

Data Structures and

Algorithms in Java

:, Fifth Edition
International Student Version

Michael T. Goodrich
Department of Computer Science
University of California, Irvine

Roberto Tamassia
Department of Computer Science

Brown University

I

\
I

~i,~

John Wiley & Sons, Inc.!
f.

!
~

!
L"

Preface

This international student version of Data Structures and Algorithms in Java pro
vides an introduction to data structures and algorithms, including their design, anal
ysis, and implementation. In terms of curricula based on the IEEEIACM 2001
Computing Curriculum, this book is appropriate for use in the courses CS102
(1I01B versions), CS103 (1I01B versions), CS111 (A version), andCS112(AlI/OIFIH
versions). We discuss its use for such courses in more detail later in this preface.

The major changes in the fifth edition are the following:

- We added more examples and discussion of data structure and algorithm

analysis.
- We enhanced consistency with the Java Collections Framework.
- We enhanced the discussion of algorithmic design techniques, like dynamic

programming and the greedy method.
- We added new material on improved Java 110 methods.
- We created this international student version of the book, which contains

content, such as Java internationalization and international units, more ap
propriate for readers outside of North America and Europe.

- We added a discussion of the difference between array variable-name assign
ment and array cloning.

- We_ included an expanded discussion of the Deque interface and Lin ked List
class inJava.

- We increased coverage of entry objects in the Java Collection Framework.
- We fully integrated all code fragment APIs to u~e generic types.
- We added discussions of the NavigatableMap interface, ~s well as their im

plementations in the Java Collections Framework using skip lists.
- We included a discussion of the Java TreeMap class.
- We provided discriptions of the sorting methods included in the Java library.
- We expanded and revised exercises, continuing our approach of dividing

them into reinforcement, creativity, and project exercises.
This book is related to the following books:
- M.T. Goodrich, R. Tamassia, and n.M. Mount, Data Structures and Algo

rithms in C++, John Wiley & Sons, Inc. This book has a' similar over
all structure to the present book, but uses C++ as the underlying language
(with some modest, but necessary pedagogical differences required by this
approach).

-M.T. Goodrich and R. Tamassia, Algorithm Design: Foundations, Analysis,
and Internet Examples, John Wiley & Sons, Inc. This is a textbook for a more
advanced algorithms and data structures course, such as CS210 (TIWICIS
versions) in the IEEElACM 2001 curriculum.

vii

viii Preface

Use as a Textbook

The design and analysis of efficient data structures has long been recognized as
a vital subject in computing, for the study of data structures is part of the core of
every collegiate computer science and computer engineering major program we are
familiar with. Typically, the introductory courses are presented as a two- or three
course sequence. Elementary data structures are often briefly introduced in the
first programming course or in an introduction to computer science course and this
is followed by a more in-depth introduction to data structures in the courses that
follow after this. Furthermore, this course sequence is typically followed at a later
point in the curriculum by a more in-depth study of data structures and algorithms.
We feel that the central role of data structure design and analysis in the curriculum
is fully justified, given the importance of efficient data structures in most software

. systems, including the Web, operating systems, databases, compilers, and scientific
simulation systems.

With the emergence of the object-oriented paradigm as the framework of choice
for building robust and reusable software, we have tried to take a consistent object
oriented viewpoint throughout this text. One of the main ideas of the object
oriented approach is that data should be presented as being encapsulated with the
methods that access and modify them. That is, rather than simply viewing data
as a collection of bytes and addresses, we think of data objects as instances of an
abstract data type (ADn, which includes a repertoire of methods for performing
operations on data objects of this type. Likewise, object-oriented solutions are of
ten organized utilizing common design patterns, which facilitate .software reuse

5

and robustness. Thus, we present each data structure using ADTs and their re
spective implementations and we introduce important design patterns as means to
organize those implementations into classes, methods, and objects.

For each ADT presented in this book, we provide an associated Java interface.
Also, concrete data structures realizing the ADTs are discussed and we often give
concrete Java classes implementing these interfaces. We also give Java implemen
tations of fundamental algorithms, such as sorting and graph searching. Moreover,
in addition to providing techniques for using data structures to implement ADTs,
we also give sample applications of data structures, such as in HTML tag matching
and a simple system to maintain a photo album. Due to space limitations, however,
we sometimes show only code fragments of some implementations in this book and
make additional source code available on the companion web site. The Java code
implementing fu:pcla:n.I,en11ll data structqre~ in this book is .Qrganized into a single
Java package, net.datastructures, which forms a coherent library of data structures
and algorithms in Java specifically designed for educational purposes in a way that
is complementary with the Java Collections Framework. The net.datastructures
library is not required, however, to get full use from this book.

ix Preface

Online Resources

This book is accompanied by an extensive accompanying set of online resources,
which can be found at the following web site:

www.wiley.com/go/global/goodrich

Students are encouraged to use this site along with the book, to help with exer
cises and increase understanding of the subject. Instructors are likewise welcome
to use the site to help plan, organize, and present their course materials. Included
on this Web site is a collection of educational aids that augment the topics of this
book, for both students and instructors. Because of their added value, some of these
online resources are password protected.

For the Student

For all readers, and especially for students, we include the following resources:
• 	All the Java source code presented in this book.
• 	PDF handouts of Powerpoint slides (four-per-page) provided to instructors.
• A database of hints to all exercises, indexed by problem number.
• An online study guide, which includes solutions to selected exercises.

The hints should be of considerable use to anyone needing a little help getting
started on certain exercises, and the solutions should help anyone wishing to see
completed exercises. Students who have purchased a new copy of this book will
get password access to the hints and other password-protected online resources at
no extra charge. Other readers can purchase password access for a nominal fee.

-	 .

For the Instructor

For instructors using this book, we include the following additional teaching aids:

• 	Solutions to over two hundred of the book's exercises.
• A database of additional exercises, suitable for quizzes and exams.
• 	The complete net.datastructmes package.
• 	Additional Java source code.
• 	Slides in Powerpoint and PDF (one-per-page) format.
• 	Self-contained special-topic supplements, including discussions on convex

hulls, range trees, and orthogonal segment intersection.
• 	Ready-to-use, turn-key projects, complete with supporting Java code for graphical

userinte¢aces (GUls), so that students can concentrate on data structure de
.sign,illlplementation, and usage, rather than GUI programming.

The slides are fully editable, so as to allow an instructor using this book full free
dom in customizing his or her presentations. All the online resources are provided
at no extra charge to any instructor adopting this book for his or her course.

www.wiley.com/go/global/goodrich

x Preface

A Resource for Teaching Data Structures and Algorithms

This book contains many Java-code and pseudo-code fragments, and hundreds of
exercises, which are divided into roughly 40% reinforcement exercises, 40% cre
ativity exercises, and 20% programming projects.

This book can be used for the CS2 course, as descirbed in the 1978 ACM Com
puter Science Curriculum, or in courses CS 102 (I/OIE versions), CS 103 (I/OIE ver
sions), CS III (A version), and/or CS 112 (AIIIOIF/H versions), as described in the
IEEEIACM 2001 Computing Curriculum, with instructional units as outlined in
Table 0.1.

Instructional Unit Relevant Material
PLl. Overview of Programming Languages Chapters 1 & 2
PL2. Virtual Machines Sections 14.1.1, 14.1.2, & 14.1.3
PL3. Introduction to Language Translation Section 1.9
PL4. Declarations and Types Sections 1.1,2.4, & 2.5
PL5. Abstraction Mechanisms Sections 2.4, 5.1, 5.2, 5.3, 6.1.1, 6.2, 6.4,

6.3,7.1,7.3.1,8.1,9.1,9.5, 11.4, & 13.1
PL6. Object-Oriented Programming Chapters 1 & 2 and Sections 6.2.2, 6.3,

7.3.7,8.1.2, & 13.3.1
PFI. Fundamental Programming Constructs Chapters 1 & 2
PF2. Algorithms and Problem-Solving Sections 1.9 & 4,2
PF3. Fundamental Data Structures Sections 3.1, 5.1-3.2, 5.3, , 6.1---D.4, 7.1,

7.3,8.1,8.3,9.1-9.4, 10.1, & 13.1
PF4. Recursion Section 3.5
SEI. Software Design Chapter 2 and Sections 6.2.2, 6.3, 1.3.7,

8.1.2, & 13.3.1
SE2. Using APIs Sections 2.4, 5.1, 5.2', 5.3, 6.1.1, 6.2, 6.4,

6.3,7.1,7.3.1,8.1,9.1,9.5, 11.4, & 13.1
All. Basic Algorithmic Analysis Chapter 4
AL2. Algorithmic Strategies

AL3. Fundamental Computing Algorithms

Sections 11.1.1,11.5.1,12.3.1,12.4.2, &
12.2
Sections 8.1.4, 8.2.2, 8.3.5,9.2, & 9.3.1,
and Chapters 11, 12, & 13

DS 1. Functions, Relations, and Sets Sections 4.1, 8.1, & 11.4
DS3. Proof Techniques Sections 4.3, 6.1.4, 7~3.3, 8.3, 10.2, 10.3,

10.4, 10.5, 11.2.1, 11.3.1, 11.4.3, 13.1,
13.3.1, 13.4, & 13.5

DS4. Basics of Counting Sections 2.2.3 & 11.1.5
DS5. Graphs and Trees Chapters 7, 8, 10, & 13
DS6. Discrete Probability Appendix A and Sections 9.2.2, 9.4.2,

11.2.1, & 11.5

Table 0.1: Material for Units in the IEEE/ACM 2001 Computing Curriculum.

xi Preface

Contents and Organization

The chapters for this course are organized to provide a pedagogical path that starts
with the basics of Java programming and object-oriented design. We provide an
early discussion of concrete structures, like arrays and linked lists, so as to provide
a concrete footing to build upon when constructing other data structures. We then
add foundational techniques like recursion and algorithm analysis, and, in the main
portion of the book, we present fundamental data structures and algorithms, con
cluding with a discussion of memory management (that is, the architectural under
pinnings of data structures). Specifically, the chapters for this book are organized
as follows:

1. Java Programming Basics

2. Object-Oriented Design

3. Arrays, Linked Lists, and Recursion

4. Mathematical Foundations

5. Stacks and Queues

6. List Abstractions

7. Tree Structures.

8. Priority Queues

9. Maps and Dictionaries

10. Search Tree Structures

11. Sorting and Selection

12. Text Processing

13. Graphs

14. Memory ..

.. A.Usef~ffv1athematical Facts·

A more detailed listing of the contents of this book can be found in the table of
contents.

'I[
~!,t'

~
l
I xii PrefaceII
I• r
• Prerequisites

II We have written this book assuming that the reader comes to it with certain knowl
I~·!i edge. We assume that the reader is at least vaguely familiar with a high-level proiii

.1,

i
'I

gramming language, such as C, C++, Python, or Java, and that he or she under
H

I
Ii stands the main constructs from such a high-level language, including:
·f " • Variables and expressions.

• Methods (also known as functions or procedures).
• Decision structures (such as if-statements and switch-statements).
• Iteration structures (for-loops and while-loops).

For readers who are familiar with these concepts, but not with how they are ex
pressed in Java, we provide a primer on the Java language in Chapter 1. Still, this
book is primarily a data structures book, not a Java book; hence, it doe~ not provide
a comprehensive treatment of Java. Nevertheless, we do not assume that the reader
is necessarily familiar with object-oriented design or with linked structures, such
as linked lists, for these topics are covered in the core chapters of this book.

In terms of mathematical background, we assume the reader is somewhat famil
iar with topics from high-school mathematics. Even so, in Chapter 4, we discuss
the seven most-important functions for algorithm analysis. In fact, sections that use
something other than one of these seven functions are considered optional, and are
indicated with a star (*). We give a summary of other useful mathematical facts,
including elementary probability, in Appendix A.

About the Authors

Professors Goodrich and Tamassia are well-recognized researchers in algorithms
and data structures, having published many papers in this field, with applications
to Internet computing, information visualization, computer security, and geomet
ric computing. They have served as principal investigators in several joint projects
sponsored by the National Science Foundation, the Army Research Office, the Of
fice of Naval Research, and the Defense Advanced Research Projects Agency. They
are also active in educational technology research.

Michael Goodrich received his Ph.D. in Computer Science from Purdue Uni
versity in 1987. He is currently a Chancellor's Professor in the Department ofCom
puter Science at University of California, Irvine. Previously, he was a professor at
Johns Hopkins University. He is an editor for a number of journals in computer
science theory, computational geometry, and graph algorithms. He is an ACM Dis
tinguished Scientist, a Fellow of the American Association for the Advancement of
Science (AAAS), a Fulbright Scholar, and aFellow of the IEEE. He is a recipient of
the IEEE Computer Society Technical Achievement Award, the ACM Recognition
of Service Award, and the Pond Award for Excellence in Undergraduate Teaching.

Preface xiii

Roberto Tamassia received his Ph.D. in Electrical and Computer Engineering
from the University of Illinois at Urbana-Champaign in 1988. He is the Plastech
Professor of Computer Science and the Chair of the Department of Computer Sci
ence at Brown University. He is also the Director of Brown's Center for Geometric
Computing. His research interests include information security, cryptography, anal
ysis, design, and implementation of algorithms, graph drawing and computational
geometry. He is an IEEE Fellow and a recipient of the Technical Achievement
Award from the IEEE Computer Society, for pioneering the field of graph draw
ing. He is an editor of several journals in geometric and graph algorithms. He
previously served on the editorial board of IEEE Transactions on Computers.

In addition to their research accomplishments, the authors also have extensive
experience in the classroom. For example, Dr. Goodrich has taught data structures
and algorithms courses, including Data Structures as a freshman-sophomore level
course and Introduction to Algorithms as an upper level course. He has earned sev
eral teaching awards in this capacity. His teaching style is to involve the students in
lively interactive classroom sessions that bring out the intuition and insights behind
data structuring and algorithmic techniques. Dr. Tamassia has taught Data Struc
tures and Algorithms as an introductory freshman-level course since 1988. One
thing that has set his teaching style apart is his effective use of interactive hyper
media presentations integrated with the Web.

Acknowledgments

There are a number of individuals who have made contributions to this book.
We are grateful to all our research collaborators and teaching assistants, who

provided feedback on early drafts of chapters and have helped us in developing
exercises, software, and algorithm animation systems. In particular, we would
like to thank Jeff Achter, Vesselin Arnaudov, James Baker, Ryan Baker, Benjamin
Boer, Mike Boilen, Devin Borland, Lubomir Bourdev, Stina Bridgeman, Bryan
Cantrill, Yi-Jen Chiang, Robert Cohen, David Ellis, David Emory, Jody Fanto, Ben
Finkel, Peter Frohlich, Ashim Garg, Natasha Gelfand, Mark Handy, Michael Hom,
Greg Howard, BenOIt Hudson, Jovanna Ignatowicz, Seth Padowitz, Babis Papa
manthou, James Piechota, Dan Polivy, Seth Proctor, Susannah Raub, Haru Sakai,
Andy Schwerin, Michael Shapiro, Mike Shim, Michael Shin, Galina Shubina, Amy
Simpson, Christian Straub, Ye Sun, Nikos Triandopoulos, Luca Visinara, Danfeng
Yao, Jason Ye, and Eric Zamore. Lubomir Bourdev, Mike Demmer, Mark Handy,
Michael Horn,~dScott Speigler developed a basic; Java tutorial, which ultimately
led to Chapter 1, Java Primer. Special thanks go to Eric Zamore, who contributed
to the development of the Java code examples in this book and to the initial design,
implementation, and testing of the net.datastructures library of data structures and
algorithms in Java. We are also grateful to Vesselin Amaudov and Mike Shim for

xiv Preface

testing the current version of net.datastructures, and to Jeffrey Bosboom for addi
tional Java code examples and updates. Comments from students and instructors
who have used previous editions of this book have helped shape this edition.

There have been a number of friends and colleagues whose comments have
lead to improvements in the text. We are particularly thankful to Karen Goodrich,
Art Moorshead, David Mount, Scott Smith, and Ioannis Tollis for their insightful
comments. In addition, contributions by David Mount to Section 3.5 and to several
figures are gratefully acknowledged.

We are also truly indebted to the outside reviewers and readers for their co
pious comments, emails, and constructive criticism, which were extremely use
ful in writing this edition. We specifically thank the following reviewers for their
comments and suggestions: Divy Agarwal, University of California, Santa Bar
bara; Terry Andres, University of Manitoba; Bobby Blumofe, University of Texas,
Austin; Michael Clancy, University of California, Berkeley; Larry Davis, Univer
sity of Maryland; Scott Drysdale, Dartmouth College; Arup Guha, University of
Central Florida; Chris Ingram, University of Waterloo; Stan Kwasny, Washington
University; Calvin Lin, University of Texas at Austin; John Mark Mercer, McGill
University; Laurent Michel, University of Connecticut; Leonard Myers, California
Polytechnic State University, San Luis Obispo; David Naumann, Stevens Institute
of Technology; Robert Pastel, Michigan Technological University; Bina Rama
murthy, SUNY Buffalo; Ken Slonneger, University of Iowa; c.v. Ravishankar,
University of Michigan; Val Tannen, University of Pennsylvania; Paul Van Ar
ragon, Messiah College; and Christopher Wilson, University of Oregon.

We are grateful to our editor, Beth Golub, for her enthusiastic support of this
project. The team at Wiley has been great. Many thanks go to Mike Berliq, Lilian
Brady, Regina Brooks, Paul Crockett, Richard DeLorenzo, Simon Durkin, NIiche
line Frederick, Lisa Gee, Katherine Hepburn, Rachael Leblond, Andre Legaspi,
Madelyn Lesure, Frank Lyman, Hope Miller, Bridget Morrisey, Chris Rue!, Ken
Santor, Lauren Sapira, Dan Sayre, Diana Smith, Bruce Spatz, Dawn Stanley, Jeri
Warner, and Bill Zobrist.

The computing systems and excellent technical support staff in the departments
of computer science at Brown University and University of California, Irvine gave
us reliable working environments. This manuscript was prepared primarily with
the BTEX typesetting package.

Finally, we would like to warmly thank Isabel Cruz, Karen Goodrich, Giuseppe
Di Battista, Franco Preparata, Ioannis Tollis, and our parents for providing advice,
encouragement, and support at various stages of the preparation of this book. We
also thank them for reminding us that there are things in life beyond writing books.

Michael T. Goodrich
Roberto Tamassia

I 	 Content:

1 Java Programming Basics 	 1

1.1 Getting Started: Classes, Types, and Objects 2

1.1.1 Base Types . 5

1.1.2 Objects 7

1.1.3 Enum Types. 	 14

1.2 Methods 15

1.3 Expressions . . . 	 20

1.3.1 Literals.. 	 20

1.3.2 Operators 	 21

1.3.3 Casting and Autoboxing/Unboxing in Expressions . 25

1.4 Control Flow 	 27

1.4.1 The If and Switch Statements . . 	 27

1.4.2 Loops 	 29

1.4.3 Explicit Control-Flow Statements. 	 32

1.5 Arrays _. . . . 	 '$ • 34

1.5.1 Declaring Arrays. 	 36

1.5.2 Arrays are Objects. . 	 37

1.6 Simple Input and Output 	 39

1.7 An Example Program 	 42

1.8 Nested Classes and Packages .. 	 45

1.9 Writing a Java Program 	 47

1.9.1 Design..... 	 47

1.9.2 Pseudo-Code 	 48

1.9.3 Coding....... 	 49

1.9.4 Testing and Debugging . . . 	 53

1.10 Exercises 	 55

2 	 Object-Oriented Design 57

2.1 	 Goals. Principles, and Patterns 58

. 2.1.1 Object-Oriented Design Goals 58

2.1.2 Object-Oriented Design Principles 	 59

2.1.3 Design Patterns 	 62

xv

xvi Contents

2.2 Inheritance and Polymorphism . 63

2.2.1 Inheritance 63

2.2.2 Polymorphism 65

2.2.3 Using Inheritance in Java 66

2.3 Exceptions 76

2.3.1 Throwing Exceptions .. 76

2.3.2 Catching Exceptions. . . 78

2.4 I nterfaces and Abstract Classes 80

2.4.1 Implementing Interfaces .. 80

2.4.2 Multiple Inheritance in Interfaces . 83

2.4.3 Abstract Classes and Strong Typing 84

2.5 Casting and Generics 85

2.5.1 Casting 85

2.5.2 Generics 89

2.6 Exercises . . . 91

3 Arrays, Linked Lists, and Recursion 95

3.1 Using Arrays 96

3.1.1 Storing Game Entries in an Array. 96

3.1.2 Sorting an Array. 103

3.1.3 java.util Methods for Arrays and Random Numbers 106

3.1.4 Simple Cryptography with Strings and Character Arrays. 109

3.1.5 Two-Dimensional Arrays and Positional Games . . ·s . 112

3.2 Singly Linked Lists. '. . . . 117

3.2.1 Insertion in a Singly Linked List 119

3.2.2 Removing an Element in a Singly Linked List . 121

3.3 Doubly Linked Lists . 122

3.3.1 Insertion in the Middle of a Doubly Linked List 125

3.3.2 Removal in the Middle of a Doubly Linked List . . 126

3.3.3 An Implementation of a Doubly Linked List 127

3.4 Circularly Linked Lists and Linked-List Sorting. . . 130

3.4.1 Circularly Linked Lists and Duck, Duck, Goose 130

3.4.2 Sorting a Linked List 135

3.5 Recursion 136

3.5.1 Linear Recursion. . 142

3.5.2 Binary Recursion . 146

3.5.3 Multiple Recursion 149

3.6 Exercises 151

Contents xvii

4 Mathematical Foundations 157

4.1 The Seven Functions Used in This Book . 158

4.1.1 The Constant Function 158

4.1.2 The Logarithm Function 158

4.1.3 The Linear Function. . . 160

4.1.4 The N-Log-N Function . 160

4.1.5 The Quadratic Function. . 160

4.1.6 The Cubic Function and Other Polynomials 162

4.1.7 The Exponential Function. 163

4.1.B Comparing Growth Rates 165

4.2 Analysis of Algorithms .. 166

4.2.1 Experimental Studies 167

4.2.2 Primitive Operations 168

4.2.3 Asymptotic Notation 170

4.2.4 Asymptotic Analysis. 174

4.2.5 Using the Big-Oh Notation 176

4.2.6 A Recursive Algorithm for Computing Powers 180

4.2.7 Some More Examples of Algorithm Analysis. . 181

4.3 Simple Justification Techniques 185

4.3.1 By Example 185

4.3.2 The "Contra" Attack 185

4.3.3 Induction and Loop Invariants 186

4.4 Exercises 189

5 Stacks and Queues 197

5.1 Stacks 198

5.1.1 The Stack Abstract Data Type " '. 199

5.1.2 A Simple Array-Based Stack Implementation 202

5.1.3 Implementing a Stack with a Generic Linked List 207

5.1.4 Reversing an Array Using a Stack , 209

5.1.5 Matching Parentheses and HTML Tags- 210

5.2 Queues . . . , . 214

5.2.1 The Queue Abstract Data Type 214

5.2.2 A Simple Array-Based Queue Implementation ... '.' . 217

5.2.3 Implementing a Queue with a Generic Linked List 220

5.2.4 Round Robin Schedulers,....... 221

5.3 Double-Ended Queues . . ' 223

5.3.1 The Deque Abstract Data Type 223

5.3.2 Implementing a Deque 224

5.3.3 Deques in the Java Collections Framework 227

5.4 Exercises , 228

xviii Contents

6 List Abstractions 233

6.1 Array Lists 234

6.1.1 The Array List Abstract Data Type. 234

6.1.2 The Adapter Pattern 235

6.1.3 A Simple Array-Based Implementation 236

6.1.4 A Simple Interface and the java.util.ArrayList Class 238

6.1.5 Implementing an Array List Using Extendable Arrays 239

6.2 l\Iode Lists 243

6.2.1 Node-Based Operations. 243

6.2.2 Positions............... 244

6.2.3 The Node List Abstract Data Type. 244

6.2.4 Doubly Linked List Implementation. 248

6.3 Iterators.................... 254

6.3.1 The Iterator and Iterable Abstract Data Types. 254

6.3.2 The Java For-Each Loop 256

6.3.3 Implementing Iterators 257

6.3.4 List Iterators in Java 259

6.4 List ADTs and the Collections Framework. 260

6.4.1 Lists in the Java Collections Framework 260

6.4.2 Sequences................ 264

6.5 Case Study: The Move-to-Front Heuristic . 267

6.5.1 Using a Sorted List and a Nested Class 267

6.5.2 Using a List with the Move-to-Front Heuristic . 270

6.5.3 Possible Uses of a Favorites List 271

6.6 Exercises I
... 274

7 Tree Structures 279

7.1 General Trees. 280

7.1.1 Tree Definitions and Properties. 281

7.1.2 The Tree Abstract Data Type 284

7.1.3 Implementing a Tree 285

7.2 Tree Traversal Algorithms 287

7.2.1 Depth and Height . 287

7.2.2 Preorder Traversal. 290

7.2.3 Postorder Traversal 293

7.3 Binary Trees 296

7.3.1 The Binary Tree ADT 298

7.3.2 A Binary Tree Interface in Java. 298

7.3.3 Properties of Binary Trees 299

7.3.4 A Linked Structure for Binary Trees 301

7.3.5 An Array-List Representation of a Binary Tree. . 310

Contents

7.3.6 Traversals of Binary Trees ...
7.3.7 The Template Method Pattern

7.4 Exercises .

8 Priority Queues
8.1 The Priority Queue Abstract Data Type

8.1.1 Keys, Priorities, and Total Order Relations.
8.1.2 Entries and Comparators .. .
8.1.3 The Priority Queue ADT

8.1.4 Sorting with a Priority Queue.

8.2 Implementing a Priority Queue with a List .
8.2.1
8.2.2

8.3 Heaps
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6

A Java Priority Queue Implementation Using a List
Selection-Sort and Insertion-Sort
.......................... .
The Heap Data Structure
Complete Binary Trees and Their Representation
Implementing a Priority Queue with a Heap
A Java Heap Implementation .. .
Heap-Sort
Bottom-Up Heap Construction * .

8.4 Adaptable Priority Queues
8.4.1 Using the java.util.PriorityQueue Class .
8.4.2 Location-Aware Entries
8.4.3 Implementing an Adaptable Priority Queue

8.5 Exercises

9 . Maps and Dictionaries
9.1 Maps

9.1.1 The Map ADT

9.1.2 A Simple List-Based Map Implementation .

9.2 Hash Tables

9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.2.7

Bucket Arrays ..

Hash Functions .

Hash Codes ...

Compression Functions

Collision-Handling Schemes

A Java Hash Table Implementation

Load Factors amI Rehashing

9.2.8 .. Application: Counting Word Frequencies .
9.3 Ordered Maps

9.3.1 Ordered Search Tables and Binary Search ;
9.3.2 Two Applications of Ordered Maps

xix

312

319

323

333

334

334

336

338

339

340

341

344

346

346

349

354

359

362

364

368

369

370

371

374

381

382

383

385

386

386

387

388

391

393

397

401

402

403

404

408

xx Contents

9.4 Skip Lists .
9.4.1 Search and Update Operations in a Skip List
9.4.2 A Probabilistic Analysis of Skip Lists *

9.5 Dictionaries

9.5.1 The Dictionary ADT

9.5.2 Implementations with Location-Aware Entries
9.5.3 An Implementation Using the java.util Package

9.6 Exercises

10 Search Tree Structures
10.1 Binary Search Trees .

10.1.1 Searching ...
10.1.2 Update Operations
10.1.3 Java Implementation

10.2 AVL Trees.
10.2.1 Update Operations
10.2.2 Java Implementation

10.3 Splay Trees

10.3.1 Splaying
10.3.2 When to Splay.
10.3.3 Amortized Analysis of Splaying * .

10.4 (2,4) Trees

10.4.1 Multi-Way Search Trees
10.4.2 Update Operations for (2,4) Trees .

10.5 Red-Black Trees
10.5.1 Update Operations .
10.5.2 Java Implementation

10.6 Exercises

11 Sorting and Selection
11.1 Merge-Sort

11.1.1 Divide-and-Conquer .. .
11.1.2 Merging Arrays and Lists
11.1.3 The Running Time of Merge-Sort
11.1.4 Java Implementations of Merge-Sort
11.1.5 Merge-Sort and Recurrence Equations * .

11.2 Quick-Sort .
11.2.1 Randomized Quick-Sort
.11.2.2 Java Implementations and Optimizations.

11.3 Studying Sorting through an Algorithmic Lens
11.3.1 A Lower Bound for Sorting
11.3.2 Linear-Time Sorting: Bucket-Sort and Radix-Sort ..

411

413

417

420

420

422

423

426

431

432

433

435

439

443

445

451

454

454

458

460

465

465

471

477

479

492

495

501

502

502

507

510

511

514

515

522

524

527

527

529

Contents

1<

xxi

. 11.3.3 Comparing Sorting Algorithms 532
11.4 Sets and Union/Find Structures . . 534

11.4.1 The Set ADT 534
11.4.2 Mergeable Sets and the Template Method Pattern 535
11.4.3 Partitions with Union-Find Operations 539

11.5 Selection .. 543
11.5.1 Prune-and-Search 543
11.5.2 Randomized Quick-Select. 544

11.5.3 Analyzing Randomized Quick-Select 545

11.6 Exercises " 546

12 Text Processing 553
12.1 String Operations . 554

12.1.1 The Java String Class. 555
12.1.2 The Java StringBuffer Class. 556

12.2 Dynamic Programming 557
12.2.1 Matrix Chain-Product. 557
12.2.2 DNA and Text Sequence Alignment 560

12.3 Pattern Matching Algorithms .. 564
12.3.1 Brute Force 564
12.3.2 The Boyer-Moore Algorithm 566 .
12.3.3 The Knuth-Morris-Pratt Algorithm 570

12.4 Text Compression and the Greedy Method ... 575
12.4.1 The Huffman Coding Algorithm 576

12.4.2 The Greedy Method:........... 577

12.5 Tries . 578
12.5.1 Standard Tries
12.5.2 Compressed Tries . .
12.5.3 Suffix Tries
12.5.4 Search Engines ...

12.6 Exercises

13 Graphs

..'... 578
. 582
. 584
. 586
. 587

593
13.1 Graphs. 594

13.1.1 The Graph ADT 599.

13.2 Data Structures for Graphs. 600

13.2.1 The Edge List Structure. 600
13.2.2 The Adjacency List Structure. 603
13.2.3 The Adjacency Matrix Structure 605

13.3 Graph Traversals 607

13.3.1 Depth-First Search 607

13.3.2 Implementing Depth-First Search 611

xxii 	 Contents

13.3.3 Breadth-First Search 619

13.4 Directed Graphs 622

13.4.1 Traversing a Digraph 624

13.4.2 Transitive Closure 626

13.4.3 Directed Acyclic Graphs. 629

13.5 	Shortest Paths 633

13.5.1 Weighted Graphs 633

13.5.2 Dijkstra's Algorithm. 635

13.5.3 Implementations of Dijkstra's Algorithm 641

13.6 Minimum Spanning Trees. 644

13.6.1 Kruskal's Algorithm 646

13.6.2 The Prim-Jarnik Algorithm . .. '" 650

13.7 	Exercises .. 653

14 Memory 	 663

14.1 	Memory Management. 664

14~1.1 Stacks in the Java Virtual Machine. 664

14.1.2 Allocating Space in the Memory Heap 668

14.1.3 Garbage Collection 670

14.2 External Memory and Caching 672

14.2.1 The Memory Hierarchy 672

14.2.2 Caching Strategies 673

14.3 External Searching and 8-Trees. 678

14.3.1 (a,b) Trees :........ 679

14.3.2 B-Trees 681

14.4 External-Memory Sorting 	
~

682

14.4.1 Multi-way Merging 	 683

14.5 	Exercises 684

A Useful Mathematical Facts 	 687

Bibliography 	 695

Index 	 701

Chapter

1 Java Programming Basics

" .• '000 '.

• 00000 00 •

• 00 ••000 •
.00.·.·.00.
• 00. .00•

• 0000'0'0000•

• 000 0••
Contents " ..
1.1 Getting Started: Classes, Types, and Objects. 2

1.1.1 Base Types 5

1.1.2 Objects ... 7

1.1.3 Enum Types. 14

1.2 Methods 15

1.3 Expressions........................ 20

1.3.1 Literals........................ 20

1.3.2 Operators .. 21

1.3.3 Casting and AutoboxingjUnboxing in Expressions. 25

1.4 Control Flow .. 27

•1.4.1 The If and Switch Statements 27

1.4.2 Loops"....: 29

1.4.3 Explicit Control-Flow Statements. 32

1.5 Arrays........................... 34

1.5.1 Declaring Arrays. 36

1.5.2 Arrays are Objects ...' 37

1.6 Simple Input and Output 39

1. 7 An Example Program 42

1.8 Nested Classes and Packages 45

1.9 Writing a Java Program. 47

1.9.1 Design.... 47

1.9.2 Pseudo-Code 48

1.9.3 Coding.......... 49

1.9.4 Testing and Debugging 53

1.10 Exercises .. 55

http:00.�.�.00

2 Chapter 1. Java Programming Basics

1.1 Getting Started: Classes, Types, and Objects

Building data structures and algorithms requires that we communicate detailed in
structions to a computer, and an excellent way to perform such communication is
using a high-level computer language, such as Java. In this chapter, we give a brief
overview of the Java programming language, assuming the reader is somewhat fa
miliar with an existing high-level language, and we continue this discussion in the
next chapter, focusing on object-oriented design principles. This book does not
provide a complete description of the Java language, however. There are major as
pects of the language that are not directly relevant to data structure design, which
are not included here. We begin our Java primer with a program that prints "Hello
Universe!" on the screen, which is shown in a dissected form in Figure 1.1.

all code in a Java curly brace for ,
program must the openning of thIS !"ethod

belong to a class the class body doesn t return / anythIng
this says anyone can the name of

,\......~~~:~s~I ~~~~:t~~~ t:i~e~e~~~e~i~r~~~~~~ ~~e
run this p~~...."

