

Android	Things	Projects

	

	

	

	

	

	

	

	

	

	

Effeciently	build	IoT	projects	with	Android	Things

	

	

	

	

	

	

	

Francesco	Azzola

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

<	html	PUBLIC	"-//W3C//DTD	HTML	4.0	Transitional//EN"	"http://www.w3.org/TR/REC-
html40/loose.dtd">

Android	Things	Projects
	

Copyright	©	2017	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for
any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot
guarantee	the	accuracy	of	this	information.

	

First	published:	June	2017

	

Production	reference:	1290617

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78728-924-6

	

www.packtpub.com

http://www.packtpub.com

Credits

Author

Francesco	Azzola

Copy	Editor	Â

Safis	Editing

ReviewersÂ	Â

Ali	Utku	Selen

Raimon	RÃ	fols	Montane

Project	Coordinator

Kinjal	BariÂ

Commissioning	Editor	Â

Vijin	Boricha

Proofreader	Â

Safis	Editing

Acquisition	Editor	Â

Namrata	Patil

Indexer	Â

Mariammal	Chettiyar

Content	Development	Editor	Â

Mamata	Walkar

Graphics	Â

Kirk	D'Penha

Technical	Editor	Â

Varsha	Shivhare

Production	Coordinator

Melwyn	Dsa

	

About	the	Author
Francesco	Azzola	is	an	electronic	engineer	with	over	15	years	of	experience	in	computer	programming
and	JEE	architecture.	He	is	a	Sun	Certified	Enterprise	Architect	(SCEA),	SCWCD,	and	SCJP.	He	is	an
Android	and	IoT	enthusiast	who	loves	creating	IoT	projects	using	Arduino,	Raspberry	Pi,	Android,	and
other	platforms.

He	is	interested	in	the	convergence	of	IoT	and	mobile	applications.	Previously,	he	worked	in	the	mobile
development	field	for	several	years.	He	has	created	a	blog	called	Surviving	with	Android,	where	he
shares	posts	on	coding	in	Android	and	IoT	projects.

	

About	the	Reviewers
Ali	Utku	Selen	is	a	system	engineer	at	Sony	Mobile,	who	has	been	working	on	flagship	Android	devices
for	more	than	five	years.	He	started	programming	at	age	11,	and	since	then	he	has	developed	a	great
interest	in	software	development.	He	holds	an	MSc	degree	from	the	Computer	Engineering	Department	of
Dokuz	Eylul	University.

	

Raimon	RÃ	folsÂ	MontaneÂ	has	been	developing	for	mobile	devices	since	2004.	He	has	experience	in
developing	on	several	technologies	specializing	in	UI,	build	systems,	and	client-server	communications.
He	is	currently	working	as	a	Engineering	Manager	at	AXA	Group	Solutions	in	Barcelona,	although	has
been	working	in	the	past	for	Imagination	Technologies	near	London	and	Service2Media	in	the
Netherlands.	In	his	spare	time,	he	enjoys	programming,	photography,	and	giving	talks	at	mobile
conferences	about	Android	performance	optimization	and	Android	custom	views.

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visitÂ	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	atÂ	www.PacktPub.comÂ	and	as	a	print	book	customer,	you
are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	atÂ	service@packtpub.com	for	more	details.

AtÂ	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of	free
newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt	books	and
video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal	development	and	advance
your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our	editorial	process.	To	help	us
improve,	please	leave	us	an	honest	review	on	this	book's	Amazon	page	at	https://www.amazon.com/dp/1787289249.

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	e-mail	us	at	customerreviews@packtpub.com.	We
award	our	regular	reviewers	with	free	eBooks	and	videos	in	exchange	for	their	valuable	feedback.	Help
us	be	relentless	in	improving	our	products!

	

https://www.amazon.com/dp/1787289249

Table	of	Contents

	

Preface
What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support
Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	 Getting	Started	with	Android	Things
Internet	of	Things	overview

IoT	components

Android	Things	overview

Things	support	library

Android	Things	board	compatibility

How	to	install	Android	Things	on	Raspberry
How	to	install	Android	Things	using	Windows

How	to	install	Android	Things	using	OS	X

Testing	the	installation

How	to	install	Android	Things	on	Intel	Edison

Configuring	the	WiFi

Creating	the	first	Android	Things	project
Cloning	the	template	project

Create	the	project	manually

Differences	between	Android	and	Android	Things

Create	your	first	Android	Things	app

Summary

2.	 Creating	an	Alarm	System	Using	Android	Things
Alarm	system	project	description

PIR	sensor

Project	schematic

How	to	use	GPIO	pins

Reading	from	the	GPIO	pin

How	to	add	a	listener	to	GPIO
Declare	the	event	to	listen	to

Implementing	the	callback	class

How	to	close	the	connection	with	a	GPIO	pin

Handle	different	boards	in	Android	Things
Android	Things	board	pinout

How	to	identify	the	board

How	to	implement	the	notification	system
Configuring	firebase

Add	the	notification	feature	to	the	Android	Things	app

Android	companion	app

Summary

3.	 How	to	Make	an	Environmental	Monitoring	System
Environmental	monitoring	system	project	overview

Project	components

Project	schematic

How	to	read	data	from	sensors

Handling	sensors	using	the	Android	sensor	framework
Implementing	the	sensor	callback

How	to	handle	dynamic	sensors

Putting	it	all	together	-	acquiring	data

How	to	close	the	sensor	connection

How	to	control	GPIO	pins
Initialize	the	GPIO	pin

Diving	into	I2C	protocol
I2C	protocol	overview

How	to	implement	a	custom	sensor	driver

Low-level	sensor	driver

Summary

4.	 Integrate	Android	Things	with	IoT	Cloud	Platforms
IoT	cloud	architecture

An	IoT	cloud	platform	overview

IoT	cloud	architecture	overview

Streaming	data	to	the	IoT	cloud	platform
How	to	configure	Artik	Cloud

Artik	client	description

How	to	implement	the	Android	Things	Artik	client
Implement	a	StringRequest	with	Volley

Implement	a	custom	HTTP	header

Send	the	data	using	a	custom	body	request

Sending	data	from	the	Android	Things	app

Creating	a	dashboard
Data	logging

Adding	voice	capabilities	to	Android	Things
Configure	Temboo	choreo

Integrate	Temboo	in	the	Android	Things	app

Summary

5.	 Create	a	Smart	System	to	Control	Ambient	Light
Ambient	light	control	system	description

Project	components

Project	architecture

Building	the	Arduino	project
How	Arduino	exposes	the	services

Implementing	the	Android	Things	app
How	to	develop	an	Android	Things	app	UI

Attaching	the	layout	to	the	Activity

Handling	UI	events

Invoking	the	Arduino	services

How	to	implement	a	web	interface
Implementing	a	simple	HTTP	web	server

Creating	the	HTML	page	with	the	UI

Embedding	the	HTTP	Server	into	the	Android	Things	app

Summary

6.	 Remote	Weather	Station
Remote	weather	station	project	description

Project	components

The	M2M	architecture	and	the	MQTT	protocol
MQTT	protocol	overview

MQTT	message	details
Security	and	QoS

Using	MQTT	in	our	remote	weather	station
Implementing	the	MQTT	publisher

Connecting	to	MQTT	and	sending	data

Implementing	the	MQTT	subscriber	using	Android	Things

Implementing	the	Android	Things	Activity

Displaying	the	information	using	OLED	display

Connect	the	OLED	display	to	Android	Things	board

Installing	the	MQTT	server
Installing	the	MQTT	broker

Configuring	the	MQTT	broker

Summary

7.	 Build	a	Spying	Eye
Spying	eye	Android	Things	project	overview

Project	components

Pulse	Width	Modulation	overview

How	to	use	PWM	with	Android	Things

Implementing	the	spying	eye	project	in	Android	Things
Controlling	a	servomotor	in	Android	Things

Using	a	camera	in	Android	Things
Getting	ready	to	use	the	camera

Assembling	the	app

Summary

8.	 Android	with	Android	Things
Architecture	to	connect	Android	and	Android	Things

How	to	control	a	LED	strip	using	an	Android	app
Connecting	the	Android	app	to	Android	Things

How	to	develop	an	Android	app	that	retrieves	data	from	Android	Things
How	to	implement	a	Bluetooth	connection

Creating	the	Android	app

Implementing	the	Bluetooth	server	in	Android	Things

Summary

Preface
Android	Things	is	the	new	OS	developed	by	Google	for	building	professional	IoT	projects	using
Android.	Throughout	the	course	of	this	book,	you	will	gain	deep	knowledge	of	Android	Things	and	get
ready	for	the	next	technological	revolution.	You	will	learn	how	to	create	real-life	IoT	projects	covering
all	the	aspects	of	Android	Things.

	

What	this	book	covers
Chapter	1,	Getting	Started	with	Android	Things,	introduces	IoT	and	explains	why	it	has	such	huge	impact
on	everyday	life.	This	chapter	also	introduces	Android	Things	and	explains	how	to	use	it	in	your	first	IoT
project.

Chapter	2,	Creating	an	Alarm	System	Using	Android	Things,	shows	how	to	use	two-state	sensors	(or
binary	devices)	in	Android	Things.	This	chapter	also	covers	creating	an	alarm	system	that	detects	motion
and	sends	a	notification	to	a	user's	smartphone.

Chapter	3,	How	to	Make	an	Environmental	Monitoring	System,	shows	how	to	connect	sensors	to	Android
Things	and	how	to	read	data	using	the	I2C	bus.	These	concepts	are	applied	to	an	IoT	project	that	monitors
the	environmental	parameters	and	uses	an	RGB	LED	to	visualize	it.

Chapter	4,	Integrate	Android	Things	with	IoT	Cloud	Platforms,	covers	how	to	use	Android	Things	in	an
IoT	cloud	architecture.	This	chapter	describes	how	to	stream	real-time	data	from	sensors	to	IoT	cloud
platforms.

Chapter	5,	Create	a	Smart	System	to	Control	Ambient	Light,	demonstrates	how	to	use	a	simple	integration
pattern	to	integrate	Android	Things	with	Arduino	using	the	HTTP	protocol.

Chapter	6,	Remote	Weather	Station,	covers	how	to	use	Android	Things	in	Machine	to	Machine	(M2M)
architecture.	In	this	chapter,	we	will	build	a	remote	weather	station	that	monitors	temperature,	humidity,
pressure,	and	light,	and	sends	data	using	the	MQTT	protocol.

Chapter	7,	Build	a	Spying	Eye,	shows	how	to	develop	an	Android	Things	app	that	controls	servo	motors
using	Pulse	Width	Modulation	(PWM)	and	how	to	use	the	camera	with	Android	Things.

Chapter	8,	Android	with	Android	Things,	covers	how	to	develop	Android	companion	apps	that	interact	with
Android	things.

What	you	need	for	this	book
To	build	the	examples	in	this	book,	you	need	to	have	Windows	OS	or	Mac	OS	X.	Moreover,	in	order	to
develop,	compile,	and	install	the	Android	Things	app,	you	have	to	install	Android	Studio	as	specified
during	the	chapters.

Who	this	book	is	for
This	book	is	for	Android	enthusiasts,	hobbyists,	IoT	experts,	and	Android	developers	who	want	to	gain
deep	knowledge	of	Android	Things.	The	main	focus	is	on	implementing	IoT	projects	using	Android
Things.	This	book	also	covers	Android	Things	API	and	how	to	use	them	in	IoT.	The	reader	will	use
sensors,	resistors,	capacitors,	and	IoT	cloud	platforms.

	

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of	information.
Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning:

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,	dummy
URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:

"We	can	include	other	contexts	through	the	use	of	the	include	directive."

A	block	of	code	is	set	as	follows:

adb	shell	am	startservice

-n	com.google.wifisetup/.WifiSetupService

-a	WifiSetupService.Connect

-e	ssid	<Your_WIFI_SSID>

-e	passphrase	<WIFI_password>

Any	command-line	input	or	output	is	written	as	follows:

sudo	dd	bs=1m	if=path_of_your_image.img	of=/dev/rdiskn

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for	example,	in
menus	or	dialog	boxes,	appear	in	text	like	this:

"When	the	board	is	connected	to	your	PC	or	Mac,	it	appears	in	the	Platform	Flash	Tool	Light."

Warnings	or	important	notes	appear	in	a	box	like	this.

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book	what	you
liked	or	disliked.	Reader	feedback	is	important	to	us	as	it	helps	us	develop	titles	that	you	will	really	get
the	most	out	of.	To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the	book's
title	in	the	subject	of	your	message.	If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in
either	writing	or	contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

	

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get	the	most
from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http://www.packtpub.com.	If	you
purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.	You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest	version
of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublishing/Android-Things-Projects.
We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos	available	at	https://github.com/Pack
tPublishing/.	Check	them	out!

	

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Android-Things-Projects
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in	this	book.
The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You	can	download	this	file
from	https://www.packtpub.com/sites/default/files/downloads/AndroidThingsProjects_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/AndroidThingsProjects_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If	you	find
a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be	grateful	if	you	could
report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve	subsequent
versions	of	this	book.	If	you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.
Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	to	our
website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.	To	view	the	previously
submitted	errata,	go	to	https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the	search
field.	The	required	information	will	appear	under	the	Errata	section.

	

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,	we	take
the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal	copies	of	our
works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
suspected	pirated	material.	We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you
valuable	content.

	

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at	questions@packtpub.com,	and	we	will
do	our	best	to	address	the	problem.

Getting	Started	with	Android	Things
Recently,	Google	released	its	first	operating	system	built	for	the	Internet	of	Things,	called	Android
Things.	During	this	book,	you	will	learn	how	to	build	IoT	projects	using	this	OS	with	compatible
development	boards	and	peripherals	such	as	sensors,	LEDs,	servo,	and	so	on.

In	this	chapter,	at	the	beginning,	we	will	give	an	overview	of	Android	Things,	covering	what	it	is	and
how	it	differs	from	Android.	You	will	learn	how	to	reuse	your	Android	knowledge	in	Android	Things
projects.	After	this,	you	will	learn	how	to	install	Android	Things	on	different	boards	such	as	Raspberry
Pi	3	and	Intel	Edison	with	an	Arduino	breakout	kit.	This	will	help	you	to	familiarize	yourself	with
development	boards	while	we	set	up	our	development	environment.	Once	you	are	comfortable	with	it,	we
will	move	to	creating	the	first	Android	Things	project	and	you	will	learn	how	to	use	simple	peripherals
such	as	LEDs	and	buttons	(or	switches).	In	more	detail,	we	will	explore	how	to	convert	an	Android
project	into	an	Android	Things	project.	Moreover,	you	will	have	an	overview	of	the	most	import	Android
Things	API	and	how	to	use	it	in	a	real	IoT	project.

The	main	topics	covered	in	this	chapter	are:

Internet	of	things	overview	Android	Things	layer	structure
How	to	install	Android	Things	on	Raspberry	Pi	3
How	to	install	Android	Things	on	Intel	Edison	with	Arduino	breakout	kit
How	to	create	an	Android	Things	project

Internet	of	Things	overview
Internet	of	Things,	or	briefly	IoT,	is	one	of	the	most	promising	trends	in	technology.	According	to	many
analysts,	Internet	of	things	can	be	the	most	disruptive	technology	in	the	upcoming	decade.	It	will	have	a
huge	impact	on	our	lives	and	it	promises	to	modify	our	habits.	IoT	is	and	will	be	in	the	future	a	pervasive
technology	that	will	span	its	effects	across	many	sectors:

Industry
Healthcare
Transportation
Manufacturing
Agriculture
Retail
Smart	cities

All	these	areas	will	benefit	from	using	IoT.	Before	diving	into	IoT	projects,	it	is	important	to	know	what
IoT	means.	There	are	several	definitions	about	the	Internet	of	things,	addressing	different	aspects	and
considering	different	areas	of	application.	Anyway,	it	is	important	to	underline	that	the	IoT	is	much	more
than	a	network	of	smartphones,	tablets,	and	PCs	connected	to	each	other.	Briefly,	IoT	is	an	ecosystem
where	objects	are	interconnected	and,	at	the	same	time,	they	connect	to	the	internet.	The	Internet	of	things
includes	every	object	that	can	potentially	connect	to	the	internet	and	exchange	data	and	information.	These
objects	are	always	connected	anytime,	anywhere,	and	they	exchange	data.

The	concept	of	connected	objects	is	not	new	and	over	the	years	it	has	been	developed.	The	level	of
circuit	miniaturization	and	the	increasing	power	of	CPU	with	a	lower	consumption	makes	it	possible	to
imagine	a	future	where	there	are	millions	of	"things"	that	talk	to	each	other.

The	first	time	that	the	Internet	of	things	was	officially	recognized	was	in	2005.	The	International
Communication	Union	(ITU)	in	a	report	titled	The	Internet	of	things	(https://www.itu.int/osg/spu/publications/interne
tofthings/InternetofThings_summary.pdf),	gave	the	first	definition:

"A	new	dimension	has	been	added	to	the	world	of	information	and	communication	technologies	(ICTs):
from	anytime,	any	place	connectivity	for	anyone,	we	will	now	have	connectivity	for	anything
Connections	will	multiply	and	create	an	entirely	new	dynamic	network	of	networks	-	an	Internet	of
Things	"

In	other	words,	the	IoT	is	a	network	of	smart	objects	(or	things)	that	can	receive	and	send	data	and	we	can
control	it	remotely.

https://www.itu.int/osg/spu/publications/internetofthings/InternetofThings_summary.pdf

IoT	components
There	are	several	elements	that	contribute	to	creating	the	IoT	ecosystem	and	it	is	important	to	understand
the	role	they	play	in	order	to	have	a	clear	picture	about	IoT.	This	will	be	useful	to	better	understand	the
projects	we	will	build	using	Android	Things.	The	basic	brick	of	IoT	is	a	smart	object.	It	is	a	device	that
connects	to	the	internet	and	it	is	capable	of	exchanging	data.	It	can	be	a	simple	sensor	that	measures	a
quantity	such	as	pressure,	temperature,	and	so	on,	or	a	complex	system.	Extending	this	concept,	our	oven,
our	coffee	machine,	and	even	our	washing	machine	are	all	examples	of	smart	objects	once	they	connect	to
the	internet.	All	of	these	smart	objects	contribute	to	developing	the	internet	of	things	network.	Anyway,	it's
not	only	household	appliances	that	are	examples	of	smart	objects,	but	also	cars,	buildings,	actuators,	and
so	on.	We	can	reference	these	objects,	when	connected,	using	a	unique	identifier	and	start	talking	to	them.

At	the	low	level,	these	devices	exchange	data	using	a	network	layer.	The	most	important	and	known
protocols	at	the	base	of	Internet	of	things	are:

Wi-Fi
Bluetooth
Zigbee
Cellular	network
NB-IoT
LoRA

From	an	application	point	of	view,	there	are	several	application	protocols	widely	used	in	the	internet	of
things.	Some	protocols	derive	from	different	contexts	(such	as	the	web);	others	are	IoT-specific.	To	name
a	few	of	them,	we	can	remember:

HTTP
MQTT
CoAP
AMQP
Rest
XMPP
Stomp

By	now,	they	could	be	just	names	or	empty	boxes,	but	throughout	this	book	we	will	explore	how	to	use
these	protocols	with	Android	Things.

Prototyping	boards	play	an	important	role	in	the	Internet	of	things	and	they	help	to	develop	the	number	of
connected	objects.	Using	prototyping	boards,	we	can	experiment	with	IoT	projects	and	in	this	book,	we
will	explore	how	to	build	and	test	IoT	projects	using	boards	compatible	with	Android	Things.	As	you
may	already	know,	there	are	several	prototyping	boards	available	on	the	market,	each	one	having	specific
features.	Just	to	name	a	few	of	them,	we	can	list:

Arduino	(in	different	flavors)
Raspberry	Pi	(in	different	flavors)

Intel	Edison
ESP8266
NXP

We	will	focus	our	attention	on	Raspberry	Pi	3	and	Intel	Edison	because	Android	Things	officially
supports	these	two	boards.	During	the	books,	we	will	also	use	other	development	boards	so	that	you	can
understand	how	to	integrate	them.

Android	Things	overview
Android	Things	is	the	new	operating	system	developed	by	Google	to	build	IoT	projects.	This	helps	you	to
develop	professional	applications	using	trusted	platforms	and	Android.	Yes	Android,	because	Android
Things	is	a	modified	version	of	Android	and	we	can	reuse	our	Android	knowledge	to	implement	smart
Internet	of	things	projects.	This	OS	has	great	potential	because	Android	developers	can	smoothly	move	to
IoT	and	start	developing	and	building	projects	in	a	few	days.	Before	diving	into	Android	Things,	it	is
important	to	have	an	overview.	Android	Things	OS	has	the	layer	structure	shown	in	the	following
diagram:

Source:	https://developer.android.com/things/sdk/index.html

This	structure	is	slightly	different	from	Android	OS	because	it	is	much	more	compact	so	that	apps	for
Android	Things	have	fewer	layers	beneath	and	they	are	closer	to	drivers	and	peripherals	than	normal
Android	apps.	Even	if	Android	Things	derives	from	Android,	there	are	some	APIs	available	in	Android
not	supported	in	Android	Things.	We	will	now	briefly	describe	the	similarities	and	the	differences.

Let	us	start	with	the	content	providers,	widely	used	in	Android,	and	not	present	in	Android	Things	SDK.
Therefore,	we	should	pay	attention	when	we	develop	an	Android	Things	app.	To	have	more	information
about	these	content	providers	not	supported,	please	refer	to	the	Official	Android	Things	website	at	https://de
veloper.android.com/things/sdk/index.html.

Moreover,	like	a	normal	Android	app,	an	Android	Things	app	can	have	a	User	Interface	(UI),	even	if
this	is	optional,	and	it	depends	on	the	type	of	application	we	are	developing.	A	user	can	interact	with	the
UI	to	trigger	events	as	they	happen	in	an	Android	app.	From	this	point	of	view,	as	we	will	see	later,	the
developing	process	of	a	UI	is	the	same	as	used	in	Android.	This	is	an	interesting	feature	because	we	can
develop	an	IoT	UI	easily	and	fast,	re-	using	our	Android	knowledge.

It	is	worth	noting	that	Android	Things	fits	perfectly	in	the	Google	services.	Almost	all
cloud	services	implemented	by	Google	are	available	in	Android	Things	with	some
exceptions.	Android	Things	does	not	support	Google	services	strictly	connected	to	the
mobile	world	and	those	that	require	user	input	or	authentication.	Do	not	forget	that	user

https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html
https://developer.android.com/things/sdk/index.html

interface	for	an	Android	Things	app	is	optional.	To	have	a	detailed	list	of	Google	services
available	in	Android	Things	refer	to	the	official	page	at	https://developer.android.com/things/sdk/in
dex.html.

An	important	Android	aspect	is	the	permission	management.	An	Android	app	runs	in	a	sandbox	with
limited	access	to	the	resources.	When	an	app	needs	to	access	a	specific	resource	outside	the	sandbox	it
has	to	request	permission.	In	an	Android	app,	this	happens	in	the	Manifest.xml	file.	This	is	still	true	in
Android	Things	and	all	the	permissions	requested	by	the	app	are	granted	at	installation	time.	Android	6
(API	level	23)	has	introduced	a	new	way	to	request	a	permission.	An	app	can	request	a	permission	not
only	at	installation	time	(using	the	Manifest.xml	file),	but	at	run-time	too.	Android	Things	does	not	support
this	new	feature,	so	we	have	to	request	all	the	permissions	in	the	Manifest	file.

The	last	thing	to	notice	is	the	notifications.	As	we	will	see	later,	Android	Things	UI	does	not	support	the
notification	status	bar,	so	we	cannot	trigger	notifications	from	our	Android	Things	apps.

To	make	things	simpler,	you	should	remember	that	all	the	services	related	to	the	user	interface	or	that
require	a	user	interface	to	accomplish	the	task	are	not	guaranteed	to	work	in	Android	Things.

https://developer.android.com/things/sdk/index.html

Things	support	library
Things	support	library	is	the	new	library	developed	by	Google	to	handle	the	communication	with
peripherals	and	drivers.	This	is	a	completely	new	library	not	present	in	the	Android	SDK	and	this	library
is	one	of	the	most	important	features.	It	exposes	a	set	of	Java	Interface	and	classes	(APIs)	that	we	can	use
to	connect	and	exchange	data	with	external	devices	such	as	sensors,	actuators,	and	so	on.	This	library
hides	the	inner	communication	details,	supporting	several	industry	standard	protocols	such	as:

GPIO
I2C
PWM
SPI
UART

During	the	book,	we	will	discover	how	to	use	this	library	to	connect	to	several	devices.

Moreover,	this	library	exposes	a	set	of	APIs	to	create	and	register	new	device	drivers	called	user
drivers.	These	drivers	are	custom	components	deployed	with	the	Android	Things	app	that	extends	the
Android	Things	framework.	In	other	words,	they	are	custom	libraries	that	enable	an	app	to	communicate
with	other	device	types	not	supported	by	Android	Things	natively.

This	book	will	guide	you,	step	by	step,	to	learn	how	to	build	real-life	projects	using	Android.	You	will
explore	the	new	Android	Things	APIs	and	how	to	use	them.	In	the	next	sections,	you	will	learn	how	to
install	Android	Things	on	Raspberry	Pi	3	and	Intel	Edison.

Android	Things	board	compatibility
Android	Things	is	a	new	operating	system	specifically	built	for	IoT.	At	the	time	of	writing,	Android
Things	supported	four	different	development	boards:

Raspberry	Pi	3	Model	B
Intel	Edison
NXP	Pico	i.MX6UL
Intel	Joule	570x

In	the	near	future,	more	boards	will	be	added	to	the	list.	Google	has	already	announced	that	it	will	support
this	new	board	NXP	Argon	i.MX6UL.

The	book	will	focus	on	using	the	first	two	boards:	Raspberry	Pi	3	and	Intel	Edison.	Anyway,	you	can
develop	and	test	all	the	book's	projects	on	the	other	boards	too.	This	is	the	power	of	Android	Things:	it
abstracts	the	underlying	hardware	providing,	a	common	way	to	interact	with	peripherals	and	devices.	The
paradigm	that	made	Java	famous,	Write	Once	and	Run	Anywhere	(WORA),	applies	to	Android	Things
too.	This	is	a	winning	feature	of	Android	Things	because	we	can	develop	an	Android	Things	app	without
worrying	about	the	underlying	board.	Anyway,	when	we	develop	an	IoT	app	there	are	some	minor	aspects
we	should	consider	so	that	our	app	will	be	portable	to	other	compatible	boards.

How	to	install	Android	Things	on	Raspberry
Raspberry	Pi	3	is	the	latest	board	developed	by	Raspberry.	It	is	an	upgrade	of	Raspberry	Pi	2	Model	B
and	like	its	predecessor	it	has	some	great	features:

Quad-core	ARMv8	Cpu	at	1.2Ghz
Wireless	Lan	802.11n
Bluetooth	4.0

The	following	image	shows	a	Raspberry	Pi	3	Model	B:

Source:	https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

In	this	section,	you	will	learn	how	to	install	Android	Things	on	Raspberry	Pi	3	using	a	Windows	PC	or	a
macOS.

Before	starting	the	installation	process	you	must	have:

Raspberry	Pi	3	Model	B
At	least	an	8Gb	SD	card
A	USB	cable	to	connect	Raspberry	to	your	PC
An	HDMI	cable	to	connect	Raspberry	to	a	tv/monitor	(optional)

If	you	do	not	have	an	HDMI	cable	you	can	use	a	screen	mirroring	tool.	This	is	useful	to	know	the	result	of
the	installation	process	and	when	we	will	develop	the	Android	Things	UIs.	The	installation	steps	are
different	if	you	are	using	Windows,	OS	X,	or	Linux.

http://www.raspberrypi.org/products/raspberry-pi-3-model-b/

How	to	install	Android	Things	using	Windows
At	the	beginning	we	will	cover	how	to	install	Android	Things	on	Raspberry	Pi	3	using	a	Windows	PC:

1.	 Download	the	Android	Things	image	from	this	link:	https://developer.android.com/things/preview/download.html.
Select	the	right	image;	in	this	case,	you	have	to	choose	the	Raspberry	Pi	image.

2.	 Accept	the	license	and	wait	until	the	download	is	completed.
3.	 Once	the	download	is	complete,	extract	the	ZIP	file.
4.	 To	install	the	image	on	the	SD	card,	there	is	a	great	application	called	Win32	Disk	Imager	that

works	perfectly.	It	is	free	and	you	can	download	it	from	SourceForge	at:	https://sourceforge.net/projects/win32
diskimager/.	At	the	time	of	writing,	the	application	version	is	0.9.5.

5.	 After	you	have	downloaded	it,	you	have	to	run	the	installation	executable	as	Administrator.	Now	you
are	ready	to	burn	the	image	into	the	SD	card.

6.	 Insert	the	SD	card	into	your	PC.
7.	 Select	the	image	you	have	unzipped	in	step	3	and	be	sure	to	select	the	right	disk	name	(your	SD).	At

the	end,	click	on	Write.

You	are	done!	The	image	is	installed	on	the	SD	card	and	we	can	now	start	Raspberry	Pi.

	

https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/
https://sourceforge.net/projects/win32diskimager/

How	to	install	Android	Things	using	OS	X
If	you	have	a	Mac	OS	X,	the	steps	to	install	Android	Things	are	slightly	different.	There	are	several
options	to	flash	this	OS	to	the	SD	card;	you	will	learn	the	fastest	and	easiest	one.

These	are	the	steps	to	follow:

1.	 Format	your	SD	card	using	FAT32.	Insert	your	SD	card	into	your	Mac	and	run	Disk	Utility.	You
should	see	something	like	this:

2.	 Download	the	Android	Things	OS	image	using	this	link:	https://developer.android.com/things/preview/download.htm
l.

3.	 Unzip	the	file	you	have	downloaded.
4.	 Insert	the	SD	card	into	your	Mac.
5.	 Now	it	is	time	to	copy	the	image	to	the	SD	card.	Open	a	terminal	window	and	write	the	following:

sudo	dd	bs=1m	if=path_of_your_image.img	of=/dev/rdiskn

Where	the	path_to_your_image	is	the	path	to	the	file	with	the	img	extension	you	downloaded	at	step	2.	In	order
to	find	out	the	rdiskn	you	have	to	select	Preferences	and	then	System	Report.	The	result	is	shown	in	the
following	screenshot:

https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html

The	BSD	name	is	the	disk	name	we	are	looking	for.	In	this	case,	we	have	to	write	the	following:

sudo	dd	bs=1m	if=path_of_your_image.img	of=/dev/disk1

That's	all.	You	have	to	wait	until	the	image	is	copied	into	the	SD	card.	Do	not	forget	that	the	copying
process	could	take	a	while.	So	be	patient!

Testing	the	installation
Once	we	have	flashed	the	Android	Things	image	into	the	SD	card,	we	can	remove	it	from	the	PC	or	Mac
and	insert	it	into	the	board:

1.	 Connect	Raspberry	Pi	to	a	video	using	the	HDMI.
2.	 Connect	Raspberry	Pi	to	your	network	using	the	LAN	connection.
3.	 Connect	Raspberry	Pi	to	your	Mac/PC	using	a	USB	cable.

Wait	until	Android	Things	completes	the	boot	phase.	At	the	end,	you	should	see	the	following:

Now	your	development	board	is	ready	and	we	can	start	developing	our	first	Android	Things	project.	To
confirm	that	your	Android	Things	is	up	and	running,	you	can	execute	from	the	command	line	the	following
command:

adb	devices

You	should	see,	in	the	list,	at	least	one	Android	device	with	an	IP	address.	Congratulations;	you	have	just
installed	and	tested	your	Android	Things	OS.	By	now	you	should	see	the	Android	Things	default	screen
because	we	did	not	install	an	app	on	the	system.

How	to	install	Android	Things	on	Intel	Edison
Intel	Edison	is	a	prototyping	board	developed	by	Intel	with	interesting	features.	It	is	a	Raspberry	Pi	3
alternative	and	it	is	powerful.	The	main	specifications	for	this	board	are:

Intel	Dual-core	Atom	at	500MHz
1	Gb	DDR3	Ram	and	4	Gb	eMMC	flash
Compatible	with	Arduino	(using	an	Arduino	breakout	Kit)
Bluetooth	and	WiFi

Intel	Edison	with	Arduino	Kit	is	shown	in	the	following	image:

source:	https://www.arduino.cc/en/uploads/ArduinoCertified/Intel_Edison_Kit_Front.jpg

In	this	book,	we	will	use	Intel	Edison	and	Arduino	breakout	kit	to	develop	our	projects.	Anyway,	you	can
apply	all	the	topics	covered	here	to	other	Intel	development	boards	compatible	with	Android	Things.
Before	starting	to	flash	the	image	into	the	Intel	board,	be	sure	you	have	installed	the	following	on	your
system:

SDK	Platform	tools	25.0.3	or	later

Moreover,	check	if	the	fastboot	application	is	installed	on	your	system.	To	do	so,	go	to
<Android_SDK_HOME>/platform-tools.

If	you	do	not	have	the	SDK	installed	correctly,	please	go	to	SDK	Manager	at	https://developer.android.com/tools/hel
p/sdk-manager.html	and	download	and	install	it	before	continuing	the	flashing	process.

Let	us	start:

1.	 Go	to	https://developer.android.com/things/preview/download.html	and	download	the	image	for	Intel	Edison.
2.	 Unzip	the	file.
3.	 Go	to	https://01.org/android-ia/downloads/intel-platform-flash-tool-lite.	Download	and	install	Platform	flash	tool	light

according	to	your	operating	system	(OS	X	or	Windows).

https://www.arduino.cc/en/uploads/ArduinoCerti%EF%AC%81ed/Intel_Edison_Kit_Front.jpg
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://developer.android.com/things/preview/download.html
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite
https://01.org/android-ia/downloads/intel-platform-flash-tool-lite

4.	 In	the	directory	where	you	unzipped	the	image	downloaded	at	step	1	there	is	a	file	called
FlashEdison.json.	This	is	our	file.	Check	if	it	exists	before	continuing.

5.	 Run	the	Platform	flash	tool	light:

6.	 If	you	are	using	Intel	Edison	with	Arduino	breakout	kit	be	sure	that	you:
1.	 Click	on	the	FW	button	and	keep	it	pressed	until	step	7.
2.	 Connect	the	USB	port	(J16)	to	your	PC	or	Mac.

7.	 When	the	board	is	connected	to	your	PC	or	Mac,	it	appears	in	the	Platform	Flash	Tool	Light:

8.	 Click	on	the	Browse	button	and	select	the	FlashEdison.json	file,	as	described	in	step	4.
9.	 Check	in	Platform	Tool	Flash	Light	that	the	Configuration	list	box	contains	Non_OS.

