
i	<	blength(s);	i++)
{
	46											hash	=
((hash	<<	5)	+	hash)
+	bchare(s,	i,	0);	/*
hash	*	33	+	c	*/
	47							}
	48
	49							return
hash;

	50			}

This	file,	then,	has	the	three
hash	algorithms.	You	should
notice	that	I’m	just	using	a
bstring	for	the	key,	but
I’m	using	the	bchare
function	to	get	a	character
from	the	bstring,	but
returning	0	if	that	character	is
outside	the	string’s	length.
Each	of	these	algorithms	are
found	online,	so	go	search	for
them	and	read	about	them.

Again,	I	primarily	used
Wikipedia	and	then	followed
it	to	other	sources.
I	then	have	a	unit	test	that
tests	out	each	algorithm,	but
it	also	tests	whether	it	will
distribute	well	across	a
number	of	buckets:

hashmap_algos_tests.c

Click	here	to	view	code	image

		1			#include

<lcthw/bstrlib.h>
		2			#include
<lcthw/hashmap.h>
		3			#include
<lcthw/hashmap_algos.h>
		4			#include
<lcthw/darray.h>
		5			#include
"minunit.h"
		6
		7			struct
tagbstring	test1	=
bsStatic("test	data
1");
		8			struct
tagbstring	test2	=
bsStatic("test	data

2");
		9			struct
tagbstring	test3	=
bsStatic("xest	data
3");
	10
	11			char
*test_fnv1a()
	12			{
	13							uint32_t
hash	=
Hashmap_fnv1a_hash(&test1
	14							mu_assert(hash
!=	0,	"Bad	hash.");
	15
	16							hash	=
Hashmap_fnv1a_hash(&test2

	17							mu_assert(hash
!=	0,	"Bad	hash.");
	18
	19							hash	=
Hashmap_fnv1a_hash(&test3
	20							mu_assert(hash
!=	0,	"Bad	hash.");
	21
	22							return
NULL;
	23			}
	24
	25			char
*test_adler32()
	26			{
	27							uint32_t

hash	=
Hashmap_adler32_hash(&
	28							mu_assert(hash
!=	0,	"Bad	hash.");
	29
	30							hash	=
Hashmap_adler32_hash(&
	31							mu_assert(hash
!=	0,	"Bad	hash.");
	32
	33							hash	=
Hashmap_adler32_hash(&
	34							mu_assert(hash
!=	0,	"Bad	hash.");
	35
	36							return
NULL;

	37			}
	38
	39			char
*test_djb()
	40			{
	41							uint32_t
hash	=
Hashmap_djb_hash(&test1
	42							mu_assert(hash
!=	0,	"Bad	hash.");
	43
	44							hash	=
Hashmap_djb_hash(&test2
	45							mu_assert(hash
!=	0,	"Bad	hash.");
	46

	47							hash	=
Hashmap_djb_hash(&test3
	48							mu_assert(hash
!=	0,	"Bad	hash.");
	49
	50							return
NULL;
	51			}
	52
	53			#define	BUCKETS
100
	54			#define
BUFFER_LEN	20
	55			#define
NUM_KEYS	BUCKETS	*
1000
	56			enum	{

ALGO_FNV1A,
ALGO_ADLER32,
ALGO_DJB	};
	57
	58			int
gen_keys(DArray	*
keys,	int	num_keys)
	59			{
	60							int	i	=	0;
	61							FILE	*urand
=
fopen("/dev/urandom",
"r");
	62							check(urand
!=	NULL,	"Failed	to
open	/dev/urandom");

	63
	64							struct
bStream	*stream	=
bsopen((bNread)
fread,	urand);
	65							check(stream
!=	NULL,	"Failed	to
open	/dev/urandom");
	66
	67							bstring	key
=	bfromcstr("");
	68							int	rc	=	0;
	69
	70							//	FNV1a
histogram
	71							for	(i	=	0;
i	<	num_keys;	i++)	{

	72											rc	=
bsread(key,	stream,
BUFFER_LEN);
	73											check(rc
>=	0,	"Failed	to	read
from	/dev/urandom.");
	74
	75											DArray_push
bstrcpy(key));
	76							}
	77
	78							bsclose(stream
	79							fclose(urand
	80							return	0;
	81
	82			error:

	83							return	-1;
	84			}
	85
	86			void
destroy_keys(DArray	*
keys)
	87			{
	88							int	i	=	0;
	89							for	(i	=	0;
i	<	NUM_KEYS;	i++)	{
	90											bdestroy
i));
	91							}
	92
	93							DArray_destroy
	94			}
	95

	96			void
fill_distribution(int
*stats,	DArray	*
keys,
	97											Hashmap_hash
hash_func)
	98			{
	99							int	i	=	0;
100							uint32_t
hash	=	0;
101
102							for	(i	=	0;
i	<
DArray_count(keys);
i++)	{
103											hash	=

hash_func(DArray_get(keys
i));
104											stats[hash
%	BUCKETS]	+=	1;
105							}
106
107			}
108
109			char
*test_distribution()
110			{
111							int	i	=	0;
112							int
stats[3][BUCKETS]	=	{
{0}	};
113							DArray
*keys	=

DArray_create(0,
NUM_KEYS);
114
115							mu_assert(gen_keys
NUM_KEYS)	==	0,
116															"Failed
to	generate	random
keys.");
117
118							fill_distribution
keys,
Hashmap_fnv1a_hash);
119							fill_distribution
keys,
Hashmap_adler32_hash);
120							fill_distribution

keys,
Hashmap_djb_hash);
121
122							fprintf(stderr
"FNV\tA32\tDJB\n");
123
124							for	(i	=	0;
i	<	BUCKETS;	i++)	{
125											fprintf(
"%d\t%d\t%d\n",
126																			stats
[i],
127																			stats
[i],	stats[ALGO_DJB]
[i]);
128							}
129

130							destroy_keys
131
132							return
NULL;
133			}
134
135			char
*all_tests()
136			{
137							mu_suite_start
138
139							mu_run_test(
140							mu_run_test(
141							mu_run_test(
142							mu_run_test(
143

144							return
NULL;
145			}
146
147			RUN_TESTS(all_tests

I	have	the	number	of
BUCKETS	in	this	code	set
fairly	high,	since	I	have	a	fast
enough	computer,	but	if	it
runs	slow,	just	lower	it	and
NUM_KEYS.	What	this	test
lets	me	do	is	run	the	test	and
then	look	at	the	distribution
of	keys	for	each	hash	function

using	a	bit	of	analysis	with	a
language	called	R.
I	do	this	by	crafting	a	big	list
of	keys	using	the	gen_keys
function.	These	keys	are
taken	out	of	the
/dev/urandom	device	and
are	random	byte	keys.	I	then
use	these	keys	to	have	the
fill_distribution
function	fill	up	the	stats
array	with	where	those	keys
would	hash	in	a	theoretical

set	of	buckets.	All	this
function	does	is	go	through
all	of	the	keys,	do	the	hash,
then	do	what	the	Hashmap
would	do	to	find	its	bucket.
Finally,	I’m	simply	printing
out	a	three-column	table	with
the	final	count	for	each
bucket,	showing	how	many
keys	managed	to	get	into	each
bucket	randomly.	I	can	then
look	at	these	numbers	to	see
if	the	hash	functions	are

distributing	keys	evenly.

What	You	Should
See
Teaching	you	R	is	outside	the
scope	of	this	book,	but	if	you
want	to	get	it	and	try	this,	it
can	be	found	at	www.r-
project.org.
Here	is	an	abbreviated	shell
session	that	shows	me
running
tests/hashmap_algos_test

http://www.r-project.org

to	get	the	table	produced	by
test_distribution	(not
shown	here),	and	then	using
R	to	see	what	the	summary
statistics	are.

Exercise	38	Session

Click	here	to	view	code	image

$
tests/hashmap_algos_tests
#	copy-paste	the
table	it	prints	out
$	vim	hash.txt

$	R
>	hash	<-
read.table("hash.txt",
header=T)
>	summary(hash)
						FNV												A32														DJB
	Min.			:
945			Min.			:
908.0			Min.			:	927
	1st	Qu.:	980			1st
Qu.:	980.8			1st	Qu.:
979
	Median	:
998			Median
:1000.0			Median	:
998

	Mean			:1000			Mean			:1000.0			Mean			:1000
	3rd	Qu.:1016			3rd
Qu.:1019.2			3rd
Qu.:1021
	Max.			:1072			Max.			:1075.0			Max.			:1082
>

First,	I	just	run	the	test,	which
on	your	screen	will	print	the
table.	Then,	I	just	copy-paste
it	out	of	my	terminal	and	use
vim	hash.txt	to	save	the
data.	If	you	look	at	the	data,	it
has	the	header	FNV	A32
DJB	for	each	of	the	three

algorithms.
Secondly,	I	run	R	and	load
the	data	using	the
read.table	command.
This	is	a	smart	function	that
works	with	this	kind	of	tab-
delimited	data,	and	I	only
have	to	tell	it	header=T	for
it	to	know	that	the	data	has	a
header.
Finally,	I	have	the	data
loaded	and	can	use	summary
to	print	out	its	summary

statistics	for	each	column.
Here	you	can	see	that	each
function	actually	does	alright
with	this	random	data.	Here’s
what	each	of	these	rows
means:

Min.	This	is	the	minimum
value	found	for	the	data
in	that	column.	FNV-
la	seems	to	win	on	this
run	since	it	has	the
largest	number,
meaning	it	has	a	tighter

range	at	the	low	end.
1st	Qu.	This	is	the	point
where	the	first	quarter
of	the	data	ends.

Median	This	is	the
number	that’s	in	the
middle	if	you	sorted
them.	Median	is	most
useful	when	compared
to	mean.

Mean	Mean	is	the	average
most	people	think	of,
and	it’s	the	sum	divided

by	the	count	of	the	data.
If	you	look,	all	of	them
are	1,000,	which	is
great.	If	you	compare
this	to	the	median,	you
see	that	all	three	have
really	close	medians	to
the	mean.	What	this
means	is	the	data	isn’t
skewed	in	one
direction,	so	you	can
trust	the	mean.

3rd	Qu.	This	is	the	point

where	the	last	quarter	of
the	data	starts	and
represents	the	tail	end
of	the	numbers.

Max.	This	is	the
maximum	number	of
the	data,	and	presents
the	upper	bound	on	all
of	them.

Looking	at	this	data,	you	see
that	all	of	these	hashes	seem
to	do	well	on	random	keys,
and	the	means	match	the

NUM_KEYS	setting	that	I
made.	What	I’m	looking	for
is	this:	If	I	make	1,000	keys
per	bucket	(BUCKETS	×
1000),	then	on	average	each
bucket	should	have	1,000
keys	in	it.	If	the	hash	function
isn’t	working,	then	you’ll	see
these	summary	statistics	show
a	mean	that’s	not	1,000,	and
really	high	ranges	at	the	first
and	third	quarters.	A	good
hash	function	should	have	a
dead-on	1,000	mean,	and	as

tight	a	range	as	possible.
You	should	also	know	that
you’ll	get	different	numbers
from	mine,	and	even	between
different	runs	of	this	unit	test.

How	to	Break	It
I’m	finally	going	to	have	you
do	some	breaking	in	this
exercise.	I	want	you	to	write
the	worst	hash	function	you
can,	and	then	use	the	data	to
prove	that	it’s	really	bad.	You
can	use	R	to	do	the	statistics,
just	like	I	did,	but	maybe	you
have	another	tool	that	you	can
use	to	give	you	the	same
summary	statistics.
The	goal	is	to	make	a	hash

function	that	seems	normal	to
an	untrained	eye,	but	when
actually	run,	it	has	a	bad
mean	and	is	all	over	the
place.	That	means	you	can’t
just	have	it	return	1.	You
have	to	give	a	stream	of
numbers	that	seem	alright	but
aren’t,	and	they’re	loading	up
some	buckets	too	much.
Extra	points	if	you	can	make
a	minimal	change	to	one	of
the	four	hash	algorithms	that	I

gave	you	to	do	this.
The	purpose	of	this	exercise
is	to	imagine	that	some
friendly	coder	comes	to	you
and	offers	to	improve	your
hash	function,	but	actually
just	makes	a	nice	little	back
door	that	really	screws	up
your	Hashmap.
As	the	Royal	Society	says,
“Nullius	in	verba.”

Extra	Credit
•	Take	the
default_hash	out
of	the	hashmap.c,
make	it	one	of	the
algorithms	in
hashmap_algos.c,
and	then	make	all	of	the
tests	work	again.
•	Add	the
default_hash	to	the
hashmap_algos_tests.c
test	and	compare	its

statistics	to	the	other
hash	functions.
•	Find	a	few	more	hash
functions	and	add	them,
too.	You	can	never	have
too	many	hash
functions!

Exercise	39.
String
Algorithms

In	this	exercise,	I’m	going	to
show	you	a	supposedly	faster
string	search	algorithm,
called	binstr,	and	compare
it	to	the	one	that	exists	in
bstrlib.c.	The
documentation	for	binstr

says	that	it	uses	a	simple
“brute	force”	string	search	to
find	the	first	instance.	The
one	that	I’ll	implement	will
use	the	Boyer-Moore-
Horspool	(BMH)	algorithm,
which	is	supposed	to	be	faster
if	you	analyze	the	theoretical
time.	Assuming	my
implementation	isn’t	flawed,
you’ll	see	that	the	practical
time	for	BMH	is	much	worse
than	the	simple	brute	force	of
binstr.

The	point	of	this	exercise
isn’t	really	to	explain	the
algorithm,	because	it’s	simple
enough	for	you	to	read	the
“Boyer-Moore-Horspool
algorithm”	page	on
Wikipedia.	The	gist	of	this
algorithm	is	that	it	calculates
a	skip	characters	list	as	a	first
operation,	then	it	uses	this	list
to	quickly	scan	through	the
string.	It’s	supposed	to	be
faster	than	brute	force,	so

let’s	get	the	code	into	the
right	files	and	see.
First,	I	have	the	header:

string_algos.h

Click	here	to	view	code	image

#ifndef
string_algos_h
#define
string_algos_h

#include
<lcthw/bstrlib.h>

#include
<lcthw/darray.h>

typedef	struct
StringScanner	{
				bstring	in;
				const	unsigned
char	*haystack;
				ssize_t	hlen;
				const	unsigned
char	*needle;
				ssize_t	nlen;
				size_t
skip_chars[UCHAR_MAX
+	1];
}	StringScanner;

int
String_find(bstring
in,	bstring	what);

StringScanner
*StringScanner_create(
in);

int
StringScanner_scan(StringScanner
*	scan,	bstring
tofind);

void
StringScanner_destroy(
*	scan);

#endif

In	order	to	see	the	effects	of
this	skip	characters	list,	I’m
going	to	make	two	versions
of	the	BMH	algorithm:

String_find	This	simply
finds	the	first	instance
of	one	string	in	another,
doing	the	entire
algorithm	in	one	shot.

StringScanner_scan	This
uses	a

StringScanner
state	structure	to
separate	the	skip	list
build	from	the	actual
find.	This	will	let	me
see	what	impact	that
has	on	performance.
This	model	also	gives
me	the	advantage	of
incrementally	scanning
for	one	string	in	another
and	quickly	finding	all
instances.

Once	you	have	that,	here’s
the	implementation:

string_algos.c

Click	here	to	view	code	image

		1			#include
<lcthw/string_algos.h>
		2			#include
<limits.h>
		3
		4			static	inline
void
String_setup_skip_chars

*	skip_chars,
		5											const
unsigned	char
*needle,
		6											ssize_t
nlen)
		7			{
		8							size_t	i	=
0;
		9							size_t	last
=	nlen	-	1;
	10
	11							for	(i	=	0;
i	<	UCHAR_MAX	+	1;
i++)	{
	12											skip_chars

=	nlen;
	13							}
	14
	15							for	(i	=	0;
i	<	last;	i++)	{
	16											skip_chars
=	last	-	i;
	17							}
	18			}
	19
	20			static	inline
const	unsigned	char
*String_base_search(const
unsigned
	21											char
*haystack,

	22											ssize_t
hlen,
	23											const
unsigned
	24											char
*needle,
	25											ssize_t
nlen,
	26											size_t
*
	27											skip_chars
	28			{
	29							size_t	i	=
0;
	30							size_t	last
=	nlen	-	1;

	31
	32							assert(haystack
!=	NULL	&&	"Given	bad
haystack	to
search.");
	33							assert(needle
!=	NULL	&&	"Given	bad
needle	to	search
for.");
	34
	35							check(nlen
>	0,	"nlen	can't	be
<=	0");
	36							check(hlen
>	0,	"hlen	can't	be
<=	0");

	37
	38							while	(hlen
>=	nlen)	{
	39											for	(i
=	last;	haystack[i]
==	needle[i];	i--)	{
	40															if
(i	==	0)	{
	41																			
haystack;
	42															}
	43											}
	44
	45											hlen	-=
skip_chars[haystack[last
	46											haystack

+=
skip_chars[haystack[last
	47							}
	48
	49			error:																			
fallthrough
	50							return
NULL;
	51			}
	52
	53			int
String_find(bstring
in,	bstring	what)
	54			{
	55							const
unsigned	char	*found

=	NULL;
	56
	57							const
unsigned	char
*haystack	=	(const
unsigned	char
*)bdata(in);
	58							ssize_t
hlen	=	blength(in);
	59							const
unsigned	char	*needle
=	(const	unsigned
char	*)bdata(what);
	60							ssize_t
nlen	=	blength(what);
	61							size_t

skip_chars[UCHAR_MAX
+	1]	=	{	0	};
	62
	63							String_setup_skip_chars
needle,	nlen);
	64
	65							found	=
String_base_search(haystack
hlen,
	66																				needle
nlen,	skip_chars);
	67
	68							return
found	!=	NULL	?	found
-	haystack	:	-1;
	69			}

	70
	71			StringScanner
*StringScanner_create(
in)
	72			{
	73							StringScanner
*scan	=	calloc(1,
sizeof(StringScanner));
	74							check_mem(scan
	75
	76							scan->in	=
in;
	77							scan-
>haystack	=	(const
unsigned	char
*)bdata(in);

	78							scan->hlen
=	blength(in);
	79
	80							assert(scan
!=	NULL	&&	"fuck");
	81							return
scan;
	82
	83			error:
	84							free(scan);
	85							return
NULL;
	86			}
	87
	88			static	inline
void

StringScanner_set_needle
*	scan,
	89											bstring
tofind)
	90			{
	91							scan-
>needle	=	(const
unsigned	char
*)bdata(tofind);
	92							scan->nlen
=	blength(tofind);
	93
	94							String_setup_skip_chars
>skip_chars,	scan-
>needle,	scan->nlen);
	95			}

	96
	97			static	inline
void
StringScanner_reset(StringScanner
*	scan)
	98			{
	99							scan-
>haystack	=	(const
unsigned	char
*)bdata(scan->in);
100							scan->hlen
=	blength(scan->in);
101			}
102
103			int
StringScanner_scan(StringScanner

*	scan,	bstring
tofind)
104			{
105							const
unsigned	char	*found
=	NULL;
106							ssize_t
found_at	=	0;
107
108							if	(scan-
>hlen	<=	0)	{
109											StringScanner_reset
110											return
-1;
111							}
112

113							if	((const
unsigned	char
*)bdata(tofind)	!=
scan->needle)	{
114											StringScanner_set_needle
tofind);
115							}
116
117							found	=
String_base_search(scan
>haystack,	scan-
>hlen,
118															scan
>needle,	scan->nlen,
119															scan
>skip_chars);

120
121							if	(found)
{
122											found_at
=	found	-	(const
unsigned	char
*)bdata(scan->in);
123											scan-
>haystack	=	found	+
scan->nlen;
124											scan-
>hlen	-=	found_at	-
scan->nlen;
125							}	else	{
126											//
done,	reset	the	setup

127											StringScanner_reset
128											found_at
=	-1;
129							}
130
131							return
found_at;
132			}
133
134			void
StringScanner_destroy(
*	scan)
135			{
136							if	(scan)	{
137											free(scan
138							}

139			}

The	entire	algorithm	is	in	two
static	inline	functions
called
String_setup_skip_chars
and
String_base_search.
These	are	then	used	in	the
other	functions	to	actually
implement	the	searching
styles	I	want.	Study	these	first
two	functions	and	compare
them	to	the	Wikipedia

description	so	that	you	know
what’s	going	on.
The	String_find	then	just
uses	these	two	functions	to	do
a	find	and	return	the	position
found.	It’s	very	simple,	and
I’ll	use	it	to	see	how	this
build	skip_chars	phase
impacts	real,	practical
performance.	Keep	in	mind
that	you	could	maybe	make
this	faster,	but	I’m	teaching
you	how	to	confirm

theoretical	speed	after	you
implement	an	algorithm.
The
StringScanner_scan
function	then	follows	the
common	pattern	I	use	of
create,	scan,	and	destroy,	and
is	used	to	incrementally	scan
a	string	for	another	string.
You’ll	see	how	this	is	used
when	I	show	you	the	unit	test
that	will	test	this	out.
Finally,	I	have	the	unit	test

that	first	confirms	that	this	is
all	working,	then	it	runs
simple	performance	tests	for
all	three,	finding	algorithms
in	a	commented	out	section.

string_algos_tests.c

Click	here	to	view	code	image

		1			#include
"minunit.h"
		2			#include
<lcthw/string_algos.h>
		3			#include

<lcthw/bstrlib.h>
		4			#include
<time.h>
		5
		6			struct
tagbstring	IN_STR	=
bsStatic(
		7											"I	have
ALPHA	beta	ALPHA	and
oranges	ALPHA");
		8			struct
tagbstring	ALPHA	=
bsStatic("ALPHA");
		9			const	int
TEST_TIME	=	1;
	10

	11			char
*test_find_and_scan()
	12			{
	13							StringScanner
*scan	=
StringScanner_create(&
	14							mu_assert(scan
!=	NULL,	"Failed	to
make	the	scanner.");
	15
	16							int	find_i
=
String_find(&IN_STR,
&ALPHA);
	17							mu_assert(find_i
>	0,	"Failed	to	find

'ALPHA'	in	test
string.");
	18
	19							int	scan_i
=
StringScanner_scan(scan
&ALPHA);
	20							mu_assert(scan_i
>	0,	"Failed	to	find
'ALPHA'	with	scan.");
	21							mu_assert(scan_i
==	find_i,	"find	and
scan	don't	match");
	22
	23							scan_i	=
StringScanner_scan(scan

&ALPHA);
	24							mu_assert(scan_i
>	find_i,
	25															"should
find	another	ALPHA
after	the	first");
	26
	27							scan_i	=
StringScanner_scan(scan
&ALPHA);
	28							mu_assert(scan_i
>	find_i,
	29															"should
find	another	ALPHA
after	the	first");
	30

	31							mu_assert(StringScanner_scan
&ALPHA)	==	-1,
	32															"shouldn't
find	it");
	33
	34							StringScanner_destroy
	35
	36							return
NULL;
	37			}
	38
	39			char
*test_binstr_performance
	40			{
	41							int	i	=	0;
	42							int

found_at	=	0;
	43							unsigned
long	find_count	=	0;
	44							time_t
elapsed	=	0;
	45							time_t
start	=	time(NULL);
	46
	47							do	{
	48											for	(i
=	0;	i	<	1000;	i++)	{
	49															found_at
=	binstr(&IN_STR,	0,
&ALPHA);
	50															mu_assert
!=	BSTR_ERR,	"Failed
to	find!");

	51															find_count
	52											}
	53
	54											elapsed
=	time(NULL)	-	start;
	55							}	while
(elapsed	<=
TEST_TIME);
	56
	57							debug("BINSTR
COUNT:	%lu,	END	TIME:
%d,	OPS:	%f",
	58															find_count
(int)elapsed,
(double)find_count	/
elapsed);

	59							return
NULL;
	60			}
	61
	62			char
*test_find_performance
	63			{
	64							int	i	=	0;
	65							int
found_at	=	0;
	66							unsigned
long	find_count	=	0;
	67							time_t
elapsed	=	0;
	68							time_t
start	=	time(NULL);

	69
	70							do	{
	71											for	(i
=	0;	i	<	1000;	i++)	{
	72															found_at
=
String_find(&IN_STR,
&ALPHA);
	73															find_count
	74											}
	75
	76											elapsed
=	time(NULL)	-	start;
	77							}	while
(elapsed	<=
TEST_TIME);

	78
	79							debug("FIND
COUNT:	%lu,	END	TIME:
%d,	OPS:	%f",
	80															find_count
(int)elapsed,
(double)find_count	/
elapsed);
	81
	82							return
NULL;
	83			}
	84
	85			char
*test_scan_performance
	86			{

	87							int	i	=	0;
	88							int
found_at	=	0;
	89							unsigned
long	find_count	=	0;
	90							time_t
elapsed	=	0;
	91							StringScanner
*scan	=
StringScanner_create(&
	92
	93							time_t
start	=	time(NULL);
	94
	95							do	{
	96											for	(i

=	0;	i	<	1000;	i++)	{
	97															found_at
=	0;
	98
	99															do
{
100																			found_at
=
StringScanner_scan(scan
&ALPHA);
101																			find_count
102															}
while	(found_at	!=
-1);
103											}
104

105											elapsed
=	time(NULL)	-	start;
106							}	while
(elapsed	<=
TEST_TIME);
107
108							debug("SCAN
COUNT:	%lu,	END	TIME:
%d,	OPS:	%f",
109															find_count
(int)elapsed,
(double)find_count	/
elapsed);
110
111							StringScanner_destroy
112

113							return
NULL;
114			}
115
116			char
*all_tests()
117			{
118							mu_suite_start
119
120							mu_run_test(
121
122							//	this	is
an	idiom	for
commenting	out
sections	of	code
123			#if	0

124							mu_run_test(test_scan_performance);
125							mu_run_test(test_find_performance);
126							mu_run_test(test_binstr_performance);
127			#endif
128
129							return
NULL;
130			}
131
132			RUN_TESTS(all_tests

I	have	it	written	here	with
#if	0,	which	is	a	way	to	use
the	CPP	to	comment	out	a
section	of	code.	Type	it	in
like	this,	and	then	remove	it

and	the	#endif	so	that	you
can	see	these	performance
tests	run.	As	you	continue
with	the	book,	simply
comment	these	out	so	that	the
test	doesn’t	waste
development	time.
There’s	nothing	amazing	in
this	unit	test;	it	just	runs	each
of	the	different	functions	in
loops	that	last	long	enough	to
get	a	few	seconds	of
sampling.	The	first	test

(test_find_and_scan)
just	confirms	that	what	I’ve
written	works,	because
there’s	no	point	in	testing	the
speed	of	something	that
doesn’t	work.	Then,	the	next
three	functions	run	a	large
number	of	searches,	using
each	of	the	three	functions.
The	trick	to	notice	is	that	I
grab	the	starting	time	in
start,	and	then	I	loop	until
at	least	TEST_TIME	seconds

have	passed.	This	makes	sure
that	I	get	enough	samples	to
work	with	while	comparing
the	three.	I’ll	then	run	this	test
with	different	TEST_TIME
settings	and	analyze	the
results.