i publicHclass!iUnivers~! { i 	 arguments on the command

anyone ~an :..i :.i l.........................! l! 	 line as an array of strings)
~~~~~ ~piiblic, 'siatid ;VOldl 'm~~ '""y broo< f" th, op".o1'9 

this method,,- Lm... ::::::~:::..~:::::::i.::..:::::::..:::::.:.....:....,;......:..~::::.:::::::::::::::::::::::::::::::.::::::::..;~:~ of the method body 

belongs to the !System.out.printlnX"Helio Universe!")::; ~ semicolon 
~~j~~tn(~o~: ,......1 \ .......................... ~..... K ......................... ~ ~l~~~!i~~a~:~:~~ 
on this later) i } ! h f h h d h" d h'l.....1 t e name 0 t e met 0 we t e parameter passe to t IS 
curly brace ....... \ want to call (in this case the method (in this case the 
closing the :} i method for printing strings string we want to print) 

class ;"-L...1 on the screen) 

curly brace for dosing 

the method body 


Figure 1.1: A "Hello Universe!" program. 

The main "actors" in a Java program are objects. Objects store data and provide 
methods for accessing and modifying this data. Every object is an instance of a 
class, which defines the type of the object, as well as the kinds of operations that it 
performs. The critical members of a class in Java are the following (classes can also 
contain inner class definitions, but let us defer discussing this concept for now): 

• 	Data of Java objects are stored in instance variables (also called fields). 
Therefore, if an object from some class is to store data, its class must specify 
instance variables to do the storage. Instance variables can either come from 
base types (such as integers, fioating-:-point numbers, or Booleans) or they 
can refer to objects of other classes. 

• 	The operations that can act on data, expressing the "messages" objects re
spond to, are called methods. These consist of constructors, procedures, and 
functions. They define the behavior of objects from that class. 



1 
3 1.1. Getting Started: Classes, Types, and Objects 

How Classes Are Declared 

An object is a specific combination of data and the methods that can process and 
communicate that data. Classes define the types for objects; hence, objects are 
sometimes referred to as instances oftheir defining class, because they take on the 
name of that class as their type. 

An example definition of a Java class is shown in Code Fragment 1.1. 

public class Counter { 
protected int count; II a simple integer instance variable 
/** The default constructor for a Counter object *1 
CounterO {count O;} 
/** An accessor method to get the current count *1 
public int getCountO { return count; } 
/** A modifier method for incrementing the count *1 
public void incrementCountO { count++; } 
/** A modifier method for decrementing the count *1 
public void decrementCount() {count--; } 

} 

Code Fragment 1.1: A Counter class for a simple counter, which can be accessed, 
incremented, and decremented. 

In this example, notice that the class definition is delimited by braces, that is, 
we use a "{" to mark its beginning and a "}" to mark its end. In Java, any set of 
statements between the braces"{" and "}" define a program block. 

i 

As with the Universe class, the Counter class is public, which means that any 
other class can create and use a Counter object. .' The Counter has one instance 
variable-an integer called count. This variable is initialized to 0 in the constructor 
method, Counter, which is called when we want to create a new Counter object 
(this method always has the same name as the class it belongs to). This class 
also has one accessor method, getCount, which returns the current value of the 
counter. Finally, this class has two update methods-a method, incrementCount, 
which increments the counter, and a method, decrementCou nt, which decrements 
the counter. Admittedly, this is a pretty boring class, but at least it shows us the 
syntax and structure of a Java class. It also shows us that a Java class does not have 
to have a main method (but such a class can do nothing by itself). 

The name of a class, method,or variable in Java is called an identifier, which 
can be any string of characters as long as it begins with a letter and consists of let
ters, numbers, and underscore characters (where "letter" and "number" can be from 
any written language defined in the Unicode character set). We list the exceptions 
to this general rule for Java identifiers in Table 1.1 .. 



4 Chapter 1. Java Programming Basics 

Reserved Words 
abstract else interface switch 
boolean extends long synchronized 
break false native this 
byte final new throw 
case finally null throws 
catch float package transient 
char for private true 
class goto protected try 
const if public void 
continue implements return volatile 
default import short while 
do instanceof static 
double int super 

Table 1.1: A listing of the reserved words in Java. These names cannot be used as 
method or variable names. 

Class Modifiers 

Class modifiers are optional keywords that precede the class keyword. We have 
already seen examples that use the public keyword. In general, the different class 
modifiers and their meaning is as follows: 

• 	The abstract class modifier describes a class that has abstract methods. Ab
. '.stract methods are declared with the abstract keyword and are empty (that 

is, they have no block defining a body of code for this method). A class that 
has nothing but abstract methods and no instance variables is more properly 
called an interface (see Section 2.4), so an abstract class usually has a mix
ture of abstract methods and actual methods. (We discuss abstract classes 
and their uses in Section 2.4.) 

• 	The final class modifier describes a class that can have no subclasses. (We 
discuss this concept in the next chapter.) 

• 	The public class modifier describes a class that can be instantiated or ex
tended by anything in the same package or by anything that imports the class. 
(This is explained in more detail in Section 1.8.) Public classes are declared 
in their own separate file called classname . j ava, where "classname" is the 

,name of the class. 

• If the public class modifier is not used, the class is considered friendly. This 
means that it can be used and instantiated by all classes in the same package. 
This is the default class modifier. 



5 1.1. Getting Started: Classes, Types, and Objects 

1.1.1 Base Types 

The types of objects are determined by the class they come from. For the sake 
of efficiency and simplicity, Java also has the following base types (also called 
primitive types), which are not objects: 

boolean Boolean value: true or false 
char 16-bit Unicode character 
byte 8-bit signed two's complement integer 
short 16-bit signed two's complement integer 
int 32-bit signed two's complement integer 
long 64-bit signed two's complement integer 
float 32-bit floating-point number (IEEE 754-1985) 
double 64-bit floating-point number (IEEE 754-1985) 

A variable having one of these types simply stores a value of that type, rather than 
a reference to some object. Integer constants, like 14 or 195, are of type int, un
less followed immediately by an 'L' or'!', in which case they are of type long. 
Floating-point constants, like 3.1415 or 2.l58e5, are of type double, unless fol
lowed immediately by an 'F' or 'f', in which case they are of type float. We show 
a simple class in Code Fragment 1.2 that defines a number of base types as local 
variables for the main method. 

public class Base { 
public static void main (String[J args) { 

boolean flag true; 
char ch 'A'; 
byte b 12; 
short s = 24; 
int i - 257; 
long I - 890l; II note the use of "l" here 
float f = 3.1415F; II note the use of /IF" here 
double d = 2.1828; 
System.out.println ("flag = " + flag); II the is string concatenation 
System.out.println (lleh = II + ch); 
System.out.println (lib = II + b); 
System.out.println (liS = II + s); 
System.out.println (IIi = II + i); 
System.out.println ("l :::: II + I); 
System.out.println ("i = II + f); 
System.out.println (ltd = II + d);

} . 

} 

Code Fragment 1.2: A Base class showing example uses of base types. 



6 Chapter 1. Java Programming Basics 

Comments 

Note that these examples use comments, which are annotations provided for human 
readers and are not processed by the Java compiler. Java allows for two kinds of 
comments-block comments and inline comments-which define text ignored by 
the compiler. Java uses a "/*" to begin a block comment and a "*/" to close it. 
Of particular note is a comment that begins with "/**" since such comments have 
a special format that allows a program, called Javadoc, to read these comments 
and automatically generate software documentation. We discuss the syntax and 
interpretation of Javadoc comments in Section 1.9.3. 

In addition to block comments, Java uses a "/ /" to begjn inline comments and it 
ignores everything else on the rest of such a line. By the way, all comments shown 
in this book will be colored blue, so that they are not confused with executable 
code. For example: 

1*
* This is a block comment. 

*/ 
/ / This is an inline comment. 

Output from the Base Class 

Output from an execution of the Base class (main method) is shown in Figure 1.2. 

flag true 
ch = A 
b = 12 
s 24 
i = 257 
1- 890 
f = 3.1415 
d - 2.1828 

Figure 1.2: Output from the Base class. 

Even though they themselves do not refer to objects, base-type variables are 
useful in the context of objects, for they can be used for the instance variables (or 
fields) inside an object. For example, the Counter class (Code Fragment 1.1) had a 
single instance variable that was of type into Another nice feature of base types in 
Java is that base-type instance variables are always given an initial value when an 
object containing them is created (either zero, false, or a null character, depending 
on the type). 



7 

_-:dI: 

1.1. Getting Started: Classes, Types, and Objects 

1.1.2 Objects 

In Java, a new object is created by using the new operator. The new operator 
creates a new object from a specified class and returns a reference to that object. 
In order to create a new object of a certain type, we must immediately follow our 
use of the new operator by a call to a constructor for that type of object. We can 
use any constructor that is included in the class definition, including the default 
constructor (which has no arguments between the parentheses). In Figure 1.3, 
we show a number of dissected example uses of the new operator, both to simply 
create new objects and to assign the reference to these objects to a variable. 

the name of 
this class standard syntax 

,..-.........L~if~a~e~~;~n;da 

public class! Examplei { 

,........................................................ ...................................................... declares the variable c to 

ipublic static void main (String[] args)! { b~ of type Counter: that 

declares the t................................................................................................................: IS, C can refer. to any 
. r·····························; Counter object

variable d to iCounter c;i4;1-------
be of type"" 1...............................: . ________ creates a new 

Counter X .........·....·········........·..,,....................L.m........... . Counter object 

~Counter dl! =ijnew CounterO: ; and returns ~ 

'~.;~!'~;;..~~~aSSigns.th:::::::::~~tthe 
~:~................~creates a new ~~~n~~~e~~j~~:he varlOble d 


d l~j c; ~ and returns a reference to it 
t.\; assigns the reference to the 

} new object to the variable c 
assigns d to reference the 
same object as c (the old 

} object d was pointing to now 
has no variable referencing it) 

Figure 1.3: Example uses of the new operator. 

Calling the new operator on a class type causes three events to occur: 

• A new object is dynamically allocated in memory, and all instance variables 
are initialized to standard default values. The default values are null for 
object variables and 0 for all base types except boolean variables (which are 
false by default). 

• 	The constructor for the new object is called with the parameters specified. 
The constructor fills in meaningful values for the instance variables and per
forms any additional computations that must be done to create this object. 

• 	After the constructor returns, the new operator returns a reference (that is, a 
memory address) to the newly created object. If the expression is in the form 
of an assignment statement, then this address is stored in the object variable, 
so the object variable refers to this newly created object. 



8 

, ' 

Chapter 1. lava Programming Basics '1'" 

Number Objects 

We sometimes want to store numbers as objects, but base type numbers are not 
themselves objects, as we have noted. To get around this obstacle, Java defines a 
wrapper class for each numeric base type. We call these classes number classes. 
In Table 1.2, we show the numeric base types and their corresponding number 
class, along with examples of how number objects are created and accessed. Since 
Java SE 5, a creation operation is performed automatically any time we pass a base 
number to a method expecting a corresponding object. Likewise, the corresponding 
access method is performed automatically any time we want to assign the value of 
a corresponding Number object to a base number type. 

Base Type 
byte 
short 

int 

Class Name 
Byte 
Short 
Integer 

Creation Example 
n new Byte((byte}34); 
n new Short((short}100); 
n = new Integer(1045); 

Access Example 
n.byteValueO 
n.shortValueO 
n.intValueO 

long 
float 

double 

Long 
Float 

Double 

n = new Long(10849L); 
n = new Float(3.934F); 
n new Double{3.934}; 

n.longValueO 
n.floatValueO 
n.doubleValueO 

Table 1.2: Java number classes. Each class is given with its corresponding base type 
and example expressions for creating and accessing such objects. For each row, we 
assume the variable n is declared with the corresponding class name. 

String Objects 

A string is a sequence of characters that comes from some alphab"et (the s~t of all 
possible characters). Each character c that makes up a string STan be referenced by 
its index in the string, which is equal to the number of characters that come before c 
in s (so the first character is at index 0). In Java, the alphabet used to define strings 
is the Unicode international character set, a 16-bit character encoding that covers 
most used written languages. Other programming languages tend to use the smaller 
ASCII character set (which is a proper subset of the Unicode alphabet based on a 
7-bit encoding). In addition, Java defines a special built-in class of objects called 
String objects. 

For example, a string P could be 

"hogs and dogs", 

,	which has length 13 and could have come from someone's Web page. In this case, 
the character at index 2 is 'g' and the character at index 5 is 'a'. Alternately, P could 
be the string "CGTAATAGTTAATCCG", which has length 16 and could have come 
from a scientific application for DNA sequencing, where the alphabet is {G, C, A, T}. 



9 1.1. Getting Started: Classes, Types, and Objects 

Concatenation 

String processing involves dealing with strings. The primary operation for combin
ing strings is called concatenation, which takes a string P and a string Qcombines 
them into anew string, denoted P + Q, which consists of all the characters of P 
followed by all the characters of Q. In Java, the "+" operation works exactly like 
this when acting on two strings. Thus, it is legal (and even useful) in Java to write 
an assignment statement like 

String 5 = "dino" + "saur"; 

This statement defines a variable 5 that references objects of the String class, and 
assigns it the string "dinosaur". (We will discuss assignment statements and 
expressions such as that above in more detail later in this chapter.) Every object in 
Java is assumed to have a built-in method toStringO that returns a string associated 
with the object. This description of the String class should be sufficient for most 
uses. We discuss the String class and its "relative" the StringBuffer class in more 
detail in Section 12.1. 

Object References 

As mentioned above, creating a new object involves the use of the new operator 
to allocate the object's memory space and use the object's constructor to initialize 
this space. The location, or address, of this space is then typically assigned to a 
reference variable. Therefore, a reference variable can be viewed as a "pointer" to 
some object. It is as if the variable is a holder for a remote control that can be used 
to control the newly created object (the device). That is, the variable has a way of 
pointing at the object and asking it to do things or gi~e us accbs to its data. We 
illustrate this concept in Figure 1.4. 

the object 

Figure 1.4: Illustrating the relationship between objects and object reference vari
ables. When we assign an object reference (that is, memory address) to a reference 
variable, it is as if we are storing that object's remote control at that variable. 



10 Chapter 1. Java Programming Basics 

The Dot Operator 

Every object reference variable must refer to some object, unless it is null, in which 
case it points to nothing. Using the remote control analogy, a null reference is a 
remote control holder that is empty. Initially, unless we assign an object variable to 
point to something, it is null. 

I 
I 

There can, in fact, be many references to the same object, and each reference to 
a specific object can be used to call methods on that object. Such a situation would 
correspond to our having many remote controls that all work on the same device. 
Any of the remotes can be used to make a change to the device (like changing a 
channel on a television). Note that if one remote control is used to change the 
device, then the (single) object pointed to by all the remotes changes. Likewise, if 
we use one object reference variable to change the state "Of the object, then its state 
changes for all the references to it. This behavior comes from the fact that there are 
many references, but they all point to the same object. 

One of the primary uses of an object reference variable is to access the members 
of the class for this object, an instance of its class. That is, an object reference 
variable is useful for accessing the methods and instance variables associated with 
an object. This access is performed with the dot (".") operator. We call a method 
associated with an object by using the reference variable name, following that by 
the dot operator and then the method name and its parameters. 

This calls the method with the specified name for the object referred to by 
this object reference. It can optionally be passed multiple parameters. If there are 

J 

several methods with this same name defined for this object, then the Java run
time system uses the one that matches the number of paiameters and most closely 
matches their respective types. A method's name combined with the number and 
types of its parameters is called a method's signature, for it takes all of these parts 
to determine the actual method to perform for a certain method calL Consider the 
following examples: 

oven.cookDinnerO; 
oven.cookDinner(food); 
oven.cookDinner(food,seasoning); 

Each of these method calls is actually referring to a different method with the same 
name defined in the class that oven belongs to. Note, however, that the signature 
of a method in Java does not include the type that the method returns, so Java does 
not allow two methods with the same signature to return different types. 



11 

f: ' 
~ . 
·····.:""\ 

1.1. Getting Started: Classes, Types, and Objects 
r· 

: 

Instance Variables 

Java classes can define instance variables, which are also called fields. These 
variables represent the data associated with the objects of a class. Instance variables 
must have a type, which can either be a base type (such as int, float, double) or 
a reference type (as in our remote control analogy), that is, a class, such as String, 
an interface (see Section 2.4), or an array (see Section 1.5). A base-type instance 
variable stores the value of that base type, whereas an instance variable declared 
with a class name stores a reference to an object of that class. 

Continuing our analogy of visualizing object references as remote controls, 
instance variables are like device parameters that can be read or set from the remote 
control (such as the volume and channel controls on a television remote control). 
Given a reference variable v, which points to some object 0, we can access any of 
the instance variables for 0 that the access rules allow. FQ[ example, public instance 
variables are accessible by everyone. Using the dot operator we can get the value of 
any such instance variable, i, just by using v.i in an arithmetic expression. Likewise, 
we can set the value of any such instance variable, i, by writing v.i on the left-hand 
side of the assignment operator ("-"). (See Figure 1.5.) For example, if gnome 
refers to a Gnome object that has public instance variables name and age, then the 
following statements are allowed: 

gnome.name = "Professor Smythe"; 
gnome.age =132; 

Also, an object reference does not have to only be a reference variable. It can also 
be any expression that returns an object reference. 

the object. I) 

~ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

Figure 1.5: Illustrating the wayan object reference can be used to get and set in
stance variables in an object (assuming we are allowed access to those variables). 



12 Chapter 1. Java Programming Basics 

Variable Modifiers 

In some cases, we may not be allowed to directly access some of the instance vari
ables for an object. For example, an instance variable declared as private in some 
class is only accessible by the methods defined inside that class. Such instance 
variables are similar to device parameters that cannot be accessed directly from a 
remote controL For example, some devices have internal parameters that can only 
be read or assigned by a factory technician (and a user is not allowed to change 
those parameters without violating the device's warranty). 

When we declare an instance variable, we can optionally define such a variable 
modifier, and follow that by the variable's type and the identifier we are going to 
use for that variable. Additionally, we can optionally assign an initial value to the 
variable (using the assignment operator ("="). The rules for a variable name are 
the same as any other Java identifier. The variable type parameter can be either a 
base type, indicating that this variable stores values of this type, or a class name, 
indicating that this variable is a reference to an object from this class. Finally, the 
optional initial value we might assign to an instance variable must match the vari
able's type. For example, we could define a Gnome class, which contains several 
definitions of instance variables, shown in in Code Fragment 1.3. 

The scope (or visibility) of instance variables can be controlled through the use 
. of the following variable modifiers: 

• public: Anyone can access public instance variables. 
• protected: Only methods of the same package or of its subclasses can access 

protected instance variables. 
• private: 	Only methods of the same class (not methods of a subclass) can 

access private instance variables. 
• If none of the above modifiers are used, the instance variable is considered 

friendly. Friendly instance variables can be accessed by any class in the same 
package. Packages are discussed in more detail in Section 1.8. 

In addition to scope variable modifiers, there are also the following usage mod
ifiers: 

• static: 	The static keyword is used to declare a variable that is associated 
with the class, not with individual instances of that class. Static variables are 
used to store "global" information about a class (for example, a static variable 
could be used to maintain the total number of Gnome objects created). Static 
variables exist even if no instance of their class is created. 

• final: A.final instance variable is one that must be assigned an initial value, 
and then· can never be assigned a new value after that. If it is a base type, 
then it is a constant (like the MAX_HEIGHT constant in the Gnome class). If 
an object variable is final, then it will always refer to the same object (even 
if that object changes its internal state). 



13 1.1. Getting Started: Classes, Types, and Objects 

public class Gnome { 
/ / Instance variables: 
public String name; 
public int age; 
public Gnome gnomeBuddy; 
private boolean magical = false; 
protected double height = 2.6; 
public static final int MAX_HEIGHT = 3; / / maximum height 
/ / Constructors: 
Gnome(String nm, int ag, Gnome bud, double hgt) { / / fully parameterized 

name = nm; 

age = ag; 

gnome Buddy = bud; 

height hgt; 


} 
GnomeO { / / Default constructor 


name "Rumple!!; 

age = 204; 

gnomeBuddy null; 

height = 2.1; 


} 
/ / Methods: 

public static void makeKing (Gnome h) { 


h.name "King + h.getReaINameO;
II 

h.magical true; / / Only the Gnome class can reference this field. 
} 
public void makeMeKing 0 { 


name = liKing If + getRealNameO; 

magical = true; 


} 
public boolean isMagicalO { return magical; } 

public void setHeight(int newHeight) { height = newHeight; } 

public String getNameO {return ItI won't tell! It; } 

public String getRealNameO { return name; } 

public void renameGnome(String s) {name s;} 


} 

Code Fragment 1.3: The Gnome class. 

Note the uses of instance variables in the Gnome example. The variables age, 
magical, and height are base types, the variable name is a reference to an instance 
of the built-in class String, and the variable gnomeBuddy is a reference to an ob
ject of the class we are now defining. Our declaration of the instance variable 
MAX_HEIGHT in the Gnome class is taking advantage of these two modifiers to 
define a "variable" that has a fixed constant value. Indeed, constant values associ
ated with a class should always be declared to be both static and final. 



14 Chapter 1. Java Programming Basics 

1.1.3 Enum Types 

Since SE 5, Java supports enumerated types, called enums. These are types that 
are only allowed to take on values that come from a specified set of names. They 
are declared inside of a class as follows: 

modifier enum name { valueJlameo , valUeJlamel, ... , valueJlamen-l }; 

where the modifier can be blank, public, protected, or private. The name of 
this enum, name, can be any legal Java identifier. Each of the value identifiers, 
valueJlamei, is the name of a possible value that variables of this enum type can 
take on. Each of these name values can also be any legal Java identifier, but the 
Java convention is that these should usually be capitalized words. For example, the 
following enumerated type definition might be useful in a program that must deal 
with dates: 

public enum Day { MON, TUE, WED, THU, FRI, SAT, SUN }; 

Once defined, we can use an enum type, such as this, to define other variables, 
much like a class name. But since Java knows all the value names for an enumer
ated type, if we use an enum type in a string expression, Java will automatically 
use its name. Enum types also have a few built-in methods, including a method 
valueOf, which returns the enum value that is the same as a given string. We show 
an example use of an enum type in Code Fragment 1.4. 

public class DayTripper { 

public enum Day {MON, TUE, WED, THU, FRI, SAT, SUN};. 

public static void main(String[} args) { 


Day d = Day.MON; 

System.out.println("Initially d is + d);
II 

d = Day.WED; 

Systern.out.println("Then it is + d);
II 

Day t = Day.valueOf(IWED"); 
System.out.println("I say d and t are the same: II + (d == t)); 

} 
} 


The output from this program is: 


Initially d is MON 

TOE:!D itis,WED 


·1 say dand tare the same: true 


Code Fragment 1.4: An example use of an enum type. 



T';
... 

{ 1.2. Methods 	 15 

1.2 Methods 

Methods in Java are conceptually similar to functions and procedures in other high
level languages. In general, they are "chunks" of code that can be called on a par
ticular object (from some class). Methods can accept parameters as arguments, 
and their behavior depends on the object they belong to and the values of any pa

I rameters that are passed. Every method in Java is specified in the body of some 
I 	 class. A method definition has two parts: the signature, which defines the name 

and parameters for a method, and the body, which defines what the method does. 
A method allows a programmer to send a message to an object. The method 

signature specifies how such a message should look and the method body specifies 
what the object will do when it receives such a message. 

Declaring Methods 

The syntax for defining a method is as follows: 

modifiers type name(typeo 	parametero, ... , typen-l parametern_l) { 
/ / method body. . . 


} 


Each of the pieces of this declaration have important uses, which we describe in 
detail in this section. The modifiers part includes the same kinds of scope modifiers 
that can be used for variables, such as public, protected, and static, with similar 
meanings. The type part of the declaration defines the return type of the method. 
The name is the name of the method, which can be any valid Java identifier. The 
list of parameters and their types declares the local variables that correspond to the 
values that are to be passed as arguments to this method. Each type declaration 
typei can be any Java type name and each parameter; can be any Java identifier. 
This list of parameters and their types can be empty, which signifies that there 
are no values to be passed to this method when it is invoked. These parameter 
variables, as well as the instance variables of the class, can be used inside the body 
of the method. Likewise, other methods of this class can be called from inside the 
body of a method. 

When a method of a class is called, it is invoked on a specific instance of that 
class and can change the state of that object (except for a static method, which is 
associated with the class itself). For example, invoking the following method on a 
particular gnome changes its name. 

public void renameGnome (String s) { 
name = s; / / Reassign the name instance variable of this gnome. 

} 



~P;: 

16 	 Chapter 1. Java Programming Basics 

Method Modifiers 

As with instance variables, method modifiers can restrict the scope of a method: 

• public: Anyone can call public methods. 
• protected: 	Only methods of the same package or of subclasses can call a 

protected method. 
• 	private: Only methods of the same class (not methods of a subclass) can call 

a private method. 
• If none of the modifiers above are used, then the method is friendly. Friendly 

methods can only be called by objects of classes in the same package. 
The above modifiers may be followed by additional modifiers: 

• abstract: Amethod declared as abstract has no code. The signature of such 
a method is followed by a semicolon with no method body. For example: 

public abstract void setHeight (double newHeight); 

Abstract methods may only appear within an abstract class. We discuss the 
usefulness of this construct in Section 2.4. 

• 	final: This is a method that cannot be overridden by a subclass. 
• static: This is a method that is associated with the class itself, and not with 

a particular instance of the class. Static methods can also be used to change I 
the state of static variables associated with a class (provided these variables 
are not declared to be final). 

Return Types 

A method definition must specify the type of value the metho~ will return. If the 
method does not return a value, then the keyword void must be used. If the return 
type is void, the method is called aprocedure; otherwise, it is called afunction. To 
return a value in Java, a method must use the return keyword (and the type returned I 
must match the return type of the method). Here is an example of a method (from 
inside the Gnome class) that is a function: 

1 
! 
!

public boolean isMagical 0 { 

return magical; 


} 

As soon as a return is performed in a Java function, the method ends. 
Java functions can return only one value. To return mUltiple values in Java, 

we should instead combine all the values we want to return in a compound object, 
whose instance variables include all the values we want to return, and then return a 
reference to that compound object. In addition, we can change the internal state of 
an object that is passed to a method as another way of "returning" mu1tiple results. 



17 1.2. Methods 

Parameters 

Amethod's parameters are defined in a comma-separated list enclosed in parenthe
ses after the name of the method. A parameter consists of two parts, the parameter 
type and the parameter name. If a method has no parameters, then only an empty 
pair of parentheses is used. 

All parameters in Java are passed by value, that is, any time we pass a parameter 
to a method, a copy of that parameter is made for use within the method body. So 
if we pass an int variable to a method, then that variable's integer value is copied. 
The method can change the copy but not the originaL Ifwe pass an object reference 
as a parameter to a method, then the reference is copied as welL Remember that we 
can have many different variables that all refer to the same object Changing the 
internal reference inside a method will not change the reference that was passed in. 
For example, if we pass a Gnome reference g to a method that calls this parameter 
h, then this method can change the reference h to point to a different object, but 
g will still refer to the same object as before. Of course, the method can use the 
reference h to change the internal state of the object, and this will change g's object 
as well (since g and h are currently referring to the same object). 

Constructors 

A constructor is a special kind of method that is used to initialize newly created 
objects. Java has a special way to declare the constructor and a special way to 
invoke the constructor. First, let's look at the syntax for declaring a constructor: 

modifiers name(typeo parametero, . '" typen-l parame&ern_l) { 

/ / constructor body . . . 


} 

Thus, its syntax is essentially the same as that of any other method, but there are 
some important differences. The name of the constructor, name, must be the same 
as the name of the class it constructs. So, if the class is called Fish, the construc
tor must be called Fish as welL In addition, we don't specify a return type for a 
constructor-its return type is implicitly the same as its name (which is also the 
name of the class). Constructor modifiers, shown above as modifiers, follow the 
same rules as normal methods, except that an abstract, static, or final constructor 
is not allowed. 

Here is an example: 

public Fish (int w, String n) { 

weight w; 

name n; 

} 



18 Chapter 1. Java Programming Basics 

Constructor Definition and Invocation 

The body of a constructor is like a normal method's body, with a couple of minor 
exceptions. The first difference involves a concept known as constructor chaining, 
which is a topic discussed in Section 2.2.3 and is not critical at this point. I 

The second difference between a constructor body and that of a regular method I 
~ 

is that return statements are not allowed in a constructor body. A constructor's Ibody is intended to be used to initialize the data associated with objects of this 
class so that they may be in a stable initial state when first created. I 

Constructors are invoked in a unique way: they must be called using the new 1 
operator. So, upon invocation, a new instance of this class is automatically created 
and its constructor is then called to initialize its instance variables and perform other 'I 
setup tasks. For example, consider the following constructor invocation (which is 
also a declaration for the myFish variable): 

I 
Fish myFish = new Fish (7, "Wally!!); 

A class can have many constructors, but each must have a different signature, that 
is, each must be distinguished by the type and number of the parameters it takes. 

The main Method 

Some Java classes are meant to be used by other classes, others are meant to be 
stand-alone programs. Classes that define stand-alone programs must contain one 
other special kind of method for a class-the main method. When we want to 
execute a stand-alone Java program, we reference the name of the class that defines 

i 

this program by issuing the following command (in a Windows, Linux, or UNIX 
shell): 

java Aquarium 

In this case, the Java run-time system looks for a compiled version of the Aquarium 
class, and then invokes the special main method in that class. This method must be 
declared as follows: 

public static void main(String[] args) { 
/ / main method body ... 

} 

The arguments passed as the parameter args to the main method are the command
line arguments given when the program is called. The args variable is an array 
of String objects, that is, a collection of indexed strings, with the first string be
ing args[O], the second being args[l], and so on. (We say more about arrays in 
Section 1.5.) 



19 

'~':"": 

1.2. Methods 

Calling a Java Program from the Command Line 

Java programs can be called from the command line using the java command, fol
lowed by the name of the Java class whose main method we want to run, plus any 
optional arguments. For example, we may have defined the Aquarium program to 
take an optional argument that specifies the number of fish in the aquarium. We 
could then invoke the program by typing the following in a shell window: 

java Aquarium 45 

to specify that we want an aquarium with 45 fish in it. In this case, args[O] would 
refer to the string 1145". One nice feature of the main method in a class definition 
is that it allows each class to define a stand-alone program, and one of the uses for 
this method is to test all the other methods in a class. Thus, thorough use of the 
main method is an effective tool for debugging collections of Java classes. 

Statement Blocks and Local Variables 

The body of a method is a statement block, which is a sequence of statements and 
declarations to be performed between the braces "{" and "}". Method bodies and 
other statement blocks can themselves have statement blocks nested inside of them. 
In addition to statements that perform some action, like calling the method of some 
object, statement blocks can contain declarations of local variables. These vari
ables are declared inside the statement body, usually at the beginning (but between 
the braces"{" and "}"). Local variables are similar to instance variables, but they 
only exist while the statement block is being executed. As soon as control flow 
exits out of that block, all local variables inside it can no longeli be referenced. A 
local variable can either be a base type (such as in~, float, double) or a reference 
to an instance of some class. Single statements and declarations in Java are always 
terminated by a semicolon, that is, a";". 

There are two ways of declaring local variables: 
type name; 
type name = initial_value; 

The first declaration simply defines the identifier, name, to be of the specified type. 
The second declaration defines the identifier, its type, and also initializes this vari
able to the specified value. Here are some examples of local variable declarations: 

{ 
double r; 
Point p1 = new Point (3, 4); 

Point;p2· •.. new Point (8,·2); 

int i = 512; 

double e = 2.71828; 


} 



20 Chapter 1. Java Programming Basics 

1.3 Expressions 

Variables and constants are used in expressions to define new values and to modify 
variables. In this section, we discuss how expressions work in Java in more detaiL 
Expressions involve the use of literals, variables, and operators. Since we have al
ready discussed variables, let us briefly focus on literals and then discuss operators 
in some detail. 

1.3.1 Literals 

A literal is any "constant" value that can be used in an assignment or other expres
sion. Java allows the following kinds of literals: 

• 	The null object reference (this is the only object literal, and it is allowed to 
be any reference type). 

• 	Boolean: true and false. 

• 	Integer: The default for an integer like 176, or -52 is that it is of type int, 
which is a 32-bit integer. A long integer literal must end with an "L" or "1," 
for example, 176L or -521, and defines a 64-bit integer. 

• 	Floating Point: The default for floating-point numbers, such as 3.1415 and 
135.23, is that they are double. -To specify that a literal is a float~ it must 
end with an "F" or "f." Floating-point literals in expon~ntial notation are also 
allowed, such as 3.14E2 or .1ge10; the base is assumed to be 10. 

• 	Character: In Java, character constants are assumed to be taken from the 
Unicode alphabet. Typically, a character is defined as an individual symbol 
enclosed in single quotes. For example, 'a' and '? ' _are character constants. 
In addition, Java defines the following special character constants: 

, \n' (newline) '\t' (tab) 
, \ b ' (backspace) '\r' (return) 
, \f ' (form feed) , \ \ ' (backslash) 
'\ ' , (single quote) , \ II , (double quote). 

• 	String Literal: A string literal is a sequence of characters enclosed in double 
quotes, for example, the following is a string literal: 

"dogs cannot climb trees" 



21 1.3. Expressions 

1.3.2 Operators 

Java expressions involve composing literals and variables with operators. We sur
vey the operators in Java in this section. 

The Assignment Operator 

The standard assignment operator in Java is "=". It is used to assign a value to an 
instance variable or local variable. Its syntax is as follows: 

variable = expression 

where variable refers to a variable that is allowed to be referenced by the statement 
block containing this expression. The value of an assignment operation is the value 
of the expression that was assigned. Thus, if i and j are both declared as type int, it 
is correct to have an assignment statement like the following: 

i = j = 25; / / works because operators are evaluated right-to-Ieft 

Arithmetic Operators 

The following are binary arithmetic operators in Java: 


addition 

subtraction 


* multiplication 

/ division 
% the modulo·operator 

This last operator, modulo, is also known as the "remainder" operator, because 
it is the remainder left after an integer division. We often use" mod" to denote the 
modulo operator, and we define it formally as 

nmodm=r, 

such that 
n=mq+r, 

for an integer q and 0 ::; r < m. 

Java also provides a unary minus (-),which can be placed in front of an arith
metic expression to invert its sign. Parentheses can be used in any expression to 
define the order of evaluation. Java also uses a fairly intuitive operator precedence 
rule to determine the order of evaluation when parentheses are not used. Unlike 
C++, Java does not allow operator overloading. 



22 	 Chapter 1. Java Programming Basics 

Increment and Decrement Operators 	 I
j 

Like C and C++, Java provides increment and decrement operators. Specifically, it I 
provides the plus-one increment (++) and decrement (- -) operators. If such an t 
operator is used in front of a variable reference, then 1 is added to (or subtracted i 

~ 

h 

from) the variable and its value is read into the expression. If it is used after a 
variable reference, then the value is first read and then the variable is incremented Ior decremented by 1. So, for example, the code fragment 

I 
\ 

int i =: 8; 

int j i++; 

int k = ++i; 

int m i--; 
 I 
int n = 9 + i++; 	 I 

"{ 

assigns 8 to j, 10 to k, 10 to m, 18 to n, and leaves i with value 10. 

Logical Operators 

Java allows for the standard comparison operators between numbers: 

< 	 less than 
less than or equal to 
equal to 

!= not equal to 
>=greater than or equal to 
> greater than 

The operators == and ! = can also be used for object references. The type of the 
result of a comparison is a boolean. 

Operators that operate on boolean values are the following: 

not (prefix) 
&& conditional and 
II conditional or 

The Boolean operators && and II will not evaluate the second operand (to the 
right) in their expression ifit is not needed to9.eterminethe value of the expression. 
This feature is useful, for example, for constructing Boolean expressions where we 
first test that a certain condition holds (such as a reference not being null), and then 
test a condition thatcould have otherwise generated an error condition had the prior 
test not succeeded. 



23 1.3. Expressions 

Bitwise Operators 


Java also provides the following bitwise operators for integers and Booleans: 

rv 

& 
I 

I < < 
> > i 

I 
> > > 

bitwise complement (prefix unary operator) 
bitwise and 
bitwise or 
bitwise exclusive-or 
shift bits left, filling in with zeros 
shift bits right, filling in with sign bit 
shift bits right, filling in with zeros 

i Operational Assignment Operators 

I Besides the standard assignment operator (=), Java also provides a number of other 
assignment operators that have operational side effects. These other kinds of oper
ators are of the following form:~ 

variable op =expression 

where op is any binary operator. TIle above expression is equivalent to 

variable = variable op expression 

except that if variable contains an expression (for example, an array index), the 
expression is evaluated only once. Thus, the code fragment 

a[5] 10; 
i 5; 
a[i++] 2; 

leaves a[5] with value 12 and i with value 6. 

String Concatenation 

Strings can be composed using the concatenation operator (+), so that the code 

String rug "carpet"; 

String dog - "spot"; 

String mess = rug + dog; 

String answer::::: mess + II will cost me + 5 + II hours! ";
II 

.wol).ldhavethe.effect of making answer refer to the string 
II carpetspot will cost me 5 hours!" 

This. example also shows how Java converts nonstring constants into strings, when 
they are involved in a string concatenation operation. 



24 Chapter 1. lava Programming Basics 

Operator Precedence 

Operators in Java are given preferences, or precedence, that determine the order in 
which operations are performed when the absence of parentheses brings up eval
uation ambiguities. For example, we need a way of deciding if the expression, 
"5+2*3," has value 21 or 11 (Java says it is 11). 

We show the precedence of the operators in Java (which, incidentally, is the 
same as in C) in Table 1.3. 

Operator Precedence 
Type Symbols 

1 postfix ops exp ++ exp- i 

prefix ops ++exp --exp +exp -exp rvexp !exp 
cast (type) exp I 

2 mult.ldiv. * / % 
3 add.!subt. + -
4 shift « » »> 
5 comparison < <= > >= instanceof 

I 6 equality ! 
7 bitwise-and & 
8 bitwise-xor ~ 

~ 

i 

9 bitwise-or I 
10 and && 

111 or II 
12 conditional boolean..expression? value_if_true: value_ifialse 
13 assignment = += -= * l %= »= «= »>= &= ~= I 

Table 1.3: The Java precedence rules. Operators in Java are evaluated according 
to the ordering above if parentheses are not used to determine the order of eval
uation. Operators on the same line are evaluated in left-to-right order (except for 
assignment and prefix operations, which are evaluated right-to-Ieft), subject to the 
conditional evaluation rule for Boolean and and or operations. The operations are 
listed from highest to lowest precedence (we use exp to denote an atomic or paren
thesized expression). Without parenthesization, higher precedence operators are 
performed before lower precedence operators. 

We have now discussed almost all of the operators listed in Table 1.3. Anotable 
exception is the conditioIlal operator, which involves evaluating a Boolean expres
sion and then taking on the appropriate value depending on whether this Boolean 
expression is true or false. (We discuss the use of the instanceof operator in the 
next chapter.) 



25 1.3. Expressions 

1.3.3 Casting and AutoboxingjUnboxing in Expressions 

Casting is an operation that allows us to change the type of a value. In essence, we 
can take a value of one type and cast it into an equivalent value of another type. 
Casting can be useful for doing certain numerical and input/output operations. 

The syntax for casting an expression to a desired type is as follows: 

(type) exp 

where type is the type that we would like the expression exp to have. There are 
two fundamental types of casting that can be done in Java. We can either cast with 
respect to the base numerical types or we can cast with respect to objects. Here, 
we discuss how to perform casting of numerical and string types, and we discuss 
object casting in Section 2.5.1. For instance, it might be helpful to cast an int to a 
double in order to perform operations like division. 

Ordinary Casting 

When casting from a double to an int, we may lose precision. This means that the 
resulting double value will be rounded down. But we can cast an int to a double 
without this worry. For example, consider the following: 

double dl = 3.2; 

double d2 = 3.9999; 

int il = (int)dl; / / il has value 3 

int i2 = {int)d2; / / i2 has value 3 

double d3 = {double)i2; / / d3 has value 3.0 


Casting with Operators 

Certain binary operators, like division, will have different results depending on the 
variable types they are used with. We must take care to make sure operations per
form their computations on values of the intended type. When used with integers, 
division does not keep track of the fractional part, for example. When used with 
doubles, division keeps this part, as is illustrated in the following example: 

int il = 3; 

int i2 6; 

dresult = (double )il / (double )i2; / / dresult has value 0.5 

dresult = il / i2; / / dresult has value 0.0 


Notice that when il and i2 were cast to doubles, regular division for real num
. bers was performed. When i1 and i2 were not cast, the" /" operator performed an 
integer division and the result of il / i2 was the int O. Then. Java did an implicit 
cast to assign an int value to the double result. We discuss implicit casting next. 



26 Chapter 1. lava Programming Basics 

Implicit Casting and AutoboxingjUnboxing 

There are cases where Java will perform an implicit cast, according to the type of 
the assignment variable, provided there is no loss of precision. For example: 

int iresult, i 3; 
double dresult, d 3.2; 
dresult = i I d; II dresult is 0.9375. i was cast to a double 
iresult = i I d; II loss of precision -> this is a compilation error 
iresult (int) i I d; II iresult is 0, since the fractional part is lost 

Note that since Java will not perform implicit casts where precision is lost, the 
explicit cast in the last line above is required. 

Since Java SE 5, there is anew kind of implicit cast, for going between Number 
objects, like Integer and Float, and their related base types, like int and float. Any 
time a Number object is expected as a parameter to a method, the'corresponding 
base type can be passed. In this case, Java will perform an implicit cast, called 
autoboxing, which will convert the base type to its corresponding Number object. 
Likewise, any time a base type is expected in an expression involving a Number 
reference, that Number object is changed to the corresponding base type, in an 
operation called unboxing. 

There are a few caveats regarding autoboxing and unboxing, however. One is 
that if a Number reference is null, then trying to unbox it will generate an error, 
called NuliPointerException. Second, the operator, "==", is used both to test the 
equality of base type values as well as whether two Number references are pointing 
to the same object. So when testing for equality, try to avoid the implicit casts done 
by autoboxing and unboxing. Finally, implicit casts, of any kind, take time, so we

•should try to minimize our reliance on them if performance is an issue. 
Incidentally, there is one situation in Java when onlyimplicit casting is allowed, 

and that is in string concatenation. Any time astring is concatenated with any object 