	

10.	 Click	on	the	Flash	button	and	wait	for	the	end	of	the	process,	as	shown	in	the	following	screenshot:

11.	 Open	a	terminal	console	or	the	command	prompt	and	execute	the	following	command:

<Android_SDK>/platform-tools/adb	reboot	bootloader

12.	 To	verify	that	the	board	is	connected,	write	the	following:

<Android_SDK>/platform-tools/fastboot	devices

You	should	get	the	following	as	the	result:	edisonXXXXX

13.	 Move	to	the	directory	containing	the	unzipped	content.

	

14.	 Write	these	commands:

<Android_SDK>/platform-tools/fastboot

flash	gpt	partition-table.img

flash	u-boot	u-boot-edison.bin	flash	boot_a	boot.img

flash	boot_b	boot.img	flash	system_b	system.img

flash	userdata	userdata.img	erase	misc

set_active	_a

Now	wait	until	the	process	is	complete.

15.	 As	the	process	completes	and	you	have	the	prompt	again,	execute	the	following:

<Android_SDK>/platform-tools/fastboot

flash	gapps_a	gapps.img

flash	gapps_b	gapps.img

Wait	until	the	end	of	the	process.

16.	 Finally,	execute	the	last	command:

<Android_SDK>/platform-tools/fastboot

flash	oem_a	oem.img

flash	oem_b	oem.img

17.	 At	the	end,	reboot	your	board:

<Android_SDK>/platform-tools/fastboot	reboot

You	can	verify	your	installation	listing	the	Android	device	connected	to	your	system	with:

adb	devices

In	the	device	list,	there	should	be	a	device	named	edison.

adb	shell	am	startservice
-n
com.google.wifisetup/.WifiSetupService
-a
WifiSetupService.Connect
-e	ssid	<Your_WIFI_SSID>

-e	passphrase	<WIFI_password>

Where	Your_WIFI_SSID	is	the	ID	of	your	WIFI	and	WIFI_password	is	the	password	you
use	to	connect	to	your	WiFi.

Creating	the	first	Android	Things	project
Considering	that	Android	Things	derives	from	Android,	the	development	process	and	the	app	structure
are	the	as	same	we	use	in	a	common	Android	app.	For	this	reason,	the	development	tool	to	use	for
Android	Things	is	Android	Studio.	If	you	have	already	used	Android	Studio	in	the	past,	reading	this
section	will	help	you	to	discover	the	main	differences	between	an	Android	Things	app	and	an	Android
app.	Otherwise,	if	you	are	new	to	Android	development,	this	section	will	guide	you	step	by	step	to	create
your	first	Android	Things	app.

Android	Studio	is	the	official	development	environment	to	develop	Android	Things	apps,	therefore,
before	starting,	it	is	necessary	you	have	installed	it.	If	not,	go	to	https://developer.android.com/studio/index.html,	to
download	and	install	it.	The	development	environment	must	adhere	to	these	prerequisites:

SDK	tools	version	24	or	higher
Update	the	SDK	with	Android	7	(API	level	24)
Android	Studio	2.2	or	higher

If	your	environment	does	not	meet	the	previous	conditions,	you	have	to	update	your	Android	Studio	using
the	Update	manager.

Now	there	are	two	alternatives	to	starting	a	new	project:

Clone	a	template	project	from	GitHub	and	import	it	into	Android	Studio
Create	a	new	Android	project	in	Android	Studio

To	better	understand	the	main	differences	between	Android	and	Android	Things	you	should	follow	option
number	2,	at	least	the	first	time.

https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html

Cloning	the	template	project
This	is	the	fastest	path	because	with	a	few	steps	you	are	ready	to	develop	an	Android	Things	app:

1.	 Go	to	https://github.com/androidthings/new-project-template	and	clone	the	repository.	Open	a	terminal	and	write
the	following:

git	clone	https://github.com/androidthings/new-project-template.git

2.	 Now	you	have	to	import	the	cloned	project	into	Android	Studio.

https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git
https://github.com/androidthings/new-project-template.git

Create	the	project	manually
This	step	is	longer	in	respect	to	the	previous	option,	but	it	is	useful	to	know	the	main	differences	between
these	two	worlds:

1.	 Create	a	new	Android	project.	Do	not	forget	to	set	the	Minimum	SDK	to	level	API	24:

2.	 By	now,	you	should	create	a	project	with	empty	activity.	Confirm	and	create	the	new	project.

There	are	some	steps	you	have	to	follow	before	your	Android	app	project	turns	into	an	Android	Things
app	project:

1.	 Open	the	Gradle	scripts	folder	and	modify	build.gradle	(app-level)	and	replace	the	dependency
directive	with	the	following	lines:

dependencies	{

		provided	'com.google.android.things:androidthings:					0.2-devpreview'	}

2.	 Open	the	res	folder	and	remove	all	the	files	under	it	except	strings.xml.
3.	 Open	Manifest.xml	and	remove	the	android:theme	attribute	in	the	application	tag.
4.	 In	Manifest.xml	add	the	following	line	inside	the	application	tag:

<uses-library	android:name="com.google.android.things"/>

5.	 In	the	layout	folder,	open	all	the	layout	files	created	automatically	and	remove	the	references	to
values.

6.	 In	the	activity	created	by	default	(MainActivity.java)	remove	this	line:

import	android.support.v7.app.AppCompatActivity;

7.	 Replace	AppCompatActivity	with	Activity.
8.	 Under	the	folder	java	remove	all	the	folders	except	the	one	with	your	package	name.

That's	all.	You	have	now	transformed	an	Android	app	project	into	an	Android	Things	app	project.
Compiling	the	code	you	will	have	no	errors.	In	future,	you	can	simply	clone	the	repository	holding
the	project	template	and	start	coding.

	

Differences	between	Android	and	Android
Things
As	you	can	see	an	Android	Things	project	is	very	similar	to	an	Android	project.	We	always	have
Activities,	layouts,	gradle	files,	and	so	on.	At	the	same	time,	there	are	some	differences:

Android	Things	does	not	use	multiple	layouts	to	support	different	screen	sizes.	So	when	we	develop
an	Android	Things	app	we	create	only	one	layout.
Android	Things	does	not	support	themes	and	styles.
Android	support	libraries	are	not	available	in	Android	Things.

Create	your	first	Android	Things	app
In	this	paragraph,	we	will	modify	the	previous	project	and	we	will	see	how	to	control	peripherals
connected	to	Android	Things.	In	more	details,	we	will	control	the	RGB	led	color	using	the	three	buttons.
Each	button	controls	a	color	(Red,	Green,	and	Blue),	so	that	when	you	press	one	button,	Android	Things
turns	on	and	off	the	corresponding	color	on	the	RGB	led.	To	create	this	project,	you	need:

Wire	jumpings
Resistors	(200Ohm,	10Kohm)
Three	buttons

The	following	image	shows	the	button	that	we	will	use	in	the	project:

Source:	https://www.sparkfun.com/products/97

The	following	image	shows	a	1	RGB	Led:

Source:	https://www.sparkfun.com/products/10820

Before	connecting	the	devices	and	resistor	to	the	board	be	sure	that	the	board	is
disconnected	from	the	PC,	otherwise	you	could	damage	it.

The	following	figure	describes	how	to	connect	these	components	to	the	Raspberry	Pi	3:

https://www.sparkfun.com/products/97
http://www.sparkfun.com/products/10820

If	you	are	using	Intel	Edison	the	schema	is	as	follows:

The	following	image	shows	how	to	connect	buttons	in	practice:

The	connections	are	quite	simple;	a	pull-down	resistor	of	10	Kohm	connects	one	button	pin	to	the	ground.
Each	button	has	a	pull-down	resistor.	Moreover,	the	following	image	shows	how	to	connect	the	led:

A	200	Ohm	resistor	connects	each	RGB	led	pin	and	the	boards	pin	limiting	the	current	flowing	into	the
LED.	The	other	pin,	the	anode	pin,	is	connected	to	3.3V	for	Raspberry	Pi	and	+5V	for	Intel	Edison.
Before	modifying	the	source	code,	it	is	necessary	to	add	a	library	that	helps	us	to	interact	with	buttons
easily.	Open	build.gradle	(app-level)	and	modify	the	file	adding	the	following	lines:

dependencies	{

...

compile	'com.google.android.things.contrib:driver-button:0.1'

}

Using	this	library,	we	can	handle	the	button	status.	Moreover,	we	can	create	listeners	to	listen	to	button
state	changes.

Now	open	the	MainActivity.java	that	you	created	in	the	project	and	add	the	following	lines:

1.	 In	the	onCreate	method	add	the	following:

PeripheralManagerService	manager	=	new	PeripheralManagerService();

This	one	of	the	most	important	classes	introduced	by	Android	Things	SDK.	By	now,	you	should
know	that	this	class	is	used	to	interact	with	external	peripherals.	It	exposes	a	set	of	methods	to
interact	with	several	devices	using	different	protocols	(that	is,	GPIO,	PWM,	and	so	on).	Using	this
class,	an	Android	Things	app	turns	on	or	off	each	board	pin,	so	that	it	can	control	the	external
devices,	or	it	can	open	a	port	for	a	specific	purpose.

2.	 Create	three	different	instances	of	the	Button	class	corresponding	to	each	button	used	in	the	circuit:

Button	button1	=	new	Button("IO13",	Button.LogicState.PRESSED_WHEN_LOW);

One	important	thing	to	notice	is	that	we	have	to	specify	the	pin	where	the	button	is
connected	to	the	board.	In	the	following	code	line,	the	pin	is	IO13.

By	now,	it	is	enough	to	know	that	each	pin	on	the	board	has	a	specific	name	and	these	names	change
depending	on	the	board.	For	example,	if	you	use	Intel	Edison,	the	pin	names	are	different	from	Raspberry
Pi	3	pin	layout.	We	will	cover	this	aspect	in	the	next	chapter.	The	other	parameter	represents	the	button
logic	level	when	it	is	pressed.	If	you	are	using	Raspberry	Pi	3,	then	instead	of	the	code	line	shown
previously,	you	have	to	use	the	following:

Button	button1	=	new	Button("BCM4",	Button.LogicState.PRESSED_WHEN_LOW);

Maybe	you	are	wondering	if	there	are	some	compatibility	problems	when	we	install	an	Android	Things
app	on	different	boards.	The	answer	is	yes,	but	we	will	see	in	the	next	chapter	how	to	handle	this	problem
and	how	to	create	an	app	that	is	board-independent:

1.	 Now	add	a	listener	to	be	notified	when	the	user	presses	the	button.	We	do	it	as	if	this	is	an	Android
app	with	a	UI:

button1.setOnButtonEventListener(

		new	Button.OnButtonEventListener()	{

				@Override

				public	void	onButtonEvent(Button	button,	boolean

				pressed)	{	if	(pressed)	{

						redPressed	=	!redPressed;

						try	{

								redIO.setValue(redPressed);

								}

								catch	(IOException	e1)	{}

				}	

		}

});

The	interesting	part	is	that	we	set	the	redIO	pin	value	to	1	(high)	or	0	(low)	according	to	the
button	status.	The	redIO	represents	the	pin	that	connects	the	red	pin	of	the	led.	We	get	the
reference	to	it	using	the	following:

redIO	=	manager.openGpio("IO2");

Do	not	worry	now	about	this	piece	of	code;	we	will	cover	it	in	the	next	chapter.	Using	the
preceding	code	line,	we	open	the	communication	to	the	LED	using	another	board	pin.	The
previous	example	is	for	Intel	Edison,	and	again	if	you	are	using	Raspberry,	the	pin	name
changes.

2.	 Now	repeat	the	same	piece	of	code	shown	previously	for	the	green	and	blue	buttons:

button2.setOnButtonEventListener(new	Button.OnButtonEventListener()

{

				@Override

				public	void	onButtonEvent(Button	button,

				boolean	pressed)	{

								if	(pressed)	{

									greenPressed	=	!greenPressed;	try	{

													greenIO.setValue(greenPressed);

												}

								catch	(IOException	e1)	{}

							}

					}

});

3.	 Where	greenIO	is	defined	as	follows:

greenIO	=	manager.openGpio("IO4");

4.	 While	for	the	blue	buttons:

button3.setOnButtonEventListener(new	Button.OnButtonEventListener()

{

				@Override

				public	void	onButtonEvent(Button	button,

				boolean	pressed)	{

								if	(pressed)	{

												bluePressed	=	!bluePressed;	try	{

																blueIO.setValue(bluePressed);

																}

												catch	(IOException	e1)	{}

								}

				}

});

5.	 And	the	blueIO	is	defined	as	follows:

blueIO	=	manager.openGpio("IO7");

6.	 Finally,	we	have	to	modify	Manifest.xml.	From	the	Android	point	of	view,	an	app	uses	the	Manifest.xml
to	define	the	Android	components	such	as	Activity,	Services,	and	so	on.

This	is	still	valid	in	the	Android	Things	project,	but	there	is	a	difference	in	the	way	it	declares	an
Activity:

1.	 Open	the	Manifest.xml	and	look	for	the	Activity	definition.
2.	 Remove	all	the	intent-filter	tag.
3.	 Add	the	following	lines	at	the	same	position:

<intent-filter>

<action

android:name="android.intent.action.MAIN"	/>

<category	android:name=

"android.intent.category.IOT_LAUNCHER"	/>

<category	android:name=

"android.intent.category.DEFAULT"	/>

</intent-filter>

4.	 Save	the	file.

The	interesting	part	to	notice	is	a	new	category	type.	If	we	want	to	execute	an	Activity	that	runs	on	an
embedded	device	such	as	Raspberry	or	Intel	Edison	we	have	to	add	the	category	IOT_LAUNCHER.

That's	all.	Now	you	can	connect	the	board	to	your	PC/Mac.	Press	the	run	button	at	the	top	of	Android
Studio:

And	wait	until	the	board	appears	in	the	list	of	available	devices,	as	shown	in	the	following	screenshot:

Now	you	can	execute	the	app.	The	installation	process	is	the	same	as	used	for	the	Android	app.	When	the
process	completes	you	can	start	using	the	app.

When	you	press	each	button,	you	should	see	the	led	changing	color,	moreover,	you	can	completely	turn	off
the	led.

Summary
This	chapter	introduced	you	to	Android	Things	and	how	it	works.	We	installed	Android	Things	on
Raspberry	Pi	3	and	Intel	Edison.	This	was	a	necessary	step	so	that	we	have	a	development	board	where
we	can	test	our	next	Android	Things	IoT	projects.	We	developed	and	tested	our	first	Android	Things	app
that	interacts	with	external	peripherals.	Now,	you	are	ready	to	start	developing	amazing	IoT	projects
using	Android	Things	SDK.

In	the	next	chapter,	we	will	build	an	alarm	system.	We	will	use	a	PIR	sensor	with	Android	Things	to
detect	motion.	Moreover,	you	will	explore	how	to	use	GPIO	pins	to	communicate	with	the	external	world.

	

Creating	an	Alarm	System	Using	Android
Things
In	this	chapter,	we	will	build	an	alarm	system	using	Android	Things.	The	target	of	this	project	is	creating
a	system	that	detects	movements	using	PIR	sensors	and	when	this	event	happens	the	Android	Things	app
will	send	a	notification	to	the	user	smartphone.	The	principles	of	this	project	are	commonly	used	in	real
alarm	systems	we	have	in	our	homes,	but	we	will	build	it	with	a	totally	new	operating	system.	This	is	an
interesting	project	because	it	uses,	at	the	same	time,	sensors	and	cloud	platforms.	Through	this	project,	we
will	explore	how	to	use	GPIO	pins	in	Android	Things	and	how	to	interact	with	two	states	sensors.

The	main	topics	covered	in	this	chapter	are:

How	to	use	build	an	alarm	system
How	to	use	GPIO	pins	and	PIR	sensors
How	to	handle	events	from	a	GPIO	pin
How	to	build	an	app	that	is	independent	of	the	board
How	to	notify	events	from	Android	Things	to	Android	smartphones

This	project	demonstrates	how	powerful	Android	Things	SDK	is	and	how	we	can	build	an	IoT	project
using	our	Android	expertise.	Let	us	start	describing	the	project	that	we	will	build.

	

Alarm	system	project	description
An	alarm	system	is	a	complex	system	that	uses	several	sensors	to	keep	our	home	safe.	At	the	heart	of
these	types	of	systems,	there	are	sensors	that	are	able	to	detect	motion.	In	other	words,	these	sensors	can
detect	if	an	object	is	moving	in	their	detection	area.	When	this	happens,	they	notify	this	event.	In	this
chapter,	we	will	create	a	real-life	project	that	uses	these	sensors	to	detect	motion	and	notifies	the	event	to
the	smartphones.	At	the	end	of	this	project,	we	will	be	able	to	detect	if	someone	is	entering	our	home
without	our	authorization.	Once	you	have	built	this	project,	you	can	expand	it,	adding	more	sensors	so	that
you	can	monitor	several	rooms.	Moreover,	this	project	can	be	used	as	a	starting	point	and	can	be
expanded,	adding	new	features	as	we	will	see	in	the	following	sections.	The	following	figure	describes
how	this	Android	Things	IoT	project	will	work:	

The	following	are	the	main	steps:

1.	 The	PIR	sensor	scans	the	detection	area	looking	for	movement.
2.	 As	soon	as	it	detects	a	movement	it	notifies	the	event	to	our	Android	Things	board.
3.	 The	Android	Things	board	handles	the	notification	event	and	contacts	Google	Firebase	to	send	a

message	to	the	user's	smartphone.

PIR	sensor
In	the	previous	paragraph,	we	talked	about	PIR	sensors	and	it	is	useful	to	describe	these	briefly	so	that	we
have	a	common	base	to	start	our	project.	PIR	sensor	stands	for	a	Passive	InfraRed	(PIR)	sensor.	This	is
a	class	of	sensors	that	are	able	to	detect	movement	by	measuring	the	infrared	(IR)	light	emitted	by	an
object.	All	objects	especially	human	bodies,	animals,	and	so	on	emit	energy	using	infrared	rays.	This	type
of	energy	is	not	visible	to	human	eyes,	but	we	can	measure	it	using	special	sensors	like	this	one.	As	a
matter	of	fact,	what	we	really	measure	is	a	variation	in	the	emitted	energy.	The	passive	term	refers	to	the
fact	that	this	sensor	does	not	produce	or	radiate	infrared	rays,	but	it	simply	detects	the	energy	emitted.
Before	digging	into	the	project	it	is	convenient	to	know	how	it	works	to	better	understand	how	to	use	it	in
the	right	way.	A	PIR	sensor	is	a	quite	complex	sensor	that	uses	two	different	components.	Each	component
is	sensitive	to	infrared	rays,	as	described	previously.

The	following	figure	describes	how	a	PIR	sensor	works:

When	a	warm	body	(like	the	cat	in	the	picture)	passes	through	the	detection	area,	the	first	component	gets
excited	while	the	second	component	remains	idle.	As	the	body	moves	and	leaves	the	first	component
detection	area,	the	first	component	gets	idle	and	the	second	component	gets	excited.	Using	this	simple
principle	the	sensor	can	detect	when	a	body	is	moving.	At	the	end	of	this	process,	an	event	is	triggered.
PIRs	have	several	configurations	with	different	features.

The	most	common	model	is	the	one	that	uses	Fresnel	lenses	that	help	to	widen	the	detection	area.	The
following	image	shows	the	PIR	sensor	that	we	will	use	in	this	Android	Things	project:

The	sensor	has	two	potentiometers:

One	to	adjust	the	sensitivity
The	other	one	to	control	the	time	the	signal	is	high	when	an	object	is	detected

Project	schematic
The	peripherals	we	need	to	build	this	project	are:

PIR	sensor
Raspberry	Pi	3	or	Intel	Edison	with	Arduino	breakout	kit
Google	Firebase	account
Wire	jumpings

You	can	buy	a	PIR	sensor	in	an	online	store	such	as	Amazon,	Sparkfun,	or	Adafruit.

The	following	diagram	describes	how	to	connect	the	PIR	sensor	to	the	Android	Things	board	if	you	are

using	Raspberry	Pi	3:	

If	you	are	using	Intel	Edison	with	Arduino	breakout	kit	the	connections	are	shown	here:	

In	this	case,	we	can	directly	connect	the	sensor	to	our	board.	The	connections	are:

Connect	the	PIR	to	the	pin	that	supplies	+5V
Connect	the	ground	PIR	pin	to	the	ground	of	the	board
Connect	the	PIR	signal	to	pin	7	for	Raspberry	or	pin	4	for	Intel	Edison

As	you	can	notice,	the	sensor	connects	to	+5V	in	both	cases:	Raspberry	and	Intel	Edison.	The	signal	pin
provided	by	PIR	is	zero	when	no	motion	is	detected	and	+3V	when	the	motion	is	detected.	Considering
that	the	high	level	supplied	by	the	PIR	is	+3,	then	we	can	connect	the	PIR	sensor	safely	to	Raspberry	Pi	3.

Remember	to	connect	the	sensor	to	the	board	when	this	one	is	unplugged	from	your
computer.	Do	not	try	to	connect	the	sensor	when	your	board	is	turned	on,	as	you	could
damage	your	board	and	the	sensor.

How	to	use	GPIO	pins
When	we	connect	peripherals	to	an	Android	Things	board	we	use	pins.	There	several	types	of	pins.	This
project	uses	GPIO	pins.	GPIO	stands	for	General	Purpose	Input	Output.	These	pins	are	the	interface
between	the	board	(such	as	Raspberry	or	Intel	Edison)	and	the	world.	You	can	think	of	them	as	a	switch
that	can	be	turned	on	or	off.	Using	GPIO	pins	we	handle	binary	devices.	A	GPIO	pin	can	have	only	two
states:

On	or	High	level
Off	or	Low	or	zero

According	to	the	nature	of	these	pins,	we	can	connect	to	these	pins	all	the	peripherals	that	have	two	states.
Typical	examples	of	these	peripherals	are	switches	or	simple	LEDs	(only	one	color	led).	The	PIR	sensor
described	previously	belongs	to	this	category.

Android	Things	SDK	provides	an	important	class	that	helps	us	to	interact	with	GPIO	pins	hiding	the
communication	details.	This	class	is	called	PeripheralManagerService.	Using	PeripheralManagerService	we	can	do
several	actions	on	the	pins:

Get	the	pins	list
Get	the	pin	state
Set	the	pin	state

These	are	the	main	actions;	anyway,	this	class	provides	several	methods	that	help	us	to	manage	the	pin
connection	and	its	state.

To	use	a	GPIO	pin	in	Android	Things	we	have	to	follow	three	steps:

1.	 Get	an	instance	of	PeripheralManagerService.
2.	 Open	the	connection	to	the	pin	using	the	pin	identifier.
3.	 Declare	if	the	pin	is	used	to	read	(input)	or	to	write	(output).

Let	us	see	how	we	can	implement	it	in	our	project.

Clone	the	Android	Things	project	template	as	described	in	the	previous	chapter.	Open	MainActivity.java	and
in	the	onCreate	method	add	the	following:

PeripheralManagerService	service	=	new	PeripheralManagerService();

In	this	way,	we	get	an	instance	of	PeripheralManagerService,	the	class	that	handles	the	GPIO	communication
details.

In	the	onCreate	method	add	the	following	lines:

try	{

			gpioPin	=	service.openGpio(GPIO_PIN);

			gpioPin.setDirection(Gpio.DIRECTION_IN);

			gpioPin.setActiveType(Gpio.ACTIVE_HIGH);

}

catch(IOexception	ioe)	{}

The	preceding	code	is	simple:	the	app	opens	a	connection	to	a	GPIO	pin	specified	in	GPIO_PIN.	By	now	you
should	remember	that	Raspberry	Pi	3	and	Intel	Edison	have	a	different	GPIO	pinout.	According	to	the
schema	shown	previously,	the	pin	names	are:

BMC	4	for	Raspberry
IO4	for	Intel	Edison	with	Arduino	breakout	kit

After	that,	the	app	specifies	the	type	of	connection	it	will	handle.	In	this	project,	we	want	to	read	from	the
pin	so	we	declare	Gpio.DIRECTION_IN.	As	we	said	before,	a	GPIO	pin	can	be	used	to	read	or	write	so	there
are	two	possible	values:

Gpio.DIRECTION_IN	if	we	read
Gpio.DIRECTION_OUT	if	we	write

Finally,	we	have	to	set	if	we	want	that	true	value	corresponding	to	the	high	voltage	level	or	zero	level.	We
do	it	using	setActiveType	that	accepts	two	values:

Gpio.ACTIVE_HIGH:	The	value	is	true	if	the	pin	is	at	high	voltage
Gpio.ACTIVE_LOW:	The	value	is	true	if	the	pin	is	at	low	voltage	or	zero

All	these	methods	can	raise	an	IOException	when	a	problem	occurs.	For	this	reason,	they	are	in	a	try/catch
clause.

Using	GPIO	pins	we	can	build	amazing	IoT	projects	with	Android	Things.	Anyway,	when
you	connect	peripherals	to	your	board	using	GPIO	pins	be	sure	that	the	output	of	the
peripheral	is	compatible	with	the	board	operating	voltage.	If	the	output	sensor	voltage	is
higher	than	the	board	operating	voltage,	you	could	damage	the	board.

Reading	from	the	GPIO	pin
Once	we	have	initialized	the	GPIO	pin	connection	we	can	start	reading	its	state.	To	read	the	state	of	the
sensor	we	use:

boolean	status	=	gpioPin.getValue();

The	getValue	method	returns	true	or	false.	Using	this	method	we	can	know	the	pin	state.	In	this	project,	we
want	to	check	the	state	of	the	pin	constantly	to	know	if	someone	is	moving	in	our	room.	The	simplest	way
to	do	it	is	by	creating	a	thread	and	continuing	to	read	the	pin	state.

To	do	it,	open	the	MainActivity.java	and	add	the	following	lines	at	the	end	of	the	onCreate	method:

(new	Thread(new	Runnable()	{

				@Override

				public	void	run()	{	try	{

								while	(true)	{

										boolean	status	=	gpioPin.getValue();

										Log.d(TAG,	"State	["	+	status	+	"]");

										if	(status)	{

												Log.i(TAG,	"Motion	detected...");

												}

												Thread.sleep(5000);

										}

								}

								catch(Exception	e)	{	e.printStackTrace();

						}

				}

})).start();

Now	try	to	run	the	app	as	you	are	used	to	doing	in	Android.	Open	the	log	window,	and	notice	that	the	app
keeps	on	writing	the	state	of	the	sensor.	If	the	state	is	false	then	no	motion	is	detected.

Try	to	move	your	hand	in	front	of	the	sensor	and	you	will	see	how	the	PIR	sensor	will	detect	you.	The
following	lines	shows	the	app	log	when	moving	our	hand.	As	you	can	notice	from	the	log	shown	here,	the
PIR	detects	the	movement	and	writes	a	message:

"Motion	detected":

androidthings.project.alarm	D/MainActivity:	Sensor	status	[false]	androidthings.project.alarm	D/MainActivity:	Sensor	status	[false]	androidthings.project.alarm	D/MainActivity:	Sensor	status	[false]	androidthings.project.alarm	D/MainActivity:	Sensor	status	[true]	androidthings.project.alarm	I/MainActivity:	Motion	detected..	androidthings.project.alarm	D/MainActivity:	Sensor	status	[false]	androidthings.project.alarm	D/MainActivity:	Sensor	status	[false]	androidthings.project.alarm	D/MainActivity:	Sensor	status	[false]

Even	if	this	is	a	working	approach,	it's	time	consuming	because	our	Android	Things	app	has	to	monitor
the	pin	state	all	the	time,	even	if	the	PIR	sensor	is	not	detecting	anybody.	Fortunately,	there	is	another
approach	that	uses	listeners.	This	is	less	time-consuming	and	it	is	similar	to	the	way	we	are	used	to
developing	an	Android	app.

How	to	add	a	listener	to	GPIO
As	said	before	instead	of	reading	the	sensor	state	all	the	time	we	can	use	listeners.	Android	Things	SDK
provides	a	callback	class	that	is	invoked	when	the	sensor	changes	its	state.	We	can	add	a	listener	to	a	GPIO
in	two	steps:

1.	 Declare	the	event	we	want	to	listen	to.
2.	 Implement	a	callback	class	to	handle	the	event	and	register	it.

Let	us	describe	each	step.

	

Declare	the	event	to	listen	to
The	first	step	is	defining	the	type	of	event	we	want	to	listen	to.	There	are	four	different	types	of	changing
events:

EDGE_NONE:	No	event	is	triggered.
EDGE_RISING:	Rising	trigger.	The	pin	voltage	value	is	changing	from	low	or	zero	to	high	or	true.
EDGE_FALLING:	Falling	trigger.	The	pin	voltage	value	is	changing	from	high	or	true	to	low	or
false.
EDGE_BOTH:	The	combination	of	the	last	two	changing	events.	In	other	words,	we	want	to	be
notified	when	the	signal	changes	from	low	to	high	or	from	high	to	low.

The	following	figure	represents	these	types	of	events:	

To	declare	the	event	we	want	to	listen	to,	we	use:	gpioPin.setEdgeTriggerType(event_type);

Where	gpioPin	is	an	instance	of	the	Gpio	class.	In	this	Android	Things	project,	we	want	to	be	notified	when
the	signal	changes	from	low	to	high	because	it	means	we	are	detecting	movement:
gpioPin.setEdgeTriggerType(Gpio.EDGE_RISING);

Implementing	the	callback	class
Once	we	have	defined	the	event,	we	have	to	create	a	callback	class	that	will	handle	the	event	when	it	will
be	raised.	A	callback	class	must	extend	GpioCallback.	So	in	our	project,	the	callback	class	will	be:

private	class	SensorCallBack	extends	GpioCallback	{

				@Override

				public	boolean	onGpioEdge(Gpio	gpio)	{	try	{

								boolean	callBackState	=	gpio.getValue();

								Log.d(TAG,	"Callback	state	["+callBackState+"]");

								}

								catch(IOException	ioe)	{	ioe.printStackTrace();

								}	return	true;

				}

				@Override

				public	void	onGpioError(Gpio	gpio,	int	error)	{

				super.onGpioError(gpio,	error);

				}

}

At	the	end	of	MainActivity.java,	just	before	the	last	right	brace,	add	the	class	shown	previously.

There	are	two	important	methods	that	we	have	to	override	in	order	to	customize	the	behavior	of	the
callback	class:

public	boolean	onGpioEdge

public	boolean	onGpioError

The	first	one	is	invoked	when	the	event	we	registered	using	setEdgeTriggerType	is	triggered.	In	our	alarm
system,	we	override	this	method	to	implement	our	custom	logic.	In	this	use	case,	this	method	is	invoked
only	when	the	voltage	of	the	pin	rises	from	zero	to	high.	As	we	will	see	in	the	next	paragraphs,	in	our
callback	class,	we	will	send	a	notification	to	the	user	smartphone.

The	second	method	is	invoked	when	an	error	occurs	on	the	pin.	We	can	use	this	class	to	gracefully	handle
the	error	and	notify	it	to	the	user.

Finally,	we	have	to	register	our	callback	class:

SensorCallBack	callback	=	new	SensorCallBack();	gpioPin.registerGpioCallback(callback);

That's	all.	We	can	run	the	app	again	and	you	can	check	that	as	soon	as	your	hand	moves	in	front	of	the	PIR
sensor	the	event	is	triggered.	Opening	the	log,	you	will	notice	that	the	Android	Things	app	logs	Call	back
state...	showing	the	sensor	state.

How	to	close	the	connection	with	a	GPIO	pin
In	this	last	step,	we	will	learn	how	to	close	the	connection	with	a	GPIO	pin.	This	is	an	important	step
because	in	this	way,	we	free	the	resources	and	remove	all	the	listeners	we	added	to	the	GPIO	pins.

An	Android	Things	app	has	a	life	cycle	very	similar	to	an	Android	app.	The	place	where	we	implement
these	actions	is	the	Activity	onDestroy	method.	In	this	method	we	have	to:

Remove	all	the	listeners	attached	to	the	GPIO	pins
Close	the	connection	to	the	GPIO	pins

So,	open	MainActivity.java	again	and	look	for	the	onDestroy	method	and	modify	it:	@Override
protected	void	onDestroy()
{	super.onDestroy();	Log.d(TAG,	"onDestroy");
if	(gpioPin	!=	null)	{
gpioPin.unregisterGpioCallback(sensorCallback);
try	{
gpioPin.close();	gpioPin	=	null;
}
catch(Exception	e)	{}
}
}

Handle	different	boards	in	Android	Things
There	are	two	important	aspects	that	we	have	not	covered:

How	to	select	the	pin	to	connect	the	peripherals	to
How	to	identify	the	pin	name

Regarding	the	first	aspect,	in	Raspberry	Pi	3	and	Intel	Edison,	but	in	general	for	all	the	boards,	the	pins
do	not	provide	the	same	features.	In	other	words,	we	cannot	connect	the	peripherals	to	a	pin	by	choosing
it	randomly.	We	have	to	select	the	pin	according	to	the	peripheral	specifications.	In	this	context	it	is
important	to	know	the	pinout	of	the	boards	so	that	we	can	identify	the	right	pins	for	our	peripherals.

The	second	aspect	is	relevant	when	we	want	to	develop	an	Android	Things	app	that	will	run	on	different
boards.	As	we	said	in	the	previous	chapter,	from	the	code	point	of	view,	this	is	not	a	problem	because	the
Java	language	at	the	base	of	Android	Things	SDK	guarantees	us	that	we	can	run	it	on	all	compatible
boards.	Until	now,	when	we	had	to	identify	a	pin,	we	used	a	double	version,	one	for	Raspberry	Pi	3	and
another	one	for	Intel	Edison.	This	works	if	we	develop	an	app	that	runs	on	only	one	board,	but	if	we	want
to	build	an	app	that	is	portable	to	different	boards	without	changing	the	code,	this	approach	would	not
work.	In	other	words,	we	have	to	find	a	way	to	discover	the	board	where	the	app	is	running	and	change
the	pin	name	according	to	it.