What	You	Should
See
When	I	run	this	test	on	my
laptop,	I	get	numbers	that
look	like	this:

Exercise	39.1
Session

Click	here	to	view	code	image

$
./tests/string_algos_tests
DEBUG
tests/string_algos_tests.c:124:
-----	RUNNING:
				./tests/string_algos_tests

RUNNING:
./tests/string_algos_tests
DEBUG
tests/string_algos_tests.c:116:

test_find_and_scan
DEBUG
tests/string_algos_tests.c:117:

test_scan_performance
DEBUG
tests/string_algos_tests.c:105:
SCAN	COUNT:\
										110272000,
END	TIME:	2,	OPS:
55136000.000000
DEBUG
tests/string_algos_tests.c:118:

test_find_performance

DEBUG
tests/string_algos_tests.c:76:
FIND	COUNT:\
										12710000,
END	TIME:	2,	OPS:
6355000.000000
DEBUG
tests/string_algos_tests.c:119:

test_binstr_performance
DEBUG
tests/string_algos_tests.c:54:
BINSTR	COUNT:\
										72736000,
END	TIME:	2,	OPS:
36368000.000000
ALL	TESTS	PASSED

Tests	run:	4
$

I	look	at	this	and	I	want	to	do
more	than	2	seconds	for	each
run.	I	want	to	run	this	many
times,	and	then	use	R	to
check	it	out	like	I	did	before.
Here’s	what	I	get	for	ten
samples	for	about	10	seconds
each:

scan	find	binstr
71195200	6353700
37110200

75098000	6358400
37420800
74910000	6351300
37263600
74859600	6586100
37133200
73345600	6365200
37549700
74754400	6358000
37162400
75343600	6630400
37075000
73804800	6439900
36858700
74995200	6384300
36811700
74781200	6449500

37383000

The	way	I	got	this	is	using	a
little	bit	of	shell	help,	and
then	editing	the	output:

Exercise	39.2
Session

Click	here	to	view	code	image

$	for	i	in	1	2	3	4	5
6	7	8	9	10
>	do	echo	"RUN	---
$i"	>>	times.log

>
./tests/string_algos_tests
2>&1	|	grep	COUNT	>>
times.log
>	done
$	less	times.log
$	vim	times.log

Right	away,	you	can	see	that
the	scanning	system	beats	the
pants	off	both	of	the	others,
but	I’ll	open	this	in	R	and
confirm	the	results:

Exercise	39.3
Session

Click	here	to	view	code	image

>	times	<-
read.table("times.log"
header=T)
>	summary(times)
						scan															
	Min.			:71195200			Min.			:6351300			Min.			:36811700
	1st
Qu.:74042200			1st
Qu.:6358100			1st
Qu.:37083800
	Median

:74820400			Median
:6374750			Median
:37147800
	Mean			:74308760			Mean			:6427680			Mean			:37176830
	3rd
Qu.:74973900			3rd
Qu.:6447100			3rd
Qu.:37353150
	Max.			:75343600			Max.			:6630400			Max.			:37549700
>

To	understand	why	I’m
getting	the	summary
statistics,	I	have	to	explain
some	statistics	for	you.	What
I’m	looking	for	in	these

numbers	is	simply	this:	“Are
these	three	functions	(scan,
find,	bsinter)	actually
different?”	I	know	that	each
time	I	run	my	tester	function,
I	get	slightly	different
numbers,	and	those	numbers
can	cover	a	certain	range.
You	see	here	that	the	first	and
third	quarters	do	that	for	each
sample.
What	I	look	at	first	is	the
mean,	and	I	want	to	see	if

each	sample’s	mean	is
different	from	the	others.	I
can	see	that,	and	clearly	the
scan	beats	binstr,	which
also	beats	find.	However,	I
have	a	problem.	If	I	use	just
the	mean,	there’s	a	chance
that	the	ranges	of	each
sample	might	overlap.
What	if	I	have	means	that	are
different,	but	the	first	and
third	quarters	overlap?	In	that
case,	I	could	say	that	if	I	ran

the	samples	again	there’s	a
chance	that	the	means	might
not	be	different.	The	more
overlap	I	have	in	the	ranges,
the	higher	probability	that	my
two	samples	(and	my	two
functions)	are	not	actually
different.	Any	difference	that
I’m	seeing	in	the	two	(in	this
case	three)	is	just	random
chance.
There	are	many	tools	that	you
can	use	to	solve	this	problem,

but	in	our	case,	I	can	just	look
at	the	first	and	third	quarters
and	the	mean	for	all	three
samples.	If	the	means	are
different,	and	the	quarters	are
way	off	with	no	possibility	of
overlapping,	then	it’s	alright
to	say	that	they	are	different.
In	my	three	samples,	I	can
say	that	scan,	find,	and
binstr	are	different,	don’t
overlap	in	range,	and	I	can
trust	the	sample	(for	the	most

part).

Analyzing	the	Results
Looking	at	the	results,	I	can
see	that	String_find	is
much	slower	than	the	other
two.	In	fact,	it’s	so	slow	that
I’d	think	there’s	something
wrong	with	how	I
implemented	it.	However,
when	I	compare	it	to
StringScanner_scan,	I
can	see	that	it’s	most	likely

the	part	that	builds	the	skip
list	that’s	costing	the	time.
Not	only	is	find	slower,	it’s
also	doing	less	than	scan
because	it’s	just	finding	the
first	string	while	scan	finds
all	of	them.
I	can	also	see	that	scan	beats
binstr,	as	well,	and	by
quite	a	large	margin.	Again,
not	only	does	scan	do	more
than	both	of	these,	but	it’s
also	much	faster.

There	are	a	few	caveats	with
this	analysis:

•	I	may	have	messed	up
this	implementation	or
the	test.	At	this	point	I
would	go	research	all	of
the	possible	ways	to	do
a	BMH	algorithm	and
try	to	improve	it.	I
would	also	confirm	that
I’m	doing	the	test	right.
•	If	you	alter	the	time	the
test	runs,	you’ll	get

different	results.	There
is	a	warm-up	period
that	I’m	not
investigating.
•	The
test_scan_performance
unit	test	isn’t	quite	the
same	as	the	others,	but
it’s	doing	more	than	the
other	tests,	so	it’s
probably	alright.
•	I’m	only	doing	the	test
by	searching	for	one

string	in	another.	I
could	randomize	the
strings	to	find	their
position	and	length	as	a
confounding	factor.
•	Maybe	binstr	is
implemented	better	than
simple	brute	force.
•	I	could	be	running	these
in	an	unfortunate	order.
Maybe	randomizing
which	test	runs	first	will
give	better	results.

One	thing	to	gather	from	this
is	that	you	need	to	confirm
real	performance	even	if	you
implement	an	algorithm
correctly.	In	this	case,	the
claim	is	that	the	BMH
algorithm	should	have	beaten
the	binstr	algorithm,	but	a
simple	test	proved	it	didn’t.
Had	I	not	done	this,	I	would
have	been	using	an	inferior
algorithm	implementation
without	knowing	it.	With
these	metrics,	I	can	start	to

tune	my	implementation,	or
simply	scrap	it	and	find
another	one.

Extra	Credit
•	See	if	you	can	make	the
Scan_find	faster.
Why	is	my
implementation	here
slow?
•	Try	some	different	scan
times	and	see	if	you	get
different	numbers.

What	impact	does	the
length	of	time	that	you
run	the	test	have	on	the
scan	times?	What	can
you	say	about	that
result?
•	Alter	the	unit	test	so
that	it	runs	each
function	for	a	short
burst	in	the	beginning
to	clear	out	any	warm-
up	period,	and	then	start
the	timing	portion.

Does	that	change	the
dependence	on	the
length	of	time	the	test
runs?	Does	it	change
how	many	operations
per	second	are	possible?
•	Make	the	unit	test
randomize	the	strings	to
find	and	then	measure
the	performance	you
get.	One	way	to	do	this
is	to	use	the	bsplit
function	from

bstrlib.h	to	split
the	IN_STR	on	spaces.
Then,	you	can	use	the
bstrList	struct	that
you	get	to	access	each
string	it	returns.	This
will	also	teach	you	how
to	use	bstrList
operations	for	string
processing.
•	Try	some	runs	with	the
tests	in	different	orders
to	see	if	you	get

different	results.

Exercise	40.
Binary	Search
Trees

The	binary	tree	is	the	simplest
tree-based	data	structure,	and
even	though	it’s	been
replaced	by	hash	maps	in
many	languages,	it’s	still
useful	for	many	applications.
Variants	on	the	binary	tree

exist	for	very	useful	things
like	database	indexes,	search
algorithm	structures,	and
even	graphics.
I’m	calling	my	binary	tree	a
BSTree	for	binary	search
tree,	and	the	best	way	to
describe	it	is	that	it’s	another
way	to	do	a	Hashmap	style
key/value	store.	The
difference	is	that	instead	of
hashing	the	key	to	find	a
location,	the	BSTree

compares	the	key	to	nodes	in
a	tree,	and	then	walks	through
the	tree	to	find	the	best	place
to	store	it,	based	on	how	it
compares	to	other	nodes.
Before	I	really	explain	how
this	works,	let	me	show	you
the	bstree.h	header	file	so
that	you	can	see	the	data
structures,	and	then	I	can	use
that	to	explain	how	it’s	built.

bstree.h

Click	here	to	view	code	image

#ifndef
_lcthw_BSTree_h
#define
_lcthw_BSTree_h

typedef	int
(*BSTree_compare)
(void	*a,	void	*b);

typedef	struct
BSTreeNode	{
				void	*key;
				void	*data;

				struct	BSTreeNode
*left;
				struct	BSTreeNode
*right;
				struct	BSTreeNode
*parent;
}	BSTreeNode;

typedef	struct	BSTree
{
				int	count;
				BSTree_compare
compare;
				BSTreeNode	*root;
}	BSTree;

typedef	int

(*BSTree_traverse_cb)
(BSTreeNode	*	node);

BSTree
*BSTree_create(BSTree_compare
compare);
void
BSTree_destroy(BSTree
*	map);

int	BSTree_set(BSTree
*	map,	void	*key,
void	*data);
void
*BSTree_get(BSTree	*
map,	void	*key);

int
BSTree_traverse(BSTree
*	map,
BSTree_traverse_cb
traverse_cb);

void
*BSTree_delete(BSTree
*	map,	void	*key);

#endif

This	follows	the	same	pattern
that	I’ve	been	using	this
whole	time	where	I	have	a

base	container	named
BSTree,	which	has	nodes
named	BSTreeNode	that
make	up	the	actual	contents.
Bored	yet?	Good,	there’s	no
reason	to	be	clever	with	this
kind	of	structure.
The	important	thing	is	how
the	BSTreeNode	is
configured,	and	how	it	gets
used	to	do	each	operation:
set,	get,	and	delete.	I’ll
cover	get	first	since	it’s	the

easiest	operation,	and	I’ll
pretend	I’m	doing	it	manually
against	the	data	structure:

•	I	take	the	key	you’re
looking	for	and	I	start	at
the	root.	First	thing	I	do
is	compare	your	key
with	that	node’s	key.
•	If	your	key	is	less	than
the	node.key,	then	I
traverse	down	the	tree
using	the	left	pointer.
•	If	your	key	is	greater

than	the	node.key,
then	I	go	down	with
right.
•	I	repeat	steps	2	and	3
until	I	either	find	a
matching	node.key	or
get	to	a	node	that	has	no
left	and	right.	In	the
first	case,	I	return	the
node.data.	In	the
second,	I	return	NULL.

That’s	all	there	is	to	get,	so
now	on	to	set.	It’s	nearly	the

same	thing,	except	you’re
looking	for	where	to	put	a
new	node:

•	If	there	is	no
BSTree.root,	then	I
just	make	it	and	we’re
done.	That’s	the	first
node.
•	After	that,	I	compare
your	key	to
node.key,	starting	at
the	root.
•	If	your	key	is	less	than

or	equal	to	the
node.key,	then	I
want	to	go	left.	If	your
key	is	greater	than	and
not	equal	to	the
node.key,	then	I
want	to	go	right.
•	I	keep	repeating	step	3
until	I	reach	a	node
where	left	or	right
doesn’t	exist,	but	that’s
the	direction	I	need	to
go.

•	Once	there,	I	set	that
direction	(left	or	right)
to	a	new	node	for	the
key	and	data	I	want,
and	then	set	this	new
node’s	parent	to	the
previous	node	I	came
from.	I’ll	use	the	parent
node	when	I	do
delete.

This	also	makes	sense	given
how	get	works.	If	finding	a
node	involves	going	left	or

right	depending	on	how	the
key	compares,	then	setting	a
node	involves	the	same	thing
until	I	can	set	the	left	or	right
for	a	new	node.
Take	some	time	to	draw	out	a
few	trees	on	paper	and	go
through	setting	and	getting
nodes	so	you	understand	how
this	works.	After	that,	you’re
ready	to	look	at	the
implementation,	and	I	can
explain	delete.	Deleting	in

trees	is	a	major	pain,	and	so
it’s	best	explained	by	doing	a
line-by-line	code	breakdown.

bstree.c

Click	here	to	view	code	image

		1			#include
<lcthw/dbg.h>
		2			#include
<lcthw/bstree.h>
		3			#include
<stdlib.h>
		4			#include

<lcthw/bstrlib.h>
		5
		6			static	int
default_compare(void
*a,	void	*b)
		7			{
		8							return
bstrcmp((bstring)	a,
(bstring)	b);
		9			}
	10
	11			BSTree
*BSTree_create(BSTree_compare
compare)
	12			{
	13							BSTree	*map

=	calloc(1,
sizeof(BSTree));
	14							check_mem(map
	15
	16							map-
>compare	=	compare	==
NULL	?
default_compare	:
compare;
	17
	18							return	map;
	19
	20			error:
	21							if	(map)	{
	22											BSTree_destroy
	23							}

	24							return
NULL;
	25			}
	26
	27			static	int
BSTree_destroy_cb(BSTreeNode
*	node)
	28			{
	29							free(node);
	30							return	0;
	31			}
	32
	33			void
BSTree_destroy(BSTree
*	map)
	34			{

	35							if	(map)	{
	36											BSTree_traverse
BSTree_destroy_cb);
	37											free(map
	38							}
	39			}
	40
	41			static	inline
BSTreeNode
*BSTreeNode_create(BSTreeNode
*	parent,
	42											void
*key,	void	*data)
	43			{
	44							BSTreeNode
*node	=	calloc(1,

sizeof(BSTreeNode));
	45							check_mem(node
	46
	47							node->key	=
key;
	48							node->data
=	data;
	49							node-
>parent	=	parent;
	50							return
node;
	51
	52			error:
	53							return
NULL;
	54			}

	55
	56			static	inline
void
BSTree_setnode(BSTree
*	map,	BSTreeNode	*
node,
	57											void
*key,	void	*data)
	58			{
	59							int	cmp	=
map->compare(node-
>key,	key);
	60
	61							if	(cmp	<=
0)	{
	62											if

(node->left)	{
	63															BSTree_setnode
node->left,	key,
data);
	64											}	else
{
	65															node
>left	=
BSTreeNode_create(node
key,	data);
	66											}
	67							}	else	{
	68											if
(node->right)	{
	69															BSTree_setnode
node->right,	key,

data);
	70											}	else
{
	71															node
>right	=
BSTreeNode_create(node
key,	data);
	72											}
	73							}
	74			}
	75
	76			int
BSTree_set(BSTree	*
map,	void	*key,	void
*data)
	77			{

	78							if	(map-
>root	==	NULL)	{
	79										//	first
so	just	make	it	and
get	out
	80										map-
>root	=
BSTreeNode_create(NULL
key,	data);
	81										check_mem
>root);
	82						}	else	{
	83										BSTree_setnode
map->root,	key,
data);
	84						}

	85
	86						return	0;
	87		error:
	88						return	-1;
	89		}
	90
	91		static	inline
BSTreeNode
*BSTree_getnode(BSTree
*	map,
	92										BSTreeNode
*	node,	void	*key)
	93		{
	94						int	cmp	=
map->compare(node-
>key,	key);

	95
	96						if	(cmp	==
0)	{
	97										return
node;
	98						}	else	if
(cmp	<	0)	{
	99										if
(node->left)	{
100														return
BSTree_getnode(map,
node->left,	key);
101										}	else	{
102														return
NULL;
103										}

104						}	else	{
105										if
(node->right)	{
106														return
BSTree_getnode(map,
node->right,	key);
107										}	else	{
108														return
NULL;
109										}
110						}
111		}
112
113		void
*BSTree_get(BSTree	*
map,	void	*key)

114		{
115						if	(map-
>root	==	NULL)	{
116										return
NULL;
117						}	else	{
118										BSTreeNode
*node	=
BSTree_getnode(map,
map->root,	key);
119										return
node	==	NULL	?	NULL	:
node->data;
120						}
121		}
122

123		static	inline
int
BSTree_traverse_nodes(
*	node,
124										BSTree_traverse_cb
traverse_cb)
125		{
126						int	rc	=	0;
127
128						if	(node-
>left)	{
129										rc	=
BSTree_traverse_nodes(
>left,	traverse_cb);
130										if	(rc
!=	0)

131														return
rc;
132						}
133
134						if	(node-
>right)	{
135										rc	=
BSTree_traverse_nodes(
>right,	traverse_cb);
136										if	(rc
!=	0)
137														return
rc;
138						}
139
140						return

traverse_cb(node);
141		}
142
143		int
BSTree_traverse(BSTree
*	map,
BSTree_traverse_cb
traverse_cb)
144		{
145						if	(map-
>root)	{
146										return
BSTree_traverse_nodes(
>root,	traverse_cb);
147						}
148

149						return	0;
150		}
151
152		static	inline
BSTreeNode
*BSTree_find_min(BSTreeNode
*	node)
153		{
154						while	(node-
>left)	{
155										node	=
node->left;
156						}
157
158						return	node;
159		}

160
161		static	inline
void
BSTree_replace_node_in_parent
*	map,
162										BSTreeNode
*	node,
163										BSTreeNode
*	new_value)
164		{
165						if	(node-
>parent)	{
166										if	(node
==	node->parent-
>left)	{
167														node-

>parent->left	=
new_value;
168										}	else	{
169														node-
>parent->right	=
new_value;
170										}
171						}	else	{
172										//	this
is	the	root	so	gotta
change	it
173										map-
>root	=	new_value;
174						}
175
176						if

(new_value)	{
177										new_value
>parent	=	node-
>parent;
178						}
179		}
180
181		static	inline
void
BSTree_swap(BSTreeNode
*	a,	BSTreeNode	*	b)
182		{
183						void	*temp	=
NULL;
184						temp	=	b-
>key;

185						b->key	=	a-
>key;
186						a->key	=
temp;
187						temp	=	b-
>data;
188						b->data	=	a-
>data;
189						a->data	=
temp;
190		}
191
192		static	inline
BSTreeNode
*BSTree_node_delete(BSTree
*	map,

193										BSTreeNode
*	node,
194										void
*key)
195		{
196						int	cmp	=
map->compare(node-
>key,	key);
197
198						if	(cmp	<	0)
{
199										if
(node->left)	{
200														return
BSTree_node_delete(map
node->left,	key);

201										}	else	{
202														//
not	found
203														return
NULL;
204										}
205						}	else	if
(cmp	>	0)	{
206										if
(node->right)	{
207														return
BSTree_node_delete(map
node->right,	key);
208										}	else	{
209														//
not	found

210														return
NULL;
211										}
212						}	else	{
213										if
(node->left	&&	node-
>right)	{
214														//
swap	this	node	for
the	smallest	node
that	is	bigger	than
us
215														BSTreeNode
*successor	=
BSTree_find_min(node-
>right);

216														BSTree_swap
node);
217
218														//
this	leaves	the	old
successor	with
possibly	a	right
child
219														//
so	replace	it	with
that	right	child
220														BSTree_replace_node_in_parent
successor,
221																						successor
>right);
222

223														//
finally	it's	swapped,
so	return	successor
instead	of	node
224														return
successor;
225										}	else
if	(node->left)	{
226														BSTree_replace_node_in_parent
node,	node->left);
227										}	else
if	(node->right)	{
228														BSTree_replace_node_in_parent
node,	node->right);
229										}	else	{
230														BSTree_replace_node_in_parent

node,	NULL);
231										}
232
233										return
node;
234						}
235		}
236
237		void
*BSTree_delete(BSTree
*	map,	void	*key)
238		{
239						void	*data	=
NULL;
240
241						if	(map-

>root)	{
242										BSTreeNode
*node	=
BSTree_node_delete(map
map->root,	key);
243
244										if
(node)	{
245														data
=	node->data;
246														free(
247										}
248						}
249
250						return	data;
251		}

Before	getting	into	how
BSTree_delete	works,	I
want	to	explain	a	pattern	for
doing	recursive	function	calls
in	a	sane	way.	You’ll	find
that	many	tree-based	data
structures	are	easy	to	write	if
you	use	recursion,	but
formulate	a	single	recursive
function.	Part	of	the	problem
is	that	you	need	to	set	up
some	initial	data	for	the	first
operation,	then	recurse	into
the	data	structure,	which	is

hard	to	do	with	one	function.
The	solution	is	to	use	two
functions:	One	function	sets
up	the	data	structure	and
initial	recursion	conditions	so
that	a	second	function	can	do
the	real	work.	Take	a	look	at
BSTree_get	first	to	see
what	I	mean.

•	I	have	an	initial
condition:	If	map-
>root	is	NULL,	then
return	NULL	and	don’t

recurse.
•	I	then	set	up	a	call	to
the	real	recursion,
which	is	in
BSTree_getnode.	I
create	the	initial
condition	of	the	root
node	to	start	with	the
key	and	then	the	map.
•	In	the
BSTree_getnode,	I
then	do	the	actual
recursive	logic.	I

compare	the	keys	with
map-
>compare(node-
>key,	key)	and	go
left,	right,	or	equal	to
depending	on	the
results.
•	Since	this	function	is
self-similar	and	doesn’t
have	to	handle	any
initial	conditions
(because	BSTree_get
did),	then	I	can

structure	it	very	simply.
When	it’s	done,	it
returns	to	the	caller,	and
that	return	then	comes
back	to	BSTree_get
for	the	result.
•	At	the	end,	the
BSTree_get	handles
getting	the
node.data	element
but	only	if	the	result
isn’t	NULL.

This	way	of	structuring	a

recursive	algorithm	matches
the	way	I	structure	my
recursive	data	structures.	I
have	an	initial	base	function
that	handles	initial	conditions
and	some	edge	cases,	and
then	it	calls	a	clean	recursive
function	that	does	the	work.
Compare	that	with	how	I
have	a	base	structure	in
BStree	combined	with
recursive	BSTreeNode
structures,	which	all	reference

each	other	in	a	tree.	Using
this	pattern	makes	it	easy	to
deal	with	recursion	and	keep
it	straight.
Next,	go	look	at
BSTree_set	and
BSTree_setnode	to	see
the	exact	same	pattern.	I	use
BSTree_set	to	configure
the	initial	conditions	and	edge
cases.	A	common	edge	case
is	that	there’s	no	root	node,	so
I	have	to	make	one	to	get

things	started.
This	pattern	will	work	with
nearly	any	recursive
algorithm	you	have	to	figure
out.	The	way	I	do	it	is	by
following	this	pattern:

•	Figure	out	the	initial
variables,	how	they
change,	and	what	the
stopping	conditions	are
for	each	recursive	step.
•	Write	a	recursive
function	that	calls	itself,

and	has	arguments	for
each	stopping	condition
and	initial	variable.
•	Write	a	setup	function
to	set	initial	starting
conditions	for	the
algorithm	and	handle
edge	cases,	then	have	it
call	the	recursive
function.
•	Finally,	the	setup
function	returns	the
final	result,	and

possibly	alters	it	if	the
recursive	function	can’t
handle	final	edge	cases.

This	finally	leads	me	to
BSTree_delete	and
BSTree_node_delete.
First,	you	can	just	look	at
BSTree_delete	and	see
that	it’s	the	setup	function.
What	it’s	doing	is	grabbing
the	resulting	node	data	and
freeing	the	node	that’s	found.
Things	get	more	complex	in

BSTree_node_delete,
because	to	delete	a	node	at
any	point	in	the	tree,	I	have	to
rotate	that	node’s	children	up
to	the	parent.	Here’s	a
breakdown	of	this	function
and	the	functions	it	uses:

bstree.c:190	I	run	the
compare	function	to
figure	out	which
direction	I’m	going.

bstree.c:192-198	This	is
the	usual	less-than

branch	to	use	when	I
want	to	go	left.	I’m
handling	the	case	that
left	doesn’t	exist	here,
and	returning	NULL	to
say	“not	found.”	This
covers	deleting
something	that	isn’t	in
the	BSTree.

bstree.c:199-205	This	is
the	same	thing,	but	for
the	right	branch	of	the
tree.	Just	keep	recursing

down	into	the	tree	just
like	in	the	other
functions,	and	return
NULL	if	it	doesn’t	exist.

bstree.c:206	This	is
where	I	have	found	the
node,	since	the	key	is
equal	(compare	return
0).

bstree.c:207	This	node
has	both	a	left	and
right	branch,	so	it’s
deeply	embedded	in	the

tree.
bstree.c:209	To	remove
this	node,	I	first	need	to
find	the	smallest	node
that’s	greater	than	this
node,	which	means	I
call
BSTree_find_min
on	the	right	child.

bstree.c:210	Once	I	have
this	node,	I’ll	swap	its
key	and	data	with	the
current	node’s	values.

This	will	effectively
take	this	node	that	was
down	at	the	bottom	of
the	tree	and	put	its
contents	here,	so	that	I
don’t	have	to	try	and
shuffle	the	node	out	by
its	pointers.

bstree.c:214	The
successor	is	now
this	dead	branch	that
has	the	current	node’s
values.	It	could	just	be

removed,	but	there’s	a
chance	that	it	has	a	right
node	value.	This	means
I	need	to	do	a	single
rotate	so	that	the
successor’s	right	node
gets	moved	up	to
completely	detach	it.

bstree.c:217	At	this	point,
the	successor	is
removed	from	the	tree,
its	values	are	replaced
the	current	node’s

values,	and	any	children
it	had	are	moved	up	into
the	parent.	I	can	return
the	successor	as	if	it
were	the	node.

bstree.c:218	At	this
branch,	I	know	that	the
node	has	a	left	but	no
right,	so	I	want	to
replace	this	node	with
its	left	child.

bstree.c:219	I	again	use
BSTree_replace_node_in_parent

to	do	the	replace,
rotating	the	left	child
up.

bstree.c:220	This	branch
of	the	if-statement
means	I	have	a	right
child	but	no	left	child,
so	I	want	to	rotate	the
right	child	up.

bstree.c:221	Again,	I	use
the	function	to	do	the
rotate,	but	this	time,
rotate	the	right	node.

bstree.c:222	Finally,	the
only	thing	that’s	left	is
the	condition	where
I’ve	found	the	node,
and	it	has	no	children
(no	left	or	right).	In	this
case,	I	simply	replace
this	node	with	NULL
by	using	the	same
function	I	did	with	all
of	the	others.

bstree.c:210	After	all	that,
I	have	the	current	node

rotated	out	of	the	tree
and	replaced	with	some
child	element	that	will
fit	in	the	tree.	I	just
return	this	to	the	caller
so	it	can	be	freed	and
managed.