or base type, that object or base type is automatically converted to a string. Explicit 
casting of an object or base type to a string is not allowed, however. Thus, the 
following assignments are incorrect: 

String s (String) 4.5; II this is wrong! 
String t = IIValue = II + (String) 13; II this is wrong! 
String u 22; II this is wrong! 

To perform a conversion to a string, we must use the appropriate toString method 
or perform an implicit cast via the concatenation operation. 

Thus, the following statements are correct: 

.. String's ~ .. II n + 4.5; II correct, but poor style 
String t = IIValue = II + 13; II this is good 
String u = Integer.toString(22); II this is good 



27 1.4. Control Flow 

1.4 Control Flow 

Control flow in Java is similar to that of other high-level languages. We review the 
basic structure and syntax of control flow in Java in this section, including method 
returns, if statements, switch statements, loops, and restricted forms of "jumps" 
(the break and continue statements). 

1.4.1 The If and Switch Statements 
.. 

In Java, conditionals work similarly to the way they work in other languages. They 
provide a way to make a decision and then execute one or more different statement 
block"s based on the outcome of that decision. 

The If Statement 

The syntax of a simple if statement is as follows: 

if (boolean_exp) 

true..statement 


else 
Jalse..statement 

where boolean_exp is a Boolean expression and true..statement andfalse..statement 
are each either a single statment or a block of statements enclosQd in braces ("{" 
and U}"). Note that, unlike some similar languages"the value tested by an if state
ment in Java must be a Boolean expression. In particular, it is definitely not an 
integer expression. Nevertheless, as in other similar languages, the else part (and 
its associated statement) in a Java if statement is optional. There is also a way to 
group a number of Boolean tests, as follows: 

if (firstboolean_exp) 

true..statement 


else if (second...boolean_exp) 

second_true..statement 


else 
/alse..sta(errt(;nt . 

If the first Boolean expression is false, the second Boolean expression will be tested, 
and so on. An if statement can have an arbitrary number of else if parts. To be safe 
when defining complicated if statements, use braces to enclose all the statement 
bodies. 



28 Chapter 1. Java Programming Basics 

For example, the following is a correct if statement. 

if (snowLevel < 2) { 

goToClass(); 

comeHomeO; 


} 
else if (snowLevel < 5) { 


goSleddingO; 

haveSnowball FightO; 


} 

else 


stayAtHomeO; 

Switch Statements 

Java provides for multiple-value control flow using the switch statement, which is 
especially useful with enum types. The following is an indicative example (based 
on a variable d of the Day enum type of Section 1.1.3). 

switch (d) { 
case MON: 

System.out.printlnC'This is tough. "); 
break; 


case TUE: 

System.out.println(IIThis is getting better. "); 
break; 


case WED: 

System.out.println("Half way there. "); 
break; 


case THU: 

System.out.println("I can see the light. "); 
break; 


case FRI: 

System.out.println("Now we are talking. "); 
break; 

default: 

System.out.println("Day off! II); 

break; 


} 

The switch statement evaluates an integer or enum expression and causes con
trol flow to jump to the code location labeled with the value of this expression. If 
there is no matching label, then control flow jumps to the location labeled "default." 
This is the only explicit jump performed by the switch statement, however, so flow 
of control "falls through" to other cases if the code for each case is not ended with 
a break statement (which causes control flow to jump to the next line after the 
switch statement). 



29 1.4. Control Flow 

1.4.2 Loops 

Another important control flow mechanism in a programming language is looping. 
Java provides for three types of loops. 

While Loops 

The simplest kind of loop in Java is a while loop. Such a loop tests that a certain 
condition is satisfied and will perform the body of the loop each time this condition 
is evaluated to be true. The syntax for such a conditional test before a loop body 
is executed is as follows: 

while (boolean_exp) 

[oop...statement 


At the beginning of each iteration, the loop tests the expression, boolean_exp, and 
then executes the loop body, loop...statement, only if this Boolean expression eval
uates to true. The loop body statement can also be a block of statements. 

Consider, for example, a gnome that is trying to water all of the carrots in his 
carrot patch, which he does as long as his watering can is not empty. Since his 
can might be empty to begin with, we would write the code to perform this task as 
follows: 

public void waterCarrots 0 { 

Carrot current = garden.findNextCarrot 0; 


while (!waterCan.isEmpty 0) { 

water (cu rrent, waterCa n); 

current garden.findNextCarrot 0; 


} 

- } 


Recall that "!" in Java is the "not" operator. 

For Loops 

Another kind of loop is the for loop. In their simplest form, for loops provide 
for repeated code based on an integer. index. In Java, we can do that and much 
more. The functionality of a for loop is significantly more flexible. In particular, 
the usage of a for loop is split into four sections: the initialization, the condition, 
the increment, and the body. 



30 Chapter 1. Java Programming Basics 

Defining a For Loop 

Here is the syntax for a Java for loop: 

for 	(initialization; condition; increment) 

loop.statement 


where each of the sections initialization, condition, and increment can be empty. 
In the initialization section, we can declare an index variable that will only 

exist in the scope of the for loop. For example, if we want a loop that indexes on a 
counter, and we have no need for the counter variable outside of the for loop, then 
declaring something like the following 

for 	 (int counter 0; condition; increment) 

loop.statement 


will declare a variable counter whose scope is the loop body only. 
In the condition section, we specify the repeat (while) condition of the loop. 

This must be a Boolean expression. The body of the for loop will be executed each 
time the condition is true when evaluated at the beginning of a potential iteration. 
As soon as condition evaluates to false, then the loop body is not executed, and, 
instead, the program executes the next statement after the for loop. 

In the increment section, we declare the incrementing statement for the loop. 
The incrementing statement can be any legal statement, allowing for significant 
flexibility in coding. Thus, the syntax of a for loop is equivalent to the following: 

initialization; 
while (condition) { 


loop.statement; 

increment; 


} 

except that, in Java, a while loop cannot have an empty Boolean condition, whereas 
a for loop can. The following example shows a simple for loop in Java: 

public void eatApples (Apples apples) { 
numApples = apples.getNumApples 0; 
for (int x = 0; x < numApples; x++) { 

eatApple(apples.getApple (x)); 

spitOutCore 0; 


} 

} 




31 1.4. Control Flow 

In the Java example above, the loop variable x was declared as int x = O. 
Before each iteration, the loop tests the condition" x < numApples" and executes 
the loop body only if this is true. Finally, at the end of each iteration the loop 
uses the statement x++ to increment the loop variable x before again testing the 
condition. 

Incidentally, since SE 5, Java also includes a for-each loop, which we discuss 
in Section 6.3.2. 

Do-While Loops 

Java has yet another kind ofloop besides the for loop and the standard while loop
the do-while loop. The former loops tests a condition before performing an itera
tion of the loop body, the do-while loop tests a condition after the loop body. The 
syntax for a do-while loop is as shown below: 

do 
loopJtatement 


while (boolean_exp) 


Again, the loop body statement, loopJtatement, can be a single statement or ablock 
of statements, and the conditional, boolean_exp, must be a Boolean expression. In 
a do-while loop, we repeat the loop body for as long as the condition is true each 
time it is evaluated. 

Consider, for example, that we want to prompt the 'user for input and then do 
something useful with that input. (We discuss Javajrtput and output in more detail 
in Section 1.6.) A possible condition, in this case, for exiting the loop is when the 
user enters an empty string. However, even in this case, we may want to handle that 
input and inform the user that he or she has quit. The following example illustrates 
this case: 

public void getUserinputO { 

String input; 

do { 


input getlnputStringO; 

handlelnput(input); 


} while (input.lengthO>O); 

} 


Notice the exit condition for the above example. Specifically, it is written to be 
consistent with the rule in Java that do-while loops exit when the condition is not 
true (unlike the repeat-until construct used in other languages). 



32 Chapter 1. Java Programming Basics 

1.4.3 Explicit Control-Flow Statements 

Java also provides statements that allow for explicit change in the flow of control 
of a program. 

Returning from a Method 

Ifa Java method is declared with a return type of void, then flow of control returns 
when it reaches the last line of code in the method or when it encounters a return 
statement with no argument. If a method is declared with a return type, however, 
the method is a function and it must exit by returning the function's value as an ar
gument to a return statement. The following (correct) example illustrates returning 
from a function: 

/ / Check for a specific birthday 

public boolean checkBDay (int date) { 


if (date == Birthdays.MIKES_BDAY) { 

return true; 


} 
return false; 

} 

It follows that the return statement must be the last statement executed in a func
tion, as the rest of the code will never be reached. 

Note that there is a significant difference between a statement being the last line 
of code that is executed in a method and the last line of code in the method itself. 
In the example above, the line return true; is clearly not the last line of code that 
is written in the function, but it may be the last line that is executed (if the condition 
involving date is true). Such a statement explicitly interrupts the flow of control in 
the method. There are two other such explicit control-flow statements, which are 
used in conjunction with loops and switch statements. 

The break Statement 

The typical use of a break statement has the following simple syntax: 

break; 

It is used to "break" out of the innermost switch,for, while, or do-while statement 
body. When it is executed, a break statement causes the flow of control to jump to 
the next line after the loop or switch to the body containing the break. 



33 1.4. Control Flow 

The break statement can also be used in a labeled form to jump out of an outer
nested loop or switch statement. In this case, it has the syntax 

break label; 

where label is a Java identifier that is used to label a loop or switch statement. 
Such a label can only appear at the beginning of the declaration of a loop. There 
are no other kinds of "go to" statements in Java. 

We illustrate the use of a label with a break statement in the following simple 
example: 

public static boolean hasZeroEntry (int[][] a) { 
boolean found Flag = false; 

zeroSearch: 
for (jnt i=O; ka.length; i++) { 

for (int j=O; j<a[i].length; j++) { 
if (a[i]U] == 0) { 

foundFlag true; 
break zeroSearch; 

} 
} 

} 
return found Flag; 

} 

The example above also uses arrays, which are cov~red in the next section (and in 
Section 3.1). 

The continue Statement 

The other statement to explicitly change the flow of control in a Java program is the 
continue statement, which has the following syntax: 

continue label; 

where label is an optional Java identifier that is used to label a loop. As mentioned 
above, there are no explicit "go to" statements in Java. Likewise, the continue 
statement can only be used inside loops (for, while, and do-while). The continue 
statement causes the execution to skip over the remaining steps of the loop body in 
the current iteration (but then continue the loop if its condition is satisfied). 



34 Chapter 1. lava Programming Basics 

1.5 Arrays 

A common programming task is to keep track of a numbered group of related ob
jects. For example, we may want a video game to keep track of the top ten scores 
for that game. Rather than use ten different variables for this task, we would prefer 
to use a single name for the group and use index numbers to refer to the high scores 
in that group. Similarly, we may want a medical information system to keep track 
of the patients currently assigned to beds in a certain hospital. Again, we would 
rather not have to introduce 200 variables in our program just because the hospital 
has 200 beds. 

In such cases, we can save programming effort by using an array, which is a 
numbered collection of variables all of the same type. Each variable, or cell, in an 
array has an index, which uniquely refers to the value stored in that cell. The cells 
of an array a are numbered 0, 1,2, and so on. We illustrate an array of high scores 
for a video game in Figure 1.6. 

s~~~~ 1:94018801830 17901750166016~0159015101440 I 
o 1 2 3 4 5 6 789 

indices 

Figure 1.6: An illustration of an array of ten (int) high scores for a video game. 

Such an organization is quite useful, for it allows us to do some interesting 
computations. For example, the following method adds up all the numbers in an 
array of integers: i 

/** Adds all the numbers in an integer array. * / 

public static int sum(int[] a) { 

int total = 0; 

for (int i=O; i < a.length; i++) / / note the use of the length variable 


total ali]; 

return total; 

} 

This example takes advantage of a nice feature of Java, which allows us to find 
the number of cells an array stores, that is, its length. In Java, an array a is a special 
kind of object and the length of a is stored in an instance vari~ble, length. That is, 
we never need to guess the length of an array in Java, the length of an array can be 
accessed as follows: 

array..name.length 

where arraYJwme is the name of the array. Thus, the cells of an array a are num
bered 0, 1, 2, and so on, up to a.length - 1. 



35 1.5. Arrays 

Array Elements and Capacities 

Each object stored in an array is called an element of that array. Element number 
ois a[O], element number I is a[I], element number 2 is a[2], and so on. Since the 
length of an array determines the maximum number of things that can be stored 
in the array, we will sometimes refer to the length of an array as its capacity. We 
show another simple use of an array in the following code fragment, which counts 
the number of times a certain number appears in an array: 

/** Counts the number of times an integer appears in an array. * / 
public static int findCount(int[] a, int k) { 


int count = 0; 

for (int i=O; i < a.length; i++) { 


if (a[i) k) // check if the current element equals k 
count++; 

} 
return count; 

} 

Out of Bounds Errors 

It is a dangerous mistake to attempt to index into an array a using a number outside 
the range from 0 to a.length 1. Such a reference is said to be out of bounds. 
Out of bounds references have been exploited numerous times by hackers using a 
method called the buffer overflow attack to compromise the seGUrity of computer 
systems written in languages other than Java. As a,safety feature, array indices are 
always checked in Java to see if they are ever ourof bounds. If an array index is 
out of bounds, the run-time Java environment signals an error condition. The name 
of this condition is the ArraylndexOutOfBoundsException. This check helps Java 
avoid a number of security problems (including buffer overflow attacks) that other 
languages must cope with. 

We can avoid out-of-bounds errors by making sure that we alway index into 
an array, a, using an integer value between 0 and a.length. One shorthand way we 
can do this is by carefully using the early termination feature of Boolean operations 
in Java. For example, a statement like the following will never generate an index 
out-of-bounds error: 

. if ((i >= 0)&& (i < a.length) && (a[i] > 2) ) 

x = a[i); 


for the comparison "a[i] > 2" will only be performed if the first two comparisons 
succeed. 



36 Chapter 1. Java Programming Basics 

1.5.1 	 Declaring Arrays 

One way to declare and initialize an array is as follows: 

elemenuype[] arraY.fiame = {iniLvaLO,iniLvaLl, ...,iniLvaLN-l}; 

The elementJype can be any Java base type or class name, and arraY.fiame can be 
any value Java identifier. The initial values must be of the same type as the array. 
For example, consider the following declaration of an array that is initialized to 
contain the first ten prime numbers: 

int[] primes {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}; 

In addition to creating an array and defining all its initial values when we declare it, 
we can declare an array variable without initializing it. The form of this declaration 
is as follows: 

elemenLtype [] array.-name; 

An array created in this way is initialized with all zeros if the array type is a number 
type. Arrays of objects are initialized to all null references. Once we have declared 
an array in this way, we can create the collection of cells for an array later using the 
following syntax: 

newelementJype[length] 

I 

where length is a positive integer denoting the length of the array created. Typically 
this expression appears in an assignment statement with an array name on the left
hand side of the assignment operator. So, for example, the following statement 
defines an array variable named a, and later assigns it an array of 10 cells, each of 
type double, which it then initializes: 

double[] a; 

/ / 	... various steps ... 

a = new double[lO]; 

for (int k=O; k < a.length; k++) { 


ark] = l.0; 

} 

The cells of this new array, "a," are indexed using the integer set {O, 1,2, ... ,9} 
(recall that arrays in Java always start indexing at 0), and, like every array in Java, 
all the cells in this array are of the same type-double. 



37 1.5. Arrays 

1.5.2 Arrays are Objects 

Arrays in Java are special kinds of objects. In fact, this is the reason we can use the 
new operator to create a new instance of an array. An array can be used just like 
any general object in Java, but we have a special syntax (using square brackets, "[" 
and "]") to refer to its members. An array in Java can do everything that a general 
object can. Since an array is an object, though, the name of an array in Java is 
actually a reference to the place in memory where the array is stored. Thus, there is 
nothing too special about using the dot operator and the instance variable, length, 

to refer to the length of an array, for example, as "a. length." The name, a, in this 
case is just a reference, or pointer, to the underlying array object. 

The fact that arrays in Java are objects has an important implication when it 
comes to using array names in assignment statements. For when we write some
thing like 

b = a; 

in a Java program, we really mean that b and a now both refer to the same array. 
So, if we then write something like 

b[3] = 5; 

then we will also be setting the number a[3] to 5. We illustrate this crucial point in 
Figure 1.7. 

a ---... 19401880 1830 1790 1750 1660 165015901:510J44bl 
b~ 0 1 2 3 4 5 6 7 8 9 

: Change that 
icomes from the 
i aSSignment 
, b[3]=5; 

a ---... 
19401880 1830151750166QI65QI!5~pl·510l4401 

b~ o 1 2 3 4 5 6 789 

Figure 1.7: An illustration of an assignment of array objects. We show the result of 
setting "b[3] = 5;" after previously setting "b = a;". 



38 Chapter 1. Java Programming Basics 

Cloning an Array 

If instead, we wanted to create an exact copy of the array, a, and assign that array 
to the array variable, b, we should write 

b a.cloneO; 

which copies all of the cells of a into a new array and assigns b to point to that new 
array. In fact, the clone method is a built-in method of every Java object, which 
makes an exact copy of that object. In this case, if we then write 

b[3] = 5; 

then the new (copied) array will have its cell at index 3 assigned the value 5, but 
a[3] will remain unchanged. We illustrate this point in Figure 1.8. 

a ~ \9401880\83017901750/66016501590151014401 

o 1 234 5 6 789 

b 
 , I 

1 2 3 4 5 6 7 
rl... ......... _~ ... 1... ........ 
·· ··· ··· · ··, 

I...;. ._ 1 ___ I .;.. __ 

1 1 . I·· 1 ' • 1 . 1 'I 
a 


0 1 2 3 4 5 6 7 8 9 

b ~ 1940 188018.3QI·5·1750 1660 1650 15901510 1 440 1 

0 1 2 3 4 5 6 7 8 9 

Figure 1.8: An illustration of cloning of array objects. We show the result of setting 
"b[3] - 5;" after previously setting "b a.cloneO;". 

We should stress that the cells of an array are copied when we clone it. If the 
cells are a base type, like int, their values are copied. But if the cells are object 
references, then those references are copied. This means that there are now two 
ways to reference such an object. We explore the consequences of this fact in 
Exercise R-1.1. 



39 1.6. Simple Input and Output 

1.6 Simple Input and Output 

Java provides a rich set of classes and methods for performing input and output 
within a program. There are classes in Java for doing graphical user interface de
sign, complete with pop-up windows and pull-down menus, as well as methods for 
the display and input of text and numbers. Java also provides methods for deal
ing with graphical objects, images, sounds, Web pages, and mouse events (such 
as clicks, mouse overs, and dragging). Moreover, many of these input and output 
methods can be used in either stand-alone programs or in applets. 

Unfortunately, going into the details on how all of the methods work for con
structing sophisticated graphical user interfaces is beyond the scope of this book. 
Still, for the sake of completeness, we describe how simple input and output can be 
done in Java in this section. 

Simple input and output in Java occurs within the Java console window. De
pending on the Java environment we are using, this window is either a special 
pop-up window that can be used for displaying and inputting text, or a window 
used to issue commands to the operating system (such windows are referred to as 
shell windows, DOS windows, or terminal windows). 

Simple Output Methods 

Java provides a built-in static object, called System.out, 'that performs output to 
the "standard output" device. Most operating system:shells allow users to redirect 
standard output to files or even as input to other programs, but the default out
put is to the Java console window. The System.out object is an instance of the 
java.io.PrintStream class. This class defines methods for a buffered output stream, 
meaning that characters are put in a temporary location, called a buffer, which is 
then emptied when the console window is ready to print characters. 

Specifically, the java.io.PrintStream class provides the following methods for 
performing simple output (we use base_type here to refer to any of the possible 
base types): 

print(Object 0): Print the object 0 using its toString method. 

:..~ 

~> print(String s): Print the string s. 

print(base_type b): Print the base type value b. 

println(String s): Print the string s, followed by the newline character. 



40 Chapter 1. Java Programming Basics 

An Output Example 

Consider, for example, the following code fragment: 

System.out.print("Java values: "); 

System.out.print(3.1415); 

System.out.print(' , l ); 


System.out.print(15); 

System.out.println(" (double, char, int) . "); 


When executed, this fragment will output the following in the Java console window: 

Java values: 3.1415,15 (double,char,int). 

Simple Input Using the java.util.Scanner Class 

Just as there is a special object for performing output to the Java console window, 
there is also a special object, called System. in, for performing input from the Java 
console window. Technically, the input is actually coming from the "standard in
put" device, which by default is the computer keyboard echoing its characters in 
the Java console. The System.in object is an object associated with the standard 
input device. A simple way of reading input with this object is to use it to create a 
Scanner object, using the expression 

new Scanner(System.in) 

The Scanner class has a number of convenient methods that read from the given 
input stream. For example, the following program uses a Scanner object to process 
input: 

import java.io. *; 

import java.utiI.Scanner; 

public class InputExample { 


public static void main(String args[]) throws IOException { 
Scanner 5 =: new Scanner(System.in); 
System.out.print("Enter your age in years: II); 
double age =: s.nextDouble(); 
System.out.print("Enter your maximum heart rate: "); 
double rate = s.nextDoubleO; 
double fb (rate - age) * 0.65; 
System.out.printlnC'Your target fat burning heart rate is " + fb + ". "); 

} 
} 

When executed, this program could produce the following on the Java console: 

Enter your age in years: 21 

Enter your maximum heart rate: 220 

Your target fat burning heart rate is 129.35. 


I 


I 
\ 

t 

http:Scanner(System.in
http:Scanner(System.in
http:System.in


41 1.6. Simple Input and Output 

java.util.Scanner Methods 

The Scanner class reads the input stream and divides it into tokens, which are 
strings of characters separated by delimiters. A delimiter is a special separating 
string, and the default delimiter is whitespace. That is, tokens are separated by 
strings of spaces, tabs, and newlines, by default. Tokens can either be read immedi
ately as strings or a Scanner object can convert a token to a base type, if the token is 
in the right syntax. Specifically, the Scanner class includes the following methods 
for dealing with tokens: 

hasNextO: Return true if and only if there is another token in the 
input stream. 

nextO: Return the next token string in the input stream; generate 
an error if there are no more tokens left. 

hasf\lextTypeO: 	 Return true if and only if there is another token in the 
input stream and it can be interpreted as the correspond
ing base type, Type, where Type can be Boolean, Byte, 
Double, Float, Int, Long, or Short. 

nextTypeO: 	Return the next token in the input stream, returned as 
the base type corresponding to Type; generate an error if 
there are no more tokens left or if the next token cannot 
be interpreted as a base type corresponding to Type. 

Additionally, Scanner objects can process' input line by line, ignoring delim
iters, and even look for patterns within lines while doing so. The methods for 
processing input in this way include the following: 

hasNextLineO: Returns true if and only if the input stream has another 
line of text. 

nextLineO: Advances the input past the current line ending and re
turns the input that was skipped. 

findlnLine(String s): 	 Attempts to find a string matching the (regular expres
sion) pattern 5 in the current line. If the pattern is found, 
it is returned and the scanner advances to the first char
acter after this match. If the pattern is not found, the 
scanner returns null and doesn't advance. 

These methods can be used with those above, as well as in the following: 

Scanner input = 	new Scanner(System.in); 
System.Qut.print("Please enter an integer: "); 
while (!input.hasNextlntO) { . 

input.nextLineO; 
System.out.print("That's not an integer; please enter an integer: n); 

} 
int i input.nextintO; 

http:Scanner(System.in


42 Chapter 1. lava Programming Basics 

1.7 An Example Program 

In this section, we describe a simple example Java program that illustrates many 
of the constructs defined above. Our example consists of two classes, one, Cred
itCard, that defines credit card objects, and another, Test, that tests the function
ality of CreditCard class. The credit card objects defined by the CreditCard class 
are simplified versions of traditional credit cards. They have identifying numbers, 
identifying information about their owners and their issuing bank, and information 
about their current balance and credit limit. They do not charge interest or late 
payments, however, but they do restrict charges that would cause a card's balance 
to go over its spending limit. 

The CreditCard Class 

We show the CreditCard class in Code Fragment 1.5. Note that the CreditCard 
class defines five instance variables, all of which are private to the class, and it 
provides a simple constructor that initializes these instance variables. 

It also defines five accessor methods that provide access to the current values 
of these instance variables. Of course, we could have alternatively defined the 
instance variables as being public, which would have made the accessor methods 
moot. The disadvantage with this direct approach, however, is that it allows users 
to modify an object's instance variables directly, whereas in many cases such as 
this, we prefer to restrict the modification of instance variables to special update 
methods. We include two such update methods, chargelt and makePayment in 
Code Fragment 1.5. . 

In addition, it is often convenient to include action methods, which define spe
cific actions for that object's behavior. To demonstrate, we have defined such an 
action method, the printCard method, as a static method, which is also included in 
Code Fragment 1.5. 

The Test Class 

We test the CreditCard class in a Test class. Note the use of an array, wallet, of 
CreditCard objects here, and how we are using iteration to make charges and pay
ments.. We show the complete code for the Test class in Code Fragment 1.6. For 
simplicity's sake, the Test class does not do any fancy graphical output, but simply 
sends its output to the Java console. We show this output in Code Fragment 1.7. 
Note the difference between the way we utilize the nonstatic chargelt and make
Payment methods and the static printCard method. 



43 1.7. An Example Program 

public class CreditCard { 
/ / Instance variables: 
private String number; 
private String name; 
private String bank; 
private double balance; 
private int limit; 
/ / Constructor: 
CreditCard(String no, String nm, String bk, double bal, int lim) { 


number = no; 

name = nm; 

bank = bk; 

balance = bal; 

limit = 11m; 


} 
/ / Accessor methods: 

public String getNumber() { return number; } 

public String getName() { return name; } 

public String get BankO { return bank; } 

public double getBalance() { return balance; } 

public int getLimitO { return limit; } 

/ / Action methods: 

public boolean chargelt(double price) { / / Make a charge 


if (price + balance> (double) limit) 

return false; / / There is not enough money left to charge it· 

balance price; 
return true; / / The charge goes through in this case

} , , 

public void makePayment(double payment) { / / Make a payment 

balance payment; 


} 
public static void printCard(CreditCard c) { / / Print a card's information 

System.out.println("Number = II + c.getNumber()); 
System.out.println("Name = It + c.getNameO); 
System.out.println("Bank = II + c.getBankO); 
System.out.println("Balance = II + c.getBalance()); / / Implicit cast 
System.out.println(ItLimit + c.getLimit()); / / Implicit cast11 

} 
} 

Code Fragment 1.5: The CreditCard class. 



44 Chapter 1. Java Programming Basics 
public class Test { 

public static void main(String[) args) { 
CreditCard wallet[] = new CreditCard[10]; 
wallet[O] = new CreditCard(1I5391 0375 9387 5309", 

"John Bowman", IICalifornia Savings", 0.0, 2500); 
wallet[l] new CreditCard("3485 0399 3395 195411 , 

"John Bowman", "California Federal", 0.0, 3500); 
wallet[2) new CreditCard("6011 4902 3294 2994", 

"John Bowman", "California Finance", 0.0, 5000); 
for (int i=l; k=16; i++) { 

wallet[O).chargelt( (double)i); 
wallet[1).chargelt(2.0*i); II implicit cast 
wallet[2].chargelt((double)3*i); II explicit cast 

} 
for (int i=O; k3; i++) { 

CreditCard. printCard(wallet[i]); 
while (wallet[i).getBalanceO > 100.0) { 

wallet[i) .makePayment(100.0); 
System.out.println("New balance = " + wallet[i].getBalanceO); 

} 
} 


} 

} 

Code Fragment 1.6: The Test class. 

Number 5391 0375 9387 5309 

Name John Bowman 

Bank = California Savings 

Balance = 136.0 

Limit = 2500 

New balance = 36.0 

Number = 3485 0399 3395 1954 

Name = John Bowman 

Bank California Federal 

Balance = 272.0 

Limit = 3500 

New balance = 172.0 

New balance = 72.0 

Number = 6011 4902 3294 2994 

Name = John Bowman 

Bank California Finance 

Balance = 408.0 

Limit = 5000 

New balance = 308.0 

New ,balance = 208.0 

New balance = 108.0 

New balance 8.0 


Code Fragment 1.7: Output from the Test class. 



45 1.S. Nested Classes and Packages 

1.8 Nested Classes and Packages 

The Java language takes a general and useful approach to the organization of classes 
into programs. Every stand-alone public class defined in Java must be given in a 
separate file. The file name is the name of the class with a Java extension. So 
a class, public class SmartBoard, is defined in a file, SmartBoardJava. In this 
section, we describe two ways that Java allows multiple classes to be organized in 
meaningful ways. 

Nested Classes 

Java allows class definitions to be placed inside, that is, nested inside the defini
tions of other classes. This is a useful construct, which we will exploit several 
times in this book in the implementation of data structures. The main use for such 
nested classes is to define a class that is strongly affiliated with another class. For 
example, a text editor class may wish to define a related cursor class. Defining the 
cursor class as a nested class inside the definition of the text editor class keeps these 
two highly related classes together in the same file. Moreover, it also allows each 
of them to access nonpublic methods of the other. One technical point regarding 
nested classes is that the nested class should be declared as static. This declaration 
implies that the nested class is associated with the outer class, not an instance of 
the outer class, that is, a specific object. 

Packages 
•

A set of classes, all defined in a common subdirectory, can be a Java package. 
Every file in a package starts with the line: . 

package packageJ1.ame; 

The subdirectory containing the package must be nam~d the same as the package. 
We can also define a package in a single file that contains several class definitions, 
but when it is compiled, all the classes will be compiled into separate files in the 
same subdirectory. 

In Java, we can use classes that are defined in other packages by prefixing 
class names with dots (that is, using the '.' character) that correspond to the other 
packages' directory structures. 

public boolean Tern perature(T	A. Measures.Thermometer thermometer, 
int temperature) { 

/ / ... 
} 



46 Chapter 1. Java Programming Basics 

The function Temperature takes a class Thermometer as a parameter. Ther
mometer is defined in the TA package in a subpackage called Measures. The dots 
in TA.Measures.Thermometer correspond directly to the directory structure in the 
TA package. 

All the extra typing needed to refer to a class outside of the current package 
can get tiring. In Java, we can use the import keyword to include external classes 
or entire packages in the current file. To import an individual class from a specific 
package, we type the following at the beginning of the file: 

import packageName .classNames; 

For example, we could type 

package Project; 

import TA. Measures.Thermometer; 

import TA.lVleasures.scale; 


at the beginning of-a Project package to indicate that we are importing the classes 
named TA.Measures.Thermometer and TA.Measures.Scale. The Java run-time 
environment will now search these classes to match identifiers to classes, methods, 
and instance variables that we use in our program. 

We can also import an entire package, by using the following syntax: 

import (packagel\lame).*; 

For example: 

package student; 

import TA.Measures. *; 

public boolean Temperature(Thermometer thermometer, int temperature) { 


II ... 
} 

In the case where two packages have classes of the same name, we must specif
ically reference the package that contains a class. For example, suppose both the 
package Gnomes and package Cooking have a class named Mushroom. 

If we provide an import statement for both packages, then we must specify 
which class we mean as follows: 

Gnomes.Mushroom shroom = new Gnomes.Mushroom C'purple n ); 

Cooking. Mushroom topping = new Cooking.Mushroom 0; 

Ifwe do not specify the package (that is, in the previous example we just use a 
variable of type Mushroom), the compiler will give an "ambiguous class" error. 

To sum up the structure of a Java program, we can have instance variables and 
methods inside a class, and classes inside a package. 



47 1.9. Writing a Java Program 

1.9 Writing a Java Program 

The process of writing a Java program involves three fundamental steps: 

1. 	Design 

2. 	Coding 

3. Testing and Debugging. 


We briefly discuss each of these steps in this section. 


1.9.1 Design 

The design step is perhaps the most important step in the process of writing a pro
gram. For it is in the design step that we decide how to divide the workings of 
our program into classes, we decide how these classes will interact, what data each 
will store, and what actions each will perform. Indeed, one of the main challenges 
that beginning Java programmers face is deciding what classes to define to do the 
work of their program. While general prescriptions are hard to come by, there are 
some general rules of thumb that we can apply when determining how to define our 
classes: 

• 	Responsibilities: Divide the work into different actors, each with a different 
responsibility. ~ry to describe responsibilities using action verbs. These 
actors will form the classes for the program. 

i 

• 	Independence: Define the work for each c~ass to be as independent from 
other classes as possible. Subdivide responsibilities between classes so that 
each class has autonomy over some aspect of the program. Give data (as in
stance variables) to the class that has jurisdiction over the actions that require 
access to this data. 

• 	Behaviors: So that the consequences of each action performed by a class 
will be well understood by other classes that interact with it, define the be
haviors for each class carefully and precisely. These behaviors will define the 
methods that this class performs. The set of behaviors for a class is some
times referred to as aprotocol, for we expect the behaviors for a class to hold 
together as a cohesive unit. 

Defining the classes, together with their instance variables and methods, determines 
.the design of a Java program. A good programmer will naturally develop greater 
skill in performing these tasks over time, as experience teaches him or her to notice 
patterns in the requirements of a program that match patterns that he or she has 
seen before. 



48 Chapter 1. Java Programming Basics 

1.9.2 Pseudo-Code 

Programmers are often asked to describe algorithms in a way that is intended for 
human eyes only, prior to writing actual code. Such descriptions are caUedpseudo
code. Pseudo-code is not a computer program, but is more structured than usual 
prose. Pseudo-code is a mixture of natural language and high-level programming 
constructs that describe the main ideas behind a generic implementation of a data 
structure or algorithm. There really is no precise definition of the pseudo-code lan
guage, however, because of its reliance on natural language. At the same time, to 
help achieve clarity, pseudo~code mixes natural language with standard program
ming language constructs. The programming language constructs we choose are 
those consistent with modem high-Ieve11anguages such as C, C++, and Java. 

These constructs include the following: 

• 	Expressions: We use standard mathematical symbols to express numeric 
and Boolean expressions. We use the left arrow sign (f--) as the assignment 
operator in assignment statements (equivalent to the = operator in Java} and 
we use the equal sign (=) as the equality relation in Boolean expressions 
(equivalent to the "==" relation in Java). 

• 	Method declarations: Algorithm name(param1, param2, ... ) declares a new 
method "name" and its parameters. 

• 	Decision structures: if condition then true-actions [else false-actions]. We 
use indentation to indicate what actions should be included in the true-actions 
and false-actions. 

• 	While-loops: while condition do actions. We use indentation to iqdicate 
what actions should be included in the loop actions. 

• 	Repeat-loops: repeat actions until condition. We use indentation to indicate 
what actions should be included in the loop actions. 

• 	For-loops: for variable-increment-definition do actions. We use indentation 
to indicate what actions should be included among the loop actions. 

• 	Array indexing: A[i] represents the ith cell in the array A. The cells of an 
n-celled array A are indexed from A[0] to A[n -1] (consistent with Java). 

• 	Method calls: object.method(args) (object is optional if it is understood). 

• 	Method returns: return value. This operation returns the value specified to 
the method that called this one. 

• Comments: { Comment goes here. }. We enclose comments in braces. 

When we write pseudo~code, we must keep in mind that we are writing for a 
human reader,nota computer. Thus, we should strive to communicate high-level 
ideas, not low-level implementation details. At the same time, we should not gloss 
over important steps. Like many forms of human communication, finding the right 
balance is an important skill that is refined through practice. 



49 1.9. Writing a Java Program 

1.9.3 Coding 

As mentioned above, one of the key steps in coding up an object-oriented program 
is coding up the descriptions of classes and their respective data and methods. In 
order to accelerate the development of this skill, we discuss various design pat
terns for designing object-oriented programs (see Section 2.1.3) at various points 
throughout this text. These patterns provide templates for defining classes and the 
interactions between these classes. 

Many programmers do their initial coding not on acomputer, but by using eRe 
cards. Class-Responsibility-Collaborator (CRC) cards are simple index cards that 
subdivide the work required of a program. The main idea behind this tool is to 
have each card represent a component, which will ultimately become a class in our 
program. We write the name of each component on the top of an index card. On 
the left-hand side of the card, we begin writing the responsibilities for this com
ponent. On the right-hand side, we list the collaborators for this component, that 
is, the other components that this component will have to interact with to perform 
its duties. The design process iterates through an action/actor cycle, where we first 
identify an action (that is, a responsibility), and we then detennine an actor (that 
is, a component) that is best suited to perform that action. The design is complete 
when we have assigned all actions to actors. 

By the way, in using index cards to begin our coding, we are assuming that 
each component will have a small set of responsibilities and collaborators. This 
assumption is no accident, for it helps keep our programs manageable. 

An alternative to CRC cards is the use of UML (Unified Mo~eling Language) 
diagrams to express the organization of a Program; and the use of pseudo-code to 
describe the algorithms. UML diagrams are a standard visual notation to express 
object-oriented software designs. Several computer-aided tools are available to 
build UML diagrams. Describing algorithms in pseudo-code, on the other hand, is 
a technique that we utilize throughout this book. 

Once we have decided on the classes for our program and their responsibilities, 
we are ready to begin the actual coding on a computer. We create the actual code 
for the classes in our program by using either an independent text editor (such 
as emacs, WordPad, or vi), or the editor embedded in an illlegrated development 
environment (IDE), such as Eclipse or Borland JBuilder. 

Once we have completed coding for a class (or package)~ we compile this file 
into working code. by invoking a compiler. If we are not using an IDE, then we 
compile our program by calling a program, such as j avac~ en our file. If we are 
using an IDE, then we compile our program by clicking the appropriate compila
tion button. If we are fortunate, and our program has no SJiltax errors, then this 
compilation process will create files with a ". class" extension. 



50 Chapter 1. Java Programming Basics 

Ifour program contains syntax errors, then these will be identified, and we will 
Iihave to go back into our editor to fix the offending lines of code. Once we have u 
1j
ileliminated all syntax errors, and created the appropriate compiled code, we can run 
~ 

our program by either invoking a command, such as "j ava" (outside an IDE), or 
by clicking on the appropriate "run" button (within an IDE). When a Java program 
is run in this way, the run-time environment locates the directories containing the 
named class and any other classes that are referenced from this class according to 
a special operating system environment variable. This variable is named "CLASS
PATH," and the order of directories to search in is given as a list of directories, 
which are separated by colons in UnixlLinux or semicolons in DOSlWindows. An 
example CLASSPATH assignment in the DOSlWindows operating system could 
be the following: 

SET CLASSPATH=.;C:\java;C:\Program Files\Java\ 

Whereas an example CLASSPATH assignment in the UnixlLinux operating system 
could be the following: 

setenv CLASSPATH ", :/usr/local/java/lib:/usr/netscape/classes" 

In both cases, the dot (".") refers to the current directory in which the run-time 
environment is invoked. 

Javadoc 

In order to encourage good use of block comments and the automatic production of 
documentation, the Java programming environment comes with a documentation 
production program calledjavadoc. This program takes a collection of Java source 
files that have been commented using certain keywords, called tags, and it produces 
a series of HTML documents that describe the classes, methods, variables, and 
constants contained in these files. For space reasons, we have not used javadoc
style comments in all the example programs included in this book, but we include 
a javadoc example in Code Fragment 1.8 as well as other examples at the Web site 
that accompanies this book. 

Eachjavadoc comment is a block comment that starts with "/**" and ends with 
"*/," and each line between these two can begin with a single asterisk, "*," which 
is. ignored~ .The block comment is assumed to start with a descriptive sentence, 
followed by a blank line, which is followed by special lines that begin with javadoc 
tags. A block comment that comes just before a class definition, instance variable 
declaration, or method definition, is processed by javadoc into a comment about 
that class, variable, or method. 

~ 

f 

I 
fi 

ti 
ij
Ii 
~r 



51 1.9. Writing a Java Program 

/**
* This class defines an immutable (x,y) point in the plane. 


* 

* @author Michael Goodrich 

*/ 


public class XYPoint { 
private double x,y; / / private instance variables for the coordinates 

/**
* Construct an (x,y) point at a specified location. 


* 

* @param xCoor The x-coordinate of the point
* @param yCoor The y-coordinate of the point 

*/ 


public XYPoint(double xCoor, double yCoor) { 

x xCoor; 

y = yCoor; 


} 

/**
* Return x-coordinate value. 


* 

* @return x-coordinate 
*/ 


public double getXO { return x; } 


/**
* Return y-coordinate value. 


* 

* @return y-coordinate 
*/ 


public double getYO { return y; } 

} 

Code Fragment 1.8: An example class definition using javadoc-style comments. 
Note that this class includes two instance variables, one constructor, and two ac
cessor methods. 



52 

I 

Chapter 1. Java Programming Basics 

The primary javadoc tags are the following: 
• @author text: Identifies each author (one per line) for a class. 
• @exception exception-name description: Identifies an error condition that 	 f 

is signaled by this method (see Section 2.3). 
• 	@param parameter-name description: Identifies a parameter accepted by this 

method. 
• 	@return description: Describes the return type and its range of values for a 

method. 
There are other tags as well; the interested reader is referred to on-line documenta
tion for javadoc for further discussion. 

Readability and Style 

Programs should be made easy to read and understand. Good programmers should 
therefore be mindful of their coding style, and develop a style that communicates 
the important aspects of a program's design for both humans and computers. 

Much has been written about good coding style, with some of the main princi
ples being the following: 

• 	Use meaningful names for identifiers. Try to choose names that can be read 
aloud, and choose names that reflect the action, responsibility, or data each 
identifier is naming. The tradition in most Java circles is to capitalize the first 
letter of each word in an identifier, except for the first word in an identifier for 
a variable or method. So, in this tradition, "Date," "Vector," "DeviceMan
ager" would identify classes, and 'isFuIlO," "insertltemO," "studentName," 
and "studentHeight" would respectively identify methods and variables. 

-	 i 

• 	Use named constants or enum types instead of literals. Readability, robust
ness, and modifiability are enhanced if we include a series of definitions of 
named constant values in a class definition. These can then be used within 
this class and others to refer to special values for this class. The tradition in 
Java is to fully capitalize such constants, as shown below: 
public class Student { 

public static final int MII'LCREDITS = 12; II min. credits in a term 
public static final int MAX_CREDITS = 24; II max. credits in a term 
public static final int FRESHMAN 1; II code for freshman 
public static final int SOPHOMORE = 2; II code for sophomore 
public static final int JUNIOR = 3; II code for junior 
public static final int SENIOR = 4; II code for senior 

II Instance variables, constructors, and method definitions go here... 

} 


• 	Indent statement blocks. Typically programmers indent each statement block 
by 4 spaces; in this book we typically use 2 spaces, however, to avoid having 
our code overrun the book's margins. 



53 1.9. Writing a Java Program 

• 	Organize each class in the following order: 
1. 	 Constants 
2. 	 Instance variables 
3. 	Constructors 
4. Methods. 

We note that some Java programmers prefer to put instance variable defini
tions last. We put them earlier so that we can read each class sequentially 
and understand the data each method is working with. 

• 	Use comments that add meaning to a program and explain ambiguous or 
confusing constructs. In-line comments are good for quick explanations and 
do not need to be sentences. Block comments are good for explaining the 
purpose of a method and complex code sections. 

1.9.4 Testing and Debugging 

Testing is the process of experimentally checking the correctness of a program, 
while debugging is the process of tracking the execution of a program and discov
ering the errors in it. Testing and debugging are often the most time-consuming 
activity in the development of a program. 

Testing 

A careful testing plan is an essential part of writing a program. While verifying the 
correctness of a program over all possible inputs is usually infeasible, we should 
aim at executing the program on a representative subset of inp~ts. At the very 
minimum, we should make sure that every method ih the program is tested at least 
once (method coverage). Even better, each code statement in the program should 
be executed at least once (statement coverage). 

Programs often tend to fail on special cases of the input. Such cases need to be 