Android	Things	board	pinout
For	Raspberry	Pi	3	the	pinout	is	shown	in	the	following	figure.	Notice	that	by	now	we	are	interested	in

GPIO	pins	only:	

Source:	https://developer.android.com/things/hardware/raspberrypi-io.html

For	Intel	Edison	with	Arduino	breakout	kit	the	pinout	is:	

https://developer.android.com/things/hardware/raspberrypi-io.html

Source:	https://developer.android.com/things/hardware/edison-arduino-io.html

Now	it	should	be	clear	how	we	selected	the	pins	in	the	project.

https://developer.android.com/things/hardware/edison-arduino-io.html

How	to	identify	the	board
In	order	to	select	the	right	pin	names	according	to	the	board,	we	have	to	identify	the	board.	Android
Things	SDK	provides	this	constant:

Build.BOARD

Using	this	information,	we	can	select	the	pin	name	at	runtime	in	this	way:

public	class	BoardPins	{

				private	static	final	String	EDISON_ARDUINO	=

				"edison_arduino";	private	static	final	String	

				RASPBERRY	=	"rpi3";

				public	static	String	getPirPin()	{	switch

									(getBoardName())	{

												case	RASPBERRY:

												return	"BCM4";

												case	EDISON_ARDUINO:

												return	"IO4";	default:

												throw	new	IllegalArgumentException

												("Unsupported	device");

												}

								}

				private	static	String	getBoardName()	{	String	name	=

					Build.BOARD;

				if	(name.equals("edison"))	{	PeripheralManagerService

					service	=	new	PeripheralManagerService();

				List<String>	pinList	=	service.getGpioList();	if

					(pinList.size()	>	0)	{

				String	pinName	=	pinList.get(0);	if

					(pinName.startsWith("IO"))

				return	EDISON_ARDUINO;

				}

}

return	name;

}

}

The	board	name	returned	by	Android	Things	SDK	does	not	help	us	to	distinguish	between	Intel	Edison
board	variants.	To	this	purpose,	we	list	the	pins	and	look	for	a	specific	name	in	the	pin	so	that	we	are
able	to	identify	the	board	and	its	variant.

Notice	that	the	name	of	the	pin	returned	by	this	method	is	the	name	we	get	from	the	pinout	shown	in	the
preceding	figures.

Now	open	MainActivity.java	again	and	modify	the	method	where	we	defined	the	pin.	Look	for:

gpioPin	=	service.openGpio...

And	replace	it	with:

gpioPin	=	service.openGpio(BoardPins.getPirPin());

Now	our	Android	Things	app	is	independent	of	the	board	used	to	run	the	app.

All	the	time	you	reference	a	pin	using	its	name,	you	have	to	use	the	approach	shown
previously	to	get	its	name	so	that	your	app	will	work	on	all	the	supported	Android	Things
boards.

How	to	implement	the	notification	system
Now	we	are	ready	to	implement	the	last	part	of	this	project:	the	notification	system.	In	the	next
paragraphs,	we	will	describe	how	to	send	a	notification	to	the	user	smartphone	when	motion	is	detected.
As	the	messaging	system,	this	IoT	project	uses	Google	Firebase.	This	is	a	cloud	platform	developed	by
Google	providing	several	interesting	services.	We	will	use	the	Notification	service.

There	are	several	ways	we	can	send	a	notification	from	the	Android	Things	app	to	a	user	smartphone.	To
keep	things	simple,	we	will	use	topic.	You	can	imagine	a	topic	like	a	channel.	After	a	device	subscribes
to	a	topic,	it	will	receive	all	the	messages	published	to	this	channel.	In	our	project,	the	user	smartphone
behaves	like	a	subscriber	receiving	messages	from	the	channel,	while	the	Android	Things	app	behaves
like	a	publisher	publishing	the	messages.

Now	it	is	clear	the	roles	these	two	apps	play	in	this	project.

Before	implementing	it,	we	have	to	configure	the	Firebase	Notification	system.

Configuring	firebase
The	first	step	is	creating	an	account	in	Firebase:

1.	 Go	to	the	Firebase	home	page	(https://firebase.google.com/)	and	click	on	Get	started	for	free	to	create	your
account.

2.	 Provide	all	the	information	required.
3.	 Confirm	and	create	the	account.

Once	your	account	is	created,	we	can	configure	a	new	project:

1.	 Log	into	the	Firebase	console.
2.	 Click	on	the	link	Go	to	console.
3.	 Now	you	can	create	the	project:

4.	 Click	on	CREATE	NEW	PROJECT	and	you	will	get	a	page	like	this:

5.	 Provide	the	project	name	and	the	country/region	and	at	the	end	create	the	project.
6.	 Once	you	have	created	your	project	you	can	manage	it	using	the	administration	console:

https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/

7.	 Now,	we	add	our	Android	app	to	this	project	by	clicking	on	Add	firebase	to	your	Android	app.	The
Firebase	console	does	not	distinguish	between	Android	and	the	Android	Things	app.

	

8.	 In	the	next	screen,	you	have	to	add	the	Android	Things	app	details.	It	is	important	that	you	provide
the	package	name	used	in	your	project,	as	shown	in	the	following	screenshot:

9.	 Now	click	on	Add	app	and	you	will	be	guided	in	the	next	two	steps	to	configure	your	Android
Things	app,	as	shown	in	the	following	screenshot:

10.	 Finally,	the	last	step:

Add	the	notification	feature	to	the	Android
Things	app
Once	you	have	configured	the	Firebase	project,	we	can	add	the	notification	feature	to	the	alarm	system.

Copy	the	NotificationManager.java	class	shipped	with	this	book's	source	code	into	your	project	under	the
package	androidthings.project.alarm.util.	This	class	manages	the	connection	to	the	Firebase	and	sends	the
notification.

Now	open	MainActivity.javaand	in	the	onGpioEdge	method	of	the	callback	class	add	the	following	lines:	public
boolean	onGpioEdge(Gpio	gpio)	{	try	{
boolean	callBackState	=	gpio.getValue();	Log.d(TAG,
"Call	back	state	["+callBackState+"]");
NotificationManager.getInstance()
.sendNotificaton("Alarm!",	server_key);
}
catch(IOException	ioe)	{	ioe.printStackTrace();
}
return	true;
}

Where	the	server_key	is	the	key	you	get	from	the	Firebase	console:

Considering	the	Android	Things	app	has	to	use	the	internet	connection	to	connect	to	the	Firebase	cloud
service,	we	have	to	modify	the	Manifest.xml	requesting	the	permissions:	<uses-permission
android:name=	"android.permission.INTERNET"	/>
<uses-permission	android:name=	"android.permission.ACCESS_NETWORK_STATE"	/>

That's	all;	our	Android	Things	app	is	now	ready	to	send	notifications.

Android	companion	app
In	order	to	receive	the	notifications,	we	have	to	install	an	Android	companion	app	on	our	smartphone.
Just	to	simplify	the	system,	this	Android	app	will:

1.	 Subscribe	to	the	channel	used	by	the	Android	Things	app	to	send	notifications.
2.	 Implement	a	service	to	listen	to	the	incoming	notification.
3.	 Show	the	notification	to	the	user.

If	you	do	not	know	how	to	receive	notifications	in	Android	you	can	visit	https://firebase.google.com/docs/android/set
up	to	know	more.	The	source	code	of	the	Android	companion	app	is	provided	with	this	book's	source
code.	The	app	interface	is	very	simple	because	we	simply	have	to	subscribe	to	the	topic	and	wait	for	the
incoming	notifications.

To	install	the	app,	just	open	the	project	using	Android	Studio	and	connect	your	smartphone	to	your
PC/Mac.	Add	the	google-services.json	file	to	your	app	module.	This	file	is	the	same	one	that	you
downloaded	in	the	previous	steps.	Run	and	install	the	app	on	your	smartphone.	That's	all.

The	following	screenshot	shows	the	app	UI:

Click	the	SUBSCRIBE	button	to	subscribe	your	device	to	the	notification	channel.

To	test	the	app,	you	have	to	install	the	Android	Things	app	on	your	board	too.	As	soon	as	the	system
detects	an	object	moving,	it	will	contact	the	Google	Firebase	platform	by	sending	a	notification	message.
In	turn,	the	Firebase	platform	will	send	the	message	to	the	user's	smartphone.	The	following	is	a
screenshot	of	the	message	received	by	the	user:

https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup
https://firebase.google.com/docs/android/setup

(author	image	issue	shows	grayscale	error)

Below	the	Android	Things	app	log,	notice	the	body	of	the	message	sent	to	the	Firebase	cloud	platform:

androidthings.project.alarm	D/MainActivity:	Call	back	state	[true]	androidthings.project.alarm	D/Alm:	Send	data	androidthings.project.alarm	D/NetworkSecurityConfig:	No	Network	Security	Config	specified,	using	platform	default	androidthings.project.alarm	D/Alm:	Body	[{	"to":	"/topics/alarm",	"data":	{	"message":	"Alarm!"	}	}]	androidthings.project.alarm	D/Alm:

Summary
At	the	end	of	this	chapter,	we	implemented	an	alarm	system	using	Android	Things	SDK.	Moreover,	you
now	know	how	to	use	a	two-state	sensor	using	GPIO	pins.	In	the	last	part	of	the	chapter,	you	learned	how
to	integrate	the	Android	Things	app	with	Google	Cloud	services	such	as	Firebase	to	send	notifications.

You	can	use	this	knowledge	to	develop	this	project,	adding	new	features	such	as	more	PIR	sensors	to
monitor	several	rooms	at	the	same	time.	Moreover,	you	can	use	a	Firebase	real-	time	database	to	log	the
time	when	the	sensor	detects	movements.

In	the	next	chapter,	we	will	learn	how	to	use	more	complex	sensors	that	measure	physical	properties.	We
will	experiment	how	to	use	I2C	sensors	and	how	we	can	integrate	them	with	the	Android	Things	app.

How	to	Make	an	Environmental	Monitoring
System
This	chapter	describes	how	to	build	an	environmental	monitoring	system.	We	want	to	build	a	complex	IoT
system,	using	Android	Things,	that	measures	some	physical	environment	properties.	Furthermore,	in	this
Android	Things	project,	we	will	use	RGB	LED,	introduced	in	Chapter	1,	Getting	Started	with	Android
Things,	and	a	single	color	LED	to	visually	represent	the	environment	conditions.	To	do	it,	we	will	use	a
different	class	of	sensors.	While	in	the	previous	chapter	we	learned	how	to	use	two-states	sensors,	in	this
chapter	we	will	use	more	complex	sensors	that	require	different	connections	and	pins.	In	more	detail,	this
chapter	focuses	on	learning	how	to	use	I2C	with	Android	Things.

Moreover,	the	main	topics	covered	in	this	chapter	are:

How	to	use	I2C	sensors	with	Android	Things
How	to	read	data	from	sensors	using	Sensor	Manager
How	to	visualize	the	data	acquired	using	LEDs
Overview	of	I2C	protocol
Custom	I2c	driver

At	the	end	of	this	chapter,	we	will	have	a	full	working	system	that	we	can	use	to	monitor	some	physical
parameters.	We	could	use	it	in	our	homes	to	detect	air	properties,	or	outdoors.

	

Environmental	monitoring	system	project
overview
Before	digging	into	the	code	details	and	implementing	the	project	using	Android	Things,	it	is	useful	to
have	an	overview	of	the	project.	The	target	of	this	project	is	building	an	environmental	monitoring	system
that	detects:

Temperature
Pressure

The	interesting	aspect	of	this	project,	other	than	the	data	acquired	using	sensors,	is	that	the	Android
Things	app	will	visualize	this	information	using	LEDs.	In	other	words,	we	will	implement	an	app	that
somehow	reacts	to	the	environment	properties	implementing	a	custom	logic	and	it	is	able	to	control	other
peripherals.

The	following	figure	shows	how	the	project	will	work:

This	project	uses	an	RGB	LED	to	represent	the	current	pressure	condition.	The	RGB	LED	will	have	three
different	colors:

Yellow:	Stable	condition.	The	pressure	is	over	1022	millibar.
Green:	Cloudy.	The	pressure	is	between	around	1000	millibar	and	1021	millibar.
Blue:	Chance	of	rain.	The	pressure	is	under	1000	millibar.

There	is	another	red	LED	that	we	will	use	to	alert	the	user	when	the	temperature	is	lower	than	a
predefined	threshold.

Project	components
In	order	to	build	this	project,	the	components	required	are:

Raspberry	PI	3	or	Intel	Edison	with	Arduino	breakout	kit

BME280	or	an	alternative	BMP280
RGB	LED	(Common	Anode)
Red	LED	(Alternatively,	you	can	use	another	single	color	LED)
Resistors	(220	Ohm)
Jumping	wires

BME280	is	an	interesting	sensor	developed	by	Bosch	that	can	measure,	in	only	one	sensor,	all	the
parameters	we	want	to	monitor	in	this	project.	This	is	a	low-cost	sensor	that	has	a	good	resolution	and	it
fits	perfectly	to	this	project.	The	following	image	shows	the	sensor:

Source:	https://www.adafruit.com/products/2652

Instead	of	BME280,	we	can	use	BMP280.	This	sensor	is	very	similar	to	the	BME280	but	it	cannot
measure	the	humidity.	This	a	low-cost	sensor	with	comparable	features	to	BME280.	The	following	image
shows	it:

Source:	https://www.adafruit.com/products/2651

http://www.adafruit.com/products/2652
http://www.adafruit.com/products/2651

Of	course,	you	can	use	other	types	of	sensors	that	are	compatible	with	BMP280,	or	BME280	not	only
those	shown	in	the	preceding	images.

Project	schematic
Respects	two-state	these	I2C	sensors	require	more	connection	toward	the	Android	things	board.	These
types	of	sensors	have	several	pins;	anyway,	we	are	interested	in:

Vin	is	the	power	pin.	The	input	voltage	must	be	between	3v-5v.
GND	is	the	ground	pin.
SCK	is	the	clock	signal	because	I2C	sensor	uses	clock	signal	as	we	will	see	later.
SDA	is	the	data	pin.

These	sensors	have	other	pins,	but	we	will	not	use	them	because	we	will	connect	them	using	I2C	bus.

Be	aware	that	not	all	BMP280/BME280	compatible	sensors	can	tolerate	a	+5V.	There	are
some	compatible	peripherals,	like	the	one	used	in	this	project,	that	support	only	+3V.
Read	the	specification	before	using	it	in	your	project.

The	following	figure	shows	the	sensor	connected	to	Raspberry	PI	3:

While	if	you	use	Intel	Edison	with	Arduino,	the	schematic	is	as	follows:

There	is	an	important	aspect	to	consider	when	connecting	the	BMP280/BME280.	According	to	its
datasheet	at	https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf,	the	SDO	pin	must	be
used	to	select	the	unique	device	address.	As	we	will	see	in	more	detail	later,	each	peripheral	that
supports	I2C	connection	has	its	own	address.	The	address	is:

0x77	when	the	SDO	pin	is	connected	to	the	Vcc
0x76	when	the	SDO	pin	is	connected	to	the	ground

The	SDO	pin	cannot	be	left	floating	because	the	I2C	address	would	be	undefined.

Here	are	some	images	of	the	connection	details.	This	first	image	shows	how	the	BMP280	sensor	is
connected	to	the	Android	Things	board:

https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf

Notice	that	the	SDO	pin	is	connected	to	+3V.	The	SDO	pin	is	the	first	from	the	left	side.

The	following	image	shows	how	to	connect	the	RGB	LED	and	the	red	LED.	As	you	can	see,	there	are	220
Ohm	resistors	between	the	LED	pins	and	the	Android	Things	board	pins:

Notice	that	in	the	RGB	LED	common	anode,	the	anode	pin	is	connected	to	+3V.

How	to	read	data	from	sensors
Now	we	are	ready	to	start	acquiring	data	from	I2C	sensors.	Usually,	in	order	to	use	an	I2C	peripheral,	we
need	a	driver.	A	driver	is	a	set	of	classes	that	handle	the	communication	between	the	Android	Things
board	and	the	peripheral.	Moreover,	these	classes	handle	the	specific	protocols	implemented	by	the
peripheral.	We	will	describe	how	to	implement	a	low-level	protocol	in	the	next	sections.	By	now,	we	can
use	a	pre-built	driver	that	is	a	library	we	have	to	include	in	our	project.	All	the	drivers	officially
supported	by	Android	Things	are	available	at	GitHub	under	the	folder	contrib-drivers	at	https://github.com/android
things/contrib-drivers.

Let	us	start:

1.	 Create	a	new	Android	Things	project	by	cloning	the	repository	as	described	in	the	first	chapter.
2.	 Open	build.gradle	and	add	the	following	line	under	the	dependencies:

compile	'com.google.android.things.contrib:driver-bmx280:xx'

Where	xx	is	the	version	of	the	driver.

Now	you	are	ready	to	use	the	BMP280/BME280	sensor	in	the	project.

3.	 In	MainActivity.java	in	the	onCreate	method	add	the	following	lines:

try	{

Bmx280	sensor	=	new	Bmx280(PIN_NAME);	sensor.setTemperatureOversampling(Bmx280.OVERSAMPLING_1X);	float	val	=	sensor.readTemperature();

Log.d(TAG,	"Temp	["+val+"]");

}

catch(Throwable	t)	{	t.printStackTrace();

}

In	the	first	line,	the	app	instantiates	the	class	that	will	handle	the	sensor	communication	details.	In	the
constructor	parameter,	this	class	accepts	the	SDA	pin	identification.	This	pin	is:

I2C1	for	Raspberry	PI	3
I2C6	for	Intel	Edison	with	Arduino	breakout	kit

In	the	second	line,	the	app	sets	the	sampling	rate.	There	are	different	values	that	control	how	many
samples	the	sensor	will	acquire.	You	can	explore	it.

Finally,	we	read	the	current	temperature.	In	the	same	way,	we	can	read	the	pressure:

sensor.setPressureOversampling(Bmx280.OVERSAMPLING_1X);	float	press	=	sensor.readPressure();

When	running	the	Android	Things	app,	the	log	is	shown	as	follows:

02-20	20:03:45.514	5629-5629/?	D/MainActivity:	onCreate...	02-20	20:03:45.542	5629-5629/?	D/MainActivity:	Temp	[23.140942]	02-20	20:03:45.545	5629-5629/?	D/MainActivity:	Press	

If	you	run	the	app	again,	you	may	notice	that	the	values	read	by	the	sensor	are	slightly
different.	This	is	normal	behavior.

https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers

Handling	sensors	using	the	Android	sensor
framework
The	approach	described	in	the	previous	chapter	works	if	we	want	to	read	the	pressure	and	the
temperature	one	shot.	In	the	project	we	are	developing	in	this	chapter,	the	app	has	to	read	the	temperature
and	the	pressure	continuously.	Therefore,	it	is	convenient	to	use	another	approach.	This	approach	is	the
same	strategy	we	implement	in	Android	when	the	app	needs	to	monitor	the	smartphone	sensors.	As	you
know,	nowadays	a	smartphone	has	several	built-in	sensors	and	to	read	their	values	we	use	the	sensor
framework	provided	by	Android	SDK.

Just	to	recap	briefly	how	sensor	framework	works	in	Android	SDK,	we	can	remember	that	there	are	key
elements	that	play	an	important	role	in	these	frameworks.	These	elements	are:

SensorManager
Sensor
SensorEvent
SensorEventlistener

Luckily,	these	classes	and	interfaces	are	also	present	in	Android	Things	SDK,	and	they	help	us	to	develop
smart	Android	Things	apps	easily.	The	following	is	a	brief	description	of	the	most	important	classes	and
interfaces:

The	SensorManager	is	the	base	class	when	we	want	to	deal	with	sensors.	Using	SensorManager	we	can
register/unregister	listeners	or	list	the	available	sensors.
The	Sensor	class	is	the	class	that	represents	a	sensor	and	its	capabilities.
The	SensorEvent	class	is	the	class	that	represents	the	event	triggered	by	the	sensor.	An	instance	of
SensorEvent	holds	the	following	information:

The	sensor	information
The	data	read	by	the	sensor
The	accuracy
The	timestamp

The	last	class	is	the	SensorEventListener.	It	represents	the	callback	class	that	is	invoked	when	a	sensor
reads	a	new	value	or	the	accuracy	is	changed.	We	will	use	all	these	classes	in	our	project	because
we	want	to	handle	the	sensor	(BMP280/BME280),	read	its	values,	and	listen	to	the	event	triggered
when	the	value	coming	from	the	sensor	is	changing.

Generally	speaking,	to	manage	sensors	in	Android	and	also	in	Android	Things	the	steps	to	follow	are:

1.	 Get	an	instance	of	SensorManager.
2.	 Create	a	callback	class	that	implements	SensorEventListener.
3.	 Register	the	callback	class	in	order	to	receive	the	notifications.

Moreover,	in	this	project,	we	will	use	another	important	class	called	SensorManager.DynamicSensorCallback.
This	class	is	useful	when	we	want	to	receive	notifications	when	a	dynamic	sensor	is	connected	or

disconnected	from	our	board.

Let	us	see	how	to	implement	it	in	our	project:

1.	 Open	MainActivity.java	again	and	remove/comment	the	code	used	in	the	previous	paragraph.
2.	 Add	the	following	line:

sensorManager	=	(SensorManager)	getSystemService(SENSOR_SERVICE);

In	this	way,	we	obtain	the	instance	of	the	SensorManger	from	the	system	sensor	manager.	The	next	step	is
implementing	the	sensor	callback	class.

Implementing	the	sensor	callback
As	described	previously,	if	we	want	to	be	notified	when	the	value	read	by	a	sensor	is	changed	(or	the
accuracy	is	changed)	we	have	to	register	a	listener	that	extends	SensorEventListener.	In	this	project,	we	want
to	monitor	two	different	parameters:

Temperature
Pressure

Therefore,	we	need	two	different	listeners,	one	for	each	sensor.	For	the	temperature	sensor	the	callback
class	is	shown	as	follows:

private	class	TemperatureCallback	implements	SensorEventListener	{

				@Override

				public	void	onSensorChanged(SensorEvent	sensorEvent)	{

								float	val	=	sensorEvent.values[0];

								Log.d(TAG,	"Temp	["+val+"]");

				}

				@Override

				public	void	onAccuracyChanged(Sensor	sensor,	int	i)	{

								Log.d(TAG,	"T.	Accuracy	["+i+"]");

				}

}

While	for	the	pressure	sensor	we	have:

private	class	PressureCallback	implements	SensorEventListener	{

				@Override

				public	void	onSensorChanged(SensorEvent	sensorEvent)	{

								float	val	=	sensorEvent.values[0];

								Log.d(TAG,	"Press	["+val+"]");

								}

								@Override

								public	void	onAccuracyChanged(Sensor	sensor,	int

											i)	{	Log.d(TAG,	"P.	Accuracy	["+i+"]");

				}

}

As	you	can	notice	from	the	preceding	code,	our	custom	callback	class	overrides	two	methods:

onSensorChanged	that	is	called	when	the	new	value	read	from	the	sensor	is	available
onAccuracyChanged	that	is	called	when	the	accuracy	is	changed

Moreover,	notice	that	when	the	value	changes	the	onSensorChanged	method	receives	the	SensorEvent.	It
represents	the	event	holding	all	the	information	we	need	to	identify	the	sensor	that	triggered	the	event	and
the	new	value.	As	you	may	have	already	guessed,	in	the	method	that	handles	the	new	values	from	sensors
we	will	implement	the	logic	to	handle	the	RGB	colors	and	the	red	led	state	(on	or	off).

How	to	handle	dynamic	sensors
Once	we	have	implemented	the	custom	callback	classes,	we	have	to	register	them	in	order	to	receive	the
events.	We	can	do	it	only	when	the	Android	Things	app	is	notified	that	the	sensor	is	connected	otherwise
we	cannot	register	the	listeners.	In	this	step,	the	app	uses	SensorManager.DynamicSensorCallback	to	handle	this
notification	event.

In	MainActivity.java	add	the	following	lines:

private	class	BMX280Callback	extends	SensorManager.DynamicSensorCallback	{

				@Override

				public	void	onDynamicSensorConnected(Sensor	sensor)	{

						int	sensorType	=	sensor.getType();

						Log.d(TAG,	"On	Sensor	connected...");

						if	(sensorType	==	Sensor.TYPE_AMBIENT_TEMPERATURE)	{

								Log.d(TAG,	"Temp	sensor..");

								tempCallback=	new	TemperatureCallback();

								sensorManager.registerListener(

								tempCallback,	sensor,

								SensorManager.SENSOR_DELAY_NORMAL);

						}

						else	if	(sensorType	==	Sensor.TYPE_PRESSURE)	{

						Log.d(TAG,	"Pressur	sensor..");	pressCallback	=	new

						PressureCallback();	sensorManager.registerListener(

						pressCallback,	sensor,

						SensorManager.SENSOR_DELAY_NORMAL);

				}

		}

		@Override

		public	void	onDynamicSensorDisconnected(Sensor	sensor)	{

		super.onDynamicSensorDisconnected(sensor);

		}

}

This	class	apparently	seems	quite	complex,	but	it	does	a	few	things:

1.	 Override	the	onDynamicSensorConnected	method	implementing	a	custom	logic:
1.	 Get	the	sensor	type.
2.	 According	to	the	sensor	type,	register	the	sensor	callback	class.

2.	 Override	onDynamicSensorDisconnected.

In	more	detail,	in	onDynamicSensorConnected	the	app	identifies	the	type	of	sensor	that	is	connected	using:

int	sensorType	=	sensor.getType();

According	to	the	sensor	type	(temperature	or	pressure)	it	registers	the	corresponding	listener:

sensorManager.registerListener(

				tempCallback,	sensor,

				SensorManager.SENSOR_DELAY_NORMAL);

It	is	worth	mentioning	that	in	the	listener,	we	set	the	rate	used	to	acquire	data	or	in	other	words,	how	fast
the	onSensorChanged	method	in	the	sensor	listener	is	called.	There	are	four	possible	values	for	the	sampling
rate:

SENSOR_DELAY_NORMAL:	A	delay	around	200,000	microseconds
SENSOR_DELAY_UI:	A	delay	of	60,000	microseconds

SENSOR_DELAY_GAME:	A	delay	of	20,000	microseconds
SENSOR_DELAY_FASTEST:	0	delay

According	to	your	Android	Things	app	specification	and	the	scenario	where	the	app	will	work,	you	have
to	select	the	sampling	rate	that	best	fits	our	needs.

Usually,	when	acquiring	environment	parameters	for	this	kind	of	application,	the
sampling	rate	should	be	SENSOR_DELAY_NORMAL,	because	it	is	not	required	to	acquire	data	too
fast.

Putting	it	all	together	-	acquiring	data
It	is	time	to	put	everything	together	and	start	acquiring	data.	By	now,	we	have	implemented:

Two	sensor	listeners	to	listen	to	the	new	values
The	listener	to	know	when	the	sensor	is	connected	to	the	board

Let	us	glue	all	the	pieces	and	make	our	app	work.	Open	MainActivity.java	again	and	in	the	onCreate	method
add	the	following	lines:

callback	=	new	BMX280Callback();	sensorManager.registerDynamicSensorCallback(callback);	try	{

		mySensorDriver	=

		new	Bmx280SensorDriver(BoardPins.getSDAPin());

		mySensorDriver.registerTemperatureSensor();

		mySensorDriver.registerPressureSensor();

}

catch(Throwable	t)	{	t.printStackTrace();

}

Where	mySensorDriver	is	an	instance	of	Bmx280SensorDriver	that	handles	the	communication	details	to	the
BMP280/BME280.	Notice	that	as	we	described	in	the	previous	chapter,	to	make	the	app	independent
from	the	board	we	did	not	directly	use	the	SDA	pin	identification,	but	we	have	used	a	method	to	retrieve
the	pin	name	according	to	the	board.

Now	we	can	run	the	Android	Things	app	and	check	how	the	sensor	starts	acquiring	environment
parameters.	The	following	is	the	log	of	the	app:

D/MainActivity:	On	Sensor	connected...	D/MainActivity:	Temp	sensor..	D/MainActivity:	On	Sensor	connected...	D/MainActivity:	Pressure	sensor..	D/MainActivity:	T.	Accuracy	[3]	D/MainActivity:	Temp	[22.924126]	D/MainActivity:	P.	Accuracy	[3]	D/MainActivity:	Pres	[998.5499]

Notice	that	the	app,	at	the	beginning,	is	notified	when	the	sensor	is	connected	to	the	board.	In	this	project,
the	sensor	behaves	like	a	double	sensor:	one	that	acquires	a	temperature	parameter	and	another	one	that
acquires	a	pressure	parameter.	For	this	reason,	in	the	app	log,	there	are	two	calls	to	the
onDynamicSensorConnected	method.	Once	all	the	listeners	are	configured,	the	app	starts	logging	the	current
value	of	the	temperature	and	of	the	pressure.

@Override
protected	void	onDestroy()	{	super.onDestroy();	Log.d(TAG,
"onDestroy");
sensorManager.unregisterListener(tempCallback);
sensorManager.unregisterListener(pressCallback);
mySensorDriver.unregisterDynamicSensorCallback(callback);
try	{
mySensorDriver.close();
}
catch	(IOException	ioe)	{}
}

That's	all.	Now	you	know	how	to	use	an	I2C	sensor	with	Android	Things.	In	the	next
section,	we	will	learn	how	to	use	the	values	read	by	the	sensor	to	implement	a	custom
logic.

How	to	control	GPIO	pins
Now	that	we	know	how	to	read	the	environment	parameters,	we	can	implement	the	application	logic	to
control	other	peripherals	according	to	the	values	acquired.	As	described	in	the	previous	sections,	the
Android	Things	monitoring	app	uses	the	temperature	and	pressure	to	controls	two	devices:

An	RGB	LED	that	shows	the	current	pressure	state
A	RED	LED	that	shows	if	the	temperature	is	lower	than	a	threshold

To	make	the	app	work,	we	have	to	fix	the	pressure	threshold	values.	To	simplify	the	development	process
we	can	suppose	that	there	are	two	thresholds:

Threshold	one,	that	we	will	call	LEVEL_1,	is	1022.9	mb
Threshold	two,	that	we	will	call	LEVEL_2,	is	1009.14	mb

The	app	logic	that	we	will	implement	works	in	this	way:

If	the	current	pressure	is	over	the	LEVEL_1	then	the	RGB	LED	will	have	the	green	and	red	color	turned
on	(yellow)
If	the	current	pressure	is	between	LEVEL_1	and	LEVEL_2	the	RGB	LED	will	have	only	the	green	color
turned	on
If	the	current	pressure	is	below	LEVEL_2	the	RGB	LED	will	have	only	the	blue	color	turned	on

Therefore,	the	RGB	LED	color	can	be	used	to	represent	the	weather	forecast:

If	the	pressure	level	is	above	1022.9	mb	the	weather	will	be	stable.
If	the	pressure	level	is	between	1009.14	mb	and	1022.9	mb	then	the	weather	will	be	cloudy.
If	the	pressure	level	is	under	1009.14	mb	the	weather	will	be	rainy.	Of	course,	this	is	a	really	simple
weather	forecast	and	we	will	see	later	how	to	improve	the	project.

The	red	LED	will	be	used	as	an	alert.	The	app	turns	it	on	when	the	temperature	is	under	0°C.

Let	us	see	how	to	implement	it.

	

Initialize	the	GPIO	pin
	

The	first	step	is	initializing	the	GPIO	pins	that	the	app	uses	to	control	the	three	RGB	LED	colors	and	the
red	LED.	As	we	already	learned	in	the	previous	chapter,	the	first	step	is	getting	an	instance	of
PeripheralManagerService:

1.	 Open	MainActivity.java	and	in	the	onCreate	method	add:

pManager	=	new	PeripheralManagerService();

2.	 Add	the	following	method	to	the	same	class:

Private	void	initRGBPins()	{

	try

			redPin	=	pManager.openGpio(BoardPins.getRedPin());

			redPin.setDirection(Gpio.DIRECTION_OUT_INITIALLY_LOW);

			redPin.setActiveType(Gpio.ACTIVE_LOW);	greenPin	=

						pManager.openGpio(BoardPins.getGreenPin());

			greenPin.setDirection(

						Gpio.DIRECTION_OUT_INITIALLY_LOW);

			greenPin.setActiveType(Gpio.ACTIVE_LOW);

			bluePin	=	pManager.openGpio(

						BoardPins.getBluePin());

			bluePin.setDirection(

						Gpio.DIRECTION_OUT_INITIALLY_LOW);

			bluePin.setActiveType(Gpio.ACTIVE_LOW);

			redLedPin	=	pManager.openGpio(

			BoardPins.getRedLedPin());	redLedPin.setDirection(

			Gpio.DIRECTION_OUT_INITIALLY_LOW);

			redLedPin.setActiveType(Gpio.ACTIVE_HIGH);

	}	

		catch(IOException	ioe)	{	ioe.printStackTrace();

	}

}

This	method	initializes	the	pins	following	these	steps:

1.	 Open	the	communication	to	the	LED	pins.
2.	 Set	the	type	of	the	pin.	In	this	case,	the	app	uses	the	pin	in	the	write	mode.

	

3.	 Set	the	pin	reference	value.

There	is	an	important	aspect	to	notice	in	the	preceding	code.	In	this	project,	we	are	using	a
common	anode	RGB	LED,	so	as	you	may	already	know,	for	this	kind	of	LED	when	the	color
pin	is	0	or	low	the	corresponding	color	is	visible.	In	other	words,	it	works	in	the	opposite
way	we	would	expect.	For	this	reason,	the	app	uses	the	following	line	for	the	blue	pin:

bluePin.setActiveType(Gpio.ACTIVE_LOW);

The	line	is	repeated	for	all	the	RGB	LED	pins.	In	this	way,	the	app	can	set	the	pin	to	high	or
true	and	the	corresponding	color	turns	on.	The	other	lines	of	code	are	self-explaining:

4.	 Add	the	following	line	to	the	onCreate	method:

initRGBPins();

5.	 Now	it	is	time	to	implement	the	real	app	logic.	As	you	would	expect,	the	app	has	to	change	the	RGB
LED	colors	when	a	new	value	is	acquired	by	the	sensor.	Therefore,	the	best	place	to	do	it	is	in	the
sensor	listener	methods.	For	the	pressure	visualization,	we	have	to	modify	the	pressure	sensor
listener	in	the	onSensorChanged	method	adding	the	following	lines:

int	newWeather	=	-200;

		if	(val	>=	LEVEL_1)

				newWeather	=	1;

		else	if	(val	>=	LEVEL_2	&&	val	<=	LEVEL_1)

				newWeather	=	0;

		else

				newWeather	=	-1;

		if	(newWeather	!=	currentWeather)	{

					currentWeather	=	newWeather;

				//	Set	the	RGB	color

		switch	(newWeather){

				case	1:

						setRGBPins(true,	true,	false);	break;

				case	0:

						setRGBPins(false,	true,	false);	break;

				case	-1:

						setRGBPins(false,	false,	true);	break;

			}

}

6.	 In	the	app,	there	is	a	simple	trick:	to	avoid	setting	the	RGB	color	every	time	the	sensor	reads	a	new
value,	the	app	simply	checks	if	the	new	value	could	modify	the	RGB	LED	color.	If	the	new	value
implies	that	the	RGB	LED	has	to	change	color	then	it	calls	setRGBPins	to	change	the	color.	This
method	is	defined	as	follows:

Private	void	setRGBPins(boolean	red,	boolean	green,	boolean	blue)	{

				try	{

				Log.d(TAG,	"Change	RGB	led	color.	Red	["+red+"]	-

						Green	["+green+"]	-	Blue	["+blue+"]");

				redPin.setValue(red);	greenPin.setValue(green);

				bluePin.setValue(blue);

			}

			catch	(IOException	ioe)	{	ioe.printStackTrace();

		}

}

This	method	controls	the	three	RGB	Led	pins.