This	operation	is	very
complex,	and	to	be	honest,	I
just	don’t	bother	doing
deletes	in	some	tree	data
structures,	and	I	treat	them
like	constant	data	in	my

software.	If	I	need	to	do
heavy	inserting	and	deleting,
I	use	a	Hashmap	instead.
Finally,	you	can	look	at	the
unit	test	to	see	how	I’m
testing	it:

bstree_tests.c

Click	here	to	view	code	image

		1			#include
"minunit.h"
		2			#include

<lcthw/bstree.h>
		3			#include
<assert.h>
		4			#include
<lcthw/bstrlib.h>
		5			#include
<stdlib.h>
		6			#include
<time.h>
		7
		8			BSTree	*map	=
NULL;
		9			static	int
traverse_called	=	0;
	10			struct
tagbstring	test1	=
bsStatic("test	data

1");
	11			struct
tagbstring	test2	=
bsStatic("test	data
2");
	12			struct
tagbstring	test3	=
bsStatic("xest	data
3");
	13			struct
tagbstring	expect1	=
bsStatic("THE	VALUE
1");
	14			struct
tagbstring	expect2	=
bsStatic("THE	VALUE
2");

	15			struct
tagbstring	expect3	=
bsStatic("THE	VALUE
3");
	16
	17			static	int
traverse_good_cb(BSTreeNode
*	node)
	18			{
	19							debug("KEY:
%s",	bdata((bstring)
node->key));
	20							traverse_called
	21							return	0;
	22			}
	23

	24			static	int
traverse_fail_cb(BSTreeNode
*	node)
	25			{
	26							debug("KEY:
%s",	bdata((bstring)
node->key));
	27							traverse_called
	28
	29							if
(traverse_called	==
2)	{
	30											return
1;
	31							}	else	{
	32											return
0;

	33							}
	34			}
	35
	36			char
*test_create()
	37			{
	38							map	=
BSTree_create(NULL);
	39							mu_assert(map
!=	NULL,	"Failed	to
create	map.");
	40
	41							return
NULL;
	42			}
	43

	44			char
*test_destroy()
	45			{
	46							BSTree_destroy
	47
	48							return
NULL;
	49			}
	50
	51			char
*test_get_set()
	52			{
	53							int	rc	=
BSTree_set(map,
&test1,	&expect1);
	54							mu_assert(rc
==	0,	"Failed	to	set

&test1");
	55							bstring
result	=
BSTree_get(map,
&test1);
	56							mu_assert(result
==	&expect1,	"Wrong
value	for	test1.");
	57
	58							rc	=
BSTree_set(map,
&test2,	&expect2);
	59							mu_assert(rc
==	0,	"Failed	to	set
test2");
	60							result	=
BSTree_get(map,

&test2);
	61							mu_assert(result
==	&expect2,	"Wrong
value	for	test2.");
	62
	63							rc	=
BSTree_set(map,
&test3,	&expect3);
	64							mu_assert(rc
==	0,	"Failed	to	set
test3");
	65							result	=
BSTree_get(map,
&test3);
	66							mu_assert(result
==	&expect3,	"Wrong

value	for	test3.");
	67
	68							return
NULL;
	69			}
	70
	71			char
*test_traverse()
	72			{
	73							int	rc	=
BSTree_traverse(map,
traverse_good_cb);
	74							mu_assert(rc
==	0,	"Failed	to
traverse.");
	75							mu_assert(traverse_called
==	3,	"Wrong	count

traverse.");
	76
	77							traverse_called
=	0;
	78							rc	=
BSTree_traverse(map,
traverse_fail_cb);
	79							mu_assert(rc
==	1,	"Failed	to
traverse.");
	80							mu_assert(traverse_called
==	2,	"Wrong	count
traverse	for	fail.");
	81
	82							return
NULL;
	83			}

	84
	85			char
*test_delete()
	86			{
	87							bstring
deleted	=	(bstring)
BSTree_delete(map,
&test1);
	88							mu_assert(deleted
!=	NULL,	"Got	NULL	on
delete.");
	89							mu_assert(deleted
==	&expect1,	"Should
get	test1");
	90							bstring
result	=

BSTree_get(map,
&test1);
	91							mu_assert(result
==	NULL,	"Should
delete.");
	92
	93							deleted	=
(bstring)
BSTree_delete(map,
&test1);
	94							mu_assert(deleted
==	NULL,	"Should	get
NULL	on	delete");
	95
	96							deleted	=
(bstring)
BSTree_delete(map,

&test2);
	97							mu_assert(deleted
!=	NULL,	"Got	NULL	on
delete.");
	98							mu_assert(deleted
==	&expect2,	"Should
get	test2");
	99							result	=
BSTree_get(map,
&test2);
100							mu_assert(result
==	NULL,	"Should
delete.");
101
102							deleted	=
(bstring)

BSTree_delete(map,
&test3);
103							mu_assert(deleted
!=	NULL,	"Got	NULL	on
delete.");
104							mu_assert(deleted
==	&expect3,	"Should
get	test3");
105							result	=
BSTree_get(map,
&test3);
106							mu_assert(result
==	NULL,	"Should
delete.");
107
108							//	test
deleting	non-existent

stuff
109							deleted	=
(bstring)
BSTree_delete(map,
&test3);
110							mu_assert(deleted
==	NULL,	"Should	get
NULL");
111
112							return
NULL;
113			}
114
115			char
*test_fuzzing()
116			{
117							BSTree

*store	=
BSTree_create(NULL);
118							int	i	=	0;
119							int	j	=	0;
120							bstring
numbers[100]	=	{	NULL
};
121							bstring
data[100]	=	{	NULL	};
122							srand((unsigned
int)time(NULL));
123
124							for	(i	=	0;
i	<	100;	i++)	{
125											int	num
=	rand();

126											numbers[
=	bformat("%d",	num);
127											data[i]
=	bformat("data	%d",
num);
128											BSTree_set
numbers[i],	data[i]);
129							}
130
131							for	(i	=	0;
i	<	100;	i++)	{
132											bstring
value	=
BSTree_delete(store,
numbers[i]);
133											mu_assert
==	data[i],

134																			
to	delete	the	right
number.");
135
136											mu_assert
numbers[i])	==	NULL,
137																			
get	nothing.");
138
139											for	(j
=	i	+	1;	j	<	99	-	i;
j++)	{
140															bstring
value	=
BSTree_get(store,
numbers[j]);

141															mu_assert
==	data[j],
142																							
to	get	the	right
number.");
143											}
144
145											bdestroy
146											bdestroy
147							}
148
149							BSTree_destroy
150
151							return
NULL;
152			}
153

154			char
*all_tests()
155			{
156							mu_suite_start
157
158							mu_run_test(
159							mu_run_test(
160							mu_run_test(
161							mu_run_test(
162							mu_run_test(
163							mu_run_test(
164
165							return
NULL;
166			}
167

168			RUN_TESTS(all_tests

I’ll	point	you	to	the
test_fuzzing	function,
which	is	an	interesting
technique	for	testing	complex
data	structures.	It	is	difficult
to	create	a	set	of	keys	that
cover	all	of	the	branches	in
BSTree_node_	delete,
and	chances	are,	I	would	miss
some	edge	case.	A	better	way
is	to	create	a	fuzz	function
that	does	all	of	the	operations,

but	does	them	in	a	horrible
and	random	way.	In	this	case,
I’m	inserting	a	set	of	random
string	keys,	and	then	I’m
deleting	them	and	trying	to
get	the	rest	after	each	delete.
Doing	this	prevents	you	from
testing	only	what	you	know
to	work,	and	then	miss	things
you	don’t	know.	By	throwing
random	junk	at	your	data
structures,	you’ll	hit	things
you	didn’t	expect	and	be	able

to	work	out	any	bugs	you
have.

How	to	Improve	It
Do	not	do	any	of	these	yet.	In
the	next	exercise	I’ll	be	using
this	unit	test	to	teach	you
some	more	performance-
tuning	tricks,	and	you’ll	come
back	and	do	these	after	you
complete	Exercise	41.

•	As	usual,	you	should	go
through	all	of	the

defensive	programming
checks	and	add
assert``s	for
conditions	that
shouldn’t	happen.	For
example,	you	shouldn’t
be	getting	``NULL
values	for	the	recursion
functions,	so	assert	that.
•	The	traverse
function	walks	through
the	tree	in	order	by
traversing	left,	then

right,	and	then	the
current	node.	You	can
create	traverse
functions	for	the	reverse
order,	as	well.
•	It	does	a	full	string
compare	on	every
node,	but	I	could	use
the	Hashmap	hashing
functions	to	speed	this
up.	I	could	hash	the
keys,	and	then	keep	the
hash	in	the

BSTreeNode.	Then,
in	each	of	the	setup
functions,	I	can	hash	the
key	ahead	of	time	and
pass	it	down	to	the
recursive	function.
Using	this	hash,	I	can
then	compare	each	node
much	quicker	in	a	way
that’s	similar	to	what	I
do	in	Hashmap.

Extra	Credit
•	There’s	an	alternative
way	to	do	this	data
structure	without	using
recursion.	The
Wikipedia	page	shows
alternatives	that	don’t
use	recursion	but	do	the
same	thing.	Why	would
this	be	better	or	worse?
•	Read	up	on	all	of	the
different	but	similar
trees	you	can	find.

There	are	AVL	trees
(named	after	Georgy
Adelson-Velsky	and
E.M.	Landis),	red-black
trees,	and	some	non-
tree	structures	like	skip
lists.

Exercise	41.
Project	devpkg

You	are	now	ready	to	tackle	a
new	project	called	devpkg.
In	this	project	you’re	going	to
recreate	a	piece	of	software
that	I	wrote	specifically	for
this	book	called	devpkg.
You’ll	then	extend	it	in	a	few
key	ways	and	improve	the
code,	most	importantly	by

writing	some	unit	tests	for	it.
This	exercise	has	a
companion	video	to	it,	and
also	a	project	on	GitHub
(https://github.com)	that	you
can	reference	if	you	get	stuck.
You	should	attempt	to	do	this
exercise	using	the	description
below,	since	that’s	how	you’ll
need	to	learn	to	code	from
books	in	the	future.	Most
computer	science	textbooks
don’t	include	videos	for	their

https://github.com

exercises,	so	this	project	is
more	about	trying	to	figure	it
out	from	this	description.
If	you	get	stuck,	and	you
can’t	figure	it	out,	then	go
watch	the	video	and	look	at
the	GitHub	project	to	see	how
your	code	differs	from	mine.

What	Is	devpkg?
Devpkg	is	a	simple	C
program	that	installs	other
software.	I	made	it

specifically	for	this	book	as	a
way	to	teach	you	how	a	real
software	project	is	structured,
and	also	how	to	reuse	other
people’s	libraries.	It	uses	a
portability	library	called	the
Apache	Portable	Runtime
(APR),	which	has	many
handy	C	functions	that	work
on	tons	of	platforms,
including	Windows.	Other
than	that,	it	just	grabs	code
from	the	Internet	(or	local
files)	and	does	the	usual

./configure,	make,	and
make	install	that	every
program	does.
Your	goal	in	this	exercise	is
to	build	devpkg	from	the
source,	finish	each	challenge
I	give,	and	use	the	source	to
understand	what	devpkg
does	and	why.

What	We	Want	to
Make
We	want	a	tool	that	has	these
commands:

devpkg	-S	Sets	up	a	new
installation	on	a
computer.

devpkg	-I	Installs	a	piece
of	software	from	a
URL.

devpkg	-L	Lists	all	of	the
software	that’s	been

installed.
devpkg	-F	Fetches	some
source	code	for	manual
building.

devpkg	-B	Builds	the
source	code	and	installs
it,	even	if	it’s	already
installed.

We	want	devpkg	to	be	able
to	take	almost	any	URL,
figure	out	what	kind	of
project	it	is,	download	it,
install	it,	and	register	that	it

downloaded	that	software.
We’d	also	like	it	to	process	a
simple	dependency	list	so	that
it	can	install	all	of	the
software	that	a	project	might
need,	as	well.

The	Design
To	accomplish	this	goal,
devpkg	will	have	a	very
simple	design:

Use	External	Commands
You’ll	do	most	of	the

work	through	external
commands	like	curl,
git,	and	tar.	This
reduces	the	amount	of
code	devpkg	needs	to
get	things	done.

Simple	File	Database
You	could	easily	make
it	more	complex,	but
you’ll	start	by	making
just	make	a	single
simple	file	database	at
/usr/local/.devpkg/db

to	keep	track	of	what’s
installed.

/usr/local	Always	Again,
you	could	make	this
more	advanced,	but	for
now	just	assume	it’s
always	/usr/local,
which	is	a	standard
install	path	for	most
software	on	UNIX.

configure,	make,	make
install	It’s	assumed	that
most	software	can	be

installed	with	just	a
configure,	make,
and	make	install
—and	maybe
configure	is
optional.	If	the	software
at	a	minimum	can’t	do
that,	there	are	some
options	to	modify	the
commands,	but
otherwise,	devpkg
won’t	bother.

The	User	Can	Be	Root

We’ll	assume	that	the
user	can	become	root
using	sudo,	but
doesn’t	want	to	become
root	until	the	end.

This	will	keep	our	program
small	at	first	and	work	well
enough	for	us	to	get	it	going,
at	which	point	you’ll	be	able
to	modify	it	further	for	this
exercise.

The	Apache	Portable

Runtime
One	more	thing	you’ll	do	is
leverage	the	APR	Libraries	to
get	a	good	set	of	portable
routines	for	doing	this	kind	of
work.	APR	isn’t	necessary,
and	you	could	probably	write
this	program	without	it,	but
it’d	take	more	code	than
necessary.	I’m	also	forcing
you	to	use	APR	now	so	you
get	used	to	linking	and	using
other	libraries.	Finally,	APR

also	works	on	Windows,	so
your	skills	with	it	are
transferable	to	many	other
platforms.
You	should	go	get	both	the
apr-1.5.2	and	the	apr-
util-1.5.4	libraries,	as
well	as	browse	through	the
documentation	available	at
the	main	APR	site	at
http://apr.apache.org.
Here’s	a	shell	script	that	will
install	all	the	stuff	you	need.

http://apr.apache.org

You	should	write	this	into	a
file	by	hand,	and	then	run	it
until	it	can	install	APR
without	any	errors.

Exercise	41.1
Session

Click	here	to	view	code	image

set	-e

#	go	somewhere	safe
cd	/tmp

#	get	the	source	to
base	APR	1.5.2
curl	-L	-O
http://archive.apache.org/dist/apr/apr-
1.5.2.tar.gz

#	extract	it	and	go
into	the	source
tar	-xzvf	apr-
1.5.2.tar.gz
cd	apr-1.5.2

#	configure,	make,
make	install
./configure
make

sudo	make	install

#	reset	and	cleanup
cd	/tmp
rm	-rf	apr-1.5.2	apr-
1.5.2.tar.gz

#	do	the	same	with
apr-util
curl	-L	-O
http://archive.apache.org/dist/apr/apr-
util-1.5.4.tar.gz

#	extract
tar	-xzvf	apr-util-
1.5.4.tar.gz

cd	apr-util-1.5.4

#	configure,	make,
make	install
./configure	--with-
apr=/usr/local/apr
#	you	need	that	extra
parameter	to
configure	because
#	apr-util	can't
really	find	it
because...who	knows.

make
sudo	make	install

#cleanup

cd	/tmp
rm	-rf	apr-util-
1.5.4*	apr-1.5.2*

I’m	having	you	write	this
script	out	because	it’s
basically	what	we	want
devpkg	to	do,	but	with	extra
options	and	checks.	In	fact,
you	could	just	do	it	all	in
shell	with	less	code,	but	then
that	wouldn’t	be	a	very	good
program	for	a	C	book	would
it?

Simply	run	this	script	and	fix
it	until	it	works,	then	you’ll
have	the	libraries	you	need	to
complete	the	rest	of	this
project.

Project	Layout
You	need	to	set	up	some
simple	project	files	to	get
started.	Here’s	how	I	usually
craft	a	new	project:

Exercise	41.2
Session

mkdir	devpkg
cd	devpkg
touch	README	Makefile

Other	Dependencies
You	should	have	already
installed	apr-1.5.2	and	apr-
util-1.5.4,	so	now	you	need	a
few	more	files	to	use	as	basic
dependencies:

•	dbg.h	from	Exercise
20.
•	bstrlib.h	and
bstrlib.c	from
http://bstring.sourceforge.net/
Download	the	.zip	file,
extract	it,	and	copy	just
those	two	files.
•	Type	make
bstrlib.o,	and	if	it
doesn’t	work,	read	the
instructions	for	fixing
bstring	below.

http://bstring.sourceforge.net/

Warning!
In	some	platforms,	the
bstring.c	file	will
have	an	error	like	this:

Click	here	to	view	code	image

bstrlib.c:2762:
error:	expected
declaration\
specifiers	or	'...'
before	numeric
constant

This	is	from	a	bad

define	that	the
authors	added,	which
doesn’t	always	work.
You	just	need	to
change	line	2759	that
reads	#ifdef
__GNUC__	to	read:

Click	here	to	view	code	image

#if	defined(__GNUC__)
&&
!defined(__APPLE__)

and	then	it	should
work	on	OS	X.

When	that’s	all	done,	you
should	have	a	Makefile,
README,	dbg.h,
bstrlib.h,	and
bstrlib.c	ready	to	go.

The	Makefile
A	good	place	to	start	is	the
Makefile	since	this	lays
out	how	things	are	built	and
what	source	files	you’ll	be
creating.

Makefile

Click	here	to	view	code	image

PREFIX?=/usr/local
CFLAGS=-g	-Wall	-
I${PREFIX}/apr/include/apr-
1
CFLAGS+=-
I${PREFIX}/apr/include/apr-
util-1
LDFLAGS=-
L${PREFIX}/apr/lib	-
lapr-1	-pthread	-
laprutil-1

all:	devpkg

devpkg:	bstrlib.o
db.o	shell.o
commands.o

install:	all
				install	-d
$(DESTDIR)/$(PREFIX)/bin/
				install	devpkg
$(DESTDIR)/$(PREFIX)/bin/

clean:
				rm	-f	*.o
				rm	-f	devpkg
				rm	-rf	*.dSYM

There’s	nothing	in	this	that
you	haven’t	seen	before,
except	maybe	the	strange	?=
syntax,	which	says	“set
PREFIX	equal	to	this	unless
PREFIX	is	already	set.”

Warning!
If	you’re	on	more
recent	versions	of
Ubuntu,	and	you	get
errors	about
apr_off_t	or

off64_t,	then	add	-
D_LARGEFILE64_SOURCE=1
to	CFLAGS.	Another
thing	is	that	you	need
to	add
/usr/local/apr/lib
to	a	file	in
/etc/ld.conf.so.d/
and	then	run
ldconfig	so	that	it
correctly	picks	up	the
libraries.

The	Source	Files
From	the	Makefile,	we
see	that	there	are	five
dependencies	for	devpkg:

bstrlib.o	This	comes	from
bstrlib.c	and	the
header	file	bstlib.h,
which	you	already
have.

db.o	This	comes	from
db.c	and	header	file
db.h,	and	it	will

contain	code	for	our
little	database	routines.

shell.o	This	is	from
shell.c	and	header
shell.h,	as	well	as	a
couple	of	functions	that
make	running	other
commands	like	curl
easier.

commands.o	This	is	from
command.c	and
header	command.h,
and	contains	all	of	the

commands	that
devpkg	needs	to	be
useful.

devpkg	It’s	not	explicitly
mentioned,	but	it’s	the
target	(on	the	left)	in
this	part	of	the
Makefile.	It	comes
from	devpkg.c,
which	contains	the
main	function	for	the
whole	program.

Your	job	is	to	now	create

each	of	these	files,	type	in
their	code,	and	get	them
correct.

Warning!
You	may	read	this
description	and	think,
“Man!	How	is	it	that
Zed	is	so	smart	that	he
just	sat	down	and
typed	these	files	out
like	this!?	I	could
never	do	that.”	I	didn’t

magically	craft
devpkg	in	this	form
with	my	awesome
coding	powers.
Instead,	what	I	did	is
this:
•	I	wrote	a	quick	little
README	to	get	an	idea
of	how	I	wanted	it	to
work.
•	I	created	a	simple	bash
script	(like	the	one	you
did	earlier)	to	figure	out

all	of	the	pieces	that
were	needed.
•	I	made	one	.c	file	and
hacked	on	it	for	a	few
days	working	through
the	idea	and	figuring	it
out.
•	I	got	it	mostly	working
and	debugged,	then	I
started	breaking	up	the
one	big	file	into	these
four	files.
•	After	getting	these	files

laid	down,	I	renamed
and	refined	the
functions	and	data
structures	so	that	they’d
be	more	logical	and
pretty.
•	Finally,	after	I	had	it
working	the	exact	same
but	with	the	new
structure,	I	added	a	few
features	like	the	-F	and
-B	options.

You’re	reading	this	in

the	order	I	want	to
teach	it	to	you,	but
don’t	think	this	is	how
I	always	build
software.	Sometimes	I
already	know	the
subject	and	I	use	more
planning.	Sometimes	I
just	hack	up	an	idea
and	see	how	well	it’d
work.	Sometimes	I
write	one,	then	throw	it
away	and	plan	out	a
better	one.	It	all

depends	on	what	my
experience	tells	me	is
best	or	where	my
inspiration	takes	me.
If	you	run	into	a

supposed	expert	who
tries	to	tell	you	that
there’s	only	one	way	to
solve	a	programming
problem,	they’re	lying
to	you.	Either	they
actually	use	multiple
tactics,	or	they’re	not

very	good.

The	DB	Functions
There	must	be	a	way	to
record	URLs	that	have	been
installed,	list	these	URLs,	and
check	whether	something	has
already	been	installed	so	we
can	skip	it.	I’ll	use	a	simple
flat	file	database	and	the
bstrlib.h	library	to	do	it.
First,	create	the	db.h	header

file	so	you	know	what	you’ll
be	implementing.

db.h

Click	here	to	view	code	image

#ifndef	_db_h
#define	_db_h

#define	DB_FILE
"/usr/local/.devpkg/db"
#define	DB_DIR
"/usr/local/.devpkg"

int	DB_init();
int	DB_list();
int	DB_update(const
char	*url);
int	DB_find(const
char	*url);

#endif

Then,	implement	those
functions	in	db.c,	and	as
you	build	this,	use	make	to
get	it	to	compile	cleanly.

db.c

Click	here	to	view	code	image

		1			#include
<unistd.h>
		2			#include
<apr_errno.h>
		3			#include
<apr_file_io.h>
		4
		5			#include	"db.h"
		6			#include
"bstrlib.h"
		7			#include
"dbg.h"
		8
		9			static	FILE

*DB_open(const	char
*path,	const	char
*mode)
	10			{
	11							return
fopen(path,	mode);
	12			}
	13
	14			static	void
DB_close(FILE	*	db)
	15			{
	16							fclose(db);
	17			}
	18
	19			static	bstring
DB_load()

	20			{
	21							FILE	*db	=
NULL;
	22							bstring
data	=	NULL;
	23
	24							db	=
DB_open(DB_FILE,
"r");
	25							check(db,
"Failed	to	open
database:	%s",
DB_FILE);
	26
	27							data	=
bread((bNread)	fread,

db);
	28							check(data,
"Failed	to	read	from
db	file:	%s",
DB_FILE);
	29
	30							DB_close(db);
	31							return
data;
	32
	33			error:
	34							if	(db)
	35											DB_close
	36							if	(data)
	37											bdestroy
	38							return
NULL;

	39			}
	40
	41			int
DB_update(const	char
*url)
	42			{
	43							if
(DB_find(url))	{
	44											log_info
recorded	as
installed:	%s",	url);
	45							}
	46
	47							FILE	*db	=
DB_open(DB_FILE,
"a+");

	48							check(db,
"Failed	to	open	DB
file:	%s",	DB_FILE);
	49
	50							bstring
line	=
bfromcstr(url);
	51							bconchar(line
'\n');
	52							int	rc	=
fwrite(line->data,
blength(line),	1,
db);
	53							check(rc	==
1,	"Failed	to	append
to	the	db.");

	54
	55							return	0;
	56			error:
	57							if	(db)
	58											DB_close
	59							return	-1;
	60			}
	61
	62			int
DB_find(const	char
*url)
	63			{
	64							bstring
data	=	NULL;
	65							bstring
line	=

bfromcstr(url);
	66							int	res	=
-1;
	67
	68							data	=
DB_load();
	69							check(data,
"Failed	to	load:	%s",
DB_FILE);
	70
	71							if
(binstr(data,	0,
line)	==	BSTR_ERR)	{
	72											res	=
0;
	73							}	else	{

	74											res	=
1;
	75							}
	76
	77			error:																			
fallthrough
	78							if	(data)
	79											bdestroy
	80							if	(line)
	81											bdestroy
	82
	83							return	res;
	84			}
	85
	86			int	DB_init()
	87			{

	88							apr_pool_t
*p	=	NULL;
	89							apr_pool_initialize
	90							apr_pool_create
NULL);
	91
	92							if
(access(DB_DIR,	W_OK
|	X_OK)	==	-1)	{
	93											apr_status_t
rc	=
apr_dir_make_recursive
	94																			APR_UREAD
|	APR_UWRITE
	95																			
APR_UEXECUTE	|

	96																			APR_GREAD
|	APR_GWRITE
	97																			
APR_GEXECUTE,	p);
	98											check(rc
==	APR_SUCCESS,
"Failed	to	make
database	dir:	%s",
	99																			DB_DIR
100						}
101
102						if
(access(DB_FILE,
W_OK)	==	-1)	{
103										FILE	*db
=	DB_open(DB_FILE,
"w");

104										check(db,
"Cannot	open
database:	%s",
DB_FILE);
105										DB_close(
106						}
107
108						apr_pool_destroy
109						return	0;
110
111		error:
112						apr_pool_destroy
113						return	-1;
114		}
115
116		int	DB_list()

117		{
118						bstring	data
=	DB_load();
119						check(data,
"Failed	to	read	load:
%s",	DB_FILE);
120
121						printf("%s",
bdata(data));
122						bdestroy(data
123						return	0;
124
125		error:
126						return	-1;
127		}

Challenge	1:	Code	Review
Before	continuing,	read	every
line	of	these	files	carefully
and	confirm	that	you	have
them	entered	in	exactly	as
they	appear	here.	Read	them
backward	line	by	line	to
practice	that.	Also,	trace	each
function	call	and	make	sure
you’re	using	check	to
validate	the	return	codes.
Finally,	look	up	every
function	that	you	don’t

recognize—either	in	the	APR
Web	site	documentation	or	in
the	bstrlib.h	and
bstrlib.c	source.

The	Shell	Functions
A	key	design	decision	for
devpkg	is	to	have	external
tools	like	curl,	tar,	and
git	do	most	of	the	work.	We
could	find	libraries	to	do	all
of	this	internally,	but	it’s
pointless	if	we	just	need	the
base	features	of	these
programs.	There	is	no	shame
in	running	another	command
in	UNIX.
To	do	this,	I’m	going	to	use

the	apr_thread_proc.h
functions	to	run	programs,
but	I	also	want	to	make	a
simple	kind	of	template
system.	I’ll	use	a	struct
Shell	that	holds	all	of	the
information	needed	to	run	a
program,	but	has	holes	in	the
arguments	list	that	I	can
replace	with	values.
Look	at	the	shell.h	file	to
see	the	structure	and	the
commands	that	I’ll	use.	You

can	see	that	I’m	using
extern	to	indicate	how
other	.c	files	can	access
variables	that	I’m	defining	in
shell.c.

shell.h

Click	here	to	view	code	image

#ifndef	_shell_h
#define	_shell_h

#define

MAX_COMMAND_ARGS	100

#include
<apr_thread_proc.h>

typedef	struct	Shell
{
				const	char	*dir;
				const	char	*exe;

				apr_procattr_t
*attr;
				apr_proc_t	proc;
				apr_exit_why_e
exit_why;
				int	exit_code;

				const	char
*args[MAX_COMMAND_ARGS
}	Shell;

int
Shell_run(apr_pool_t
*	p,	Shell	*	cmd);
int	Shell_exec(Shell
cmd,	...);

extern	Shell
CLEANUP_SH;
extern	Shell	GIT_SH;
extern	Shell	TAR_SH;
extern	Shell	CURL_SH;

extern	Shell
CONFIGURE_SH;
extern	Shell	MAKE_SH;
extern	Shell
INSTALL_SH;

#endif

Make	sure	you’ve	created
shell.h	exactly	as	it
appears	here,	and	that	you’ve
got	the	same	names	and
number	of	extern	Shell
variables.	Those	are	used	by
the	Shell_run	and

Shell_exec	functions	to
run	commands.	I	define	these
two	functions,	and	create	the
real	variables	in	shell.c.

shell.c

Click	here	to	view	code	image

		1			#include
"shell.h"
		2			#include
"dbg.h"
		3			#include
<stdarg.h>

		4
		5			int
Shell_exec(Shell
template,	...)
		6			{
		7							apr_pool_t
*p	=	NULL;
		8							int	rc	=
-1;
		9							apr_status_t
rv	=	APR_SUCCESS;
	10							va_list
argp;
	11							const	char
*key	=	NULL;
	12							const	char

*arg	=	NULL;
	13							int	i	=	0;
	14
	15							rv	=
apr_pool_create(&p,
NULL);
	16							check(rv	==
APR_SUCCESS,	"Failed
to	create	pool.");
	17
	18							va_start(argp
template);
	19
	20							for	(key	=
va_arg(argp,	const
char	*);

	21															key
!=	NULL;	key	=
va_arg(argp,	const
char	*))	{
	22											arg	=
va_arg(argp,	const
char	*);
	23
	24											for	(i
=	0;	template.args[i]
!=	NULL;	i++)	{
	25															if
(strcmp(template.args[
key)	==	0)	{
	26																			template
=	arg;

	27																			
found	it
	28															}
	29											}
	30							}
	31
	32							rc	=
Shell_run(p,
&template);
	33							apr_pool_destroy
	34							va_end(argp);
	35							return	rc;
	36
	37			error:
	38							if	(p)	{
	39											apr_pool_destroy

	40							}
	41							return	rc;
	42			}
	43
	44			int
Shell_run(apr_pool_t
*	p,	Shell	*	cmd)
	45			{
	46							apr_procattr_t
*attr;
	47							apr_status_t
rv;
	48							apr_proc_t
newproc;
	49
	50							rv	=

apr_procattr_create(&attr
p);
	51							check(rv	==
APR_SUCCESS,	"Failed
to	create	proc
attr.");
	52
	53							rv	=
apr_procattr_io_set(attr
APR_NO_PIPE,
APR_NO_PIPE,
	54															APR_NO_PIPE
	55							check(rv	==
APR_SUCCESS,	"Failed
to	set	IO	of
command.");

	56
	57							rv	=
apr_procattr_dir_set(attr
cmd->dir);
	58							check(rv	==
APR_SUCCESS,	"Failed
to	set	root	to	%s",
cmd->dir);
	59
	60							rv	=
apr_procattr_cmdtype_set
APR_PROGRAM_PATH);
	61							check(rv	==
APR_SUCCESS,	"Failed
to	set	cmd	type.");
	62

	63							rv	=
apr_proc_create(&newproc
cmd->exe,	cmd->args,
NULL,	attr,	p);
	64							check(rv	==
APR_SUCCESS,	"Failed
to	run	command.");
	65
	66							rv	=
apr_proc_wait(&newproc
&cmd->exit_code,
&cmd->exit_why,
	67															APR_WAIT
	68							check(rv	==
APR_CHILD_DONE,
"Failed	to	wait.");

	69
	70							check(cmd-
>exit_code	==	0,	"%s
exited	badly.",	cmd-
>exe);
	71							check(cmd-
>exit_why	==
APR_PROC_EXIT,	"%s
was	killed	or
crashed",
	72															cmd-
>exe);
	73
	74							return	0;
	75
	76			error:

	77							return	-1;
	78			}
	79
	80			Shell
CLEANUP_SH	=	{
	81							.exe	=
"rm",
	82							.dir	=
"/tmp",
	83							.args	=
{"rm",	"-rf",
"/tmp/pkg-build",
"/tmp/pkg-
src.tar.gz",
	84											"/tmp/pkg-
src.tar.bz2",

"/tmp/DEPENDS",	NULL}
	85			};
	86
	87			Shell	GIT_SH	=
{
	88							.dir	=
"/tmp",
	89							.exe	=
"git",
	90							.args	=
{"git",	"clone",
"URL",	"pkg-build",
NULL}
	91			};
	92
	93			Shell	TAR_SH	=
{

	94							.dir	=
"/tmp/pkg-build",
	95							.exe	=
"tar",
	96							.args	=
{"tar",	"-xzf",
"FILE",	"--strip-
components",	"1",
NULL}
	97			};
	98
	99			Shell	CURL_SH	=
{
100							.dir	=
"/tmp",
101							.exe	=
"curl",

102							.args	=
{"curl",	"-L",	"-o",
"TARGET",	"URL",
NULL}
103			};
104
105			Shell
CONFIGURE_SH	=	{
106							.exe	=
"./configure",
107							.dir	=
"/tmp/pkg-build",
108							.args	=
{"configure",	"OPTS",
NULL}
109							,

110			};
111
112			Shell	MAKE_SH	=
{
113							.exe	=
"make",
114							.dir	=
"/tmp/pkg-build",
115							.args	=
{"make",	"OPTS",
NULL}
116			};
117
118			Shell
INSTALL_SH	=	{
119							.exe	=
"sudo",

120							.dir	=
"/tmp/pkg-build",
121							.args	=
{"sudo",	"make",
"TARGET",	NULL}
122			};

Read	the	shell.c	from	the
bottom	to	the	top	(which	is	a
common	C	source	layout)	and
you	see	how	I’ve	created	the
actual	Shell	variables	that
you	indicated	were	extern
in	shell.h.	They	live	here,
but	are	available	to	the	rest	of

the	program.	This	is	how	you
make	global	variables	that
live	in	one	.o	file	but	are
used	everywhere.	You
shouldn’t	make	many	of
these,	but	they	are	handy	for
things	like	this.
Continuing	up	the	file	we	get
to	the	Shell_run	function,
which	is	a	base	function	that
just	runs	a	command
according	to	what’s	in	a
Shell	struct.	It	uses	many

of	the	functions	defined	in
apr_thread_proc.h,	so
go	look	up	each	one	to	see
how	the	base	function	works.
This	seems	like	a	lot	of	work
compared	to	just	using	the
system	function	call,	but	it
also	gives	you	more	control
over	the	other	program’s
execution.	For	example,	in
our	Shell	struct,	we	have	a
.dir	attribute	that	forces	the
program	to	be	in	a	specific

directory	before	running.
Finally,	I	have	the
Shell_exec	function,
which	is	a	variable	argument
function.	You’ve	seen	this
before,	but	make	sure	you
grasp	the	stdarg.h
functions.	In	the	challenge	for
this	section,	you’re	going	to
analyze	this	function.