carefully identified and tested. For example, when testing a method that sorts (that 
is, puts in order) an array of integers, we should consider the following inputs: 

• 	The array has zero length (no elements). 
• 	The array has one element. 
• 	All the elements of the array are the same. 
• 	The array is already sorted. 
• The array is reverse sorted. 

In addition to special inputs to the program, we should also consider special 
conditions for the structures used by the program. For example, if we use an array 
to store data, we should make sure that boundary cases, such as inserting/removing 
at the beginning or end of the subarray holding data, are properly handled. 



54 Chapter 1. Java Programming Basics 

While it is essential to use hand-crafted test suites, it is also advantageous to run 
the program on a large collection of randomly generated inputs. The Random class 
in the java.util package provides several methods to generate random numbers. 

There is a hierarchy among the classes and methods of a program induced by 
the caller-callee relationship. Namely, a method A is above a method B in the 
hierarchy if A calls B. There are two main testing strategies, top-down and bottom
up, which differ in the order in which methods are tested. 

Bottom-up testing proceeds from lower-level methods to higher-level methods. 
Namely, bottom-level methods, which do not invoke other methods, are tested first, 
followed by methods that call only bottom-level methods, and so on. This strategy 
ensures that errors found in a method are not likely to be caused by lower-level 
methods nested within it. 

Top-down testing proceeds from the top to the bottom of the method hierarchy. 
It is typically used in conjunction with stubbing, a boot-strapping technique that 
replaces a lower-level method with a stub, a replacement for the method that simu
lates the output of the original method. For example, if method A calls method B to 
get the first line of a file, when testing A we can replace B with a stub that returns a 
fixed string. 

Debugging 

The simplest debugging technique consists of using print statements (using method 
System.out.println(string)) to track the values of variables during the execution of 
the program. A problem with this approach is that the print statements need to be 
eventually removed or commented out before the software is finally released. . . i 

A better approach is to run the program within a debugger, which is a special
ized environment for controlling and monitoring the execution of a program. The 
basic functionality provided by a debugger is the insertion of breakpoints within 
the code. When the program is executed within the debugger, it stops at each 
breakpoint. While the program is stopped, the current value of variables can be 
inspected. In addition to fixed breakpoints, advanced debuggers allow for specifi
cation of conditional breakpoints, which are triggered only if a given expression is 
satisfied. 

The standard Java tools include abasic debugger called jdb, which is command
line oriented. IDEs for Java programming provide advanced debugging environ
ments with graphical user interfaces. 



55 1.10. 	 Exercises 

1.10 Exercises 

For help with exercises, please visit the web site, www.wiley.com/go/globallgoodrich. 

Reinforcement 

R-1.1 	 Suppose that we create an array A of GameEntry objects, which has an 
integer scores field, and we clone A and store the result in an array B. If 
we then immediately set A[4].score equal to 550, what is the score value 
of the GameEntry object referenced by B[4]? 

R-1.2 Modify the CreditCard class from Code Fragment 1.5 to charge interest 
on each payment. 

R-1.3 Modify the CredltCard class from Code Fragment 1.5 to charge a late fee 
for any payment that is past its due date. 

R-1.4 	Modify the Cred itCard class from Code Fragment 1.5 to include modifier 
methods, which allow a user to modify internal variables in a CreditCard 
class in a controlled manner. 

R-l.5 	Modify the declaration of the first for loop in the Test class in Code Frag
ment 1.6 so that its charges will eventually cause exactly one of the three 
credit cards to go over its credit limit. Which credit card is it? 

R-1.6 	Write a short Java function, inputAIiBaseTypes, that inputs a different 
value of each base type from the standard input device and prints it back 
to the standard output device. 

R-1.7 	Write a Java class, Flower, that has three instance variabl~s of type String, 
int, and float, which respectively represent the name of the flower, its 
numberof pedals, and price. Your class must include a constructor method 
that initializes each variable to an appropriate value, and your class should 
include methods for setting the value of each type, and getting the value 
of each type. 

R-1.8 	Write a short Java function, isMultiple, that takes two long values, nand 
m, and returns true if and only if n is a multiple of m, that is, n mi for 
some integer i. 

R-1.9 	Write a short Java function, isOdd, that takes an int i and returns true if 
and only if i is odd. Your function cannot use the multiplication, modulus, 
or division operators, however. 

R-l.lO Write ashbrt'Java function that takes an integer n and returns the sum of 
all the integers smaller than n. 

R-1.11 Write a short Java function that takes an integer nand returns the sum of 
all the odd integers smaller than n. 

www.wiley.com/go/globallgoodrich


56 	 Chapter 1. Java Programming Basics 

Creativity 

C-l.l 	Write a short Java function that takes an array of int values and determines 
if there is a pair of numbers in the array whose product is odd. I

C-l.2 	Write a Java method that takes an array of int values and determines if all 
the numbers are different from each other (that is, they are distinct). 

C-13 	Write a Java method that takes an array containing the set of all integers 
in the range 1 to 54 and shuffles it into random order. Your method should 
output each possible order with equal probability. 

C-l.4 	Write a short Java program that outputs all possible strings formed by 
using the characters 'c', 'a', 'r', 'b', '0' , and 'n' exactly once. 

C-l.5 	Write a short Java program that takes all the lines input to standard input 
and writes them to standard output in reverse order. That is, each line is 
output in the correct order, but the ordering of the lines is reversed. 

C-1.6 	Write a short Java program that takes two aITays a and b oflength n storing 
int values, and returns the dot product of a and b. That is, it returns an 
array e oflength nsuch that eU] = ali]· b[il, for i = 0, ... ,n-1. 

Projects 

P-1.1 	 Using either Java Internationalization (which is described on the Internet) 
or through your own approach, rewrite the CreditCard class so that it can 
easily switch between two different languages. 

P-1.2 	(For those who know Java graphical user interface methods) Define a 
GraphicalTest class that tests the functionality of .the CreditCard class 
from Code Fragment 1.5 using text fields and buttons. 

P-13 	The birthday paradox says that the probability that two people in a room 
will have the same birthday is more than half, provided n, the number of 
people in the room, is more than 23. This property is not really a paradox, 
but many people find it surprising. Design a Java program that can test 
this paradox by a series of experiments on randomly generated birthdays, 
which test this paradox for n = 5,10,15,20, ... ,100. 

Chapter Notes 

For more detailed information about the Java programming language, we refer the reader to 
some of the fine books about Java, including the books by Arnold, Gosling and Holmes [7], 
Flanagan [32], Horstmann [49], and Horstmann and Cornell [50, 51], as well as Sun's Java 
Website (http://www.java.sun.com). 

http:http://www.java.sun.com


Chapter 


2 Object-Oriented Design 

oo~ooooo: 0 0 0 0 

o 00 ••::::\ ~ Q 0 0 a 
0: •• 0 0 0 0 0 

00 0~~:J' 0 0 00 
°0 ·::~O 0 0 0 0 80000 0 0 

a 0 O.·::.,.f) 01o 0 O:~e!0 *.lfO
\ ~. o. .·0 0 0 

% o~o ~;:••••$:g 0t Q 0 0·••• 0 0 
o 0 0 0- 0 0 f. ....:".0 0 0 0 0 0 0000 a 0

0 
0 0 0 0o .aO 0 	 0 0 00.. 

o 

o0 ~ 	 ••:~)O 00 o·.~o OOO'I 0 ~ 
o •••~ 0 a 0 00 0 0:. .0 O. 0 	 0 0 0 

000
:. -'!. 0 Q 0 0.~.• a 0 0':'a •• .0 o· 0 •••••00 0 

o~..: 0 0 o·::.~OO 0 0 0:.·····••0 0 
I0 

O • \ 0 	 O. eOo 0 0 o. 0 0 0 00 0 0Ii::· 	 o.st.oo ••9ti:Ii\. 
o 0 0 0 0 roo 0 0 0 0 0 0:::"00° 0 

o 	 0 0 0 0 000 0 
0a 0 0 °00 °000 

o 

Contents 

2.1 Goals, Principles, and Patterns .. 	 58 

2.1.1 Object-Oriented 	Design Goals 58 

2.1.2 Object-Oriented 	Design Principles 59 
2.1.3 Design Patterns ...... . 	 62 

2.2 Inheritance and Polymorphism 	 63 
2.2.1 Inheritance .. 	 63 

2.2.2 Polymorphism 	 65 

2.2.3 Using Inheritance in Java 	 66 

2.3 Exceptions . . . . . . . . 	 76 
2.3.1 Throwing Exceptions 	 76 

2.3.2 Catching Exceptions. 	 78 

2.4 Interfaces and Abstract Classes 	 80 
2.4.1 Implementing Interfaces .... 	 80 

2.4.2 Multiple Inheritance in Interfaces 	 83 

2.4.3 Abstract Classes and Strong Typing 	 84 

2.5 Casting and Generics .... . . . . 	 85 

2.5.1 Casting 	 85 

2.5.2 Generics· 	 89 

2.6 Exercises . . . . . . . . . . . . . . . 	 91 



58 Chapter 2. Object-Oriented Design 

2.1 Goals, Principles, and Patterns 

As the name implies, the main "actors" in the object-oriented design paradigm 
are called objects. An object comes from a class, which is a specification of the 
data fields, also called instance variables, that the object contains, as well as the 
methods (operations) that the object can execute. Each class presents to the outside 
world a concise and consistent view of the objects that are instances of this class, 
without going into too much unnecessary detail or giving others access to the inner 
workings of the objects. This view of computing is intended to fulfill several goals 
and incorporate several design principles, which we discuss in this chapter. 

2.1.1 Object-Oriented Design Goals 

Software implementations should achieve robustness, adaptability, and reusabil
ity. (See Figure 2.1.) 

Robustness Adaptability Reusability 

Figure 2.1: Goals of object-orienteddesigh. 

Robustness 

Every good programmer wants to develop software that is correct, which means 
that a program produces the right output for all the anticipated inputs in the pro
gram's application. In addition, we want software to be robust, that is, capable of 
handling unexpected inputs that are not explicitly defined for its application. For 
example, if a program is expecting a positive integer (for example, representing the 
price of an item) and instead is given a negative integer, then the program should be 
able to recover gracefully from this error. More importantly, in life-critical appli
cations, where a software error can lead to injury Qr loss of life, software that is not 
robust could be·deadly. This point was driven home in the late 1980s in accidents 
involving Therac-25, a radiation:-therapy machine, which severely overdosed six 
patients between 1985 and 1987, some of whom died from complications resulting 
from their radiation overdose. All six accidents were traced to software errors. 



59 2.1. Goals, Principles, and Patterns 

Adaptability 

Modem software applications, such as Web browsers and Internet search engines, 
typically involve large programs that are used for many years. Software, there
fore, needs to be able to evolve over time in response to changing conditions in its 
environment. Thus, another important goal of quality software is that it achieves 
adaptability (also called evolvability). Related to this concept is portability, which 
is the ability of software to run with minimal change on different hardware and 
operating system platforms. An advantage of writing software in Java is the porta
bility provided by the language itself. 

Reusability 

Going hand in hand with adaptability is the desire that software be reusable, that 
is, the same code should be usable as a component of different systems in various 
applications. Developing quality software can be an expensive enterprise, and its 
cost can be offset somewhat if the software is designed in a way that makes it easily 
reusable in future applications. Such reuse should be done with care, however, for 
one of the major sources of software errors in the Therac-25 came from inappropri
ate reuse of Therac-20 software (which was not object-oriented and not designed 
for the hardware platform used with the Therac-25). 

2.1.2 Object-Oriented Design Principles 

Chief among the principles of the object-oriented approach, which are intended to 
facilitate the goals outlined above, are the following (see Figure 2.2): 

• Abstraction 
• Encapsulation 
• Modularity. 

Abstr~ction 


ft'8m ...») 

-,-
'v 

IID]~D 

u:! f!) r-. 
@"~"~ • 

, . 

Encapsulation Modularity 

Figure 2.2: Principles of object-oriented design. 



60 

!W';':"' 

Chapter 2. Object-Oriented Design 

Abstraction 

The notion of abstraction is to distill a complicated system down to its most fun
damental parts and describe these parts in a simple, precise language. Typically, 
describing the parts of a system involves naming them and explaining their func
tionality. Applying the abstraction paradigm to the design of data structures gives 
rise to abstract data types (ADTs). An ADT is a mathematical model of a data 
structure that specifies the type of data stored, the operations supported on them, 
and the types of parameters of the operations. An ADT specifies what each opera
tion does, but not how it does it. In Java, an ADT can be expressed by an interface, 
which is simply a list of method declarations, where each method has an empty 
body. (We say more about Java interfaces in Section 2.4.) 

An ADT is realized by a concrete data structure, which is modeled in Java by 
a class. A class defines the data being stored and the operations supported by the 
objects that are instances of the class. Also, unlike interfaces, classes specify how 
the operations are performed in the body of each method. A Java class is said 
to implement an interface if its methods include all the methods declared in the 
interface, thus providing a body for them. However, a class can have more methods 
than those of the interface. 

Encapsulation 

Another important principle of object-oriented design is the concept of encapsula
tion, which states that different components of a software system should norreveal 
the internal details of their respective implementations. Qne of.the main advantages 
of encapsulation is that it gives the programmer freedom in implementing the de
tails of a system. The only constraint on the programmer is to maintain the abstract 
interface that outsiders see. 

Modularity 

In addition to abstraction and encapsulation, a fundamental principle of object
oriented design is modularity. Modern software systems typically consist of sev
eral different components that must interact correctly in order for the entire system 
to work properly. Keeping these interactions straight requires that these different 
components be well organized. In object-oriented design, this code structuring 
approach centers around the concept of modularity. Modularity refers to an orga
nizing principle for code in which different components of a software system are 
divided into separate functional units. 



61 2 . .1. Goals, Principles, and Patter-ns 

Hierarchical Organization 

The structure imposed by modularity helps to enable software reusability. If soft
ware modules are written in an abstract way to solve general problems, then mod
ules can be reused when instances of these same general problems arise in other 
contexts. 

For example, the structural definition of a wall is the same from house to house, 
typically being defined in terms of vertical studs, spaced at fixed-distance intervals, 
etc. Thus, an organized architect can reuse his or her wall definitions from one 
house to another. In reusing such a definition, some parts may require redefinition, 
for example, a wall in a commercial building may be similar to that of a house, but 
the electrical system and stud material might be different. 

A natural way to organize various structural components of a software package 
is in a hierarchical fashion, which groups similar abstract definitions together in 
a level-by-Ievel manner that goes from specific to more general as one traverses 
up the hierarchy. A common use of such hierarchies is in an organizational chart, 
where each link going up can be read as "is a," as in "a ranch is a house is a 
building." This kind of hierarchy is useful in software design, for it groups together 
common functionality at the most general level, and views specialized behavior as 
an extension of the general one. 

Building 

s 

Apartment House Commercial 
Building 

Low-rise I High-rise I Two-story I IApartment Apartment House 
Ranch Skyscraper 

Figure 2.3: An example of an "is a" hierarchy involving architectural buildings. 



62 Chapter 2. Object-Oriented Design 

2.1.3 Design Patterns 

One of the advantages of object-oriented design is that it facilitates reusable, ro
bust, and adaptable software. Designing good code takes more than simply under
standing object-oriented methodologies, however. It requires the effective use of 
object-oriented design techniques. 

Computing researchers and practitioners have developed a variety of organiza
tional concepts and methodologies for designing quality object-oriented software 
that is concise, correct, and reusable. Of special relevance to this book is the con
cept of a design pattern, which describes a solution to a "typical" software design 
problem. A pattern provides a general template for a solution that can be applied in 
many different situations. It describes the main elements of a solution in an abstract 
way that can be specialized for a specific problem at hand. It consists of a name, 
which identifies the pattern, a context, which describes the scenarios for which this 
pattern can be applied, a template, which describes how the pattern is applied, and 
a result, which describes and analyzes what the pattern produces. 

We present several design patterns in this book, and we show how they can be 
consistently applied to implementations of data structures and algorithms. These 
design patterns fall into two groups-patterns for solving algorithm design prob
lems and patterns for solving software engineering problems. Some of the algo
rithm design patterns we discuss include the following: 

• Recursion (Section 3.5) 
• Amortization (Section 6.1.4) 
• Divide-and-conquer (Section 11.1.1) i 

• Prune-and-search, also known as decrease-and-conquer (Section 11.5.1) 
• Brute force (Section 12.3.1)' . 
• The greedy method (Section 12.4.2) 
• Dynamic programming (Section 12.2). 


Likewise, some of the software engineering design patterns we discuss include: 


• Position (Section 6.2.2) 
• Adapter (Section 6.1.2) 
• Iterator (Section 6.3) 
• Template method (Sections 7.3.7,11.4.2, and 13.3.2) 
• Composition (Section 8.1.2) 
• Comparator (Section 8.1.2) 
.Decorato!(S~ction13.3.l). 

Rather than explain each of these concepts here, however, we introduce them 
throughout the text as noted above. For each pattern, be it for algorithm engineering 
or software engineering, we explain its general use and we illustrate it with at least 
one concrete example. 



63 2.2. Inheritance and Polymorphism 

2.2 Inheritance and Polymorphism 

To take advantage of hierarchical relationships, which are common in software 
projects, the object-oriented design approach provides ways of reusing code. 

2.2.1 Inheritance 

The object-oriented paradigm provides a modular and hierarchical organizing struc
ture for reusing code, through a technique called inheritance. This technique al
lows the design of general classes that can be specialized to more particular classes, 
with the specialized classes reusing the code from the general class. The general 
class, which is also known as a base class or superclass, can define standard in
stance variables and methods that apply in a multitude of situations. A class that 
specializes, or extends, or inherits from, a superclass need not give new imple
mentations for the general methods, for it inherits them. It should only define those 
methods that are specialized for this particular subclass. 

Example 2.1: Consider a class 5 that dennes objects with a neld, x, and three 
methods, aO, bO, and cO. Suppose we were to denne a class T that extends 5 and 
includes an additional neld, y, and two methods, dO and eO. The class T would 
then inherit the instance variable x and the methods a(), bO, and cO from S. We 
illustrate the relationships between the class 5 and the class T in aclass inheritance 
diagram in Figure 2.4. Each box in such a diagram denotes a class, with its name, 
nelds (or instance variables), and methods included as subrectangles. 

class: 

fields: 

S 

X 

methods: aO 
bO 
cO 

j 

extends 

class: 

fields: 

methods: 

T 

y 

dO 
eO 

I 

Figure 2.4: A class inheritance diagram. Each box denotes a class, with its name, 
fields, and methods, and an arrow between boxes denotes an inheritance relation. 



64 Chapter 2. Object-Oriented Design 

Object Creation and Referencing 

When an object 0 is created, memory is allocated for its data fields, and these 
same fields are initialized to specific beginning values. Typically, one associates 
the new object 0 with a variable, which serves as a "link" to object 0, and is said 
to reference o. When we wish to access object 0 (for the purpose of getting at its 
fields or executing its methods), we can either request the execution of one of o's 
methods (defined by the class that 0 belongs to), or look up one of the fields of o. 
Indeed, the primary way that an object p interacts with another object 0 is for p 
to send a "message" to 0 that invokes one of o's methods, for example, for 0 to 
print a description of itself, for 0 to convert itself to a string, or for 0 to return the 
value of one of its data fields. The secondary way that p can interact with 0 is for 
p to access one of o's fields directly, but only if 0 has given other objects like p 
permission to do so. For example, an instance ofthe Java class Integer stores, as an 
instance variable, an integer, and it provides several operations for accessing this 
data, including methods for converting it into other number types, for converting 
it to a string of digits, and for converting strings of digits to a number. It does not 
allow for direct access of its instance variable, however, for such details are hidden. 

Dynamic Dispatch 

When a program wishes to invoke a certain method aO of some 'object 0: it sends 
a message to 0, which is usually denoted, using the dot-,operator syntax (Sec
tion 1.3.2), as "o.aO." In the compiled version of this program, the code corre
sponding to this invocation directs the run-time environment to examine o's class T 
to determine if the class T supports an aO method, and, if so, to execute it. Specif
ically, the run-time environment examines the class T to see if it defines an aO 
method itself. If it does, then this method is executed. If T does not define an aO 
method, then the run-time environment examines the superclass Sof T. IfSdefines 
aO, then this method is executed. If S does not define aO, on the other hand, then 
the run-time environment repeats the search at the superclass of S. This search con
tinues up the hierarchy of classes until it either finds an aO method, which is then 
executed, or it reaches a topmost class (for example, the Object class in Java) with
out an aO method, which generates a run-time error. The algorithm that processes 
the message o.aO to find the specific method to invoke is called the dynamic dis
patch (ordynamichinding) algorithm, which provides an effective mechanism for 
locating reused software. It also allows for another powerful technique of object
oriented programming-polymorphism. 



2.2. Inheritance and Polymorphism 6S 


2.2.2 Polymorphism 

Literally, "polymorphism" means "many forms." In the context of object-oriented 
design, it refers to the ability of an object variable to take different forms. Object
oriented languages, such as Java, address objects using reference variables. The 
reference variable 0 must define which class of objects it is allowed to refer to, in 
terms of some class 5. But this implies that 0 can also refer to any object belonging 
to a class T that extends 5. Now consider what happens if 5 defines an aO method 
and T also defines an aO method. The dynamic dispatch algorithm for method 
invocation always starts its search from the most restrictive class that applies. When 
o refers to an object from class T, then it will use 1's aO method when asked for 
o.aO, not 5's. In this case, T is said to override method aO from 5. Alternatively, 
when 0 refers to an object from class 5 (that is not also a T object), it will execute 
5's aO method when asked for o.aO. Polymorphism such as this is useful because 
the caller of o.a () does not have to know whether the object 0 refers to an instance of 
Tor 5 in order to get the aO method to execute correctly. Thus, the object variable 
o can be polymorphic, or take many forms, depending on the specific class of the 
objects it is referring to. This kind of functionality allows a specialized class T to 
extend a class 5, inherit the standard methods from 5, and redefine other methods 
from 5 to account for specific properties of objects of T. 

Some object-oriented languages, such as Java, also provide a useful technique 
related to polymorphism, which is called method overloading. Overloading occurs 
when a single class T has mUltiple methods with the same name, provided each one 
has a different signature. The signature of a method is ~ combin1ttion of its name 
and the type and number of arguments that "are passed to it. Thus, even though 
multiple methods in a class can have the same name, they can be distinguished by a 
compiler, provided they have different signatures, that is, are different in actuality. 
In languages that allow for method overloading, the run-time environment deter
mines which actual method to invoke for a specific method call by searching up the 
class hierarchy to find the first method with a signature matching the method being 
invoked. For example, suppose a class T, which defines a method aO, extends a 
class U, which defines a method a(x,y). If an object 0 from class T receives the 
message "o.a(x,y)," then it is U's version of method a that is invoked (with the two 
parameters x and y). Thus, true polymorphism applies only to methods that have 
the same signature, but are defined in different classes. 

.Inheritance, polymorphism, and method overloading support the development 
of reusable software. We can define classes that inherit the standard instance vari
ables and methods and can then define new more-specific instance variables and 
methods that deal with special aspects of objects of the new class. 



66 Chapter 2. Object-Oriented Design 

2.2.3 Using Inheritance in Java 

There are two primary ways of using inheritance of classes in Java, specialization 
and extension. 

Specialization 

In using specialization we are specializing a general class to particular subclasses. 
Such subclasses typically possess an "is a" relationship to their superclass. A sub
class then inherits all the methods of the superclass. For each inherited method, if 
that method operates correctly independent of whether it is operating for a special
ization, no additional work is needed. If, on the other hand, a general method of the 
superclass would not work correctly on the subclass, then we should override the 
method to have the correct functionality for the subclass. For example, we could 
have a general class, Dog, which has a method drink and a method sniff. Specializ
ing this class to a Bloodhound class would probably not require that we override the 
drink method, as all dogs drink pretty much the same way. But it could require that 
we override the sniff method, as a Bloodhound has a much more sensitive sense 
of smell than a standard dog. In this way, the Bloodhound class specializes the 
methods of its superclass, Dog. 

Extension 

In using extension, on the other hand, we utilize inheritance to reuse the code writ
ten for methods of the superclass, but we then add new methods that are not present 
in the superclass, so as to extend its functionality. For example, returning'to our 
Dog class, we might wish to create a subclass, BorderCollie, which inherits all the 
standard methods of the Dog class, but then adds a new method, herd, since Border 
Collies have a herding instinct that is not present in standard dogs. By adding the 
new method, we are extending the functionality of a standard dog. 

In Java, each class can extend exactly one other class. Even if a class definition 
makes no explicit use of the extends clause, it still inherits from exactly one other 
class, which in this case is class java.lang.Object. Because of this property, Java is 
said to allow only for single inheritance among classes. 

Types of Method Overriding 

Inside the declaration of a new class, Java uses two kinds of method overriding, re
finement and replacement. In the replacement type of overriding, a method com
pletely replaces the method of the superclass that it is overriding (as in the sniff 
method of Bloodhound mentioned above). In Java, all regular methods of a class 
utilize this type of overriding behavior. 



67 

::~~r~, 

2.2. Inheritance and Polymorphism 

In the refinement type of overriding, however, a method does not replace the . 
method of its superclass, but instead adds additional code to that of its superclass. 
In Java, all constructors utilize the refinement type of overriding, a scheme called 
constructor chaining. Namely, a constructor begins its execution by calling a con
structor of the superclass. This call can be made explicitly or implicitly. To call a 
constructor of the superclass explicitly, we use the keyword super to refer to the 
superclass. (For example, su perO calls the constructor of the superclass with no 
arguments.) If no explicit call is made in the body of a constructor, however, the 
compiler automatically inserts, as the first line of the constructor, a call to superO. 
(There is an exception to this general rule, which is discussed in the next section.) 
Summarizing, in Java, constructors use the refinement type of method overriding 
whereas regular methods use replacement. 

The Keyword this 

Sometimes, in a Java class, it is convenient to reference the current instance of that 
class. Java provides a keyword, called this, for such a reference. Reference this 
is useful, for example, if we would like to pass the current object as a parameter to 
some method. Another application of this is to reference a field inside the current 
object that has a name clash with a variable defined in the current block, as shown 
in the program given in Code Fragment 2.1. 

public class ThisTester { 

public int dog = 2; / / instance variable 

public void clobberO { 


int dog = 5; / / a diffe-rent dog! i 


System.out.println(IIThe dog local variab~e = ", + dog); 

System.out.println(IIThe dog field = II + this.do"g); 

} 


public static void main(String args[]) { 

ThisTester t new ThisTester(); 

t.dobber(); 


} 

} 


Code Fragment 2.1: Sample program illustrating the use of reference this to dis
ambiguate between a field of the current object and a local variable with the same 
name. 

When this program is executed, .itprints the following: 

The dog local variable = 5 
The dog field = 2 



68 Chapter 2. Object-Oriented Design 

An Illustration of Inheritance in Java 

To make some of the notions above about inheritance and polymorphism more 
concrete, let us consider some simple examples in Java. 

In particular, we consider a series of several classes for stepping through and 
printing out numeric progressions. A numeric progression is a sequence of num
bers, where each number depends on one or more of the previous numbers. For 
example, an arithmetic progression determines the next number by addition and 
a geometric progression determines the next number by multiplication. In any 
case, a progression requires a way of defining its first value and it needs a way of 
identifying the current value as welL 

We begin by defining a class, Progression, shown in Code Fragment 2.2, which 
defines the standard fields and methods of a numeric progression. Specifically, it 
defines the following two long-integer fields: 

• first: first value of the progression; 

• cur: current value of the progression; 

and the following three methods: 

firstValueO: 	 Reset the progression to the first value, and return that 
value. 

nextValueO: 	Step the progression to the nex(value and return that 
value. 

printProgression(n): 	Reset the progression and print the first n values of the 
_progression. 

We say that the method printProgression has no output in the sense that it does 
not return any value, whereas the methods firstValue and nextValue both return 
long-integer values. That is, firstValue and nextValue are functions, and printPro
gression is a procedure. 

The Progression dassalso includes a method ProgressionO, which is a con
structor. Recall that constructors set up all the instance variables at the time an 
object of this class is created. The Progression class is meant to be a general super
class from which specialized classes inherit, so this constructor is code that will be 
included in the constructors for each class that extends the Progression class. 



69 2.2. Inheritance and Polymorphism 

/**
* A class for numeric progressions. 
*/ 


public class Progression { 


/** First value of the progression. * / 

protected long first; 


/** Current value of the progression. * / 

protected long cur; 


/** Default constructor. * / 

ProgressionO { 


cur = first = 0; 

} 


/** Resets the progression to the first value. 


* 

* ©return first value 


*/ 

protected long firstValueO { 


cur = first; 

return cur; 


} 

/** Advances the progression to the next value. 


* 

* ©return next value of the progression 


*/ 

protected long nextValueO { 


return ++cur; / / default next value 

} 


/** Prints the first n values of the progression. 


* 

* ©param n number of values to print 


*/ 

public void printProgression(int n) { 


System .out. print(firstValueO); 

for (int i = 2; i <= n; i++) 


System.out.print(1I + nextValueO);II 

System.out.printlnO; / / ends the line} . .. 

} 

Code Fragment 2.2: General numeric progression class. 



70 Chapter 2. Object-Oriented Design 

An Arithmetic Progression Class 

Next, we consider the class ArithProgression, which we present in Code Frag
ment 2.3. This class defines an arithmetic progression, where the next value is 
determined by adding a fixed increment, inc, to the previous value. ArithProgres
sion inherits fields first and cur and methods firstValueO and prrntProgression(n) 
from the Progression class. It adds a new field, inc, to store the increment, and two 
constructors for setting the increment. Finally, it overrides the nextValueO method 
to conform to the way we get the next value for an arithmetic progression. 

Polymorphism is at work here. When a Progression reference is pointing to an 
ArithProgression object, then it is the ArithProgression methods firstValueO and 
nextValueO that will be used. This polymorphism is also true inside the inherited 
version of printProgression(n), because the calls to the firstValueO and nextValueO 
methods here are implicit for the "current" object (called this in Java), which in this 
case will be of the Arith Progression class. 

Example Constructors and the Keyword this 

In the definition of the ArithProgression class, we have added two constructors, 
a default one, which takes no parameters, and a parametric one, which takes an 
integer parameter as the increment for the progression. The default conspuctor 
actually calls the parametric one, using the keyword this and passing 1as the value 
of the increment parameter. These two constructors ilhistrate.'method overloading 
(where a method name can have multiple versions inside the same class), since a 
method is actually specified by its name, the class of the object that calls it, and the 
types of arguments that are passed to it-its signature. In this case, the overloading 
is for constructors (a default constructor and a parametric constructor). 

The call this(1) to the parametric constructor as the first statement of the default 
constructor triggers an exception to the general constructor chaining rule discussed 
in Section 2.2.3. Namely, whenever the first statement of a constructor C' calls 
another constructor C" of the same class using the this reference, the superclass 
constructor is not implicitly called for C'. Note that a superclass constructor will 
eventually be called along the chain, either I3xplicitly or implicitly. In particular, for 
HurArithProgression class, the default constructor of the superclass (Progression) 
is implicitly called as the first statement of the parametric constructor of Arith Pro
gression. 

We discuss constructors in more detail in Section 1.2. 



71 2.2. Inheritance and Polymorphism 

/**
* Arithmetic progression. 
*/ 

class ArithProgression extends Progression { 

/** Increment. * / 

protected long inc; 


/ / Inherits variables first and cur. 

/** Default constructor setting a unit increment. * / 

ArithProgressionO { 


this(l ); 

} 


/** Parametric constructor providing the increment. * / 

ArithProgression(long increment) { 


inc = increment; 

} 


/** Advances the progression by adding the increment to the current value. 
* . 
* @return next value of the progression 


*/

protected long nextValueO { 


cur += inc; 

return cur; 


} 

/ / Inherits methods firstValueO and printProgression(int). 
} 

Code Fragment 2.3: Class for arithmetic progressions, which inherits from the gen
eral progression class shown in Code Fragment 2.2. 



72 Chapter 2. Object.Oriented Design 

A Geometric Progression Class 

Let us next define a class, GeomProgression, shown in Code Fragment 2.4, which 
steps through and prints out a geometric progression, where the next value is de
termined by multiplying the previous value by a fixed base, base. A geometric 
progression is like a general progression, except for the way we determine the next 
value. Hence, Geom Progression is declared as a subclass of the Progression class. 
As with the ArithProgression class, the GeomProgression class inherits the fields 
first and cur, and the methods firstValue and printProgression from Progression. 

/**
* Geometric Progression 
*/ 

class GeomProgression extends Progression { 

/** Base. * / 
protected long base; 

/ / Inherits variables first and cur. 

/** Default constructor setting base 2. * / 

GeomProgressionO { 


this(2}; 

} 

/** Parametric constructor providing the base. 

* 
*@param b base of the progression. 
*/ 

GeomProgression(long b) { 

base = b; 

first = 1; 

cur first; 


} 

/** Advances the progression by multiplying the base with the current value. 

* 
* @return next value of the progression 

*/ 


protected 	long nextValueO { 

cur *= base; 

return cur; 


} 

/ / Inherits methods firstValueO and printProgression(int). 
} 

Code Fragment 2.4: Class for geometric progressions. 



73 2.2. Inheritance and Polymorphism 

A Fibonacci Progression Class 

As a further example, we define a FibonacciProgression class that represents an
other kind of progression, the Fibonacci progression, where the next value is de
fined as the sum of the current and previous values. We show class FibonacciPro
gression in Code Fragment 2.5. Note our use of a parameterized constructor in the 
FibonacciProgression class to provide a different way of starting the progression. 

/**
* Fibonacci progression. 

*/ 


class FibonacciProgression extends Progression { 

/** Previous value. * / 

long prev; 

/ / Inherits variables first and cur. 


/** Default constructor setting 0 and 1 as the first two values. * / 
FibonacciProgressionO { 

this(O, 1); 
} 
/** Parametric constructor providing the first and second values. 

* 
* @param value1 first value. 
* @param value2 second value. 

*/ 


FibonacciProgression(long value1, long value2) { 
first = value1; 
prev = value2 - value1; / / fictitious value preceding the first 

} J 

/** Advances the progression by adding the previous value to the current value. 

* 
* @return next value of the progression 

*/ 


protected long nextValueO { 

long temp = prev; 

prev = cur; 

cur += temp; 

return cur; 

} 
/ / Inherits methods firstValueO and printProgression(int). 

} 

Code Fragment 2.5: Class for the Fibonacci progression. 



74 Chapter 2. Object-Oriented Design 

In order to visualize how the three different progression classes are derived 
from the general Progression class, we give their inheritance diagram in Figure 2.5. 

class: Progression 

fields: 	 long first 
long cur 

methods: 

ProgressionO 

long firstValueO 

long nextValueO 


void printProgression{ int)
,
j/ 


extends 

class: ArithProgression class: GeomProgression 

fields: 	 long inc fields: long base 

methods: 	 methods: 

ArithProgressionO GeomProgressionO 
ArilhProgression{ long) GeomProgression( long) 

long nexlValueO long nextValueO 
-

class: FibonacciProgression 

fields: long prev 

methods: 

FibonacciProgressionO 
FibonacciProgression( long,long) 

long nexlValueO 

Figure 2.5: Inheritance diagram for class Progression and its subclasses. 

-

To complete our example, we define a class TestProgression, shown in Code 
Fragment 2.6, which performs a simple test of each of the three classes. In this 
class, variable prog is polymorphic during the execution of the main method, since 
it references objects of class ArithProgression, GeomProgression, and fibonac
ciProgression in turn. When the main method of the TestProgression class is'in
voked by the Java run-time system, the output shown in -'code Fragment 2.7 is 
produced. 

The example presented in this section is admittedly small, but it provides a 
simple illustration of inheritance in Java. The Progression class, its subclasses, and 
the tester program have a number of shortcomings, however, which might not be 
immediately apparent. One problem is that the geometric and Fibonacci progres
sions grow quickly, and there is no provision for handling the inevitable overflow of 
the long integers involved. For example, since 340 > 263 , a geometric progression 
with base b 3 will overflow a long integer after 40 iterations. Likewise, the 94th 
Fibonacci number is greater than 263 ; hence, the Fibonacci progression will over
flow a long integer after 94 iterations. Another problem is that we may not allow 
arbitrary starting values for a Fibonacci progression. For example, do we allow a 
Fibonacci progression starting with 0 and I? Dealing with input errors or error 
conditions that occur during the running of a Java program requires that we have 
some mechanism for handling them. We discuss this topic next. 



75 2.2. Inheritance and Polymorphism 

/** Test program for the progression classes * / 
class TestProgression { 

public static void main(String[] args) { 
Progression prog; 
/ / test ArithProgression 
System.out.println("Arithmetic progression with default increment: "); 
prog = new ArithProgressionO; 
prog. pri nt Progression (10) ; 
System.out.printlnC'Arithmetic progression with increment 5: "); 
prog = new ArithProgression(5); 
prog. printProgression(10); 
/ / test GeomProgression 
System.out.println("Geometric progression with default base: "); 
prog = new GeomProgressionO; 
prog. printProgression(10); 
System.out.println("Geometric progression with base 3: "); 
prog = new GeomProgression(3); 
prog.printProgression(lO); 
/ / test FibonacciProgression 
System.out.println("Fibonacci progression with default start values: "); 
prog = new FibonacciProgression(); 
prog.printProgression(10); 
System.out.println( "Fibonacci progression tlith start values 4 and 6:"); 
prog = new Fibonacci Progression(4.6); 
prog. printProgression(10); 

} 
} 

Code Fragment 2.6: Program for testing the progression classes. 

Arithmetic progression with default increment: 

0123456789 

Arithmetic progression with increment 5: 

o5 10 15 20 25 30 35 40 45 

Geometric progression with default base: 

1 2 4 8 16 32 64 128 256 512 

Geometric progression with base 3: 

1 3 9 27 81 243 729 2187 6561 19683 

Fibonacci progression with default start values: 

o1 1 2 3 5 8 13 21 34 

Fibonacci progression with start values 4 and 6: 

46 10 16 264268 110 178288 


Code Fragment 2.7: Output of the TestProgression program shown in Code Frag
ment2.6. 



f"~-1 

76 Chapter 2. Object-Oriented Design 

2.3 Exceptions 

Exceptions are unexpected events that occur during the execution of a program. An 
exception can be the result of an error condition or simply an unanticipated input. 
In any case, in an object-oriented language, such as Java, exceptions can be thought 
of as being objects themselves. 

2.3.1 Throwing Exceptions 

In Java, exceptions are objects that are thrown by code that encounters some sort of 
unexpected condition. They can also be thrown by the Java run-time environment 
should it encounter an unexpected condition, like running out of memory. Athrown 
exception is caught by other code that "handles" the exception somehow, or the 
program is terminated unexpectedly. (We will say more about catching exceptions 
shortly.) 

Exceptions originate when a piece of Java code finds some sort of problem 
during execution and throws an exception object. It is convenient to give a descrip
tive name to the class of the exception object. For instance, if we try to delete the 
tenth element from a sequence that has only five elements, the code may throw a 
BoundaryViolationException. This action could be done, for example, using the 
following code fragment: 

if (insertlndex >= A.length) { 
throw new 

BoundaryViolationException("No element at index + insertlndex);II 

} 

It is often convenient to instantiate an exception object at the time the exception has 
to be thrown. Thus, a throw statement is typically written as follows: 

throw new exceptiorLtype(paramo, paraml' ... , paramn_l); 

where exception_type is the type of the exception and the parami's form the list of 
parameters for a constructor for this exception. 

Exceptions are also thrown by the Java run-time environment itself. For exam
ple, the counterpart to the example above is ArraylndexOutOfBoundsException. If 
we have a six-element array and ask for the ninth element, then this exception will . 
be thrown by the Java run-time system. 



77 2.3. Exceptions 

The Throws Clause 

When a method is declared, it is appropriate to specify the exceptions it might 
throw. This convention has both a functional and courteous purpose. For one, it lets 
users know what to expect. It alsq lets the Java compiler know which exceptions to 
prepare for. The following is an example of such a method definition: 

public void goShoppingO throws ShoppingListTooSmallException, 
OutOfMoneyException { 

/ / method body . . . 
} 

By specifying all the exceptions that might be thrown by a method, we prepare 
others to be able to handle all of the exceptional cases that might arise from using 
this method. Another benefit of declaring exceptions is that we do not need to catch 
those exceptions in our method. Sometimes this is appropriate in the case where 
other code is responsible for causing the circumstances leading up to the exception. 

The following illustrates an exception that is "passed through": 

public void getReadyForCiassO throws ShoppingListTooSmallException, 
OutOfMoneyException { 

goShoppingO; 	 / / I don't have to try or catch the exceptions 
/ / which goShoppingO might throw because 
/ / getReadyForClassO will just pass these along. 

ma keCookiesForTAO; 

} 


A function can declare that it throws as many exceptions as it likes. Such a list
ing can be simplified somewhat if all exceptions that can be throwh are subclasses 
of the same exception. In this case, we only have to.-declare that a method throws 
the appropriate superclass. 

Kinds of Throwables 

Java defines classes Exception and Error as subclasses of Throwable, which denotes 
any object that can be thrown and caught. Also, it defines class RuntimeException 
as a subclass of Exception. The Error class is used for abnormal conditions occur
ring in the run-time environment, such as running out of memory. Errors can be 
caught, but they probably should not be, because they usually signal problems that 
cannot be handled gracefully. An error message or a sudden program termination 
is about as much grace as we can expect. The Exception class is the root of the 
exception hierarchy. Specialized exceptions (for example, BoundaryViolationEx
ception) should be defined by subclassing from either Exception or RuntimeEx
ception. Note that exceptions that are not subclasses of RuntimeException must be 
declared in the throws clause of any method that can throw them. 



78 Chapter 2. Object-Oriented Design 

2.3.2 Catching Exceptions 

When an exception is thrown, it must be caught or the program will terminate. In 
any particular method, an exception in that method can be passed through to the 
calling method or it can be caught in that method. When an exception is caught, it 
can be analyzed and dealt with. The general methodology for dealing with excep
tions is to "try" to execute some fragment of code that might throw an exception. 
If it does throw an exception, then that exception is caught by having the flow of 
control jump to a predefined catch block that contains the code dealing with the 
exception. 

The general syntax for a try-catch block in Java is as follows: 


try 

main-.block_oJ...statements 


catch (exception_type} variable}) 

block_oJ-statements} 


catch (exceptionJype2 variable2) 

block_oj...statements2 


finally 
block_oj...statementsn 

where there must be at least one catch part, but the finally part is optionaL Each 
exception_typei is the type of some exception, and each variablei is a valid Java 
variable name. 

The Java run-time environment begins performing a try-catch block such as 
this by executing the block of statements, main_block_oJ...statements. If this exe
cution generates no exceptions, then the flow of control continues with the first 
statement after the last line of the entire try-catch block, unless it includes an op
tional finally part. The finally part, if it exists, is executed regardless of whether 
any exceptions are thrown or caught. Thus, in this case, if no exception is thrown, 
execution progresses through the try-catch block, jumps to the finally part, and 
then continues with the first statement after the last line of the try-catch block. 

If, on the other hand, the block, main_block_oLstatements, generates an excep
tion, then execution in the try-catch block terminates at that point and execution 
jumps to the catch block whose exception_type most closely matches the excep
tion thrown. The variable for this catch statement references the exception object 
itself, which can be used in the block of the matching catch statement. Once exe
cution of that catch.block completes; control flow is passed to the optional finally 
block, if it exists,or immediately to the first statement after the last line of the entire 
try-,catch block if there is no finally block. Otherwise, if there is no catch block 
matching the exception thrown, then control is passed to the optional finally block, 
if it exists, and then the exception is thrown back to the calling method. 

;\: 

I 
! 

t 

I 




79 

'~: 

2.3. Exceptions 

Consider the following example code fragment: 

int index = Integer.MAX_VALUE; / / 2.14 Billion 
try / / This code might have a problem ... 

{ 
String toBuy = shoppingList[index]; 

} 
catch (ArraylndexOutOfBoundsException aioobx) 

{ 
System.out.println("The index "+index+" outside the array. ll); 

} 

If this code does not catch a thrown exception, the flow of control will imme