7.	 Now	we	can	implement	the	red	LED	logic.	We	want	to	turn	it	on	when	the	temperature	is	under	0°C.
Of	course,	you	can	set	a	different	threshold.	As	we	did	for	the	pressure,	we	have	to	modify	the
temperature	sensor	listener,	adding	the	custom	logic	to	handle	the	red	LED	state.	Look	for	the
TemperatureCallback	class	and	in	the	onSensorChanged	method	add	the	following	lines:

boolean	turnOn	=	false;

		if	(val<=	0)

				turnOn	=	true;

		else

				turnOn	=	false;

		if	(currentState	!=	turnOn)	{

				Log.d(TAG,	"Change	RED	led	color.	New	state

				["+turnOn+"]");	try	{

				redLedPin.setValue(turnOn);

				currentState	=	turnOn;

				}

				catch(IOException	ioe)	{	ioe.printStackTrace();

		}

}

The	code	is	very	simple	so	it	does	not	require	any	other	comment.	Now	it	is	time	to	test	the	app.	You	can
plug	in	the	Android	Things	board	and	run	the	app	from	Android	Studio.	As	soon	as	the	installation
process	completes,	the	app	starts	logging	as	follows:

DYNS	native	SensorManager.getDynamicSensorList	return	2	sensors	On	Sensor	connected...	Temp	sensor..	On	Sensor	connected...	Pressure	sensor..	T.	Accuracy	[3]	Temp	[22.298887]	P.	Accuracy	[3]	Change	RGB	led	color.	Red	[false]	-	Green	[false]	-	Blue	[true]	Current	weather	[-1]	-	Pres	[992.4486]	Temp	[22.314014]	Temp	[22.339224]	Current	weather	

	

	

compile	'com.google.android.things.contrib:driver-bmx280:xx'

As	long	as	we	use	peripherals	that	have	a	library	to	handle	them	we	do	not	have	to	worry
about	the	protocol	details.	When	we	use	a	peripheral	that	is	not	directly	supported	or
there	is	not	a	library,	we	have	to	implement	the	specific	peripheral	protocol.	In	this
context,	it	is	important	to	know	how	I2C	works.

I2C	protocol	overview
I2C	stands	for	Inter	Integrated	Circuit.	This	is	a	serial	communication	protocol	that	uses	two	wires.
I2C	is	used	to	exchanging	data	between	integrated	circuits.	It	was	developed	by	Philips	in	the	80s.	During
the	years,	I2C	protocol	was	updated	several	times	and	there	are	different	protocols	derived	from	it.	One
of	the	most	known	is	SMBUS	developed	by	Intel.	Anyway,	all	these	protocols/buses	are	very	similar.	The
I2C	is	widely	adopted	since	it	is	very	simple	to	use.	I2C	is	used	to	connect	low-speed	devices	such	as
converters,	sensors,	and	so	on.	In	fact,	one	of	the	main	drawbacks	of	this	protocol	is	the	speed.

As	said	before,	the	I2C	uses	two	wires:

SCL,	that	is,	the	clock
SDA,	that	is,	the	data	line

Moreover,	this	type	of	bus	uses	two	different	nodes:

A	master	node	that	generates	the	clock	signal
A	slave	node	that	uses	the	clock	signal	to	synchronize	its	work

Without	digging	into	the	details,	the	most	common	configuration	is	a	master	and	one	or	more	slaves
connected.	Anyway,	there	are	architectures	that	include	more	masters	and	several	slaves.	The	typical
configuration,	also	implemented	in	this	project,	is	represented	in	the	following	figure:

Notice	that	the	ground	and	the	Vcc	are	missing	in	the	previous	diagram	for	the	sake	of
simplicity.

In	the	preceding	figure,	you	can	recognize	the	schematic	used	to	connect	the	sensor	to	the	Android	Things
board.	In	the	environmental	monitoring	project,	the	master	is	the	Android	Things	board	that	generates	the
clock	while	the	sensor	is	the	slave	that	uses	the	clock.	The	SDA	line	is	the	one	we	used	to	exchange	data
with	the	sensor.

Every	slave	has	a	unique	address	that	is	used	to	identify	it.	In	order	to	have	an	overview	of	the	data	flow
between	master	and	slaves	it	is	worth	mentioning	that	the	communication	is	initiated	by	the	master	and	it
goes	on	in	this	way:

1.	 The	master	generates	a	start	condition	informing	all	the	slaves	that	the	transmission	is	going	to	start.
2.	 The	master	sends	the	slave	a	unique	address	with	a	read	(R)	or	write	(W)	flag.
3.	 The	slave	that	has	the	ID	equal	to	the	address	sent	by	the	master	responds	with	an	ACK	signal.

	

4.	 The	master	and	slave	start	exchanging	the	data.
5.	 At	the	end	of	transmission	when	all	bytes	are	read	or	written	the	master	sends	the	stop	signal	(P).

When	the	communication	between	master	and	slave	ends	the	bus	is	free	and	other	slaves	and	the	master
can	use	it	to	transmit	other	data.	The	following	is	a	representation	of	the	data	exchanged	between	the
master	and	the	slave:

Using	this	data	packet	we	can	implement	a	custom	library	that	talks	to	the	sensor.	In	the	following
sections,	we	will	describe	how	to	do	it	using	Android	Things	SDK.

How	to	implement	a	custom	sensor	driver
Now	that	we	know	how	I2C	protocol	works,	we	can	start	developing	our	custom	driver.	A	powerful
feature	of	Android	Things	is	the	capability	to	add	new	peripherals	developing	specific	drivers.	In	other
words,	it	is	possible	to	extend	the	sensor	framework	including	new	sensors.	In	this	way,	Android	Things
does	not	make	a	difference	between	a	built-in	sensor	and	the	new	sensors.	It	is	possible	to	handle	them	in
the	same	way	we	handle	built-in	sensors.	It	is	important	to	notice	that	the	driver	that	handles	the	sensor
depends	on	the	sensor	protocol	built	on	top	of	I2C	bus.

In	order	to	implement	a	new	sensor	driver	in	Android	Things	we	have	to	follow	these	steps:

1.	 Implement	a	class	that	extends	the	UserSensorDriver.
2.	 Describe	the	sensor	specifications	and	capabilities.
3.	 Register	the	sensor	driver.

To	better	understand	how	these	classes	are	used	and	the	role	they	play,	it	is	useful	to	analyze	how	the
BMP280/BME280	sensor	driver	is	implemented.	This	can	help	us	to	better	understand	how	user	sensors
work.

To	this	purpose,	we	can	clone	the	repository	that	contains	the	official	drivers	supported	by	Android
Things:

1.	 Open	your	browser	and	go	to	https://github.com/androidthings/contrib-drivers.

	

2.	 You	will	get	a	page	like	the	following:

3.	 Click	on	Clone	or	download	to	copy	the	repository	locally.
4.	 Now	look	for	the	bmx280	folder	and	navigate	it	until	you	find	two	classes	called:

Bmx280.java

BmxSensorDriver.java

These	two	classes	are	those	that	manage	the	BMP280/BME280.	Opening	Bmx280SensorDriver.java	you
will	notice	that	there	are	two	inner	classes	called:

PressureUserDriver

https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers
https://github.com/androidthings/contrib-drivers

TemperatureUserDriver

Both	classes	extend	UserSensorDriver	and	they	are	the	classes	that	handle	the	sensor.	In	this	case,	we	have
two	drivers	because	we	are	measuring	two	properties.	Moreover,	both	classes	define	the	user	sensor
properties	according	to	the	sensor	specifications	derived	from	the	manufacturer	datasheet.	The	following
code	is	the	sensor	definition	for	the	temperature	driver:

mUserSensor	=	UserSensor.builder()

.setType(Sensor.TYPE_AMBIENT_TEMPERATURE)

.setName(DRIVER_NAME)

.setVendor(DRIVER_VENDOR)

.setVersion(DRIVER_VERSION)

.setMaxRange(DRIVER_MAX_RANGE)

.setResolution(DRIVER_RESOLUTION)

.setPower(DRIVER_POWER)

.setMinDelay(DRIVER_MIN_DELAY_US)

.setRequiredPermission(DRIVER_REQUIRED_PERMISSION)

.setMaxDelay(DRIVER_MAX_DELAY_US)

.setUuid(UUID.randomUUID())

.setDriver(this)

.build();

Notice	the	several	parameters	that	we	have	to	provide	in	order	to	describe	the	sensor.	It	is	important	that
just	before	the	build()	method,	we	have	to	attach	the	sensor	driver	to	the	sensor	(setDriver()	method)

So	far,	we	have	used	the	BMP280	to	read	the	temperature	and	the	pressure.	We	already	know	that
BME280	can	read	the	humidity	too.	What	if	we	want	to	extend	this	driver	to	add	this	new	feature?	Surely,
we	have	to	define	another	class	that	extends	UserSensorDriver	to	handle	the	humidity	property.	We	simply
have	to	copy	and	paste	the	TemperatureUserDriver	and	change	the	class	name	in	HumidityUserDriver.	Do	not	forget
to	change	the	sensor	definition,	as	shown	previously.

It	is	worth	noticing	that	the	protocol	details	are	not	handled	in	the	user	driver	class,	but	in	another	class
called	Bmx280.java.	This	is	the	class	that	communicates	directly	with	the	sensor	and	it	is	important	to	know
how	it	works.

Low-level	sensor	driver
The	Bmx280.java	is	the	class	that	makes	the	heavy	work	and	if	we	want	to	implement	the	new	feature	that
reads	the	humidity	we	have	to	modify	it.	Moreover,	you	need	the	manufacturer	datasheet	(https://cdn-shop.adafr
uit.com/datasheets/BST-BME280_DS001-10.pdf)	in	order	to	know	how	to	exchange	data	with	the	sensor.	Let	us
examine	it.

To	open	a	connection	to	an	external	sensor	we	need	an	instance	of	the	PeripheralManagerService	class:

PeripheralManagerService	pioService	=	new	PeripheralManagerService();

Then,	the	class	opens	the	connection	using:

I2cDevice	device	=	pioService.openI2cDevice(bus,	I2C_ADDRESS);

Where:

The	bus	is	the	SDA	pin	we	have	used	to	connect	the	sensor	to	the	Android	Things	board.
The	I2C_ADDRESS	is	the	unique	ID	of	the	sensor.	Do	not	forget	that	the	protocol	we	are	using	is	the	I2C
and	each	sensor	has	a	unique	address	as	described	in	the	previous	paragraph.

The	code	line	shown	previously	introduces	another	interesting	aspect.	Using	PeripheralManagerService	we	can
open	not	only	the	GPIO	connection,	as	described	in	the	previous	chapter,	but	also	the	I2C	bus	connection.
In	this	case,	we	get	an	instance	of	I2cDevice	that	represents	the	communication	bus	where	we	can	read
and	write	data.

Generally	speaking,	an	I2C	sensor	has	a	set	of	registries	that	we	can	use	to:

Read	data
Write	data

The	registries	where	we	can	write	data	are	useful	to	set	the	sensor	behavior.	We	will	use	some	of	them
later	to	activate	new	sensor	features.	Moreover,	it	is	important	to	keep	in	mind	that	each	registry	has	a
length	expressed	as	a	number	of	bits.	We	have	to	know	the	registry	length	in	order	to	know	how	many	bits
we	have	to	read	or	write.	The	registries	and	their	length	are	described	in	the	sensor	datasheet.

Now,	look	for	the	connect	method.	The	first	line	in	this	method	reads	the	sensor	type:

mChipId	=	mDevice.readRegByte(BMP280_REG_ID);	//	0xD0

According	to	the	sensor	specification,	the	registry	that	holds	the	chip	information	is	0xD0.	This	registry	is
8bit	or	1	byte.	For	this	reason,	the	app	uses	the	readRegByte	method.	After	it,	the	driver	reads	the	registries
that	hold	the	temperature	and	pressure	calibration	parameters.	These	parameters	are	useful	to	calibrate	the
temperature	and	the	pressure	values	read	by	the	sensor.	To	add	the	humidity	feature	to	this	driver	we	have
to	also	read	the	humidity	calibration	parameters.	The	following	table	shows	the	registry	addresses	and
their	length:

https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://cdn-shop.adafruit.com/datasheets/BST-BME280_DS001-10.pdf

Registry	address Registry	content Data	type

0xA1 dig_H1	[7:0] unsigned	char

0xE1	/	0xE2 dig_H2	[7:0]	/	[15:8] signed	short

0xE3 dig_H3	[7:0] unsigned	char

0xE4	/	0xE5[3:0] dig_H4	[11:4]	/	[3:0] signed	short

0xE5[7:4]	/	0xE6 dig_H5	[3:0]	/	[11:4] signed	short

0xE7 dig_H6 signed	char

This	table	is	extracted	from	the	sensor	datasheet.	Knowing	the	registries	to	read	we	can	develop	a	few
lines	of	code	to	get	their	values.	Look	for	the	connect()	method	and	add	the	following	lines:

int	dig_H1	=	((byte)device.readRegByte(0xA1)	&	0xFF);	byte[]	buffer	=	new	byte[7];	mDevice.readRegBuffer(0xE1,	buffer,	7);

int	dig_H2	=	(buffer[0]	&	0xFF)	+	(buffer[1]	*	256);	//	0xE1	0xE2	int	dig_H3	=	buffer[2]	&	0xFF	;	//	0xE3

int	dig_H4	=	((buffer[3]	&	0xFF)	*	16)	+	(buffer[4]	&	0xF);	//	0xE4	0xE5	(first	3)

int	dig_H5	=	((buffer[4]	&	0xFF)	/	16)	+	((buffer[5]	&	0xFF)	*	16);	//	0xE5	(7:4)	0xE6

int	dig_H6	=	buffer[6]	&	0xFF;	//	0xE7

Congratulations!	You	know	how	to	read	the	humidity	calibration	parameters	that	will	be	useful	when	you
read	the	humidity	value.	There	is	another	important	step	that	we	have	to	do	before	using	the	sensor:	we
have	to	enable	the	humidity.	This	feature	is	disabled	by	default.

To	enable	it,	we	have	to	write	the	registry	at	location	0xF2	setting	the	oversampling	value.	We	can	do	it	in
the	method	that	sets	the	temperature	oversampling.	Look	for	the	setTemperatureOversampling	and	add	the
following	line:

//	Enable	Humidity	sensor	mDevice.writeRegByte(0xF2,	(byte)	0x1);

So	the	method	becomes:

public	void	setTemperatureOversampling(

				@Oversampling	int	oversampling)	throws	IOException	{

				if	(mDevice	==	null)	{

						throw	new

						IllegalStateException("I2C	device	not	open");

				}

				//	Enable	Humidity	sensor	mDevice.writeRegByte(0xF2,

				(byte)	0x1);

				int	regCtrl	=	mDevice.readRegByte(BMP280_REG_CTRL)

				&	0xff;

				if	(oversampling	==	OVERSAMPLING_SKIPPED)	{

				regCtrl	&=	~BMP280_OVERSAMPLING_TEMPERATURE_MASK;

				}	else	{

				regCtrl	|=	1	<<

				BMP280_OVERSAMPLING_TEMPERATURE_BITSHIFT;

				}

				mDevice.writeRegByte(BMP280_REG_CTRL,	(byte)

				(regCtrl));	mTemperatureOversampling	=	oversampling;

				}

That's	all.	Now	we	can	run	the	app,	directly	invoking	the	sensor	as	we	did	at	the	beginning	of	this	chapter.
The	result	is	shown	as	follows:

Driver:	Connecting...	Driver:	Sensor	type	[96]	Driver:	----	Humidity	calibration	parameters	----	Driver:	H1	[75]	-	H2	[365]	Driver:	H3	[0]	-	H4	[311]	Driver:	H5	[0]	-	H6	[30]	Driver:	Humidity	enabled	[1]

There	are	some	interesting	aspects	to	note:

The	sensor	type	is	96	(0x60).	This	value	means	that	we	are	using	a	BME280	class.
The	calibration	parameters	are	all	available.
The	humidity	data	acquisition	is	enabled:	its	value	is	1.

Now	we	can	read	the	humidity	value.	According	to	the	sensor	datasheet,	the	sensor	stores	this	value	in	the
registry	starting	from	0xFD	to	0xFE.	Therefore,	we	have	to	read	16	bits	or	2	bytes.	Add	the	following
method	to	the	Bmx280	class:

public	long	readHumidity()	throws	IOException	{

		byte[]	dataBuffer	=	new	byte[2];

							mDevice.readRegBuffer(0xFD,	dataBuffer,	2);

		long	value	=	(dataBuffer[0]	&	0xFF)	*	256	+

							(dataBuffer[1]	&	0xFF);

		return	value;

}

This	method	returns	the	value	read	by	the	sensor.	This	is	a	long	value	and	it	does	not	represent	the	real
humidity.	It	is	necessary	to	convert	it	using	the	compensation	parameters	we	have	retrieved	before.	Let	us
add	another	method	to	the	same	class:

public	double	readCompansatedHumidity()	throws	IOException	{	

		long	adH	=	readHumidity();

		float	temp	=	readTemperature();

		double	var_H	=	temp	-	76800.0;

					var_H	=	(adH	-	(dig_H4	*	64.0	+	dig_H5	/	16384.0	*

					var_H))	*	(dig_H2	/	65536.0	*	(1.0	+	dig_H6	/

					67108864.0	*	var_H	*	(1.0	+	dig_H3	/	67108864.0

					*	var_H)));

		double	humidity	=

					var_H	*	(1.0	-dig_H1	*	var_H	/	524288.0);

		return	var_H;

}

This	compensation	formula	is	described	in	the	sensor	datasheet.	Now	we	are	ready	to	read	the	humidity
using	this	simple	test	class:

try	{

		androidthings.project.weather.Bmx280	sensor	=	new

		androidthings.project.weather.Bmx280(

					BoardPins.getSDAPin());

		sensor.setTemperatureOversampling(

					androidthings.project.weather.Bmx280.OVERSAMPLING_

							1X);

		sensor.setPressureOversampling(

					androidthings.project.weather.Bmx280.OVERSAMPLING_

							1X);

		long	adH	=	sensor.readHumidity();

		double	hum	=	sensor.readCompansatedHumidity();

		Log.d("App",	"ADH	["+adH+"]");

		Log.d("App",	"Hum	["+hum+"]");

		}

		catch(IOException	ioe)	{	ioe.printStackTrace();

}

Finally,	running	the	app,	we	have	the	result	we	were	looking	for:

Driver:	Connecting...	Driver:	Sensor	type	[96]	Driver:	----	Humidity	calibration	parameters	----	Driver:	H1	[75]	-	H2	[365]	Driver:	H3	[0]	-	H4	[311]	Driver:	H5	[0]	-	H6	[30]	Driver:	Humidity	enabled	[1]

App:	ADH	[32768]	App:	Hum	[69.1864670499461]

That's	all;	now	you	can	master	I2C	sensors!

Summary
At	the	end	of	this	chapter,	you	learned	how	to	use	I2C	sensors	and	how	to	connect	them	to	an	Android
Things	board.	Moreover,	we	implemented	a	full-working	Android	Things	IoT	app	that	monitors
environmental	parameters.	We	have	learned	how	to	control	GPIO	pins	using	the	information	retrieved
from	sensors.	This	project	can	be	extended	by	adding	new	features.	An	interesting	feature	that	you	could
add	is	considering	if	the	pressure	is	rising	or	lowering	to	have	a	more	detailed	weather	forecast.	Using
this	environmental	monitoring	system,	you	gained	knowledge	about	how	to	implement	custom	drivers.	In
this	way,	you	have	infinite	possibilities	to	use	your	Android	Things	board	with	several	I2C	sensors.

In	the	next	chapter,	we	will	cover	an	important	aspect	of	the	IoT	ecosystem:	IoT	cloud	platforms.	We	will
learn	how	to	use	IoT	platforms	and	how	to	integrate	them	with	Android	Things	and	stream	data	to	the
cloud.

	

Integrate	Android	Things	with	IoT	Cloud
Platforms
In	this	chapter,	we	will	learn	how	to	integrate	Android	Things	with	IoT	cloud	platforms.	This	is	an
important	aspect	when	developing	an	IoT	app.	As	a	matter	of	fact,	there	are	several	scenarios	where	it	is
required	that	the	data	acquired	from	Android	Things	boards	must	be	transferred	to	the	cloud.	For	this
reason,	this	chapter	will	give	you	all	the	information	you	need	to	connect	your	Android	Things	board	to
IoT	cloud	platforms.

In	this	chapter,	we	will	look	at	the	following	topics:

IoT	cloud	architecture
How	to	configure	an	IoT	cloud	platform
How	to	connect	an	Android	Things	app	to	the	IoT	cloud	platform
How	to	stream	real-time	data	to	the	cloud	and	create	dashboards

During	this	chapter,	we	will	reuse	our	Android	expertise	to	handle	HTTP	communication.

IoT	cloud	architecture
By	now	we	have	explored	how	to	develop	Android	Things	apps	that	are	self-contained.	In	other	words,
we	have	built	Android	Things	apps	that	do	not	communicate	with	external	systems	or	platforms.	The	data
acquired	through	the	sensors	are	managed	locally.	There	are	other	scenarios	where	the	Android	Things
app	sends	the	data	acquired	to	the	cloud	so	that	this	information	is	analyzed	and	integrated	with	other
kinds	of	data	producing	new	services.	In	this	scenario,	the	IoT	platforms	play	an	important	role.	Before
digging	into	the	IoT	cloud	architecture	details	and	describing	how	to	integrate	Android	Things	with	these
platforms,	it	is	important	to	clarify	what	we	mean	by	the	IoT	cloud	platform.

	

An	IoT	cloud	platform	overview
Nowadays,	the	IoT	cloud	platforms	are	an	important	brick	in	IoT	ecosystem.	Using	these	platforms,	we
can	extend	the	services	we	can	provide	and	unlock	the	power	of	Android	Things	boards.	Through	IoT
platforms,	it	is	possible	to	give	to	the	data	acquired	new	meanings	integrating	it	with	other	information
sources.	Even	if	the	Android	Things	board	is	very	powerful,	they	cannot	provide	services	where	big
computation	power	is	required.	Transferring	the	information	acquired	to	the	IoT	cloud	platform	we	move,
at	the	same	time,	some	piece	of	the	business	logic	from	the	Android	Things	to	the	cloud.	Once	the	data	is
available	at	IoT	cloud	level,	these	platforms	can	apply	complex	analysis	and,	as	a	result,	they	can
remotely	control	the	Android	Things	boards.	In	this	reference	context,	you	can	think	about	all	the
technologies	related	to	machine	learning,	Artificial	Intelligence	(AI)	and	big	data	analysis.	The	Android
Things	boards	may	not	have	the	computation	power	required	by	these	technologies,	but,	at	the	same	time,
the	services	developed	using	these	technologies	need	the	data	acquired	and	managed	by	the	Android
Things.

What	kind	of	services	can	IoT	cloud	platforms	provide?	There	are	several	services	and	every	IoT	cloud
platform	has	its	unique	features.	Generally	speaking,	these	services	can	be	grouped	into	these	categories:

Connection	service
Data	storage	service
Event	processing	service
Device	management
Data	visualization
Service	integration

All	these	services	are	very	useful	when	we	are	developing	an	IoT	Android	Things	app.	Almost	all	the	IoT
platforms	provide	a	connection	service.	The	core	of	these	services	is	the	connection	and	the	data	transfer
between	the	IoT	cloud	platform	and	the	remote	board.	They	support	different	protocols	to	simplify	the
connection	process.	The	most	common	are:

Rest	API	and	HTTP
MQTT
CoAP

In	other	words,	they	provide	a	set	of	software	interfaces	that	can	be	invoked	by	remote	IoT	boards	to
connect	and	exchange	data.	Moreover,	they	provide	a	set	of	SDKs	for	different	boards	to	make	the
connection	process	easier	and	fast.

Data	storage	service	is	the	capability	of	an	IoT	cloud	platform	to	store	data.	Usually,	this
service	is	useful	when	we	want	to	store	the	data	acquired	somewhere	outside	of	the
Android	Things	board.	This	information	is	the	base	for	other	services.

The	first	two	services	are	usually	provided	by	almost	all	IoT	platforms,	while	the	event	processing	is	a
more	complex	service.	This	is	a	rule-based	engine	that	uses	the	data	stored	and	events	to	trigger	actions
that	could	have	effects	on	the	IoT	boards.	A	simple	example	is	the	temperature	monitoring	system	that

triggers	an	alert	when	a	value	moves	outside	a	prefixed	range.	Another	example	is	sending	a	message	to
the	IoT	board	to	turn	on	a	water	pump	when	the	soil	moisture	is	lower	than	a	threshold.	Usually,	all	these
events	and	actions	are	configured	via	web	interface.

A	device	management	service	takes	care	of	managing	all	the	IoT	devices	connected	to	the	platform.	This
means,	for	example,	updating	the	device	firmware	remotely,	changing	configuration	parameters,	and	so
on.	In	other	words,	it	is	a	centralized	administration	console	for	remote	devices.

Data	visualization	is	the	service	provided	by	several	IoT	cloud	platforms	to	create	dashboards	to
graphically	visualize	the	data	acquired	using	charts.

The	last	service	is	the	integration	service.	This	type	of	service	is	useful	when	we	want	to	integrate	some
external	services	and	trigger	them	according	to	preconfigured	events.	To	have	an	idea	about	these	external
services,	think	about	sending	email	messages,	sending	Twitter	messages,	invoking	remote	services,	and	so
on.	We	will	cover	it	later	in	this	chapter.

There	are	several	IoT	platforms	available	on	the	market.	They	offer	one	or	more	of	the	mentioned
services	and	everyone	has	its	own	features	that	make	it	different	from	others.	We	have	to	choose	the	right
platform	according	to	our	needs	and	scenarios	where	we	will	use	our	Android	Things	app.	Here	are	a
few	of	these	IoT	cloud	platforms:

Google	IoT	cloud
Microsoft	Azure	IoT
Amazon	AWS	IoT
Samsung	Artik	Cloud
Temboo
Ubidots

IoT	cloud	architecture	overview
Now	we	know	the	services	the	IoT	cloud	platforms	provide,	we	can	define	an	IoT	cloud	architecture	and
the	roles	that	Android	Things	and	IoT	cloud	platforms	play.	The	following	figure	describes	a	possible

architecture:	

This	layered	architecture	describes	the	role	the	components	play	and	how	they	are	placed:

At	the	lowest	level	of	this	architecture,	there	is	the	sensor	layer.	This	layer	is	where	we	start
acquiring	data.
The	second	layer	is	the	IoT	boards;	in	this	book	for	IoT	boards	we	mean	Android	Things	compatible
boards	such	as	Raspberry	PI	3	and	Intel	Edison.	Anyway,	there	are	other	IoT	boards	that	are	not
compatible	with	Android	Things	OS,	but	they	can	send	data	to	the	cloud.
The	third	layer	is	the	IoT	cloud	platform	with	the	services	we	described	previously.	An	IoT	cloud
platform	collects	data	coming	from	sensors	through	IoT	boards	and	stores	it	somewhere.	Moreover,
it	can	apply	one	or	more	services	to	analyze	the	data,	transform	it,	and	integrate	it	with	other	sources.
It	can	use	such	information	to	fuel	complex	engines	(AI,	machine	learning,	predictive	analytics,	and
so	on).
The	fourth	layer	is	the	last	layer	and	it	represents	the	high-level	services	that	are	exposed	to	the	final
user.	They	can	be,	for	example,	dashboards	to	visualize	information	or	the	results	of	complex
services.

Sometimes,	some	services	at	the	third	and	fourth	layer	are	mixed	together.

Streaming	data	to	the	IoT	cloud	platform
Once	we	know	what	an	IoT	cloud	platform	is	and	the	reference	architecture,	we	can	implement	an
Android	Things	app	that	streams	real-time	data	to	the	cloud.	Generally	speaking,	to	use	an	IoT	cloud
platform	we	have	to	follow	these	steps:

1.	 Configure	the	IoT	project	on	the	cloud	platform	providing	all	the	information	including	the	type	of
the	data	we	want	to	manage.

2.	 Create	an	IoT	platform	client	on	the	client	side	(Android	Things	app)	that	handles	the	connection	and
sends	the	data.

In	this	Android	Things	IoT	project,	we	will	use	Samsung	Artik	Cloud	(https://artik.cloud/)	as	the	IoT	cloud
platform,.	This	is	a	professional	platform	that	provides	almost	all	the	services	described	in	the	previous
paragraphs.	Moreover,	it	is	easy	to	use	and	it	provides	several	SDKs	that	simplify	the	data	exchange
process.	In	this	project,	we	will	manually	implement	the	data	exchange	between	the	Android	Things
board	and	Samsung	Artik	Cloud	so	that	we	can	learn	all	the	steps	to	follow	and	how	to	implement	them	in
Android	Things.	To	integrate	our	Android	Things	app	with	Artik	Cloud	we	will	use	the	Rest	APIs
provided	by	Artik	Cloud	itself.

	

https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/
https://artik.cloud/

How	to	configure	Artik	Cloud
As	stated	before,	the	first	step	is	configuring	the	IoT	project	on	Artik	Cloud.	To	start,	it	is	necessary	to
create	a	free	account	using	this	link	https://accounts.artik.cloud/signup?client_id=d18f11efb5244c8f99f1ac7aa4fb9bbc&redirect_uri
=https://my.artik.cloud/authorize.	The	aim	of	the	configuration	steps	is	creating	the	Manifest	file	that	represents	the
data	model	we	will	use.

Be	aware	that	the	Manifest	file	of	Artik	Cloud	is	not	related	to	the	Android	Things
Manifest.xml.	It	is	a	completely	different	file.

To	configure	the	IoT	project	in	Artik	Cloud,	we	have	to	follow	these	steps:

1.	 Go	to	the	Artik	Cloud	developers	page	(https://developer.artik.cloud/).
2.	 Click	on	Device	Type.	A	device	type	is	an	abstract	representation	of	our	device.	Each	device	type	is

related	to	a	Manifest.
3.	 Click	on	New	Device	Type	to	add	our	custom	device	representation.	We	have	to	provide	the	display

name	that	is	a	name	we	like	and	the	UNIQUE	NAME,	as	shown	in	the	following	screenshot:

4.	 Once	you	have	configured	a	new	device	type,	we	can	create	the	Manifest	by	clicking	on	NEW
MANIFEST,	as	shown	in	the	following	screenshot:

5.	 Artik	Cloud	supports	several	platforms	and	it	is	data	agnostic.	In	other	words,	clients	can	send
different	data	structures	to	Artik	Cloud.	In	turn,	it	uses	the	Manifest	to	interpret	such	data.	In	other

https://accounts.artik.cloud/signup?client_id=d18f11efb5244c8f99f1ac7aa4fb9bbc&redirect_uri=https://my.artik.cloud/authorize
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/

words,	when	we	configure	the	Manifest,	we	inform	Artik	Cloud	about	the	data	our	app	will	send	so
that	it	can	retrieve	the	values	sent	by	the	Android	Things	app.	In	this	project,	we	want	to	use	two
parameters.	They	are	the	environment	variables	that	the	app	acquires	from	sensors:

Temperature
Pressure

Therefore,	we	have	to	configure	two	variables	in	the	Manifest.	In	this	first	step,	we	configure
the	temperature	variable	field	as	follows:	

There	are	a	few	required	fields	necessary	to	configure	a	new	variable.	The	most	important	is
the	name,	which	we	will	use	later	to	reference	this	variable.

6.	 Click	on	NEW	FIELD	to	add	the	Pressure	variable:

7.	 Now	we	can	activate	the	Manifest	we	have	configured,	by	clicking	on	ACTIVATE	MANIFEST:

8.	 Now	click	on	My	Artik	Cloud	on	the	top	of	the	screen	to	move	to	your	dashboard.
9.	 We	are	going	to	create	a	new	device,	so	click	on	Devices.	A	device	is	a	new	instance	of	the	device

type	that	we	have	created	before:

10.	 Now	we	can	configure	the	device	that	represents	our	Android	Things	board.	It	is	important	that	you
select	Android	Things	board	in	the	first	field:

As	the	name	of	the	device,	we	will	use	Android	Things	board	-	Monitoring	system.

11.	 Once	we	have	created	the	device,	click	on	the	device	details.	In	this	way,	we	retrieve	all	the
information	we	need	to	authenticate	our	device	and	send	data	to	Artik	Cloud.	We	will	use	this
information	later	when	we	will	develop	the	Android	Things	client.	The	following	screenshot	shows
the	device	detail	information:

That's	all.	You	have	now	configured	our	IoT	project	in	Artik	Cloud	and	we	are	ready	to	send	data	from
our	Android	Things	app.

Artik	client	description
Once	the	IoT	project	and	its	definition	are	configured	on	Artik	Cloud,	we	can	analyze	how	to	connect	a
client	to	Artik.	As	stated	previously,	the	target	of	this	project	is	sending	the	environmental	parameters	to
the	cloud	so	that	we	can	log	them	and	create	charts.	To	this	purpose,	we	have	to	modify	the	Android
Things	app	we	developed	in	the	previous	chapter	and	we	have	to	add	cloud	capabilities.	Before
modifying	the	Android	Things	app,	it	is	important	to	know	the	steps	we	have	to	follow	to	connect	a	client
to	Artik	Cloud:

1.	 Connect	to	the	Artik	Cloud	and	handle	the	HTTP	connection.
2.	 Authenticate	the	device.
3.	 Invoke	Artik	Cloud	Rest	API	to	send	data.

According	to	the	Artik	Cloud	documentation,	the	URL	to	invoke	to	send	data	is
https://api.artik.cloud/v1.1/messages.	In	more	detail,	we	have	to	invoke	this	URL	passing:

The	information	necessary	to	authenticate	our	Android	Things	client
The	message.	This	will	hold	the	data	(values	acquired	from	sensors)	and	other	information

In	order	to	authenticate	the	client	the	HTTP	request	header	must	contain	this	parameter:

Authorization:	Bearer	device_token

To	get	the	device_token	we	use	the	Artik	Cloud	web	interface:

1.	 Go	to	the	Artik	cloud	dashboard	as	described	previously.
2.	 Click	on	devices	and	then	on	the	Android	Things	board	-	monitoring	system.
3.	 In	the	popup,	click	on	GENERATE	DEVICE	TOKEN.