Challenge	2:	Analyze
Shell_exec

The	challenge	for	these	files
(in	addition	to	a	full	code
review	like	you	did	in
Challenge	1)	is	to	fully
analyze	Shell_exec	and
break	down	exactly	how	it
works.	You	should	be	able	to
understand	each	line,	how	the
two	for-loops	work,	and
how	arguments	are	being
replaced.

Once	you	have	it	analyzed,
add	a	field	to	struct
Shell	that	gives	you	the
number	of	variable	args	that
must	be	replaced.	Update	all
of	the	commands	to	have	the
right	count	of	args,	and	have
an	error	check	to	confirm	that
these	args	have	been
replaced,	and	then	error	exit.

The	Command
Functions

Now	you	get	to	make	the
actual	commands	that	do	the
work.	These	commands	will
use	functions	from	APR,
db.h,	and	shell.h	to	do
the	real	work	of	downloading
and	building	the	software	that
you	want	it	to	build.	This	is
the	most	complex	set	of	files,
so	do	them	carefully.	As
before,	you	start	by	making
the	commands.h	file,	then
implementing	its	functions	in

the	commands.c	file.

commands.h

Click	here	to	view	code	image

#ifndef	_commands_h
#define	_commands_h

#include
<apr_pools.h>

#define	DEPENDS_PATH
"/tmp/DEPENDS"
#define	TAR_GZ_SRC

"/tmp/pkg-src.tar.gz"
#define	TAR_BZ2_SRC
"/tmp/pkg-
src.tar.bz2"
#define	BUILD_DIR
"/tmp/pkg-build"
#define	GIT_PAT
"*.git"
#define	DEPEND_PAT
"*DEPENDS"
#define	TAR_GZ_PAT
"*.tar.gz"
#define	TAR_BZ2_PAT
"*.tar.bz2"
#define	CONFIG_SCRIPT
"/tmp/pkg-
build/configure"

enum	CommandType	{
				COMMAND_NONE,
COMMAND_INSTALL,
COMMAND_LIST,
COMMAND_FETCH,
				COMMAND_INIT,
COMMAND_BUILD
};

int
Command_fetch(apr_pool_t
*	p,	const	char	*url,
int	fetch_only);

int

Command_install(apr_pool_t
*	p,	const	char	*url,
								const	char
*configure_opts,
								const	char
*make_opts,	const
char	*install_opts);

int
Command_depends(apr_pool_t
*	p,	const	char
*path);

int
Command_build(apr_pool_t
*	p,	const	char	*url,

								const	char
*configure_opts,
const	char
*make_opts,
								const	char
*install_opts);

#endif

There’s	not	much	in
commands.h	that	you
haven’t	seen	already.	You
should	see	that	there	are	some
defines	for	strings	that	are
used	everywhere.	The	really

interesting	code	is	in
commands.c.

commands.c

Click	here	to	view	code	image

		1			#include
<apr_uri.h>
		2			#include
<apr_fnmatch.h>
		3			#include
<unistd.h>
		4
		5			#include

"commands.h"
		6			#include
"dbg.h"
		7			#include
"bstrlib.h"
		8			#include	"db.h"
		9			#include
"shell.h"
	10
	11			int
Command_depends(apr_pool_t
*	p,	const	char
*path)
	12			{
	13							FILE	*in	=
NULL;

	14							bstring
line	=	NULL;
	15
	16							in	=
fopen(path,	"r");
	17							check(in	!=
NULL,	"Failed	to	open
downloaded	depends:
%s",	path);
	18
	19							for	(line	=
bgets((bNgetc)	fgetc,
in,	'\n');
	20															line
!=	NULL;
	21															line

=	bgets((bNgetc)
fgetc,	in,	'\n'))
	22							{
	23											btrimws(
	24											log_info
depends:	%s",
bdata(line));
	25											int	rc
=	Command_install(p,
bdata(line),	NULL,
NULL,	NULL);
	26											check(rc
==	0,	"Failed	to
install:	%s",
bdata(line));
	27											bdestroy

	28							}
	29
	30							fclose(in);
	31							return	0;
	32
	33			error:
	34							if	(line)
bdestroy(line);
	35							if	(in)
fclose(in);
	36							return	-1;
	37			}
	38
	39			int
Command_fetch(apr_pool_t
*	p,	const	char	*url,

int	fetch_only)
	40			{
	41							apr_uri_t
info	=	{.port	=
0				};
	42							int	rc	=	0;
	43							const	char
*depends_file	=	NULL;
	44							apr_status_t
rv	=	apr_uri_parse(p,
url,	&info);
	45
	46							check(rv	==
APR_SUCCESS,	"Failed
to	parse	URL:	%s",
url);

	47
	48							if
(apr_fnmatch(GIT_PAT,
info.path,	0)	==
APR_SUCCESS)	{
	49											rc	=
Shell_exec(GIT_SH,
"URL",	url,	NULL);
	50											check(rc
==	0,	"git	failed.");
	51							}	else	if
(apr_fnmatch(DEPEND_PAT
info.path,	0)	==
APR_SUCCESS)	{
	52											check(!fetch_only
"No	point	in	fetching
a	DEPENDS	file.");

	53
	54											if
(info.scheme)	{
	55															depends_file
=	DEPENDS_PATH;
	56															rc
=	Shell_exec(CURL_SH,
"URL",	url,	"TARGET",
depends_file,
	57																							
	58															check
==	0,	"Curl
failed.");
	59											}	else
{
	60															depends_file

=	info.path;
	61											}
	62
	63											//
recursively	process
the	devpkg	list
	64											log_info
according	to	DEPENDS:
%s",	url);
	65											rv	=
Command_depends(p,
depends_file);
	66											check(rv
==	0,	"Failed	to
process	the	DEPENDS:
%s",	url);

	67
	68											//	this
indicates	that
nothing	needs	to	be
done
	69											return
0;
	70
	71							}	else	if
(apr_fnmatch(TAR_GZ_PAT
info.path,	0)	==
APR_SUCCESS)	{
	72											if
(info.scheme)	{
	73															rc
=	Shell_exec(CURL_SH,

	74																							
url,	"TARGET",
TAR_GZ_SRC,	NULL);
	75															check
==	0,	"Failed	to	curl
source:	%s",	url);
	76											}
	77
	78											rv	=
apr_dir_make_recursive
	79																			APR_UREAD
|	APR_UWRITE	|
	80																			APR_UEXECUTE
p);
	81											check(rv
==	APR_SUCCESS,

"Failed	to	make
directory	%s",
	82																			BUILD_DIR
	83
	84											rc	=
Shell_exec(TAR_SH,
"FILE",	TAR_GZ_SRC,
NULL);
	85											check(rc
==	0,	"Failed	to
untar	%s",
TAR_GZ_SRC);
	86							}	else	if
(apr_fnmatch(TAR_BZ2_PAT
info.path,	0)	==
APR_SUCCESS)	{

	87											if
(info.scheme)	{
	88															rc
=	Shell_exec(CURL_SH,
"URL",	url,	"TARGET",
TAR_BZ2_SRC,
	89																							
	90															check
==	0,	"Curl
failed.");
	91											}
	92
	93											apr_status_t
rc	=
apr_dir_make_recursive
	94																			APR_UREAD

|	APR_UWRITE
	95																			
APR_UEXECUTE,	p);
	96
	97											check(rc
==	0,	"Failed	to	make
directory	%s",
BUILD_DIR);
	98											rc	=
Shell_exec(TAR_SH,
"FILE",	TAR_BZ2_SRC,
NULL);
	99											check(rc
==	0,	"Failed	to
untar	%s",
TAR_BZ2_SRC);

100							}	else	{
101											sentinel
now	how	to	handle
%s",	url);
102							}
103
104							//
indicates	that	an
install	needs	to
actually	run
105							return	1;
106			error:
107							return	-1;
108			}
109
110			int

Command_build(apr_pool_t
*	p,	const	char	*url,
111											const
char	*configure_opts,
const	char
*make_opts,
112											const
char	*install_opts)
113			{
114							int	rc	=	0;
115
116							check(access
X_OK	|	R_OK	|	W_OK)
==	0,
117															"Build
directory	doesn't

exist:	%s",
BUILD_DIR);
118
119							//	actually
do	an	install
120							if
(access(CONFIG_SCRIPT,
X_OK)	==	0)	{
121											log_info
a	configure	script,
running	it.");
122											rc	=
Shell_exec(CONFIGURE_SH
"OPTS",
configure_opts,
NULL);

123											check(rc
==	0,	"Failed	to
configure.");
124							}
125
126							rc	=
Shell_exec(MAKE_SH,
"OPTS",	make_opts,
NULL);
127							check(rc	==
0,	"Failed	to
build.");
128
129							rc	=
Shell_exec(INSTALL_SH,
130															"TARGET"

install_opts	?
install_opts	:
"install",
131															NULL
132							check(rc	==
0,	"Failed	to
install.");
133
134							rc	=
Shell_exec(CLEANUP_SH,
NULL);
135							check(rc	==
0,	"Failed	to	cleanup
after	build.");
136
137							rc	=

DB_update(url);
138							check(rc	==
0,	"Failed	to	add
this	package	to	the
database.");
139
140							return	0;
141
142			error:
143							return	-1;
144			}
145
146			int
Command_install(apr_pool_t
*	p,	const	char	*url,
147											const

char	*configure_opts,
const	char
*make_opts,
148											const
char	*install_opts)
149			{
150							int	rc	=	0;
151							check(Shell_exec
NULL)	==	0,
152															"Failed
to	cleanup	before
building.");
153
154							rc	=
DB_find(url);
155							check(rc	!=

-1,	"Error	checking
the	install
database.");
156
157							if	(rc	==
1)	{
158											log_info
%s	already
installed.",	url);
159											return
0;
160							}
161
162							rc	=
Command_fetch(p,	url,
0);

163
164							if	(rc	==
1)	{
165											rc	=
Command_build(p,	url,
configure_opts,
make_opts,
166																			install_opts
167											check(rc
==	0,	"Failed	to
build:	%s",	url);
168							}	else	if
(rc	==	0)	{
169											//	no
install	needed
170											log_info

successfully
installed:	%s",	url);
171							}	else	{
172											//	had
an	error
173											sentinel
failed:	%s",	url);
174							}
175
176							Shell_exec(CLEANUP_SH
NULL);
177							return	0;
178
179			error:
180							Shell_exec(CLEANUP_SH
NULL);

181							return	-1;
182			}

After	you	have	this	entered	in
and	compiling,	you	can
analyze	it.	If	you’ve	done	the
challenges	thus	far,	you
should	see	how	the	shell.c
functions	are	being	used	to
run	shells,	and	how	the
arguments	are	being	replaced.
If	not,	then	go	back	and	make
sure	you	truly	understand
how	Shell_exec	actually

works.

Challenge	3:	Critique	My
Design
As	before,	do	a	complete
review	of	this	code	and	make
sure	it’s	exactly	the	same.
Then	go	through	each
function	and	make	sure	you
know	how	they	work	and
what	they’re	doing.	You
should	also	trace	how	each
function	calls	the	other

functions	you’ve	written	in
this	file	and	other	files.
Finally,	confirm	that	you
understand	all	of	the
functions	that	you’re	calling
from	APR	here.
Once	you	have	the	file	correct
and	analyzed,	go	back
through	and	assume	that	I’m
an	idiot.	Then,	criticize	the
design	I	have	to	see	how	you
can	improve	it	if	you	can.
Don’t	actually	change	the

code,	just	create	a	little
notes.txt	file	and	write
down	some	thoughts	about
what	you	might	change.

The	devpkg	Main
Function
The	last	and	most	important
file,	but	probably	the
simplest,	is	devpkg.c,
which	is	where	the	main
function	lives.	There’s	no	.h

file	for	this,	since	it	includes
all	of	the	others.	Instead,	this
just	creates	the	executable
devpkg	when	combined
with	the	other	.o	files	from
our	Makefile.	Enter	in	the
code	for	this	file,	and	make
sure	it’s	correct.

devpkg.c

Click	here	to	view	code	image

		1			#include

<stdio.h>
		2			#include
<apr_general.h>
		3			#include
<apr_getopt.h>
		4			#include
<apr_strings.h>
		5			#include
<apr_lib.h>
		6
		7			#include
"dbg.h"
		8			#include	"db.h"
		9			#include
"commands.h"
	10

	11			int	main(int
argc,	const	char
const	*argv[])
	12			{
	13							apr_pool_t
*p	=	NULL;
	14							apr_pool_initialize
	15							apr_pool_create
NULL);
	16
	17							apr_getopt_t
*opt;
	18							apr_status_t
rv;
	19
	20							char	ch	=
'\0';

	21							const	char
*optarg	=	NULL;
	22							const	char
*config_opts	=	NULL;
	23							const	char
*install_opts	=	NULL;
	24							const	char
*make_opts	=	NULL;
	25							const	char
*url	=	NULL;
	26							enum
CommandType	request	=
COMMAND_NONE;
	27
	28							rv	=
apr_getopt_init(&opt,

p,	argc,	argv);
	29
	30							while
(apr_getopt(opt,
"I:Lc:m:i:d:SF:B:",
&ch,	&optarg)	==
	31															APR_SUCCESS
{
	32											switch
(ch)	{
	33															case
'I':
	34																			request
=	COMMAND_INSTALL;
	35																			url
=	optarg;

	36																			
	37
	38															case
'L':
	39																			request
=	COMMAND_LIST;
	40																			
	41
	42															case
'c':
	43																			config_opts
=	optarg;
	44																		break
	45
	46															case
'm':

	47																			make_opts
=	optarg;
	48																			
	49
	50															case
'i':
	51																			install_opts
=	optarg;
	52																			
	53
	54															case
'S':
	55																			request
=	COMMAND_INIT;
	56																			
	57

	58															case
'F':
	59																			request
=	COMMAND_FETCH;
	60																			url
=	optarg;
	61																			
	62
	63															case
'B':
	64																			request
=	COMMAND_BUILD;
	65																			url
=	optarg;
	66																			
	67											}

	68							}
	69
	70							switch
(request)	{
	71											case
COMMAND_INSTALL:
	72															check
"You	must	at	least
give	a	URL.");
	73															Command_install
url,	config_opts,
make_opts,
install_opts);
	74															break
	75
	76											case
COMMAND_LIST:

	77															DB_list
	78															break
	79
	80											case
COMMAND_FETCH:
	81															check
!=	NULL,	"You	must
give	a	URL.");
	82															Command_fetch
url,	1);
	83															log_info
to	%s	and	in	/tmp/",
BUILD_DIR);
	84															break
	85
	86											case
COMMAND_BUILD:

	87															check
"You	must	at	least
give	a	URL.");
	88															Command_build
url,	config_opts,
make_opts,
install_opts);
	89															break
	90
	91											case
COMMAND_INIT:
	92															rv
=	DB_init();
	93															check
==	0,	"Failed	to	make
the	database.");

	94															break
	95
	96											default:
	97															sentinel
command	given.");
	98							}
	99
100							return	0;
101
102			error:
103							return	1;
104			}

Challenge	4:	The	README
and	Test	Files

The	challenge	for	this	file	is
to	understand	how	the
arguments	are	being
processed,	what	the
arguments	are,	and	then
create	the	README	file	with
instructions	on	how	to	use
them.	As	you	write	the
README,	also	write	a	simple
test.sh	that	runs
./devpkg	to	check	that
each	command	is	actually
working	against	real,	live

code.	Use	the	set	-e	at	the
top	of	your	script	so	that	it
aborts	on	the	first	error.
Finally,	run	the	program
under	your	debugger	and
make	sure	it’s	working	before
moving	on	to	the	final
challenge.

The	Final	Challenge
Your	final	challenge	is	a	mini
exam	and	it	involves	three
things:

•	Compare	your	code	to
my	code	that’s	available
online.	Starting	at
100%,	subtract	1%	for
each	line	you	got
wrong.
•	Take	the	notes.txt
file	that	you	previously
created	and	implement
your	improvements	to
the	the	code	and
functionality	of
devpkg.

•	Write	an	alternative
version	of	devpkg
using	your	other
favorite	language	or	the
one	you	think	can	do
this	the	best.	Compare
the	two,	then	improve
your	C	version	of
devpkg	based	on	what
you’ve	learned.

To	compare	your	code	with
mine,	do	the	following:
Click	here	to	view	code	image

cd	..	#	get	one
directory	above	your
current	one
git	clone
git://gitorious.org/devpkg/devpkg.git
devpkgzed
diff	-r	devpkg
devpkgzed

This	will	clone	my	version	of
devpkg	into	a	directory
called	devpkgzed	so	you
can	then	use	the	tool	diff	to
compare	what	you’ve	done	to
what	I	did.	The	files	you’re

working	with	in	this	book
come	directly	from	this
project,	so	if	you	get	different
lines,	that’s	an	error.
Keep	in	mind	that	there’s	no
real	pass	or	fail	on	this
exercise.	It’s	just	a	way	for
you	to	challenge	yourself	to
be	as	exact	and	meticulous	as
possible.

Exercise	42.
Stacks	and
Queues

At	this	point	in	the	book,	you
should	know	most	of	the	data
structures	that	are	used	to
build	all	of	the	other	data
structures.	If	you	have	some
kind	of	List,	DArray,
Hashmap,	and	Tree,	then

you	can	build	almost
anything	else	out	there.
Everything	else	you	run	into
either	uses	these	or	some
variant	of	these.	If	it	doesn’t,
then	it’s	most	likely	an	exotic
data	structure	that	you
probably	won’t	need.
Stacks	and	Queues	are
very	simple	data	structures
that	are	really	variants	of	the
List	data	structure.	All	they
do	is	use	a	List	with	a

discipline	or	convention	that
says	you	always	place
elements	on	one	end	of	the
List.	For	a	Stack,	you
always	push	and	pop.	For	a
Queue,	you	always	shift	to
the	front,	but	pop	from	the
end.
I	can	implement	both	data
structures	using	nothing	but
the	CPP	and	two	header	files.
My	header	files	are	21	lines
long	and	do	all	of	the	Stack

and	Queue	operations
without	any	fancy	defines.
To	see	if	you’ve	been	paying
attention,	I’m	going	to	show
you	the	unit	tests,	and	then
have	you	implement	the
header	files	needed	to	make
them	work.	To	pass	this
exercise,	you	can’t	create	any
stack.c	or	queue.c
implementation	files.	Use
only	the	stack.h	and
queue.h	files	to	make	the

tests	run.

stack_tests.c

Click	here	to	view	code	image

	1			#include
"minunit.h"
	2			#include
<lcthw/stack.h>
	3			#include
<assert.h>
	4
	5			static	Stack
*stack	=	NULL;

	6			char	*tests[]	=
{	"test1	data",
"test2	data",	"test3
data"	};
	7
	8			#define
NUM_TESTS	3
	9
10			char
*test_create()
11			{
12							stack	=
Stack_create();
13							mu_assert(stack
!=	NULL,	"Failed	to
create	stack.");

14
15							return	NULL;
16			}
17
18			char
*test_destroy()
19			{
20							mu_assert(stack
!=	NULL,	"Failed	to
make	stack	#2");
21							Stack_destroy
22
23							return	NULL;
24			}
25
26			char

*test_push_pop()
27			{
28							int	i	=	0;
29							for	(i	=	0;
i	<	NUM_TESTS;	i++)	{
30											Stack_push
tests[i]);
31											mu_assert
==	tests[i],	"Wrong
next	value.");
32							}
33
34							mu_assert(Stack_count
==	NUM_TESTS,	"Wrong
count	on	push.");
35

36							STACK_FOREACH
cur)	{
37											debug("VAL:
%s",	(char	*)cur-
>value);
38							}
39
40							for	(i	=
NUM_TESTS	-	1;	i	>=
0;	i--)	{
41											char
*val	=
Stack_pop(stack);
42											mu_assert
==	tests[i],	"Wrong
value	on	pop.");

43							}
44
45							mu_assert(Stack_count
==	0,	"Wrong	count
after	pop.");
46
47							return	NULL;
48			}
49
50			char
*all_tests()
51			{
52							mu_suite_start
53
54							mu_run_test(test_create
55							mu_run_test(test_push_pop

56							mu_run_test(test_destroy
57
58							return	NULL;
59			}
60
61			RUN_TESTS(all_tests

Then,	the	queue_tests.c
is	almost	the	same,	only	using
Queue:

queue_tests.c

Click	here	to	view	code	image

		1			#include
"minunit.h"
		2			#include
<lcthw/queue.h>
		3			#include
<assert.h>
		4
		5			static	Queue
*queue	=	NULL;
		6			char	*tests[]	=
{	"test1	data",
"test2	data",	"test3
data"	};
		7
		8			#define
NUM_TESTS	3
		9

	10			char
*test_create()
	11			{
	12							queue	=
Queue_create();
	13							mu_assert(queue
!=	NULL,	"Failed	to
create	queue.");
	14
	15							return
NULL;
	16			}
	17
	18			char
*test_destroy()
	19			{
	20							mu_assert(queue

!=	NULL,	"Failed	to
make	queue	#2");
	21							Queue_destroy
	22
	23							return
NULL;
	24			}
	25
	26			char
*test_send_recv()
	27			{
	28							int	i	=	0;
	29							for	(i	=	0;
i	<	NUM_TESTS;	i++)	{
	30											Queue_send
tests[i]);

	31											mu_assert
==	tests[0],	"Wrong
next	value.");
	32							}
	33
	34							mu_assert(Queue_count
==	NUM_TESTS,	"Wrong
count	on	send.");
	35
	36							QUEUE_FOREACH
cur)	{
	37											debug("VAL:
%s",	(char	*)cur-
>value);
	38							}
	39
	40							for	(i	=	0;

i	<	NUM_TESTS;	i++)	{
	41											char
*val	=
Queue_recv(queue);
	42											mu_assert
==	tests[i],	"Wrong
value	on	recv.");
	43							}
	44
	45							mu_assert(Queue_count
==	0,	"Wrong	count
after	recv.");
	46
	47							return
NULL;
	48			}

	49
	50			char
*all_tests()
	51			{
	52							mu_suite_start
	53
	54							mu_run_test(
	55							mu_run_test(
	56							mu_run_test(
	57
	58							return
NULL;
	59			}
	60
	61			RUN_TESTS(all_tests

What	You	Should
See
Your	unit	test	should	run
without	your	having	to
change	the	tests,	and	it	should
pass	the	debugger	with	no
memory	errors.	Here’s	what	it
looks	like	if	I	run
stack_tests	directly:

Exercise	42.1
Session

Click	here	to	view	code	image

$./tests/stack_tests
DEBUG
tests/stack_tests.c:60:
-----	RUNNING:
./tests/stack_tests

RUNNING:
./tests/stack_tests
DEBUG
tests/stack_tests.c:53:
-----	test_create
DEBUG
tests/stack_tests.c:54:
-----	test_push_pop
DEBUG

tests/stack_tests.c:37:
VAL:	test3	data
DEBUG
tests/stack_tests.c:37:
VAL:	test2	data
DEBUG
tests/stack_tests.c:37:
VAL:	test1	data
DEBUG
tests/stack_tests.c:55:
-----	test_destroy
ALL	TESTS	PASSED
Tests	run:	3
$

The	queue_test	is

basically	the	same	kind	of
output,	so	I	shouldn’t	have	to
show	it	to	you	at	this	stage.

How	to	Improve	It
The	only	real	improvement
you	could	make	to	this	is
switching	from	a	List	to	a
DArray.	The	Queue	data
structure	is	more	difficult	to
do	with	a	DArray	because	it
works	at	both	ends	of	the	list
of	nodes.

One	disadvantage	of	doing
this	entirely	in	a	header	file	is
that	you	can’t	easily
performance	tune	it.	Mostly,
what	you’re	doing	with	this
technique	is	establishing	a
protocol	for	how	to	use	a
List	in	a	certain	style.
When	performance	tuning,	if
you	make	List	fast,	then
these	two	should	improve	as
well.

Extra	Credit
•	Implement	Stack
using	DArray	instead
of	List,	but	without
changing	the	unit	test.
That	means	you’ll	have
to	create	your	own
STACK_FOREACH.

Exercise	43.	A
Simple	Statistics
Engine

This	is	a	simple	algorithm
that	I	use	for	collecting
summary	statistics	online,	or
without	storing	all	of	the
samples.	I	use	this	in	any
software	that	needs	to	keep
some	statistics,	such	as	mean,

standard	deviation,	and	sum,
but	can’t	store	all	the	samples
needed.	Instead,	I	can	just
store	the	rolling	results	of	the
calculations,	which	is	only
five	numbers.

Rolling	Standard
Deviation	and	Mean
The	first	thing	you	need	is	a
sequence	of	samples.	This
can	be	anything	from	the	time
it	takes	to	complete	a	task	to

the	number	of	times	someone
accesses	something	to	star
ratings	on	a	Web	site.	It
doesn’t	really	matter	what	it
is,	just	so	long	as	you	have	a
stream	of	numbers	and	you
want	to	know	the	following
summary	statistics	about
them:

sum	This	is	the	total	of	all
the	numbers	added
together.

sum	squared	(sumsq)

This	is	the	sum	of	the
square	of	each	number.

count	(n)	This	is	the
number	samples	that
you’ve	taken.

min	This	is	the	smallest
sample	you’ve	seen.

max	This	is	the	largest
sample	you’ve	seen.

mean	This	is	the	most
likely	middle	number.
It’s	not	actually	the
middle,	since	that’s	the

median,	but	it’s	an
accepted	approximation
for	it.

stddev	This	is	calculated
using	$sqrt(sumsq	–
(sum	×	mean))	/	(n	–	1)
))$	where	sqrt	is	the
square	root	function	in
the	math.h	header.

I	will	confirm	this	calculation
works	using	R,	since	I	know
R	gets	these	right:

Exercise	43.1
Session

Click	here	to	view	code	image

>	s	<-	runif(n=10,
max=10)
>	s
	[1]	6.1061334
9.6783204	1.2747090
8.2395131	0.3333483
6.9755066	1.0626275
	[8]	7.6587523
4.9382973	9.5788115
>	summary(s)
			Min.	1st	Qu.

Median			Mean	3rd
Qu.				Max.
	0.3333		2.1910
6.5410
5.5850		8.0940		9.6780
>	sd(s)
[1]	3.547868
>	sum(s)
[1]	55.84602
>	sum(s	*	s)
[1]	425.1641
>	sum(s)	*	mean(s)
[1]	311.8778
>	sum(s	*	s)	-	sum(s)
*	mean(s)
[1]	113.2863

>	(sum(s	*	s)	-
sum(s)	*	mean(s))	/
(length(s)	-	1)
[1]	12.58737
>	sqrt((sum(s	*	s)	-
sum(s)	*	mean(s))	/
(length(s)	-	1))
[1]	3.547868
>

You	don’t	need	to	know	R.
Just	follow	along	while	I
explain	how	I’m	breaking	this
down	to	check	my	math:

Lines	1-4	I	use	the

function	runif	to	get
a	random	uniform
distribution	of	numbers,
then	print	them	out.	I’ll
use	these	in	the	unit	test
later.