diately exit the method and return to the code that called our method. There, the 
Java run-time environment will look again for a catch block. If there is no catch 
block in the code that called this method, the flow of control will jump to the code 
that called this, and so on. Eventually, if no code catches the exception, the Java 
run-time system (the origin of our program's flow of control) will catch the excep
tion. At this point, an error message and a stack trace is printed to the screen and 
the program is terminated. 

The following is an actual run-time error message: 

java.lang.NuIlPointerException: Returned a null locator 
at java.awt.(omponent.handleEvent((omponent.java:900) 
at java.awt.(omponent.postEvent((omponent.java:838) 
at java .awt.(omponent.postEvent( (omponent.java:845) 
at sun.awt.motif.MButtonPeer.action(MButtonPeer.java:39) 
at java.lang.Thread.run(Thread.java) . 

Once an exception is caught, there are several things a programmer might want 
to do. One possibility is to print out an error message and terminate the program. 
There are also some interesting cases in which the best way to handle an exception 
is to ignore it (this can be done by having an empty catch block). , 

Ignoring an exception is usually done, for example, when the programmer does 
not care whether there was an exception or not. Another legitimate way of han
dling exceptions is to create and throw another exception, possibly one that speci
fies the exceptional condition more precisely. The following is an example of this 
approach: 

catch (ArraylndexOutOfBoundsException aioobx) { 
throw new ShoppingListTooSmallException( 

~~Productindex is not in the shopping list"); 
} 

Perhaps the best way to handle an exception (although this is not always possi
ble) is to find the problem, fix it, and continue execution. 



80 Chapter 2. Object-Oriented Design 

2.4 Interfaces and Abstract Classes 

In order for two objects to interact, they must "know" about the various messages 
that each will accept, that is, the methods each object supports. To enforce this 
"knowledge," the object-oriented design paradigm asks that classes specify the 
application programming interface (API), or simply interface, that their objects 
present to other objects. In the ADT-based approach (see Section 2.1.2) to data 
structures followed in this book, an interface defining an ADT is specified as a 
type definition and a collection of methods for this type, with the arguments for 
each method being of specified types. This specification is, in turn, enforced by 
the compiler or run-time system, which requires that the types of parameters that 
are actually passed to methods rigidly conform with the type specified in the in
terface. This requirement is known as strong typing. Having to define interfaces 
and then having those definitions enforced by strong typing admittedly places a 
burden on the programmer, but this burden is offset by the rewards it provides, for 
it enforces the encapsulation principle and often catches programming errors that 
would otherwise go unnoticed. 

2.4.1 Implementing Interfaces 

The main structural element in Java that enforces an API is the interface. An 
4 

interface is a collection of method declarations with no data and no bodies. That 
is, the methods of an interface are always empty (that is, they are simply method 
signatures). When a class implements an interface, it must implement all of the 
methods declared in the interface. In this way, interfaces enforce requirements that 
an implementing class has methods with certain specified signatures. 

Suppose, for example, that we want to create an inventory of antiques we own, 
categorized as objects of various types and with various properties. We might, for 
instance, wish to identify some of our objects as sellable, in which case they could 
implement the Sellable interface shown in Code Fragment 2.8. 

We can then define a concrete class, Photograph, shown in Code Fragment 2.9, 
that implements the Sellable interface, indicating that we would be willing to sell 
any of our Photograph objects. This class defines an object that implements each 
of the methods oUhe Sellcfble interface, as required; In addition, it adds a method, 
isColor, which is specialized for Photograph objects. 

Another kind ofobject in our collection might be something we could transport. 
For such objects, we define the interface shown in Code Fragment 2.10. 



81 2.4. Interfaces and Abstract Classes 

11:; /** Interface for objects that can be sold. * / 
r~'

:'; .' 

public interface Sellable {(~ 
.~ 

~~ /** description of the object * / 
'. 

public String descriptionO; 

/** list price in cents * / 
public int listPriceO; 

/** lowest price in cents we will accept * / 
public int lowestPriceO; 

} 
Code Fragment 2.8: Interface Sellable. 

/** Class for photographs that can be sold * / 
public class Photograph implements Sellable { 

private String descript; / / description of this photo 
private int price; / / the price we are setting 
private boolean color; / / true if photo is in color 

public Photograph(String desc, int p, boolean c) { / / constructor 
descript = desc; 
pnce = p; 
color = c; 

} 

public String descriptionO { return descript; } 
public int listPriceO { return price; } 
public int lowestPriceO { return price/2; } 
public boolean isColorO { return color; } 

} 
Code Fragment 2.9: Class Photograph implementing the Sellable interface. 

/** Interface for objects that can be transported. * / 
public interface Transportable { 

/** weight in grams * / 
public int weight(); 
/** whether the object is hazardous * / 
public boolean isHazardousO; 

} 
Code Fragment 2.10: Interface Transportable. 



82 Chapter 2. Object~Oriented Design 

We could then define the class Boxedltem, shown in Code Fragment 2.11, for 
miscellaneous antiques that we can sell, pack, and ship. Thus, the class Boxed Item 
implements the methods of the Sellable interface and the Transportable interface, 
while also adding specialized methods to set an insured value for a boxed shipment 
and to set the dimensions of a box for shipment. 

/** Class for objects that can be sold, packed, and shipped. * / 
public class Boxedltem implements Sellable, Transportable { 

private String descript; / / description of this item 
private int price; / / list price in cents 
private int weight; / / weight in grams 
private boolean haz; / / true if object is hazardous 
private int height=O; / / box height in centimeters 
private int width=O; / / box width in centimeters 
private int depth=O; / / box depth in centimeters 
/** Constructor * / 
public Boxedltem(String desc, int P, int w, boolean h) { 

descript = desc; 

price = p; 

weight = w; 

haz = h; 


} 
public String descriptionO { return descript; } 

public int listPriceO { return price; } 

public int lowestPriceO { return price/2; } 

public int weightO { return weight; } 

public boolean isHazardousO { return haz; } 

public int insuredValueO { return price*2; } 

public void setBox(int h, int w, int d) { 


height h; 

width = w; 

depth = d; 


} 

} 


Code Fragment 2.11: Class Boxedltem. 

The class Boxedltem shows another feature of classes and interfaces in Java, as 
well-a class can implement multiple interfaces-which allows us a great deal of 
flexibility when defining classes that should conform to multiple APls. For, while 
a class in Java can extend only one other class, it can nevertheless implement many 
interfaces. 



83 
", 

2.4. Interfaces and Abstract Classes.;j.' 

2.4.2 Multiple Inheritance in Interfaces 

The ability of extending from more than one class is known as multiple inheri
tance. In Java, multiple inheritance is allowed for interfaces but not for classes. 
The reason for this rule is that the methods of an interface never have bodies, while 
methods in a class always do. Thus, if Java were to allow for mUltiple inheritance 
for classes, there could be a confusion if a class tried to extend from two classes 
that contained methods with the same signatures. This confusion does not exist 
for interfaces, however, since their methods are empty. So, since no confusion is 
involved, and there are times when multiple inheritance of interfaces is useful, Java 
allows for interfaces to use multiple inheritance. 

One use for multiple inheritance of interfaces is to approximate a multiple in
heritance technique called the mixin. Unlike Java, some object-oriented languages, 
such as Smalltalk and C++, allow for multiple inheritance of concrete classes, not 
just interfaces. In such languages, it is common to define classes, called mixin 
classes, that are never intended to be created as stand-alone objects, but are instead 
meant to provide additional functionality to existing classes. Such inheritance is not 
allowed in Java, however, so programmers must approximate it with interfaces. In 
particular, we can use multiple inheritance of interfaces as a mechanism for "mix
ing" the methods from two or more unrelated interfaces to define an interface that 
combines their functionality, possibly adding more methods of its own. Returning 
to our example of the antique objects, we could define an interface for insurable 
items as follows: 

public interface Insurableltem extends Transportable, Sellable { 
/** Returns insured Value in -cents * / 
public int insuredValueO; 

} 

This interface mixes the methods of the Transportable interface with the methods 
ofthe Sellable interface, imd adds an extra method, insuredValue. Such an interface 
could allow us to define the Boxedltem alternately as follows: 

public class Boxedltem2 implements Insurableltem { 

/ / ... same code as class Boxedltem 
} 

In this case, note that the method insuredValue is not optional, whereas it was 
optional in the declaration of Boxed Item given previously. 

.1avainterfacesthat approximate the mixin include java.lang.Cloneable, which 
adds a copy feature to a class, java.lang.Comparable, which adds a comparability 
feature to a class (imposing a natural order on its instances), andjava.utiI.Observer, 
which adds an update feature to a class that wishes to be notified when certain 
"observable" objects change state. 



84 Chapter 2. Object-Oriented Design 

2.4.3 Abstract Classes and Strong Typing 

An abstract class is a class that contains empty method declarations (that is, declara
tions of methods without bodies) as well as concrete definitions of methods and/or 
instance variables. Thus, an abstract class lies between an interface and a complete 
concrete class. Like an interface, an abstract class may not be instantiated, that is, 
no object can be created from an abstract class. A subclass of an abstract class 
must provide an implementation for the abstract methods of its superclass, unless 
it is itself abstract. But, like a concrete class, an abstract class A can extend another 
abstract class, and abstract and concrete classes can further extend A, as well. Ul
timately, we must define a new class that is not abstract and extends (subclasses) 
the abstract superclass, and this new class must fill in code for all abstract methods. 
Thus, an abstract class uses the specification style of inheritance, but also allows 
for the specialization and extension styles as well (see Section 2.2.3). 

The java.lang.Number Class 

It turns out that we have already seen an example of an abstract class. Namely, 
the Java number classes (shown in Table 1.2) specialize an abstract class called 
java.lang.Number. Each concrete number class, such as java.lang.lnteger and 
java.lang.Double, extends the java.lang.Number class and fills in the details for the 
abstract methods of the superclass. In particular, the methods intValue, floatValue, 
doubleValue, and longValue are all abstract in java.lang.Number. Each concrete 
number class must specify the details of these methods. 

i 

Strong Typing 

In Java, an object can be viewed as being of various types. The primary type of an 
object 0 is the class C specified at the time 0 was instantiated. In addition, 0 is of 
type S for each superclass S of C and is of type 1 for each interface 1 implemented 
bye. 

However, a variable can be declared as being of only one type (either a class 
or an interface), which determines how the variable is used and how certain meth
ods will act on it. Similarly, a method has a unique return type. In general, an 
expression has a unique type. 

By enforcing that all variables be typed and that methods declare the types 
they expect and return, Java uses the technique of strong typing to help prevent 
bugs. But with rigid requirements ontypes, it is sometimes necessary to change, or 

. convert; a typeinto another type. Such conversions may have to be specified by an 
explicit cast operator. We have already discussed (Section 1.3.3) how conversions 
and casting work for base types. Next, we discuss how they work for reference 
variables. 



85 2.5. 	 Casting and Generics 

2.5 Casting and Generics 

In this section, we discuss casting among reference variables, as well as a technique, 
called generics, which allow us to avoid explicit casting in many cases. 

2.5.1 	 Casting 

We begin our discussion with methods for type conversions for objects. 

Widening Conversions 

A widening conversion occurs when a type T is converted into a "wider" type U. 
The following are common cases of widening conversions: 

• T and U are class types and U is a superclass of T 
• T and U are interface types and U is a superinterface of T 

• T is a class that implements interface U. 

Widening conversions are automatically performed to store the result of an ex
pression into a variable, without the need for an explicit cast. Thus, we can directly 
assign the result of an expression of type T into a variable v of type U when the 
conversion from T to U is a widening conversion. The example code fragment be
low shows that an expression of type Integer (a newly constructed Integer object) 
can be assigned to a variable of type Number. 

Integer i new Integer(3}; 


Number n i; II wide~ing conversion from Integ~r to Nurhber 


The correctness of a widening conversion can be checked by the compiler and 
its validity does not require testing by the Java run-time environment during pro
gram execution. 

Narrowing Conversions 

A narrowing conversion occurs when a type T is converted into a "narrower" 
type S. The following are common cases of narrowing conversions: 

• T and S are class types and S is a subclass of T 
• T and S are interface types and S is a subinterface of T 
• T is an interface implemented by class S. 

In general, a narrowing conversion of reference types requires an explicit cast. 
Also, the correctness of a narrowing conversion may not be verifiable by the com
piler. Thus, its validity should be tested by the Java run-time environment during 
program execution. 



86 Chapter 2. Object-Oriented Design 

The example code fragment below shows how to use a cast to perform a nar
rowing conversion from type Number to type Integer. 

Number n new Integer(2); / / widening conversion from Integer to Number 

Integer i (Integer) n; / / narrowing conversion from Number to Integer 

In the first statement, a new object of class Integer is created and assigned to a 
variable n of type Number. Thus, a widening conversion occurs in this assignment 
and no cast is required. In the second statement, we assign n to a variable i of type 
Integer using a cast. This assignment is possible because n refers to an object of 
type Integer. However, since variable n is of type Number, a narrowing conversion 
occurs and the cast is necessary. 

Casting Exceptions 

In Java, we can cast an object reference 0 of type T into a type S, provided the 
object 0 is referring to is actually of type S. If, on the other hand, object 0 is not 
also of type S, then attempting to cast 0 to type S will throw an exception called 
ClassCastException. We illustrate this rule in the following code fragment: 

Number n; 

Integer i; 

n new Integer(3); 

i = (Integer) n; / / This is legal 
n new Double(3.1415); 

i = (Integer) n; / / This is illegal! 

To avoid problems such as this and to avoid peppering our code with try-catch 
blocks every time we perform a cast, Java provides a way to make sure .an object 
cast will be correct. Namely, it provides an operator, insta~ceof, that allows us to 
test whether an object variable is referring to an object of a "Certain class (or imple
menting a certain interface). The syntax for using this operator is object-reference 
instanceof reference_type, where object-reference is an expression that evaluates 
to an object reference and reference_type is the name of some existing class, in
terface, or enum (Section 1.1.3). If object-reference is indeed an instance of ref
erenceJype, then the expression above returns true. Otherwise, it returns false. 
Thus, we can avoid a ClassCastException from being thrown in the code fragment 
above by modifying it as follows: 

Number n; 

Integer i; 

n new Integer(3); 

if (n instanceof Integer) 
. i= (Integer) n; .. !/Thisis legal 

n new Double(3.1415); 

if (n instanceof Integer) 

i = (Integer) n; / / This will not be attempted 



87 2.5. Casting and Generics 

Casting with Interfaces 

Interfaces allow us to enforce that objects implement certain methods, but using 
interface variables with concrete objects sometimes requires casting. Suppose we 
declare a Person interface as shown in Code Fragment 2.12. Note that method 
equalTo of the Person interface takes one parameter of type Person. Thus, we can 
pass an object of any class implementing the Person interface to this method. 

public interface Person { 
public boolean equalTo (Person other); / / is this the same person? 
public String getName(); / / get this person's name 
public int getAge(); / / get this person's age 

} 
Code Fragment 2.12: Interface Person. 

We show in Code Fragment 2.13 a class, Student, that implements Person. The 
method equalTo assumes that the argument (declared of type Person) is also of type 
Student and performs a narrowing conversion from type Person (an interface) to 
type Student (a class) using a cast. The conversion is allowed in this case, because 
it is a narrowing conversion from class T to interface U, where we have an object 
taken from T such that T extends S (or T = S) and S implements U. 

public class Student implements Person { 
String id; 
String name; 
int age; 
public Student (String i, String n, int a) { / / simple cqnstructor

'd . $1 = I; 


name = n; 

age = a; 


} 
protected int studyHoursO { return age/2; } / / just a guess 
public String getlD () { return id; } / / ID of the student 
public String getNameO { return name; } / / from Person interface 
public int getAgeO { return age; } / / from Person interface 
public boolean equalTo (Person other) { / / from Person interface 

Student otherStudent = (Student) other; / / cast Person to Student 
return (id.equals (otherStudent.getIDO)); / / compare IDs 

} 
public String toStringO { / / for printing 

return 11 Student (ID: " + id + 

ii, Name: ;,:+ narne + 

11, Age:" + age + ")"; 

} 
} 

Code Fragment 2.13: Class Student implementing interface Person. 



88 Chapter 2. Object-Oriented Design 

Because of the assumption above in the implementation of method eq ua ITo, we 
have to make sure that an application using objects of class Student will not attempt 
the comparison of Student objects with other types of objects, or otherwise, the cast 
in method equalTo will fail. For example, if our application manages a directory 
of Student objects and uses no other types of Person objects, the assumption will 
be satisfied. 

The ability of performing narrowing conversions from interface types to class 
types allows us to write general kinds of data structures that only make minimal 
assumptions about the elements they store. In Code Fragment 2.14, we sketch 
how to build a directory storing pairs of objects implementing the Person interface. 
The remove method performs a search on the directory contents and removes the 
specified person pair, if it exists, and, like the findOther method, it uses the equalTo 
method to do this. 

public class PersonPairDirectory { 
/ / ... instance variables would go here ... 
public PersonPairDirectoryO U* default constructor goes here */} 
public void insert (Person person, Person other) U* insert code goes here */} 
public Person findOther (Person person) { return null; } / / stub for find 
public void remove (Person person, Person other) {I* remove code goes here */} 

} 
Code Fragment 2.14: Sketch of class PersonPairDirectory. 

Now, suppose we have filled a directory, myDirectory, with pairs of Student 
objects that represent roommate pairs. In order to find the roommate of a given 
Student object, smart_one, we may try to do the following (which is wronf): 

Student cute_one = myDirectory.findOther(smart_OI're); :;/ wrong! 

The statement above causes an "explicit-cast-required" compilation error. The 
problem here is that we are trying to perform a narrowing conversion without an 
explicit cast. Namely, the value returned by method findOther is of type Person 
while the variable cute_one, to which it is assigned, is of the narrower type Stu
dent, a class implementing interface Person. Thus, we use a cast to convert type 
Person to type Student, as follows: 

Student cute_one = (Student) myDirectory.findOther(smarLone); 

Casting the value of type Person returned by. method findOther to type Student 
works fine as long as we are sure that the call to myDirectory.findOther is really 
giving us a Student object. In general, interfaces can be a valuable tool for the de

.	sign of general data structures, which can then be specialized by other programmers 
through the use of casting. 



89 2.5. Casting and Generics 

2.5.2 Generics 

Starting with 5.0, Java includes a generics framework for using abstract types in 
a way that avoids many explicit casts. A generic type is a type that is not defined 
at compilation time, but becomes fully specified at run time. The generics frame
work allows us to define a class in terms of a setofformal type parameters, which 
could be used, for example, to abstract the types of some internal variables of the 
class. Angle brackets are used to enclose the list of formal type parameters. Al
though any valid identifier can be used for a formal type parameter, single-letter 
uppercase names are conventionally used. Given a class that has been defined with 
such parameterized types, we instantiate an object of this class by using actual type 
parameters to indicate the concrete types to b~ used. 

In Code Fragment 2.15, we show a class Pair storing key-value pairs, where the 
types of the key and value are specified by parameters Kand V, respectively. The 
main method creates two instances of this class, one for a String-Integer pair (for 
example, to store a dimension and its value), and the other for a Student-Double 
pair (for example, to store the grade given to a student). 

public class Pair<K, V> { 

K key; 

V value; 

public void set( K k, V v) { 


key = k; 

value v; 


} 
public K getKeyO { return key; } 

public V getValueO { return value; } 

public String toStringO{. 


return II [II + getKeyO ", II + getValue(). + II] If; 

} 

public static void main (String[] args) { 


Pair<String,lnteger> pair1 new Pair<String,lnteger>(); 

pair1.set(new String("height"), new Integer(36)); 

System.out.println(pai rl); 

Pair<Student,Double> pair2 = new Pair<Student,Double>O; 

pair2.set(new Student("A5976", "Sue" ,19), new Double(9.5)); 

System.out.println(pair2); 


} 
} 

Code Fragment 2~15:Example.using the Studentclass from Code Fragment 2.13. 

. The output of the execution of this method is shown below: 

[height, 36] 

[Student(ID: A5976, Name: Sue, Age: 19), 9.5] 




90 Chapter 2. Object-Oriented Design 

In the previous example, the actual type parameter can be an arbitrary type. To 
restrict the type of an actual parameter, we can use an extends clause, as shown 
below, where class PersonPairDirectoryGeneric is defined in terms of a generic 
type parameter P, partially specified by stating that it extends class Person. 

public class PersonPairDirectoryGeneric<P extends Person> {
I I ... instance variables would go here ... 
public PersonPairDirectoryGenericO { 1* default constructor goes here *1 } 
public void insert (P person, Pother) { 1* insert code goes here *1 } 
public P findOther (P person) { return null; } I I stub for find 
public void remove (P person, Pother) { 1* remove code goes here *1 } 

} 

This class should be compared with class PersonPairDirectory in Code Frag
ment 2.14. Given the class above, we can declare a variable referring to an instance 
of PersonPairDirectoryGeneric, that stores pairs of objects of type Student: 

PersonPairDirectoryGeneric<Student> myStudentDirectory; 

For such an instance, method find Other returns a value of type Student. Thus, the 
following statement, which does not use a cast, is correct: 

Student cute_one = myStudentDirectory.findOther(smarLone); 

The generics framework allows us to define generic versions of methods. In 
this case, we can include the generic definition among the method modifiers. For 
example, we show below the definition of a method that can compare the keys from 
any two Pair objects, provided that their keys implement the Comparable interface: 

public static <K extends (omparable,V,L,W> int 
comparePairs(Pair<K.V> p, PClir<L,W> q) { . 

return p.getKey().compareTo(q.getKeyO); I I p's key implements compareTo 
} 

There is an important caveat related to generic types, namely, that the elements 
stored in an array cannot be a type variable or a parameterized type. Java allows 
for an array to be defined with a parameterized type, but it doesn't allow a param
eterized type to be used to create a new array. Fortunately, it allows for an array 
defined with a parameterized type to be initialized with a newly created, nonpara
metric array. Even so, this latter mechanism causes the Java compiler to issue a 
warning, because it is not 100% type-safe. We illustrate this point in the following: 

public static void main(String[] args) { 
Pair<String,lnteger>[] a new Pair[lO]; I I right, but gives a warning 
Pair<String,lnteger>[] b = new Pair<String,lnteger>IlO]; I I wrong!! 
a[O] = new Pair<String,lnteger>O; I I this is completely right 
a[O].set(IDog",lO); II this and the next statement are right too 
System.oufprintln("First pair is l+a[OJ.getKey{)+", "+a[O].getValueO); 

} 



91 2.6. Exercises 

2.6 Exercises 

For help with exercises, please visit the web site, www.wiley.com/go/global/goodrkh. 

Rei nforcement 

R-2.1 Can two interfaces mutually extend each other? Why or why not? 


R -2.2 Give three examples of life-critical software applications. 


R-23 Give an example of a software application where adaptability can mean 

the difference between a prolonged sales lifetime and bankruptcy. 

R-2.4 	Describe a component from a text-editor GUI (other than an "edit" menu) 
and the methods that it encapsulates. 

R-2.5 	 Draw a class inheritance diagram for the following set of classes: 

• 	Class Goat extends Object and adds an instance variable tail and 
methods milkO and jumpO. 

• 	Class Pig extends Object and adds an instance variable nose and 
methods eatO and wallowO. 

• 	Class Horse extends Object and adds instance variables height and 
color, and methods runO and jumpO. 

• 	Class Racer extends Horse and adds a method raceO. 

• 	Class Equestrian extends Horse and adds an instancy variable weight 
and methods trotO and isTrainedO. 

R-2.6 	Give a short fragment of Java code that uses the progression classes from 
Section 2.23 to find the 8th value of a Fibonacci progression that starts 
with 2 and 2 as its first two values. 

R-2.7 	 If we choose inc = 128, how many calls to the nextValue method from 
the ArithProgression class of Section 2.2.3 can we make before we cause 
a long-integer overflow? 

R-2.8 	 Suppose we have an instance variable p that is declared of type Pro
gression, using the classes of Section 2.2.3. Suppose further that p ac
tually refers to an instance of the class Geom Progression that was created 
with the default collstructor. If we cast p to type Progression and call 
p.firstValueO, what will be returned? Why? 

R-2.9 	Consider the inheritance of classes from Exercise R-2.5, and let d be an 
object variable of type Horse. If d refers to an actual object of type Eques
trian, can it be cast to the class Racer? Why or why not? 

www.wiley.com/go/global/goodrkh


92 

~ 

Chapter 2. Object-Oriented Design 

R-2.l0 	Give an example of a Java code fragment that performs an alTay reference 
that is possibly out of bounds, and if it is out of bounds, the program 
catches that exception and prints the following elTor message: 
"Don't try buffer overflow attacks in Java!" 

R-2.11 	 Consider the following code fragment, taken from some package: 

public class Maryland extends State { 
MarylandO { 1* null constructor * / } 
public void printMeO { System.out.println("Read it. "); } 
public static void main(String[] args) { 

Region mid new StateO; 

State md new MarylandO; 

Object obj = new PlaceO; 

Place usa = new RegionO; 

md.printMeO; 

mid.printlVieO; 

((Place) obj).printMeO; 

obj = md; 

((Maryland) obj).printMeO; 

obj = usa; 

((Place) obj).printMeO; 

usa = md; 

((Place) usa).printMeO; 


} 
} 
class State extends Region { 

StateO { 1* null constructor * / } 
public void printMeO { System.out.println("Ship it. "); } 

} 
class Region extends Place { 


RegionO { 1* null constructor * / } 

public void printMeO {System.out.println("Box . "); } 


} 
class Place extends Object { 


PlaceO { 1* null constructor * / } 

public void printMeO { System.out.println("Buy it. "); } 


} 

What is the output from calling the mainO method of the Maryland class? 

R-2.l2 	Write a short Java method that counts the number of vowels in a given 
character string. 

R-2.13 	Write a short Java method that removes all the punctuation from a string s 
storing a sentence. For example, this operation would transform the string 
11 Let 's try, Mike. II to "Lets try Mike". 



93 2.6. Exercises 

R-2.l4 	Write a Sh011 program that takes as input three integers, a, b, and c, from 
the Java console and determines if they can be used in a correct arithmetic 
formula (in the given order), like "a +b c," "a =b c," or "a *b c." 

R-2.l5 	Write a short Java program that creates a Pair class that can store two 
objects declared as generic types. Demonstrate this program by creating 
and printing Pair objects that contain five different kinds of pairs, such as 
<lnteger,String> and <Float,Long>. 

R -2.16 	Generic parameters are not included in the signature of a method decla
ration, so you cannot have different methods in the same class that have 
different generic parameters but othelwise have the same names and the 
types and number of their parameters. How can you change the signatures 
of the conflicting methods to get around this restriction? 

Creativity 

C-2.1 	Explain why the Java dynamic dispatch algorithm, which looks for the 
method to invoke for a call o.aO, will never get into an infinite loop. 

C-2.2 	Write a Java class that extends the Progression class so that each value in 
the progression is the absolute value of the difference between the previ
ous two values. You should include a default constructor that starts with 
2 and 200 as the first two values and aparametric constructor that starts 
with a specified pair of numbers as the first two values. 

C-2.3 	Write a Java class that extends the Progression class so that each value in 
the progression is the square root of the previous valutJ. (Note that you 
can no longer represent each value with an integer.) You should include a 
default constructor that has 65) 536 as the first value and a parametric con
structor that starts with a specified (double) number as the first value. 

C-2.4 	Rewrite all the classes in the Progression hierarchy so that all values are 
from the Bigl nteger class, in order to avoid overflows all together. 

C-2.5 	Write a program that consists of three classes, A, B, and C, such that B 
extends A and C extends B. Each class should define an instance variable 
named "x" (that is, each has its own variable named x). Describe a way for 
a method in C to access and set A's version of x to a given value, without 
changing B or C's version. 

C-2.6 	Write a set of Java classes that can simulate an Internet application, where 
one party, Alice, is periodically creating a set of packets that she wants to 
send to Bob. An Internet process is continually checking if Alice has any 
packets to send, and if so, it delivers them to Bob's computer, and Bob is 
periodically checking if his computer has a packet from Alice, and, if so, 
he reads and deletes it. 



94 Chapter 2. Object-Oriented Design 

Projects 

P-2.l 	Write a Java program that simulates a handheld calculator. Your program 
should be able process input, either in a aUI or from the Java console, for 
the buttons that are pushed, and then output the contents of the screen after 
each operation is performed. Minimally, your calculator should be able to 
process the basic arithmetic operations and a reset/clear operation. 

P-2.2 	Write a Java program that inputs a document and then outputs a bar-chart 
plot of the frequencies of each alphabet character that appears in that doc
ument. 

P-2.3 	Fill in code for the PersonPairDirectory class of Code Fragment 2.14, 
assuming person pairs are stored in an array with capacity 1,000. The 
directory should keep track of how many person pairs are actually in it. 

P-2.4 	Write a Java program that can take a positive integer greater than 2 as 
input and write out the number of times one must repeatedly divide this 
number by 2 before getting a value less than 2. 

P-2.5 	Write a Java program that can "make change." Your program should take 
two numbers as input, one that is a monetary amount charged and the 
other that is a monetary amount given. It should then return the number 
of each kind of bill and coin to give back as change for the difference 
between the amount given and the amount charged. The values assigned 
to the bills and coins can be based on the monetary system of any current 
or former government. Try to design your program so that it returns the 
fewest number of bills and coins as possible. 

Chapter Notes 

For a broad overview of developments in computer science and engineering, we refer the 
reader to The Computer Science and Engineering Handbook [92]. For more information 
about the Therac-25 incident, please see the paper by Leveson and Turner [66].

The reader interested in studying object-oriented programming further, is referred to 
the books by Booch [15], Budd [18], and Liskov and Guttag [69]. Liskov and Guttag [69] 
also provide a nice discussion of abstract data types, as does the survey paper by Cardelli 
and Wegner [20J and the book chapter by Demurjian [27J in the The Computer Science 
and Engineering Handbook [92]. Design patterns are described in the book by Gamma, 
et ai. [36]. The class inheritance diagram notation we use is derived from the book by 
Gamma, et ai. 



u-:".. 

Chapter

3 Arrays, Linked Lists, and Recursion 

Contents 

3.1 Using Arrays . . . . . . . . . . . . . . . . . . . . . .. 96 

3.1.1 Storing Game Entries in an Array. . . . . . . . . .. 96 

3.1.2 Sorting an Array .................... 103 


3.1.3 java.util Methods for Arrays and Random Numbers . 106 

3.1.4 Simple Cryptography with Strings and Character Arrays 109 

3.1.5 Two-Dimensional Arrays and Positional Games ... 112 

3.2 Singly linked Lists . . . . . . . . . . . .'. . . . . i. •• 117 

3.2.1 Insertion in a Singly Linked List: ........... 119 


3.2.2 Removing an Element in a Singly Linked List .... 121 

3.3 Doubly linked Lists . . . . . . . . . . . . . . . . . .. 122 

3.3.1 Insertion in the Middle of a Doubly Linked List 125 

3.3.2 Removal in the Middle of a Doubly Linked List . . . 126 

3.3.3 An Implementation of a Doubly Linked List ..... 127 

3.4 Circularly Linked Lists and Linked-List Sorting . . .. 130 

3.4.1 Circularly Linked Lists and Duck, Duck, Goose ... 130 

3.4.2 Sorting a Linked List . . . . . . . . . . . . . . . . . 135 

3.5 Recursion......................... 136 


3.5.1 Linear Recursion .................... 142 

~'. 

3.5.2 Binary Recursion ................... 146 


3.5.3 Multiple Recursion .................. 149 


3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . .151 



96 Chapter 3. Arrays, Linked Lists, and Recursion 

3.1 Using Arrays 

In this section, we explore a few applications of arrays-the concrete data structures 
introduced in Section 1.5 that access their entries using integer indices. 

3.1.1 Storing Game Entries in an Array 

The first application we study is for storing entries in an array; in particular, high 
score entries for a video game. Storing objects in arrays is a common use for arrays, 
and we could just as easily have chosen to store records for patients in a hospital or 
the names of players on a football team. Nevertheless, let us focus on storing high 
score entries, which is a simple application that is already rich enough to present 
some important data structuring concepts. 

Let us begin by thinking about what we want to include in an object represent
mg a high score entry. Obviously, one component to include is an integer represent
ing the score itself, which we will call score. Another useful thing to include is the 
name of the person earning this score, which we will simply call name. We could 
go on from here, adding fields representing the date the score was earned or game 
statistics that led to that score. Let us keep our example simple, however, and just· 
have two fields, score and name. We show a Java class, GameEntry, representing a 
game entry in Code Fragment 3.1. 

public class GameEntry { 
protected String name; II name of the person earning this score 
protected int score; II the score value 
/** Constructor to create a game entry *1 
public GameEntry{String n, int s) { 

name n; 
score s; 

} 
/** Retrieves the name field *1 
public String getNameO { return name; } 

/** Retrieves the score field *1 

public int getScore() { return score; } 

/** Returns a string representation of this entry *1 

public String toString() { 


return II (" + name + II, + score + ") II;II 

} 
} 

Code Fragment 3.1: Java code for a simple GameEntry class. Note that we include 
methods for returning the name and score for a game entry object, as well as a 
method for returning a string representation of this entry. 



97 3.1. Using Arrays 

A Class for High Scores 

Suppose we have some high scores that we want to store in an array named entries. 
The number of scores we want to store could be 10, 20, or 50, so let us use a 
symbolic name, maxEntries, which represents the number of scores we want to 
store. We must set this variable to a specific value, of course, but by using this 
variable throughout our code, we can make it easy to change its value later if we 
need to. We can then define the array, entries, to be an array of length maxEntries. 
Initially, this array stores only null entries, but as users play our video game, we 
will fill in the entries array with references to new GameEntry objects. So we will 
eventually have to define methods for updating the GameEntry references in the 
entries array. 

The way we keep the entries array organized is simple-we store our set of 
GameEntry objects ordered by their integer score values, highest to lowest. If the 
number of GameEntry objects is less than maxEntries, then we let the end of the 
entries array store null references. This approach prevents having any empty cells, 
or "holes," in the continuous series of cells of array entries that store the game 
entries from index °onward. We illustrate an instance of the data structure in 
Figure 3.1 and we give Java code for such a data structure in Code Fragment 3.2. 
In an exercise (C-3.2), we explore how game entry addition might be simplified for 
the case when we don't need to preserve relative orders. 

I Rob 1 750 I" ~nna I 660 I I Jack I 5;0 , i 

r-~-ik-e1r-1-10-'5, /1 Paul l720J /1 Ros~ l590 , ! 

/l/I//i 

o 2 3 4 5 6 7 8 9 

Figure 3.1: An illustration of an array of length ten storing references to six 
GameEntry objects in the cells from index °to 5, with the rest being null refer
ences. 



98 Chapter 3. Arrays, Linked Lists, and Recursion 

/** Class for storing high scores in an array in non-decreasing order. * / 
public class Scores { 

public static final int maxEntries - 10; / / number of high scores we keep 
protected int numEntries; / / number of actual entries 
protected GameEntry[] entries; / / array of game entries (names & scores) 
/** Default constructor * / 
public ScoresO { 

entries = new GameEntry[maxEntries]; 

numEntries = 0; 


}

/** Returns a string representation of the high scores list * / 

public String toStringO { 


String s = II [II; 


for (int i 0; i < numEntries; i++) { 

if (i > 0) s II; / / separate entries by commas
II, 

s += entries[i]; 
} 

retu rn s + II] "; 


} 

/ / ... methods for updating the set of high scores go here ... 

} 
Code Fragment 3.2: Class for maintaining a set of scores as GameEntry objects. 

Note that we include a method, toStringO,-which produces a string represen
tation of the high scores in the entries array. This method is quite useful for de
bugging purposes. In this case, the string will be a comma-separated listing of 
the GameEntry objects in the entries array. We produce this listing with a simple 
for-loop, which adds a comma just before each entry that comes after the fitst one. 
With such a string representation, we can print out the stat~ of the entries array 
during debugging, for testing how things look before and after we make updates. 

Insertion 

One of the most common updates we might want to make to the entries array 
of high scores is to add a new game entry. So suppose we want to insert a new 
GameEntry object, e. In particular, let us consider how we might perform the fol
lowing update operation on an instance of the Scores class: 

add (e): 	 Insert game entry e into the collection of high scores. If 
the collection is full, then e is added only if its score is 
higher than the lowest score in the set, and in this case, e 
replaces the entry with the lowest score. 

The main challenge in implementing this operation is figuring out where e 
should go in the entries array and making room for e. 



99 3.1. Using Arrays 

Visualizing Game Entry Insertion 

To visualize this insertion process, imagine that we store remote controls represent
ing references to the nonnull GameEntry objects in array entries, listed left-to-right 
from the one with highest score to the one with the lowest. 

Given the new game entry, e, we need to figure out where it belongs. We start 
this search at the end of the entries array. If the last reference in this array is not null 
and its score is bigger than e's score, then we can stop immediately. For, in this case, 
e is not a high score-it doesn't belong in the entries array at all. Otherwise, we 
know that e belongs in the array, and we also know that the last thing in the entries 
array no longer belongs there. Next, we go to the second to the last reference in the 
array. If this reference is null or it points to a GarneEntry object whose score is less 
than e's, this reference needs to be moved one cell to the right in the entries array. 
Moreover, if we move this reference, then we need to repeat this comparison with 
the next one, provided we haven't reached the beginning of the entries array. We 
continue comparing and shifting references to game entries until we either reach 
the beginning of the entries array or we compare e's score with a game entry with 
a higher score. In either case, we will have identified the place where e belongs. 
(See Figure 3.2.) 

1 Jill 1 740 , 

1 Rob 1 750 ,Anna!660I ! Jack 1 510 I 
,. ~ I / ~ose 1 

59°1 

o 2 3 4 5 6 7 8 9 

Figure 3.2: Preparing to add a new GameEntry object to the entries array. In order 
to make room for the new reference, we have to shift the references to game entries 
with smaller scores than the new one to the right by one celL 

Once vie have identified the place in the entries array where the new game 
entry, e, belongs, we add a reference to e at this position. That is, continuing 
our visualization of object references as remote controls, we add a remote control 
designed especially for e to this location in the entries array. (See Figure 3.3.) 



100 Chapter 3. Arrays, Linked Lists, and Recursion 

CfU5J 
C::J750:t / ~nna ]660 I Lack I510 , 

~-r-.! / L;a~l72o I! ~ose1590 J! 

1//1// 
o 2 3 4 5 6 7 8 9 

Figure 3.3: Adding a reference to a new GameEntry object to the entries array. The 
reference can now be inserted at index 2, since we have shifted all references to 
GameEntry objects with scores less than the new one to the right. 

The details of our algorithm for adding the new game entry e to the entries array 
are similar to this informal description, and are given in Java in Code Fragment 3.3. 
Note that we use a loop to move references out of the way. The number of times we 
perform this loop depends on the number of references we have to move to make 
room for a reference to the new game entry. If there are.O, 1, or even just a few 
references to move over, this add method will be pretty fast. But if there are a lot to 
move, then this method could be fairly slow. Also note that if the array is full and 
we perform an add on it, then we will either remove the reference to the current 
last game entry or we will fail to add a reference to the new game ~ntry, e. • 

. ,

/** Attempt to add a new score to the collection (if it is high enough) * / 
public void add(GameEntry e) { 

int newScore = e.getScoreO; 
/ / is the new entry e really a high score? 
if (numEntries maxEntries) { / / the array is full 

if (newScore <= entries[numEntries-l1.getScore'O) 
return; / / the new entry, e, is not a high score in this case 

} 
else / / the array is not full 

numEntries++; 
/ / Locate the place that the new (high score) entry e belongs 
int i = numEntries-l; 
for ( ; (i >= 1) && (newScore > entries[i-11.getScore()); i--) 
. 'entries[i] = entries[i 11; / / move entry i one to the right 
entries[i] = e; / / add the new score to entries 

} 
Code Fragment 3.3: Java code for inserting a GameEntry object. 



3.1. Using Arrays 	 101 

Object Removal 

Suppose some hot shot plays our video game and gets his or her name on our high 
score list. In this case, we might want to have a method that lets us remove a game 
entry from the list of high scores. Therefore, let us consider how we might remove 
a reference to a GameEntry object from the entries array. That is, let us consider 
how we might implement the following operation: 

remove(i): 	 Remove and return the game entry e at index i in the en
tries array. If index i is outside the bounds of the entries 
array, then this method throws an exception; otherwise, 
the entries array will be updated to remove the object at 
index i and all objects previously stored at indices higher 
than i are "moved over" to fill in for the removed object. 

Our implementation for remove will be much like performing our algorithm for 
object addition, but in reverse. Again, we can visualize the entries array as an array 
of remote controls pointing to GameEntry objects. To remove the reference to the 
object at index i, we start at index i and move all the references at indices higher 
than i one cell to the left. (See Figure 3.4.) 

~ 
IROb! 750' / jAnna! 660 , !Jack 1510, 

!'--~-ike--r-p-10--':tI ! /1 paull?20 '// IRbse; 590 • • / 

.oj i; :' ~ / 
.,. "l l ':'f *# 

,/ / / /~<~':....;::::,/~~,;</' 


o 1 . 2 3. .4 5 6 7 8 9 

Figure 3.4: An illustration of a removal at index 3 in an array storing references to 
GameEntry objects. 



102 Chapter 3. Arrays, Linked Lists, and Recursion 

Some Subtle Points About Entry Removal 

The details for doing the remove operation contain a few subtle points. The first 
is that, in order to remove and return the game entry (let's call it e) at index i in 
our array, we must first save e in a temporary variable. We will use this variable to 
return e when we are done removing it. The second subtle point is that, in moving 
references higher than i one cell to the left, we don't go all the way to the end 
of the array-we stop at the second to last reference. We stop just before the end, 
because the last reference does not have any reference to its right (hence, there is no 
reference to move into the last place in the entries array). For the last reference in 
the entries array, it is enough that we simply null it out. We conclude by returning 
a reference to the removed entry (which no longer has any reference pointing to it 
in the entries array). See Code Fragment 3.4. 

/** Remove and return the high score at index i * / 
public GameEntry remove(int i) throws IndexOutOfBoundsException { 

if ((i < 0) II (i >= numEntries)) 
throw new IndexOutOfBoundsException("Invalid index: + i);II 

GameEntry temp = entries[i]; / / temporarily save the object to be removed 
for (int j = i; j < numEntries - 1; j++) / / count up from i (not down) 

entriesUJ = entriesU+1]; / / move one cell to the left 
entries[numEntries -1 ] null; / / null out the old last score 
numEntries--; 
return temp; / / return the removed object 

} 

Code Fragment 3.4: Java code for performing the remove operation. " 

These methods for adding and removing objects in an array of high scores are 
simple. Nevertheless, they form the basis of techniques that are used repeatedly 
to build more sophisticated data structures. These other structures may be more 
general than the array structure above, of course, and often they will have a lot 
more operations that they can perform than just add and remove. But studying the 
concrete array data structure, as we are doing now, is a great starting point to un
derstanding these other structures, since every data structure has to be implemented 
using concrete means. 

In fact, later in this book, we will study a Java Collections Class, ArrayList, 
which is more general than the array structure we are studying here. The ArrayList 
has methods to do a lot of the things we will want to do with an array. while also 
eliminating the error that occurs when adding an object to a full array. The Ar
rayList eliminates this error by automatically copying the objects into a larger array 
if necessary. Rather than discuss this process here, however, we will say more about 
how this is done when we discuss the ArrayList in detaiL 



103 3.1. Using Arrays 

3.1.2 Sorting an Array 

In the previous subsection, we worked hard to show how we can add or remove ob
jects at a certain index i in an array while keeping the previous order of the objects 
intact. In this section, we study a way of starting with an array with objects that are 
out of order and putting them in order. This is known as the sorting problem. 

A Simple Insertion-Sort Algorithm 

We study several sorting algorithms in this book, most of which appear in Chap
ter 11. As a warmup, we describe a nice, simple sorting algorithm called insertion
sort in this section. In this case, we describe a specific version of the algorithm 
where the input is an array of comparable elements. We consider more general 
kinds of sorting algorithms later in this book. 

This simple insertion-sort algorithm goes as follows. We start with the first 
element in the array. One element by itself is already sorted. Then we consider the 
next element in the array. If it is smaller than the first, we swap them. Next we 
consider the third element in the array. We swap it leftward until it is in its proper 
order with the first two elements. We then consider the fourth element, and swap 
it leftward until it is in the proper order with the first three. We continue in this 
manner with the fifth element, the sixth, and so on, until the whole array is sorted. 
Mixing this informal description with programming constructs, we can express the 
insertion-sort algorithm as shown in Code Fragment 3.5. 