Moreover,	the	message	the	client	sends	to	the	Artik	cloud	must	have	a	specific	structure.	Using	the	Artik
Cloud	web	interface	we	can	obtain	an	example	of	the	data	structure	we	have	to	send:

1.	 Go	to	the	developer	console	https://developer.artik.cloud/.
2.	 Click	on	Device	Type	and	then	on	Android	Things	board.
3.	 Click	on	the	Manifest	menu	item	and	you	should	get	something	like	the	following:

4.	 Now	click	on	VIEW	SAMPLE	MESSAGE	to	know	the	data	structure:

https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://api.artik.cloud/v1.1/messages
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/
https://developer.artik.cloud/

Furthermore,	the	data	containing	the	sensor	values	must	be	contained	inside	a	message,	which	is	a
wrapper	that	adds	other	information	to	the	real	data.	The	following	is	the	message	structure:

{

						"sdid":"device_id",	

						"ts":	timestamp,	

						"data":

				{

						"Pressure":153.122,

						"Temperature":107.984

					}

}

Here,	device_id	is	the	unique	device	identification	and	ts	is	the	timestamp.	Now	we	know	how	to	build	the
message	and	how	to	retrieve	the	authentication	parameters.

Therefore,	we	can	implement	the	Android	Things	client.

How	to	implement	the	Android	Things	Artik
client
To	this	purpose,	we	will	reuse	the	Android	Things	app	developed	in	the	previous	chapter.	The	Android
Things	app	has	to	handle	the	HTTP	connections	and	to	do	it	we	have	two	options:

Use	Android	HTTP	library
Use	a	custom	library

Do	not	forget	that	an	Android	Things	app	is	an	Android	app	so	we	can	reuse	the	Android
HTTP	libraries	already	available.	In	this	project,	we	use	Volley	(https://developer.android.com/tr
aining/volley/index.html).	This	library	is	widely	used	and	offers	interesting	features.	Moreover,
it	simplifies	the	HTTP	connection	management.

To	use	Volley,	follow	these	steps:

1.	 Open	the	build.gradle	file	and	add	the	following	lines:

dependencies	{

													...

													compile	'com.android.volley:volley:1.0.0'

								}

In	this	way,	we	are	adding	the	dependency	from	the	volley	library.

2.	 The	next	step	is	requesting	the	permission	to	connect	to	the	internet.	We	do	it	in	the	Manifest.xml	file.
Add	the	following	line:

<uses-permission	android:name="android.permission.INTERNET"	/>

3.	 Now	let	us	create	a	new	class	that	will	handle	all	the	communication	details.	We	will	call	it
ArtikClient.java.

4.	 The	ArtikClient	is	a	singleton;	therefore	we	have	to	create	a	private	constructor:

private	ArtikClient(Context	ctx,	String	deviceId,	String	token)	{	

												this.ctx	=	ctx;

												this.deviceId	=	deviceId;

												this.token	=	token;	

								createQueue();

								}

The	constructor	accepts	as	parameters	the	Android	Context,	the	device	id,	and	the	token,	as	described	in
the	previous	paragraphs.

5.	 Implement	the	createQueue()	method.	This	method	initializes	the	Volley	request	queue	so	that	the	app	can
make	requests	to	the	Artik	Rest	APIs:

private	void	createQueue()	{

											if	(queue	==	null)

								queue	=	Volley.newRequestQueue(

																ctx.getApplicationContext());

								}

https://developer.android.com/training/volley/index.html

Here,	the	queue	is	defined	as	follows:

private	RequestQueue	queue;

6.	 Once	we	have	configured	the	request	queue,	we	can	focus	on	implementing	the	method	that	sends
data.	To	this	purpose,	add	the	sendData()	method	to	this	class.	This	is	the	heart	of	the	class	because	it
invokes	the	Artik	Rest	APIs	using	the	message	structure	described	previously.	Before	writing	this
method,	it	is	worthwhile	to	split	it	into	several	steps,	because	it	can	improve	its	readability.	The
steps	are:
1.	 Create	an	instance	of	StringRequest	that	represents	the	request	we	want	to	send.
2.	 Override	the	getHeaders()method	to	customize	the	HTTP	request	headers.
3.	 Override	the	getBody()method	to	customize	the	body	we	are	sending.

The	following	is	a	detailed	description	of	the	three	preceding	steps.

Implement	a	StringRequest	with	Volley
The	StringRequest	in	Volley	represents	the	HTTP	request	we	send	to	Artik.	Add	the	following	lines	to	the
sendData()	method:

StringRequest	request	=	new	StringRequest(Request.Method.POST,	

				ARTIK_URL,

				new	Response.Listener<String>()	{

						@Override

						public	void	onResponse(String	response)	{	

								Log.d(TAG,	"Response	["+response+"]");

						}

					},

					new	Response.ErrorListener()	{

							@Override

							public	void	onErrorResponse(VolleyError	error)	{

							error.printStackTrace();

							}

					})

Notice	that	the	app	uses	HTTP	POST	to	send	data	and	it	overrides	two	methods:

onResponse	that	is	invoked	when	the	HTTP	response	is	available
onErrorResponse	that	is	invoked	if	the	request	gets	an	error	response

We	can	use	these	two	methods	to	log	the	errors	or	somehow	notify	the	error	to	the	user.

To	inform	the	user	that	the	app	is	sending	data	to	Artik,	we	can	use	an	LED	that	turns	on	during	the	send
phase.	If	an	error	occurs,	the	app	could	turn	on	another	LED	to	notify	the	user	that	there	are	problems.

@Override
	public	Map<String,	String>	getHeaders()	throws	AuthFailureError	{

	Log.d(TAG,	"Get	headers..");
	Map<String,	String>	headers	=	new
HashMap<String,	String>();	
	headers.put("Content-Type",	"application/json");

headers.put("Authorization",	"Bearer	"	+	token);
	return	headers;
}

Moreover,	in	the	preceding	code,	the	app	adds	the	request	Content-Type	setting	it	to
application/JSON.

Send	the	data	using	a	custom	body	request
The	last	step	is	implementing	the	custom	request	body.	The	request	body	represents	the	data	the	app
sends,	so	it	must	have	a	structure	compliant	with	the	specification	described	previously	(see	the	message
structure	described	in	the	previous	paragraphs).	To	do	it,	the	app	overrides	the	getBody()	default	method:
@Override
public	byte[]	getBody()	throws	AuthFailureError	{	
Log.d(TAG,	"Creating	body...");
try	{
JSONObject	jsonRequest	=	new	JSONObject();	
jsonRequest.put("sdid",	deviceId);	
jsonRequest.put("ts",	System.currentTimeMillis());	
JSONObject	data	=	new	JSONObject();

data.put("Temperature",	temp);	
data.put("Pressure",	press);
jsonRequest.put("data",	data);
String	sData	=	jsonRequest.toString();
Log.d(TAG,	"Body:"	+	sData);
return	sData.getBytes();
}
catch	(JSONException	jsoe)	{	
jsoe.printStackTrace();
}
return	"".getBytes();
}

The	method	uses	the	JSON	library	to	build	the	JSON	message.	Notice	it	adds	to	the	message	all	the
parameters	described	previously.

The	last	thing	to	do	is	add	the	request	to	the	queue	so	that	Volley	will	manage	it:	queue.add(request);

That's	all;	the	Artik	client	is	now	ready.

Sending	data	from	the	Android	Things	app
Once	the	client	is	ready,	we	have	to	call	it	from	MainActivity.java,	the	class	that	we	used	to	read	sensor
data.	The	easiest	way	to	send	data	to	Artik	Cloud	is	invoking	its	API	whenever	the	sensor	reads	a	new
value.	Anyway,	we	have	to	consider	the	high	frequency	at	which	the	sensor	reads	new	values.	This
approach	would	require	calling	the	Artik	API	almost	continuously.	The	best	approach	is	sending	data
using	a	scheduler.	With	a	scheduler,	the	Android	Things	app	sends	data	at	specific	time	intervals	without
overwhelming	the	Artik	Cloud.	In	this	way,	we	can	adjust	the	frequency	having	more	control	on	the	app
behavior	and	the	bandwidth	the	app	consumes.	Let	us	modify	MainActivity.java:

1.	 Add	the	following	method	to	this	class:

//	Scheduler	to	send	data//

								private	void	initScheduler()	{

										ScheduledExecutorService	scheduler=

										Executors.newSingleThreadScheduledExecutor();

									scheduler.scheduleAtFixedRate(new	Runnable()	{

									@Override

									public	void	run()	{

										double	mTemp	=	totalTemp	/	tempCounter;	

										double	mPress	=	totalPress/	

										pressCounter	*	FACTOR;

										totalTemp	=	0;

										totalPress	=	0;

										tempCounter	=	0;

										pressCounter	=	0;	

									//	call	artik	

									ArtikClient.getInstance(MainActivity.this,

									DEVICE_ID,	TOKEN).sendData(mTemp,	mPress);

										}

									},	1,	TIMEOUT,	TimeUnit.MINUTES);

								}

In	this	class,	we	use	a	SchedulerExecutorService	that	runs	a	specific	task	continuously	with	a	delay
specified	in	TIMEOUT.	The	task	is	defined	inside	the	run()	method.	In	this	method,	the	app
executes	the	following	steps:

2.	 Calculate	the	mean	value	of	the	temperature	in	the	time	interval	between	the	last	time	the	data	was
sent	to	Artik	and	the	current	time.

3.	 Calculate	the	mean	value	of	the	pressure	in	the	same	way	as	described	in	step	1.
4.	 Transform	the	pressure	expressed	in	millibars	into	mmHg	(the	measuring	unit	specified	in	the	Artik

cloud	console).
5.	 Call	ArtikClient	to	send	the	mean	value	of	the	temperature	and	the	mean	value	of	the	pressure.
6.	 The	app	resets	the	total	value	of	the	temperature	and	the	pressure.	At	the	same	time,	it	resets	the	total

counter	of	the	temperature	and	the	pressure	samples	acquired.
7.	 The	last	step	is	invoking	this	method	in	order	to	schedule	the	task.	To	this	purpose,	add	the

following:

method	into	the	onCreate()	method:	

	initScheduler();

You	can	configure	the	timeout	parameter	used	by	the	scheduler.	It	represents	the	interval	time	between	two
task	executions.	Modifying	the	value	of	the	timeout	parameter,	we	can	control	how	often	the	app	sends

data	to	Artik	Cloud.	In	this	example,	the	app	uses	one	minute	of	timeout.	You	can	adjust	it	according	to
your	need.

Now	you	can	run	the	app	and	you	will	notice	that	it	starts	sending	data.	The	following	is	the	log	written	by
the	app:

D/MainActivity:	On	Sensor	connected...	D/MainActivity:	Temp	sensor..	D/MainActivity:

On	Sensor	connected...	D/MainActivity:	Pressure	sensor..	D/MainActivity:	T.	Accuracy	[3]	D/MainActivity:	P.	Accuracy	[3]	D/MainActivity:	Change	RGB	led	color.	Red	[false]	-	Green	[false]	-	Blue	[true]	D/Artik:	Get	headers..	D/Artik:	Creating	body...	D/Artik:	Body:{"sdid":"084e88ef363c422899xxxxxx","ts":1488639361346,"data":{"Temperature":23.077	471866138097,"Pressure":736.9710191455032}}	D/Artik:	Response	[{"data":{"mid":"652a1d6e6bd046f9a56b4d6e13662460"}}]	D/Artik:	Get	headers..	D/Artik:	Creating	body...	D/Artik:	Body:{"sdid":"084e88ef363c422899xxxxxx","ts":1488639421322,"data":{"Temperature":23.150	367814260957,"Pressure":737.1639172230938}}	D/Artik:	Response	[{"data":{"mid":"ff676c81d47c430793fff5dba9231da8"}}]

You	can	see	the	response	coming	from	the	Artik	cloud	platform	informing	the	app	that	the	data	sent	is
acquired	by	Artik.

	

Creating	a	dashboard
	

While	the	app	is	running,	it	acquires	data	from	sensors	and	sends	the	values	acquired	to	the	Artik	cloud.
We	can	use	these	values	to	create	charts	and	visualize	the	data	using	different	formats.	Data	charts	offer	a
better	way	to	analyze	the	data.	Let	us	see	how	to	do	it:

1.	 Log	in	to	the	Artik	cloud.
2.	 Go	to	https://my.artik.cloud/	and	select	Charts:

3.	 Click	on	Chart	in	the	left	top	of	the	window	to	add	the	variable	we	used	to	collect	data	from	the
Android	Things	board.	Add	temperature	and	pressure.

4.	 Adjust	the	time	range	to	fit	the	period	when	you	sent	the	data.
5.	 At	the	end,	you	will	see	a	chart	like	the	following:

https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/
https://my.artik.cloud/

6.	 Notice	the	temperature,	the	pressure,	and	the	different	charts	used	to	represent	these	two	variables.
7.	 You	can	use	other	chart	types	to	better	represent	your	information.

	

	

Data	logging
While	charts	give	an	overview	of	the	values	acquired	by	the	Android	Things	app	we	developed,	we	can
use	other	ways	to	show	data.	We	can	visualize	all	the	requests	Android	Things	clients	made	to	the	Artik
Cloud.	To	do	it,	follow	these	steps:

1.	 Go	back	to	the	Artik	cloud	dashboard.
2.	 Select	DATA	LOGS	and	the	platform	will	visualize	all	the	events	(or	requests)	received:

The	column	meanings	are	easy	to	understand.	The	first	one	is	the	device	we	have
configured	in	the	previous	paragraphs	while	the	last	one	is	the	data	we	sent.	You	can	see
the	JSON	that	the	Android	Things	app	sent	to	the	cloud.

There	are	other	features	you	can	explore	such	as	exporting	the	data	and	so	on.	You	can	even	modify	the
Android	Things	app	to	send,	not	only	temperature	and	pressure,	but	also	the	humidity.	In	this	scenario,	you
have	to	modify	the	Manifest,	adding	a	new	variable	to	hold	the	values.

Adding	voice	capabilities	to	Android	Things
By	now	we	have	described	how	to	send	data	to	IoT	cloud	platforms.	In	this	context,	an	IoT	platform
behaves	like	a	data	container	where	we	store	information.	There	are	other	kinds	of	services	offered	by
IoT	platforms.	There	are	some	IoT	platforms	that	provide	integration	services.	In	other	words,	they	are
not	focused	on	acquiring	data	from	sensors	and	storing	it,	but	their	target	is	offering	integration	services
with	other	cloud	systems.	One	of	these	platforms	is	Temboo	(https://temboo.com/).	It	offers	a	long	list	of
integration	services	that	can	be	used	to	extend	the	capabilities	of	an	IoT	app.	Generally	speaking,	Temboo
supports	several	programming	languages	and	IoT	platforms	and	one	of	these	OSes	is	Android.	This	is
perfect	for	our	project.

What	we	want	to	do	is	add	voice	capabilities	to	our	Android	Things	app	so	that	it	can	trigger	a	voice
phone	call	with	a	pre-configured	message	to	inform	us	that	a	specific	event	happened.	To	this	purpose,	the
Android	Things	app	uses	a	Temboo	service,	called	choreo,	which	simplifies	the	integration	with	Nexmo.
Nexmo	(https://www.nexmo.com/)	is	a	voice	cloud	platform.	The	following	schema	describes	the	overall
integration	architecture	that	we	will	use	to	add	this	new	feature	to	our	Android	Things	app:

In	the	preceding	figure,	the	Android	Things	app	(represented	by	Raspberry	PI)	invokes	Temboo	when	an
event	occurs.	In	this	example,	we	invoke	Temboo	when	the	temperature	is	over	5°C.	The	app	uses	the
Temboo	platform	just	as	an	integration	service.	In	turn,	Temboo	invokes	Nexmo,	which	makes	the	phone
call.	Nexmo	uses	the	TTS	(Text	To	Speech)	engine	to	convert	the	text	to	the	human	voice	that	we	hear
during	the	phone	call.

The	steps	to	follow	to	add	these	new	features	are:

1.	 Configure	Temboo	choreo	to	talk	to	Nexmo.
2.	 Modify	the	Android	Things	app	to	integrate	Temboo	choreo.

Let	us	see	how	to	do	it.

https://temboo.com/
https://temboo.com/
https://temboo.com/
https://temboo.com/
https://temboo.com/
https://temboo.com/
https://temboo.com/
https://temboo.com/
https://temboo.com/
https://temboo.com/
https://temboo.com/
https://temboo.com/
https://temboo.com/
https://temboo.com/
https://temboo.com/
https://temboo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/
https://www.nexmo.com/

Configure	Temboo	choreo
In	this	step,	we	have	to	configure	the	Temboo	platform	to	invoke	the	Nexmo	API	service.	The	first	step	is
creating	a	free	Nexmo	account	that	we	use	to	test	our	app.	Once	you	have	created	an	account,	you	will
have	access	to	the	console	dashboard.	We	use	it	just	to	get	two	pieces	of	information:

Key
Secret

The	following	screenshot	shows	the	Nexmo	dashboard	with	the	two	parameters:

They	are	used	by	Temboo	to	authenticate	the	service	request.	Now	we	have	to	create	a	Temboo	account	if
you	do	not	have	one	already.	Once	you	are	logged	in,	follow	these	steps:

1.	 Look	for	Nexmo	choreo	and	select	it:

2.	 Once	you	have	selected	TextToSpeech,	you	will	get	a	page	like	the	one	shown	in	the	following
screenshot:

3.	 Now,	you	have	to	provide:
1.	 The	key	and	secret	you	got	previously	from	Nexmo.
2.	 The	text	that	will	be	read	by	Nexmo.
3.	 The	phone	number.

It	is	important	that	you	select	Android	on	the	top.

Now	you	can	click	on	Generate	Code	to	get	the	snippet	to	use	in	our	Android	Things	app:	

That's	all	the	configuration	steps	completed.	Now	we	can	integrate	it	in	our	Android	Things	app.

Integrate	Temboo	in	the	Android	Things	app
In	this	last	step,	we	modify	the	Android	Things	app	to	include	the	snippet	we	got	previously,	and	handle
the	integration	with	Temboo:

1.	 Open	Android	Studio	to	modify	the	app.
2.	 Download	from	this	link	(https://temboo.com/download)	the	Temboo	SDK	for	Android:

3.	 Add	the	Temboo	libraries	to	project	libraries.	You	have	to	add:
temboo-android-sdk-core-xxx.jar

Nexmo-xxx.jar

4.	 Add	a	new	class	called	TembooClient.java	to	the	project	that	will	handle	the	Temboo	integration	details.
The	core	of	this	class	is	the	method	shown	here	that	invokes	the	Temboo	choreo:

public	void	callTemboo()	{	

										Runnable	r	=	new	Runnable()	{

										@Override

										public	void	run()	{

												Log.d(TAG,	"Call	Temboo...");

												TextToSpeech	textToSpeechChoreo	=	new

																				TextToSpeech(session);

												TextToSpeech.TextToSpeechInputSet	

																				textToSpeechInputs	=	

																				textToSpeechChoreo.newInputSet();

												textToSpeechInputs.set_APIKey("xxxx");	

																				textToSpeechInputs.set_Text("Hello,

												the	temperature	is	too	high");

												textToSpeechInputs.set_To("xxxx");	

												textToSpeechInputs.

																set_APISecret("1xxx");

												try	{

															TextToSpeech.TextToSpeechResultSet

																	textToSpeechResults	=	

																	textToSpeechChoreo.

																			execute(textToSpeechInputs);

																	Log.d(TAG,	"TTS	Result

											["+textToSpeechResults.get_Response()+"]");

																	}

																	catch	(TembooException	te)	{	

																		te.printStackTrace();

																}

														}

												};

									Thread	t	=	new	Thread(r);

																t.start();

									}

This	method	wraps	the	choreo	code	that	we	configured	in	the	previous	steps.

https://temboo.com/download

5.	 Finally,	we	invoke	this	class	in	the	onSensorChanged	in	TemperatureCallback:

if	(val	>=	5)	{

												TembooClient	client	=	TembooClient.getInstance();

												client.callTemboo();

								}

That's	all.	Now	we	can	run	the	app	and	verify	that,	when	the	temperature	is	over	5°C,	the	app	invokes
Temboo	and	we	get	a	phone	call.	We	can	improve	the	code	shown	previously	with	a	control	that	avoids
sending	repeat	phone	calls	every	time	the	temperature	is	over	the	threshold	in	the	last	pre-configured	time
interval.

You	can	extend	this	project	integrating	other	services.

Summary
In	this	chapter,	we	covered	how	to	integrate	Android	Things	with	IoT	cloud	platforms.	Moreover,	we
have	covered	how	to	stream	data	to	the	cloud	and	how	to	create	dashboards	using	the	data	sent.	Now	we
are	ready	to	use	other	kinds	of	IoT	platforms	and	integrate	the	Android	Things	boards	with	cloud
services.	The	concepts	developed	in	this	chapter	can	be	applied	to	other	IoT	platforms	even	if	they	have
different	features	and	capabilities.	In	the	next	chapter,	we	will	learn	how	to	use	Android	Things	to	control
remote	IoT	boards	that	do	not	support	Android	Things.	We	will	implement	a	master-slave	architecture
where	the	Android	Things	board	is	the	master	and	the	slaves	are	the	low-level	boards	such	as	Arduino
UNO.

	

Create	a	Smart	System	to	Control	Ambient	Light
This	chapter	describes	how	to	create	a	system	that	uses	Android	Things	to	control	ambient	light.	During
this	project,	we	will	explore	how	to	use	the	Android	Things	app	to	control	IoT	boards	such	as	Arduino.
As	we	will	see	later,	Android	Things	can	be	used	as	anÂ	IoT	gateway	that	manages	one	or	more	remote
IoT	boards	in	a	master-slave	architecture.

The	main	topics	covered	in	this	chapter	are:

How	to	use	Android	Things	in	a	master-slave	architecture
Implementing	an	Arduino	sketch	to	control	a	RGB	LED	strip
How	to	use	HTTP	protocol	to	exchange	data
Creating	an	Android	Things	UI

At	the	end	of	this	chapter,	we	will	build	a	real-life	working	IoT	project	based	on	Android	Things	that	we
can	use	in	our	home	to	manage	LED	lights.

Ambient	light	control	system	description
Before	diving	into	the	project	implementation	details,	it	is	useful	to	have	an	overview	of	the	project	we
want	to	build.	The	idea	that	stands	behind	this	project	is	building	a	system	that	has	a	unique	center	of
control,	represented	by	Android	Things,	and	several	remote	IoT	boards	that	are	connected	to	RGB	LED
strips.	These	IoT	boards	receive	the	commands	from	the	Android	Things	app	and	according	to	these
commands,	they	set	various	RGB	LED	color	or	apply	several	light	effects.

This	project	uses	two	different	IoT	boards:

Android	Things	compatible	boards	such	as	Raspberry
PI	3	Arduino	Uno	R3

The	following	diagram	gives	an	overview	of	this	project	and	the	roles	played	by	these	two	boards:	

As	you	can	notice,	the	LED	strips	are	connected	to	Arduino	boards	that	manage	them	directly.	In	turn,	the
Arduino	boards	receive	commands	from	the	Android	Things	board	using	HTTP	protocol.	HTTP	protocol
is	a	web-oriented	protocol	that	we	can	use	to	exchange	data	between	different	IoT	boards.	Even	if	it
introduces	some	overheads	and	it	is	a	general	purpose	protocol,	it	is	easy	to	implement	and	we	can	easily
handle	it	in	Android	Things	and	Arduino.	For	some	contexts,	the	HTTP	protocol	would	not	be	the	best
choice,	especially	when	there	is	the	need	to	publish	data	in	a	one-to-many	paradigm.	In	this	project,
anyway,	we	do	not	need	these	features.	In	the	next	chapter,	we	will	cover	a	more	specific	IoT	protocol
called	MQTT.

Generally	speaking,	when	we	build	a	project	where	we	have	to	implement	a	Request-
Response	paradigm,	where	there	are	not	network	constraints	and	we	want	to	use	a	well-
known	and	widespread	protocol,	HTTP	protocol	can	be	our	ally.

The	benefits	of	this	architecture	are:

Unique	central	point	of	control
Unique	interface	to	external	world
Easy	to	implement

Project	components
To	build	this	IoT	project,	we	need:

1.	 LED	Strip.	In	this	project,	we	will	use	an	individually	addressable	LED	strip	based	on	WS2812b
protocol.	The	following	is	an	image	of	one	type	of	this	LED	strip:

Source:	https://www.amazon.it/gp/product/B01CDTE9UC/ref=oh_aui_detailpage_o00_s00?ie=UTF8&psc=1

2.	 This	is	a	60	RGB	LED	strip	and	its	length	is	1	meter.	You	can	buy	other	types	of	LED	strips,	but	they
must	use	WS2812b	protocol	because	this	protocol	guarantees	we	can	address	a	single	LED	in	the
strip.	According	to	the	manufacturer	specifications,	this	strips	requires	18W,	so	we	need	an	external
power	supply.

3.	 To	power	on	the	RGB	LED	strip	a	power	supply	is	necessary.	The	LED	strip	requires	18W	at	5V
therefore	we	need	a	power	supply	with	these	specifications.	The	following	image	shows	the	one
used	in	this	project:

Source	https://www.amazon.it/gp/product/B01HRR9GY4/ref=oh_aui_detailpage_o00_s00?ie=UTF8&psc=1

4.	 An	Arduino	board	(one	or	more).	This	project	uses	Arduino	Uno	R3,	but	you	can	use	other	board
types	compatible	with	Arduino.	If	you	use	Arduino	Uno	you	need	a	WiFi	shield	or	an	Ethernet	shield
to	connect	this	board	to	the	net.

https://www.amazon.it/gp/product/B01CDTE9UC/ref=oh_aui_detailpage_o00_s00?ie=UTF8&psc=1
http://www.amazon.it/gp/product/B01HRR9GY4/ref%3Doh_aui_detailpage_o00_s00?ie=UTF8&psc=1

Project	architecture
Now	we	know	the	components	that	will	build	our	IoT	project	we	have	to	understand	how	these
components	are	connected.	In	this	project,	the	Android	Things	board	does	not	manage	sensors	or	other
kinds	of	peripherals;	it	acts	as	a	central	gateway	that	handles	remote	boards.	Therefore,	the	project	can	be
divided	into	two	different	components:

1.	 Arduino	project.
2.	 Android	Things	app.

It	is	important	to	clarify	the	roles	played	by	these	two	blocks	in	order	to	have	a	clear	overview	when	we
develop	the	project.

The	main	tasks	that	the	Arduino	board	has	to	do	are:

1.	 Implement	the	logic	to	handle	the	RGB	LED	strip	according	to	the	WS2812	protocol.
2.	 Expose	a	set	of	services	that	can	be	called	and	used	by	the	Android	Things	app.

On	the	other	hand,	the	tasks	of	the	Android	Things	app	are:

1.	 Implement	the	logic	to	invoke	the	services	exposed	by	the	Arduino	board.
2.	 Implement	a	User	Interface	so	that	a	user	can	remotely	control	the	RGB	LED	strip.

Let	us	start	by	implementing	the	Arduino	project	side.

Building	the	Arduino	project
In	this	paragraph,	we	will	implement	the	Arduino	project.	The	first	step	is	connecting	the	RGB	LED	strip
to	Arduino,	as	described	in	the	following	figure:

As	you	can	see,	the	wiring	is	very	simple.	The	WS2812	peripherals	have	only	one	data	pin	that	is
connected	to	the	Arduino	pin	5	(PWM).

Do	not	forget	to	connect	the	ground	all	together	to	have	a	common	reference.

Now	it	is	time	to	start	developing	the	code.	To	handle	the	RGB	LED	strip	we	will	use	a	library
developed	by	Adafruit	that	makes	it	very	easy	to	manage	every	RGB	LED	available	on	the	strip.	You	can
directly	use	the	source	code	of	this	sketch	and	upload	it	into	your	Arduino	Uno	board,	skipping	all	the
following	steps.	You	can	find	the	source	code	once	you	have	downloaded	the	book	project	source	code.
Anyway,	it	is	useful	to	follow	this	guide	step	by	step	because	it	helps	you	to	better	understand	how	to
implement	the	Android	Things	app.

Therefore,	the	first	step	is	installing	this	library:

1.	 Open	Arduino	IDE.
2.	 Navigate	to	Sketch	|	Include	Library	|	Manage	Library	and	at	the	end,	you	will	have	a	new	window

like	the	one	shown	in	the	following	screenshot:

3.	 In	the	input	box	write	neopixel.	The	IDE	will	show	a	list	of	libraries.	Select	the	library	called	Adafruit
Neopixel.

4.	 Click	on	the	Install	button.

The	library	is	ready	and	we	can	use	it	in	our	sketch.	At	the	beginning,	we	will	use	the	library	to	manage
the	RGB	LED	color	and	to	create	simple	effects.	In	the	next	steps,	you	have	to	use	the	Arduino	IDE.	If	you
do	not	have	it	already	you	can	download	this	IDE	from	https://www.arduino.cc/en/main/software.	The	steps	are
described	as	follows:

1.	 Create	a	new	sketch	in	Arduino	IDE.
2.	 Add	at	the	top	of	the	file	the	following	line:

#include	<Adafruit_NeoPixel.h>

3.	 Now	we	have	to	define	the	pin	where	the	LED	strip	is	connected	and	the	number	of	LEDs	available.
Therefore	add	the	following	line:

#define	PIN	5

								#define	LED_NUMBER	60

In	the	strip	we	are	using	in	this	project,	there	are	60	RGB	LEDs;	change	this	value	according	to	the
number	of	LEDs	available	in	your	strip.

1.	 Now	the	sketch	configures	the	communication	with	the	LED	strip:

Adafruit_NeoPixel	strip	=	

								Adafruit_NeoPixel(LED_NUMBER,	PIN,

								NEO_GRB	+NEO_KHZ800);

You	can	find	more	information	about	how	to	set	the	configuration	parameters	at
this	link	https://github.com/adafruit/Adafruit_NeoPixel.

https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://github.com/adafruit/Adafruit_NeoPixel

2.	 In	the	setup()	method	add	the	following	line:

strip.begin();

This	line	initializes	the	strip	so	that	we	can	start	using	it.

3.	 Now	add	the	following	method	to	the	sketch:

void	fillStrip(uint32_t	color,	int	wait,	int	

							direction)	{

									int	first,	last;

									setDirection(&first,	&last,	direction);

									for	(int	p	=	first;	p	<=	last;	p++)	{

												strip.setPixelColor(abs(p),	color);

												strip.show();

											delay(wait);

										}

								}

This	method	simply	fills	the	strip	with	a	color	passed	in	the	uint32_t	color	parameter.	Inside	this
method,	we	apply	a	simple	animation	when	we	turn	on	every	RGB	LED	in	the	strip.	The	wait
parameter	represents	the	time	elapsed	before	the	next	RGB	LED	is	turned	on	by	modifying	this
parameter	we	can	increase	or	decrease	the	time	spent	to	fill	the	strip	with	the	specified	color.	In
addition	to	this,	the	direction	represents	the	way	the	RGB	LEDs	are	turned	on:	from	the	bottom	to
the	top	or	vice-versa.

4.	 Finally,	the	last	method	turns	all	the	RGB	LEDs	off	using	the	same	effects	described	previously:

void	clearStrip(int	wait,	int	direction)	{	

										int	first,	last;

										setDirection(&first,	&last,	direction);	

												for	(int	p	=	first;	p	<=	last;	p++)	{

												strip.setPixelColor(abs(p),	0);	strip.show();

												delay(wait);

											}

								}

You	can	add	other	methods	to	implement	different	light	effects.	In	the	source	code,	it	also	implemented	a
rainbow	effect.	Before	proceeding	further,	it	is	worthwhile	to	test	the	preceding	code	to	be	sure	that
Arduino	manages	the	RGB	LED	strip	correctly.

#include	<Ethernet.h>
	#include	"aREST.h"

#define	SERVER_PORT	80

EthernetServer	server(SERVER_PORT);
	//	Create	aREST
	aREST	rest	=
aREST();

rest.function("fill",	setStripColor);
	rest.function("clear",	setClearStrip);

rest.function("rainbow",	setRainbow);

int	setStripColor(String	command)	{
	Serial.println("Color	strip	function...");

struct	data	value	=	parseCommand(command);
	debugData(value);

fillStrip(strip.Color(value.r,value.g,value.b),
	value.wait,	value.dir);
	return	1;

	}

In	the	previous	code,	the	parseCommand	function	simply	extracts	the	data	we	will	use	to
manage	the	strip.	In	this	project,	we	suppose	that	the	command	structure	is	very	simple
and	it	is	represented	by	a	string	where	all	the	values	are	chained.	The	structure	is:

The	first	char	represents	the	direction
The	next	6	chars	represent	the	color	in	hex	format
The	next	2	chars	the	delay
The	last	one	the	function

At	the	end,	this	function	calls	the	fillStrip	function	to	set	the	strip	color	effects.	In	the
same	ways	are	defined	the	other	methods	exposed.	You	can	find	the	code	in	the
companion	project	example	attached	to	this	book.

Now	we	are	ready	to	develop	the	Android	Things	app	to	control	the	Arduino	board.

Implementing	the	Android	Things	app
Let	us	come	back	to	the	Android	Things	app.	Once	the	Arduino	sketch	is	implemented	and	works
correctly,	we	can	focus	our	attention	on	the	Android	Things	side.	The	app	we	are	going	to	develop	has	to
control	the	Arduino	board	and	in	turn	the	RGB	LED	strip.	To	this	purpose	the	app	must	have:

A	user	interface	to	interact	with	the	user,	so	that	they	can	select	the	strip	LED	color	or	activate	an
effect
Exchange	data	with	remote	boards	using	the	services	exposed	as	described	in	the	previous	section

An	important	aspect	is	related	to	the	user	interface.	As	stated	in	Chapter	1,	Getting	Started	with	Android
Things,	the	user	interface	is	optional.	This	means	that	there	are	some	devices	that	support	the	UI	and	other
devices	that	do	not	support	it.	For	example,	Raspberry	PI	3	belongs	to	the	group	that	supports	the	UI
while	Intel	Edison	with	Arduino	breakout	kit	will	not.	For	this	reason,	we	will	run	the	app	on	the
Raspberry	PI	3,	while	for	Intel	Edison	we	will	use	a	different	approach	that	we	will	describe	later.