Lines	5-7	Here’s	the
summary,	so	you	can
see	the	values	that	R
calculates	for	these.

Lines	8-9	This	is	the
stddev	using	the	sd
function.

Lines	10-11	Now	I	begin
to	build	this	calculation
manually,	first	by
getting	the	sum.

Lines	12-13	The	next
piece	of	the	stdev
formula	is	the	sumsq,
which	I	can	get	with
sum(s	*	s)	that	tells
R	to	multiply	the	whole
s	list	by	itself,	and	then
sum	those.	The	power
of	R	is	being	able	to	do

math	on	entire	data
structures	like	this.

Lines	14-15	Looking	at
the	formula,	I	then	need
the	sum	multiplied	by
mean,	so	I	do	sum(s)
*	mean(s).

Lines	16-17	I	then
combine	the	sumsq
with	this	to	get	sum(s
*	s)	-	sum(s)	*
mean(s).

Lines	18-19	That	needs	to

be	divided	by	$n-1$,	so
I	do	(sum(s	*	s)	-
sum(s)	*
mean(s))	/
(length(s)	-	1).

Lines	20-21	Finally,	I
sqrt	that	and	I	get
3.547868,	which
matches	the	number	R
gave	me	for	sd	above.

Implementation
That’s	how	you	calculate	the
stddev,	so	now	I	can	make
some	simple	code	to
implement	this	calculation.

stats.h

Click	here	to	view	code	image

#ifndef	lcthw_stats_h
#define	lcthw_stats_h

typedef	struct	Stats

{
				double	sum;
				double	sumsq;
				unsigned	long	n;
				double	min;
				double	max;
}	Stats;

Stats
*Stats_recreate(double
sum,	double	sumsq,
unsigned	long	n,
								double	min,
double	max);

Stats
*Stats_create();

double
Stats_mean(Stats	*
st);

double
Stats_stddev(Stats	*
st);

void
Stats_sample(Stats	*
st,	double	s);

void	Stats_dump(Stats
*	st);

#endif

Here	you	can	see	that	I’ve	put
the	calculations	I	need	to
store	in	a	struct,	and	then	I
have	functions	for	sampling
and	getting	the	numbers.
Implementing	this	is	then	just
an	exercise	in	converting	the
math:

stats.c

Click	here	to	view	code	image

		1			#include
<math.h>
		2			#include
<lcthw/stats.h>
		3			#include
<stdlib.h>
		4			#include
<lcthw/dbg.h>
		5
		6			Stats
*Stats_recreate(double
sum,	double	sumsq,
unsigned	long	n,
		7											double
min,	double	max)
		8			{
		9							Stats	*st	=

malloc(sizeof(Stats));
	10							check_mem(st
	11
	12							st->sum	=
sum;
	13							st->sumsq	=
sumsq;
	14							st->n	=	n;
	15							st->min	=
min;
	16							st->max	=
max;
	17
	18							return	st;
	19
	20			error:
	21							return

NULL;
	22			}
	23
	24			Stats
*Stats_create()
	25			{
	26							return
Stats_recreate(0.0,
0.0,	0L,	0.0,	0.0);
	27			}
	28
	29			double
Stats_mean(Stats	*
st)
	30			{
	31							return	st-
>sum	/	st->n;

	32			}
	33
	34			double
Stats_stddev(Stats	*
st)
	35			{
	36							return
sqrt((st->sumsq	-
(st->sum	*	st->sum	/
st->n))	/
	37															(st-
>n	-	1));
	38			}
	39
	40			void
Stats_sample(Stats	*
st,	double	s)

	41			{
	42							st->sum	+=
s;
	43							st->sumsq
+=	s	*	s;
	44
	45							if	(st->n
==	0)	{
	46											st->min
=	s;
	47											st->max
=	s;
	48							}	else	{
	49											if	(st-
>min	>	s)
	50															st-
>min	=	s;

	51											if	(st-
>max	<	s)
	52															st-
>max	=	s;
	53							}
	54
	55							st->n	+=	1;
	56			}
	57
	58			void
Stats_dump(Stats	*
st)
	59			{
	60							fprintf(stderr
	61															"sum:
%f,	sumsq:	%f,	n:
%ld,	"

	62															"min:
%f,	max:	%f,	mean:
%f,	stddev:	%f",
	63															st-
>sum,	st->sumsq,	st-
>n,	st->min,	st->max,
Stats_mean(st),
	64															Stats_stddev
	65			}

Here’s	a	breakdown	of	each
function	in	stats.c:

Stats_recreate	I’ll	want
to	load	these	numbers
from	some	kind	of

database,	and	this
function	let’s	me
recreate	a	Stats
struct.

Stats_create	This	simply
called
Stats_recreate
with	all	0	(zero)	values.

Stats_mean	Using	the
sum	and	n,	it	gives	the
mean.

Stats_stddev	This
implements	the	formula

I	worked	out;	the	only
difference	is	that	I
calculate	the	mean	with
st->sum	/	st->n
in	this	formula	instead
of	calling
Stats_mean.

Stats_sample	This	does
the	work	of	maintaining
the	numbers	in	the
Stats	struct.	When
you	give	it	the	first
value,	it	sees	that	n	is	0

and	sets	min	and	max
accordingly.	Every	call
after	that	keeps
increasing	sum,
sumsq,	and	n.	It	then
figures	out	if	this	new
sample	is	a	new	min	or
max.

Stats_dump	This	is	a
simple	debug	function
that	dumps	the	statistics
so	you	can	view	them.

The	last	thing	I	need	to	do	is

confirm	that	this	math	is
correct.	I’m	going	to	use
numbers	and	calculations
from	my	R	session	to	create	a
unit	test	that	confirms	that
I’m	getting	the	right	results.

stats_tests.c

Click	here	to	view	code	image

		1			#include
"minunit.h"
		2			#include

<lcthw/stats.h>
		3			#include
<math.h>
		4
		5			const	int
NUM_SAMPLES	=	10;
		6			double
samples[]	=	{
		7							6.1061334,
9.6783204,	1.2747090,
8.2395131,	0.3333483,
		8							6.9755066,
1.0626275,	7.6587523,
4.9382973,	9.5788115
		9			};
	10

	11			Stats	expect	=
{
	12							.sumsq	=
425.1641,
	13							.sum	=
55.84602,
	14							.min	=
0.333,
	15							.max	=
9.678,
	16							.n	=	10,
	17			};
	18
	19			double
expect_mean	=
5.584602;

	20			double
expect_stddev	=
3.547868;
	21
	22			#define
EQ(X,Y,N)	(round((X)
*	pow(10,	N))	==
round((Y)	*	pow(10,
N)))
	23
	24			char
*test_operations()
	25			{
	26							int	i	=	0;
	27							Stats	*st	=
Stats_create();

	28							mu_assert(st
!=	NULL,	"Failed	to
create	stats.");
	29
	30							for	(i	=	0;
i	<	NUM_SAMPLES;	i++)
{
	31											Stats_sample
samples[i]);
	32							}
	33
	34							Stats_dump(st
	35
	36							mu_assert(EQ
>sumsq,	expect.sumsq,
3),	"sumsq	not
valid");

	37							mu_assert(EQ
>sum,	expect.sum,	3),
"sum	not	valid");
	38							mu_assert(EQ
>min,	expect.min,	3),
"min	not	valid");
	39							mu_assert(EQ
>max,	expect.max,	3),
"max	not	valid");
	40							mu_assert(EQ
>n,	expect.n,	3),
"max	not	valid");
	41							mu_assert(EQ
Stats_mean(st),	3),
"mean	not	valid");
	42							mu_assert(EQ

Stats_stddev(st),	3),
	43															"stddev
not	valid");
	44
	45							return
NULL;
	46			}
	47
	48			char
*test_recreate()
	49			{
	50							Stats	*st	=
Stats_recreate(
	51															expect
expect.sumsq,
expect.n,	expect.min,

expect.max);
	52
	53							mu_assert(st
>sum	==	expect.sum,
"sum	not	equal");
	54							mu_assert(st
>sumsq	==
expect.sumsq,	"sumsq
not	equal");
	55							mu_assert(st
>n	==	expect.n,	"n
not	equal");
	56							mu_assert(st
>min	==	expect.min,
"min	not	equal");
	57							mu_assert(st

>max	==	expect.max,
"max	not	equal");
	58							mu_assert(EQ
Stats_mean(st),	3),
"mean	not	valid");
	59							mu_assert(EQ
Stats_stddev(st),	3),
	60															"stddev
not	valid");
	61
	62							return
NULL;
	63			}
	64
	65			char
*all_tests()

	66			{
	67							mu_suite_start
	68
	69							mu_run_test(
	70							mu_run_test(
	71
	72							return
NULL;
	73			}
	74
	75			RUN_TESTS(all_tests

There’s	nothing	new	in	this
unit	test,	except	maybe	the
EQ	macro.	I	felt	lazy	and
didn’t	want	to	look	up	the

standard	way	to	tell	if	two
double	values	are	close,	so
I	made	this	macro.	The
problem	with	double	is	that
equality	assumes	totally	equal
results,	but	I’m	using	two
different	systems	with
slightly	different	rounding
errors.	The	solution	is	to	say
that	I	want	the	numbers	to	be
“equal	to	X	decimal	places.”
I	do	this	with	EQ	by	raising
the	number	to	a	power	of	10,

then	using	the	round
function	to	get	an	integer.
This	is	a	simple	way	to	round
to	N	decimal	places	and
compare	the	results	as	an
integer.	I’m	sure	there	are	a
billion	other	ways	to	do	the
same	thing,	but	this	works	for
now.
The	expected	results	are	then
in	a	Stats	struct	and	I
simply	make	sure	that	the
number	I	get	is	close	to	the

number	R	gave	me.

How	to	Use	It
You	can	use	the	standard
deviation	and	mean	to
determine	if	a	new	sample	is
interesting,	or	you	can	use
this	to	collect	statistics	on
statistics.	The	first	one	is	easy
for	people	to	understand,	so
I’ll	explain	that	quickly	using
an	example	for	login	times.
Imagine	you’re	tracking	how

long	users	spend	on	a	server,
and	you’re	using	statistics	to
analyze	it.	Every	time
someone	logs	in,	you	keep
track	of	how	long	they	are
there,	then	you	call
Stats_sample.	I’m
looking	for	people	who	are	on
too	long	and	also	people	who
seem	to	be	on	too	quickly.
Instead	of	setting	specific
levels,	what	I’d	do	is	compare
how	long	someone	is	on	with

the	mean	(plus	or
minus)	2	*	stddev
range.	I	get	the	mean	and	2
*	stddev,	and	consider
login	times	to	be	interesting	if
they	are	outside	these	two
ranges.	Since	I’m	keeping
these	statistics	using	a	rolling
algorithm,	this	is	a	very	fast
calculation,	and	I	can	then
have	the	software	flag	the
users	who	are	outside	of	this
range.

This	doesn’t	necessarily	point
out	people	who	are	behaving
badly,	but	instead	it	flags
potential	problems	that	you
can	review	to	see	what’s
going	on.	It’s	also	doing	it
based	on	the	behavior	of	all
of	the	users,	which	avoids	the
problem	of	picking	some
arbitrary	number	that’s	not
based	on	what’s	really
happening.
The	general	rule	you	can	get

from	this	is	that	the	mean
(plus	or	minus)	2	*
stddev	is	an	estimate	of
where	90%	of	the	values	are
expected	to	fall,	and	anything
outside	that	range	is
interesting.
The	second	way	to	use	these
statistics	is	to	go	meta	and
calculate	them	for	other
Stats	calculations.	You
basically	do	your
Stats_sample	like

normal,	but	then	you	run
Stats_sample	on	the
min,	max,	n,	mean,	and
stddev	on	that	sample.	This
gives	a	two-level
measurement,	and	lets	you
compare	samples	of	samples.
Confusing,	right?	I’ll
continue	my	example	above,
but	let’s	say	you	have	100
servers	that	each	hold	a
different	application.	You’re
already	tracking	users’	login

times	for	each	application
server,	but	you	want	to
compare	all	100	applications
and	flag	any	users	that	are
logging	in	too	much	on	all	of
them.	The	easiest	way	to	do
that	is	to	calculate	the	new
login	stats	each	time	someone
logs	in,	and	then	add	that
Stats	structs	element
to	a	second	Stat.
What	you	end	up	with	is	a
series	of	statistics	that	can	be

named	like	this:
mean	of	means	This	is	a
full	Stats	struct
that	gives	you	mean
and	stddev	of	the
means	of	all	the	servers.
Any	server	or	user	who
is	outside	of	this	is
worth	looking	at	on	a
global	level.

mean	of	stddevs	Another
Stats	struct	that
produces	statistics	on

how	all	of	the	servers
range.	You	can	then
analyze	each	server	and
see	if	any	of	them	have
unusually	wide-ranging
numbers	by	comparing
their	stddev	to	this
mean	of	stddevs
statistic.

You	could	do	them	all,	but
these	are	the	most	useful.	If
you	then	wanted	to	monitor
servers	for	erratic	login	times,

you’d	do	this:
•	User	John	logs	in	to	and
out	of	server	A.	Grab
server	A’s	statistics	and
update	them.
•	Grab	the	mean	of
means	statistics,	and
then	take	A’s	mean	and
add	it	as	a	sample.	I’ll
call	this	m_of_m.
•	Grab	the	mean	of
stddevs	statistics,
and	add	A’s	stddev	to	it

as	a	sample.	I’ll	call	this
m_of_s.
•	If	A’s	mean	is	outside
of	m_of_m.mean	+
2	*
m_of_m.stddev,
then	flag	it	as	possibly
having	a	problem.
•	If	A’s	stddev	is
outside	of
m_of_s.mean	+	2
*	m_of_s.stddev,
then	flag	it	as	possibly

behaving	too	erratically.
•	Finally,	if	John’s	login
time	is	outside	of	A’s
range,	or	A’s	m_of_m
range,	then	flag	it	as
interesting.

Using	this	mean	of	means	and
mean	of	stddevs	calculation,
you	can	efficiently	track
many	metrics	with	a	minimal
amount	of	processing	and
storage.

Extra	Credit
•	Convert	the
Stats_stddev	and
Stats_mean	to
static	inline
functions	in	the
stats.h	file	instead
of	in	the	stats.c	file.
•	Use	this	code	to	write	a
performance	test	of	the
string_algos_test.c
Make	it	optional,	and
have	it	run	the	base	test

as	a	series	of	samples,
and	then	report	the
results.
•	Write	a	version	of	this
in	another	programming
language	you	know.
Confirm	that	this
version	is	correct	based
on	what	I	have	here.
•	Write	a	little	program
that	can	take	a	file	full
of	numbers	and	spit
these	statistics	out	for

them.
•	Make	the	program
accept	a	table	of	data
that	has	headers	on	one
line,	then	all	of	the
other	numbers	on	lines
after	it	are	separated	by
any	number	of	spaces.
Your	program	should
then	print	out	these
statistics	for	each
column	by	the	header
name.

Exercise	44.
Ring	Buffer

Ring	buffers	are	incredibly
useful	when	processing
asynchronous	I/O.	They
allow	one	side	to	receive	data
in	random	intervals	of
random	sizes,	but	feed
cohesive	chunks	to	another
side	in	set	sizes	or	intervals.
They	are	a	variant	on	the

Queue	data	structure	but
focus	on	blocks	of	bytes
instead	of	a	list	of	pointers.	In
this	exercise,	I’m	going	to
show	you	the	RingBuffer
code,	and	then	have	you
make	a	full	unit	test	for	it.

ringbuffer.h

Click	here	to	view	code	image

		1			#ifndef
_lcthw_RingBuffer_h

		2			#define
_lcthw_RingBuffer_h
		3
		4			#include
<lcthw/bstrlib.h>
		5
		6			typedef	struct
{
		7							char
*buffer;
		8							int	length;
		9							int	start;
	10							int	end;
	11			}	RingBuffer;
	12
	13			RingBuffer

*RingBuffer_create(int
length);
	14
	15			void
RingBuffer_destroy(RingBuffer
*	buffer);
	16
	17			int
RingBuffer_read(RingBuffer
*	buffer,	char
*target,	int	amount);
	18
	19			int
RingBuffer_write(RingBuffer
*	buffer,	char	*data,
int	length);

	20
	21			int
RingBuffer_empty(RingBuffer
*	buffer);
	22
	23			int
RingBuffer_full(RingBuffer
*	buffer);
	24
	25			int
RingBuffer_available_data
*	buffer);
	26
	27			int
RingBuffer_available_space
*	buffer);

	28
	29			bstring
RingBuffer_gets(RingBuffer
*	buffer,	int
amount);
	30
	31			#define
RingBuffer_available_data(B)
(\
	32											((B)-
>end	+	1)	%	(B)-
>length	-	(B)->start
-	1)
	33
	34			#define
RingBuffer_available_space(B)
(\

	35											(B)-
>length	-	(B)->end	-
1)
	36
	37			#define
RingBuffer_full(B)
(RingBuffer_available_data((B))\
	38											-	(B)-
>length	==	0)
	39
	40			#define
RingBuffer_empty(B)
(\
	41											RingBuffer_available_data((B))
==	0)
	42

	43			#define
RingBuffer_puts(B,	D)
RingBuffer_write(\
	44											(B),
bdata((D)),
blength((D)))
	45
	46			#define
RingBuffer_get_all(B)
RingBuffer_gets(\
	47											(B),
RingBuffer_available_data((B)))
	48
	49			#define
RingBuffer_starts_at(B)
(\

	50											(B)-
>buffer	+	(B)->start)
	51
	52			#define
RingBuffer_ends_at(B)
(\
	53											(B)-
>buffer	+	(B)->end)
	54
	55			#define
RingBuffer_commit_read(B,
A)	(\
	56											(B)-
>start	=	((B)->start
+	(A))	%	(B)->length)
	57

	58			#define
RingBuffer_commit_write(B,
A)	(\
	59											(B)-
>end	=	((B)->end	+
(A))	%	(B)->length)
	60
	61			#endif

Looking	at	the	data	structure,
you	see	I	have	a	buffer,
start,	and	end.	A
RingBuffer	does	nothing
more	than	move	the	start
and	end	around	the	buffer	so

that	it	loops	whenever	it
reaches	the	buffer’s	end.
Doing	this	gives	the	illusion
of	an	infinite	read	device	in	a
small	space.	I	then	have	a
bunch	of	macros	that	do
various	calculations	based	on
this.
Here’s	the	implementation,
which	is	a	much	better
explanation	of	how	this
works.

ringbuffer.c

Click	here	to	view	code	image

		1			#undef	NDEBUG
		2			#include
<assert.h>
		3			#include
<stdio.h>
		4			#include
<stdlib.h>
		5			#include
<string.h>
		6			#include
<lcthw/dbg.h>
		7			#include

<lcthw/ringbuffer.h>
		8
		9			RingBuffer
*RingBuffer_create(int
length)
	10			{
	11							RingBuffer
*buffer	=	calloc(1,
sizeof(RingBuffer));
	12							buffer-
>length	=	length	+	1;
	13							buffer-
>start	=	0;
	14							buffer->end
=	0;
	15							buffer-

>buffer	=
calloc(buffer-
>length,	1);
	16
	17							return
buffer;
	18			}
	19
	20			void
RingBuffer_destroy(RingBuffer
*	buffer)
	21			{
	22							if	(buffer)
{
	23											free(buffer
>buffer);

	24											free(buffer
	25							}
	26			}
	27
	28			int
RingBuffer_write(RingBuffer
*	buffer,	char	*data,
int	length)
	29			{
	30							if
(RingBuffer_available_data
==	0)	{
	31											buffer-
>start	=	buffer->end
=	0;
	32							}

	33
	34							check(length
<=
RingBuffer_available_space
	35															"Not
enough	space:	%d
request,	%d
available",
	36															RingBuffer_available_data
length);
	37
	38							void
*result	=
memcpy(RingBuffer_ends_at
data,	length);
	39							check(result

!=	NULL,	"Failed	to
write	data	into
buffer.");
	40
	41							RingBuffer_commit_write
length);
	42
	43							return
length;
	44			error:
	45							return	-1;
	46			}
	47
	48			int
RingBuffer_read(RingBuffer
*	buffer,	char

*target,	int	amount)
	49			{
	50							check_debug(
<=
RingBuffer_available_data
	51															"Not
enough	in	the	buffer:
has	%d,	needs	%d",
	52															RingBuffer_available_data
amount);
	53
	54							void
*result	=
memcpy(target,
RingBuffer_starts_at(buffer
amount);

	55							check(result
!=	NULL,	"Failed	to
write	buffer	into
data.");
	56
	57							RingBuffer_commit_read
amount);
	58
	59							if	(buffer-
>end	==	buffer-
>start)	{
	60											buffer-
>start	=	buffer->end
=	0;
	61							}
	62

	63							return
amount;
	64			error:
	65							return	-1;
	66			}
	67
	68			bstring
RingBuffer_gets(RingBuffer
*	buffer,	int	amount)
	69			{
	70							check(amount
>	0,	"Need	more	than
0	for	gets,	you	gave:
%d	",
	71															amount
	72							check_debug(

<=
RingBuffer_available_data
	73															"Not
enough	in	the
buffer.");
	74
	75							bstring
result	=
blk2bstr(RingBuffer_starts_at
amount);
	76							check(result
!=	NULL,	"Failed	to
create	gets
result.");
	77							check(blength
==	amount,	"Wrong
result	length.");

	78
	79							RingBuffer_commit_read
amount);
	80							assert(RingBuffer_available_data
>=	0
	81															&&
"Error	in	read
commit.");
	82
	83							return
result;
	84			error:
	85							return
NULL;
	86			}

This	is	all	there	is	to	a	basic

RingBuffer
implementation.	You	can
read	and	write	blocks	of	data
to	it.	You	can	ask	how	much
is	in	it	and	how	much	space	it
has.	There	are	some	fancier
ring	buffers	that	use	tricks	on
the	OS	to	create	an	imaginary
infinite	store,	but	those	aren’t
portable.
Since	my	RingBuffer
deals	with	reading	and
writing	blocks	of	memory,

I’m	making	sure	that	any	time
end	==	start,	I	reset
them	to	0	(zero)	so	that	they
go	to	the	beginning	of	the
buffer.	In	the	Wikipedia
version	it	isn’t	writing	blocks
of	data,	so	it	only	has	to	move
end	and	start	around	in	a
circle.	To	better	handle
blocks,	you	have	to	drop	to
the	beginning	of	the	internal
buffer	whenever	the	data	is
empty.

The	Unit	Test
For	your	unit	test,	you’ll	want
to	test	as	many	possible
conditions	as	you	can.	The
easiest	way	to	do	that	is	to
preconstruct	different
RingBuffer	structs,	and
then	manually	check	that	the
functions	and	math	work
right.	For	example,	you	could
make	one	where	end	is	right
at	the	end	of	the	buffer	and
start	is	right	before	the

buffer,	and	then	see	how	it
fails.

What	You	Should
See
Here’s	my
ringbuffer_tests	run:

Exercise	44.1
Session

Click	here	to	view	code	image

$
./tests/ringbuffer_tests
DEBUG
tests/ringbuffer_tests.c:60:
-----	RUNNING:
./tests/ringbuffer_tests

RUNNING:
./tests/ringbuffer_tests
DEBUG
tests/ringbuffer_tests.c:53:
-----	test_create
DEBUG
tests/ringbuffer_tests.c:54:
-----	test_read_write
DEBUG
tests/ringbuffer_tests.c:55:

-----	test_destroy
ALL	TESTS	PASSED
Tests	run:	3
$

You	should	have	at	least	three
tests	that	confirm	all	of	the
basic	operations,	and	then	see
how	much	more	you	can	test
beyond	what	I’ve	done.

How	to	Improve	It
As	usual,	you	should	go	back
and	add	defensive

programming	checks	to	this
exercise.	Hopefully	you’ve
been	doing	this,	because	the
base	code	in	most	of
liblcthw	doesn’t	have	the
common	defensive
programming	checks	that	I’m
teaching	you.	I	leave	this	to
you	so	that	you	can	get	used
to	improving	code	with	these
extra	checks.
For	example,	in	this	ring
buffer,	there’s	not	a	lot	of

checking	that	an	access	will
actually	be	inside	the	buffer.
If	you	read	the	“Circular
buffer”	page	on	Wikipedia,
you’ll	see	the	“Optimized
POSIX	implementation”	that
uses	Portable	Operating
System	Interface	(POSIX)-
specific	calls	to	create	an
infinite	space.	Study	that	and
I’ll	have	you	try	it	in	the
Extra	Credit	section.

Extra	Credit
•	Create	an	alternative
implementation	of
RingBuffer	that	uses
the	POSIX	trick	and
then	create	a	unit	test
for	it.
•	Add	a	performance
comparison	test	to	this
unit	test	that	compares
the	two	versions	by
fuzzing	them	with
random	data	and

random	read/write
operations.	Make	sure
that	you	set	up	this
fuzzing	so	that	the	same
operations	are	done	to
each	version,	and	you
can	compare	them
between	runs.

Exercise	45.	A
Simple	TCP/IP
Client

Im	going	to	use	the
RingBuffer	to	create	a
very	simplistic	network
testing	tool	that	I	call
netclient.	To	do	this,	I
have	to	add	some	stuff	to	the
Makefile	to	handle	little

programs	in	the	bin/
directory.

Augment	the
Makefile
First,	add	a	variable	for	the
programs	just	like	the	unit
test’s	TESTS	and
TEST_SRC	variables:
Click	here	to	view	code	image

PROGRAMS_SRC=$(wildcard
bin/*.c)

PROGRAMS=$(patsubst
%.c,%,$(PROGRAMS_SRC))

Then,	you	want	to	add	the
PROGRAMS	to	the	all
target:
Click	here	to	view	code	image

all:	$(TARGET)
$(SO_TARGET)	tests
$(PROGRAMS)

Then,	add	PROGRAMS	to	the
rm	line	in	the	clean	target:
Click	here	to	view	code	image

rm	–rf	build
$(OBJECTS)	$(TESTS)
$(PROGRAMS)

Finally,	you	just	need	a	target
at	the	end	to	build	them	all:
Click	here	to	view	code	image

$(PROGRAMS):	CFLAGS
+=	$(TARGET)

With	these	changes,	you	can
drop	simple	.c	files	into
bin,	and	make	will	build
them	and	link	them	to	the

library	just	like	unit	tests	do.