Algorithm I nsertionSort(A): 

Input: An array A of n comparable elements 

Output: The array A with elements rearranged tn nondecreasing order 


for if-I to n - 1do 

Insert A[i] at its proper location in A[0], A[1], ... ,A[i - 1]. 


Code Fragment 3.5: High-level description of the insertion-sort algorithm. 

This is a simple, high-level description of insertion-sort. It also demonstrates 
why this algorithm is called "insertion-sort"-because each iteration of the algo
rithm inserts the next element into the current sorted part of the array, which was 
previously the subarray in front of that element. Before we can code this description 
up, however, we need to work out more of the details of how we do this insertion 
task. 

Diving into those details a bit more, let us rewrite our description so that we 
now use two nested loops. The outer loop will consider each element in the array 
in turn and the inner loop will move that element to its proper location with the 
(sorted) subarray of elements that are to its left. 



104 Chapter 3. Arrays, Linked Lists, and Recursion 

Refining the Details for Insertion-Sort 

Refining the details, then, we can describe our algorithm as shown in Code Frag
ment 3.6. 

Algorithm I nsertionSort(A): 
Input: An array A of n comparable elements 
Output: The array A with elements rearranged in nondecreasing order 

for i +- 1 to 11 1do 
{Insert A[i] at its proper location in A[0] ,A[l], ... ,A[i - I]} 

cur +- A[i] 

j+-i-l 

while j ~ 0 and aU] > cur do 


A[j +1] +- A[j] 

j+-j-1 


A[j +1] +- cur {cur is now in the right place} 

Code Fragment 3.6: Intermediate-level description of the insertion-sort algorithm. 

This description is much closer to actual code, since it is a better explanation 
of how to insert the element A[i] into the subarray that comes before it. It still uses 
an informal description of moving elements if they are out of order, but this is not 
a terribly difficult thing to do. 

AJava Description of Insertion-Sort 

Now we are ready to give Java code for this simple versioIl:' of the insertion-sort 
algorithm. We give such a description in Code Fragment 3.7 for the special case 
when A is an array of characters, a. 

/** Insertion sort of an array of characters into non-decreasing order * / 
public static void insertionSort(char[] a) { 


int n - a.length; 

for (int i = 1; i < n; i++) { / / index from the second character in a 

char cur ali]; / / the current character to be inserted 
int j = i 1; / / start comparing with cell left of i 
while ((j >= 0) && (aUJ > cur)) / / while aUJ is out of order with cur 

au + 1J = au--J; / / move aU] right and decrement j 
au + l]=cur; / / this is the proper place for cur 

} 

} 


Code Fragment 3.7: Java code for performing insertion-sort on an array of charac
ters. 



105 

i~····. 

3.1. Using Arrays 

We illustrate an example run of the insertion-sort algorithm in Figure 3.5. 

cur ~omove 

(B .;rArtr~T;1i~1<~ 
o 1 2 3 4 5 6 7 

nnomove 

(B (c .~T~~r~'r~rF';'j 
o 1 2 3 4 567 

nmoveffi--f ;¢;;.',w;:,'j.~Z;#'~'2"'-'~J• BCD [E IH IG [F ill 
o 1 2 3 4 567 

no move n 
• (A (B (C (D 1'~T~7~<'f~ 

o 1 2 3 4 5 6 7 
nnomove 

• (A (B (C (D (E .~r~f<w 
o 1 2 3 4 5 6 7 

• o 1 2 3 4 5 6 7 
nmove 

(A (B (C (D (E (G 0--fH1J• o 1 2 3 4 5 6 7 

move 

n 

1 234 567 o 1 234 567 

0 1 234 567 
nmove 

(A (B (C (D (E 0---fG1HJ) 
0 1 234 567 

(A (B (C (D (E (F (G (H 0 Done! 
o 1 2 3 4 5 6 7 

.nsert 

no move -... 

I 7 7 7 
 J(A [B [C [D [E QltG1H1J 

o 1 234 567 

Figure 3.5: Execution of the insertion-sort algorithm on an array of eight characters. 
We show the completed (sorted) part of the array in white, and we color the next 
element that is being inserted into the sorted part of the array with light blue. We 
also highlight that character on the left, since it is stored in the cur variable. Each 
row corresponds to an iteration of the outer loop, and each copy of the array in a 
row corresponds to an iteration of the inner loop. Each comparison is shown with 
an arc. In addition, we indicate whether that comparison resulted in a move or not. 

An interesting thing happens in the insertion-sort algorithm if the array is al
ready sorted. In this case, the inner loop does only one comparison, determines that 
there is no swap needed, and returns back to the outer loop. That is, we perform 
only oneiteration of the inner loop for each iteration of the outer loop. Thus, in this 
case, we perform a minimum number of comparisons. Of course, we might have to 
do a lot more work than this if the input array is extremely out of order. In fact, we 
will have to do the most work if the input array is in decreasing order. 



106 Chapter 3. Arrays, Linked Lists, and Recursion 

3.1.3 	 java.util Methods for Arrays and Random Numbers 

Because arrays are so important, Java provides a number of built-in methods for 
performing common tasks on arrays, which appear as static methods in the java. util.Arrays 
class. That is, they are associated with the class, java. uti I.Arrays itself, and not with 
a particular instance of this class. Describing a few of these methods will have to 
wait, however, until later in this book (when we discuss the concepts these methods 
are based on). Nevertheless, we discuss some java.util.Arrays methods here. 

Some Simple 	Methods of java.util.Arrays 

We list some simple methods of the class java.util.Arrays below: 

equals(A,B): 	Returns true if and only if the array A and the array B are 
equal. Two arrays are considered equal if they have the 
same number of elements and every corresponding pair 
of elements in the two arrays are equaL That is, A and B 
have the same elements in the same order. 

fill(A,x): 	 Stores element x into every cell of array A, provided the 
type of array A is defined so that it is allowed to store the 
value x. 

copyOf(A, n): 	 Returns an array of size n such that the first k elements of 
this array are copied from A, wherek = rnin{n,A.length}. 
If n > A.length, then the last n - A.length elements in 
this array will be padded with default values, e.g., 0 for 
an array of int and null for an array of objects. • 

copyOfRange(A,s,t): 	Returns an array of size t -s such that the elements of 
this array are copied in order fromA[s] toA[t 1], where 
s < t, with padding as with copyOfO if t > A.length. 

sort(A): 	 Sorts the array A based on a natural ordering of its el
ements, which must be comparable. This methods uses 
the quick-sort algorithm discussed in Section 11.2. 

toString(A): 	Returns a String representation of the array A, which is 
a comma-separated list of the elements of A, ordered as 
they appear inA, beginning with [and ending with]. The 
string representation of an elementA[i] is obtained using 
String.valueOf(A[i]), which returns the string "null" for 
a null object and otherwise calls A[i].toStringO. 

For example, the following string would be returned by the method toString 
called on an array of integers A = [4,5,2,3,5,7,10]: 

[4, 5, 2, 3, 5, 7, 10] 



107 3.1. Using Arrays 

Pseudo-Random Number Generation 

Another feature built into Java, which is often useful when testing programs dealing 
with arrays, is the ability to generate pseudo-random numbers, that is, numbers that 
are statistically random (but not necessarily truly random). In particular, Java has 
a built-in class, java.utiI.Random, whose instances are pseudo-random number 
generators, that is, objects that compute a sequence of numbers that are statistically 
random. These sequences are not actually random, however, in that it is possible 
to predict the next number in the sequence given the past list of numbers. Indeed, 
a popular pseudo-random number generator is to generate the next number, next, 
from the current number, cur, according to the formula (in Java syntax): 

next =(a*cLlr + b) % n; 

where a, b, and n are appropriately chosen integers. Something along these lines 
is, in fact, the method used by java.util.Random objects, with n = 248. It turns 
out that such a sequence can be proven to be statistically uniform, which is usually 
good enough for most applications requiring random numbers, such as games. For 
applications, such as computer security settings, where one needs unpredictable 
random sequences, this kind of formula should not be used. Instead, one should 
ideally sample from a source that is actually random, such as radio static coming 
from outer space. 

Since the next number in a pseudo-random generator is determined by the pre
vious number(s), such a generator always needs a place to start, which is called its 
seed. The sequence of numbers generated for a given seed will always be the same. 
The seed for an instance of the java.util.Random class can be serin its constructor 
or with its setSeedO method. 

One common trick to get a different sequence each time a program is run is 
to use a seed that will be different for each run. For example, we could use some 
timed input from a user or we could set the seed to the current time in milliseconds 
since January 1, 1970 (provided by method System.currentTimeMillis). 

Methods of the java.util.Random class include the following: 

nextBooleanO: Returns the next pseudo-random boolean value. 

nextFloatO: Returns the next pseudo-random float value, between 
0.0 and 1.0. 

nextl ntO: Returns the next pseudo-random int value. 

nextlnt(n): Returns the next pseudo-random int value in the range 
[O,n). 

setSeed(s): 	Sets the seed of this pseudo-random number generator to 
the long s. 



108 Chapter 3. Arrays, Linked Lists, and Recursion 

An Illustrative Example 

We provide a short (but complete) illustrative program in Code Fragment 3.8. 

import java.utiI.Arrays; 

import java.util.Random; 

/** Program showing some array uses. * / 

public class ArrayTest { 


public static void main(String[] args) { 

int num[] new int[lO]; 

Random rand new RandomO; / / a pseudo-random number generator 

rand.setSeed(System.currentTimeMillisO); / / use current time as a seed 

/ / fill the num array with pseudo-random numbers from 0 to 99, inclusive 

for (int i = 0; i < num.length; i++) 


num[i] = rand.nextlnt(lOO); / / the next pseudo-random number 
int[] old (int[]) num.cloneO; / / cloning the num array 
System.out.println(lIarrays equal before sort: + Arrays.equals(old,num));II 

Arrays.sort(num); / / sorting the num array (old is unchanged) 
System.out.println("arrays equal after sort: + Arrays.equals(old,num));II 

System .out.println( II old = II + Arrays. toString(old)); 

System.out.println("num = It + Arrays.toString(num)); 


} 

} 

Code Fragment 3.8: A simple test of some built-in methods in java.util.Arrays. 

We show a sample output of this program below: 

arrays equal before sort: true 

arrays equal after sort: false 

old = [41,38,48,12,28,46,33,19,10,58] 

num [10,12,19,28,33,38,41,46,48,58] 


In another run, we got the following output: 
arrays equal before sort: true 
arrays equal after sort: false 
old = [87,49,70,2,59,37,63,37,95,1] 
num = [1,2,37,37,49,59,63,70,87,95] 

By using a pseudo-random number generator to determine program values, we 
get a different input to our program each time we run it. This feature is, in fact, what 
makes pseudo-random number generators useful for testing code, particularly when 
dealing with arrays. Even so, we should not use random test runs as a replacement 
for reasoning about our code, as we might miss.important special cases in test runs. 
Ndte; for example,thattheie is a slight chance that the old and num arrays will be 
equal even after num is sorted, namely, if num is already sorted. The odds of this 
occurring are less than one in four million, so it's unlikely to happen during even a 
few thousand test runs; hence, we need to reason that this is possible. 



109 3.1. Using Arrays 

3.1.4 Simple Cryptography with Strings and Character Arrays 

One of the primary applications of arrays is the representation of strings of charac
ters. That is, string objects are usually stored internally as an array of characters. 
Even if strings may be represented in some other way, there is anatural relationship 
between strings and character arrays-both use indices to refer to their characters. 
Because of this relationship, Java makes it easy for us to create string objects from 
character arrays and vice versa. Specifically, to create an object of class String 
from a character array A, we simply use the expression, 

new String(A) 

that is, one of the constructors for the String class takes a character array as its 
argument and returns a string having the same characters in the same order as the 
array. For example, the string we would construct from the array A = [a, c, a, t] is 
acat. Likewise, given a string S, we can create a character array representation of 
S by using the expression, 

S.toCharArrayO 

that is, the String class has a method, toCharArray, which returns an array (of type 
charm with the same characters as S. For example, if we call toCharArray on the 
string adog, we would get the array B = [a, d, 0, g]. 

The Caesar Cipher 

One area where being able to switch from string to character array and back again 
is useful is in cryptography, the science of secret ~essages and their applications. 
This field studies ways of performing encryption, which takes a message, called 
the plaintext, and converts it into a scrambled message, called the ciphertext. 
Likewise, cryptography also studies corresponding ways of performing decryption, 
which takes a ciphertext and turns it back into its original plaintext. 

Arguably the earliest encryption scheme is the Caesar cipher, which is named 
after Julius Caesar, who used this scheme to protect important military messages. 
(All of Caesar's messages were written in Latin, of course, which already makes 
them unreadable for most of us!) The Caesar cipher is a simple way to obscure a 
message written in a language that forms words with an alphabet. 

The Caesar cipher involves replacing each letter in amessage with the letter that 
is three letters after it in the alphabet for that language. So, in an English message, 
we would replace each A with D, each B with E, each C with F, and so on. We 
continue this approach all the way up to W, which is replaced with Z. Then, we let 
the substitution pattern wrap around, so that we replace X with A, Y with B, and 
Z with C. 



110 Chapter 3. Arrays, Linked Lists, and Recursion 

Using Characters as Array Indices 

If we were to number our letters like array indices, so that A is 0, B is 1, C is 2, and 
so on, then we can write the Caesar cipher as a simple formula: 

Replace each letter i with the letter (i +3) mod 26, 

where mod is the modulus operator, which returns the remainder after performing 
an integer division. This operator is denoted %in Java, and it is exactly the operator 
we need to easily perform the wrap around at the end of the alphabet. For 26 mod 
26 is 0, 27 mod 26 is 1, and 28 mod 26 is 2. The decryption algorithm for the 
Caesar cipher is just the opposite-we replace each letter with the one three places 
before it, with wrap around for A, B, and C. 

We can capture this replacement rule using arrays for encryption and decryp
tion. Since every character in Java is actually stored as a number-its Unicode 
value-we can use letters as array indices. For an uppercase character c, for ex
ample, we can use c as an array index by taking the Unicode value for c and sub
tracting A. Of course, this only works for uppercase letters, so we will require our 
secret messages to be uppercase. We can then use an alTay, encrypt, that represents 
the encryption replacement rule, so that encrypt[i] is the letter that replaces letter 
number i (which is c - A for an uppercase character c in Unicode). This usage is 
illustrated in Figure 3.6. Likewise, an array, decrypt, can.represent the decryption 
replacement rule, so that decrypt(i] is the letter that replaces letter number i. 

encrypt array: 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
~ 

Using N as an index --- "N' - 'A' / 

= 78 - 65 ..,/ Here is the 


In Unicode -- .....·····replacement for N 

13 ..···· 

Figure 3.6: Illustrating the use of uppercase characters as array indices, in this case 
to perform the replacement rule for Caesar cipher encryption. 

In Code Fragment 3.9, we give a simple, complete Java class for performing the 
Caesar cipher, which uses the approach above and also makes use of conversions 
between strings and character arrays. When we run this program (to perform a 
simple test), we get the following output: 

Encryption order =DEFGHIJKLMNOPQRSTUVWXYZABC 
Decryption order = XYZABCDEFGHIJKLMNOPQRSTUVW 
WKH HDJOH LV LQ SODB; PHHW DW MRH'V. 
THE EAGLE IS IN PLAY; MEET AT JOE'S. 



111 3.1. Using Arrays 

/** Class for doing encryption and decryption using the Caesar Cipher. * / 
public class Caesar { 

public static final int ALPHASIZE 26; / / English alphabet (uppercase only) 
public static final char[] alpha {'A','B','C','D','E','F','G','H', 'I', 

'J' 'K' 'L' 'M' 'N' '0' 'P' 'Q' 'R' 'S' 'T' 'U' 'V' 'W' 'X' 'Y' 'z'}· 
protected char[] encrypt = new char[ALPHASIZE]; / / Encryption array 
protected char[] decrypt = new char[ALPHASIZE]; / / Decryption array 
/** Constructor that initializes the encryption and decryption arrays * / 
public CaesarO { 

for (int kALPHASIZE; i++) 
encrypt[i] = alpha[(i + 3) % ALPHASIZE]; / / rotate alphabet by 3 places 

for (int i=O; kALPHASIZE; i++) 
decrypt[encrypt[iJ 'A'] alpha[i]; / / decrypt is reverse of encrypt 


} 

/** Encryption method * / 

public String encrypt(String secret) { 


char[] mess secreUoCharArray(); / / the message array 

for (int i=O; kmess.length; i++) / / encryption loop 


if (Character.isUpperCase(mess[iD) / / we have a letter to change 
mess[i] encrypt[mess[i] 'A']; / / use letter as an index 

return new String(mess); 

} 

/** Decryption method * / 

public String decrypt(String secret) { 


char[] mess = secreUoCharArrayO; / / the message array 

for (int i=O; i<mess.length; i++) / / decryption loop 


if (Character.isUpperCase(mess[iD) / / we have a letter to 1hange 

mess[i] decrypt[mess[i] - 'A ,]; / / use letter as an index 


return new String(mess); 


f , , I , 1 I , fIr f , , J t t 

} 

/** Simple main method for testing the Caesar cipher * / 

public static void main(String[] args) { 


Caesar cipher new CaesarO; / / Create a Caesar cipher object 
System.out.println("Encryption order = II + new String(cipher.encrypt)); 
System.out.println(IIDecryption order = II + new String(cipher.decrypt)); 
String secret = liTHE EAGLE IS IN PLAY; MEET AT JOE'S. 11; 


secret ci pher.en crypt(secret); 

System.out. println(secret); / / the ciphertext 

secret cipher.decrypt(secret); 

System.outprintln( secret); / / should be plaintext again 

} 
} 

Code Fragment 3.9: A simple, complete Java class for the Caesar cipher. 



112 Chapter 3. Arrays, Linked Lists, and Recursion 

3.1.5 Two-Dimensional Arrays and Positional Games 

Many computer games, be they strategy games, simulation games, or first-person 
conflict games, use a two-dimensional "board." Programs that deal with such po
sitional games need a way of representing objects in a two-dimensional space. A 
natural way to do this is with a two-dimensional array, where we use two indices, 
say i and j, to refer to the cells in the array. The first index usually refers to a row 
number and the second to acolumn number. Given such an array we can then main
tain two-dimensional game boards, as well as perform other kinds of computations 
involving data that is stored inrows and columns. 

Arrays in Java are one-dimensional; we use a single index to access each cell 
of an array. Nevertheless, there is a way we can define two-dimensional arrays in 
Java-we can create a two-dimensional array as an array of arrays. That is, we can 
define a two-dimensional array to be an array with each of its cells being another 
array. Such a two-dimensional array is sometimes also called a matrix. In Java, we 
declare a two-dimensional array as follows: 

int[][] Y = new int[8][1O]; 

This statement creates a two-dimensional "array of arrays," Y, which is 8 x 10, 
having 8 rows and 10 columns. That is, Y is an array of length 8 such that each 
element of Y is an array of length 10 of integers. (See Figure 3.7.) The following 
would then be valid uses of array Y and int variables i andj: 

Y[iHi+1] = Y[i][i] + 3; 

Y.length; / / i is 8 


j = Y[4].length; / / j is 10 


Two-dimensional arrays have many applications to 'numencal analysis. Rather 
than going into the details of such applications, however, we explore an application 
of two-dimensional arrays for implementing a simple positional game. 

o 2 3 4 5 678 9 

o 
I-o-'----+---c+--"-_+_'_ 

2 

31 
4;~·50.,..-+·'·:.:.,..:..;.65+-l4"-"+21'--49--1-18:......;.;..8+'-125-"-+'1~'7()-+'-'1;12~61~'8~ 
53 

f-:,,: 
6 

7 

Figure 3.7: Illustration of a two-dimensional integer array, Y, which has 8 rows and 
10 columns. The value of Y[3][5] is 100 and the value of Y[6][2] is 632. 



113 

o 1 2 
!!Ii 

o. 

3.1. Using Arrays 

Tic-Tac-Toe 

As most school children know, Tie-Tae-Toe is a game played in a three-by-three 
board. Two players-X and O-alternate in placing their respective marks in the 
cells of this board, starting with player X. If either player succeeds in getting three 
of his or her marks in a row, column, or diagonal, then that player wins. 

This is admittedly not a sophisticated positional game, and it's not even that 
much fun to play, since a good player 0 can always force a tie. Tic-Tac-Toe's saving 
grace is that it is a nice, simple example showing how two-dimensional arrays can 
be used for positional games. Software for more sophisticated positional games, 
such as checkers, chess, or the popular simulation games, are all based on the same 
approach we illustrate here for using a two-dimensional array for Tic-Tac-Toe. (See 
Exercise P-7.11.) 

The basic idea is to use a two-dimensional array, board, to maintain the game 
board. Cells in this array store values that indicate if that cell is empty or stores 
an X or O. That is, board is a three-by-three matrix, whose middle row consists 
of the cells board[I][O], board[l][l], and board[I][2]. In our case, we choose to 
make the cells in the board array be integers, with a 0 indicating an empty cell, a 1 
indicating an X, and a 1 indicating O. This encoding allows us to have a simple 
way of testing if a given board configuration is a win for X or 0, namely, if the 
values of a row, column, or diagonal add up to ~3 or 3. We illustrate this approach 
in Figure 3.8. 

x 

XIO o 1 

2~;a~ 
playing board board array 

Figure 3.8: An illustration of a Tic-Tae-Toe board and the two-dimensional integer 
array, board, representing it. 

We give a complete Java class for maintaining a Tic-Tac-Toe board for two 
players in Code Fragments 3.10 and 3.11. We show a sample output in Figure 3.9. 
Note that this code is just for maintaining the Tic-Tae-Toe board and register
ing moves; it doesn't perform any strategy or allow someone to play Tic-Tae-Toe 
against the computer. The details of such a program are beyond the scope of this 
chapter, but it might nonetheless make a good course project (see Exercise P-7.11). 



114 Chapter 3. Arrays, Linked lAsts, and Recursion 

/** Simulation of a Tic-Tac-Toe game (does not do strategy). */ 
public class TicTacToe { 

protected static final int X = 1, 0 = 1; / / players 
protected static final int EMPTY = 0; / / empty cell 
protected int board[J[] = new int[3][3J; / / game board 
protected int player; / / current player 
/** Constructor * / 
public TicTacToeO { ciearBoardO; } 
/** Clears the board * / 
public void clearBoardO { 

for (int i =0; i < 3; i++) 

for (int j = 0; j < 3; j++) 


board[ilUJ = EMPTY; / / every cell should be empty 

player X; / / the first player is 'X' 


} 

/** Puts an X or 0 mark at position i,j * / 

public void putMark(int i, int j) throws IliegalArgumentException { 


if ({i < 0) 'I (i > 2) II (j < 0) II (j > 2)) 
throw new IlIegaIArgumentException("Invalid board position"); 

if (board[ilfj] != EMPTY) 
throw new IIlegaIArgumentException("Board position occupied ll 

); 

board[iJOJ = player; / / place the mark for the current player 
player = player; / / switch players (uses fact that 0 = - X) 

} 

/** Checks whether the board configuration is a win for the given player * / 

public boolean isWin(int mark) { 


return 	((board[O][O] + board[OJ[l] + board[OJ[2J mark*3) / / row 0 
II (board[lJ[O] + board[l][l] + board[1J[2] == mark*3) / / row 1 
II (board(2J[O] + board[2][lJ + board [2][2] == mark*3) / / rov6 2 
II (board [O][OJ + board[l][OJ + board[2J[OJ == ll1ark*3) / / column 0 
II (board [0][1] + board[lJ[lJ + board[2][1] == mark*3) / / column 1 
II (board[OJ[2] + board[1][2] + board[2][2] == mark*3) / / column 2 
II (board [0][0] + board[l][l] + board[2][2] == mark*3) / / diagonal 
II (board[2][O] + board[l][l] + board[0J[2] == mark*3)); / / diagonal 

} 

/** Returns the winning player or 0 to indicate a tie * / 

public int winnerO { 


if (isWin(X)) 

return(X); 


else if (isWin(O)) 

return(O); 


else 

return(O); 


} 


Code Fragment 3.10: A simple, complete Java class for playing Tie-Tae-Toe be
tween two players. (Continues in Code Fragment 3.11.) 



115 3.1. Using Arrays 

/** Returns a simple character string showing the current board * / 
public String toStringO { 

Stri ng sIn'; 
for (int i=O; i<3; i++) { 

for (int j=O; j<3; j++) { 
switch (board[i]!J]) { 
case X: s += "X"; break; 
case 0: s += "0 II; break; 
case EMPTY: s " "; break; 
} 
if U< 2) s I"; / / column boundaryII 

} 
if (i < 2) s += "\n-----\n"; / / row boundary 

} 
return s; 

} 
/** Test run of a simple game * / 
public static void main(String[] args) { 

TicTacToe game - new TicTacToeO; 
/* X moves: * / /* 0 moves: * / 
game.putMark(l,l); game.putMark(O,2); 
game.putMark(2,2); game.putMark(O,O); 
game.putMark(O,l); game.putMark(2,1); 
game.putMark(1,2); game.putMark(l,O); 
game.putMark(2,O); 
System.out.println(game.toStri ngO); 
int winningPlayer game.winnerO; 
if (winningPlayer 0) 

System.out.println(winningPlayer + " 'Wins"); 
else 

System.out.println("Tie"); 
} 

} 

Code Fragment 3.11: A simple, complete Java class for playing Tic-Tac-Toe be
tween two players. (Continued from Code Fragment 3.10.) 

DIXID 

DIXIX 

XIDIX 
Tie 

Figure 3.9: Sample output of a Tic-Tac-Toe game. 



116 Chapter 3. Arrays, Linked Lists, and Recursion 

Going Deeper 

The fact that two-dimensional arrays in Java are really one-dimensional arrays 
nested inside a common one-dimensional array raises an interesting issue with 
respect to how we think about compound objects. In particular, it brings up the 
question of where a compound object, which is an object-like a two-dimensional 
array-that is made up of other objects, begins and ends. 

As we mentioned in Section 1.5, an array reference in Java points to an array 
object. Thus, if we have a two-dimensional array, A, and another two-dimensional 
array, B, that has the same entries as A, we probably want to think that A is equal 
to B. But the one-dimensional arrays that make up the rows of A and B are stored 
in different memory locations, even though they have the same internal content. 
Therefore, a call to the method java.utiI.Arrays.equals(A,B) will return false in 
this case. The reason for this behavior is that this equalsO method tests for shallow 
equality, that is, it tests only whether the corresponding elements in A and B are 
equal to each other using only a simple notion of equality. This simple equality 
rule says that two base type variables are equal if they have the same value and two 
object references are equal if they both refer to the same object. Fortunately, if we 
want to have a deep equality test for arrays of objects, like two-dimensional arrays, 
the java.util.Arrays class provides the following method: 

deepEquals(A,B): 	Returns whether A and B are deeply equal. A and B 
are deeply equal if they have the same number of ele
ments and the two elements A[i] and B[i] in each pair 
of corresponding elements are themselves equal in the 
simple sense, -are arrays of the same primitive ty.pe such 
that Arrays.equals(A[i],B[i]) would.return true, or are ar
rays of object references such thatA[i] and B[i] are deeply 
equal. 

In addition to deep equality, we also desire a deep method for converting a two
dimensional array or an array of object references into a string. Such a method is 
in fact provided by the java.util.Arrays class: 

deepToString(A): 	Returns a string representing the contents of A. To con
vert an element A[i] to a string, if A[i] is an array refer
ence, Arrays.deepToString(A[i]) is called, else the stan
dard method String.valueOf(A[i]) is used. 

We may also want to have a corresponding deepCopyOf method for making an 
identical copy of a two-dimensional array, but, as of this writing, no such method 
exists in the java.util.Arrays class. Thus, if we want to make an identical, but 
different, copy of a two-dimensional array, A, we need to make a call to A[i] .cloneO 
or java.utiI.Arrays.copyOf(A[i],A[i].length) for each row, A[tl, of A, in tum. 



117 3.2. Singly Linked Lists 

3.2 Singly Linked Lists 


In the previous section, we presented the array data structure and discussed some 
of its applications. Arrays are nice and simple for storing things in a certain order, 
but they have drawbacks. They are not very adaptable, for one, since we have to fix 
the size N of an array in advance, and we have to use integer indices to access its 
contents, for another. 

There are other ways to store a sequence of elements, however, that do not have 
these drawbacks. In this section, we explore an important alternate implementation, 
which is known as the singly linked list. 

A linked list, in its simplest form, is a collection of nodes that together form a 
linear ordering. The ordering is determined as in the children's game "Follow the 
Leader," in that each node is an object that stores a reference to an element and a 
reference, called next, to another node. (See Figure 3.10.) 

ILAX I -I ·1 MSP I -\ ·1 ATL I -I .../BOS / ·1 ... 0 
head tail 

Figure 3.10: Example of a singly linked list whose elements are strings indicating 
airport codes. The next pointers of each node are shown 'as arrOWi. The null object 
is denoted as 0. 

It might seem strange to have a node reference another node, but such a scheme 
easily works. The next reference inside a node can be viewed as a link or pointer 
to another node. Likewise, moving from one node to another by following a next 
reference is known as link hopping or pointer hopping. The first and last node of a 
linked list usually are called the head and tail of the list, respectively. Thus, we can 
link hop through the list starting at the head and ending at the tail. We can identify 
the tail as the node having a null next reference, which indicates the end of the list. 
A linked list defined in this way is known as a singly linked list. 

Like an array, a singly linked list keeps its elements in a certain order. This 
order is determined by the chain ofnext links going from each node to its successor 
in the list. Unlike an array, a singly linked list does not have a predetermined fixed 
size, and uses space proportional to the number of its elements. Likewise, we do 
not keep track of any index numbers for the nodes in a linked list. So we cannot 
tell just by examining a node if it is the second, fifth, or twentieth node in the list. 



118 Chapter 3. Arrays, Linked Lists, and Recursion 

Implementing a Singly Linked List 

To implement a singly linked list, we define a ~Iode class, as shown in Code Frag
ment 3.12, which specifies the type of objects stored at the nodes of the list. Here 
we assume elements are character strings. In Chapter 5, we describe how to define 
nodes that can store arbitrary types of elements. Given the Node class, we can de
fine a class, SLinkedList, shown in Code Fragment 3.13, defining the actual linked 
list. This class keeps a reference to the head node and a variable counting the total 
number of nodes. 

/** Node of a singly linked list of strings. * / 
public class Node { 

private String element; / / we assume elements are character strings 
private Node next; 
/** Creates a node with the given element and next node. * / 
public Node(String s, Node n) { 

element s; 
next = n; 

} 
/** Returns the element of this node. * / 
public String getElement() { return element; } 
/** Returns the next node of this node. * / 
public Node getNextO { return next; } 
/ / Modifier methods: 
/** Sets the element of this node. * / 
public void setElement(String newElem) { element = newElem; } 
/** Sets the next node of this node. .* / 

public void setNext( Node newNext) {next newNext;} 
} 

Code Fragment 3.12: Implementation of a node of a singly linked list. 

/** Singly linked list .* / 
public class SLinkedList { 

protected Node head; / / head node of the list 
protected long size; / / number of nodes in the list 
/** Default constructor that creates an empty list * / 
public SLi nked ListO { 

head = null; 
size 0; 


} 

/ / " . update and search methods would go here ...
} . . . . . . 

Code Fragment 3.13: Partial implementation of the class for a singly linked list. 



119 3.2. Singly Linked Lists 

3.2.1 Insertion in a Singly Linked List 

When using a singly linked list, we can easily insert an element at the head of the 
list, as shown in Figure 3.11 and Code Fragment 3.14. The main idea is that we 
create a new node, set its next link to refer to the same object as head, and then set 
head to point to the new node. 

head 

o 
(a) 

head 

~0r-LAX-[-~-I 
~ ________I 

'-----'-----' 

(b) 

head 


~x 1·1 ·1 MSP 1·1 ·1 All 1·1 ·1 BOS 1.! •0 
(c) 

Figure 3.11: Insertion of an element at the head ofa singly linked list: (a) before 
the insertion; (b) creation of a new node; (c) after the insertion. 

Algorithm add Fi rst(v): 

v.setl\lext(head) {make v point to the old head node} 
head f- v {make variable head point to new node} 
size f- size + I {increment the node count} 

Code Fragment 3.14: Inserting a new node v at the beginning of a singly linked list. 
Note that this method works even if the list is empty. Note that we set the next 
pointerJor the,new node v befor;e we make variable head point to v. 



120 Chapter 3. Arrays, lAnked lAsts, and Recursion 

Inserting an Element at the Tail of a Singly Linked List 

We can also easily insert an element at the tail of the list, provided we keep a 
reference to the tail node, as shown in Figure 3.12. In this case, we create a new 
node, assign its next reference to point to the null object, set the next reference of 
the tail to point to this new object, and then assign the tail reference itself to this 
new node. We give the details in Code Fragment 3.15. 

tail 

i MSP 1·1 ~I ATL 1·1 ~3 ~0 
(a) 

tail 

IMSP i-I ·1 ATL 1·1 ~os1·1 •0 
(b) 

tail 

1MSP 1'1 ·1 ATL:'I ·1 BaS 1·1 4AA1·1 •0 
(c) 

i 

Figure 3.12: Insertion at the tail of a singly linked list,(a) before the insertion; (b) 
creation of a new node; (c) after the insertion. Note that we set the next link for the 
tail in (b) before we assign the tail variable to point to the new node in (c). 

Algorithm addLast(v): 

v.setNext(null) {make new node v point to null object} 
tail.setNext(v) {make old tail node point to new node} 
tail ~v {make variable tail point to new node.} 
size ~ size +1 {increment the node count} 

Code Fragment 3.15: Inserting a new node at the end of a singly linked list. This 
method works also if the list is empty. Note that we set the next pointer for the old 
tail node before we make variable tail point to the new node. 



121 3.2. Singly Linked Lists 

3.2.2 Removing an Element in a Singly Linked List 

The reverse operation of inserting a new element at the head of a linked list is to 
remove an element at the head. This operation is illustrated in Figure 3.13 and 
given in detail in Code Fragment 3.16. 

head 

~x 1·1 ~I ~I ~I BOS 1::t--0MSP 1·1 ATL 1·1 
(a)

head 

,------,-I-----,r0 

(b)

head 

o 
(c) 

Figure 3.13: Removal of an element at the head of a singly linked list: (a) before 
the removal; (b) "linking out" the old new node; (c) after the removal. 

Algorithm removeFirst(): 

if head = null then 
Indicate an error: the list is empty. 

t f- head 
head f- head .getNextO {make head point to next node (or null)} 
t .setNext(nUll) {null out the next pointer of the removed node} 
size f- size 1 {decrement the node count} 

Code Fragment 3.16: Removing the node at the beginning of a singly linked list. 

Unfortunately, we cannot easily delete the tail node of a singly linked list. Even 
if we have a tail reference directly to the last node of the list, we must be able to 
access the node before the last node in order to remove the last node. But we cannot 
reach the node before the tail by following next links from the taiL The only way to 
access this nodeis to start from the head of the list "and search all the way through 
the list. But such a sequence of link hopping operations could take a long time. 



122 Chapter 3. Arrays, Linked Lists, and Recursion 

3.3 Doubly linked lists 

As we saw in the previous section, removing an element at the tail of a singly linked 
list is not easy. Indeed, it is time consuming to remove any node other than the head 
in a singly linked list, since we do not have a quick way of accessing the node in 
front of the one we want to remove. Indeed, there are many applications where 
we do not have quick access to such a predecessor node. For such applications, it 
would be nice to have a way of going both directions in a linked list. 

There is a type of linked list that allows us to go in both directions-forward 
and reverse-in a linked list. It is the doubly linked list. Such lists allow for a great 
variety of quick update operations, including insertion and removal at both ends, 
and in the middle. A node in a doubly linked list stores two references-a next 
link, which points to the next node in the list, and a prev link, which points to the 
previous node in the list. 

A Java implementation of a node of a doubly linked list is shown in Code 
Fragment 3.17, where we assume that elements are character strings. In Chapter 5, 
we discuss how to define nodes for arbitrary element types. 

/** Node of a doubly linked list of strings * / 
public class DNode { 

protected String element; / / String element stored by a node 
protected DNode next, prev; / / Pointers to next and previous nodes 
/** Constructor that creates a node with given fields * / 
public DNode(String e, DNode p, DNode n) { 

element = e; 

prev = p; 

next = n; 


} 

/** Returns the element of this node * / 

public String getElementO { return element; } 

/** Returns the previous node of this node * / 

public DNode getPrevO { return prev; } 

/** Returns the next node of this node * / 

public DNode getNextO { return next; } 

/** Sets the element of th is node * / 

public void setElement(String newElem) { element = newElem; } 

/** Sets the previous node of this node * / 

public void setPrev{DNode newPrev) {prev newPrev;} 

/** Sets the next node of this node * / 

public void setNext(DNode newNext) { next = new1\1 ext; } 


r 
Code Fragment 3.17: Java class DNode representing a node of a doubly linked list 
that stores a character string. 



123 3.3. Doubly Linked Lists 

Header and Trailer Sentinels 

To simplify programming, it is convenient to add special nodes at both ends of a 
doubly linked list: a header node just before the head of the list, and a trailer node 
just after the tail of the list. These "dummy" or sentinel nodes do not store any 
elements. The header has a valid next reference but a null prey reference, while the 
trailer has a valid prey reference but a null next reference. Adoubly linked list with 
these sentinels is shown in Figure 3.14. Note that a linked list object would simply 
need to store references to these two sentinels and a size counter that keeps track of 
the number of elements (not counting sentinels) in the list. 

header next next .next .next trailer 

B=*IJFKI0IpVDI0ISFOI~ 

prey prey prey prey 

Figure 3.14: A doubly linked list with sentinels, header and trailer, marking the 
ends of the list. An empty list would have these sentinels pointing to each other. 
We do not show the null prey pointer for the header nor do we show the null next 

pointer for the trailer. 

Inserting or removing elements at either end of a doubly linked list is straight
forward to do. Indeed, the prey links eliminate the need to traverse the list to get to 
the node just before the taiL We show the removal at the tail of a doubly linked list 
in Figure 3.15 and the details for this operation in Code Fragment 3.18. 

header trailer 

(a) 

header trailer 

I I ~,--/~I~~~I~/--
(b) 

header trailer 

>;, (c) 

Figure 3.15: Removing the node at the end of a a doubly linked list with header and 
trailer sentinels: (a) before deleting at the tail; (b) deleting at the tail; (c) after the 
deletion. 



124 Chapter 3. Arrays, Linked Lists, and Recursion 

Algorithm removeLastO: 


if size =0 then 

Indicate an error: the list is empty 


v f- trailer.getPrevO {last node} 

u f- v.getPrevO {node before the last node} 

trailer.setPrev(u) 

u.setNext(tra iler) 

v.setPrev(nUll) 

v.setNext(nUll) 

size size 1 


Code Fragment 3.18: Removing the last node of a doubly linked list. Variable size 
keeps track of the current number of elements in the list. Note that this method 
works also if the list has size one. 

Likewise, we can easily perform an insertion of a new element at the beginning 
of a doubly linked list, as shown in Figure 3.16 and Code Fragment 3.19. 

header trailer 

~IJFK lalpVDIOISFOI~
i> 

{ \ 

( I 

I I 


\'tl~~~Ij-/J 
(a) 

header trailer 

~18WI10IJFKIOlpVDIOIJSfO~ 
(b) 

Figure 3.16: Adding an element at the front: (a) during; (b) after. 

Algorithm addFirst(v): 


wf- header.getNextO {first node} 

v.setNext(w) 

v.setPrev(header) 

w.setPrev(v) 

header.setNext(v) 

size =size 1 


Code Fragment 3.19: Inserting a new node v at the beginning of a doubly linked 
list. Variable size keeps track of the current number of elements in the list. Note 
that this method works also on an empty list. 



125 3.3. Doubly Linked Lists 

3.3.1 Insertion in the Middle of a Doubly Linked List 

Doubly linked lists are useful for more than just inserting and removing elements 
at the head and tail of the list, however. They also are convenient for maintaining a 
list of elements while allowing for insertion and removal in the middle of the list. 
Given a node v of a doubly linked list (which could be possibly the header but not 
the trailer), we can easily insert a new node z immediately after v. Specifically, let 
wthe be node following v. We execute the following steps: 

1. Make z's prey link refer to v 
2. Make z's next link refer to w 
3. Make w's prey link refer to z 
4. Make v's next link refer to z. 

This method is given in detail in Code Fragment 3.20, and is illustrated in Fig
ure 3.17. Recalling our use of header and trailer sentinels, note that this algorithm 
works even if v is the tail node (the node just before the trailer). 

Algorithm addAfter(v,z): 

w~ v.getNextO {node after v} 
z.setPrev(v) {link z to its predecessor, v} 
z.setNext (w) {link z to its successor, w} 
w.setPrev(z) {link w to its new predecessor, z} 
v.setNext(z) {link v to its new successor, z} 
size ~ size + 1 

Code Fragment 3.20: Inserting ~ new node zafter a given' node v itt a doubly linked 
list. 

header trailer 

III 
I 
BWll II 

I 

LL_~li 

(a) 

header trailer 

(b) 

Figure 3.17: Adding a new node after the node storing JFK: (a) creating a new node 
with element BWI and linking it in; (b) after the insertion. 



126 Chapter 3. Arrays, Linked Lists, and Recursion 

3.3.2 Removal in the Middle of a Doubly Linked List 

Likewise, it is easy to remove a node v in the middle of a doubly linked list. We 
access the nodes u and won either side of v using v's getPrev and getNext methods 
(these nodes must exist, since we are using sentinels). To remove node v, we simply 
have u and w point to each other instead of to v. We refer to this operation as the 
linking out of v. We also null out v's prey and next pointers so as not to retain 
old references in the list. This algorithm is given in Code Fragment 3.21 and is 
illustrated in Figure 3.18. 

Algorithm remove(v): 
u ~ v.getPrev() {node before v} 
w ~ v.getNextO {node after v} 
w.setPrev(u) {link out v} 
u.setNext(w) 
v.setPrev(nUll) {null out the fields of v} 
v.setNext(nUll) 
size ~ size 1 {decrement the node count} 

Code Fragment 3.21: Removing a node v in a doubly linked list. This method works 
even if v is the first, last, or only nonsentinel node. 

header trailer 

B=*\JFK l-a\BWI 10\PVD i -a1SFO 'I ~ 
(a) 

header 

(b) 

header trailer 

~IBWlrQIJFKlpISFOI~ 
(c) 

Figure 3.18: Removing the node storing PVO: (a) before the removal; (b) linking 
out the old node; (c) after the removal (and garbage collection). 



127 3.3. Doubly Linked Lists 

3.3.3 An Implementation of a Doubly Linked List 

In Code Fragments 3.22-3.24, we show an implementation of a doubly linked list 

with nodes that store character string elements. 


/** Doubly linked list with nodes of type DNode storing strings. * / 

public class DList { 


protected int size; / / number of elements 
protected DNode header, trailer; / / sentinels 
/** Constructor that creates an empty list * / 
public DListO { 

size 0; 
header new DNode(null, null, null); / / create header 
trailer new DNode(nulJ, header, null); / / create trailer 
header.setNext(trailer); / / make header and trailer point to each other 

} 
/** Returns the number of elements in the list * / 
public int sizeO { return size; } 
/** Returns whether the list is empty * / 
public boolean isEmptyO { return (size == 0); } 
/** Returns the first node of the list * / 
public DNode getFirstO throws IIlegalStateException { 

if (isEmptyO) throw new IliegalStateExceptionC'List is empty"); 
return header.getNextO; 

} 
/** Returns the last node of the list * / 
public DNode getLastO throws IIlegalStateException { 

if (isEmptyO) throw new IliegaIStateException("List is empty"); 
return trailer.getPrevO; 

} . . 
/** Returns the node before the given node v. An error occurs if v 
* is the header * / 

public DNode getPrev(DNode v) throws IIlegalArgumentException { 
if (v header) throw new IIlegalArgumentException 

("Cannot move back past the header of the list"); 
return v.getPrev(); 

} 
/** Returns the node after the given node v. An error occurs if v 
* is the trailer * / 

public DNode getNext(DNode v) throws IIlegalArgumentException { 
if (v == trailer) throw new IliegalArgumentException 

("Cannot move forward past the trailer of the list"); 
return v.getNextO; 

} 
Code Fragment 3.22: Java class DList for a doubly linked list whose nodes are 
objects of class DNode (see Code Fragment 3.17) storing character strings. (Con
tinues in Code Fragment 3.23.) 

http:3.22-3.24


128 Chapter 3. Arrays, Linked Lists, and Recursion 

/** Inserts the given node z before the given node v. An error 
* occurs if v is the header * / 

public void addBefore(DNode v, DNode z) throws IIlegalArgumentException { 
DNode u = getPrev(v); / / may throw an IliegalArgumentException 
z.setPrev(u); 
z.setNext(v); 
v.setPrev(z); 
u.setNext(z); 
size++; 

}
/** Inserts the given node z after the given node v. An error occurs 
* if v is the trailer * / 

public 	void addAfter(DNode v, DNode z) { 
DNode w = getNext(v); / / may throw an IliegalArgumentException 
z.setPrev(v); 
z.setNext(w); 
w.setPrev(z); 
v.setNext(z); 
size++; 

} 

/** Inserts the given node at the head of the list * / 

public void addFirst(DNode v) { 


addAfter(header, v); 

}

/** Inserts the given node at the tail of the list * / 

public void addLast(DNode v) { 


addBefore(trailer, v); 

} 	 . .

/** Removes the given node v from the list. An error occurs if v is 
* the header or trailer * / 

public void remove(DNode v) { 
Dl\lode u getPrev(v); / / may throw an IliegalArgumentException 
DNode w getl\lext(v); / / may throw an IliegalArgumentException 
/ / unlink the node from the list 
w.setPrev( u); 
u.setNext(w); 
v.setPrev(null); 
v.setNext(null); 
slze--; 

} 
Code Fragment 3.23: Java class DList for a doubly linked list. (Continues in Code 
Fragment 3.24.) 



129 3.3. Doubly Linked Lists 

/** Returns whether a given node has a previous node * / 
public boolean hasPrev(DNode v) { return v! header;} 
/** Returns whether a given node has a next node * / 
public boolean hasNext(DNode v) { return v! trailer;} 
/** Returns a string representation of the list * / 
public String toStringO { 

String s II [II; 


DNode v header.getNext(); 

while (v trailer) { 


s v.getElement(); 

v v.getNext(); 

if (v != trailer) 


II 	 II.s ; 


} 

s += II] "; 


return s; 

} 

} 
Code Fragment 3.24: A doubly linked list class. (Continued from Code Frag
ment 3.23.) 

We make the following observations about class DUst above. 

• 	Object of class DNode, which store Stri.ng elements, ~eused for all the 
nodes of the list, including the header and trailer sentinels. 

• 	We can use class DUst for a doubly linked list of String objects only. To 
build a linked list of other types of objects, we can use a generic declaration, 
which we discuss in Chapter 5. 

• 	Methods getFirst and getLast provide direct access to the first and last nodes 
in the list. . 

• 	Methods getPrev and getNext allow to traverse the list 
• 	Methods hasPrev and hasNext detect the boundaries of the list. 
• 	Methods add First and add Last add a new node at the beginning or end of the 

list. 
• 	Methods add Before and addAfter add a new node before or after an existing 

node. 
• 	Having only a single removal method, remove, is not actually a restriction, 

since we can remove at the beginning or end of a doubly linked list L by 
executing L.remove(L.getFirstO) or L.remove(L.getLastO), respectively. 

• 	Method toString for converting an entire list into a string is useful for testing 
and debugging purposes. 



130 Chapter 3. Arrays, Linked Lists, and Recursion 

3.4 Circularly Linked Lists and Linked-List Sorting 

In this section, we study some applications and extensions of linked lists. 

3.4.1 Circularly Linked Lists and Duck, Duck, Goose 

The children's game, "Duck, Duck, Goose," is played in many cultures. Children 
in Minnesota playa version called "Duck, Duck, Grey Duck" (but please don't 
ask us why.) In Indiana, this game is called "The Mosh Pot." And children in the 
Czech Republic and Ghana play sing-song versions known respectively as "Pesek" 
and "Antoakyire." A variation on the singly linked list, called the circularly linked 
list, is used for a number of applications involving circle games, like "Duck, Duck, 
Goose." We discuss this type of list and the circle-game application next. 

Acircularly linked list has the same kind of nodes as a singly linked list. That 
is, each node in a circularly linked list has a next pointer and a reference to an 
element. But there is no head or tail in a circularly linked list. For instead of 
having the last node's next pointer be null, in a circularly linked list, it points back 
to the first node. Thus, there is no first or last node. If we traverse the nodes of 
a circularly linked list from any node by following next pointers, we will cycle 
through the nodes. 

Even though a circularly linked list has no beginning or end, we nevertheless 
need some node to be marked as a special node, which we call the cursor. The 
cursor node allows us to have a place.to start from if we ever need to lfaverse a 
circularly linked list. And if we remember this starting point, then we can also 
know when we are done-we are done with a traversal ora circularly linked list 
when we return to the node that was the cursor node when we started. 

We can then define some simple update methods for a circularly linked list: 

add (v): 	 Insert a new node v immediately after the cursor; if the 
list is empty, then vbecomes the cursor and its next pointer 
points to itself. 