	

<RelativeLayout	xmlns:android
	="http://schemas.android.com/apk/res/android"

	android:layout_width="match_parent"

android:layout_height="match_parent">

<TextView
	android:layout_width="wrap_content"

android:layout_height="wrap_content"
	android:text="R"

android:layout_below="@id/txtLabel"
	android:layout_margin="10dp"

android:id="@+id/lblRed"/>
	<SeekBar
	android:layout_width="200dp"

android:layout_height="wrap_content"	
	android:max="255"
android:id="@+id/rColorBar"
	android:layout_alignBottom="@id/lblRed"

android:layout_toRightOf="@id/lblRed"/>
	<TextView

android:layout_width="wrap_content"
	android:layout_height="wrap_content"

android:text="G"	
	android:layout_below="@id/lblRed"

android:layout_margin="10dp"	
	android:id="@+id/lblGreen"/>

<SeekBar
	android:layout_width="200dp"

android:layout_height="wrap_content"
	android:max="255"
android:id="@+id/gColorBar"
	android:layout_alignBottom="@id/lblGreen"

android:layout_toRightOf="@id/lblGreen"/>
	<TextView

android:layout_width="wrap_content"
	android:layout_height="wrap_content"	

android:text="B"	
	android:layout_below="@id/lblGreen"

android:layout_margin="10dp"	
	android:id="@+id/lblBlue"/>
	<SeekBar

android:layout_width="200dp"
	android:layout_height="wrap_content"	

android:max="255"	android:id="@+id/bColorBar"

android:layout_alignBottom="@id/lblBlue"

android:layout_toRightOf="@id/lblBlue"/>

<TextView
	android:layout_width="wrap_content"

android:layout_height="wrap_content"	
	android:text="Delay	in	milliseconds"

android:id="@+id/lblDel"
	android:layout_below="@id/lblBlue"	

android:layout_marginTop="20dp"/>
	<EditText

android:layout_width="wrap_content"	
	android:layout_height="wrap_content"

android:layout_below="@id/lblDel"	
	android:text="10"	

android:id="@+id/delText"/>

<TextView
	android:layout_width="wrap_content"

android:layout_height="wrap_content"
	android:text="Direction"

android:id="@+id/lblDir"
	android:layout_below="@id/delText"

android:layout_marginTop="20dp"/>
	<Spinner

android:layout_width="wrap_content"
	android:layout_height="wrap_content"

android:id="@+id/direction"
	android:layout_below="@id/lblDir"/>

<Button
	android:layout_width="wrap_content"

android:layout_height="wrap_content"
	android:layout_below="@id/txtLabel"

android:layout_marginTop="25dp"
	android:layout_marginRight="25dp"	

android:text="Go!"
	android:id="@+id/btnGo"

android:layout_alignParentRight="true"/>
	<Button

android:layout_width="wrap_content"
	android:layout_height="wrap_content"

android:id="@+id/btnClear"	
	android:text="Clear	the	strip"

android:layout_below="@id/btnGo"
	android:layout_alignLeft="@id/btnGo"/>

<Button
	android:layout_width="wrap_content"

android:layout_height="wrap_content"
	android:id="@+id/btnRainbow"	

android:text="Rainbow"
	android:layout_below="@id/btnClear"

android:layout_alignLeft="@id/btnGo"/>

That's	all;	the	layout	is	defined.

Attaching	the	layout	to	the	Activity
To	show	the	layout	when	the	Activity	is	started	we	have	to	attach	the	layout	defined	previously	to	the
Activity	itself:

1.	 Open	MainActivity.java	and	in	the	onCreate	method	add	the	following	line:

setContentView(R.layout.main_activity);

In	this	way,	the	layout	defined	previously	is	attached	to	the	Activity.

2.	 Now	we	have	to	get	a	reference	to	each	widget.	We	do	it	using	findViewById	that	accepts	the	id	used	in
the	layout	to	identify	the	widget.	For	example,	to	get	the	reference	to	the	red	seek	bar	we	use:

rBar	=	(SeekBar)	findViewById(R.id.rColorBar);

3.	 Let	us	repeat	the	preceding	code	for	all	the	widgets	in	the	layout.	Be	aware	that	the	widget	type	is
not	always	the	same.

4.	 In	the	layout	described	before,	we	have	used	a	Spinner	widget.	This	type	of	widget	must	be	populated
with	the	values	so	that	the	user	can	select	one	of	them.	To	do	it,	we	use	an	Adapter.	This	is	a	bridge
between	the	View	(or	the	widget)	and	the	underlying	data.	You	can	find	more	information	at	this	link	(h
ttps://developer.android.com/reference/android/widget/Adapter.html).	In	this	example,	we	use	a	simple	ArrayAdapter:

dirSpinner	=	(Spinner)	

findViewById(R.id.direction);

ArrayAdapter<CharSequence>	adapter	=

ArrayAdapter.createFromResource(this,

R.array.direction,	

android.R.layout.simple_spinner_item);		

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dro	pdown_item);

dirSpinner.setAdapter(adapter);

Here,	R.array.direction	is	defined	in	the	String.xml	file	under	the	values	folder	in	this	way:

<string-array	name="direction">

								<item>Forward</item>

								<item>Backward</item>

								</string-array>

Now	the	layout	definition	is	completed	and	the	layout	is	attached	to	the	Activity.	If	we	run	the	Android
Things	app	on	Raspberry	PI	3,	we	get	something	like	the	following:

https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/reference/android/widget/Adapter.html

It	is	time	to	handle	the	UI	events.

Handling	UI	events
In	order	to	handle	the	user	interaction	with	the	widget,	it	is	necessary	to	attach	a	listener	to	the	widget.
There	are	several	kinds	of	listeners	and	we	have	to	use	the	right	one	according	to	the	type	of	event	we
want	to	listen	to.

Let	us	start	with	the	seek	bar.	In	this	case,	we	want	to	be	informed	when	the	progress	level	in	the	bar	is
changing:

1.	 Look	for	the	rBar	attribute	defined	in	the	MainActivity.
2.	 Attach	this	listener	to	rBar:

rBar.setOnSeekBarChangeListener(new

								SeekBar.OnSeekBarChangeListener()	{

								@Override

								public	void	onProgressChanged(

								SeekBar	seekBar,	int	i,	boolean	b)	{	red	=	i;

								}

								@Override

								public	void	onStartTrackingTouch(SeekBar	seekBar)

							{	}

								@Override

								public	void	onStopTrackingTouch(SeekBar	seekBar)

								{}

								});

As	you	can	see,	we	are	interested	only	in	the	onProgressChanged	method,	which	is	called	when	the	bar
value	changes.	In	this	case,	considering	we	are	handling	the	red	seek	bar,	we	simply	save	the
current	bar	value	to	a	global	variable	called	red.

3.	 Repeat	the	same	piece	of	code	for	the	other	two	seek	bars,	storing	the	green	and	blue	values	in	two
global	variables.

Now,	we	have	to	focus	our	attention	on	buttons.	We	use	them	to	send	commands	to	the	Arduino
board	and	in	turn	to	the	RGB	LED	strip.	In	this	context,	we	are	interested	to	be	informed	when	the
user	clicks	on	the	button	so	that	we	have	to	use	the	right	listener:

4.	 Get	the	reference	to	the	button	widgets,	as	described	previously:

btnGo	=	(Button)	findViewById(R.id.btnGo);

								btnClear	=	(Button)	findViewById(R.id.btnClear);

								btnRainbow	=	(Button)	

								findViewById(R.id.btnRainbow);

5.	 For	each	button,	we	have	to	attach	the	listener.	For	btnGo,	we	add	the	following	listener:

btnGo.setOnClickListener(new	

								View.OnClickListener()	{

								@Override

								public	void	onClick(View	view)	{

								//	Call	the	Arduino	board	services

								}

								});

6.	 Let	us	repeat	the	same	piece	of	code	for	the	other	two	buttons.

Great!	We	are	ready	now	to	handle	the	connection	to	the	Arduino	board	and	invoke	the	services	exposed
previously.

Invoking	the	Arduino	services
In	this	paragraph,	we	will	explore	how	to	invoke	the	Arduino	services	exposed	using	the	Rest	paradigm.
In	this	context,	we	have	to	call	the	services	passing	the	data	defined	in	the	user	interface	exposed	by	our
Android	Things	app.	While	in	the	previous	chapter	we	used	the	Volley	library,	in	this	chapter	we	will	use
another	library	to	handle	the	HTTP	connection	called	OkHTTP	(http://square.github.io/okhttp/).	In	this	way,	you	use
another	approach	and	you	can	select	the	best	one	according	to	your	requirements.

The	first	thing	to	do	is	add	the	library	to	our	build.gradle	file:

compile	'com.squareup.okhttp3:okhttp:3.6.0'

Now	we	can	create	another	class	to	handle	the	communication	details	with	the	Arduino	board:

1.	 Create	a	new	class	called	BoardController.java.
2.	 Add	a	private	constructor	because	this	class	must	be	a	singleton:

private	BoardController()	{	client	=	new	

						OkHttpClient();

								}

								public	static	BoardController	getInstance()	{	if		

					(me	==	null)

								me	=	new	BoardController();	return	me;

								}

Notice	that	in	the	constructor	we	initialize	the	library	that	handles	the	HTTP
connections.

3.	 Now	we	have	to	create	a	method	that	sends	data	to	the	Arduino	board	invoking	the	Rest	services.	The
code	may	seem	complex,	but	it	is	very	simple	and	follows	these	steps:
1.	 Convert	the	R,G,B	values	into	the	hexadecimal	representation.
2.	 Select	which	service	to	call.	In	this	example,	there	are	three	different	services:	Set	the	strip

color,	clear	the	strip,	and	the	rainbow	effect.
3.	 Make	the	request:

public	void	sendData

												(int	r,	int	g,	int	b,	int	wait,	int	dir,	

								int	func)	{	String	

										hexColor	=getHex(r)	+	getHex(g)	+	getHex(b);

														String	params	=	Integer.toString(dir)	+	

													hexColor	+	(

												(wait	<	10)	?	"0"	+	

								Integer.toString(wait)	:

														Integer.toString(wait))	+	"9";

											String	url	=	baseUrl;	

							switch	(func)	{case	0:

															url	+=	"fill";

							break;	case	1:

																url	+=	"clear";

							break;	case	2:

																url	+=	"rainbow";}

							Log.d(TAG,	"URL	["+url+"]	-	Params	

						["+params+"]");

							Request	request	=	new	Request.Builder()

												.url(url	+	"?params="	+	params)

												.build();

							client.newCall(request).enqueue(new	Callback()	{

http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/
http://square.github.io/okhttp/

							@Override

											public	void	onFailure(

											Call	call,	IOException	e)	{}

											@Override

											public	void	onResponse(

											Call	call,	Response	response)	throws	

									IOException	{

												Log.d(TAG,	"Response	

								["+response.body().string()+"]");

												}

												});

Notice	that	the	method	creates	the	URL	to	call	appending	to	the	base	URL,	in	other	word,	the
IP	address	of	the	Arduino	board,	the	param	holding	the	value	to	send.	Moreover,	notice	how
simple	it	is	to	make	the	HTTP	request.	We	simply	invoke	the	URL	and	wait	for	the	response
defining	a	callback	class.

4.	 Now,	we	have	to	retrieve	the	parameters	defined	in	the	app	UI	and	send	them	to	the	Arduino
services.

5.	 Now,	let	us	modify	the	listeners	attached	to	the	buttons	so	that	when	they	are	clicked	invokes	the
method	to	send	data.

Congratulations!	Now	the	project	is	complete	and	we	can	use	it	to	control	Arduino	boards.	You	can
extend	this	project	to	handle	other	types	of	boards.	As	long	as	the	services	exposed	remain	the	same	you
can	reuse	the	Android	Things	app	to	handle	other	IoT	boards.

The	following	is	the	app	log	when	it	makes	the	request	to	the	Arduino	services	and	gets	the	response:

								URL	[http://192.168.1.6/fill]	-	Params	

						[1803780059]									Response	[{"return_value":	1,	"id":	"",	"name":	

						"",	"hardware":

								"arduino",	"connected":	true}

In	the	preceding	example,	the	app	invokes	the	fill	services	to	set	the	RGB	LED	color.

How	to	implement	a	web	interface
There	are	some	devices	that	do	not	support	the	UI	or	times	when	we	do	not	want	to	create	an	UI	and	we
prefer	to	expose	a	web	interface	instead.	This	is	possible	in	Android	Things	by	implementing	a	simple
HTTP	Web	server.	In	this	paragraph,	we	will	describe	how	to	use	a	web	interface	to	control	the	RGB
LED	string	in	the	same	way	we	did	previously.	The	basic	idea	that	stands	behind	this	is	creating	an
HTML	page	where	the	user	can	set	the	values	to	control	the	LED	strip.	To	do	it	we	have	to	follow	these
steps:

1.	 Create	a	HTTP	server	to	handle	the	incoming	requests.
2.	 Create	an	HTML	page	containing	all	the	controls	to	configure	the	RGB	LED	strip.
3.	 Embed	the	HTTP	server	into	the	Android	Things	app.

Let	us	describe	how	to	do	it.

	

public	class	AndroidWebServer	extends	NanoHTTPD	{	
	..	}

public	AndroidWebServer(int	port,	Context	ctx)	{	
	super(port);
	this.ctx	=	ctx;

	try	{
	start();
	}
	catch(IOException	ioe)	{
	Log.e(TAG,	"Unable
to	start	the	server");
	ioe.printStackTrace();
	}

@Override
	public	Response	serve(IHTTPSession	session)	{
	Map<String,
String>	parms	=	session.getParms();	
	String	param	=	parms.get("params");

String	action	=	parms.get("action");	
	String	delay	=	parms.get("delay");	
	String
r	=	parms.get("red");
	String	g	=	parms.get("green");
	String	b	=
parms.get("blue");	
	String	dir	=	parms.get("dir");
	String	content	=	null;
	if
(action	==	null)	{
	content	=	readFile().toString();
	}
	else	{

Log.d(TAG,	"Action	["+action+"]");
	listener.handleCommand(Integer.parseInt(r),

	Integer.parseInt(g),	
	Integer.parseInt(b),	
	Integer.parseInt(delay),	

Integer.parseInt(dir),	
	Integer.parseInt(action));
	}
	return
newFixedLengthResponse(content);
	}

There	are	two	aspects	to	notice:

1.	 If	the	action	is	null	then	the	class	reads	the	file	that	holds	the	HTML	content.
2.	 Otherwise,	it	invokes	a	listener	passing	the	parameters	extracted	from	the	request.

The	web	server	implementation	is	ready	and	we	have	to	embed	it	into	our	Android
Things	app.

Creating	the	HTML	page	with	the	UI
In	this	step,	we	will	create	the	HTML	page	that	holds	all	the	controls	to	configure	the	RGB	LED	strip	as
we	did	previously	when	implementing	the	Android	UI:

1.	 In	Android	Studio	create	a	folder	called	assets	under	the	app	folder.
2.	 Inside	the	assets	folder,	copy	the	file	home.html	from	the	companion	book	source	code.

As	you	may	know	already,	the	assets	folder	is	used	to	store	arbitrary	files	such	as	text	files,	audio	files,
and	so	on.	The	app	can	reference	it	using	AssetManager	at	https://developer.android.com/reference/android/content/res/AssetM
anager.html.

So	it	is	time	to	implement	the	readFile()	method	used	by	the	HTTP	server	to	serve	the	HTML	page:

1.	 Open	the	AndroidWebServer.java	class	again.
2.	 Add	the	following	method:

private	StringBuffer	readFile()	{

												BufferedReader	reader	=	null;	

												StringBuffer	buffer	=	new	StringBuffer();	

												try	{

													reader	=	new	BufferedReader(

															new	InputStreamReader

																(ctx.getAssets().open("home.html"),	"UTF-

																		8"));	

													String	mLine;

													while	((mLine	=	reader.readLine())	!=	null)	{

													buffer.append(mLine);

													buffer.append("\n");

															}

													}

													catch(IOException	ioe)	{	

													ioe.printStackTrace();

													}

													finally	{

													//	close	the	reader

													}

											return	buffer;

									}

As	you	can	notice	in	the	previous	code,	the	method	reads	the	home.html	storing	it	in	a	StrinBuffer	and	this
buffer	is	ready	to	be	served	as	a	response	from	the	browser	request.

The	last	step	is	embedding	the	HTTP	server	into	the	Android	Things	app.

https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/reference/android/content/res/AssetManager.html

Embedding	the	HTTP	Server	into	the	Android
Things	app
Finally,	the	last	step:	the	easiest	one.	We	have	to	start	and	stop	the	web	server	and	implement	the	listener,
so	that	we	get	notified	when	the	user	sends	data	using	the	HTML	page:

1.	 Open	MainActivity.java	again	and	modify	it	in	this	way:

public	class	MainActivity	extends	Activity	

								implements

								AndroidWebServer.WebserverListener	{	...	}

Here,	the	WeserverListener	is	the	callback	interface.

2.	 In	the	onCreate	method	let's	add	these	lines:

if	(Boards.enableWebserver())	{

								aws	=	new	AndroidWebServer(8180,	this);	

								aws.setListener(this);

								}

The	preceding	code	simply	checks	the	type	of	the	Android	Things	board	as	we	described	in	Chapter	2,
Creating	an	Alarm	System	Using	Android	Things.	If	the	board	is	one	that	does	not	support	the	UI
interface,	the	app	starts	the	web	server:

Finally,	the	app	implements	the	callback	method	called	by	the	AndroidWebServer	class	when	it	is	time	to
control	the	RGB	LED	strip:

@Override

								public	void	handleCommand(int	r,	int	g,	int	b,	int	

										delay,	int

								dir,	

								int	func)	{

											BoardController.getInstance().sendData(r,	g,	b,

																											delay,	dir,	func);

							}

In	this	method	we	simply	send	data	to	the	BoardController	that	in	turns	invokes	the	Arduino	services.

To	test	the	app,	we	can	open	the	browser	and	invoke	the	web	server	URL:

http://android_things_ip:8180/home.html

At	the	end,	the	Android	Things	app	creates	a	web	page	that	we	can	use	to	configure	the	RGB	LED	strip.
The	following	screenshot	shows	the	web	interface:

Using	the	controls	shown	in	the	web	page	we	can	obtain	the	same	result	as	if	we	were	using	the	Android
UI	interface.

Summary
In	this	chapter,	we	explored	how	to	use	Android	Things	as	a	gateway	to	control	IoT	boards	that	are	not
compatible	with	Android	Things	OS.	We	discovered	how	to	set	up	a	master/slave	architecture	where
Android	Things	acts	as	a	master	and	as	a	front-end	board.	In	the	next	chapter,	we	will	explore	another
interesting	aspect	about	how	to	use	MQTT	protocol	in	IoT	projects	and	how	to	use	Android	Things	and
MQTT.

	

Remote	Weather	Station
This	chapter	explores	how	to	build	a	Remote	Weather	station	that	acquires	weather	information	using
several	sensors.	This	IoT	project	uses	an	Android	Things-compatible	board	and	several	IoT	boards	that
connect	to	Android	Things	using	the	MQTT	protocol.	Through	this	project,	we	will	cover	how	to
exchange	data	between	different	devices.	This	aspect	is	known	as	machine	to	machine	communication.
This	is	an	important	topic	in	the	IoT	ecosystem.	As	we	will	see	during	this	chapter,	Machine	to	Machine
(M2M)	includes	all	the	technologies	that	enable	devices	to	talk	to	each	other.	In	this	chapter,	we	will
focus	on	the	MQTT	protocol,	describing	how	it	is	used	in	real-life	IoT	projects.

In	more	detail,	this	chapter	focuses	on:

The	M2M	architecture	and	MQTT	protocol
How	to	use	the	MQTT	protocol	with	Android	Things
How	to	acquire	and	stream	real-time	data

Before	starting,	it	is	useful	to	have	an	overview	of	the	Weather	remote	IoT	project	so	that	we	can	better
understand	theÂ	M2M	architecture	and	the	role	of	the	MQTT	protocol.

Remote	weather	station	project	description
As	stated	before,	we	want	to	build	an	Android	Things	Remote	weather	station	that	acquires	data	from
remote	sensors	connected	to	several	IoT	boards.	In	this	project,	the	Android	Things	board	acts	as	an
MQTT	client	that	collects	data	coming	from	remote	sensors	and	visualizes	it	through	an	UI.	In	this	context,
the	sensors	are	not	connected	physically	to	the	Android	Things	board,	but	they	are	managed	by	other	non-
compatible	IoT	boards.	In	turn,	these	IoT	boards	exchange	data	with	Android	Things	using	MQTT.	We
will	describe	in	more	details	what	MQTT	is	and	how	to	use	it	later.	For	now,	it	is	enough	to	know	that
MQTT	is	a	lightweight	protocol	that	is	widely	used	in	M2M	communication.

The	following	diagram	describes	the	project	architecture:	

As	you	might	already	foresee,	this	project	emulates	the	scenario	where	we	have	sensors	and	IoT	boards
physically	placed	somewhere	far	from	the	place	where	we	collect	data	and	analyze	it.	Therefore,	this
project	architecture	can	be	extended	to	other	kinds	of	scenario	as	we	will	see	later.	This	is	a	Machine	to
Machine	architecture	where	data	walks	from	the	source	(sensors	and	IoT	boards)	to	the	destination
(Android	Things	app)	without	human	action.

Let	us	describe	the	main	components	used	in	this	project.

Project	components
Before	delving	into	the	project	details	and	how	to	use	the	MQTT	protocol	to	exchange	data,	it	is
worthwhile	to	have	an	overview	of	the	components	and	sensors	used	in	this	project:

Wemos	D1	mini	(it	acts	as	the	Sensors	Unit	Manager):

Source	https://www.wemos.cc/product/d1-mini.html.

This	is	compatible	ESP8266	board	that	has	a	built-in	Wi-Fi	module.	The	project	uses	this	board	to
manage	a	set	of	sensors	to	acquire	data.

	

Pressure	sensor	BMP280.	We	used	it	in	Chapter	3,	How	to	Make	an	Environmental	Monitoring
System:

Source	https://learn.adafruit.com/adafruit-bmp280-barometric-pressure-plus-temperature-sensor-breakout/overview

The	DHT	11,	which	that	measures	the	temperature	and	humidity:

https://learn.adafruit.com/adafruit-bmp280-barometric-pressure-plus-temperature-sensor-breakout/overview

source	http://www.electrodragon.com/product/humidity-and-temperature-sensor-dht11/#prettyPhoto/0/

Finally,	an	ambient	light	sensor	TEMT6000:

Sourcehttps://www.sparkfun.com/products/8688

In	addition	to	these	components,	the	project	uses	two	other	IoT	boards:

Arduino	MKR1000	(https://www.arduino.cc/en/Main/ArduinoMKR1000)
Raspberry	Pi	2	(https://www.raspberrypi.org/products/raspberry-pi-2-model-b/)

The	Arduino	MKR1000	manages	another	set	of	sensors	(Sensors	Unit	2)	that	measure	the	same	physical
properties,	except	the	light	intensity.	The	Raspberry	Pi	2	will	act	as	a	broker	between	the	two	sensors	unit
(Wemos	and	MKR1000)	and	Android	Things	board.	We	will	cover	these	details	in	the	next	paragraphs.

http://www.electrodragon.com/product/humidity-and-temperature-sensor-dht11/%23prettyPhoto/0/
http://www.electrodragon.com/product/humidity-and-temperature-sensor-dht11/%23prettyPhoto/0/
http://www.sparkfun.com/products/8688
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.arduino.cc/en/Main/ArduinoMKR1000
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

The	M2M	architecture	and	the	MQTT	protocol
By	now,	in	the	previous	chapters,	we	have	covered	how	to	acquire	data	from	sensors	connected	to	the
Android	Things	board	and	how	to	use	the	Android	Things	board	to	manage	remote	IoT	boards	that	are
non-compatible	with	Android	Things.	Moreover,	we	use	the	Android	Things	board	to	send	data	to	the
cloud	using	IoT	cloud	platforms.	There	is	another	important	aspect	that	is	important	to	cover:	how	to	use
Android	Things	in	Machine	to	Machine	(M2M)	architecture	and	the	role	the	MQTT	protocol	plays	in
this	architecture.

M2M	is	an	emerging	key	component	in	Internet	of	things	and	Industrial	Internet	of	Things	(IIoT).	M2M
is	focused	on	how	machines	talk	to	each	other	when	exchanging	data	and	information.	In	other	words,
with	Machine	to	Machine	terms,	we	refer	to	all	the	technologies	and	wireless	networks	that	enable	real-
time	data	exchanging	without	human	actions.	In	other	words,	the	machine	(or	object)	exchanges	data	by
itself	with	other	machines.	This	aspect	is	very	important	because	it	opens	new	application	scenarios,	such
as:

Telemetry
Real-time	failure	notification
Remote	machine	status	control
Real-time	data	acquisition

In	this	scenario,	an	important	role	is	played	by	the	MQTT	protocol.	It	is	important	to	know	how	it	works
so	that	we	can	exploit	its	features	in	our	IoT	projects.	In	the	next	paragraph,	we	will	cover	the	MQTT
protocol	details	before	implementing	it	in	our	IoT	project.

MQTT	protocol	overview
Message	Queue	Telemetry	Transport	(MQTT)	is	a	light-weight	message-based	protocol.	MQTT	is	an
open	protocol	widely	used	in	Internet	of	things	in	Machine	to	Machine	(M2M)	data	exchange.	It	was
developed	around	1999	and	now	it	is	an	OASIS	standard	(https://www.oasis-open.org/committees/tc_home.php?wg_abbr
ev=mqtt).	This	protocol	is	easy	to	use	and	implement.	It	was	designed	with	the	target	of	having	a	small
overhead.	As	we	said	before,	MQTT	is	suitable	for	M2M	communication	where	there	are	network
bandwidth	constraints.	At	the	time	of	writing,	the	latest	version	of	MQTT	is	3.1.	The	open	nature	of	this
protocol	and	its	features	are	powering	the	MQTT	adoption.	Moreover,	there	are	several	open-source
implementations	for	different	devices	and	platforms	providing	a	wide	range	of	options.	Furthermore,
several	IoT	cloud	platforms	have	adopted	it	as	a	standard	protocol	to	transfer	information	from	IoT
boards.

MQTT	can	be	profitably	used	in	several	scenarios	where	message	delivery	is	the	main	target	while	the
network	is	unreliable.	Generally	speaking,	Message	Queue	Telemetry	Transport,	even	if	it	is	largely
adopted	in	the	IoT	ecosystem,	it	is	not	limited	to	it.	There	are	other	integration	scenarios	where	MQTT
features	fit	perfectly	such	as	data	exchange	between	smartphones,	tablets,	or	other	devices.	Just	to	name	a
few	common	use	cases	where	MQTT	plays	an	important	role,	we	can	remember:

Telemetry
Notification	systems
Smart	home

One	important	aspect	to	consider	when	using	MQTT	is	that	this	protocol	is	a	clear
protocol.	In	other	words,	MQTT	does	not	implement	a	security	mechanism	by	itself.

We	will	cover	the	security	aspects	later.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt

MQTT	message	details
As	stated	before,	MQTT	is	a	message-centric	protocol,	or,	in	other	words,	the	clients	that	participate	in
the	data	exchange	process	send	and	receive	messages.	MQTT	is	based	on	the	publish/subscriber	pattern.
The	following	diagram	shows	the	interactions	between	participants:	

In	MQTT	there	are	three	main	participants	in	the	message	exchange	process:

Publisher:	This	is	the	device	that	produces	the	message.	It	is	the	source	of	the	information.	In	our
IoT	project,	we	have	at	least	two	publishers.	They	are	the	IoT	boards	that	acquire	data	from	sensors
and	send	it.
MQTT	Broker:	This	is	a	key	component	that	enables	the	message	flow	from	the	publisher	to	the
subscriber.	It	acts	as	a	dispatcher,	receiving	messages	from	the	publisher	and	forwarding	them	to	the
subscribers.
Subscriber:	This	is	the	device/client	that	is	interested	in	receiving	messages	from	the	publisher.	In
our	IoT	project,	the	Android	Things	board	is	the	subscriber.

In	order	to	filter	the	subscribers	that	will	receive	the	message	coming	from	the	publisher,	the	MQTT
broker	uses	a	topic.	A	topic	is	a	virtual	channel	between	the	publisher	and	the	subscribers.	In	the	MQTT
context,	a	topic	is	represented	as	a	UTF-8	string.	Topics	can	be	combined	together	in	the	same	way	we
are	used	to	managing	folders	and	subfolders.

The	following	figure	describes	the	main	steps	in	the	message	exchange	process:	

These	are	the	main	steps:

1.	 A	client	subscribes	to	a	topic	declaring	that	it's	willing	to	receive	messages.
2.	 A	publisher	starts	publishing	messages	on	the	same	topic	used	by	the	subscriber.
3.	 The	messages	arrive	at	the	MQTT	broker,	which	in	turn	forwards	them	to	the	client.

It	is	very	important	that	you	understand	how	MQTT	works	before	implementing	it	in	our
Remote	weather	station	project.

The	message	architecture	implemented	by	MQTT	has	several	benefits:

Its	decouples	the	source	of	the	information	from	the	consumer.	The	subscriber	and	the	publisher	do
not	know	each	other	and	they	use	the	broker	to	send	and	receive	messages.
Its	decouples	the	publisher	and	the	subscriber	from	the	time.	When	the	publisher	sends	a	message	the
subscriber	does	not	have	to	be	active	and	connected	at	the	same	time.	The	message	sending	process
and	the	receiving	process	are	non-blocking	operations.

Security	and	QoS
As	said	previously,	MQTT	does	not	have	a	built-in	security	mechanism;	in	other	words,	the	message
exchanged	is	in	clear-text.	To	keep	the	footprint	small,	the	MQTT	relies	on	the	existing	security
mechanisms	and	technologies.	A	common	approach	to	this	problem	is	using	a	secure	transport	layer.	We
can	implement	other	mechanisms,	such	as	message	encryption	and	so	on.	If	the	scenario	where	the	MQTT
will	be	used	has	security	requirements,	it	is

important	to	adopt	one	of	the	previous	mechanisms.

The	last	aspect	is	related	to	the	Quality	of	Service	(QoS).	MQTT	supports	three	level	of	QoS:

At	most	once	(QoS	0):	A	message	is	delivered	at	most	once	or	is	not	delivered
At	least	once	(QoS	1):	A	message	is	delivered	at	least	once.	If	the	receiver	do	not	send	the
acknowledgement	message,	the	message	is	sent	again
Exactly	only	one	(QoS	2):	A	message	is	delivered	once	and	only	one	time

The	QoS	plays	an	important	role	in	MQTT	because	it	frees	the	publisher	and	the	subscriber	from	the	need
to	handle	network	problems.	In	other	words,	it	is	the	protocol	that	handles	retransmission	attempts	when
there	are	network	failures	and	it	guarantees	that	the	message	is	delivered.

Using	MQTT	in	our	remote	weather	station
Now	it	is	time	to	delve	into	the	project	details	and	explore	how	sensors	and	IoT	boards	exchange	data
with	the	Android	Things	board.	The	project	has	two	parts:

IoT	boards	that	manage	sensors	and	acquire	data
The	Android	Things	board,	which	collects	data

In	the	MQTT	architecture	model,	the	IoT	boards	act	as	publishers	that	publish	sensor	data	to	an	MQTT
channel	while	the	Android	Things	board	is	a	subscriber	that	receives	the	data	published	by	the	IoT
boards.	Every	IoT	board	used	in	this	project	publishes	data	using	a	specific	channel	so	that	the	Android
Things	app	can	know	where	the	data	comes	from.

It	is	important	to	have	a	clear	view	of	the	components	and	how	we	will	implement	them:

Component MQTT	Role

Wemos	D1	(ESP	8266) Publisher	(topic:channel1)

Arduino	MKR1000 Publisher	(topic:channel2)

Raspberry	Pi2 Server

Raspberry	Pi3/Intel	Edison	(Android	Things) Subscriber

This	chapter	will	cover	how	to	install	the	MQTT	server	on	Raspberry	Pi2	at	the	end	of
this	chapter.	For	now,	it	is	enough	to	know	that	this	project	uses	the	Mosquitto	server	(http
s://www.eclipse.org/mosquitto/download/).

https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/
https://www.eclipse.org/mosquitto/download/

Implementing	the	MQTT	publisher
In	this	first	step,	we	use	the	Wemos	D1	mini	(or	any	compatible	ESP8266	board)	to	read	data	from
sensors	and	publish	it	to	an	MQTT	topic.	The	physical	properties	measured	by	this	IoT	project	are:

Humidity
Temperature
Pressure
Light

It	is	worthwhile	to	know	how	to	connect	the	sensors	described	in	the	previous	sections:	

The	connections	are	very	simple:

DHT11	has	its	data	pin	connected	to	the	D5	pin,	while	the	Vcc	is	connected	to	+3.3V
The	BMP280	that	we	use	to	measure	the	pressure	is	an	I2C	sensor,	so	it	has	four	connections:

Vcc	is	connected	to	+3.3V
The	clock	signal	is	connected	to	D1	pin
The	data	signal	is	connected	to	D2	pin
The	GND	is	connected	to	the	common	ground

The	TEMT6000	is	an	analogic	sensor	and	it	is	powered	using	+5V.	At	the	output,	we	use	a	voltage
divider	so	that	the	output	signal	is	always	lower	than	3.3V

To	develop	the	sketch	we	need	an	Arduino	IDE	configured	with	Wemos	support.	To	know
more	follow	this	guide	(https://www.wemos.cc/tutori	al/get-started-arduino.html).

Once	your	IDE	is	configured,	we	can	start	coding:

1.	 Open	a	new	sketch	and	add	the	following	lines:

#include	"Adafruit_Sensor.h"

								#include	<DHT.h>

								#include	<ESP8266WiFi.h>

								#include	<Adafruit_BMP280.h>

https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html
https://www.wemos.cc/tutorial/get-started-arduino.html

Notice	that	this	project	requires	you	to	install	the	libraries	to	manage	the	sensors
described	previously.	For	this	purpose,	you	can	use	the	Arduino	library	manager.

2.	 Add	the	following	constants	that	hold	your	Wi-Fi	configuration	parameters:

const	char*	ssid	=	"your_SSID";

								const	char*	pwd	=	"your	WiFi	password";

3.	 Now	we	have	to	define	the	DHT	type	(DHT11	in	this	project)	and	the	pins	used	to	connect	the
sensors.	At	the	end	of	these	lines,	we	define	the	pin	used	to	connect	to	the	ambient	light	sensor:

#define	DHTPIN	D5

								#define	DHTTYPE	DHT11

								#define	TEMTPIN	A0

4.	 Now	we	initialize	the	sketch	and	configure	the	WiFi	connection:

WiFiClient	client;

								DHT	dht(DHTPIN,	DHTTYPE);

								Adafruit_BMP280	bme;	void	setup()	{

								Serial.begin(115200);	dht.begin();

								WiFi.begin(ssid,	pwd);	Serial.println("Connecting		

								to	Wifi...");

								while	(WiFi.status()	!=	WL_CONNECTED)	{

									Serial.println("..");	delay(400);

									}

								bme.begin();

								Serial.println("Wifi	connected.");

								}

5.	 Now	we	can	read	the	data	from	sensors:

void	loop()	{

								float	h	=	dht.readHumidity();	

								float	t	=	dht.readTemperature();

								float	press	=	bme.readPressure()	/	100;

								int	lightVal	=	analogRead(TEMTPIN)	*	0.9765625;	

								delay(5000);

								}

Now,	we	have	developed	the	piece	of	the	sketch	that	handles	sensors	and	reads	data	from	them.	The	next
step	is	sending	this	information	through	an	MQTT	protocol.