The	netclient
Code
The	code	for	the	little
netclient	looks	like	this:

netclient.c

Click	here	to	view	code	image

		1			#undef	NDEBUG
		2			#include

<stdlib.h>
		3			#include
<sys/select.h>
		4			#include
<stdio.h>
		5			#include
<lcthw/ringbuffer.h>
		6			#include
<lcthw/dbg.h>
		7			#include
<sys/socket.h>
		8			#include
<sys/types.h>
		9			#include
<sys/uio.h>
	10			#include
<arpa/inet.h>

	11			#include
<netdb.h>
	12			#include
<unistd.h>
	13			#include
<fcntl.h>
	14
	15			struct
tagbstring	NL	=
bsStatic("\n");
	16			struct
tagbstring	CRLF	=
bsStatic("\r\n");
	17
	18			int
nonblock(int	fd)

	19			{
	20							int	flags	=
fcntl(fd,	F_GETFL,
0);
	21							check(flags
>=	0,	"Invalid	flags
on	nonblock.");
	22
	23							int	rc	=
fcntl(fd,	F_SETFL,
flags	|	O_NONBLOCK);
	24							check(rc	==
0,	"Can't	set
nonblocking.");
	25
	26							return	0;
	27			error:

	28							return	-1;
	29			}
	30
	31			int
client_connect(char
*host,	char	*port)
	32			{
	33							int	rc	=	0;
	34							struct
addrinfo	*addr	=
NULL;
	35
	36							rc	=
getaddrinfo(host,
port,	NULL,	&addr);
	37							check(rc	==

0,	"Failed	to	lookup
%s:%s",	host,	port);
	38
	39							int	sock	=
socket(AF_INET,
SOCK_STREAM,	0);
	40							check(sock
>=	0,	"Cannot	create
a	socket.");
	41
	42							rc	=
connect(sock,	addr-
>ai_addr,	addr-
>ai_addrlen);
	43							check(rc	==
0,	"Connect
failed.");

	44
	45							rc	=
nonblock(sock);
	46							check(rc	==
0,	"Can't	set
nonblocking.");
	47
	48							freeaddrinfo
	49							return
sock;
	50
	51			error:
	52							freeaddrinfo
	53							return	-1;
	54			}
	55

	56			int
read_some(RingBuffer
*	buffer,	int	fd,	int
is_socket)
	57			{
	58							int	rc	=	0;
	59
	60							if
(RingBuffer_available_data
==	0)	{
	61											buffer-
>start	=	buffer->end
=	0;
	62							}
	63
	64							if
(is_socket)	{

	65											rc	=
recv(fd,
RingBuffer_starts_at(buffer
	66																			RingBuffer_available_space
0);
	67							}	else	{
	68											rc	=
read(fd,
RingBuffer_starts_at(buffer
	69																			RingBuffer_available_space
	70							}
	71
	72							check(rc	>=
0,	"Failed	to	read
from	fd:	%d",	fd);
	73

	74							RingBuffer_commit_write
rc);
	75
	76							return	rc;
	77
	78			error:
	79							return	-1;
	80			}
	81
	82			int
write_some(RingBuffer
*	buffer,	int	fd,	int
is_socket)
	83			{
	84							int	rc	=	0;
	85							bstring
data	=

RingBuffer_get_all(buffer
	86
	87							check(data
!=	NULL,	"Failed	to
get	from	the
buffer.");
	88							check(bfindreplace
&NL,	&CRLF,	0)	==
BSTR_OK,
	89															"Failed
to	replace	NL.");
	90
	91							if
(is_socket)	{
	92											rc	=
send(fd,	bdata(data),

blength(data),	0);
	93							}	else	{
	94											rc	=
write(fd,
bdata(data),
blength(data));
	95							}
	96
	97							check(rc	==
blength(data),
"Failed	to	write
everything	to	fd:
%d.",
	98															fd);
	99							bdestroy(data
100
101							return	rc;

102
103			error:
104							return	-1;
105			}
106
107			int	main(int
argc,	char	*argv[])
108			{
109							fd_set
allreads;
110							fd_set
readmask;
111
112							int	socket
=	0;
113							int	rc	=	0;

114							RingBuffer
*in_rb	=
RingBuffer_create(1024
*	10);
115							RingBuffer
*sock_rb	=
RingBuffer_create(1024
*	10);
116
117							check(argc
==	3,	"USAGE:
netclient	host
port");
118
119							socket	=
client_connect(argv[1],
argv[2]);

120							check(socket
>=	0,	"connect	to
%s:%s	failed.",
argv[1],	argv[2]);
121
122							FD_ZERO(&allreads
123							FD_SET(socket
&allreads);
124							FD_SET(0,
&allreads);
125
126							while	(1)	{
127											readmask
=	allreads;
128											rc	=
select(socket	+	1,

&readmask,	NULL,
NULL,	NULL);
129											check(rc
>=	0,	"select
failed.");
130
131											if
(FD_ISSET(0,
&readmask))	{
132															rc
=	read_some(in_rb,	0,
0);
133															check_debug
!=	-1,	"Failed	to
read	from	stdin.");
134											}
135

136											if
(FD_ISSET(socket,
&readmask))	{
137															rc
=	read_some(sock_rb,
socket,	0);
138															check_debug
!=	-1,	"Failed	to
read	from	socket.");
139											}
140
141											while
(!RingBuffer_empty(sock_rb
{
142															rc
=	write_some(sock_rb,

1,	0);
143															check_debug
!=	-1,	"Failed	to
write	to	stdout.");
144											}
145
146											while
(!RingBuffer_empty(in_rb
{
147															rc
=	write_some(in_rb,
socket,	1);
148															check_debug
!=	-1,	"Failed	to
write	to	socket.");
149											}
150							}

151
152							return	0;
153
154			error:
155							return	-1;
156			}

This	code	uses	select	to
handle	events	from	both
stdin	(file	descriptor	0)	and
socket,	which	it	uses	to	talk
to	a	server.	The	code	uses
RingBuffers	to	store	the
data	and	copy	it	around.	You
can	consider	the	functions

read_some	and
write_some	early
prototypes	for	similar
functions	in	the
RingBuffer	library.
This	little	bit	of	code	contains
quite	a	few	networking
functions	that	you	may	not
know.	As	you	come	across	a
function	that	you	don’t	know,
look	it	up	in	the	man	pages
and	make	sure	you
understand	it.	This	one	little

file	might	inspire	you	to	then
research	all	of	the	APIs
required	to	write	a	little
server	in	C.

What	You	Should
See
If	you	have	everything
building,	then	the	quickest
way	to	test	the	code	is	see	if
you	can	get	a	special	file	off
of
http://learncodethehardway.org

http://learncodethehardway.org

Exercise	45.1
Session

Click	here	to	view	code	image

$
$./bin/netclient
learncodethehardway.org
80
GET	/ex45.txt
HTTP/1.1
Host:
learncodethehardway.org

HTTP/1.1	200	OK
Date:	Fri,	27	Apr

2012	00:41:25	GMT
Content-Type:
text/plain
Content-Length:	41
Last-Modified:	Fri,
27	Apr	2012	00:42:11
GMT
ETag:	4f99eb63-29
Server:
Mongrel2/1.7.5

Learn	C	The	Hard	Way,
Exercise	45	works.
^C
$

What	I	do	here	is	type	in	the

syntax	needed	to	make	the
HTTP	request	for	the	file
/ex45.txt,	then	the
Host:	header	line,	and	then
I	press	ENTER	to	get	an
empty	line.	I	then	get	the
response,	with	headers	and
the	content.	After	that,	I	just
hit	CTRL-C	to	exit.

How	to	Break	It
This	code	could	definitely
have	bugs,	and	currently	in

the	draft	of	this	book,	I’m
going	to	have	to	keep
working	on	it.	In	the
meantime,	try	analyzing	the
code	I	have	here	and
thrashing	it	against	other
servers.	There’s	a	tool	called
netcat	that’s	great	for
setting	up	these	kinds	of
servers.	Another	thing	to	do
is	use	a	language	like
Python	or	Ruby	to	create	a
simple	junk	server	that	spews

out	junk	and	bad	data,
randomly	closes	connections,
and	does	other	nasty	things.
If	you	find	bugs,	report	them
in	the	comments,	and	I’ll	fix
them	up.

Extra	Credit
•	As	I	mentioned,	there
are	quite	a	few
functions	you	may	not
know,	so	look	them	up.
In	fact,	look	them	all	up
even	if	you	think	you
know	them.
•	Run	this	under	the
debugger	and	look	for
errors.
•	Go	back	through	and
add	various	defensive

programming	checks	to
the	functions	to
improve	them.
•	Use	the	getopt
function	to	allow	the
user	the	option	not	to
translate	\n	to	\r\n.
This	is	only	needed	on
protocols	that	require	it
for	line	endings,	like
HTTP.	Sometimes	you
don’t	want	the
translation,	so	give	the

user	the	option.

Exercise	46.
Ternary	Search
Tree

The	final	data	structure	that
I’ll	show	you	is	called	the
TSTree,	which	is	similar	to
the	BSTree,	except	it	has
three	branches:	low,	equal,
and	high.	It’s	primarily	used
just	like	BSTree	and

Hashmap	to	store	key/value
data,	but	it	works	off	of	the
individual	characters	in	the
keys.	This	gives	the	TSTree
some	abilities	that	neither
BSTree	nor	Hashmap	has.
In	a	TSTree,	every	key	is	a
string,	and	it’s	inserted	by
walking	through	and	building
a	tree	based	on	the	equality	of
the	characters	in	the	string.	It
starts	at	the	root,	looks	at	the
character	for	that	node,	and	if

it’s	lower,	equal	to,	or	higher
than	that,	then	it	goes	in	that
direction.	You	can	see	this	in
the	header	file:

tstree.h

Click	here	to	view	code	image

#ifndef
_lcthw_TSTree_h
#define
_lcthw_TSTree_h

#include	<stdlib.h>

#include
<lcthw/darray.h>

typedef	struct	TSTree
{
				char	splitchar;
				struct	TSTree
*low;
				struct	TSTree
*equal;
				struct	TSTree
*high;
				void	*value;
}	TSTree;

void

*TSTree_search(TSTree
*	root,	const	char
*key,	size_t	len);

void
*TSTree_search_prefix(
*	root,	const	char
*key,	size_t	len);

typedef	void
(*TSTree_traverse_cb)
(void	*value,	void
*data);

TSTree
*TSTree_insert(TSTree

*	node,	const	char
*key,	size_t	len,
								void	*value);

void
TSTree_traverse(TSTree
*	node,
TSTree_traverse_cb
cb,	void	*data);

void
TSTree_destroy(TSTree
*	root);

#endif

The	TSTree	has	the

following	elements:
splitchar	The	character	at
this	point	in	the	tree.

low	The	branch	that’s
lower	than
splitchar.

equal	The	branch	that’s
equal	to	splitchar.

high	The	branch	that’s
higher	than
splitchar.

value	The	value	set	for	a

string	at	that	point	with
splitchar.

You	can	see	that	this
implementation	has	the
following	operations:

search	A	typical	operation
to	find	a	value	for	this
key.

search_prefix	This
operation	finds	the	first
value	that	has	this	as	a
prefix	of	its	key.	This	is
the	an	operation	that

you	can’t	easily	do	in	a
BSTree	or	Hashmap.

insert	This	breaks	the
key	down	by	each
character	and	inserts
them	into	the	tree.

traverse	This	walks
through	the	tree,
allowing	you	to	collect
or	analyze	all	the	keys
and	values	it	contains.

The	only	thing	missing	is	a
TSTree_delete,	and

that’s	because	it’s	a	horribly
expensive	operation,	even
more	expensive	than
BSTree_delete.	When	I
use	TSTree	structures,	I
treat	them	as	constant	data
that	I	plan	on	traversing	many
times,	and	not	removing
anything	from	them.	They	are
very	fast	for	this,	but	aren’t
good	if	you	need	to	insert	and
delete	things	quickly.	For
that,	I	use	Hashmap,	since	it

beats	both	BSTree	and
TSTree.
The	implementation	for	the
TSTree	is	actually	simple,
but	it	might	be	hard	to	follow
at	first.	I’ll	break	it	down
after	you	enter	it	in:

tstree.c

Click	here	to	view	code	image

		1			#include
<stdlib.h>

		2			#include
<stdio.h>
		3			#include
<assert.h>
		4			#include
<lcthw/dbg.h>
		5			#include
<lcthw/tstree.h>
		6
		7			static	inline
TSTree
*TSTree_insert_base(TSTree
*	root,	TSTree	*
node,
		8											const
char	*key,	size_t
len,

		9											void
*value)
	10			{
	11							if	(node	==
NULL)	{
	12											node	=
(TSTree	*)	calloc(1,
sizeof(TSTree));
	13
	14											if
(root	==	NULL)	{
	15															root
=	node;
	16											}
	17
	18											node-

>splitchar	=	*key;
	19							}
	20
	21							if	(*key	<
node->splitchar)	{
	22											node-
>low	=
TSTree_insert_base(
	23																			root
node->low,	key,	len,
value);
	24							}	else	if
(*key	==	node-
>splitchar)	{
	25											if	(len
>	1)	{
	26															node

>equal	=
TSTree_insert_base(
	27																							root
node->equal,	key	+	1,
len	-	1,	value);
	28											}	else
{
	29															assert
>value	==	NULL	&&
"Duplicate	insert
into	tst.");
	30															node
>value	=	value;
	31											}
	32							}	else	{
	33											node-

>high	=
TSTree_insert_base(
	34																			root
node->high,	key,	len,
value);
	35							}
	36
	37							return
node;
	38			}
	39
	40			TSTree
*TSTree_insert(TSTree
*	node,	const	char
*key,	size_t	len,
	41											void
*value)

	42			{
	43							return
TSTree_insert_base(node
node,	key,	len,
value);
	44			}
	45
	46			void
*TSTree_search(TSTree
*	root,	const	char
*key,	size_t	len)
	47			{
	48							TSTree
*node	=	root;
	49							size_t	i	=
0;

	50
	51							while	(i	<
len	&&	node)	{
	52											if
(key[i]	<	node-
>splitchar)	{
	53															node
=	node->low;
	54											}	else
if	(key[i]	==	node-
>splitchar)	{
	55															i++;
	56															if
(i	<	len)
	57																			node
=	node->equal;
	58											}	else

{
	59															node
=	node->high;
	60											}
	61							}
	62
	63							if	(node)	{
	64											return
node->value;
	65							}	else	{
	66											return
NULL;
	67							}
	68			}
	69
	70			void
*TSTree_search_prefix(

*	root,	const	char
*key,	size_t	len)
	71			{
	72							if	(len	==
0)
	73											return
NULL;
	74
	75							TSTree
*node	=	root;
	76							TSTree
*last	=	NULL;
	77							size_t	i	=
0;
	78
	79							while	(i	<

len	&&	node)	{
	80											if
(key[i]	<	node-
>splitchar)	{
	81															node
=	node->low;
	82											}	else
if	(key[i]	==	node-
>splitchar)	{
	83															i++;
	84															if
(i	<	len)	{
	85																			
(node->value)
	86																							last
=	node;
	87																			node

=	node->equal;
	88															}
	89											}	else
{
	90															node
=	node->high;
	91											}
	92							}
	93
	94							node	=	node
?	node	:	last;
	95
	96							//	traverse
until	we	find	the
first	value	in	the
equal	chain

	97							//	this	is
then	the	first	node
with	this	prefix
	98							while	(node
&&	!node->value)	{
	99											node	=
node->equal;
100							}
101
102							return	node
?	node->value	:	NULL;
103			}
104
105			void
TSTree_traverse(TSTree
*	node,
TSTree_traverse_cb

cb,	void	*data)
106			{
107							if	(!node)
108											return;
109
110							if	(node-
>low)
111											TSTree_traverse
>low,	cb,	data);
112
113							if	(node-
>equal)	{
114											TSTree_traverse
>equal,	cb,	data);
115							}
116

117							if	(node-
>high)
118											TSTree_traverse
>high,	cb,	data);
119
120							if	(node-
>value)
121											cb(node-
>value,	data);
122			}
123
124			void
TSTree_destroy(TSTree
*	node)
125			{
126							if	(node	==
NULL)

127											return;
128
129							if	(node-
>low)
130											TSTree_destroy
>low);
131
132							if	(node-
>equal)	{
133											TSTree_destroy
>equal);
134							}
135
136							if	(node-
>high)
137											TSTree_destroy

>high);
138
139							free(node);
140			}

For	TSTree_insert,	I’m
using	the	same	pattern	for
recursive	structures	where	I
have	a	small	function	that
calls	the	real	recursive
function.	I’m	not	doing	any
additional	checks	here,	but
you	should	add	the	usual
defensive	programming
checks	to	it.	One	thing	to

keep	in	mind	is	that	it’s	using
a	slightly	different	design	that
doesn’t	have	a	separate
TSTree_create	function.
However,	if	you	pass	it	a
NULL	for	the	node,	then	it
will	create	it	and	return	the
final	value.
That	means	I	need	to	break
down
TSTree_insert_base	so
that	you	understand	the	insert
operation:

tstree.c:10-18	As	I
mentioned,	if	given	a
NULL,	then	I	need	to
make	this	node	and
assign	the	*key
(current	character)	to	it.
This	is	used	to	build	the
tree	as	we	insert	keys.

tstree.c:20-21	If	the
*key	is	less	than	this,
then	recurse,	but	go	to
the	low	branch.

tstree.c:22	This

splitchar	is	equal,
so	I	want	to	go	and	deal
with	equality.	This	will
happen	if	we	just	create
this	node,	so	we’ll	be
building	the	tree	at	this
point.

tstree.c:23-24	There	are
still	characters	to
handle,	so	recurse	down
the	equal	branch,	but
go	to	the	next	*key
character.

tstree.c:26-27	This	is	the
last	character,	so	I	set
the	value	and	that’s	it.	I
have	an	assert	here
in	case	of	a	duplicate.

tstree.c:29-30	The	last
condition	is	that	this
*key	is	greater	than
splitchar,	so	I	need
to	recurse	down	the
high	branch.

The	key	to	this	data	structure
is	the	fact	that	I’m	only

incrementing	the	character
when	a	splitchar	is	equal.
For	the	other	two	conditions,
I	just	walk	through	the	tree
until	I	hit	an	equal	character
to	recurse	into	next.	What	this
does	is	make	it	very	fast	not
to	find	a	key.	I	can	get	a	bad
key,	and	simply	walk	through
a	few	high	and	low	nodes
until	I	hit	a	dead	end	before	I
know	that	this	key	doesn’t
exist.	I	don’t	need	to	process

every	character	of	the	key	or
every	node	of	the	tree.
Once	you	understand	that,
then	move	on	to	analyzing
how	TSTree_search
works.

tstree.c:46	I	don’t	need	to
process	the	tree
recursively	in	the
TSTree.	I	can	just	use
a	while-loop	and	a
node	for	where	I
currently	am.

tstree.c:47-48	If	the
current	character	is	less
than	the	node
splitchar,	then	go
low.

tstree.c:49-51	If	it’s
equal,	then	increment	i
and	go	equal	as	long	as
it’s	not	the	last
character.	That’s	why
the	if(i	<	len)	is
there,	so	that	I	don’t	go
too	far	past	the	final

value.
tstree.c:52-53	Otherwise,
I	go	high,	since	the
character	is	greater.

tstree.c:57-61	If	I	have	a
node	after	the	loop,	then
return	its	value,
otherwise	return	NULL.

This	isn’t	too	difficult	to
understand,	and	you	can	see
that	it’s	almost	exactly	the
same	algorithm	for	the
TSTree_search_prefix

function.	The	only	difference
is	that	I’m	not	trying	to	find
an	exact	match,	but	find	the
longest	prefix	I	can.	To	do
that,	I	keep	track	of	the	last
node	that	was	equal,	and	then
after	the	search	loop,	walk
through	that	node	until	I	find
a	value.
Looking	at
TSTree_search_prefix,
you	can	start	to	see	the
second	advantage	a	TSTree

has	over	the	BSTree	and
Hashmap	for	finding	strings.
Given	any	key	of	X	length,
you	can	find	any	key	in	X
moves.	You	can	also	find	the
first	prefix	in	X	moves,	plus	N
more	depending	on	how	big
the	matching	key	is.	If	the
biggest	key	in	the	tree	is	ten
characters	long,	then	you	can
find	any	prefix	in	that	key	in
ten	moves.	More	importantly,
you	can	do	all	of	this	by

comparing	each	character	of
the	key	once.
In	comparison,	to	do	the	same
with	a	BSTree,	you	would
have	to	check	the	prefixes	of
each	character	in	every
possible	matching	node	in	the
BSTree	against	the
characters	in	the	prefix.	It’s
the	same	for	finding	keys	or
seeing	if	a	key	doesn’t	exist.
You	have	to	compare	each
character	against	most	of	the

characters	in	the	BSTree	to
find	or	not	find	a	match.
A	Hashmap	is	even	worse
for	finding	prefixes,	because
you	can’t	hash	just	the	prefix.
Basically,	you	can’t	do	this
efficiently	in	a	Hashmap
unless	the	data	is	something
you	can	parse,	like	a	URL.
Even	then,	that	usually
requires	whole	trees	of
Hashmaps.
The	last	two	functions	should

be	easy	for	you	to	analyze
since	they’re	the	typical
traversing	and	destroying
operations	that	you’ve
already	seen	in	other	data
structures.
Finally,	I	have	a	simple	unit
test	for	the	whole	thing	to
make	sure	it	works	right:

tstree_tests.c

Click	here	to	view	code	image

		1			#include
"minunit.h"
		2			#include
<lcthw/tstree.h>
		3			#include
<string.h>
		4			#include
<assert.h>
		5			#include
<lcthw/bstrlib.h>
		6
		7			TSTree	*node	=
NULL;
		8			char	*valueA	=
"VALUEA";
		9			char	*valueB	=
"VALUEB";

	10			char	*value2	=
"VALUE2";
	11			char	*value4	=
"VALUE4";
	12			char	*reverse	=
"VALUER";
	13			int
traverse_count	=	0;
	14
	15			struct
tagbstring	test1	=
bsStatic("TEST");
	16			struct
tagbstring	test2	=
bsStatic("TEST2");
	17			struct
tagbstring	test3	=

bsStatic("TSET");
	18			struct
tagbstring	test4	=
bsStatic("T");
	19
	20			char
*test_insert()
	21			{
	22							node	=
TSTree_insert(node,
bdata(&test1),
blength(&test1),
valueA);
	23							mu_assert(node
!=	NULL,	"Failed	to
insert	into	tst.");

	24
	25							node	=
TSTree_insert(node,
bdata(&test2),
blength(&test2),
value2);
	26							mu_assert(node
!=	NULL,
	27															"Failed
to	insert	into	tst
with	second	name.");
	28
	29							node	=
TSTree_insert(node,
bdata(&test3),
blength(&test3),
reverse);

	30							mu_assert(node
!=	NULL,
	31															"Failed
to	insert	into	tst
with	reverse	name.");
	32
	33							node	=
TSTree_insert(node,
bdata(&test4),
blength(&test4),
value4);
	34							mu_assert(node
!=	NULL,
	35															"Failed
to	insert	into	tst
with	second	name.");

	36
	37							return
NULL;
	38			}
	39
	40			char
*test_search_exact()
	41			{
	42							//	tst
returns	the	last	one
inserted
	43							void	*res	=
TSTree_search(node,
bdata(&test1),
blength(&test1));
	44							mu_assert(res
==	valueA,

	45															"Got
the	wrong	value	back,
should	get	A	not
B.");
	46
	47							//	tst	does
not	find	if	not	exact
	48							res	=
TSTree_search(node,
"TESTNO",
strlen("TESTNO"));
	49							mu_assert(res
==	NULL,	"Should	not
find	anything.");
	50
	51							return

NULL;
	52			}
	53
	54			char
*test_search_prefix()
	55			{
	56							void	*res	=
TSTree_search_prefix(
	57															node
bdata(&test1),
blength(&test1));
	58							debug("result:
%p,	expected:	%p",
res,	valueA);
	59							mu_assert(res
==	valueA,	"Got	wrong
valueA	by	prefix.");

	60
	61							res	=
TSTree_search_prefix(node
bdata(&test1),	1);
	62							debug("result:
%p,	expected:	%p",
res,	valueA);
	63							mu_assert(res
==	value4,	"Got	wrong
value4	for	prefix	of
1.");
	64
	65							res	=
TSTree_search_prefix(node
"TE",	strlen("TE"));
	66							mu_assert(res

!=	NULL,	"Should	find
for	short	prefix.");
	67
	68							res	=
TSTree_search_prefix(node
"TE--",	strlen("TE--
"));
	69							mu_assert(res
!=	NULL,	"Should	find
for	partial
prefix.");
	70
	71							return
NULL;
	72			}
	73
	74			void

TSTree_traverse_test_cb
*value,	void	*data)
	75			{
	76							assert(value
!=	NULL	&&	"Should
not	get	NULL
value.");
	77							assert(data
==	valueA	&&
"Expecting	valueA	as
the	data.");
	78							traverse_count
	79			}
	80
	81			char
*test_traverse()

	82			{
	83							traverse_count
=	0;
	84							TSTree_traverse
TSTree_traverse_test_cb
valueA);
	85							debug("traverse
count	is:	%d",
traverse_count);
	86							mu_assert(traverse_count
==	4,	"Didn't	find	4
keys.");
	87
	88							return
NULL;
	89			}
	90

	91			char
*test_destroy()
	92			{
	93							TSTree_destroy
	94
	95							return
NULL;
	96			}
	97
	98			char
*all_tests()
	99			{
100							mu_suite_start
101
102							mu_run_test(
103							mu_run_test(

104							mu_run_test(
105							mu_run_test(
106							mu_run_test(
107
108							return
NULL;
109			}
110
111			RUN_TESTS(all_tests

Advantages	and
Disadvantages
There	are	other	interesting,
practical	things	you	can	do
with	a	TSTree:

•	In	addition	to	finding
prefixes,	you	can
reverse	all	of	the	keys
you	insert,	and	then	find
things	by	suffix.	I	use
this	to	look	up	host
names,	since	I	want	to

find
*.learncodethe
hardway.com.	If	I	go
backward,	I	can	match
them	quickly.
•	You	can	do
approximate	matching,
by	gathering	all	of	the
nodes	that	have	most	of
the	same	characters	as
the	key,	or	using	other
algorithms	to	find	a
close	match.

•	You	can	find	all	of	the
keys	that	have	a	part	in
the	middle.

I’ve	already	talked	about
some	of	the	things	TSTrees
can	do,	but	they	aren’t	the
best	data	structure	all	the
time.	Here	are	the
disadvantages	of	the
TSTree:

•	As	I	mentioned,
deleting	from	them	is
murder.	They	are	better

used	for	data	that	needs
to	be	looked	up	fast	and
rarely	removed.	If	you
need	to	delete,	then
simply	disable	the
value	and	then
periodically	rebuild	the
tree	when	it	gets	too
big.
•	It	uses	a	ton	of	memory
compared	to	BSTree
and	Hashmaps	for	the
same	key	space.	Think

about	it.	It’s	using	a	full
node	for	each	character
in	every	key.	It	might
work	better	for	smaller
keys,	but	if	you	put	a	lot
in	a	TSTree,	it	will	get
huge.
•	They	also	don’t	work
well	with	large	keys,
but	large	is	subjective.
As	usual,	test	it	first.	If
you’re	trying	to	store
10,000-character	keys,

then	use	a	Hashmap.

How	to	Improve	It
As	usual,	go	through	and
improve	this	by	adding	the
defensive	programming
preconditions,	asserts,	and
checks	to	each	function.
There	are	some	other	possible
improvements,	but	you	don’t
necessarily	have	to
implement	all	of	these:

•	You	could	allow

duplicates	by	using	a
DArray	instead	of	the
value.
•	As	I	mentioned	earlier,
deleting	is	hard,	but	you
could	simulate	it	by
setting	the	values	to
NULL	so	that	they	are
effectively	gone.
•	There	are	no	ways	to
collect	all	of	the
possible	matching
values.	I’ll	have	you

implement	that	in	an
Extra	Credit	exercise.
•	There	are	other
algorithms	that	are
more	complex	but	have
slightly	better
properties.	Take	a	look
at	suffix	array,	suffix
tree,	and	radix	tree
structures.

Extra	Credit
•	Implement	a
TSTree_collect
that	returns	a	DArray
containing	all	of	the
keys	that	match	the
given	prefix.
•	Implement
TSTree_search_suffix
and	a
TSTree_insert_suffix
so	you	can	do	suffix
searches	and	inserts.

•	Use	the	debugger	to	see
how	this	structure	stores
data	compared	to	the
BSTree	and
Hashmap.

Exercise	47.	A
Fast	URL
Router

Im	now	going	to	show	you
how	I	use	the	TSTree	to	do
fast	URL	routing	in	Web
servers	that	I’ve	written.	This
works	for	simple	URL
routing	that	you	might	use	at
the	edge	of	an	application,

but	it	doesn’t	really	work	for
the	more	complex	(and
sometimes	unnecessary)
routing	found	in	many	Web
application	frameworks.
To	play	with	routing,	I’m
going	to	make	a	little
command	line	tool	that	I’m
calling	urlor,	which	reads	a
simple	file	of	routes,	and	then
prompts	the	user	to	enter	in
URLs.

urlor.c

Click	here	to	view	code	image

		1			#include
<lcthw/tstree.h>
		2			#include
<lcthw/bstrlib.h>
		3
		4			TSTree
*add_route_data(TSTree
*	routes,	bstring
line)
		5			{
		6							struct
bstrList	*data	=

bsplit(line,	'	');
		7							check(data-
>qty	==	2,	"Line	'%s'
does	not	have	2
columns",
		8															bdata
		9
	10								routes	=
TSTree_insert(routes,
	11																bdata
>entry[0]),
	12																blength
>entry[0]),
	13																bstrcpy
>entry[1]));
	14

	15								bstrListDestroy
	16
	17								return
routes;
	18
	19				error:
	20								return
NULL;
	21				}
	22
	23				TSTree
*load_routes(const
char	*file)
	24				{
	25								TSTree
*routes	=	NULL;

	26								bstring
line	=	NULL;
	27								FILE
*routes_map	=	NULL;
	28
	29								routes_map
=	fopen(file,	"r");
	30								check(routes_map
!=	NULL,	"Failed	to
open	routes:	%s",
file);
	31
	32								while
((line	=
bgets((bNgetc)	fgetc,
routes_map,	'\n'))	!=
NULL)	{

	33												check(btrimws
==	BSTR_OK,	"Failed
to	trim	line.");
	34												routes
=
add_route_data(routes,
line);
	35												check(routes
!=	NULL,	"Failed	to
add	route.");
	36												bdestroy
	37								}
	38
	39								fclose(routes_map
	40								return
routes;

	41
	42				error:
	43								if
(routes_map)
fclose(routes_map);
	44								if	(line)
bdestroy(line);
	45
	46								return
NULL;
	47				}
	48
	49				bstring
match_url(TSTree	*
routes,	bstring	url)
	50				{

	51								bstring
route	=
TSTree_search(routes,
bdata(url),
blength(url));
	52
	53								if	(route
==	NULL)	{
	54												printf(
exact	match	found,
trying	prefix.\n");
	55												route
=
TSTree_search_prefix(routes
bdata(url),
blength(url));

	56								}
	57
	58								return
route;
	59				}
	60
	61				bstring
read_line(const	char
*prompt)
	62				{
	63								printf("%s"
prompt);
	64
	65								bstring
result	=
bgets((bNgetc)	fgetc,

stdin,	'\n');
	66								check_debug
!=	NULL,	"stdin
closed.");
	67
	68								check(btrimws
==	BSTR_OK,	"Failed
to	trim.");
	69
	70								return
result;
	71
	72				error:
	73								return
NULL;
	74				}

	75
	76				void
bdestroy_cb(void
*value,	void
*ignored)
	77				{
	78								(void)ignored
	79								bdestroy((bstring
value);
	80				}
	81
	82				void
destroy_routes(TSTree
*	routes)
	83				{
	84								TSTree_traverse

bdestroy_cb,	NULL);
	85								TSTree_destroy
	86				}
	87
	88				int	main(int
argc,	char	*argv[])
	89				{
	90								bstring
url	=	NULL;
	91								bstring
route	=	NULL;
	92								TSTree
*routes	=	NULL;
	93
	94								check(argc
==	2,	"USAGE:	urlor
<urlfile>");

	95
	96								routes	=
load_routes(argv[1]);
	97								check(routes
!=	NULL,	"Your	route
file	has	an	error.");
	98
	99								while	(1)
{
100												url	=
read_line("URL>	");
101												check_debug
!=	NULL,	"goodbye.");
102
103												route
=	match_url(routes,

url);
104
105												if
(route)	{
106																printf
%s	==	%s\n",
bdata(url),
bdata(route));
107												}	else
{
108																printf
%s\n",	bdata(url));
109												}
110
111												bdestroy
112								}

113
114								destroy_routes
115								return	0;
116
117				error:
118								destroy_routes
119								return	1;
120				}

I’ll	then	make	a	simple	file
with	some	fake	routes	to	play
with:

/	MainApp

/hello	Hello

/hello/	Hello

/signup	Signup

/logout	Logout

/album/	Album

What	You	Should
See
Once	you	have	urlor
working,	and	a	routes	file,
you	can	try	it	out	here:

Exercise	47	Session

Click	here	to	view	code	image

$./bin/urlor
urls.txt
URL>	/
MATCH:	/	==	MainApp
URL>	/hello
MATCH:	/hello	==
Hello
URL>	/hello/zed
No	exact	match	found,
trying	prefix.
MATCH:	/hello/zed	==
Hello

URL>	/album
No	exact	match	found,
trying	prefix.
MATCH:	/album	==
Album
URL>	/album/12345
No	exact	match	found,
trying	prefix.
MATCH:	/album/12345
==	Album
URL>	asdfasfdasfd
No	exact	match	found,
trying	prefix.
FAIL:	asdfasfdasfd
URL>	/asdfasdfasf
No	exact	match	found,
trying	prefix.