removeO: 	 Remove and return the node v immediately after the cur
sor (not the cursor itself, unless it is the only node); if the 
list becomes empty, the cursor is set to null. 

adva nceO: Advance the cursor to the next node in the list. 

In Code Fragment 3.25, we show a Java implementation of a circularly linked 
list, which uses the Node class from Code Fragment 3.12 and also includes a 
toString method for producing a string representation of the list. 

http:place.to


131 3.4. Circularly Linked Lists and Linked-List Sorting 

/** Circulary linked list with nodes of type Node storing strings. * / 
public class CircieList { 

protected Node cursor; / / the current cursor 
protected int size; / / the number of nodes in the list 
/** Constructor that creates and empty list * / 
public CircieListO { cursor = null; size = 0; } 
/** Returns the current size * / 
public int sizeO { return size; } 
/** Returns the cursor * / 
public Node getCursorO { return cursor; } 
/** Moves the cursor forward * / 
public void advanceO { cursor = cursor.getNextO; } 
/** Adds a node after the cursor * / 
public void add(Node newNode} { 

if (cursor null) { / / list is empty 

newNode.setNext(newNode}; 

cursor = newNode; 


} 
else { 
new~lode.setNext(cursor.getNext()}; 
cursor.setNext(new~lode}; 


} 

iize++; 


} 

/** Removes the node after the cursor * / 

public Node removeO{ 


Node old Node = cursor.getNextO; / / the node being removed 

if (old Node == cursor) 


cursor = null; / / list is becoming empty 

else { 


cu rsor.setN ext(oldNode.getNextO}; / / link out the old node 
old Node.setNext(null}; 


} 

size--; 

return old l\Jode; 


}

/** Returns a string representation of the list, starting from the cursor * / 

public String toStringO { 


if (cursor == null) return n[] n; 

String s = II [. •• " + cursor.getElementO; 

Node old Cursor = cursor; 

for (advanceO; oldCursor !- cursor; advanceD) 


s II," + cursor.getElement(); 

return s + II • •• ] n; 


} 
} 

Code Fragment 3.25: A circularly linked list class with simple nodes. 



132 Chapter 3. Arrays, Linked Lists, and Recursion 

Some Observations about the CircleList Class 

There are a few observations we can make about the CircieList class. It is a simple 
program that can provide enough functionality to simulate circle games, like Duck, 
Duck, Goose, as we will soon show. It is not a robust program, however. In partic
ular, if a circle list is empty, then calling advance or remove on that list will cause 
an exception. (Which one?) Exercise R-3.7 deals with this exception-generating 
behavior and ways of handling this empty-list condition better. 

Duck, Duck, Goose 

In the children's game, Duck, Duck, Goose, a group of children sit in a·circle. One 
of them is elected "it" and that person walks around the outside of the circle. The 
person who is "it" pats each child on the head, saying "Duck" each time, until 
reaching a child that the "it" person identifies as "Goose." At this point there is a 
mad scramble, as the "Goose" and the "it" person race around the circle. Who ever 
returns to the Goose's former place first gets to remain in the circle. The loser of 
this race is the "it" person for the next round of play. This game continues like this 
until the children get bored or an adult tells them it's snack time, at which point the 
game ends. (See Figure 3.19.) 

I I "Goose"& .../ I I 
,~\ ( , ,

&6 
Ij lUG' , 

II,'DUCk".I 

, "Duck" \.\". " ,
"Duck" 

(a) (b) 

Figure 3.19: The Duck, Duck, Goose game: (a) choosing the "Goose;" (b) the race 
to the "Goose's" place between the "Goose" and the "it" person. 

Simulating this game is an ideal application of a circularly linked list. The 
children can represent nodes in the list. The "it" person can be identified as the 
person sitting after the cursor, and can be removed from the circle to simulate the 
marching around. We can advance the cursor with each "Duck" the "it" person 
identifies, which we can simulate with a random decision. Once a "Goose" is 
identified, we can remove this node from the iist, make a random choice to simulate 
whether the "Goose" or the "it" person wins the race, and insert the winner back 
into the list. We can then advance the cursor and insert the "it" person back in to 
repeat the process (or be done if this is the last time we play the game). 

T::~~ 



133 3.4. Circularly Linked Lists and Linked-List Sorting 

Using a Circularly Linked List to Simulate Duck, Duck, Goose 

We give Java code for a simulation of Duck, Duck, Goose in Code Fragment 3.26. 

/** Simulation of Duck, Duck, Goose with a circularly linked list. * / 
public static void main(String[] args) { 


CircieList C new CircieList(); 

int N = 3; / / number of iterations of the game 

Node it; / / the player who is "it" 

Node goose; / / the goose 

Random rand = new Random(); 

rand.setSeed(System.currentTimeMillisO); / / use current time as seed 

/ / The players... 

String[] names = {ItBob",1I Jen", "Pam", II Tom II ,IlRonll,IlVic lf , "Sue", II Joe"}; 

for (int i = 0; i< names. length; i++) { 


Cadd(new Node(names[i]' null)); 
CadvanceO; 


} 

for (int i = 0; i < N; i++) { / / play Duck, Duck, Goose N times 


System.out.println(IlPlaying Duck, Duck, Goose for" + CtoStringO); 

it CremoveO; 

System.out.println(it.getElementO + is it. II);
II 

while (rand.nextBooleanO II rand.nextBooleanO) { / / march around circle 
CadvanceO; / / advance with probability 3/4 
System.out.println(CgetCursorO.getElementO + n is a duck. "); 

} 

goose - CremoveO; 

System.out.println(goose.'getElementO + is the' goose! liS);
II 

if (rand.nextBooleanO) { 

System.out.println("The goose won! II); 

Cadd(goose); / / add the goose back in its old place 

CadvanceO; / / now the cursor is on the goose 

Cadd(it); / / The "it" person will be it again in next round 


} 
else { 


System.out.println("The goose lost! "); 

Cadd(it); / / add who's "it" back at the goose's place 

CadvanceO; / / now the cursor is on the "it" person 

Cadd(goose); / / The goose will be "it" in the next round 


} 

} 

System.out.println("Final circle is n + CtoStringO); 


} 

Code Fragment 3.26: The main method from a program that uses a circularly linked 
list to simulate the Duck, Duck, Goose children's game. 



134 Chapter 3. Arrays, Linked Lists, and Recursion 

Some Sample Output 

We show an example output from a run of the Duck, Duck, Goose program in 
Figure 3.20. 

Playing Duck, Duck, Goose for [.. .Joe, Bob, Jen, Pam, Torn, Ron, Vic, Sue...] 

Bob is it. 

Jen is a duck. 

Pam is a duck. 

Tom is a duck. 

Ron is the goose! 

The goose won! 

Playing Duck, Duck, Goose for [... Ron, Bob, Vic, Sue, Joe, Jen, Pam, Tom ...] 

Bob is it. 

Vic is the goose! 

The goose won! 

Playing Duck, Duck, Goose for [...Vic, Bob, Sue, Joe, Jen, Pam, Tom, Ron ...] 

Bob is it. 

Sue is a duck. 

Joe is a duck. 

Jen is a duck. 

Pam is a duck. 

Tom is a duck. 

Ron is a duck. 

Vic is a duck. 

Sue is the goose! 

The goose lost! 

Final circle is (... Bob, Sue, Joe, Jen, Pam, Tom, Ron, Vic...] 


Figure 3.20: Sample output from the Duck, Duck, Goose program. 

Note that each iteration in this particular execution of this program produces a 
different outcome, due to the different initial configurations and the use of random 
choices to identify ducks and geese. Likewise, whether the "Duck" or the "Goose" 
wins the race is also different, depending on random choices. This execution shows 
a situation where the next child after the "it" person is immediately identified as 
the "Goose," as well a situation where the "it" person walks all the way around the 
group of children before identifying the "Goose," Such situations also illustrate the 
usefulness of using a circularly linked list to simulate circular games like Duck, 
Duck, Goose. 



135 3.4. Circularly Linked Lists and Linked-List Sorting 

3.4.2 Sorting a Linked List 

In Code Fragment 3.27, we show the insertion-sort algorithm (Section 3.1.2) for a 
doubly linked list. A lava implementation is given in Code Fragment 3.28. 

Algorithm InsertionSort(L): 

Input: A doubly linked listL of comparable elements 

Output: The list L with elements rearranged in nondecreasing order 


if L.sizeO <= 1 then 
return 

end +- L.getFirst() 
while end is not the last node in L do 

pivot +- end.getNextO 
Remove pivot from L 
ins +- end 
While ins is not the header and ins's element is greater than pivot's do 

ins +- ins.getPrev() 
Add pivot just after ins in L 
if ins = end then {We just added pivot after end in this case} 

end +- end.getNextO 

Code Fragment 3.27: High-level, pseudo-code'description of insertion-sort on a 
doubly linked list. 

/** Insertion-sort for a doubly linked list of class DList *I 
public static void sort(DList L) { I 


if (L.sizeO <= 1) return; II Lis already sorted in this case 

DNode pivot; I I pivot node 

DNode ins; I I insertion point 

DNode end L.getFirstO; I I end of run 

while (end L.getLastO) { 


pivot end.getNextO; I I get the next pivot node 
L.remove(pivot); I I remove it 
ins = end; I I start searching from the end of the sorted run 
while (L.hasPrev(ins) && 

ins.getElement().compareTo{pivot.getElementO) > 0) 
ins = ins.getPrevO; I I move left 

L.addAfter(ins, pivot); I I add the pivot back, after insertion point 
if (ins. . elld). I I we just added pivot after end in this case 
.' end .~ end:getNextO; // so increment the end mailer

} . 

CJdeFragment 3.28: lava implementation of the insertion-sort algorithm on a dou
bly linked list represented by class DList (see Code Fragments 3.22-3.24). 

http:3.22-3.24


136 Chapter 3. Arrays, Linked Lists, and Recursion 

3.5 Recursion 

We have seen that repetition can be achieved by writing loops, such as for loops 
and while loops. Another way to achieve repetition is through recursion, which 
occurs when a function refers to itself in its own definition. We have seen examples 
of methods calling other methods, so it should come as no surprise that most mod
ern programming languages, including Java, allow a method to call itself. Indeed, 
we didn't take note of it then, but the deepEqualsO and deepToStringO methods, 
described in Section 3.1.5, are defined recursively. In this section, we will see why 
this capability provides an elegant and powerful alternative for performing repeti
tive tasks. 

The Factorial Function 

To illustrate recursion, let us begin with a simple example of computing the value of 
the factorial function. The factorial of a positive integer n, denoted n!, is defined 
as the product of the integers from 1 to n. If n = 0, then n! is defined as 1 by 
convention. More formally, for any integer n ~ 0, 

1 ifn =0
n'= . { n·(n-1)·(n-2) .. ·3·2·1 if n > 1. 

For example, 5! = 5 ·4·3·2·1 = 120. To make the connection with methods clearer, 
we use the notation factorial(n) to denote n!. 

The factorial function can be defined in a manner that suggests a"recursive 
formulation. To see this, observe that 

factorial(5) = 5· (4·3·2 ·1) = 5· factorial( 4). 

Thus, we can define factoria I(5) in terms of factoria I(4). In general, for a positive 
integer n, we can define factorial(n) to be n· factorial(n ~ 1). This leads to the 
following recursive definition 

ifn =0 
factorial(n) = { !. factorial(n _\) if n ~ 1. 

This definition is typical of many recursive definitions. First, it contains one 
or more base cases, which are defined nonrecursively in terms of fixed quantities. 
. ,'.-. ," ' -, 

In this case, n = 0 is the base case. It also contains one or more recursive cases, 
which are defined by appealing to the definition of the function being defined. Ob
serve that there is no circularity in this definition, because each time the function is 
invoked, its argument is smaller by one. 



137 

call \ return 3*2 6 

recursiveFactorial(3) 

call 

recu rsiveFactorial (2) 

call 

\ 

return 2*1 

return 

= 

\ 

1*1 

2 

= 1 

1 

3.5. Recursion 

A Recursive Implementation of the Factorial Function 

Let us consider a Java implementation of the factorial function shown in Code 
Fragment 3.29 under the name recursiveFactorialO. Notice that no looping was 
needed here. The repeated recursive invocations of the function take the place of 
looping. 

public static int recursiveFactorial{int n) { / / recursive factorial function 
if (n 0) return 1; 
else return n * recursiveFactorial(n-1);

} . 

/ / ba
/ / re

sis case 
cursive case 

Code Fragment 3.29: A recursive implementation of the factorial function. 

We can illustrate the execution of a recursive function definition by means of a 
recursion trace. Each entry of the trace corresponds to a recursive calL Each new 
recursive function call is indicated by an arrow to the newly called function. When 
the function returns, an arrow showing this return is drawn and the return value 
may be indicated with this arrow. An example of a trace is shown in Figure 3.21. 

What is the advantage of using recursion? Although the recursive implementa
tion of the factorial function is somewhat simpler than the iterative version, in this 
case there is no compelling reason for preferring recursion over iteration. For some 
problems, however, a recursive implementation can be significantly simpler and 
easier to understand than an iterative implementation. Such an example follows. 

return 4*6 =24 .~ final answer 

~. 

.return 1 

recursiveFactorial(0) 

Figure 3.21: A recursion trace for the call recursiveFactorial(4). 



138 Chapter 3. Arrays, Linked Lists, and Recursion 

Drawing an English Ruler 

As a more complex example of the use of recursion, consider how to draw the 
markings of a typical English ruler. Such a ruler is broken into intervals, and each 
interval consists of a set of ticks, placed at intervals of 1/2 inch, 1/4 inch, and so 
on. As the size of the interval decreases by half, the tick length decreases by one. 
(See Figure 3.22.) 

---- 0 ----- 0 --- 0 

--- 1 

---- 1 --- 2 

--- 3 

---- 2 ----- 1 

(a) (b) (c) 

Figure 3.22: Three sample outputs of an English rulerdrawip.g: (a) a 2-inch ruler 
with major tick length 4; (b) a I-inch ruler with major tick length 5; (c) a 3-inch 
ruler with major tick length 3. 

Each fraction of an inch also has a numeric label. The longest tick length is 
called the major tick length. We will not worry about actual distances, however, 
and just print one tick per line. 

A Recursive Approach to Ruler Drawing 

Our approach to drawing such a ruler consists of three methods. The main method 
drawRulerO draws the entire ruler. Its arguments are the total number of inches 
in the ruler, nlnches, and the major tick length, majorLength. The utility method 
drawOneTickO draws a single tick of the given length. It can also be given an 
optional integer label, which is printed if it is nonnegative. 



139 3.5. Recursion 

The interesting work is done by the recursive method drawTicksO, which draws 
the sequence of ticks within some intervaL Its only argument is the tick length as
sociated with the interval's central tick. Consider the English ruler with major tick 
length 5 shown in Figure 3.22(b). Ignoring the lines containing 0 and 1, let us con
sider how to draw the sequence of ticks lying between these lines. The central tick 
(at 112 inch) has length 4. Observe that the two patterns of ticks above and below 
this central tick are identical, and each has a central tick of length 3. In general, an 
interval with a central tick length L > 1 is composed of the following: 

• An interval with a central tick length L - 1 
• A single tick of length L 

• A interval with a central tick length L - 1. 
With each recursive call, the length decreases by one. When the length drops to 
zero, we simply return. As a result, this recursive process will always terminate. 
This suggests a recursive process, in which the first and last steps are performed by 
calling the drawTicks(L 1) recursively. The middle step is performed by calling 
the method drawOneTick(L). This recursive formulation is shown in Code Frag
ment 3.30. As in the factorial example, the code has a base case (when L = 0). In 
this instance we make two recursive calls to the method. 

I I draw a tick with no label 
public static void drawOneTick(int tickLength) { drawOneTick(tickLength, -1); } 

I I draw one tick 
public static void drawOneTick(int tickLength, i<nt tickLabel) { 

for (int i = 0; i < tickLength; i++) 
System .out.print( II_II); 

if (tickLabel >= 0) System.out.print(1t + tickLabel);II 

sSystem .out. pri nt( II \n II); 
} 
public static void drawTicks(int tickLength) { I I draw ticks of given length 

if (tickLength > 0) { I I stop when length drops to 0 

drawTicks(tickLength-1); I I recursively draw left ticks 

drawOneTick(tickLength); I I draw center tick 

drawTicks(tickLength-1); I I recursively draw right ticks 


} 
} 
public static void drawRuler(int nlnches, int majorLength) { I I draw ruler 

drawOneTick(majorLength, 0); II draw tick 0 and its label 
for (int i 1; i <= nlnches; i++) { 


drawTicks(majorLength-1); I I draw ticks for this inch 

drawOneTick(majorLength, i); I I draw tick i and its label 


} 
} 

Code Fragment 3.30: A recursive implementation of a method that draws a ruler. 



--

---

140 Chapter 3. Arrays, Linked Lists, and Recursion 

. Illustrating Ruler Drawing using a Recursion Trace 

The recursive execution of the recursive drawTicks method, defined above, can be 
visualized using a recursion trace. 

The trace for drawTicks is more complicated than in the factorial example, 
however, because each instance makes two recursive calls. To illustrate this, we will 
show the recursion trace in a form that is reminiscent of an outline for a document. 
See Figure 3.23. 

drawTicks(3) Output 
i ~ 

, 

drawTicks(2) 


i 

drawTicks(1 ~ 
i 

J drawTicks(O) 

drawOneTick(1) --+ 1_ 

... 
drawTicks(O-} 

I 

drawOneTick(2) .. 

drawTicks(1 ) 
, tI 

( drawTicks(OD 

drawOneTick(1) --+ 1_ 

( drawTicks(OP 

drawOneTick(3) .. 


drawTicks(2)


I(previous pattern repeats) 

Figure 3.23: Apartial recursion trace for the call drawTicks(3). The second pattern 
of calls for drawTicks(2) is not shown, but it is identical to the first. 

Throughout this book we will see many other examples of how recursion can 
be used in the design of data structures and algorithms. 



141 3.5. 	 Recursion 

Further Illustrations of Recursion 

As we discussed above, recursion is the concept of defining a method that makes a 
call to itself. Whenever a method calls itself, we refer to this as a recursive call. We 
also consider a method M to be recursive if it calls another method that ultimately 
leads to a call back to M. 

The main benefit of a recursive approach to algorithm design is that it allows us 
to take advantage of the repetitive structure present in many problems. By making 
our algorithm description exploit this repetitive structure in a recursive way, we can 
often avoid complex case analyses and nested loops. This approach can lead to 
more readable algorithm descriptions, while still being quite efficient. 

In addition, recursion is a useful way for defining objects that have a repeated 
similar structural form, such as in the following examples. 

Example 3.1: Modem operating systems define file-system directories (which are 
also sometimes called "folders") in a recursive way. Namely, a file system consists 
of a top-level directory, and the contents of this directory consists of files and other 
directories, which in tum can contain files and other directories, and so on. The 
base directories in the file system contain only files, but by using this recursive 
definition, the operating system allows for directories to be nested arbitrarily deep 
(as long as there is enough space in memory). " 

Example 3.2: Much of the syntax in modem programming languages is defined 
in a recursive way. For example, we can define an argument list!in Java using the 
following notation: 

argument-list: 

argument 

argument-list, argument 


In other words, an argument list consists of either (i) an argument or (ii) an argu
ment list followed by a comma and an argument. That is, an argument list consists 
of a comma-separated list of arguments. Similarly, arithmetic expressions can be 
defined recursiVely in terms of primitives (like variables and constants) and arith
metic expressions. 

.," 	 Example" 3.3: There are many examples ofrecursion in art and nature. One of the 
most classic examples ofrecursion used in art is in the Russian Matryoshka dolls. 
Each doll is made ofsolid wood or is hollow and contains another Matryoshka doll 
inside it. 



142 	 Chapter 3. Arrays, Linked Lists, and Recursion 

3.5.1 Linear Recursion 

The simplest form of recursion is linear recursion, where a method is defined 
so that it makes at most one recursive call each time it is invoked. This type of 
recursion is useful when we view an algorithmic problem in terms of a first or last 
element plus a remaining set that has the same structure as the original set. 

Summing the Elements of an Array Recursively 

Suppose, for example, we are given an array, A, of n integers that we want to sum 
together. We can solve this summation problem using linear recursion by observing 
that the sum of all n integers in A is equal to A[OJ, if n = 1, or the sum of the first n
1integers in A plus the last element in A. In particular, we can solve this summation 
problem using the recursive algorithm described in Code Fragment 3.31. 

Algorithm LinearSum(A,n): 
Illput: Ainteger array A and an integer n ~ 1, such that Ahas at least n elements 
Output: The sum of the first n integers in A 

ifn = 1 then 

return A[0] 


else 

return LinearSum(A,n -1) +A[n -1] 


Code Fragment 3.31: Summing the elements in an array using linear recursion. 

This example also illustrates an important property that a recursive "method 
should always possess-the method terminates. We ensure ~is by writing a nonre
cursive statement for the case n = 1. In addition, we always perform the recursive 
call on a smaller value of the parameter (n 1) than that which we are given (n), so 
that, at some point (at the "bottom" of the recursion), we will perform the nonre
cursive part of the computation (returning A[0]). In general, an algorithm that uses 
linear recursion typically has the following form: 

• Testfor base cases. We begin by testing for a set of base cases (there should 
be at least one). These base cases should be defined so that every possible 
chain of recursive calls will eventually reach a base case, and the handling of 
each base case should not use recursion. 

• 	Recur. After testing for base cases, we then perform a single recursive call. 
Tpisrecursive step may involve a test that decides which of several possible 
recursive calls to make, but it should ultimately choose to make just one of 
these calls each time we perform this step. Moreover, we should define each 
possible recursive call so that it makes progress towards a base case. 



143 3.5. Recursion 

Analyzing Recursive Algorithms using Recursion Traces 

We can analyze a recursive algorithm by using a visual tool known as a recursion 
trace. We used recursion traces, for example, to analyze and visualize the recursive 
factorial function of Section 3.5, and we will similarly use recursion traces for the 
recursive sorting algorithms of Sections 11.1 and 11.2. 

To draw a recursion trace, we create a box for each instance of the method 
and label it with the parameters of the method. Also, we visualize a recursive call 
by drawing an arrow from the box of the calling method to the box of the called 
method. For example, we illustrate the recursion trace of the LinearSum algorithm 
of Code Fragment 3.31 in Figure 3.24. We label each box in this trace with the 
parameters used to make this calL Each time we make a recursive call, we draw 
a line to the box representing the recursive calL We can also use this diagram to 
visualize stepping through the algorithm, since it proceeds by going from the call 
for n to the call for n 1, to the call for n - 2, and so on, all the way down to the call 
for 1. When the final call finishes, it returns its value back to the call for 2, which 
adds in its value, and returns this partial sum to the call for 3, and so on, until the 
call for n - 1returns its partial sum to the call for n. 

return 15 +A[4] == 15 + 5 20 

~---..\ ~ 

return 13 +A[3] = 13 + 2 15 

~ 
return 7 +A[2] = 7 +6 = 13 i 

~ 
return 4 +A[1] =4 +3 =7 

~ 
return A[O] =4 

Figure 3.24: Recursion trace for an execution of LinearSum (A, n) with input param
eters A {4, 3,6, 2,5} and n = 5. 

From Figure 3.24, it should be clear that for an input array of size n, Algorithm 
LinearSum makes n calls. Hence, it will take an amount of time that is roughly 
proportional to n, since it spends a constant amount of time performing the nonre
cursive part of each call. Moreover, we can also see that the memory space used by 
the algorithm (in addition to the array A) is also roughly proportional to n, since we 
need a constant amount of memory space for each of the n boxes in the trace at the 
time we make the final recursive call (for n 1). 



144 Chapter 3. Arrays, Linked Lists, and Recursion 

Reversing an Array by Recursion 

Next, let us consider the problem of reversing the n elements of an array, A, so that 
the first element becomes the last, the second element becomes second to the last, 
and so on. We can solve this problem using linear recursion, by observing that the 
reversal of an array can be achieved by swapping the first and last elements and 
then recursively reversing the remaining elements in the array. We describe the 
details of this algorithm in Code Fragment 3.32, using the convention that the first 
time we call this algorithm we do so as ReverseArray(A,O,n 1). 

Algorithm ReverseArray(A, i, j): 
Input: An array A and nonnegative integer indices i and j 
Output: The reversal of the elements in A starting at index i and ending at j 

if i < j then 

Swap A[i] and AU] 

ReverseArray(A,i +l,j-1) 


return 

Code Fragment 3.32: Reversing the elements of an array using linear recursion. 

Note that, in this algorithm, we actually have two base cases, namely, when 
i = j and when i > j. Moreover, in either case, we simply terminate the algorithm, 
since a sequence with zero elements or one element is trivially equal to its reversaL 
Furthermore, note that in the recursive step we are guaranteed to make progress 
towards one of these two base cases. If n is odd, we will eventually reach the 
i = j case, and if n is even, we will eventually reach the i > j case. The above 
argument immediately implies that the recursive algorithm of Code Fragm~nt 3.32 
is guaranteed to terminate. 

Defining Problems in Ways that Facilitate Recursion 

To design a recursive algorithm for a given problem, it is useful to think of the dif
ferent ways we can subdivide this problem to define problems that have the same 
general structure as the original problem. This process sometimes means we need 
to redefine the original problem to facilitate similar-looking subproblems. For ex
ample, with the ReverseArray algorithm, we added the parameters i and j so that a 
recursive call to reverse the inner part of the array A would have the same structure 
(and same syntax) as the callto reverse allof.A. Then, rather than initially calling 
thealgorithmas ReverseArray(A), we call it initially as ReverseArray(A, 0, n - 1). 
In general, ifone has difficulty finding the repetitive structure needed to design a re
cursive algorithm, it is sometimes useful to work out the problem on a few concrete 
examples to see how the subproblems should be defined. 



145 3.5. Recursion 

Tail Recursion 

Using recursion can often be a useful tool for designing algorithms that have ele
gant, short definitions. But this usefulness does come at a modest cost. When we 
use a recursive algorithm to solve a problem, we have to use some of the memory 
locations in our computer to keep track of the state of each active recursive call. 
When computer memory is at a premium, then, it is useful in some cases to be able 
to derive nonrecursive algorithms from recursive ones. 

We can use the stack data structure, discussed in Section 5.1, to convert a recur
sive algorithm into a nonrecursive algorithm, but there are some instances when we 
can do this conversion more easily and efficiently. Specifically, we can easily con
vert algorithms that use tail recursion. An algorithm uses tail recursion if it uses 
linear recursion and the algorithm makes a recursive call as its very last operation. 
For example, the algorithm of Code Fragment 3.32 uses tail recursion to reverse 
the elements of an array. 

It is not enough that the last statement in the method definition includes a re
cursive call, however. In order for a method to use tail recursion, the recursive call 
must be absolutely the last thing the method does (unless we are in a base case, of 
course). For example, the algorithm of Code Fragment 3.31 does not use tail re
cursion, even though its last statement includes a recursive call. This recursive call 
is not actually the last thing the method does. After it receives the value returned 
from the recursive call, it adds this value to A[n - 1] and returns this sum. That is, 
the last thing this algorithm does is an add, not a recursive call. 

When an algorithm uses tail recursion, we can convert the retursive algorithm 
into a nonrecursive one, by iterating through the ~ecursive calls rather than call
ing them explicitly. We illustrate this type of conversion by revisiting the prob
lem of reversing the elements of an array. In Code Fragment 3.33, we give a 
nonrecursive algorithm that performs this task by iterating through the recursive 
calls of the algorithm of Code Fragment 3.32. We initially call this algorithm as 
IterativeReverseArray(A, 0, n - 1). 

Algorithm IterativeReverseArray(A, i, j): 
Input: An array A and nonnegative integer indices i and j 
Output: The reversal of the elements in A starting at index i and ending at j 

while i < j do 

Swap A[i] andA[j] 

i+-i+l 

j+-j-l 


return 

Code Fragment 3.33: Reversing the elements of an array using iteration. 



146 Chapter 3. Arrays, Linked Lists, and Recursion 

3.5.2 Binary Recursion 

When an algorithm makes two recursive calls, we say that it uses binary recursion. 
These calls can, for example, be used to solve two similar halves of some problem, 
as we did in Section 3.5 for drawing an English ruler. As another application of 
binary recursion, let us revisit the problem of summing the n elements of an integer 
array A. In this case, we can sum the elements in A by: (i) recursively summing the 
elements in the first half of A; (ii) recursively summing the elements in the second 
half of A; and (iii) adding these two values together. We give the details in the 
algorithm of Code Fragment 3.34, which we initially call as BinarySul11(A,O,n). 

Algorithm BinarySum(A, i, n): 

Input: An array A and integers i and n 

Output: The sum of the n integers in A starting at index i 


if n 1 then 

return A[i] 

return BinarySum(A,i, fn/21) + BinarySum(A,i+ fn/21 , In/2J) 

Code Fragment 3.34: Summing the elements in an array using binary recursion. 

To analyze Alg0l1thm BinarySum, we consider, for simplicity, the case where 
n is a power of two.. The general case of arbitrary n is considered in Exercise R-4.4. 
Figure 3.25 shows the recursion trace of an execution of method BinarySul11(O, 8). 
We label each box with the values of parameters i and n, which represent the start
ing index and length of the sequence of elements to be summed, respectively. No
tice that the arrows in the trace go from-a bbx labeled (i,n) to another box)abeled 
(i,n/2) or (i +n/2,n/2). That is, the value of parameter n is,halved at each recur
sive call. Thus, the depth of the recursion, that is, the maximum number of method 
instances that are active at the same time, is 1+ log2 n. Thus, Algorithm Binary
Sum uses an amount of additional space roughly proportional to this value. This is 
a big improvement over the space needed by the LinearSum method of Code Frag
ment 3.31. The running time of Algorithm BinarySul11 is still roughly proportional 
to n, however, since each box is visited in constant time when stepping through our 
algorithm and there are 2n - 1 boxes. 

Figure 3.25: Recursion trace for the execution of BinarySum(O, 8). 



147 3.5. Recursion 

Computing Fibonacci Numbers via Binary Recursion 

Let us consider the problem of computing the kth Fibonacci number. Recall from 
Section 2.2.3, that the Fibonacci numbers are recursively defined as follows: 

Fo 0 
FI 1 

Fi Pi-I Pi-2 for i > 1. 


By directly applying this definition, Algorithm BinaryFib, shown in Code Frag
ment 3.35, computes the sequence of Fibonacci numbers using binary recursion. 

Algorithm BinaryFib(k): 
Input: Nonnegative integer k 
Output: The kth Fibonacci number Fk 

if k < 1 then 
return k 

else 
return BinaryFib(k -1) BinaryFib(k - 2) 

Code Fragment 3.35: Computing the kth Fibonacci number using binary recursion. 

UnfOltunately, in spite of the Fibonacci definition looking like a binary recur
sion, using this technique is inefficient in this case. In fact, it takes an exponential 
number of calls to compute the kth Fibonacci number in this way. Specifically, let 
nk denote the number of calls performed in the execution of BinaryFib(k). Then, 
we have the following values for the nk's: 

no = 1 

nl 1 

n2 nl +no 1 1+1+1 - 3 

n3 = n2 n1 1 - 3+1 1 5 

n4 = n3 n2 + 1 = 5 +3 1 = 9 

ns n4 +n3 +1 = 9 5+1 = 15 

n6 = ns +n4 1 15 +9 +1 = 25 

n7 n6 ns+1=25+15 1=41 

ng - n7 n6 + 1= 41 25 + I = 67. 

If we follow the pattern forward, we see that the number of calls more than doubles11' 
, for each two consecutive indices. That is, n4 is more than twice n2, ns is more than 

twice n3, n6 is more than twice n4, and so on. Thus, nk > 2k/2, which means that 
BinaryFib(k) makes a number of calls that are exponential in k. In other words, 
using binary recursion to compute Fibonacci numbers is very inefficient. 



148 Chapter 3. Arrays, Linked Lists, and Recursion 

Computing Fibonacci Numbers via Linear Recursion 

The main problem with the approach above, based on binary recursion, is that the 
computation of Fibonacci numbers is really a linearly recursive problem. It is not 
a good candidate for using binary recursion. We simply got tempted into using 
binary recursion because of the way the kth Fibonacci number, Fb depends on the 
two previous values, Fk-l and Fk-2. But we can compute Fk much more efficiently 
using linear recursion. 

In order to use linear recursion, however, we need to slightly redefine the prob
lem. One way to accomplish this conversion is to define a recursive function that 
computes a pair of consecutive Fibonacci numbers (Fk, Fk- 1) using the convention 
F-l = O. Then we can use the linearly recursive algorithm shown in Code Frag
ment 3.36. 

Algorithm LinearFibonacci(k): 
Input: A nonnegative integer k 
Output: Pair of Fibonacci numbers (Fk,Fk-l) 

if k:S 1 then 
return (k,O) 

else 
(i, j) ~ LinearFibonacci(k -1) 
return (i+ j,i) 

~ 

Code Fragment 3.36: Computing the kth Fibonacci number using linear recursion. 

The algorithm given in Code Fragment 3.36 shows that using linear recursion 
to compute Fibonacci numbers is much more efficient than using binary recursion. 
Since each recursive call to LinearFibonacci decreases the argument k by 1, the 
original call LinearFibonacci (k).results in a series of k - 1 additional calls. That is, 
computing the kth Fibonacci number via linear recursion requires k method calls. 
This performance is significantly faster than the exponential time needed by the 
algorithm based on binary recursion, which was given in Code Fragment 3.35. 
Therefore, when using binary recursion, we should first try to fully partition the 
problem in two (as we did for summing the elements of an array) or, we should be 
sure that overlapping recursive calls are really necessary. 

Usually, we can eliminate overlapping recursive calls by using more memory to 
keep track of previous values. In fact, this approach is a central part of a technique 
called dynamic programming, which is related to recursion and is discussed in 
Section 12.2. 



149 3.5. Recursion 

3.5.3 Multiple Recursion 

Generalizing from binary recursion, we use multiple recursion when a method may 
make multiple recursive calls, with that number potentially being more than two. 
One of the most common applications of this type of recursion is used when we 
want to enumerate various configurations in order to solve a combinatorial puzzle. 
For example, the following are all instances of summation puzzles: 

pot pan bib 

dog cat pzg 

boy girl baby 

To solve such a puzzle, we need to assign a unique digit (that is, 0, 1, ... ,9) to each 
letter in the equation, in order to make the equation true. Typically, we solve such 
a puzzle by using our human observations of the particular puzzle we are trying 
to solve to eliminate configurations (that is, possible partial assignments of digits 
to letters) until we can work though the feasible configurations left, testing for the 
correctness of each one. 

If the number of possible configurations is not too large, however, we can use 
a computer to simply enumerate all the possibilities and test each one, without 
employing any human observations. In addition, such an algorithm can use multiple 
recursion to work through the configurations in a systematic way. We show pseudo
code for such an algorithm in Code Fragment 3.37. To keep the depcriptioli general 
enough to be used with other puzzles, the a!gori~m enumerates and tests all k
length sequences without repetitions of the elements of a given set U. We build the 
sequences of k elements by the following steps: 

1. Recursively generating the sequences of k - 1 elements 

2. Appending to each such sequence an element not already contained in it. 

Throughout the execution of the algorithm, we use the set U to keep track of the 
elements not contained in the current sequence, so that an element e has not been 
used yet if and only if e is in U. 

Another way to look at the algorithm of Code Fragment 3.37 is that it enumer
ates every possible size-k ordered subset of U, and tests each subset for being a 
possible solution to our puzzle. 

For summation puzzles, U = {O, 1,2,3,4,5,6,7,8, 9} and each position in the 
sequence corresponds to a given letter. For example, the first position could stand 
for b, the second for 0, the third for y, and so on. 



150 Chapter 3. Arrays, Linked Lists, and Recursion 
Algorithm PuzzleSolve(k, S) U): 

. Input: An integer k, sequence S, and set U 
Output: An enumeration of all k-length extensions to S using elements in U 

without repetitions 

for each e in U do 

Remove e from U {e is now being used} 

Add e to the end of S 

if k = 1 then 


Test whether S is a configuration that solves the puzzle 
if S solves the puzzle then 

return "Solution found: " S 
else 

PuzzleSolve(k - 1, S, U) 

Add eback to U {e is now unused} 

Remove e from the end of S 


Code Fragment 3.37: Solving a combinatorial puzzle by enumerating and testing 
all possible configurations. 

In Figure 3.26, we show a recursion trace of a call to PuzzleSolve(3,S,U), 
where S is empty and U = {a, b, c}. During the execution, all the permutations 
of the three characters are generated and tested. Note that the initial call makes 
three recursive calls, each of which in tum makes two more. If we had executed 
PuzzleSolve(3,S, [[) on a set U consisting of four elements, the initial call would 
have made four recursive calls, each of which would have a trace looking like the 
one in Figure 3.26. 

PuzzleSolve(2,c,{a, b}) 

cab 
PuzzleSolve(1,cb,{a}) 

acb bca cba 

Figure 3.26: Recursion trace for an execution of PuzzleSolve(3,S,U), where S is 
empty and U ={a, b, c}. This execution generates and tests all permutations of a, b, 
and c. We show the permutations generated directly below their respective boxes. 



151 3.6. Exercises 

3.6 Exercises 

For help with exercises, please visit the web site, www.wiley.com/go/global/goodrich. 

Reinforcement 

R-3.1 	 Give a Java code fragment to clone a two-dimensional array, a, of float 
entries to another two-dimensional array, b, of similar type and size. 

R-3.2 	The add and remove methods of Code Fragments 3.3 and 3.4 do not keep 
track of the number, n, of nonnull entries in the array, a. Instead, the 
unused cells point to the null object. Show how to change these methods 
so that they keep track of the actual size of a in an instance variable n. 

R-3.3 Give the next five pseudo-random numbers using the generator described 
in this chapter, with a 12, b = 5, and n = 100, using the seed 92. 

R-3.4 Describe a way to use recursion to add all the elements in a n x n (two
dimensional) array of integers. 

R-3.5 	 Explain how to modify the Caesar cipher program (Code Fragment 3.9) 
so that it performs ROT13 encryption and decryption, which uses 13 as 
the alphabet shift amount. How can you further simplify the code so that 
the body of the decrypt method is only a single line? 

R-3.6 	Explain the changes that would have to be made to the program of Code 
Fragment 3.9 so that it could perform the Caesar cipher for messages 
that are written in an alphabet-based language other toon English, such 
as Greek, Russian, or Hebrew. 

R-3.7 	What is the exception that is thrown when advance or remove is called on 
an empty list, from Code Fragment 3.25? Explain how to modify these 
methods so that they give a more instructive exception name for this con
dition. 

R-3.8 Give a recursive definition of a singly linked list. 

R-3.9 Describe a method for inserting an element at the beginning of a singly 
linked list. Assume that the list does not have a sentinel header node, and 
instead uses a variable head to reference the first node in the list. 

R-3.1O Give an algorithm for finding the penultimate node in a singly linked list 
where the last element is indicated by a null next reference. 

R-3.11 .Describe a nonrecursive method for finding, by link hopping, the middle 
node of a doubly linked list with header and trailer sentinels. (Note: This 
method must only use link hopping; it cannot use a counter.) What is the 
running time of this method? 

www.wiley.com/go/global/goodrich


152 Chapter 3. Arrays, Linked Lists, and Recursion 

R-3.l2 Describe a recursive algorithm for finding the maximum element in an 
array A of n elements. What is your running time and space usage? 

R-3.13 Draw the recursion trace for the execution of method ReverseArray(A, 0,4) 
(Code Fragment 3.32) on array A = {4, 3,6,2, 5}. 

R-3.14 Draw the recursion trace for the execution of method PuzzleSolve(3,S, U) 
(Code Fragment 3.37), where S is empty and U = {a,b,c,d}. 

R-3.l5 Write a short Java method that repeatedly selects and removes a random 
entry from an array until the array holds no more entries. 

R-3.16 Write a short Java method to count the number of nodes in a circularly 
linked list. 

Creativity 

C-3.1 	 Suppose you are given an array, A, containing 100 integers that were 
put into A using the method r.nextlnt(lO), where r is an object of type 
java.utiI.Random. Let x denote the product of the integers in A. There is a 
single number that x will equal with probability at least 0.99. What is that 
number and what is a formula describing the probability that x is equal to 
that number? 

C-3.2 	Give Java code for performing add(e) and rem~ve(i) methods for game 
entries, stored in an array a, as in Code Fragments 3.3 and 3.4, except this 
time, don't maintain the game entries in order. Assume that we still need 
to keep n entries stored in indices 0 to n - 1. Try to implement the add 
and remove methods without using any loops, so that the ilUmber df steps 
they perform does not depend on n. 

C-3.3 	 Let A be an array of size n ~ 2 containing integers from 1 to n - 1, inclu
sive, with exactly one repeated. Describe a fast algorithm for finding the 
integer in A that is repeated. 

C-3.4 	Let B be an array of size n >6 containing integers from 1 to n - 5, inclu
sive, with exactly five repeated. Describe a good algorithm for finding the 
five integers in B that are repeated. 

C-3.5 	Suppose you are designing a multi-player game that has n ~ 1000 players, 
numbered 1 to n, interacting in an enchanted forest. The winner of this 
game is the first player who can meet all the other players at least once 
(ties are allowed). Assuming that there is a method meet(i,j), which is 
called each time aplayer i meets a player j (with if. j), describe a way to 
keep track of the pairs of meeting players and who is the winner. 

C-3.6 	Give a recursive algorithm to compute the product of two positive integers, 
m and n, using only addition and subtraction. 



153 3.6. Exercises 

C-3.7 	Describe a fast recursive algorithm for reversing a singly linked list L, so 
that the ordering of the nodes becomes opposite of what it was before. 

C-3.8 	Describe a good algorithm for concatenating two singly linked lists Land 
M, with header sentinels, into a single list L' that contains all the nodes of 
L followed by all the nodes of M. 

C-3.9 	Give a fast algorithm for concatenating two doubly linked lists Land M, 
with header and trailer sentinel nodes, into a single list L'. 

C-3.1O 	 Describe in detail how to swap two nodes x and y (and not just their con
tents) in a singly linked list L given references only to x and y. Repeat 
this exercise for the case when L is a doubly linked list. Which algorithm 
takes more time? 

C-3.11 	 Describe in detail an algorithm for reversing a singly linked list L using 
only a constant amount of additional space and not using any recursion. 

C-3.12 	In the Towers ofHanoi puzzle, we are given a platform with three pegs, a, 
b, and c, sticking out of it. On peg a is a stack of n disks, each larger than 
the next, so that the smallest is on the top and the largest is on the bottom. 
The puzzle is to move all the disks from peg a to peg c, moving one disk 
at a time, so that we never place a larger disk on top of a smaller one. 
See Figure 3.27 for an example of the case n = 4. Describe a recursive 
algorithm for solving the Towers of Hanoi puzzle for arbitrary n. (Hint: 
Consider first the subproblem of moving all but the nth disk from peg a to 
another peg using the third as "temporary storage." ) 

Figure 3.27: An illustration of the Towers of Hanoi puzzle. 

C-3.13 	 Describe a recursive method for converting a string of digits into the inte
ger it represents. For example, 1113531 11 represents the integer 13,531. 

C-3.14 	Describe a recursive algorithm that counts the number of nodes in a singly 
linked list. 

C-3.15 	Write a recursive Java program that will output all the subsets of a set of 
n elements (without repeating any sUbsets). 

C-3.16 	Write a short recursive Java method that finds the minimum and maximum 
values in an array of int values without using any loops. 



154 Chapter 3. Arrays, Linked Lists, and Recursion 

C-3.17 	 Describe a recursive algorithm that will check if an array A of integers 
contains an integer A[i] that is the sum of two integers that appear earlier 
in A, that is, such thatA[i] =AU] A[k] for j,k < i. 

C-3.l8 	Write a short recursive Java method that will rearrange an array of int 
values so that all the even values appear before all the odd values. 

C-3.l9 	Write a short recursive Java method that takes a character string sand 
outputs its reverse. So for example, the reverse of "pots&pans II would 
be "snap&stop". 

C-3.20 	Write a short recursive Java method that determines if a string s is a palin
drome, that is, it is equal to its reverse. For example, tlracecartl and 
II gohangasalamiimalasagnahogII are palindromes. 

C-3.21 	 Use recursion to write a Java method for determining if a string s has more 
vowels than consonants. 

C-3.22 	Suppose you are given two circularly linked lists, Land M, that is, two 
lists of nodes such that each node has a nonnull next node. Describe a fast 
algorithm for telling if Land M are really the same list of nodes, but with 
different (cursor) starting points. 

C-3.23 Given a circularly linked list L containing an even number of nodes, de
scribe how to split L into two circularly linked lists of half the size. 

C-3.24 Give the details for implementing a deepCopyOf method in Java for mak
ing an identical copy of a two-dimensional array. 

Projects 	
; 

P-3.1 	 Write a Java program for a matrix class that can add ~nd mUltiply arbitrary 
two-dimensional arrays of integers. 

P-3.2 	Perform the previous project, but use generic types so that the matrices 
involved can contain arbitrary number types. 

P-3.3 	 Write a class that maintains the top 10 scores for a game application, im
plementing the add and remove methods of Section 3.1.1, but using a 
singly linked list instead of an array. 

P-3.4 	Perform the previous project, but use a doubly linked list. Moreover, your 
implementation of remove(i) should make the fewest number of pointer 
hops to get to the game entry at index i. 

P-3.5 	 Perform the previous project, but use a linked list that is' both circularly 
linked and doubly linked. 

P-3.6 	Write a program for solving summation puzzles by enumerating and test
ing all possible configurations. Using your program, solve the three puz
zles given in Section 3.5.3. 



155 Chapter Notes 

P-3.7 	Write a program that can perform encryption and decryption using an ar
bitrary substitution cipher. In this case, the encryption array is a random 
shuffling of the letters in the alphabet. Your program should generate 
a random encryption array, its corresponding decryption array, and use 
these to encode and decode a message. 

P-3.8 	Write a program that can perform the Caesar cipher for English messages 
that include both upper and lowercase characters. 

P-3.9 	Write a program that can solve instances of the Tower of Hanoi problem 
(from Exercise C-3.l2). 

Chapter Notes 
The fundamental data structures of arrays and linked lists, as well as recursion, discussed 
in this chapter, belong to the folklore of computer science. They were first chronicled in the 
computer science literature by Knuth in his seminal book on Fundamental Algorithms [62]. 





Chapter -=---------

4 Mathematical Foundations 

0000 
00 •• ••00 

0 ••·0000\.00 
0 ••00000·\0 
0 ••000000 0·.0 
0··0'iQ ooi8••0 
0.:0••••••0 ••0 
0~.0·00800~g.:go••00000.\0 

0 •• 0000.0 
Oo~••• " 0 

0000 

Contents 

4.1 The Seven Functions Used in This Book ....... 158 


4.1.1 The Constant Function . 158 

4.1.2 The Logarithm Function 158 

4.1.3 The Linear Function ... 160 

4.1.4 The N,.Log-N Function . 160 

4.1.5 The Quadratic Function. 160 

4.1.6 The Cubic Function and Other Polynomials 162 

4.1.7 The Exponential Function. 163 
.I 

4.1.8 Comparing Growth Rates . . . . . . . . . . . . 165 

4.2 Analysis of Algorithms. . . . . . ... . . . . . . . . .. 166 

4.2.1 Experimental Studies 167 

4.2.2 Primitive Operations 168 

4.2.3 Asymptotic Notation 170 

4.2.4 Asymptotic Analysis. 174 

4.2.5 Using the Big-Oh Notation 176 

4.2.6 A Recursive Algorithm for Computing Powers . 180 

4.2.7 Some More Examples of Algorithm Analysis . . 181 

4.3 Simple Justification Techniques ............ 185 


4.3.1 By Example ...................... 185 


4.3.2 The "Contra" Attack . . . . . . . 185 

4.3.3 Induction and Loop Invariants .. 186 

4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . .. 189 

http:0000\.00


158 Chapter 4. Mathematical Foundations 

4.1 The Seven Functions Used in This Book 

In this section, we briefly discuss the seven most important functions used in the 
analysis of algorithms. We will use only these seven simple functions for almost 
all the analysis we do in this book. In fact, a section that uses a function other than 
one of these seven will be marked with a star (*) to indicate that it is optional. In 
addition to these seven fundamental functions, Appendix A contains a list of other 
useful mathematical facts that apply in the context of data structure and algorithm 
analysis. 

4.1.1 	 The Constant Function 

The simplest function we can think of is the constantfunction. This is the function, 

f(n) = c, 