Connecting	to	MQTT	and	sending	data
In	this	step,	we	connect	to	the	MQTT	server	and	start	publishing	data	to	the	MQTT	topic.	This	module
uses	a	topic	named	channel1.	The	data	is	published	using	JSON	format	so	that	the	MQTT	subscriber	can
retrieve	and	parse	it	easily.	To	use	the	MQTT	protocol,	we	have	to	import	a	library	that	simplifies	the
development	process.	There	are	several	MQTT	libraries	available	and	you	can	select	one	of	them.
Almost	all	work	in	the	same	way,	so	you	can	easily	switch	between	them.	In	this	project,	we	use
PubSubClient,	therefore	you	have	to	import	it	before	using	the	library	in	our	project.

Now,	we	have	to	transform	the	sketch	described	previously,	adding	the	publishing	feature.	To	do	this,
follow	these	steps:

1.	 At	the	beginning	add	the	following	line:

#include	<PubSubClient.h>

2.	 Now	we	have	to	set	up	the	MQTT	publisher:

PubSubClient	mqttClient(client);

Notice	that	mqttClient	accepts	as	parameter	the	client	that	handles	the	Wi-Fi	connection.

3.	 Once	we	have	defined	the	client,	we	have	to	configure	the	connection	details,	server	address,	and	the
port.	Therefore	add	the	following	lines:

void	initMQTT()	{

										mqttClient.setServer(mqtt_server,	1883);

								}

We	invoke	initMQTT()	in	the	setup	method.

4.	 Finally,	it	is	time	to	publish	the	message.	We	want	to	publish	the	data	using	the	JSON	format	so	that
the	subscriber	can	parse	it	easily.	In	the	loop()	method,	after	the	lines	that	read	data	from	sensors	add
the	following	lines:

String	payload="{"temp":""	+	String(t)	+	"",

						"hum":""	+	String(h)	+	"",	"press":	""	+	

						String(press)	+"",	"light":""	+	String(lightVal)

						+	""}";

						mqttClient.publish(topic,	payload.c_str());

Notice	that	the	sketch	publishes	the	data	through	a	topic.	In	this	case,	the	topic	is	channel1.

Congratulations!	You	have	just	implemented	your	first	MQTT	publisher	ready	to	send	data.

This	project	uses	another	MQTT	publisher	based	on	MKR1000.	You	can	find	the	sketch	in
the	companion	source	code.

repositories	{	jcenter()	mavenCentral()
	}

private	MQTTClient(Context	ctx)	{	
	this.ctx	=	ctx;
	}

public	static	final	MQTTClient	getInstance(Context	
	ctx)	{	
	if	(me	==	null)	me
=	new	MQTTClient(ctx);	
	return	me;
	}

public	void	connectToMQTT()	{
	...
	}

String	clientId	=	MqttClient.generateClientId();
	mqttClient	=	new
MqttAndroidClient(ctx,	
	MQTT_SERVER,	clientId);

try	{
	IMqttToken	mqttToken	=	mqttClient.connect();

mqttToken.setActionCallback(new	
	IMqttActionListener()	{
	@Override	public
void	onSuccess(IMqttToken	
	asyncActionToken)	{
	Log.i(TAG,	"Connected	to
MQTT	server");	}
	@Override
	public	void	onFailure(IMqttToken
asyncActionToken,	
	Throwable	exception)	{
	Log.e(TAG,	"Failure");	

exception.printStackTrace();
	}});
	}
	catch	(MqttException	mqe)	{

Log.e(TAG,	"Unable	to	connect	to	MQTT	Server");	
	mqe.printStackTrace();
	}

public	void	subscribe(final	String	topic)	{	
	try	{	IMqttToken	subToken	=	

mqttClient.subscribe(topic,	1);
	subToken.setActionCallback(new	

IMqttActionListener()	{
	@Override	public	void	onSuccess(IMqttToken	

asyncActionToken)	{
	Log.d(TAG,	"Subscribed	to	topic	["+topic+"]");
	}

@Override	public	void	onFailure(IMqttToken	
	asyncActionToken,Throwable
exception)	{
	Log.e(TAG,	"Error	while	subscribing	to	the	
	topic	["+topic+"]");

	exception.printStackTrace();
	}
	});
	//	Subscribe	to	other	topic

}	catch	(MqttException	e)	{e.printStackTrace();
	}
	}

public	class	MQTTClient	implements	MqttCallback	{
	...
	}

@Override
	public	void	connectionLost(Throwable	cause)	{
	}

@Override
	public	void	deliveryComplete(IMqttDeliveryToken	
	token)	{

}

15.	 By	now,	we	have	just	overridden	them	with	an	empty	implementation.	Anyway,	in
the	first	method	connectionLost,	invoked	when	the	connection	is	not	available,	we
can	use	this	method	to	try	to	reconnect	to	the	server

	

16.	 The	MQTTClient	class,	in	turn,	has	to	expose	a	set	of	callback	methods	to	inform	the
caller	about	the	MQTT	events.	To	do	it,	we	can	create	a	simple	interface	with	the
methods	related	to	the	event	we	want	to	notify:

public	interface	MQTTListener	{	public	void	onConnected();

public	void	onConnectionFailure(Throwable	t);

public	void	onMessage(String	topic,	MqttMessage	message);	public	void	onError(MqttException	mqe);

}

17.	 That's	all.	The	MQTT	subscriber	handler	class	is	ready.

private	void	initMQTT()	{
	mqttClient	=	MQTTClient.getInstance(this);

mqttClient.setListener(this);
	mqttClient.connectToMQTT();
	}

	public	class	MainActivity	extends	Activity	
	implements

MQTTClient.MQTTListener	{
	...
	}

@Override
	public	void	onConnected()	{
	mqttClient.subscribe("channel1");

	mqttClient.subscribe("channel2");
	}

@Override
	public	void	onMessage(String	topic,	MqttMessage	
	message)
{
	//	Extract	the	message	and	update	the	view
	}

	mosquitto_sub	-d	-t	channel1

3.	 In	this	way,	we	subscribe	to	the	same	channel	used	by	Android	Things	to	receive
messages.	Now	wait	for	the	publisher	to	start	sending	messages.	You	will	see	the
messages	arriving	on	the	server.

The	following	screenshot	shows	the	message	showed	previously	in	Android	Things	UI:	

You	can	notice	the	JSON	message	coming	from	the	publisher.

Displaying	the	information	using	OLED	display
By	now	you	have	used	an	Android	Things	UI	to	display	the	information	coming	from	publishers.	Anyway,
as	we	noticed	in	the	previous	chapters,	not	all	the	Android	Things	compatible	boards	support	a	user
interface.	For	this	reason,	we	have	to	use	a	different	approach	to	displaying	the	information.	In	Chapter	5,
Create	a	Smart	System	to	Control	Ambient	Light,	we	showed	how	to	implement	a	simple	Web	server	to
expose	a	Web	interface	to	interact	with	the	Android	Things	app.	In	this	project,	we	do	not	need	to	interact
with	the	app	user	interface,	but	the	Android	Things	app	simply	has	to	show	the	result.	To	this	purpose,	we
can	use	an	OLED	display.	As	you	may	already	know,	OLED	stands	for	organic	light-	emitting	diode.

This	display	can	be	connected	to	the	Android	Things	board	and	the	app	can	control	it.	The	display	we
will	use	in	this	project	is	quite	small,	but	you	are	free	to	use	a	wider	display.	The	following	image	shows
the	SSD1306	OLED	display:

Source	http://www.electrodragon.com/product/0-96-12864-oled-display-iicspi/?attribute_pa_interface=iic#prettyPhoto[product-gallery]/5/

This	display	uses	the	I2C	protocol	covered	in	Chapter	3,	How	to	Make	an	Environmental	Monitoring
System.

http://www.electrodragon.com/product/0-96-12864-oled-display-iicspi/?attribute_pa_interface=iic&prettyPhoto

Connect	the	OLED	display	to	Android	Things
board
The	first	step	is	connecting	the	OLED	display	to	Android	Things	board.	In	this	project,	we	have	used
Raspberry	Pi3	and	Intel	Edison	with	Arduino	breakout	kit.	The	following	figure	describes	how	to	wire
the	OLED	I2C	display	to	Raspberry	Pi3:

While	the	following	figure	shows	how	to	wire	the	OLED	I2C	display	to	Internet	Edison	with	Arduino
breakout	kit:

Once	we	know	how	to	connect	it	we	can	start	using	this	peripheral:

1.	 The	first	step	is	importing	the	library	into	our	project	declaring	the	dependency	in	the	build.gradle	file
at	app	level.	To	this	purpose	open	this	file	and	add	the	following	lines	inside	the	dependencies
directive:

\compile	'com.google.android.things.

contrib:driver-ssd1306:0.2'

2.	 Now	we	are	ready	to	use	the	peripheral.	Let	us	create	a	new	class	that	takes	care	of	writing	the
information	on	the	display.	We	will	name	this	class	DisplayManager.java:

3.	 Add	the	following	lines	to	the	previous	class:

private	Ssd1306	display;

								private	Handler	h	=	new	Handler();	

								public	DisplayManager()	{

								try	{

								display	=	new	Ssd1306(getI2CPin());	

								display.clearPixels();

								}

								catch(Exception	e)	{

								e.printStackTrace();

								}

								}

4.	 Notice	that	we	initialize	the	instance	of	the	class	that	will	manage	the	display	using	the	I2C	SDA	pin

name.	As	you	may	already	remember,	the	pin	name	changes	according	to	the	Android	Things	board.
For	this	reason,	in	the	preceding	code	we	use	the	getI2CPin()	method	that	returns	the	name	of	the	pin
according	to	the	board	type.

5.	 Now	we	have	to	implement	the	method	that	writes	the	message	on	the	display.	If	you	have	a	look	at
the	Ssd1306	class,	it	has	only	a	few	methods	that	perform	some	basic	tasks,	such	as:

Writing	a	pixel
Turning	on	and	off	the	display
Scrolling
Clear	the	screen
Getting	the	width	and	the	height	of	the	screen

6.	 We	cannot	show	the	message	on	the	display	turning	on	the	pixels	manually.	Fortunately,	there	is	a
class	called	BitmapHelper	that	helps	us	to	represent	an	image	on	the	display.	The	idea	then	is	using	the
Android	Things	graphics	API	to	create	a	bitmap	that	holds	the	message	we	want	to	write	and	then
send	it	to	the	display.	Therefore,	the	first	step	is	creating	a	method	that	creates	the	bitmap.	We	call	it
displayMessage	with	this	content:

int	width	=	display.getLcdWidth();

								int	height	=	display.getLcdHeight();

								Bitmap	b	=	Bitmap.createBitmap(width,	height,

								Bitmap.Config.ARGB_8888);

7.	 Now	we	configure	the	Paint	class	that	takes	care	of	the	style	and	the	color	of	the	message	we	are
displaying:

Paint	p	=	new	Paint(Paint.ANTI_ALIAS_FLAG);

								p.setTextSize(size);p.setColor(color)

								p.setTextAlign(Paint.Align.LEFT);

Where	size	and	color	are	the	method	input	parameters.	Moreover,	we	want	the	message	aligned
to	the	left.

8.	 The	next	step	is	creating	a	Canvas	(https://developer.android.com/reference/android/graphics/Canvas.html),	that	as	stated
in	the	Android	javadoc,	holds	the	draw:

Canvas	c	=	new	Canvas(b);

Where	b	is	the	Bitmap	we	have	configured	in	step	5.	Now	we	write	the	message	using	the	style
and	the	color	defined	previously	(step	6):

c.drawText(msg,	0,	0.5f	*	height,	p);

9.	 Finally,	we	invoke	the	BitmapHelper	passing	the	bitmap	we	have	just	created	holding	the	message	we
want	to	visualize:

BitmapHelper.setBmpData(display,	0,	0,	b,	true);

10.	 The	last	thing	to	consider	is	that	we	do	not	want	that	this	process	could	block	the	app	while	it	is
creating	the	bitmap.	Therefore,	we	use	a	Runnable	class	that	wraps	all	the	steps	described	previously.
To	do	it,	let	us	modify	the	displayMessage()	method	in	this	way:

public	void	displayMessage(final	String	msg,	final	

https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html
https://developer.android.com/reference/android/graphics/Canvas.html

								int	size,

								final	int	color)	{

										Runnable	r	=	new	Runnable()	{

												@Override	public	void	run()	{

														//	All	the	code	used	above	to	display	the	

														message

												};

										h.post(r);

									}

Here,	h	is	is	an	instance	of	the	Handler	class.

Installing	the	MQTT	server
The	last	step	of	this	wide	IoT	project	is	installing	the	MQTT	server.	As	you	already	know,	this	is	the	link
between	the	publisher	and	the	subscriber.	We	added	this	step	at	the	end	because	it	is	not	the	main	focus	of
this	chapter,	but	it	is	important	to	know	how	to	do	it	so	that	you	gain	a	deep	knowledge	about	MQTT	and
the	steps	necessary	to	implement	an	IoT	ecosystem	that	exchanges	data	and	information	using	MQTT
protocol.	As	stated	before,	this	IoT	project	uses	Mosquitto	an	open	source	MQTT	broker
(https://mosquitto.org/).	There	are	several	versions	working	on	different	operating	systems.	You	can	find	more
information	about	the	platforms	supported	at	this	link	(https://mosquitto.org/download/).	In	this	project,	we	will
use	the	Raspberry	Pi	2,	anyway,	you	are	free	to	use	any	version	you	like	according	to	your	needs.

	

https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/

Installing	the	MQTT	broker
To	install	the	MQTT	broker	you	have	to	connect	to	Raspberry	Pi	2	and	follow	these	steps:

1.	 The	first	step	is	adding	a	repository	that	holds	the	application.	Before	doing	it,	it	is	necessary	to	add
the	key	to	authenticate	the	repository:

wget	http://repo.mosquitto.org/debian/mosquitto-

repo.gpg.key	

2.	 Now	we	have	to	import	the	key:

	sudo	apt-key	add	mosquitto-repo.gpg.key

3.	 The	last	step	to	configure	the	repository	is	adding	the	file:	.list

sudo	wget	

http://repo.mosquitto.org/debian/mosquitto-

wheezy.list

4.	 Now	the	repository	is	configured	and	we	can	download	and	install	the	application:

apt-get	install	mosquitto

The	installation	is	complete	now.	You	can	start	using	the	MQTT	broker	connecting	the	devices
described	previously.	Moreover,	to	complete	the	installation,	we	can	add	the	client	library	so	that
we	can	test	the	installation	or	create	a	subscriber/publisher.	To	install	the	client	follow	this	step:
apt-get	install	mosquitto-clients

Now	you	can	test	the	installation	to	verify	that	everything	works	correctly.	The	following
screenshot	shows	the	result	of	the	ps	command	showing	the	mosquitto	process	up	and	running:	

You	can	notice	that	the	mosquitto	uses	the	configuration	file	that	we	will	describe	in	the	next
paragraph.

	

Configuring	the	MQTT	broker
	

The	installation	we	have	just	completed	uses	default	parameters.	You	can	configure	the	MQTT	broker
according	to	your	needs.	To	customize	the	broker	you	have	to	use	mosquitto.conf,	that	is	the	configuration
file.	Here	you	can	change	several	parameters;	you	can	find	the	details	at	this	link	(https://mosquitto.org/man/mosqu
itto-conf-5.html).

You	can,	for	example,	change	the	IP	address	used	by	the	server	to	listen	to	incoming	connections	or	the
port.	These	two	properties	are:

bind_address	address:	It	is	used	to	set	the	IP	address	where	the	server	listens	for	the	incoming
connection
listener	port:	It	is	port	used	to	listen	to

	

	

https://mosquitto.org/man/mosquitto-conf-5.html

Summary
At	the	end	of	this	chapter,	you	have	gained	the	knowledge	about	MQTT	protocol.	We	have	explored	how
to	build	a	complex	IoT	system	that	uses	heterogeneous	components.	We	have	explored	how	to	build	a
remote	weather	station	that	acquires	data	remotely	and	send	it	through	MQTT	to	Android	Things	board.
Using	this	project,	we	have	covered	an	important	topic	related	to	M2M.	In	the	next	chapter,	we	will
explore	how	to	use	Pulse	Width	Modulation	(PWM)	to	control	servo	motor	using	Android	Things	and
how	to	acquire	images	using	cameras.

	

Build	a	Spying	Eye
In	this	chapter,	we	will	build	a	spying	eye.	In	more	detail,	we	will	build	a	project	that	uses	an	Android
Things	board	to	control	a	camera	and	a	servomotor	that	we	will	use	to	rotate	the	camera.	Through	this
project,	we	will	learn	how	to	use	PWM	pins.	TheÂ	Pulse	Width	Modulation	(PWM)	pin	is	a	different
kind	of	pin	that	we	will	use	to	control	different	types	of	peripherals	such	as	servo	motors.	In	more	details,
in	this	chapter	we	will	explore:

How	to	use	PWM	pins	in	Android	Things
How	to	control	servo	motors
How	to	use	cameras

At	the	end	of	this	chapter,	we	will	build	a	fully	working	Android	Things	system	that	is	able	to	acquire
images	using	the	camera	and,	at	the	same	time,	we	will	be	able	to	control	the	camera	direction	using	a
servo	motor.

	

Spying	eye	Android	Things	project	overview
Before	digging	into	the	project	details,	it	is	worthwhile	to	have	an	overview	of	this	project	to	know	what
we	want	to	build	and	how	it	should	work.	The	basic	idea	that	stands	behind	this	project	is	using	a	servo
motor	at	the	camera	base.	The	camera	and	the	motor	are	connected	together	so	that	while	the	Android
Things	app	rotates	the	motor,	we	can	change	the	camera	orientation.	By	the	way,	a	servomotor	is	a	special
motor	type	that	we	can	control	precisely	in	terms	of	its	angular	position.

The	following	figure	visualizes	the	main	project	features:	

As	you	can	see	from	the	preceding	figure,	in	this	project	we	want	the	Android	Things	board	controlling
the	following	at	the	same	time:

The	servomotor	rotation
The	camera	that	acquires	the	image

To	access	these	features,	this	project	exposes	a	simple	UI	interface.	An	important	aspect	is	related	to	the
camera	support.	Android	Things	supports	CSI-2	protocol.	There	are	some	Android	Things	compatible
boards	that	do	not	support	a	camera.	For	example,	Intel	Edison	with	breakout	kit	does	not	support	CSI-2,
so	we	cannot	connect	the	camera.	For	these	reasons,	for	the	first	time	in	this	book,	we	will	use	only
Raspberry	Pi	3.

Project	components
The	components	used	in	this	project	are:

Raspberry	camera	module:

Source:	https://www.raspberrypi.org/products/camera-module-v2/

This	camera	is	based	on	the	Sony	IMX219	8-megapixel	sensor.	It	can	be	used	to	take	high-definition
videos	or	pictures.

A	servomotor.	There	are	several	types	of	servomotors	with	different	specifications.	You	can	use	for
example:

Source	https://www.adafruit.com/product/169

The	following	is	an	optional	component	that	we	will	use	to	hold	the	camera	and	attach	it	to	the
motor:

Sourcehttps://www.amazon.it/gp/product/B00IJZJKK4/ref=oh_aui_detailpage_o00_s00?ie=UTF8&psc=1

http://www.raspberrypi.org/products/camera-module-v2/
http://www.adafruit.com/product/169
http://www.adafruit.com/product/169
http://www.amazon.it/gp/product/B00IJZJKK4/ref%3Doh_aui_detailpage_o00_s00?ie=UTF8&psc=1

Now	we	know	the	component	that	we	will	use	in	this	Android	Things	project,	it	is	useful	to	have	an
overview	about	PWM	and	how	to	use	it	in	Android	Things	so	that	we	get	confident	with	servo	motors.

Pulse	Width	Modulation	overview
Until	now,	we	have	seen	different	ways	to	control	and	exchange	data	with	external	peripherals.	There	is
another	method	that	we	can	use	to	control	external	devices.	This	is	called	Pulse	With	Modulation
(PWM).	It	is	a	modulation	technique	widely	used	in	several	fields;	anyway,	one	of	the	most	interesting
applications	is	controlling	the	power	supplied	to	an	external	device.	In	other	words,	PWM	is	a	technique
that	enables	us	to	create	a	variable	voltage	using	a	digital	signal.	We	can	use	PWM	to	control:

Servomotors
Light	intensity	(in	a	LED)
Sound	and	audio

This	technique	is	based	on	changing	the	time	when	the	signal	is	high.	There	are	two	important	factors	in
this	modulation:

Frequency
Duty	cycle

We	all	know	the	frequency;	we	can	define	it	as	the	number	of	occurrences	of	a	repeating	event	per	unit
time.	Related	to	the	frequency,	there	is	the	Period	that	is	the	duration	time	of	one	cycle.

On	the	other	hand,	the	duty	cycle	is	the	amount	of	the	time	when	the	signal	is	high	with	respect	to	the
signal	period.	The	duty	cycle	is	measured	as	a	percentage.	The	percentage	duty	cycle	represents	the
percentage	of	the	time	when	the	signal	is	high.	The	following	is	an	example	to	help	you	to	better
understand	this	concept:

If	the	signal	is	half	the	time	high	and	the	other	half	low	we	say	that	the	duty	cycle	is	50%:

If	the	signal	is	always	high,	the	duty	cycle	is	100%

It	is	important	to	know	these	parameters	because	they	are	used	by	Android	Things	to	handle	PWM
signals.

PeripheralServiceManager	psm	=	new	
	PeripheralServiceManager();

pwmPin	=	psm.openPwm(getBoardPin());

pwm.setPwmFrequencyHz(50);	
pwm.setPwmDutyCycle(75);

pwm.setEnabled(true);

Do	not	forget	to	close	the	pin	when	the	Activity	is	destroyed	as	we	did	for	other	kinds	of
pins.

Implementing	the	spying	eye	project	in	Android
Things
It	is	time	that	we	focused	our	attention	on	developing	the	project.	Now	we	have	all	the	information	and
the	knowledge	we	need	to	build	the	Android	Things	app.	This	app	can	be	divided	into	two	different	parts:

Control	servomotor
Use	camera	in	Android	Things

In	the	first	part,	we	describe,	according	to	the	information	explained	previously,	how	to	control	a
servomotor	while,	in	the	second	part,	we	will	describe	how	to	acquire	images	in	Android	Things	using	a
camera.	As	you	may	remember,	the	servomotor	is	used	in	this	project	to	rotate	the	camera	so	that	we	can
explore	a	wider	area.	Moreover,	this	project	has	a	UI	that	we	can	use	to	control	the	servo	and	take	the
picture.	The	user	interface	is	very	simple	and	intuitive;	the	result	is	shown	in	the	following	figure:	

Basically,	there	are	three	buttons:

The	left	button	is	used	to	turn	the	camera	to	left	rotating	the	servo
The	right	button	is	used	to	turn	the	camera	to	right	rotating	the	servo
The	button	in	the	middle	is	used	to	take	the	picture

Let	us	see	how	to	develop	it.

Controlling	a	servomotor	in	Android	Things
Before	using	the	PWM	it	is	important	to	know	how	to	connect	a	servo	motor	to	an	Android	Things	board.
In	this	project,	we	will	use	only	Raspberry	Pi	3	because	it	supports	a	camera;	anyway,	you	can	connect
the	servo	to	Intel	Edison	with	Arduino	breakout	too.	The	following	diagram	describes	the	connections:

The	following	is	an	image	of	the	Raspberry	Pi3	connected	to	the	servo:

Usually,	a	servo	has	only	three	wires:

The	power	signal	that	depends	on	the	type	of	motor	(usually	between	3.3V	and	5V)
The	ground	signal
The	control	signal	that	we	have	to	connect	to	the	PWM	pin

A	servo	motor	is	controlled	using	a	PWM	signal	so	we	can	control	it	applying	the	steps	described
previously.	Anyway,	Android	Things	provides	a	library	that	helps	us	to	control	a	servo	motor	more
easily.	We	need	to	know	about	the	servo	so	we	can	control	its	rotation.	This	library	provides	a	set	of

methods	to	deal	with	angles	instead	of	frequencies	and	duty	cycles	so	that	it	gets	easier	to	precisely
control	the	servo	position.	In	this	Android	Things	project,	we	will	use	this	library	to	simplify	our	work.

Let	us	create	a	new	project	as	described	in	Chapter	1,	Getting	Started	with	Android	Things,	cloning	the
reference	project.	This	project,	as	stated	before,	has	a	UI,	but	we	will	not	describe	its	layout	structure.
You	can	refer	to	the	companion	code	of	this	book	to	know	how	to	code	the	layout.	Let	us	focus	our
attention	on	the	servo.	To	control	it,	follow	these	steps:

1.	 Open	the	build.gradleat	app	level	and	add	the	dependency	to	the	library	described	previously:

dependencies	{

								provided	

									'com.google.android.things:androidthings:0.3-

									devpreview'	

									compile

								'com.google.android.things.contrib:driver-	

									pwmservo:0.1'

								}

2.	 Now	open	the	MainActivity.java	and	add	the	following	lines:

private	void	initServo()	{	

						try	{

											mServo	=	new	Servo("PWM0");

											mServo.setAngleRange(0f,	180f);	

											mServo.setEnabled(true);

										}

											catch(Exception	e)	{

											e.printStackTrace();

											}

										}

In	the	preceding	code,	we	have	hard	coded	the	pin	name	because	this	project	will	work	only
on	Raspberry	Pi3.	You	have	to	change	the	pin	name	if	you	run	this	Android	Things	app	using
another	board.	Moreover,	we	set	the	minimum	and	the	maximum	angle.	These	values	define	the
rotation	angle	range.	Finally,	we	enable	the	pin.

3.	 In	the	onCreate	method,	we	have	to	call	initServo,	so	add	the	following	line:

initServo();

4.	 Now	we	have	to	handle	the	two	buttons	to	control	the	servo	rotation.	At	the	beginning	we	get	the
reference	to	the	buttons:

Button	btnLeft	=	(Button)	

								findViewById(R.id.btnLeft);	

								Button	btnRight	=	(Button)	

								findViewById(R.id.btnRight);

5.	 Then	we	have	to	handle	the	click	events	and	rotate	the	servo	accordingly:

btnLeft.setOnClickListener(new	

								View.OnClickListener()	{

								@Override

								public	void	onClick(View	v)	{	

								angle	+=	STEP;	

								setServoAngle(angle);

								}

								});

								btnRight.setOnClickListener(new	

								View.OnClickListener()	{

								@Override

								public	void	onClick(View	v)	{	

								angle	-=	STEP;	

								setServoAngle(angle);

								}

								});

Here,	the	STEP	is	the	step	we	want	to	rotate	the	servo.

6.	 Finally,	we	have	to	define	the	setServoAngle	method	that	actually	rotates	the	servo:

private	void	setServoAngle(int	angle)	{	

								if	(angle	>	mServo.getMaximumAngle())

										angle	=	(int)	mServo.getMinimumAngle();	

								if	(angle	<	mServo.getMinimumAngle())

										angle	=	(int)	mServo.getMinimumAngle();

								try	{

										mServo.setAngle(angle);

								}

								catch	(IOException	e)	{

									e.printStackTrace();

									}	}

In	this	method,	we	control	that	the	rotation	angle	is	between	the	minimum	and	maximum	values;	otherwise,
we	set	the	limit	angles.	Finally,	we	use	setAngle	to	set	the	rotation	angle	on	the	servo	motor.

That's	all.	You	can	run	the	Android	Things	app	and	test	it	using	the	UI.	When	you	click	on	the	left	or	right
button,	the	servo	motor	has	to	rotate	in	the	correct	direction.

The	first	part	is	completed:	now	we	can	control	the	servo	motor	using	the	Android	Things	UI.	In	the	next
paragraph,	we	will	take	a	picture	using	the	camera.

Using	a	camera	in	Android	Things
In	this	section,	we	will	cover	a	new	aspect	of	Internet	of	Things:	how	to	use	a	camera.	Until	now,	we
have	connected	to	the	Android	Things	board	several	devices	using	GPIO	pins.	A	camera	is	different	from
all	the	peripherals	covered	previously	and	we	use	a	different	way	to	connect	it.	Not	all	the	Android
Things	compatible	boards	support	an	external	camera.	At	the	time	of	writing,	only	these	boards	support	it:

Raspberry	Pi3
Intel	Joule

The	camera	is	connected	using	a	Common	Serial	Interface	(CSI-2).	You	have	to	use	a	compatible
camera	as	specified	at	the	beginning	of	this	chapter.	In	order	to	handle	the	camera,	we	will	use
android.hardware.camera2	(added	from	API	level	21).	This	package	provides	all	the	classes	and	interfaces
necessary	to	handle	a	camera	connected	to	an	Android	device.	As	we	will	see	later,	the	process	to	take	a
picture	in	Android	Things	is	the	same	used	in	Android.	In	this	package	there	are	some	important	classes
that	are	at	the	heart	of	the	code	we	will	implement	later:

CameraManager:	This	class	represents	a	system	manager	that	we	will	use	to	detect	the	connected	camera
and	to	open	it	(https://developer.android.com/reference/android/hardware/camera2/CameraManager.html)
CameraDevice:	This	class	represents	the	camera	connected	to	our	device	in	terms	of	properties	and
capabilities	(https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html)
CaptureSession:	This	represents	the	method	we	use	to	capture	the	image	and	represent	it	on	a	surface

Let	us	explore	how	to	implement	this	second	project	part.	Considering	that	the	camera	management	is
quite	complex,	it	is	useful	to	implement	all	the	steps	necessary	in	another	class:

1.	 Open	the	project	used	until	now	to	control	the	servo.
2.	 Add	another	class	named	AndroidCamera.java	to	the	project.	This	class	will	handle	all	the	details	related

to	the	camera.

In	the	next	paragraph,	we	will	analyze	step	by	step	how	to	use	the	camera.

https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraManager.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html

Getting	ready	to	use	the	camera
Before	using	the	camera,	we	have	to	detect	it	and	make	sure	it	is	connected	to	the	Android	Things	board.
For	this	purpose,	we	will	use	the	CameraManager	class:

1.	 In	AndroidCamera.java	let	us	create	a	new	method	called	initCamera().

	

2.	 In	this	method,	we	first	get	the	reference	to	the	camera	manager	and	then	the	app	enumerates	all	the
connected	cameras:

cManager	=	(CameraManager)	

								ctx.getSystemService(Context.CAMERA_SERVICE);

												try	{

												String[]	idCams	=	cManager.getCameraIdList();

												camId	=	idCams[0];

												}

											catch	(CameraAccessException	e)	{	

											e.printStackTrace();

											}

In	this	project,	we	will	use	the	first	camera	detected	(as	you	can	notice	we	use	0	as	index).

3.	 Moreover,	in	this	method,	we	have	to	initialize	an	image	container	that	is	used	by	the	app	to	direct
access	to	the	data	rendered	into	a	surface:

imgHandler.start();

								iReader	=	ImageReader.newInstance(320,	240,	

								ImageFormat.JPEG,	1);

								iReader.setOnImageAvailableListener(new

								ImageReader.OnImageAvailableListener()	{

										@Override

											public	void	onImageAvailable(ImageReader	

								reader)	{	

													listener.onImageReady(reader);

									}

							},	new	Handler(imgHandler.getLooper()));

The	preceding	code	is	very	simple;	at	the	first	line,	the	app	initializes	a	Handler	that	is	required
by	the	ImageReader.	Next,	we	create	an	ImageReader	instance	setting	the	width	and	the	height	and
the	image	format.	In	this	project,	the	ImageReader	holds	only	one	image.	Finally,	we	attach	a
listener	so	that	this	class	gets	notified	when	the	image	is	available.	In	turn,	the	AndroidCamera
class	uses	another	listener	to	notify	to	the	caller	(MainActivity.java)	that	the	image	is	available.

4.	 The	next	step	is	implementing	a	method	that	is	used	to	open	the	camera	communication:

public	void	openCamera()	{	

								try	{

								cManager.openCamera(camId,	stateCallback,	null);

								}

								catch	(CameraAccessException	e)	{

										e.printStackTrace();

											}

								catch	(SecurityException	se)	{	

										se.printStackTrace();

									}

								}

As	you	can	see,	to	open	the	camera	we	use	the	camId	retrieved	in	the	first	step.	Moreover,	we
use	a	callback	class	to	be	notified	when	the	events	related	to	this	process	happen.

5.	 Now	we	have	to	implement	the	callback	class	used	in	the	previous	step:

private	final	CameraDevice.StateCallback	

								stateCallback	=	new

								CameraDevice.StateCallback()	{

										@Override

										public	void	onOpened(@NonNull	CameraDevice	

												camera)	{	Log.d(TAG,	"Camera	opened");	

												AndroidCamera.this.camera	=	camera;	

												listener.onCameraAvailable();

									}

										@Override

										public	void	onDisconnected(@NonNull	CameraDevice	

									camera)	{	Log.d(TAG,	"Camera	disconnected");

									}

										@Override

									public	void	onError(@NonNull	CameraDevice	camera,	

									int	error)	{	Log.d(TAG,	"Camera	Error"	+	error);

									}

									};

There	are	several	methods	that	we	have	to	implement	in	the	callback	class.	We	are	interested	in
the	method	invoked	when	the	camera	is	opened,	because	we	store	the	instance	of	the
CameraDevice	to	refer	to	the	connected	camera	in	the	next	steps.	At	the	same	time,	in	the	same
method,	we	inform	the	caller	that	the	camera	is	connected.

6.	 Finally,	once	the	camera	is	connected,	we	can	implement	the	method	to	take	the	picture:

public	void	takePicture()	{

								try	{

								camera.createCaptureSession(

								Collections.singletonList(iReader.getSurface()),	

								sessionCallback,	null);

								}

									catch(Exception	e)	{

								e.printStackTrace();

									}

								}

The	app	creates	a	capture	session	that	is	used	to	take	the	picture.	As	we	did	previously,	we
use	a	callback	class	to	be	informed	about	the	events.	Notice	that	the	createCaptureSession	method
uses	the	ImageReader	surface	to	hold	the	picture.