MATCH:	/asdfasdfasf
==	MainApp
URL>
$

You	can	see	that	the	routing
system	first	tries	an	exact
match,	and	if	it	can’t	find
one,	it	will	give	a	prefix
match.	This	is	mostly	done	to
try	out	the	difference	between
the	two.	Depending	on	the
semantics	of	your	URLs,	you
may	want	to	always	match
exactly,	always	to	prefixes,	or

do	both	and	pick	the	best	one.

How	to	Improve	It
URLs	are	weird	because
people	want	them	to
magically	handle	all	of	the
insane	things	their	Web
applications	do,	even	if	that’s
not	very	logical.	In	this
simple	demonstration	of	how
to	use	the	TSTree	to	do
routing,	there	are	some	flaws
that	people	wouldn’t	be	able

to	articulate.	For	example,	the
TSTree	will	match	/al	to
Album,	which	generally	isn’t
what	they	want.	They	want
/album/*	to	match	Album,
and	/al	to	be	a	404	error.
This	isn’t	difficult	to
implement,	though,	since	you
could	change	the	prefix
algorithm	to	match	any	way
you	want.	If	you	change	the
matching	algorithm	to	find	all
matching	prefixes,	and	then

pick	the	best	one,	you’ll	be
able	to	do	it	easily.	In	this
case,	/al	could	match
MainApp	or	Album.	Take
those	results,	and	then	do	a
little	logic	to	determine	which
is	better.
Another	thing	you	can	do	in	a
real	routing	system	is	use	the
TSTree	to	find	all	possible
matches,	but	these	matches
are	a	small	set	of	patterns	to
check.	In	many	Web

applications,	there’s	a	list	of
regular	expressions	(regex)
that	has	to	be	matched	against
URLs	on	each	request.
Running	all	of	the	regex	can
be	time	consuming,	so	you
can	use	a	TSTree	to	find	all
of	the	possible	matches	by
their	prefixes.	That	way	you
narrow	down	the	patterns	to
try	to	a	few	very	quickly.
Using	this	method,	your
URLs	will	match	exactly

since	you’re	actually	running
real	regex	patterns,	and
they’ll	match	much	faster
since	you’re	finding	them	by
possible	prefixes.
This	kind	of	algorithm	also
works	for	anything	else	that
needs	to	have	flexible	user-
visible	routing	mechanisms:
domain	names,	IP	addresses,
registries	and	directories,
files,	or	URLs.

Extra	Credit
•	Instead	of	just	storing
the	string	for	the
handler,	create	an	actual
engine	that	uses	a
Handler	struct	to
store	the	application.
The	structure	would
store	the	URL	to	which
it’s	attached,	the	name,
and	anything	else	you’d
need	to	make	an	actual
routing	system.

•	Instead	of	mapping
URLs	to	arbitrary
names,	map	them	to
.so	files	and	use	the
dlopen	system	to	load
handlers	on	the	fly	and
call	callbacks	they
contain.	Put	these
callbacks	in	your
Handler	struct,	and
then	you	have	yourself
a	fully	dynamic
callback	handler	system

in	C.

Exercise	48.	A
Simple	Network
Server

We	now	start	the	part	of	the
book	where	you	do	a	long-
running,	more	involved
project	in	a	series	of
exercises.	The	last	five
exercises	will	present	the
problem	of	creating	a	simple

network	server	in	a	similar
fashion	as	you	did	with	the
logfind	project.	I’ll
describe	each	phase	of	the
project,	you’ll	attempt	it,	and
then	you’ll	compare	your
implementation	to	mine
before	continuing.
These	descriptions	are
purposefully	vague	so	that
you	have	the	freedom	to
attempt	to	solve	the	problems
on	your	own,	but	I’m	still

going	to	help	you.	Included
with	each	of	these	exercises
are	two	videos.	The	first
video	shows	you	how	the
project	for	the	exercise
should	work,	so	you	can	see	it
in	action	and	try	to	emulate	it.
The	second	video	shows	you
how	I	solved	the	problem,	so
you	can	compare	your
attempt	to	mine.	Finally,
you’ll	have	access	to	all	of
the	code	in	the	GitHub
project,	so	you	can	see	real

code	by	me.
You	should	attempt	the
problem	first,	then	after	you
get	it	working	(or	if	you	get
totally	stuck),	go	watch	the
second	video	and	take	a	look
at	my	code.	When	you’re
done,	you	can	either	keep
using	your	code,	or	just	use
mine	for	the	next	exercise.

The	Specification
In	this	first	small	program
you’ll	lay	the	first	foundation
for	the	remaining	projects.
You’ll	call	this	program
statserve,	even	though
this	specification	doesn’t
mention	statistics	or	anything.
That	will	come	later.
The	specification	for	this
project	is	very	simple:

1.	Create	a	simple

network	server	that
accepts	a	connection	on
port	7899	from
netclient	or	the	nc
command,	and	that
echoes	back	anything
you	type.

2.	You’ll	need	to	learn
how	to	bind	a	port,
listen	on	the	socket,	and
answer	it.	Use	your
research	skills	to	study
how	this	is	done	and

attempt	to	implement	it
yourself.

3.	The	more	important
part	of	this	project	is
laying	out	the	project
directory	from	the	c-
skeleton,	and
making	sure	you	can
build	everything	and	get
it	working.

4.	Don’t	worry	about
things	like	daemons	or
anything	else.	Your

server	just	has	to	run
from	the	command	line
and	keep	running.

The	important	challenge	for
this	project	is	figuring	out
how	to	create	a	socket	server,
but	everything	you’ve	learned
so	far	makes	this	possible.
Watch	the	first	lecture	video
where	I	teach	you	about	this
if	you	find	that	it’s	too	hard	to
figure	out	on	your	own.

Exercise	49.	A
Statistics	Server

The	next	phase	of	your
project	is	to	implement	the
very	first	feature	of	the
statserve	server.	Your
program	from	Exercise	48
should	be	working	and	not
crashing.	Remember	to	think
defensively	and	attempt	to
break	and	destroy	your

project	as	best	you	can	before
continuing.	Watch	both
Exercise	48	videos	to	see	how
I	do	this.
The	purpose	of	statserve
is	for	clients	to	connect	to	it
and	submit	commands	for
modifying	statistics.	If	you
remember,	we	learned	a	little
bit	about	doing	incremental
basic	statistics,	and	you	know
how	to	use	data	structures
like	hash	maps,	dynamic

arrays,	binary	search	trees,
and	ternary	search	trees.
These	are	going	to	be	used	in
statserve	to	implement
this	next	feature.

Specification
You	have	to	implement	a
protocol	that	your	network
client	can	use	to	store
statistics.	If	you	remember
from	Exercise	43,	you	have
three	simple	operations	you
can	do	to	in	the	stats.h
API:

create	Create	a	new
statistic.

mean	Get	the	current

mean	of	a	statistic.
sample	Add	a	new	sample
to	a	statistic.

dump	Get	all	of	the
elements	of	a	statistic
(sum,	sumsq,	n,	min,
and	max).

This	will	make	the	beginning
of	your	protocol,	but	you’ll
need	to	do	some	more	things:

1.	You’ll	need	to	allow
people	to	name	these
statistics,	which	means

using	one	of	the	map
style	data	structures	to
map	names	to	Stats
structs.

2.	You’ll	need	to	add	the
CRUD	standard
operations	for	each
name.	CRUD	stands	for
create	read	update
delete.	Currently,	the
list	of	commands	above
has	create,	mean,	and
dump	for	reading;	and

sample	for	updating.
You	need	a	delete
command	now.

3.	You	may	also	need	to
have	a	list	command
for	listing	out	all	of	the
available	statistics	in
the	server.

Given	that	your	statserve
should	handle	a	protocol	that
allows	the	above	operations,
let’s	create	statistics,	update
their	sample,	delete	them,

dump	them,	get	the	mean,	and
finally,	list	them.
Do	your	best	to	design	a
simple	(and	I	mean	simple)
protocol	for	this	using	plain
text,	and	see	what	you	come
up	with.	Do	this	on	paper
first,	then	watch	the	lecture
video	for	this	exercise	to	find
out	how	to	design	a	protocol
and	get	more	information
about	the	exercise.
I	also	recommend	using	unit

tests	to	test	that	the	protocol
is	parsing	separately	from	the
server.	Create	separate	.c	and
.h	files	for	just	processing
strings	with	protocol	in	them,
and	then	test	those	until	you
get	them	right.	This	will
make	things	much	easier
when	you	add	this	feature	to
your	server.

Exercise	50.
Routing	the
Statistics

Once	you’ve	solved	the
problem	of	the	protocol	and
putting	statistics	into	a	data
structure,	you’ll	want	to	make
this	much	richer.	This
exercise	may	require	that	you
redesign	and	refactor	some	of

your	code.	That’s	on	purpose,
as	this	is	an	absolute
requirement	when	writing
software.	You	must
frequently	throw	out	old	code
to	make	room	for	new	code.
Never	get	too	attached	to
something	you’ve	written.
In	this	exercise,	you’re	going
to	use	the	URL	routing	from
Exercise	47	to	augment	your
protocol,	allowing	statistics	to
be	stored	at	arbitrary	URL

paths.
This	is	all	the	help	you	get.
It’s	a	simple	requirement	that
you	have	to	attempt	on	your
own,	modifying	your
protocol,	updating	your	data
structures,	and	changing	your
code	to	make	it	work.
Watch	the	lecture	video	to	see
what	I	want,	and	then	try	your
best	before	watching	the
second	video	to	see	how	I
implemented	it.

Exercise	51.
Storing	the
Statistics

The	next	problem	to	solve	is
how	to	store	the	statistics.
There	is	an	advantage	to
having	the	statistics	in
memory,	because	it’s	much
faster	than	storing	them.	In
fact,	there	are	large	data

storage	systems	that	do	this
very	thing,	but	in	our	case,
we	want	a	smaller	server	that
can	store	some	of	the	data	to
a	hard	drive.

The	Specification
For	this	exercise,	you’ll	add
two	commands	for	storing	to
and	loading	statistics	from	a
hard	drive:

store	If	there’s	a	URL,
store	it	to	a	hard	drive.

load	If	there	are	two
URLs,	load	the	statistic
from	the	hard	drive
based	on	the	first	URL,
and	then	put	it	into	the
second	URL	that’s	in
memory.

This	may	seem	simple,	but
you’ll	have	a	few	battles
when	implementing	this
feature:

1.	If	URLs	have	/
characters	in	them,	then

that	conflicts	with	the
filesystem’s	use	of
slashes.	How	will	you
solve	this?

2.	If	URLs	have	/
characters	in	them,	then
someone	can	use	your
server	to	overwrite	files
on	a	hard	drive	by
giving	paths	to	them.
How	will	you	solve
this?

3.	If	you	choose	to	use

deeply	nested
directories,	then
traversing	directories	to
find	files	will	be	very
slow.	What	will	you	do
here?

4.	If	you	choose	to	use
one	directory	and	hash
URLs	(oops,	I	gave	a
hint),	then	directories
with	too	many	files	in
them	are	slow.	How
will	you	solve	this?

5.	What	happens	when
someone	loads	a
statistic	from	a	hard
drive	into	a	URL	that
already	exists?

6.	How	will	someone
running	statserve
know	where	the	storage
should	be?

An	alternative	to	using	a
filesystem	to	store	the	data	is
using	something	like	SQLite
and	SQL.	Another	option	is

to	use	a	system	like	GNU
dbm	(GDBM)	to	store	them
in	a	simpler	database.
Research	all	of	your	options
and	watch	the	lecture	video,
and	then	pick	the	simplest
option	and	try	it.	Take	your
time	figuring	out	this	feature
because	the	next	exercise	will
involve	figuring	out	how	to
destroy	your	server.

Exercise	52.
Hacking	and
Improving	Your
Server

The	final	exercise	consists	of
three	videos.	The	first	video
is	a	lecture	on	how	to	hack
your	server	and	attempt	to
destroy	it.	In	the	video,	I

show	you	a	great	many	tools
and	tricks	for	breaking
protocols,	using	my	own
implementation	to
demonstrate	flaws	in	the
design.	This	video	is	fun,	and
if	you’ve	been	following
along	with	your	own	code,
you	can	compete	with	me	to
see	who	made	the	more
robust	server.
The	second	video	then
demonstrates	how	I’d	add

improvements	to	the	server.
You	should	attempt	your	own
improvements	first,	before
watching	this	video,	and	then
see	if	your	improvements	are
similar	to	mine.
The	third	and	final	video
teaches	you	how	to	make
further	improvements	and
design	decisions	in	the
project.	It	covers	everything
I’d	think	about	to	complete
the	project	and	refine	it.

Typically,	to	complete	a
project,	I’d	do	the	following:

1.	Get	it	online	and
accessible	to	people.

2.	Document	it	and
improve	the	usability	to
make	sure	that	the
documents	are	easy	to
read.

3.	Do	as	much	test
coverage	as	possible.

4.	Improve	any	corner
cases	and	add	defenses

against	any	attacks	that
I	can	find.

The	second	video
demonstrates	each	of	these
and	explains	how	you	can	do
them	yourself.

Next	Steps

This	book	is	most	likely	a
monumental	undertaking	for
a	beginner	programmer,	or
even	a	programmer	with	no
experience	with	many	of	the
topics	covered	inside.	You
have	successfully	learned	an
introductory	amount	of
knowledge	of	C,	testing,
secure	coding,	algorithms,

data	structures,	unit	testing,
and	general	applied	problem
solving.	Congratulations.	You
should	be	a	much	better
programmer	now.
I	recommend	that	you	now	go
read	other	books	on	the	C
programming	language.	You
can’t	go	wrong	with	The	C
Programming	Language
(Prentice	Hall	1988)	by	Brian
W.	Kernighan	and	Dennis	M.
Ritchie,	the	creators	of	the	C

language.	My	book	teaches
you	an	initial,	practical
version	of	C	that	gets	the	job
done,	mostly	as	a	means	of
teaching	you	other	topics.
Their	book	will	teach	you
deeper	C	as	defined	by	the
creators	and	the	C	standard.
If	you	want	to	continue
improving	as	a	programmer,	I
recommend	that	you	learn	at
least	four	programming
languages.	If	you	already

knew	one	language,	and	now
you	know	C,	then	I
recommend	you	try	learning
any	of	these	programming
languages	as	your	next	ones:

•	Python,	with	my	book
Learn	Python	The	Hard
Way,	Third	Edition
(Addison-Wesley,
2014)
•	Ruby,	with	my	book
Learn	Ruby	The	Hard
Way,	Third	Edition

(Addison-Wesley,
2015)
•	Go,	with	its	list	of
documentation	at
http://golang.org/doc,
another	language	by	the
authors	of	the	C
language,	and	frankly,	a
much	better	one
•	Lua,	which	is	a	very
fun	language	that	has	a
decent	API	for	C	that
you	might	enjoy	now

http://golang.org/doc

•	JavaScript,	although
I’m	not	sure	which
book	is	best	for	this
language

There	are	many	programming
languages	available,	so
choose	whichever	language
interests	you	and	learn	it.	I
recommend	this	because	the
easiest	way	to	become	adept
at	programming	and	build
confidence	is	to	strengthen
your	ability	to	learn	multiple

languages.	Four	languages
seems	to	be	the	breaking
point	where	a	beginner
transitions	to	being	a	capable
programmer.	It’s	also	just	a
lot	of	fun.

Index

Operators
–	(minus	sign)
negative	number	(unary),
108
subtract	(binary),	108
subtraction	operator,	21

––	(minus	signs)
decrement,	then	read
(prefix),	108

read,	then	decrement
(postfix),	108

()	(parentheses)
C	operator,	23
function	call	operator,	108

!	(exclamation	point)
Boolean	NOT	operator,
109
logical	NOT	operator,	22

?	:	(question	mark,	colon)
Boolean	ternary	operator,
109

logical	ternary	operator,	22
.	(period)
structure	reference
operator,	23
structure	value	access,	108

[]	(square	brackets)
array	index,	108
array	subscript	operator,	23

{}	(curly	braces)
C	operator,	23
enclosing	functions,	7

*	(asterisk)

multiplication	operator,	21
multiply	operator	(binary),
108
value	of	(unary),	108
value-of	operator,	23

&	(ampersand)
address	of	(unary),	108
address-of	operator,	23
bitwise	AND	operator,	22
Boolean	AND	operator,
109

^	(caret)

assign	XOR-equal,	109
bitwise	XOR	operator,	22

^=	(caret,	equal)
assign	XOR-equal
operator,	23
bitwise	XOR	and	assign
operator,	110

+	(plus	sign)
add	operator	(binary),	108
add	operator	(unary),	108
addition	operator,	21

++	(plus	signs)

increment,	then	read
(prefix),	108
read,	then	increment
(postfix),	108

|=	(vertical	bar,	equal)
assign	or-equal,	23
bitwise	OR	and	assign
operator,	110

,	(comma),	C	operator,	23
––	(minus	signs),	decrement
operator,	21
/	(slash),	divide	operator,	21,
108

//	(slashes),	comment
indicator,	7,	24
;	(semicolon),	statement
terminator,	7
:	(colon),	C	operator,	23
!=	(exclamation	point,
equal),	not	equal	operator,	22,
109
?=	(question	mark,	equal),
devpkg	syntax,	278
*/	(asterisk	slash),	multi-line
comment	end,	6,	24
/*	(slash	asterisk),	multi-line

comment	start,	6,	24
*=	(asterisk,	equal),	assign
multiply-equal,	23,	110
&&	(ampersands),	logical
AND	operator,	22
&=	(ampersand,	equal),
assign	and-equal,	23,	110
++	(plus	signs),	increment
operator,	21
+=	(plus	sign,	equal),	assign
plus-equal,	23,	110
<	(left	angle	bracket),	less
than	operator,	22,	109

<<	(left	angle	brackets),
bitwise	shift	left	operator,	22,
109
<<=	(left	angle	brackets,
equal),	assign	shift-left-equal,
23,	110
<=	(left	angle	bracket,	equal),
less	than	or	equal	operator,
22,	109
=	(equal	sign),	assign	equal,
23,	110
–=	(minus,	equal),	assign
minus-equal,	23,	110

/=	(slash,	equal),	assign
divide-equal,	23,	110
==	(equal	signs),	equals
operator,	22,	109
|	(vertical	bar),	bitwise	OR
operator,	22,	109
||	(vertical	bars),	Boolean
OR	operator,	109
~	(tilde),	complement
operator,	109
%	(percent	sign)
modulus	operator,	21

printing	as	a	literal,	33
%=	(percent	sign,	equal),
assign	modulus-equal,	23,
110

Symbols
->	(dash,	right	angle	bracket)
structure	dereference
operator,	23
structure	pointer	access,
108

>	(right	angle	bracket),
greater	than	operator,	22,	109

>=	(right	angle	bracket,
equal),	greater	than	or	equal
operator,	22,	109
>>	(right	angle	brackets),
bitwise	shift	right	operator,
22,	109
>>=	(right	angle	brackets,
equal),	assign	shift-left-equal,
23,	110
'0'	(nul)	byte,	array
terminator,	46–49

A

Adler,	Mark,	240
Adler-32	function,
240–247
Alphabetical	characters,
identifying,	60
Ampersand	(&)
address	of	(unary),	108
address-of	operator,	23
bitwise	AND	operator,	22
Boolean	AND	operator,
109

Ampersand,	equal	(&=),

assign	and-equal,	23,	110
Ampersands	(&&),	logical
AND	operator,	22
APR	(Apache	Portable
Runtime),	274,	275–276
Arguments,	passing	to	a
program
GDB,	18
LLDB,	19

Arguments,	printing,	54
Arithmetic	operators,	21
Arrays

’0’	(nul)	byte,	array
terminator,	46–49
description,	46–49
dynamic,	198–206
indexing	into,	65–66
multiple	dimensions,	57
vs.	pointers,	67
sizing,	50–53
of	strings,	54–57

Assignment	operators,	23,
109–110
Asterisk	(*)

multiplication	operator,	21
multiply	operator	(binary),
108
value	of	(unary),	108
value-of	operator,	23

Asterisk,	equal	(*=),	assign
multiply-equal,	23,	110
Asterisk	slash	(*/),	multi-
line	comment	end,	6,	24
attach	pid	command
GDB,	19
LLDB,	19

Attaching	to/detaching	from	a
process
GDB,	19
LLDB,	19

auto	operator,	26
Automate	everything,	148
Automated	testing
description,	166
sample	code,	166
wiring	the	test	framework,
167–171

B
Backtrace,	dumping
GDB,	18–19
LLDB,	19

backtrace	command,
GDB,	18
bassign	function,	227
bassignblk	function,	227
bassigncstr	function,
227
bchar	function,	227
bconcat	function,	227

bdata	function,	227
bdestroy	function,	227
Bernstein,	Dan	J.,	240
Better	String	Library,
225–227
bfindreplace	function,
227
bformat	function,	227
bfromcstr	function,	227
Binary	search,	211–220
Binary	search	trees,	260–273.
See	also	Hashmaps;	Ternary

search	trees.
binstr	function,	227
biseq	function,	227
Bit	operators,	109
Bitwise	operators,	22,	109
Blanks,	detecting,	60
blength	function,	227
blk2bstr	function,	227
BMH	(Boyer-Moore-
Horspool)	algorithm,
248–257
Boolean	expressions

switch	statements,	42–44
while-loop	statements,
40–41

Boolean	operators,	109.	See
also	True/false	branching.
break	command
flow	control,	110
GDB,	18

break	operator,	26
breakpoint	set
command,	LLDB,	19
Breakpoints,	GDB

clearing,	19
setting,	18
showing	information	about,
19

Breakpoints,	LLDB
clearing,	19
setting,	19
showing	information	about,
19

bsplit	function,	227
bstrcpy	function,	227
BSTree,	260–273.	See	also

TSTree.
bstricmp	function,	227
bstrlib	library,	225–227
bstrlib.o	file,	278
Bubble	sort,	190–197
Building	code.	See	also	make
command;	Makefile.
in	GDB,	18
in	LLDB,	19

C
C	language,	compilers

checking	version,	2
confirming,	6–8
error	handling,	90–91
sample	code,	6–8
support	under	Windows,	3

C	language,	operators.	See
also	specific	operators.
arithmetic,	21
assignment,	23,	109–110
bitwise,	22,	109
Boolean,	109
data,	23,	108

logical,	22,	109
math,	108
memorizing,	20–21
relational,	22

C	language,	syntax
keywords,	26–27
lexemes,	26–29
lexical	analysis,	26–29
memorizing,	26–29
syntax	structures,	27–30

C	preprocessor	(CPP)
conditionally	compiling

code,	98
expanding	macros,	96–98

C	UB	(common	undefined
behavior)
definition,	xv
description,	172–173
top	20	undefined
behaviors,	174–177

C	unions,	212–213
Caret	(^)
assign	XOR-equal,	109
bitwise	XOR	operator,	22

Caret,	equal	(^=)
assign	XOR-equal
operator,	23
bitwise	XOR	and	assign
operator,	110

case	operator,	26
cc	-Wall	-g	-DNDEBUG
-ldl	ex29.c	-o	ex29
command,	164
cd	command
GDB,	18
LLDB,	19

Changing	directory
GDB,	18
LLDB,	19

char	operator,	26,	104
Character	data	types,	104
Character	type	data,	defining,
26
Characters,	detecting,	60
Clang’s	Getting	Started
instructions,	2
clear	command,	19
Clearing	breakpoints,	19

Code,	building.	See	make
command;	Makefile.
Colon	(:),	C	operator,	23
Comma	(,),	C	operator,	23
Command	line	arguments,
printing,	54
commands.c	file,
288–291
commands.h	file,
287–288
Comparing	strings,	227
Compilers,	C	language.	See	C

language,	compilers.
Concatenating	strings,	227
const	operator,	26
const	qualifier,	105
continue	command
flow	control,	110
GDB,	18
LLDB,	19

continue	operator,	27
Continue	running	the
program
GDB,	18

LLDB,	19
Control	structures,	110
Copying	strings,	227
Counting	statistical	samples,
300,	340–341
CPP	(C	preprocessor)
conditionally	compiling
code,	98
expanding	macros,	96–98

Creating
double	linked	list	libraries,
178–179
strings,	227

variables,	32–34
Creating,	data	types
from	multiple	variables,
27,	32–34
for	new	types,	29
as	structs,	30

Creative	programmer	mind-
set,	140–141
Curly	braces	({})
C	operator,	23
enclosing	functions,	7

Cygwin	system,	3

D
DArray	program,	198–206
Dash,	right	angle	bracket	(-
>)
structure	dereference
operator,	23
structure	pointer	access,
108

Data	operators,	23,	108
Data	size,	determining,	27
Data	structures
definition,	178

fuzzing,	272
testing,	272

Data	types.	See	also	specific
data	types.
character,	26,	104
combining	into	a	single
record.	See	Structs.
conversion,	105
declare	empty,	27
double	floating	point,	27,
104
enumerated	types,	104
floating	point,	27,	104

modifiers,	104–107
qualifiers,	105
sizes,	106–107
void,	104

Data	types,	and	flow	control
assignment	operators,
109–110
bit	operators,	109
Boolean	operators,	109
control	structures,	110
data	operators,	108
logic	operators,	109

math	operators,	108
operators,	107–110
type	conversion,	105
type	modifiers,	104–107
type	qualifiers,	105
type	sizes,	106–107
types,	104–107

Data	types,	creating
from	multiple	variables,
27,	32–34
for	new	types,	29
as	structs,	30

Data	types,	integer
declaring,	27
integer	constants,	29,	104
short	integer,	27
signed	modifier	for,	27
unsigned	modifier	for,	27

DB	functions,	devpkg
program,	279–287
db.c	file,	280–282
dbg.h	macro,	91–95
db.h	file,	280
db.o	file,	278

Debug	macros,	91–95
Debug	printing	vs.	GDB,
100–102
Debugging.	See	also	GDB
(GNU	Debugger);	LLDB
Debugger.
advanced	techniques,
100–102
avoiding	stack	bugs,
118–119
strategy,	101–102
with	vararg	functions,
132–136

default	operator,	27
Defensive	programmer	mind-
set,	141
Defensive	strategies
automate	everything,	148
document	assumptions,
147
fail	early	and	openly,	146
importance	of	order,	149
never	trust	input,	142–145
overview,	141–142
prevent	errors,	145–146

prevention	over
documentation,	147–148
question	authority,	149
simplify	and	clarify,
148–149

Destroying	strings,	227
detach	command,	19
Detaching	from/attaching	to	a
process
GDB,	19
LLDB,	19

devpkg	file,	279

devpkg	program
?=	(question	mark,	equal),
278
apr_off_t	error,	278
apr_thread_proc.h
functions,	283
checking	for	installed
URLs,	279–287
command	functions,
287–288
commands,	274
commands.c	file,
288–291

commands.h	file,
287–288
DB	functions,	279–287
dependencies,	277
description,	274
devpkg.c	file,	292–294
external	tools,	283
Main	function,	292–294
Makefile,	277–278
off64_t	error,	278
README	file,	294
recording	and	listing

installed	URLs,	279–287
shell	functions,	283–287
shell.c	file,	284–286
Shell_exec	file,	287
shell.h	file,	283–284
Shell.run	function,	286
source	files,	278–279

devpkg.c	file,	292–294
Dictionaries.	See	Hashmaps.
DJB	Hash	function,
240–247
do	operator,	27

Document	assumptions,	147
Double	floating	point	data
types
declaring,	27
description,	104

Double	linked	lists
creating	a	library,	178–179
data	structures,	definition,
178
description,	179–181
implementing,	181–185
testing,	185–187

double	operator,	27,	104
do-while	loop
example,	29
flow	control,	110
starting,	27

Duff,	Tom,	120
Duff’s	device,	120–125
Dumping	a	backtrace
GDB,	18–19
LLDB,	19

Dynamic	arrays,	198–206
Dynamic	libraries,	160

E
else	operator,	27
else-if	statement,	36–38
else-statement,	36–38
Emacs	text	editor,	4
enum	operator,	27,	29,	104
Enumerated	data	types,	104
Equal	sign	(=),	assign	equal,
23,	110
Equal	signs	(==),	equals
operator,	22,	109
Equality	testing.	See	Logic

operators.
Error	codes,	90–91
Error	handling.	See	C
language,	error	handling.
ex22.c	file,	112–114
ex22.h	file,	112–114
ex22_main.c	file,
114–118
Exclamation	point	(!)
Boolean	NOT	operator,
109
logical	NOT	operator,	22

Exclamation	point,	equal
(!=),	not	equal	operator,	22,
109
Exit	out	of	a	compound
statement,	26
extern	operator,	27

F
Fail	early	and	openly,	146
fclose	function,	129
fcloseall	function,	130
fdopen	function,	129

fgetpos	function,	130
fgets	function,	126–130
Find	and	replace	strings,	227
float	operator,	27,	104
Floating	point	data	types
declaring,	27
description,	104

FNV-1a	function,	240–247
fopen	function,	129
for	operator,	27
for-loops
arrays	of	strings,	54–57

example,	29
starting,	27

Formatted	printing,	14–16
Formatting	strings,	227
Fowler,	Glenn,	240
fprintf	function,	130
fread	function,	130
freopen	function,	129
fscanf	function,	126–130
fseek	function,	130
ftell	function,	130
Function	calls,	stepping	into

GDB,	18
LLDB,	19

Function	calls,	stepping	over
GDB,	18
LLDB,	19

Functions.	See	also	specific
functions.
bad,	checking	for,	158–159
defining,	29
I/O	handling,	126–130
returning	from,	27
using,	58–60

vararg,	132–136
with	variable	arguments,
132–136
writing,	58–60

Functions,	pointers	to
description,	84–85
format,	84
sample	code,	84–85

Fuzzing	data	structures,	272
fwrite	function,	130

G

GDB	(GNU	Debugger).	See
also	LLDB	Debugger.
attaching	to/detaching	from
a	running	process,	19
build	code,	18
change	directory,	18
continue	running	the
program,	18
vs.	debug	printing,
100–102
dumping	a	backtrace,
18–19
help,	18

list	ten	source	lines,	19
passing	arguments	to	the
program,	18
quit,	18
start	a	program,	18
start	a	shell,	19
step	into	function	calls,	18
step	over	function	calls,	18
watchpoints,	showing
information	about,	19

GDB	(GNU	Debugger),
breakpoints
clearing,	19

setting,	18
showing	information	about,
19

GDB	(GNU	Debugger),
commands
attach	pid,	19
backtrace,	18
break,	18
cd,	18
clear,	19
continue,	18
detach,	19

help,	18
info	break,	19
info	watch,	19
list,	19
make,	18
next,	18
print	expr,	18
pwd,	18
quick	reference,	18–19
quit,	18
run,	18
shell,	19

step,	18
GDB	(GNU	Debugger),
printing
value	of	an	expression,	18
working	directory,	18

gedit	text	editor,	3
Getting	started.	See	Setting
up	your	computer.
GNU	Debugger	(GDB).	See
GDB	(GNU	Debugger).
goto	operator,	27,	29,	110

H
Hashmaps
Adler-32	function,
240–247
algorithms,	240–247
vs.	binary	or	ternary	search
trees,	323
definition,	228
DJB	Hash	function,
240–247
example,	228–235
finding	prefixes,	327

FNV-1a	function,
240–247
scanning,	235
unit	testing,	235–237

Hashmap_traverse
function,	235
Headers,	Makefile
example,	154–155
Heap	sort,	208–210
Heaps
potential	problems,	81
sample	code,	74–79

vs.	stack	memory
allocation,	74–79

Help
GDB,	18
LLDB,	19

help	command
GDB,	18
LLDB,	19

I
IDE	(Integrated	Development
Environment),	4

Identifiers,	declaring	as
external,	27
if	operator,	27
if-statement
else	branch,	27
example,	28
starting,	27
true/false	branching,	36–38

Indexing	into	arrays,	65–66
Inequality	testing.	See	Logic
operators.
info	break	command,	19

info	watch	command,	19
Input/output.	See	I/O.
Installing
a	Makefile,	example,
158
software.	See	devpkg
program.

Int	constants,	defining	a	set
of,	27
int	operator,	27,	104
int8_t	type	size,	106
int16_t	type	size,	106

int32_t	type	size,	106
int64_t	type	size,	106
Integer	constants,	data	types
for,	104
Integer	data	type
declaring,	27
signed	modifier	for,	27
unsigned	modifier	for,	27

Integrated	Development
Environment	(IDE),	4
INT_FAST	(N)_MAX	type
size,	107

int_fast	(N)_t	type
size,	107
INT_FAST(N)_MAX	type
size,	107
int_fast(N)_t	type	size,
107
INT_LEAST	(N)_MAX
type	size,	107
INT_LEAST	(N)_MIN
type	size,	107
int_least	(N)_t	type
size,	107
INT_LEAST(N)_MAX	type

size,	107
INT_LEAST(N)_MIN	type
size,	107
int_least(N)_t	type
size,	107
INTMAX_MAX	type	size,	107
INTMAX_MIN	type	size,	107
intmax_t	type	size,	107
INTPTR_MAX	type	size,	107
INTPTR_MIN	type	size,	107
intptr_t	type	size,	107
I/O,	reading	from	files,

126–130
isalpha	function,	60
isblank	function,	60

J
Jump	tables,	42–44
Jumping	to	a	label,	27,	29

K
Keywords,	C,	26–27

L

Left	angle	bracket,	equal
(<=),	less	than	or	equal
operator,	22,	109
Left	angle	bracket	(<),	less
than	operator,	22,	109
Left	angle	brackets,	equal
(<<=),	assign	shift-left-equal,
23,	110
Left	angle	brackets	(<<),
bitwise	shift	left	operator,	22,
109
Length	of	strings,	getting,
227

Letters,	identifying,	60
Lexemes,	C	syntax,	26–29
Lexical	analysis,	C	syntax,
26–29
Libraries
Better	String	Library,
225–227
bstrlib,	225–227
double	linked	lists,
178–179
dynamic,	160
linking	to,	160–164

shared,	dynamic	loading,
161–164
static,	160

Linked	list	algorithms,
sorting	with,	190–197
Linking	to	libraries,	160–164
Linux
compiler	version,
checking,	2
running	under	Windows,	3
setting	up	your	computer,	2

list	command,	19

List	next	ten	source	lines	in
GDB	and	LLDB,	19
list_algos.c	file,
193–195
list_algos.h	file,	193
list_algos_tests.f
file,	191–193
LLDB	Debugger.	See	also
GDB	(GNU	Debugger).
attaching	to/detaching	from
a	process,	19
building	code,	19
change	directory,	19

continue	running	the
program,	19
dumping	a	backtrace,	19
help,	19
listing	next	ten	lines,	19
quitting,	19
starting	a	shell,	19
starting	the	program,	19
stepping	into	function
calls,	19
stepping	over	function
calls,	19
watchpoints,	showing

information	about,	19
LLDB	Debugger,	breakpoints
clearing,	19
setting,	19
showing	information	about,
19

LLDB	Debugger,	commands
attach	pid,	19
breakpoint	set,	19
cd,	19
clear,	19
continue,	19

detach,	19
help,	19
info	break,	19
info	watch,	19
list,	19
make,	19
next,	19
print	expr,	19
pwd,	19
quick	reference,	19
quit,	19
run	command,	19

shell,	19
step,	19
thread	backtrace,	19

LLDB	Debugger,	printing
expressions,	19
working	directory,	19

load	command,	344
Local	variables,	giving	a	local
lifetime,	26
Log	files,	finding,	138
Logfind	project,	138
Logic	operators,	22,	109

long	modifier,	104
Loops.	See	also	specific
loops.
breaking	to	exit,	28
continuing	to	the	top	of,	27
infinite,	144

M
Mac	OS	X
compiler	version,
checking,	2
setting	up	your	computer,

2–3
Macros
dbg.h,	91–95
for	debugging,	91–95
expanding,	96–98

MacVim	text	editor,	4
Main	function,	devpkg
program,	292–294
make	clean	command,
10–12
make	command
building	code,	10–12

GDB,	18
LLDB,	19

Makefile
as	automation	tool,	11
building	code,	10–12
devpkg	program,
277–278

Makefile,	examples
basic	structure,	152–154
checking	for	bad	functions,
158–159
cleanup,	157–158

header,	154–155
installing,	158
target	build,	155–156
unit	tests,	156–157

Math	operators,	108
Max/min	samples,
identifying,	300
Mean,	calculating,	300,
340–341
Memorizing
C	operators,	20–21
C	syntax,	26–29

Memory
format	conversion,
212–213
leaks,	shown	by	the
debugger,	80
stack	allocation,	80–81

Merge	sort,	190–197,
208–210
Middle	number,	calculating,
300,	340–341
Mind-set	for	programming.
See	Programmer	mind-set.
MinGw	system,	3

Min/max	samples,
identifying,	300,	340–341
Minus	sign	(-)
negative	number	(unary),
108
subtract	(binary),	108
subtraction	operator,	21

Minus	sign,	equal	(–=),
assign	minus-equal,	23,	110
Minus	signs	(––)
decrement,	then	read
(prefix),	108

read,	then	decrement
(postfix),	108

Minus	signs	(––),	decrement
operator,	21

N
Nano	text	editor,	4
netclient.c	file,
316–320
Network	server	program,	338
Never	trust	input,	142–145
next	command

GDB,	18
LLDB,	19

Noll,	Leonard	Curt,	240
Nul	byte,	array	terminator,
46–49

O
off64_t	error,	278
Operators.	See	C	language,
operators.
Output.	See	I/O.

P
Percent	sign	(%)
modulus	operator,	21
printing	as	a	literal,	33

Percent	sign,	equal	(%=),
assign	modulus-equal,	23,
110
Period	(.)
structure	reference
operator,	23
structure	value	access,	108

Plus	sign	(+)

add	operator	(binary),	108
add	operator	(unary),	108
addition	operator,	21

Plus	sign,	equal	(+=),	assign
plus-equal,	23,	110
Plus	signs	(++)
increment,	then	read
(prefix),	108
read,	then	increment
(postfix),	108

Plus	signs	(++),	increment
operator,	21

Pointers
vs.	arrays,	67
definition,	65
description,	65
indexing	into	arrays,	65–66
lexicon	of,	66–67
sample	code,	62–64
to	structures,	68–71
uses	for,	66

Pointers,	to	functions
description,	84–85
format,	84

sample	code,	84–85
Prevent	errors,	145–146
Prevention	over
documentation,	147–148
print	expr	command
GDB,	18
LLDB,	19

printf	function,	14–16
Printing
%	(percent	signs),	as
literals,	33
command	line	arguments,

54
expression	values,	18,	19
formatting,	14–16
from	GDB,	18
from	LLDB,	19
in	scientific	notation,	33
working	directory,	18,	19

Programmer	mind-set
creative,	140–141
defensive,	141

Programmer	mind-set,
defensive	strategies

automate	everything,	148
document	assumptions,
147
fail	early	and	openly,	146
importance	of	order,	149
never	trust	input,	142–145
overview,	141–142
prevent	errors,	145–146
prevention	over
documentation,	147–148
question	authority,	149
simplify	and	clarify,
148–149

PTRDIFF_MAX	type	size,
107
PTRDIFF_MIN	type	size,
107
pwd	command
GDB,	18
LLDB,	19

Q
Question	authority,	149
Question	mark,	colon	(?:)
Boolean	ternary	operator,

109
logical	ternary	operator,	22

Question	mark,	equal	(?=),
devpkg
syntax,	278

Queues,	296–299
Quick	sort,	208–210
quit	command
GDB,	18
LLDB,	19

Quitting
GDB,	18

LLDB,	19

R
Radix	sort,	211–221
RadixMap_add	function,
219
RadixMap_create
function,	219
RadixMap_delete
function,	219
RadixMap_destroy
function,	219

RadixMap_find	function,
219–220
RadixMap_sort	function,
219,	220–221
radix_sort	function,	219,
220–221
Reading	from	files,	126–130
README	file,	devpkg
program,	294
register	operator,	27
register	qualifier,	105
Relational	operators,	22

Return	from	a	function,	27
return	operator,	27
rewind	function,	130
Right	angle	bracket,	equal
(>=),	greater	than	or	equal
operator,	22,	109
Right	angle	bracket	(>),
greater	than	operator,	22,	109
Right	angle	brackets,	equal
(>>=),	assign	shift-left-equal,
23,	110
Right	angle	brackets	(>>),
bitwise	shift	right	operator,

22,	109
Ring	buffers,	310–314
run	command
GDB,	18
LLDB,	19

S
Scanning	hashmaps,	235
Scope
ex22.c	file,	112–114
ex22.h	file,	112–114
ex22_main.c	file,

114–118
and	stacks,	118–119

Search	algorithms,	248–257
Searching
binary	search,	211–220
binary	search	trees,
260–273
ternary	search	trees,
322–330

Semicolon	(;),	statement
terminator,	7
Server	improvements,	346

Server	login	times,	summary
statistics,	307
Setting
breakpoints,	GDB,	18
breakpoints,	LLDB,	19
strings,	227

Setting	up	your	computer
Clang’s	Getting	Started
instructions,	2
Linux,	2
Mac	OS	X,	2–3
text	editors,	3–4.	See	also
specific	text	editors.

Windows,	3
Shared	libraries,	dynamic
loading,	161–164
Shaw,	Zed	A.,	contact
information,	xv
shell	command,	19
shell.c	file,	284–286
Shell_exec	file,	287
shell.h	file,	283–284
shell.o	file,	278
Shell.run	function,	286
Shells,	starting,	19

Short	integer	data	type,
declaring,	27
short	modifier,	104
short	operator,	27
Showing	information	about
breakpoints,	19
signed	modifier
description,	104
for	integer	data	types,	27

Simplify	and	clarify,	148–149
SIZE_MAX	type	size,	107
sizeof	operator

data	access,	108
description,	23,	27
sizing	arrays,	50–53

Slash,	equal	(/=),	assign
divide-equal,	23,	110
Slash	(/),	divide	operator,	21,
108
Slash	asterisk	(/*),	multi-line
comment	start,	6,	24
Slashes	(//),	comment
indicator,	7,	24
Sorting

bubble	sort,	190–197
heap	sort,	208–210
with	linked	list	algorithms,
190–197
merge	sort,	190–197,
208–210
quick	sort,	208–210
radix	sort,	211–221
statistics,	344

Splitting	strings,	227
Square	brackets	([])
array	index,	108

array	subscript	operator,	23
Squares	of	numbers,
calculating,	300
Stacks
avoiding	bugs,	118–119
definition,	81
description,	296–299
memory	allocation,	80–81
potential	problems,	81

Standard	deviation,
calculating,	300–304
Starting	a	program	with
arguments

GDB,	18
LLDB,	19

Starting	a	shell,	19
Static	libraries,	160
static	operator,	27
Statistics.	See	Summary
statistics.
Statistics	server,	340–341
stats.c	file,	302–304
Stats_create	function,
304
Stats_dump	function,	304

statserve	program,	338,
340–341
stats.h	API,	340–341
Stats_mean	function,	304
Stats_recreate
function,	304
Stats_sample	function,
304
Stats_stddev	function,
304
stats_tests.c	file,
304–306

step	command
GDB,	18
LLDB,	19

Stepping	into	function	calls
GDB,	18
LLDB,	19

Stepping	over	function	calls
GDB,	18
LLDB,	19

store	command,	344
String_base_search
function,	252–255

String_find	function,
249–255,	257
Strings
arrays	of,	54–57
Better	String	Library,
225–227
BMH	(Boyer-Moore-
Horspool)	algorithm,
248–257
checking	for	validity,
224–225
comparing,	227
concatenating,	227

copying,	227
creating,	227
destroying,	227
disadvantages	of,	224–225
find	and	replace,	227
formatting,	227
functions	for,	227
getting	characters	from,
227
getting	data	from,	227
getting	length	of,	227
search	algorithms,	248–257

setting,	227
splitting,	227
storing	as	arrays,	46–49
testing	for	equality,	227

StringScanner_scan
function,	249–255,	257
String_setup_skip_chars
function,	252–255
struct	operator,	27,	30
Structs,	68–71
Sum,	calculating,	300,
340–341

Sum	of	squares,	calculating,
340–341
Summary	statistics
counting	samples,	300,
340–341
load	command,	344
loading	from	a	hard	drive,
344
mean,	calculating,	300,
340–341
middle	number,
calculating,	300,	340–341
min/max	samples,	300,

340–341
routing,	342
for	server	login	times,	307
sorting,	344
standard	deviation,
calculating,	300–304
statistics	on	statistics,
306–307
statistics	server,	340–341
stats.c	file,	302–304
Stats_create	function,
304

Stats_dump	function,
304
stats.h	API,	340–341
Stats_mean	function,
304
Stats_recreate
function,	304
Stats_sample	function,
304
Stats_stddev	function,
304
stats_tests.c	file,
304–306

store	command,	344
storing	to	a	hard	drive,	344
sum,	calculating,	300,
340–341
sum	of	squares,
calculating,	300,	340–341
unit	test,	304

switch	operator,	27
switch-statements
branching	in	a,	26
default	branch,	27
description,	42–44

example,	28
starting,	27

Syntax	structures,	C	syntax,
27–30

T
TCP/IP	client,	316–321
Ternary	search	trees,
322–330.	See	also	Binary
search	trees;	TSTree.
Testing
automated.	See	Automated
testing.

data	structures,	272
double	linked	lists,
185–187
strings	for	equality,	227

Text	editors,	3–4.	See	also
specific	text	editors.
TextWrangler	text	editor,	3
thread	backtrace
command,	LLDB,	19
Tilde	(~),	complement
operator,	109
True/false	branching,	36–38
TSTree.	See	also	BSTree.

fast	URL	routing,	332–336
searching	with,	322–330

typedef	operator,	27,	30

U
UB	(undefined	behavior).	See
C	UB	(common	undefined
behavior).
uint8_t	type	size,	106
uint16_t	type	size,	106
uint32_t	type	size,	106
uint64_t	type	size,	106

UINT_FAST	(N)_MAX
type	size,	107
uint_fast	(N)_t	type
size,	107
UINT_FAST(N)_MAX	type
size,	107
uint_fast(N)_t	type
size,	107
UINT_LEAST	(N)_MAX
type	size,	107
uint_least	(N)_t	type
size,	107
UINT_LEAST(N)_MAX

type	size,	107
uint_least(N)_t	type
size,	107
UINTMAX_MAX	type	size,
107
uintmax_t	type	size,	107
UINTPTR_MIN	type	size,
107
uintptr_t	type	size,	107
union	operator,	27,	30
Unions,	212–213
union-statement,	starting,

27,	30
unsigned	operator,	27,	104
URL	routing,	332–336
Urlor	tool,	332–336

V
Validity	checking	strings,
224–225
Variables
combining	into	a	single
record,	27.	See	also
Structs.

creating,	32–34
declaring	as	modifiable,	27
declaring	to	be	stored	in	a
CPU	register,	27
make	unmodifiable,	26
preserving	value	after
scope	exits,	27

Vertical	bar,	equal	(|=)
assign	or-equal,	23
bitwise	OR	and	assign
operator,	110

Vertical	bar	(|),	bitwise	OR
operator,	22,	109

Vertical	bars	(||),	Boolean
OR	operator,	109
Vim	text	editor,	4
VirtualBox,	3
Vo,	Phong,	240
Void	data	types,	104
void	operator,	27,	104
volatile	operator,	27
volatile	type	qualifier,
105

W

Watchpoints,	showing
information	about	GDB	and
LLDB,	19
while	operator,	27
while-loop
Boolean	expressions,
40–41
example,	28
starting,	27

Windows
C	support,	3
running	Linux	under,	3

setting	up	your	computer,	3

Where	are	the
Companion
Content	Files?

Register	this	digital	version
of
Learn	C	the	Hard	Way
to	access	important
downloads.
Register	this	digital	version	to
unlock	the	companion	files

that	are	included	on	the	disc
that	accompanies	the	print
edition.	Follow	the	steps
below.

1.	Go	to
http://www.informit.com/register
and	log	in	or	create	a
new	account.

2.	Enter	this	ISBN:
9780321884923
NOTE:	This	is	the
ISBN	of	the	print	book
which	must	be	used	to

http://www.informit.com/register

register	the	eBook
edition.

3.	Answer	the	challenge
question	as	proof	of
purchase.

4.	Click	on	the	“Access
Bonus	Content”	link	in
the	“Registered
Products”	section	of
your	account	page,
which	will	take	you	to
the	page	where	your
downloadable	content	is

available.

The	Professional	and
Personal	Technology	Brands

of	Pearson

Code	Snippets

	About This eBook
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	This Book Is Not Really about C
	The Undefined Behaviorists
	C Is a Pretty and Ugly Language
	What You Will Learn
	How to Read This Book
	The Videos
	The Core Competencies
	Reading and Writing
	Attention to Detail
	Spotting Differences
	Planning and Debugging

	Exercise 0. The Setup
	Linux
	Mac OS X
	Windows
	Text Editor
	Do Not Use an IDE

	Exercise 1. Dust Off That Compiler
	Breaking It Down
	What You Should See
	How to Break It
	Extra Credit

	Exercise 2. Using Makefiles to Build
	Using Make
	What You Should See
	How to Break It
	Extra Credit

	Exercise 3. Formatted Printing
	What You Should See
	External Research
	How to Break It
	Extra Credit

	Exercise 4. Using a Debugger
	GDB Tricks
	GDB Quick Reference
	LLDB Quick Reference

	Exercise 5. Memorizing C Operators
	How to Memorize
	The List of Operators

	Exercise 6. Memorizing C Syntax
	The Keywords
	Syntax Structures
	A Word of Encouragement
	A Word of Warning

	Exercise 7. Variables and Types
	What You Should See
	How to Break It
	Extra Credit

	Exercise 8. If, Else-If, Else
	What You Should See
	How to Break It
	Extra Credit

	Exercise 9. While-Loop and Boolean Expressions
	What You Should See
	How to Break It
	Extra Credit

	Exercise 10. Switch Statements
	What You Should See
	How to Break It
	Extra Credit

	Exercise 11. Arrays and Strings
	What You Should See
	How to Break It
	Extra Credit

	Exercise 12. Sizes and Arrays
	What You Should See
	How to Break It
	Extra Credit

	Exercise 13. For-Loops and Arrays of Strings
	What You Should See
	Understanding Arrays of Strings
	How to Break It
	Extra Credit

	Exercise 14. Writing and Using Functions
	What You Should See
	How to Break It
	Extra Credit

	Exercise 15. Pointers, Dreaded Pointers
	What You Should See
	Explaining Pointers
	Practical Pointer Usage
	The Pointer Lexicon
	Pointers Aren’t Arrays
	How to Break It
	Extra Credit

	Exercise 16. Structs And Pointers to Them
	What You Should See
	Explaining Structures
	How to Break It
	Extra Credit

	Exercise 17. Heap and Stack Memory Allocation
	What You Should See
	Heap versus Stack Allocation
	How to Break It
	Extra Credit

	Exercise 18. Pointers to Functions
	What You Should See
	How to Break It
	Extra Credit

	Exercise 19. Zed’s Awesome Debug Macros
	The C Error-Handling Problem
	The Debug Macros
	Using dbg.h
	What You Should See
	How the CPP Expands Macros
	Extra Credit

	Exercise 20. Advanced Debugging Techniques
	Debug Printing versus GDB
	A Debugging Strategy
	Extra Credit

	Exercise 21. Advanced Data Types and Flow Control
	Available Data Types
	Type Modifiers
	Type Qualifiers
	Type Conversion
	Type Sizes

	Available Operators
	Math Operators
	Data Operators
	Logic Operators
	Bit Operators
	Boolean Operators
	Assignment Operators

	Available Control Structures
	Extra Credit

	Exercise 22. The Stack, Scope, and Globals
	ex22.h and ex22.c
	ex22_main.c
	What You Should See
	Scope, Stack, and Bugs
	How to Break It
	Extra Credit

	Exercise 23. Meet Duff’s Device
	What You Should See
	Solving the Puzzle
	Why Bother?

	Extra Credit

	Exercise 24. Input, Output, Files
	What You Should See
	How to Break It
	The I/O Functions
	Extra Credit

	Exercise 25. Variable Argument Functions
	What You Should See
	How to Break It
	Extra Credit

	Exercise 26. Project logfind
	The logfind Specification

	Exercise 27. Creative and Defensive Programming
	The Creative Programmer Mind-Set
	The Defensive Programmer Mind-Set
	The Eight Defensive Programmer Strategies
	Applying the Eight Strategies
	Never Trust Input
	Prevent Errors
	Fail Early and Openly
	Document Assumptions
	Prevention over Documentation
	Automate Everything
	Simplify and Clarify
	Question Authority

	Order Is Not Important
	Extra Credit

	Exercise 28. Intermediate Makefiles
	The Basic Project Structure
	Makefile
	The Header
	The Target Build
	The Unit Tests
	The Cleaner
	The Install
	The Checker

	What You Should See
	Extra Credit

	Exercise 29. Libraries and Linking
	Dynamically Loading a Shared Library
	What You Should See
	How to Break It
	Extra Credit

	Exercise 30. Automated Testing
	Wiring Up the Test Framework
	Extra Credit

	Exercise 31. Common Undefined Behavior
	UB 20
	Common UBs

	Exercise 32. Double Linked Lists
	What Are Data Structures
	Making the Library
	Doubly Linked Lists
	Definition
	Implementation

	Tests
	What You Should See
	How to Improve It
	Extra Credit

	Exercise 33. Linked List Algorithms
	Bubble and Merge Sorts
	The Unit Test
	The Implementation
	What You Should See
	How to Improve It
	Extra Credit

	Exercise 34. Dynamic Array
	Advantages and Disadvantages
	How to Improve It
	Extra Credit

	Exercise 35. Sorting and Searching
	Radix Sort and Binary Search
	C Unions
	The Implementation
	RadixMap_find and Binary Search
	RadixMap_sort and radix_sort

	How to Improve It
	Extra Credit

	Exercise 36. Safer Strings
	Why C Strings Were a Horrible Idea
	Using bstrlib
	Learning the Library

	Exercise 37. Hashmaps
	The Unit Test
	How to Improve It
	Extra Credit

	Exercise 38. Hashmap Algorithms
	What You Should See
	How to Break It
	Extra Credit

	Exercise 39. String Algorithms
	What You Should See
	Analyzing the Results
	Extra Credit

	Exercise 40. Binary Search Trees
	How to Improve It
	Extra Credit

	Exercise 41. Project devpkg
	What Is devpkg?
	What We Want to Make
	The Design
	The Apache Portable Runtime

	Project Layout
	Other Dependencies

	The Makefile
	The Source Files
	The DB Functions
	The Shell Functions
	The Command Functions
	The devpkg Main Function

	The Final Challenge

	Exercise 42. Stacks and Queues
	What You Should See
	How to Improve It
	Extra Credit

	Exercise 43. A Simple Statistics Engine
	Rolling Standard Deviation and Mean
	Implementation
	How to Use It
	Extra Credit

	Exercise 44. Ring Buffer
	The Unit Test
	What You Should See
	How to Improve It
	Extra Credit

	Exercise 45. A Simple TCP/IP Client
	Augment the Makefile
	The netclient Code
	What You Should See
	How to Break It
	Extra Credit

	Exercise 46. Ternary Search Tree
	Advantages and Disadvantages
	How to Improve It
	Extra Credit

	Exercise 47. A Fast URL Router
	What You Should See
	How to Improve It
	Extra Credit

	Exercise 48. A Simple Network Server
	The Specification

	Exercise 49. A Statistics Server
	Specification

	Exercise 50. Routing the Statistics
	Exercise 51. Storing the Statistics
	The Specification

	Exercise 52. Hacking and Improving Your Server
	Next Steps
	Index
	Where are the Companion Content Files?
	Code Snippets