7.	 The	callback	method	to	handle	capture	session	events	is	shown	here:

private	CameraCaptureSession.StateCallback	

								sessionCallback	=	

								new	CameraCaptureSession.StateCallback()	{

								@Override

								public	void	onConfigured(

											@NonNull	CameraCaptureSession	session)	{	

											Log.d(TAG,	"Camera	configured");	

											AndroidCamera.this.session	=	session;	

											startCaptureImage();

										}

								@Override

								public	void	onConfigureFailed(

										@NonNull	CameraCaptureSession	session)	{	

										Log.e(TAG,	"Configuration	failed");

											}

									};

It	is	important	to	notice	the	onConfigured	method	that	is	called	when	the	camera	is	ready	to
capture	the	image	and	the	configuration	process	is	finished.	The	app	uses	this	method	to	start
capturing	the	picture.

8.	 The	last	step	is	implementing	the	method	that	actually	captures	the	image:

private	void	startCaptureImage()	{	

								try	{

												CaptureRequest.Builder	captureBuilder	=	

								camera.createCaptureRequest(

																CameraDevice.TEMPLATE_STILL_CAPTURE);

											captureBuilder.addTarget(iReader.getSurface());	

											captureBuilder.set(

															CaptureRequest.CONTROL_AE_MODE,	

															CaptureRequest.CONTROL_AE_MODE_ON);

												Log.d(TAG,	"Session	initialized.");

									session.capture(captureBuilder.build(),

																									captureCallback,	null);

													}

												catch(CameraAccessException	cae)	{	

												cae.printStackTrace();

											}

									}

This	method	prepares	the	request,	setting	some	parameters	and	starts	the	capture	session.	As
always,	we	use	a	callback	method	to	be	notified	about	the	events.

9.	 Finally,	we	define	a	callback	interface	used	by	AndroidCamera	to	notify	to	the	caller	the	most	important
events.	The	interface	is	defined	as	follows:

public	static	interface	CameraListener	{	

							public	void	onCameraAvailable();

							public	void	onImageReady(ImageReader	reader);

							}

The	class	that	manages	the	camera	in	Android	Things	is	ready	and	we	can	invoke	it	from	the	MainActivity.

Assembling	the	app
Finally,	we	can	complete	the	Android	Things	app,	modifying	the	MainActivity.	The	last	step	is	handling	the
button	that	enables	a	user	to	take	the	picture:

1.	 Open	MainActivity.java	again	and	add	the	following	lines	in	the	onCreate	method:

final	AndroidCamera	aCamera	=

								new	AndroidCamera(this,	listener);	

								aCamera.initCamera();	

								aCamera.openCamera();

In	this	way,	we	initialize	the	camera,	setting	the	listener	that	will	receive	the	event
notification.

2.	 Moreover,	in	the	same	method,	we	reference	the	ImageView	widget	that	will	display	the	picture:

imgView	=	(ImageView)	findViewById(R.id.img);

3.	 It	is	time	to	get	the	reference	to	the	button	used	to	take	the	picture:

btnPicture	=	(Button)	

							findViewById(R.id.btnPicture);

							btnPicture.setEnabled(false);

Initially,	the	button	is	disabled	until	the	camera	is	ready	to	take	the	picture.	For	this	purpose,
the	app	uses	the	listener	to	know	when	the	camera	is	ready	(remember	the	onCameraAvailable
method).

4.	 To	handle	the	event	triggered	when	the	user	clicks	on	the	button	we	add	the	following	lines:

btnPicture.setOnClickListener(

											new	View.OnClickListener()	{

								@Override

											public	void	onClick(View	v)	{

														Log.d(TAG,	"Start	caputring	the	image");	

								aCamera.takePicture();

												}

								});

The	method	calls	takePicture	to	capture	the	picture.

5.	 Finally,	the	app	implements	the	callback	interface	that	we	have	used	previously	in	the	constructor:

private	AndroidCamera.CameraListener	listener	=

									new	AndroidCamera.CameraListener()	{

								@Override

											public	void	onCameraAvailable()	{	

																Log.d(TAG,	"Camera	Ready");

								btnPicture.setEnabled(true);

											}

							@Override

							public	void	onImageReady(ImageReader	reader)	{	

										Log.d(TAG,	"Image	ready");

												Image	img1	=	reader.acquireLatestImage();	

												ByteBuffer	bBuffer	=

												img1.getPlanes()[0].getBuffer();

							final	byte[]	buffer	=

							new	byte[bBuffer.remaining()];	

											bBuffer.get(buffer);	

											img1.close();

												runOnUiThread(new	Runnable()	{

							@Override	public	void	run()	{	

							imgView.setImageBitmap(

														BitmapFactory.decodeByteArray(

														buffer,	0,	buffer.length));

												}

										});

								}};

In	the	first	callback	method,	called	onCameraAvailable(),	the	app	enables	the	button	as	soon	as	the	camera	is
ready.	In	the	second	method,	called	onImageReady,	we	update	the	view,	setting	the	image	in	the	ImageView
widget.	The	code	contained	in	this	method	is	used	to	extract	the	image	and	to	adapt	it	in	a	way	that	can	be
used	in	the	ImageView.

Before	running	the	app,	we	have	to	request	the	permission	to	use	the	camera.	We	do	it	in	the	Manifest.xml
adding	the	following	line:

<uses-permission	android:name="android.permission.CAMERA"	/>

Congratulations!	You	have	just	built	a	spying	system	in	Android	Things	that	captures	images.	Now	you
can	run	the	Android	Things	app	and	experiment	with	it.

Summary
In	this	chapter,	we	have	built	a	system	based	on	servo	motors	and	cameras.	We	have	learned	how	to
control	a	servo	motor	using	Android	Things.	Moreover,	you	gained	knowledge	about	PWM	and	the	role	it
plays	in	this	context.	Now	you	have	all	the	necessary	information	to	implement	Android	Things	apps	to
control	new	kinds	of	peripherals.	You	are	mastering	several	peripherals	such	as	LEDs,	sensors,	buttons,
camera,	motors,	and	so	on.

In	the	next	chapter,	we	will	cover	how	to	integrate	Android	and	Android	Things	and	how	to	create	an
Android	companion	app	that	remotely	controls	an	Android	Things	app.

	

Android	with	Android	Things
In	this	chapter,	we	will	cover	how	to	integrate	Android	with	Android	Things.	The	aim	of	this	chapter	is	to
develop	two	Android	apps	that	interact	with	Android	Things.	The	convergence	between	mobile	apps	and
an	Internet	of	things	application	is	an	interesting	field	and	we	will	describe	the	different	strategies	we	can
use	to	make	these	two	ecosystems	exchange	data	and	information.	In	more	detail,	the	chapter	covers:

1.	 Different	architecture	we	can	use	to	integrate	Android	and	Android	Things.
2.	 How	to	develop	an	Android	app	that	remotely	controls	a	LED	strip	we	have	already	built	in	Chapter	5,
Create	a	Smart	System	to	Control	Ambient	Light.

3.	 How	to	develop	an	Android	app	that	shows	data	coming	from	sensors	through	Android	Things.	This
app	is	a	companion	app	for	the	Remote	Weather	station	we	built	in	Chapter	6,	Remote	Weather	Station.

In	this	that	chapter,	we	will	re-use	all	the	knowledge	we	have	acquired	during	this	book	to	build	real-life
Android	and	Android	Things	apps.

	

Architecture	to	connect	Android	and	Android
Things
In	this	paragraph,	we	will	discover	how	we	can	integrate	Android	and	Android	Things.	Nowadays,	there
are	several	market	products	that	have	a	mobile	companion	app	to	interact	with	smart	systems.	Here	are	a
few	of	them	that	we	can	remember:

1.	 Remote	controlled	smart	light	systems.
2.	 Alarm	systems.
3.	 Remote	controlled	appliances.

Therefore,	it	is	important	to	describe	how	we	can	integrate	the	smartphones	ecosystems	with	Android
Things.	This	section	focuses	its	attention	on	Android	smartphones	but	you	can	reuse	the	same	strategies
when	integrating	iOS	apps	with	Android	Things.

Generally	speaking,	there	are	three	different	scenarios:

1.	 A	smartphone	controls	a	smart	object	(like	the	Android	Things	board)	(master-	slave	pattern).
2.	 A	smartphone	receives	data	stream	through	the	Android	Things	board.
3.	 A	smartphone	receives	notifications	from	the	Android	Things	system	when	an	event	occurs.

We	covered	the	last	point	in	Chapter	2,	Creating	an	Alarm	System	Using	Android	Things,	where	we	sent
notifications	to	users'	smartphones	when	the	system	detected	motion	in	the	detection	area.	Moreover,	in	Ch
apter	4,	Integrate	Android	Things	with	IoT	Cloud	Platforms,	we	sent	notifications	using	voice	calls	to	the
users'	smartphone.	Therefore,	the	last	point	in	the	integration	architecture	should	be	clear.	We	focus	our
attention	on	the	first	two	strategies.

Generally,	in	the	first	two	scenarios,	the	integration	can	happen	in	two	different	ways:

1.	 There	is	a	direct	link	between	the	smartphone	and	the	Android	Things	system.
2.	 Through	cloud	platforms.

The	following	picture	visualizes	these	ways:

In	the	second	scenario,	the	user's	smartphone	is	connected	to	the	Android	Things	board	using	an	IoT	cloud
platform,	or	more	generally,	a	cloud	platform	that	provides	some	integration	services	like	those	we	used
to	trigger	a	voice	phone	call.

In	the	direct	integration	scenario,	there	is	a	direct	connection	between	the	user's	smartphone	and	the
Android	Things	board.	The	connection	can	be	established	using	several	protocols	like:

WiFi
Bluetooth
Ethernet

How	to	control	a	LED	strip	using	an	Android
app
In	this	first	Android	project,	we	want	to	control	an	LED	strip	using	an	Android	app.	In	more	detail,	the
Android	app	connects	directly	to	the	Android	Things	app	that,	in	turn,	controls	one	or	more	LED	strips
through	Arduino	boards.	As	we	stated	in	Chapter	5,	Create	a	Smart	System	to	Control	Ambient	Light,	in
this	project	the	Android	Things	app	behaves	like	a	gateway	acting	as	a	unique	point	of	access.	This
approach	has	several	benefits,	which	were	highlighted	in	Chapter	5,	Create	a	Smart	System	to	Control
Ambient	Light.	In	this	application	context,	we	exploit	the	built-in	web	server	implemented	in	the	Android
Things	app.	The	idea	that	stands	behind	this	is	to	create	an	Android	app	that	uses	the	HTTP	protocol	to
remotely	control	the	Android	Things	app	(like	a	master-slave	pattern).	To	this	purpose,	we	can	reuse	the
Android	Things	app	we	have	developed	and	attach	to	it	the	Android	app.	In	this	way,	we	can	control	the
Android	Things	app	using	a	Web	browser	or	the	Android	app	that	we	will	develop	in	this	section.	The
following	picture	shows	the	project	overview:

To	do	it,	let's	create	a	new	Android	project:

1.	 Open	Android	Studio	and	create	a	new	project	named	AndroidThing_RGBapp:

2.	 Move	to	the	next	step,	configuring	Target	Android	Devices:

Minimum	SDK:	API	level	23	(Android	6.0)

3.	 The	last	step	is	creating	a	Basic	Activity:

That's	all.	Continue	until	you	find	the	Finish	button.	Now	you	have	created	your	Android	project.	As	you
will	notice,	it	is	very	similar	to	the	Android	Things	project	we	created	in	previous	chapters.	This	app
will	be	developed	according	to	the	Material	design	guidelines.	If	you	are	new	to	them,	you	should	read
this	link	(https://material.io/guidelines/).	Moreover,	this	app	uses	a	Floating	Action	Button	(FAB),	which	is	a
button	that	represents	the	main	action	in	this	activity.	In	our	app,	the	FAB	represents	the	sending	data
action,	which	we	will	use	to	control	the	Android	Things	app.	The	following	screenshot	shows	what	the
Android	app	UI	looks	like:

https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/
https://material.io/guidelines/

This	chapter	will	not	cover	all	of	the	app	details	because	some	steps	are	trivial.	For	example,	the	layout
is	very	simple,	and	you	can	refer	to	the	source	code	shipped	with	this	book	to	know	more.	However,	there
are	some	interesting	points	that	we	will	discuss	in	more	detail	because	they	represent	the	core	concepts	of
this	app.

The	first	important	aspect	is	how	the	user	selects	the	LED	color.	For	this,	we	will	use	a	simple	dialog	that
opens	when	the	user	clicks	the	button.	The	result	is	shown	as	follows:

To	implement	it,	follow	these	steps:

1.	 Open	the	build.gradle	file	(app	level)	and	add	the	following	lines	into	the	dependencies	tag:

compile	'me.priyesh:chroma:1.0.2'

2.	 Open	MainActivity.java	and	add	this	piece	of	code:

Button	btn	=	(Button)	findViewById(R.id.btnColor);	

					btn.setOnClickListener(new	View.OnClickListener()	

						{

							@Override

							public	void	onClick(View	v)	{	

							new	ChromaDialog.Builder()

																								.initialColor(Color.BLUE)

																								.colorMode(ColorMode.RGB)

																								.onColorSelected(

																									new	ColorSelectListener()	{

								@Override	public	void	onColorSelected(int	color)	

								{

									Log.d(TAG,	"Color	selected");

									red	=	Color.red(color);

									green	=	Color.green(color);

									blue	=	Color.blue(color);

																										}

																							});

																							.create()

																							.show(getSupportFragmentManager(),

																							"dialog");

												}

										});

Here,	R.id.btnColor	is	the	ID	of	the	Button	widget	used	in	the	layout.	The	code	is	very	simple:	the
app	sets	the	color	selection	mode	(RGB)	and	sets	the	listener	to	be	informed	when	the	user
dismisses	the	dialog	confirming	the	color	selected.

Moreover,	the	app	uses	the	red,	green,	and	blue	components	extracted	from	the	color	picked	to
control	the	RGB	LEDs.

The	management	of	the	other	widgets	is	very	simple.	It	is	useful	to	mention	how	to	handle	the	group	of
radio	buttons.	In	the	UI,	there	are	two	groups:

1.	 The	first	group	is	used	to	handle	the	direction.
2.	 The	second	group	is	used	to	handle	the	type	of	operation	we	want	to	apply	to	the	RGB	LED	strip.

The	steps	necessary	to	manage	these	two	groups	are	the	same,	so	we	will	only	describe	the	second	group
of	radios.	To	handle	them,	we	have	to:

1.	 Add	the	widget	to	the	UI	layout.
2.	 Add	the	methods	to	manage	the	widget	in	the	Activity.

Regarding	the	first	step,	add	the	radio	group	widget	to	the	app	UI	with	the	following	lines:

<RadioGroup

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				app:layout_constraintTop_toBottomOf="@id/dirGroup"	

				android:layout_marginTop="20dp"	

				app:layout_constraintLeft_toLeftOf="parent"	

				app:layout_constraintRight_toRightOf="parent"

				android:layout_marginBottom="20dp"

				app:layout_constraintBottom_toBottomOf="parent"	

				android:orientation="horizontal">

<RadioButton

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/color"

				android:text="Set	Color"	android:onClick="onFunctionClick"/>

<RadioButton

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/clear"

				android:text="Clear"

				android:onClick="onFunctionClick"/>

<RadioButton

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/rainbow"

				android:text="Rainbow"

				android:onClick="onFunctionClick"/>

</RadioGroup>

Now	we	have	to	implement	the	method	called	when	the	user	selects	one	of	the	radio	buttons	in	the	group.
To	do	so,	we	have	to	add	the	following	method	to	the	activity:

public	void	onFunctionClick(View	v)	{	switch	(v.getId())	{

case	R.id.color:	

func	=	0;

break;

case	R.id.clear:	

func	=	1;

break;

case	R.id.rainbow:

func	=	2;

break;

}

}

This	checks	the	ID	of	the	widget	so	we	know	which	one	the	user	has	selected.	The	other	widgets	are	very
simple,	so	we	will	not	cover	them.

Connecting	the	Android	app	to	Android	Things
Another	interesting	aspect	is	sending	data	to	the	Android	Things	app	using	HTTP.	To	this	purpose,	we
will	use	a	library,	which	we	have	already	covered	in	previous	chapters.	This	library	is	OkHTTP.	As	stated
previously,	we	will	send	data	when	the	user	clicks	on	the	FAB.	The	code	to	handle	the	HTTP	connection
is	shown	as	follows:

fab.setOnClickListener(new	View.OnClickListener()	{

@Override

				public	void	onClick(View	view)	{

								String	delVal	=	edt.getText().toString();	HttpUrl.Builder	urlBuilder	=

								HttpUrl.parse(baseUrl).newBuilder()

							.addQueryParameter("action",

																										String.valueOf(func))

							.addQueryParameter("red",

																										String.valueOf(red))

								.addQueryParameter("green",

																											String.valueOf(green))

								.addQueryParameter("blue",

																												String.valueOf(blue))

								.addQueryParameter("dir",

																												String.valueOf(direction))

								.addQueryParameter("delay",	delVal);

						

								Request	req	=	new	Request.Builder()

																							.url(urlBuilder.build().toString())

																							.build();

									

							client.newCall(req).enqueue(new	Callback()	{

							@Override

												public	void	onFailure(Call	call,	IOException	

										e)

											{

											Log.e(TAG,	"Error");

											e.printStackTrace();

											}

							@Override

											public	void	onResponse(Call	call,

																							Response	response)	throws	

									IOException	{	

																		Log.i("TAG",	"Response.."	+

																		response.body().string());

											}

								});	

						}

})

The	code	is	quite	simple:

1.	 The	app	sets	the	listener	to	be	informed	when	the	user	clicks	on	the	FAB.
2.	 The	app	prepares	the	URL	adding	the	parameters,	such	as	red,	green,	blue	values,	and	so	on.
3.	 The	app	invokes	the	URL	exposed	by	the	Android	Things	app	passing	the	parameters	(GET	request).
4.	 The	app	sets	a	listener	to	be	informed	when	the	Android	Things	app,	through	the	web	server,	sends

back	the	response.

Before	running	the	app,	do	not	forget	to	add	the	permission	to	use	internet	in	your	Manifest.xml:

<uses-permission	android:name="android.permission.INTERNET"	/>

Now	you	can	run	the	app	using	an	Android	emulator	or	your	smartphone.	If	you	want	to	test	the	app,	you
have	to	follow	these	steps:

1.	 Connect	your	Arduino	board	to	the	RGB	LED	strip,	as	described	in	Chapter	5,	Create	a	Smart	System
to	Control	Ambient	Light.

2.	 Install	in	your	Android	Things	board	the	app	that	handles	the	RGB	LEDs.	If	you	use	Intel	Edison
with	an	Arduino	breakout	kit,	you	do	not	have	to	modify	the	Android	Things	app	source	code
because	the	app	runs	the	web	server	by	default.	If	you	use	Raspberry	Pi	3,	you	have	to	enable	the
web	server	because	the	app	does	not	run	it	by	default.

3.	 Get	the	Android	Things	board's	IP	and	replace	the	IP	used	in	Android	app	with	the	correct	one.

Now	you	can	test	the	Android	Things	app.

Congratulations!!	You	have	built	a	system	that	integrates	Android	and	Android	Things	using	a	direct
connection	based	on	a	master-slave	pattern.

How	to	develop	an	Android	app	that	retrieves
data	from	Android	Things
In	this	section,	we	will	cover	another	integration	scenario	where	an	Android	app	retrieves	data	from
Android	Things.	While	in	the	previous	scenario	we	used	the	Android	app	to	control	Android	Things,
here,	in	this	context,	we	want	to	retrieve	information	from	sensors	connected	to	the	Android	Things	board.
To	demonstrate	how	to	do	this,	we	will	reuse	the	project	we	developed	in	Chapter	6,	Remote	Weather
Station.	To	retrieve	the	data,	we	have	several	options,	but	we	are	interested	in	these	two	following
strategies:

1.	 Using	the	MQTT	protocol.
2.	 Connecting	the	Android	app	to	Android	Things	using	Bluetooth.

In	the	first	option,	in	order	to	retrieve	data	from	sensors,	we	could	implement	an	Android	app	that	uses
MQTT	through	the	Android	Things	app.	As	you	will	remember,	in	the	Remote	Weather	station	project	we
used	MQTT	to	connect	several	boards	and	applications.	In	this	context,	we	simply	have	to	implement	an
Android	MQTT	subscriber	app.	If	we	do	not	want	to	develop	it,	there	are	several	Android	apps	available
on	the	Google	play	store.	We	can	download	one	of	them	and	connect	it	to	the	MQTT	broker.	As	soon	as
we	have	correctly	configured	the	app,	we	start	receiving	the	data.	This	is	the	simplest	way	to	integrate	the
existing	Android	Things	app	with	Android.	There	is	also	another	method	we	can	exploit	to	make	Android
and	the	Android	Thing	app	exchange	data.	This	method	uses	the	Bluetooth	connection.	As	you	may
already	know,	Bluetooth	is	an	industrial	standard	widely	used	to	exchange	data	in	Wireless	Personal
Area	Network	(WPAN).	It	provides	an	efficient	way	of	exchanging	information	between	devices	over	a
short	range.	Both	Android	and	Android	Things	support	a	Bluetooth	connection.	More	generally,	the
concepts	you	learn	here	can	be	applied	to	other	projects	where	there	is	the	need	to	exchange	data.
Therefore,	it	is	important	you	understand	how	to	use	Bluetooth	in	Android	and	Android	Things.

	

How	to	implement	a	Bluetooth	connection
In	order	to	connect	the	Android	app	to	Android	Things	through	a	Bluetooth	connection,	we	have	to	follow
the	following	steps:

1.	 Create	an	Android	app	that	behaves	as	a	client	connecting	to	the	Android	Things	app	that	plays	the
server	role.

2.	 Modify	the	Android	Things	app,	previously	implemented,	by	adding	the	Bluetooth	feature.
3.	 Modify	the	Android	Things	app	to	send	data	through	Bluetooth	as	it	receives	data	from	MQTT.

The	following	figure	shows	the	project	overview:	

You	can	use	this	architecture	with	other	kinds	of	projects.	For	example,	you	can	apply
this	architecture	to	the	project	developed	in	Chapter	3,	How	to	Make	an	Environmental
Monitoring	System,	where	sensors	are	connected	directly	to	Android	Things	board.

The	idea	that	stands	behind	this	project	is	to	create	a	server	that	accepts	a	connection	from	clients	through
a	Bluetooth	connection.	In	order	to	make	it	work,	we	have	to	implement:

1.	 The	client,	that	is,	the	Android	app.
2.	 The	server,	that	is,	the	Android	Things	app.

Let	us	see	how	to	implement	each	step	described	previously.

Creating	the	Android	app
In	this	step,	as	stated	before,	we	have	to	create	an	Android	app	that	connects	to	the	Android	Things	board
using	a	Bluetooth	connection.	There	are	several	ways	we	can	implement	the	app.	Firstly,	we	could	exploit
the	Android	Bluetooth	API	(https://developer.android.com/guide/topics/connectivity/bluetooth.html)	or	we	can	use	an	open
source	library	that	does	the	heavy	work.	The	use	of	the	Android	Bluetooth	API	is	out	of	the	scope	of	this
book,	as	we	are	interested	in	understanding	how	Android	and	Android	Things	can	exchange	data.	For	this
purpose,	then,	we	will	use	a	simple	Android	Bluetooth	library	that	helps	us	to	develop	the	client	and
server	side	easily.

There	are	several	open	source	libraries	available;	in	this	project,	we	will	use	SimpleBluetoothLibrary	(https://gi
thub.com/DeveloperPaul123/SimpleBluetoothLibrary).	The	Android	app	UI	is	shown	as	follows:

To	develop	the	Android	app,	follow	the	following	steps:

1.	 Create	a	new	Android	Project	in	Android	Studio,	as	described	in	the	previous	paragraph.
2.	 In	build.gradle	at	the	project	level,	add	the	following	line	in	allprojects	tag:

maven	{url	"https://jitpack.io"}

3.	 In	build.gradle	at	the	app	level	we	have	to	declare	the	dependency	to	the	Bluetooth	library.	Therefore,
add	this	line	in	dependencies	tag:

compile	'com.github.DeveloperPaul123:SimpleBluetoothLibrary:1.5.1'

4.	 Now	we	are	ready	to	develop	the	app.	We	will	focus	on	the	Bluetooth	aspects	and	how	to	implement
them	without	covering	the	UI	aspects	because	they	are	very	simple.	In	MainActivity.java,	we	have	to
add	the	method	to	initialize	Bluetooth:

private	void	initBT()	{

								btConnection	=	new	SimpleBluetooth(this,	this);

								btConnection.setSimpleBluetoothListener(

											new	SimpleBluetoothListener()	{

								@Override

https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary
https://github.com/DeveloperPaul123/SimpleBluetoothLibrary

													public	void	onBluetoothDataReceived(

																	byte[]	bytes,	String	data)	{

								super.onBluetoothDataReceived(

																				bytes,	data);

																	Log.d(TAG,	"Data	received");

																	//Update	the	UI

																	}

								@Override

													public	void	onDeviceConnected(

																BluetoothDevice	device)	{

								super.onDeviceConnected(device);

																Log.d(TAG,	"Device	connected"

								+	device.getName());

																	}

								@Override

																public	void	

																				onDeviceDisconnected(

																BluetoothDevice	device)	{	

								super.onDeviceDisconnected(device);

																Log.d(TAG,	"Device	disconnected"

																												+	device.getName());

																	}

								@Override

																public	void	onDiscoveryStarted()	{	

								super.onDiscoveryStarted();

																Log.d(TAG,	"Discovery	started");	

																}

								@Override

																public	void	onDiscoveryFinished()	{

								super.onDiscoveryFinished();

																Log.d(TAG,	"Discovery	finished");}

								@Override

																	public	void	onDevicePaired(

																								BluetoothDevice	device	{

								super.onDevicePaired(device);

																		Log.d(TAG,	"Device	paiered"	+

																									device.getName());

																			}

								@Override

															public	void	onDeviceUnpaired(

																		BluetoothDevice	device)	{

								super.onDeviceUnpaired(device);

															Log.d(TAG,	"Device	unpaired"

																	+	device.getName());

														}

								});

								btConnection.initializeSimpleBluetooth();			

								btConnection.setInputStreamType(

										BluetoothUtility.InputStr	eamType.NO	RMAL);

							}

The	code	is	quite	simple.	The	app	initializes	the	Bluetooth	library	(SimpleBluetooth)	in	the	first
line.	In	the	next	step,	it	declares	a	listener	to	be	informed	about	Bluetooth	events.	As	you	will
notice,	there	are	several	events	included.

Considering	we	are	implementing	a	client,	we	are	interested	in	retrieving	messages	from	the
server.	For	this	reason,	we	override	onBluetoothDataReceived.	In	this	method,	we	will	update	the
app	UI	according	to	the	data	received.	At	the	end	of	the	method,	we	start	Bluetooth	and	we	set
the	data	stream	type.

5.	 In	the	onCreate	method	we	have	to	invoke	the	initBT()	method.
6.	 Moreover,	it	is	necessary	that	the	app	has	a	button	that	can	be	used	to	scan	other	Bluetooth	devices

nearby	(like	the	Android	Things	app).	In	this	way,	the	Android	app	can	connect	to	the	Android
Things	board.	For	this	reason,	the	app	UI	has	a	button	called	scan.	When	the	user	clicks	this	button,
we	use	the	library	to	detect	devices	nearby:

Button	scanBtn	=	(Button)

																			findViewById(R.id.scan_button);

								scanBtn.setOnClickListener(

											new	View.OnClickListener()	{

								@Override

														public	void	onClick(View	v)	{	

								btConnection.scan(SCAN_REQUEST);

														}

							});

When	the	app	invokes	the	scan	method,	the	library	starts	another	activity	that	will	return	to
MainActivity	the	information	of	the	device	selected	by	the	user.	This	activity	is	provided	by	the
SimpleBluetooth	library	so	that	we	do	not	have	to	write	a	single	line	of	code.	Notice	how	fast
developing	the	app	is	in	this	way.	The	app	UI	during	the	scan	is	shown	as	follows:

7.	 In	this	step,	we	have	to	override	the	method	onActivityResult	that	is	called	when	the	activity	started	at
step	6	returns	the	information	to	the	caller:

@Override

								protected	void	onActivityResult(

											int	requestCode,	int	resultCode,	Intent	data)	{

								super.onActivityResult(

											requestCode,	resultCode,	data);

							if	(requestCode	==	SCAN_REQUEST)	{	

							if	(resultCode	==	RESULT_OK)	{

							serverMacAdd	=	data.getStringExtra(

							DeviceDialog.DEVICE_DIALOG_DEVICE_ADD	RESS_EXTRA

);

							Log.d(TAG,	"Device	Add	["+serverMacAdd+"]");		

						btConnection.connectToBluetoothServer(serverMacAdd);

															}

											}	

							}

The	information	returned	by	the	scan	activity	is	the	device	that	represents	the	device	selected	by
the	user	during	the	scanning	process.	In	more	detail,	we	are	interested	in	the	mac	address	of	the
device.	The	mac	address	is	the	identification	of	the	device	we	have	selected.	In	this	context,	this
mac	address	represents	the	Android	Things	board.	We	use	this	address	to	connect	to	the	server
through	the	Bluetooth	connection.

That's	all!	In	a	few	steps,	we	have	implemented	a	simple	Android	app	that	behaves	as	a	client	and	we
will	now	use	it	to	connect	to	the	Android	Things	app	that	behaves	like	a	server.	Once	the	connection	is
established	these	apps	will	exchange	data.	Before	running	the	app,	we	have	to	modify	Manifest.xml,	adding
the	following	permission	to	use	Bluetooth:

<uses-permission	

				android:name="android.permission.BLUETOOTH"	/>

<uses-permission

				android:name="android.permission.BLUETOOTH_ADMIN"	/>

The	client	side	is	ready!	Let's	now	focus	on	the	server	side.

initBT();

private	void	initBT()	{	
	Log.d(TAG,	"BT	init...");
	btConnection	=	new
SimpleBluetooth(this,	this);
	btConnection.setSimpleBluetoothListener(......);	

btConnection.makeDiscoverable(600);
	btConnection.initializeSimpleBluetooth();

	btConnection.setInputStreamType(

BluetoothUtility.InputStreamType.NORMAL);	

btConnection.createBluetoothServerConnection();
	}

btConnection.sendData(payload);

<uses-permission
	android:name="android.permission.BLUETOOTH"	/>
<uses-
permission
	android:name="android.permission.BLUETOOTH_ADMIN"	/>

That's	all	the	integration	is	now	complete.	Now	you	can	run	the	app	and	check	it.

Summary
Aw	we	complete	this	chapter,	you	have	learned	how	to	integrate	Android	and	Android	Things.	We	have
explored	the	different	architectures	we	can	use	according	to	the	scenario	where	the	apps	will	work.	The
knowledge	you	gained	in	this	chapter	can	be	reused	in	different	scenarios.	During	this	book,	we	have
explored	several	aspects	of	Android	Things,	and	different	ways	we	can	exploit	the	power	of	Android
Things	OS,	integrating	with	IoT	cloud	platforms	or	with	other	IoT	development	boards.

	

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Getting Started with Android Things
	Internet of Things overview
	IoT components
	Android Things overview
	Things support library
	Android Things board compatibility
	How to install Android Things on Raspberry
	How to install Android Things using Windows
	How to install Android Things using OS X
	Testing the installation

	How to install Android Things on Intel Edison
	Configuring the WiFi
	Creating the first Android Things project
	Cloning the template project
	Create the project manually

	Differences between Android and Android Things
	Create your first Android Things app
	Summary

	Creating an Alarm System Using Android Things
	Alarm system project description
	PIR sensor
	Project schematic
	How to use GPIO pins
	Reading from the GPIO pin
	How to add a listener to GPIO
	Declare the event to listen to
	Implementing the callback class

	How to close the connection with a GPIO pin
	Handle different boards in Android Things
	Android Things board pinout
	How to identify the board

	How to implement the notification system
	Configuring firebase
	Add the notification feature to the Android Things app

	Android companion app
	Summary

	How to Make an Environmental Monitoring System
	Environmental monitoring system project overview
	Project components
	Project schematic

	How to read data from sensors
	Handling sensors using the Android sensor framework
	Implementing the sensor callback
	How to handle dynamic sensors

	Putting it all together - acquiring data
	How to close the sensor connection
	How to control GPIO pins
	Initialize the GPIO pin

	Diving into I2C protocol
	I2C protocol overview

	How to implement a custom sensor driver
	Low-level sensor driver

	Summary

	Integrate Android Things with IoT Cloud Platforms
	IoT cloud architecture
	An IoT cloud platform overview
	IoT cloud architecture overview

	Streaming data to the IoT cloud platform
	How to configure Artik Cloud
	Artik client description
	How to implement the Android Things Artik client
	Implement a StringRequest with Volley
	Implement a custom HTTP header
	Send the data using a custom body request

	Sending data from the Android Things app
	Creating a dashboard
	Data logging

	Adding voice capabilities to Android Things
	Configure Temboo choreo
	Integrate Temboo in the Android Things app

	Summary

	Create a Smart System to Control Ambient Light
	Ambient light control system description
	Project components
	Project architecture

	Building the Arduino project
	How Arduino exposes the services

	Implementing the Android Things app
	How to develop an Android Things app UI
	Attaching the layout to the Activity
	Handling UI events

	Invoking the Arduino services
	How to implement a web interface
	Implementing a simple HTTP web server
	Creating the HTML page with the UI
	Embedding the HTTP Server into the Android Things app

	Summary

	Remote Weather Station
	Remote weather station project description
	Project components

	The M2M architecture and the MQTT protocol
	MQTT protocol overview
	MQTT message details
	Security and QoS

	Using MQTT in our remote weather station
	Implementing the MQTT publisher
	Connecting to MQTT and sending data

	Implementing the MQTT subscriber using Android Things

	Implementing the Android Things Activity
	Displaying the information using OLED display
	Connect the OLED display to Android Things board

	Installing the MQTT server
	Installing the MQTT broker
	Configuring the MQTT broker

	Summary

	Build a Spying Eye
	Spying eye Android Things project overview
	Project components
	Pulse Width Modulation overview
	How to use PWM with Android Things

	Implementing the spying eye project in Android Things
	Controlling a servomotor in Android Things
	Using a camera in Android Things
	Getting ready to use the camera

	Assembling the app

	Summary

	Android with Android Things
	Architecture to connect Android and Android Things
	How to control a LED strip using an Android app
	Connecting the Android app to Android Things

	How to develop an Android app that retrieves data from Android Things
	How to implement a Bluetooth connection
	Creating the Android app
	Implementing the Bluetooth server in Android Things

	Summary