for some fixed constant c, such as c = 5, c = 27, or c = 210. That is, for any argu
ment n, the constant function f(n) assigns the value c. In other words, it doesn't 
matter what the value of n is, f(n) will always be equal to the constant value c. 

Since we are most interested in integer functions, the most fundamental con
stant function is g(n) = 1, and this is the typical constant function we use in this 
book. Note that any other constant function, f(n) c, can be written as a constant 
c times g(n). That is, f(n) = cg(n) in this case. 

As simple as it is, the constant function is useful in algorithmanalysis i because 
it characterizes the number of steps needed to do a basic operation on a computer, 
like adding two numbers, assigning a value to some" variable, or comparing two 
numbers. 

4.1.2 The Logarithm Function 

One of the interesting and sometimes even surprising aspects of the analysis of 
data structures and algorithms is the ubiquitous presence of the logarithm function, 
f(n) = 10gb n, for some constant b> 1. This function is defined as follows: 

bXx = 10gb n if and only if = n. 

By definition, 10gb 1 O. The value b is known as the base of the logarithm. 
Computing the logarithm function exactly for any integer n involves the use 

of calculus, but we can use an approximation that is good enough for our pur
poses without calculus. In particular, we can easily compute the smallest integer" 
greater than or equal to loga n, for this number is equal to the number of times 



159 4.1. The Seven Functions Used in This Book 

we can divide n by a until we get a number less than or equal to 1. For exam
ple, this evaluation of log327 is 3, since 27/3/3/3 1. Likewise, this evaluation 
of log464 is 3, since 64/4/4/4 = 1, and this approximation to log212 is 4, since 
12/2/2/2/2 0.75 < 1. This base-two approximation arises in algorithm analysis, 
actually, since a common operation in many algorithms is to repeatedly divide an 
input in half. 

Indeed, since computers store integers in binary, the most common base for the 
logarithm function in computer science is 2. In fact, this base is so common that 
we will typically leave it off when it is 2. That is, for us, 

10gn = log2 n. 

We note that most handheld calculators have a button marked LOG, but this is 
typically for calculating the logarithm base-l0, not base-two. 

There are some important rules for logarithms, similar to the exponent rules. 

Proposition 4.1 (Logarithm Rules): Given real numbers a 0, b> 1, c > 0 
and d > 1, we have: 

1. logbac = 10gb a+logbc 
2. logba/c-Iogba-Iogbc 
3. 10gbaC = clogba 

4. 10gb a (logd a) / logd b 
5. biogd a - aiogdb. 

Also, as a notational shorthand, we use lotn to denote the function (logny. 
Rather than show how we couldderive each of the identities above Mlhich all follow 
from the definition of logarithms and exponents, let us illustrate these identities 
with a few examples instead. . 

Example 4.2: We demonstrate below some interesting applications of the loga
rithm rules from Proposition 4.1 (using the usual convention that the base of a 
logarithm is 2 ifit is omitted). 

• log(2n) = log2 logn = 1 logn, by rule 1 
• log(n/2) = logn -log2 logn - 1, by rule 2 
• logn3 = 310gn, by rule 3 
• log2n nlog2 = n·l =n, by rule 3 
• 10g4n - (10gn)/log4 = (logn)/2, by rule 4 
• 2iogn iog2= n . ni = n, by rule 5.. . . , .. 

.Asa practical matter, we note that rule 4 gives us a way to compute the base-two 
logarithm on acalculator that has abase-l0 logarithm button, LOG, for 

log2n = LOG n / LOG 2. 



160 Chapter 4. Mathematical FOUlldations 

4.1.3 The Linear Function 

Another simple yet important function is the linear junction, 

f(n) = n. 

That is, given an input value n, the linear function f assigns the value n itself. 
This function arises in algorithm analysis any time we have to do a single basic 

operation for each of n elements. For example, comparing a number x to each 
element of an array of size n will require n comparisons. The linear function also 
represents the best running time we can hope to achieve for any algorithm that 
processes a collection of n objects that are not already in the computer's memory, 
since reading in the n objects itself requires n operations. 

4.1.4 The N-Log-N Function 

The next function we discuss in this section is the n-log-n function, 

f(n) - nlogn, 

that is, the function that assigns to an input n the value of n times the logarithm 
base-two of n. This function grows a little faster than the linear function and a lot 
slower than the quadratic function. Thus, as we will show on several occasions, 
if we can improve the running time of solving some problem from qmfdratic to 
n-log-n, we will have an algorithm that runs much faster in generaL 

4.1.5 The Quadratic Function 

Another function that appears quite often in algorithm analysis is the quadratic 
function, 

f(n) =n2
, 

That is, given an input value n, the function f assigns the product of n with itself 
(in other words, "n squared"). 

The main reason why the quadratic function appears in the analysis of algo
rithms is that there are maIlY algorithms that have nested loops, where the inner 
loop performs a linear number of operations and the outer loop is performed a 
linear number of times. Thus, in such cases, the algorithm performs n . n n2 

operations. 



161 4.1. The Seven Functions Used in This Book 

~Iested Loops and the Quadratic Function 

The quadratic function can also arise in the context of nested loops where the first 
iteration of a loop uses one operation, the second uses two operations, the third uses 
three operations, and so on. That is, the number of operations is 

1+2+3+... +(n - 2) +(n - 1) +n. 

In other words, this is the total number of operations that will be performed by the 
nested loop if the number of operations performed inside the loop increases by one 
with each iteration of the outer loop. This quantity also has an interesting history. 

In 1787, a German schoolteacher decided to keep his 9- and lO-year-old pupils 
occupied by adding up the integers from 1 to 100. But almost immediately one 
of the children claimed to have the answer! The teacher was suspicious, for the 
student had only the answer on his slate. But the answer was correct-5,050-and 
the student, Carl Gauss, grew up to be one of the greatest mathematicians of his 
time. It is widely suspected that young Gauss used the following identity. 

Proposition 4.3: For any integer n 2: 1, we have: 

1+2+3+ ... +(n-2)+(n-l)+n= n(n+l)2 . 

We give two "visual" justifications of Propos'ition 4.3 in Figure 4.1. 

n+l 

n n 

3 

2 

1 2 nl2 

(b) 
Figure 4.1: Visual justifications of Proposition 4.3. Both illustrations visualize the 
icientity ill terms of the totalar~a covered by n unit-width rectangles with heights 

".1,2, ... ,n. In(a) the rectangles are shown to cover a big triangle of area n2/2 (base 
n and height n) plus n small triangles of area 1/2 each (base 1 and height 1). In 
(b), which applies only when n is even, the rectangles are shown to cover a big 
rectangle of base n/ 2 and height n+1. 



162 Chapter 4. Mathematical Foundations 

The lesson to be learned from Proposition 4.3 is that if we perform an algorithm 
with nested loops such that the operations in the inner loop increase by one each 
time, then the total number of operations is quadratic in the number of times, n, we 
perform the outer loop. In particular, the number ofoperations is n2/2 n12, in this 
case, which is a little more than aconstant factor (1/2) times the quadratic function 
n2. In other words, such an algorithm is only slightly better than an algorithm that 
uses n operations each time the inner loop is performed. This observation might at 
first seem nonintuitive, but it is nevertheless true, as shown in Figure 4.1. 

4.1.6 The Cubic Function and Other Polynomials 

Continuing our discussion of functions that are powers of the input, we consider 
the cubic junction, 

f(n)-n3, 

which assigns to an input value n the product of n with itself three times. This func
tion appears less frequently in the context of algorithm analysis than the constant, 
linear, and quadratic functions previously mentioned, but it does appear from time 
to time. 

Polynomials 

Interestingly, the functions we have listed so far can be viewed as all being part of 
a larger class of functions, the polynomials. 

Apolynomial function is a function of the form, 

f(n) = ao+aUl +a2n2 +a3 n3 +... adtld , 

where ao, aI, ... ) ad are constants, called the coefficients of the polynomial, and 
ad O. Integer d, which indicates the highest power in the polynomial, is called 
the degree of the polynomial. 

For example, the following functions are all polynomials: 

• f(n) = 2+5n +n2 
3• f(n) 1+n

• f(n) 1 
• f(n) =n 

2• f(n) = n . 
Therefore, we could argue that this book presents justfour important functions used 
in algorithm analysis; but we will sticktosaying that there are seven, since the con
stant, linear, and quadratic functions are too important to be lumped in with other 
polynomials. Running times that are polynomials with degree, d, are generally 
better than polynomial running times with large degree. 



163 4.1. The Seven Functions Used in This Book 

Summations 

A notation that appears again and again in the analysis of data structures and algo
rithms is the summation, which is defined as follows: 

b 

'[f(i) = f(a) f(a 1) f(a 2) +... +f(b), 
i=a 

where a and b are integers and a <::;; b. Summations arise in data structure and algo
rithm analysis because the running times ofloops naturally give rise to summations. 

Using a summation, we can rewrite the formula of Proposition 4.3 as 

n
'[i=n(n 1) 
i=l 2 

Likewise, we can write a polynomial f (n) of degree d with coefficients ao, ... )ad as 

d 

f(n) '[aini . 
i=O 

Thus, the summation notation gives us a shorthand way of expressing sums of in
creasing terms that have a regular structure. ~ 

s4.1.7 The Exponential Function 

Another function used in the analysis of algorithms is the exponential junction, 

bnf(n) , 

where b is a positive constant, called the base, and the argument n is the exponent. 
That is, function f(n) assigns to the input argument n the value obtained by multi
plying the base b by itself n times. In algorithm analysis, the most common base for 
the exponential function is b 2. For instance, if we have a loop that starts by per
forming one operation and then doubles the number of operations performed with 
each iteration, then the number of operations performed in the nth iteration is 2n. 
In addition, an integer word containing n bits can represent all the nonnegative in
tegers less than zn..Thus, •the exponential function with base 2 is quite common. 
The exponential function will also be referred to as exponentjunction. 

We sometimes have other exponents besides n, however; hence, it is useful 
for us to know a few handy rules for working with exponents. In particular, the 
following exponent rules are quite helpful. 



~ ., 
i 
1 

164 	 Chapter 4. Mathematical Foundations 

Proposition 4.4 (Exponent Rules): Givenpositiveintegersa,b,ande, we have 
1. 	 (bay = bac 


ba+c
2. 	 babc = 

e
3. baIbC =ba- . 

For example, we have the following: 
2 28• 	256 162 (24)2 24. = = 256 (Exponent Rule 1) 


35 3233
• 	243 - = 32+3 = = 9 ·27 = 243 (Exponent Rule 2) 

210
• 16 = 1024/64 210/26 - - 6 = 24 = 16 (Exponent Rule 3). 

We can extend the exponential function to exponents that are fractions or real 
numbers and to negative exponents, as follows. Given a positive integer k, we de
fine bIlk to be kth root of b, that is, the number r such that ,-k = b. For example, 
25 1/2 = 5, since 52 = 25. Likewise, 27 1/3 = 3 and 161/4 2. This approach al
lows us to define any power whose exponent can be expressed as a fraction, for 

729 112bale = (ba)l/c, by Exponent Rule 1. For example, 93/2 = (93)1/2 = - 27. 
Thus, bale is really just the eth root of the integral exponent ba. 

We can further extend the exponential function to define bX for any real num
ber x, by computing a series of numbers of the form bale for fractions ale that get 
progressively closer and closer to x. Any real number x can be approximated arbi
trarily close by a fraction ale; hence, we can use the fraction ale as the exponent 
of b to get arbitrarily close to bX. So, for example, the number 21t is well defined. 
Finally, given a negative exponent d, we define bd = 1/b-d, which corresponds to 
applying Exponent Rule 3 with a =0 and e = -d. 

Geometric Sums 
s 

Suppose we have a lo'Op where each iteration takes a multiplicative factor longer 
than the previous one. This loop can be analyzed using the following proposition. 

Proposition 4.5: For any integer n ~ 0 and any real number a such that a> 0 and 
a =j:. 1, consider the summation 

n 
i 2La = 1 a +a ... +an 

i=O 

(remembering that aO = 1 ifa> 0). This summation is equal to 

an+I-l 

a-I 

Summations as shown in Proposition 4.5 are called geometric summations, be
cause each term is geometrically larger than the previous one if a > 1. For example, 
everyone working in computing should know that· 

1 2 4 +8 +... +2n- 1 = 21l - 1, 

for this is the largest integer that can be represented in binary notation using n bits. 



165 4.1. The Seven Functions Used in This Book 

4.1.8 Comparing Growth Rates 

To sum up, Table 4.1 shows, in order, each of the seven common functions used in 
algorithm analysis. 

-

I constant logarithm linear n-Iog-n quadratic cubic exponential 
I 1 logn n nlogn n2 n3 an 

Table 4.1: Classes of functions. Here we assume that a > 1 is a constant. 

Ideally, we would like data structure operations to run in times proportional 
to the constant or logarithm function, and we would like our algorithms to run in 
linear or n-Iog-n time. Algorithms with quadratic or cubic running times are less 
practical, but algorithms with exponential running times are infeasible for all but 
the smallest sized inputs. Plots of the seven functions are shown in Figure 4.2. 

l.E+44 
I.E+40 

I.E+36 
LE+32 
l.E+28 J 
I.E+24 
LE+20 

-+- Exponential 

-+-Cubic 

---Quadratic 

---N-Log-N 

-+-Linear 

.t.- Logarithmic 

-+-Constant'£'''1~1:~::.~ 
LE+OO , , , , , , , " ,",' 

;:.'" ;:.' ;:.'" ;:." #' ;:." ;:.'" ;:." ;:.'b ;:.q :-..'" " ,,,, ," ~ ,"
,"9 ,"9 ,"9 ,"9 ,"9 ,"9 ,"9 ,"9 ,'9' ,"9 ,«: ,«: ,«: ,"9' ,«: ,«: 

Figure 4.2: Growth rates for the seven fundamental functions usrd in algorithm 
analysis. We use base a = 2 for the exponential function. The functions are plotted 
in a log-log chart, to compare the growth rate's primarily as slopes. Even so, the 
exponential function grows too fast to display all its values on the chart. Also, we 
use the scientific notation for numbers, where, aE+b denotes alOb. 

The Ceiling and Floor Functions 

One additional comment concerning the functions above is in order. The value 
of a logarithm is typically not an integer, yet the running time of an algorithm is 
usually expressed by means of an integer quantity, such as the number of operations 
performed. Thus, the analysis of an algorithm may sometimes involve the use of 

, thefloor function and ceiling function, which are defined respectively as follows: 
. '. LxJ' , the largest integer less than or equal to x. 

• rx1 the smallest integer greater than or equal to x. 



166 Chapter 4. Mathematical Foundations 

4.2 Analysis of Algorithms 

In a classic story, the famous mathematician Archimedes was asked to determine if 
a golden crown commissioned by the king was indeed pure gold, and not part silver, 
as an informant had claimed. Archimedes discovered a way to perform this analysis 
while stepping into a (Greek) bath. He noted that water spilled out of the bath in 
proportion to the amount of him that went in. Realizing the implications of this 
fact, he immediately got out of the bath and ran naked through the city shouting, 
"Eureka, eureka!," for he had discovered an analysis tool (displacement), which, 
when combined with a simple scale, could determine if the king's new crown was 
good or not. That is, Archimedes could dip the crown and an equal-weight amount 
of gold into a bowl of water to see if they both displaced the same amount. This 
discovery was unfortunate for the goldsmith, however, for when Archimedes did 
his analysis, the crown displaced more water than an equal-weight lump of pure 
gold, indicating that the crown was not, in fact, pure gold. 

In this book, we are interested in the design of "good" data structures and algo
rithms. Simply put, a data structure is a systematic way of organizing and access
ing data, and an algorithm is a step-by-step procedure for performing some task in 
a finite amount of time. These concepts are central to computing, but to be able to 
classify some data structures and algorithms as "good," we must have precise ways 
of analyzing them. . 

The primary analysis tool we will use in this book involves characterizing the 
running times of algorithms and data structure operations, with space usage also 
being of interest. Running time is a natural measure of "goodnes·s," sinceStime is a 
precious resource-computer solutions should run as fast as. possible. 

In general, the running time of an algorithm or data structure method increases 
with the input size, although it may also vary for different inputs of the same size. 
Also, the running time is affected by the hardware environment (as reflected in 
the processor, clock rate, memory, disk, etc.) and software environment (as re
flected in the operating system, programming language, compiler, interpreter, etc.) 
in which the algorithm is implemented, compiled, and executed. All other factors 
being equal, the running time of the same algorithm on the same input data will be 
smaller if the computer has, say, a much faster processor or if the implementation 
is done in a program compiled into native machine code instead of an interpreted 
implementation run on a virtual machine. Nevertheless, in spite of the possible 
variations that come from different environmental factors, we would like to focus 
on the relationship between the running time of an algorithm and the size of its 
input. 

We are interested in characterizing an algorithm's running time as a function of 
the input size. But what is the proper way of measuring it? 



• • 

167 4.2. Analysis ofAlgorithms 

4.2.1 Experimental Studies 

If an algorithm has been implemented, we can study its running time by executing. 
it on various test inputs and recording the actual time spent in each execution. For
tunately, such measurements can be taken in an accurate manner by using system 
calls that are built into the language or operating system (for example, by using 
the System.currentTiIT}eMillisO method or calling the run-time environment with 
profiling enabled). Such tests assign a specific running time to a specific input size, 
but we are interested in determining the general dependence of running time on the 
size of the input. In order to determine this dependence, we should perform several 
experiments on many different test inputs of various sizes. Then we can visualize 
the results of such experiments by plotting the petformance of each run of the algo
rithm as a point with x-coordinate equal to the input size, n, and y-coordinate equal 
to the running time, t. (See Figure 4.3.) From this visualization and the data that 
supports it, we can perform a statistical analysis that seeks to fit the best function of 
the input size to the experimental data. To be meaningful, this analysis requires that 
we choose good sample inputs and test enough of them to be able to make sound 
statistical claims about the algorithm's running time. 

t (ms) .,-,-----------, 
60 

50 ..• 
40 ••• 

~ 

30 

..• • - ••• . 
••• 

20 

10 : ..•• • •• 

~_r~--~~_r~--r_+_~_+~~~In 

o 50 100 

Figure 4.3: Results· of an experimental study on the running time of an algorithm. 
A dot with coordinates (n, t) indicates that on an input of size n, the running time 
of the algorithm is t milliseconds (ms). 



168 Chapter 4. Mathematical Foundations 

While experimental studies of running times are useful, they have three major 
limitations: 

• 	Experiments can be done only on a limited set of test inputs; hence, they 
leave out the running times of inputs not included in the experiment (and 
these inputs may be important). 

• 	We will have difficulty comparing the experimental running times of two 
algorithms unless the experiments were performed in the same hardware and 
software environments. 

• 	We have to fully implement and execute an algorithm in order to study its 
running time experimentally. 

This last requirement is obvious, but it is probably the most time consuming aspect 
of performing an experimental analysis of an algorithm. The other limitations im
pose serious hurdles too, of course. Thus, we would ideally like to have an analysis 
tool that allows us to avoid performing experiments. 

In the rest of this chapter, we develop a general way of analyzing the running 
times of algorithms that: 

• 	Takes into account all possible inputs 
• 	Allows us to evaluate the relative efficiency of any two algorithms in a way 

that is independent from the hardware and software environment 
• 	Can be performed by studying a high-level description of the algorithm with

out actually implementing it or running experiments on it. 

This methodology aims at associating, with each algorithm, a function f(n) that 
characterizes the running time of the algorithm as a function of the input size n. 
Typical functions that will be encountered include the seven functions m~ntioned 
earlier in this chapter. 

4.2.2 Primitive Operations 

As noted above, experimental analysis is valuable, but it has its limitations. If 
we wish to analyze a particular algorithm without performing experiments on its 
running time, we can perform an analysis directly on the high-level pseudo-code 
instead. We define a set ofprimitive operations such as the following: 

" 	Assigning a value to a variable 

• 	Calling a method 
• 	Performing an arithmetic operation (for example, adding two numbers) 

• 	Comparing two numbers 
• 	Indexing into an array 
• 	Following an object reference 
• 	Returning from a method. 



169 4.2. Analysis ofAlgorithms 

Counting Primitive Operations 

Specifically, a primitive operation corresponds to a low-level instruction with an 
execution time that is constant. Instead of trying to determine the specific execu
tion time of each primitive operation, we will simply count how many primitive 
operations are executed, and use this number t as a measure of the running time of 
the algorithm. 

This operation count will correlate to an actual running time in a specific com
puter, for each primitive operation corresponds to a constant-time instruction, and 
there are only a fixed number of primitive operations. The implicit assumption 
in this approach is that the running times of different primitive operations will be 
fairly similar. Thus, the number, t, of primitive operations an algorithm performs 
will be proportional to the actual running time of that algorithm. 

An algorithm may run faster on some inputs than it does on others of the same 
size. Thus, we may wish to express the running time of an algorithm as the function 
of the input size obtained by taking the average over all possible inputs of the same 
size. Unfortunately, such an average-case analysis is typically quite challenging. 
It requires us to define a probability distribution on the set of inputs, which is often 
a difficult task. Figure 4.4 schematically shows how, depending on the input distri
bution, the running time of an algorithm can be anywhere between the worst-case 
time and the best-case time. For example, what if inputs are really only of types 
"/'\' or "D"? 

<0 
E 
P 
gf
'§ 
~ 

---------- worst-case time 

average-case time? 

- - - best-case time 

A B c D E F G 

Input Instance 
,;~, 

:1·( 

Figure 4.4: The difference between best-case and worst-case time. Each bar repre
sents the running time of some algorithm on a different possible input. 



Chapter 4. Mathematical Foundations 170 

Focusing on the Worst Case 

An average-case analysis usually requires that we calculate expected running times 
based on a given input distribution, which usually involves sophisticated probability 
theory. Therefore, for the remainder of this book, unless we specify otherwise, we 
will characterize running times in terms of the worst case, as a function of the input 
size, n, of the algorithm. 

Worst-case analysis is much easier than average-case analysis, as it requires 
only the ability to identify the worst-case input, which is often simple. Also, this 
approach typically leads to better algorithms. Making the standard of success for an 
algorithm to perform well in the worst case necessarily requires that it will do well 
on every input. That is, designing for the worst case leads to stronger algorithmic 
"muscles," much like a track star who always practices by running up an incline. 

4.2.3 Asymptotic Notation 

In general, each basic step in a pseudo-code description or a high-level language 
implementation corresponds to a small number of primitive operations (except for 
method calls, of course). Thus, we can perform a simple analysis of an algorithm 
written in pseudo-code that estimates the number of primitive operations executed 
up to a constant fact9r, by pseudo-code steps (but we must be careful, since a single 
line of pseudo-code may denote a number of steps in some cases). 

In algorithm analysis, we focus on the growth rate of the running time as a 
function of the input size n, taking a "big-picture" approach. It is often enough just 
to know that the running time of an algorithm such as arrayMax~ shown in Code 
Fragment 4.1, grows proportionally to n, with its true running time being n times a 
constant factor that depends on the specific computer. . 

We analyze algorithms using a mathematical notation for functions that disre
gards constant factors. Namely, we characterize the running times of algorithms by 
using functions that map the size of the input, n, to values that correspond to the 
main factor that determines the growth rate in terms of n. This approach allows us 
to focus on the "big-picture" aspects of an algorithm's running time. 

Algorithm arrayMax(A,n): 

Input: An array A storing n ~ 1 integers. 

Output: The maximum element in A. 


currMax f- A[0] 

for if-I to n - 1 do 


if currMax < A[i] then 

currMax f- A[i] 


return currMax 

Code Fragment 4.1: Algorithm arrayMax. 



171 4.2. Analysis ofAlgorithms 

The "Big-Oh" Notation 

Let f(n) and g(n) be functions mapping nonnegative integers to real numbers. We 
say that f(n) is O(g(n)) if there is a real constant e > 0 and an integer constant 
no > 1 such that 

f(n) ~ eg(n), for n 2':. no. 

This definition is often referred to as the "big-Oh" notation, for it is sometimes 
pronounced as "f(n) is big-Oh of g(n)." Alternatively, we can also say "f(n) is 
order ofg(n)." (This definition is illustrated in Figure 4.5.) 

s 
~ 
0.0 
!:l

• .-< 

§ 
~ 

no- Input Size 

Figure 4.5: Illustrating the "big-Oh" notation. The function f(n) is O(g(n)), since 
f(n) :::; e· g(n) when n 2':. no. 

Example 4.6: The function 8n - 2 is O(n). 

Justification: By the big-Oh definition, we need to find a real constant e > 0 
and an integer constant no 2':. 1 such that 8n 2 < en for every integer n 2':. no. It 
is easy to see that a possible choice is e 8 and no = L Indeed, this is one of 
infinitely many choices available because any real number greater than or equal to 
8 will work for e, and any integer greater than or equal to 1 will work for no. _ 

Thebig-Ohnotation allows us to say that a function f(n) is "less than or equal 
to" another function g(n) up to a constant factor and in the asymptotic sense as n 
grows toward infinity. This ability comes from the fact that the definition uses "<" 
to compare f (n) to a g(n) times a constant, e, for the asymptotic cases when n 2':. no. 



172 Chapter 4. Mathematical Foundations 

Characterizing Running Times using the Big-Oh Notation 

The big-Oh notation is used widely to characterize running times and space bounds 
in terms of some parameter n, which varies from problem to problem, but is always 
defined as a chosen measure of the "size" of the problem. For example, if we are 
interested in finding the largest element in an array of integers, as in the arrayNiax 
algorithm, we should let n denote the number of elements of the array. Using the 
big-Oh notation, we can write the following mathematically precise statement on 
the running time of algorithm arrayMax for any computer. 

Proposition 4.7: The Algorithm arrayMax, for computing the maximum element 
in an array ofn integers, runs in O(n) time. 

Justification: The number of primitive operations executed by algorithm array
Max in each iteration is a constant. Hence, since each primitive operation runs in 
constant time, we can say that the running time of algorithm arrayMax on an input 
of size n is at most a constant times n, that is, we may conclude that the running 
time of algorithm arrayMax is O(n). • 

Some Properties of the Big-Oh Notation 

The big-Oh notation allows us to ignore constant factors and lower order terms and 
focus on the main components of a function that affect its growth. 

Example 4.8: 5n4 3n3 2n2+4n +1 is O(n4). 

Justification: Note that 5n4 3n3 + 2n2+4n+ 1::; (5 + 3 + 2+4+ 1)n4 = cn4, 
fore = 15, when n > no = 1. • 

In fact, we can characterize the growth rate of any polyno.mial function. 


Proposition 4.9: If f(n) is apolynomial ofdegree d, that is, 


f(n) = ao +aln+· .. +adnd , 


and ad> 0, then f(n) is O(nd). 


Justification: Note that, for n ~ 1, we have 1 ::; n ::; n2 ::; ... ::; nd;hence, 

2 d ( ) daO+aln+a2n +· .. +adn ::; aO+al +a2+· .. +ad n . 

Therefore, we can show f(n) is O(nd) by defining c - aO+al +... +ad and no 1 . 

• 
Thus, the highest-degree term in a polynomial is the term that determines the 

. asyIilptoticgrowthrate 'Of that polynomiaL We consider some additional properties 
of the big-Oh notation in the exercises. Let us consider some further examples 
here, however, focusing on combinations of the seven fundamental functions used 
in algorithm design. 



4.2. Analysis ofAlgorithms 173 

Example 4.10: Sn2 + 3nlogn + 2n + S is O(n2). 

Justification: Sn2 3nlogn+ 2n S::; (S +3 +2+ S)n2 cn2,for c = IS, when 
n > no =2 (note that nlogn is zero for n = 1). _ 

Example 4.11: 20n3 +10nlogn+5 is O(n3). 

Justification: 20n3 10nlogn S 3Sn\ for n > 1. • 
Example 4.12: 310gn+2isO(logn). 

Justification: 3log n + 2 ::; Slogn, for n ~ 2. Note that log n is zero for n = 1. 
That is why we use n ~ no = 2 in this case. _ 

Example 4.13: 2n+2 is O(2n). 


2n22
Justification: 2n+2 = 4· 2n; hence, we can take c =4 and no 1in this 
case. _ 

Example 4.14: 2n 100l0gn is O(n). 

Justification: 2n 10010gn::; 102n, for n ~ no = 2; hence, we can take c = 102 
in this case. • 
Characterizing Functions in Simplest Terms 

In general, we should use the big-Oh notation to characterize a function as closely 
as possible. While it is true that the function f(n) = 4n3 + 3n2 is O(n5) or even 
O(n4), it is more accurate to say that f(n) is O(n3). Consider, by way of analogy, 
a scenario where a hungry traveler driving along a long country road happens upon 
a local farmer walking home from a market. If the traveler ask~ the farmer how 
much longer he must drive before he can find some .food, it may be truthful for the 
farmer to say, "certainly no longer than 12 hours," but it is much more accurate 
(and helpful) for him to say, "you can find a market just a few minutes drive up this 
road." Thus, even with the big-Oh notation, we should strive as much as possible 
to tell the whole truth. 

It is also considered poor taste to include constant factors and lower order terms 
in the big-Oh notation. For example, it is not fashionable to say that the function 
2n2 is O(4n2 +6nlogn), although this is completely correct. We should strive 
instead to describe the function in the big-Oh in simplest terms. 

The seven functions listed in Section 4.1 are the most common functions used 
in conjunction with the big-Oh notation to characterize the running times and space 
usage of algorithms..Indeed; wetypically use the names of these functions to refer 
to therurining times·of the algorithms they characterize. So, for example, we would 
say that an algorithm that runs in worst-case time 4n2 nlogn is a quadratic-time 
algorithm, since it runs in O(n2) time. Likewise, an algorithm running in time at 
most Sn 20log n + 4 would be called a linear-time algorithm. 



174 Ll1apter 4. Mathematical Foundations 

Big-Omega 

Just as the big-Oh notation provides an asymptotic way of saying that a function is 
"less than or equal to" another function, the following notations provide an asymp
totic way of saying that a function grows at a rate that is "greater than or equal to" 
that of another. 

Let f(n) and g(n) be functions mapping nonnegative integers to real numbers. 
We say that f(n) is Q(g(n)) (pronounced "f(n) is big-Omega of g(n)") if g(n) is 
0(/(n)), that is, there is a real constant e > 0 and an integer constant no > 1 such 
that 

f(n) ;::: eg(n), for n;::: no· 

This definition allows us to say asymptotically that one function is greater than or 

equal to another, up to a constant factor. 


Example 4.15: 3nlogn 2n is Q(nlogn). 


Justification: 3nlogn 2n;::: 3nlogn, for n > 2. • 
Big-Theta 

In addition, there is a notation that allows us to say that two functions grow at the 
same rate, up to constant factors. We say that f(n) is 8(g(n)) (pronounced "f(n) 
is big-Theta of g(n)") if f( n) is O(g(n)) and f(n) is Q(g(n)) , that is, there are real 
constants e' > 0 and e" > 0, and an integer constant no ;::: 1 such that 

e'g(n) < f(n) :; e"g(n), for n> no. 

Example 4.16: 3nlogn 4n+Slogn is 8(nlogn). 

Justification: 3nlogn 3nlogn 4n + Slogn:; (3 4 +5)nlogn for n ;::: 2.• 

4.2.4 Asymptotic Analysis 

Suppose two algorithms solving the same problem are available: an algorithm A, 
which has a running time of O(n), and an algorithm B, which has a running time 
of 0(n2). Which algorithm is better? We know that n is 0(n2), which implies that 
algorithm A is asymptotically better than algorithm B, although for a small value 
of n, B may have a lower running time than A. 

We can use the big-Oh notation to order classes of functions by asymptotic 
growth rate. Our seven functions are ordered by increasing growth rate in the se
quencebelow, that is,ifa function f( n) precedes a function g(n) in the sequence, 
thenj(n) is O(g(n)): 

2 n3. 1 logn n nlogn n 2n. 



175 4.2. Analysis ofAlgorithms 

We illustrate the growth rates of some important functions in Table 4.2. 

2 3n n10gn n nn 110gn 

8 3 8 24 64 512 

16 . 4 16 64 256 4,096 65,536 
32 5 32 160 1,024 32,768 4,294,967,296 
64 6 64 384 4,096 262,144 1.84 x 1019 

128 7 128 896 16,384 2,097,152 3.40 x 1038 

256 • 8 256 65,536 16,777,216 1.15 x 1077 

5121 9 512 144 728 1.34 x 10154 

Table 4.2: Selected values of fundamental functions in algorithm analysis. 

We further illustrate the importance of the asymptotic viewpoint in Table 4.3. 
This table explores the maximum size allowed for an input instance that is pro
cessed by an algorithm in I second, 1 minute, and 1 hour. It shows the importance 
of good algorithm design, because an asymptotically slow algorithm is beaten in 
the long run by an asymptotically faster algorithm, even if the constant factor for 
the asymptotically faster algorithm is worse. 

I ~unning 
· TIme (ps) 

400n 
2n2 

2n 

Maximum Problem Size (n) 

1 second 1 minute 1hour 


2,500 150,000 9,000,000 
707 5,477 42,426 
19 25 31 

......

Table 4.3: Maximum size of a problem that can be solved in 1 second, 1 minute, 
s

and 1hour, for various running times measured in microseconds.

The importance of good algorithm design goes beyond just what can be solved 
effectively on a given computer, however. As shown in Table 4.4, even if we 
achieve a dramatic speed-up in hardware, we still cannot overcome the handicap 
of an asymptotically slow algorithm. This table shows the new maximum problem 
size achievable for any fixed amount of time, assuming algorithms with the given 
running times are now run on a computer 256 times faster than the previous one. 

! Running Time New Maximum Problem Size 
400n 256m 
2n2 16m 
·2n m+8 

Table 4.4: Increase in the maximum size of a problem that can be solved in a fixed 
amount of time, by using a computer that is 256 times faster than the previous one. 
Each entry is a function of m, the previous maximum problem size. 



176 Chapter 4. Mathematical Foundations 

4.2.5 Using the Big-Oh Notation 

Having made the case of using the big-Oh notation for analyzing algorithms, let 
us briefly discuss a few issues concerning its use. It is considered poor taste, in 
general, to say "f(n) :s; O(g(n))," since the big-Oh already denotes the "less-than
or-equal-to" concept. Likewise, although common, it is not fully correct to say 
"f(n) O(g(n))" (with the usual understanding of the "=" relation), since there 
is no way to make sense of the statement "O(g(n)) - f(n)." In addition, it is 
completely wrong to say "f(n) ~ O(g(n))" or "f(n) > O(g(n))," since the g(n) in 
the big-Oh expresses an upper bound on f(n). It is best to say, 

"f(n) is O(g(n))." 

For the more mathematically inclined, it is also correct to say, 

"f(n) E O(g(n) )," 

for the big-Oh notation is, technically speaking, denoting a whole collection of 
functions. In this book, we will stick to presenting big-Oh statements as "f(n) 
is O(g(n) )." Even with this interpretation, there is considerable freedom in how 
we can use arithmetic operations with the big-Oh notation, and with this freedom 
comes a certain amount of responsibility. 

Some Words of Caution 

A few words of caution about asymptotic notation are in order at this point' First, 
note that the use of the big-Oh and related notations can be sQmewhat misleading 
should the constant factors they "hide" be very large. For example, while it is true 
that the function 10100n is O(n), if this is the running time of an algorithm being 
compared to one whose running time is 1Onlogn, we should prefer the O(nlogn) 
time algorithm, even though the linear-time algorithm is asymptotically faster. This 
preference is because the constant factor, 10100, which is called "one googol," is 
believed by many astronomers to be an upper bound on the number of atoms in 
the observable universe. So we are unlikely to ever have a real-world problem that 
has this number as its input size. Thus, even when using the big-Oh notation, we 
should at least be somewhat mindful of the constant factors and lower order terms 
we are "hiding." 

The observation above raises the issue of what constitutes a "fast" algorithm. 
Generally speaking, any algorithm running in O(nlogn) time (with a reasonable 
constant factor) should be considered efficient. Even an O(n2 

) time method may 
be fast enough in some contexts, that is, when n is small. But an algorithm running 
in O(2n) time should almost never be considered efficient. 



177 

} 

1~ 
~~!~ 

4.2. Analysis of Algorithms 

Exponential Running Times 

There is a famous story about the inventor of the game of chess. He asked only 
that his king pay him 1 grain of rice for the first square on the board, 2 grains for 
the second, 4 grains for the third, 8 for the fourth, and so on. It is an interesting 
test of programming skills to write a program to compute exactly the number of 
grains of rice the king would have to pay. In fact, any Java program written to 
compute this number in a single integer value will cause an integer overflow to 
occur (although the run-time machine will probably not complain). To represent 
this number exactly as an integer requires using a Biglnteger class. 

If we must draw a line between efficient and inefficient algorithms, therefore, 
it is natural to make this distinction be that between those algorithms running in 
polynomial time and those running in exponential time. That is, make the distinc
tion between algorithms with a running time that is O(nC

), for some constant c > 1, 
and those with a running time that is O(b n), for some constant b > 1. Like so many 
notions we have discussed in this section, this too should be taken with a "grain of 
salt," for an algorithm running in O(nlOO) time should probably not be considered 
"efficient." Even so, the distinction between polynomial-time and exponential-time 
algorithms is considered a robust measure of tractability. 

To summarize, the asymptotic notations of big-Oh, big-Omega, and big-Theta 
provide a convenient language for us to analyze data structures and algorithms. As 
mentioned earlier, these notations provide conve~ience because they let us concen
trate on the "big picture" rather than low-level details. 

Two Examples of Asymptoti.c Algorithm Analysis 

We conclude this section by analyzing two algorithIJ?s that solve the same problem 
but have rather different running times. The problem we are interested in is the 
one of computing the so-called prefix averages of a sequence of numbers. Namely, 
given an array X storing n numbers, we want to compute an array A such that A[i] 
is the average of elements X[0], ... ,Xli], for i = 0, ... ,n -1, that is, 

A[i] = E~=oX[j]
i+ 1 . 

Computing prefix averages has many applications in economics and statistics. For 
exampie,givyn th~ year-Qy~year returns of a mutual fund, an investor will typically 
want to see the fund's average annual returns for the last year, the last three years, 
the last five years, and the last ten years. Likewise, given a stream of daily Web 
usage logs, a Web site manager may wish to track average usage trends over various 
time periods. 



178 Chapter 4. Mathematical Foundations 

A Quadratic-Time Algorithm 

Our first algorithm for the prefix averages problem, called prefixAveragesl, is 
shown in Code Fragment 4.2. It computes every element ofA separately, following 
the definition. 

Algorithm prefixAveragesl(X): 
Input: An n-element array X of numbers. 
Output: An n-element array A of numbers such that A[i] is 

the average of elements X[O], ... ,Xli). 
Let A be an array of n numbers. 
for i 0 to n 1 do 

abO 
for j b 0 to i do 

a a+X[j] 

A[i) b a/(i+ 1) 


return array A 


Code Fragment 4.2: Algorithm prefixAveragesl. 

Let us analyze the prefixAveragesl algorithm. 

• 	Initializing and returning array A at the beginning and end can be done with 
a constant number of primitive operations per element, and takes O(n) time. 

• 	There are two nested for loops, which are controlled by counters i .and j, 
respectively. The body of the outer loop, control1~d by c,ounter i, is executed 
n times, for i - 0, ... ,n -1. Thus, statements a 0 and A[i) = a/(i +1) are 
executed n times each. This implies that these two statements, plus the incre
menting and testing of counter i, contribute a number of primitive operations 
proportional to n, that is, O(n) time. 

• 	The body of the inner loop, which is controlled by counter j, is executed 
i +1times, depending on the current value of the outer loop counter i. Thus, 
statement a =a+ X [j) in the inner loop is executed I 2 + 3 + . . . n times. 
By recalling Proposition 4.3, we know that 1 2+3 +... n= n(n+ 1)/2, 
which implies that the statement in the inner loop contributes O(n2) time. A 
similar argument can be done for the primitive operations associated with the 
incrementing and testing counterj, which also take O(n2) time. 

The running time of algorithm prefixAveragesl is given by the sum of three terms. 
The first and the second term are O(n), and the third term is O(n2

). By a simple 
application of Proposition 4.9, the running time of prefixAveragesl is O(n2 ). 



179 4.2. Analysis ofAlgorithms 

A Linear-Time Algorithm 

In order to compute prefix averages more efficiently, we can observe that two con
secutive averages A[i 1] and A[i] are similar: 

A[i 1] (X [0] +X[I] +... +X[i -1])/i 
A[i] (X[0]+X[1]+···+X[i-l] X[i])/(i 1). 

If we denote with Sj the prefix sum X[O] +X[I] . . . Xli], we can compute 
the prefix averages as A [i] Sd (i +1). It is easy to keep track of the current prefix 
sum while scanning array X with a loop. We are now ready to present Algorithm 
prefixAverage52 in Code Fragment 4.3. 

Algorithm prefixAverage52(X): 
Input: An n-element array X of numbers. 
Output: An n-element array A of numbers such that A[i] is 

the average of elements X[0], '" ,Xli]. 

Let A be an array of n numbers. 

Sf-O 

for i f- 0 to n - 1 do 

Sf- S Xli] 

A[i] f- s/(i 1) 


return array A 

Code Fragment 4.3: Algorithm prefixAve"rages2. I 

The analysis of the running time of algorithm prefixAverage52 follows: 

• 	Initializing and returning array A at the beginning and end can be done with 
a constant number of primitive operations per element, and takes O(n) time. 

• 	Initializing variable s at the beginning takes O( 1) time. 

• 	There is a single for loop, which is controlled by counter i. The body of the 
loop is executed n times, for i = 0, ... ,n 1. Thus, statements s = s +X[i] 
and A[i] = s / (i +1) are executed n times each. This implies that these two 
statements plus the incrementing and testing of counter i contribute a number 
of primitive operations proportional ton, that is, O(n) time. 

The running time of algorithm prefixAverage52 is given by the sum of three terms. 
The first and the third term are O(n), and the second term is 0(1). By a simple 
application of Proposition 4.9, the running time ofprefixAverage52 is O(n), which 
is much better than the quadratic-time algorithmprefixAverage5l. 



180 

"-:""ilIl: 

Chapter 4. Mathematical Foundations 

4.2.6 A Recursive Algorithm for Computing Powers 

As a more interesting example of algorithm analysis, let us consider the problem 
of raising a number x to an arbitrary nonnegative integer, n. That is, we wish to 
compute the power function p(x,n), defined as p(x,n) r. This function has an 
immediate recursive definition based on linear recursion: 

1 ifn 0 
p(x,n)= { x,p(x,n-1) otherwise. 

This definition leads immediately to a recursive algorithm that uses O(n) method 
calls to compute p(x,n). We can compute the power function much faster than 
this, however, by using the following alternative definition, also based on linear 
recursion, which employs a squaring technique: 

1 if n 0 
p(x,n) = X· p(x, (n -1)/2)2 if n > 0 is odd 

{ p(x,n/2)2 if n > 0 is even. 

To illustrate how this definition works, consider the following examples: 

24 2(4/2)2 _ (24/2)2 (22f 42= 16 

25 21+(4/2)2 2(24/2)2 2(22)2 -:- 2(42) = 32 

26 2(6/2)2 = (26/2)2 (23)2 = 82= 64 

27 21+(6/2)2 = 2(26/2)2 2(23f - 2(82) = 128. 

This definition suggests the algorithm of Code Fragment 4.4. 

Algorithm Power(x,n): 

Input: A number x and integer n > 0 

Output: The value r 

ifn = 0 then 


return 1 

if n is odd then 

y~ Power(x,(n 1)/2) 

return X· y.y 


else 

y ~ Power(x,n/2) 

returny·y 


Code Fragment 4.4: Computing the power function using linear recursion. 

To analyze the running time of the algorithm, we observe that each recursive 
call of method Power(x, n) divides the exponent, n, by two. Thus, there are O(logn) 
recursive calls, not O(n). That is, by using linear recursion and the squaring tech
nique, we reduce the running time for the computation of the power function from 
O(n) to O(logn), which is a big improvement. 



181 4.2. Analysis ofAlgorithms 

4.2.7 Some More Examples of Algorithm Analysis 

Now that we have the big-oh notation for doing algorithm analysis, let us give some 
more examples of simple algorithms that can have their running times characterized 
using this notation. Moreover, in keeping with our earlier promise, we illustrate 
below how each of the seven functions given earlier in this chapter can be used to 
characterize the running time of an example algorithm. 

A Constant-Time Method 

To illustrate a constant-time algorithm, consider the following Java method, which 
returns the capacity of an array, that is, the number of cells in the array that are 
capable of storing elements: 

public static int ca pacity{int[] arr) { 

return arr.length; / / the capacity of an array is its length 


} 

This is a very simple algorithm, because the capacity of an array is the same 
as its length, and there is a direct way in Java for returning the length of an array. 
Moreover, this value is stored as an instance variable for the array object, so it takes 
only a constant-time lookup to return this value. Thus, the capacity method runs in 
O(1) time; that is, the running time of this method is independent of the value of n, 
the size of the array. 

Revisiting the Method for Finding the Maximum in "an Arra'l 

For our next example, let us reconsider a simple problem studied earlier-finding 
the largest value in an array of integers-which can be done in Java as follows: 

public static int findMax(int[] arr) { 

int max = arr[O]; / / start with the first integer in arr 

for (int i < arr.length; i++) 


if (max < arr[iD 
max = arr[i]; / / update the current maximum 

return max; / / the current maximum is now the global maximum 
} 

This method, which amounts to a Java implementation of the arrayMax method 
·of Section 4.2J, compares each of the n elements in the input array to a current 
maximum, and each time it finds an element larger than the current maximum, it 
updates the current maximum to be this value. Thus, it spends a constant amount of 
time for each of the n elements in the array; hence, as with the pseudo-code version 
of the arrayMax algorithm, the running time of this algorithm is O(n). 



182 Chapter 4. Mathematical Foundations 

Further Analysis of the Maximum-Finding Algorithm 

A more interesting question, with respect to the above maximum-finding algorithm, 
is to ask how many times we update the current maximum value. Note that this 
statement is executed only if we encounter a value of the array that is larger than 
our current maximum. In the worst case, this condition could be true each time 
we perform the test. For instance, this situation would occur if the input array is 
given to us in sorted order. Thus, in the worst-case, the statement max arr[ i J is 
performed n- 1 times, hence O(n) times. 

But what if the input array is given to us in random order, with all orders equally 
likely; what would be the expected number of times we updated the maximum value 
in this case? To answer this question, note that we update the current maximum in 
the ith iteration only if the ith element in the array is bigger than all the elements 
that precede it. But if the array is given to us in random order, the probability that 
the ith element is larger than all elements that precede it is 1/i; hence, the expected 
number of times we update the maximum in this case is Hn - 1:7=1 1/i, which is 
known-as the nth Harmonic number. It turns out (see Proposition A.l6) that Hn is 
O(logn). Therefore, the expected number of times the maximum is updated when 
the above maximum-finding algorithm is run on a random array is O(log n). 

Three-Way Set Disjointness 

Suppose we are given three sets, A, B, and C, with these sets stored in three different 
integer arrays, a, b, and c, respectively. The three-way set disjointness problem is 
to determine if these three sets are disjoint, that is, whether there is no elel]1ent x 
such that x E A, x E B, and x E C. A simple Java methodto det~rmine this property 
is given below: 

public static boolean areDisjoint(int[] a, int[] b, int[] c) { 
for (int i=O; i < a.length; i++) 

for (int j=O; j < b.length; j++) 
for (int k=O; k < c.length; k++) 

if ((a[i] == bOD && (bO] c[k])) return false; 
return true; / / there is no element common to a, b, and c 

} 

This simple algorithm loops through each possible triple of indices i, j, and k 
to check if the respective elements indexed in a, b, and c are equaL Thus, if each of 
these arrays is ofsizen,then the worstc.caserunning time of this method is O(n3). 

Moreover, the worst case is achieved when the sets are disjoint, since in this case 
we go through all n3 triples of valid indices, i, j, and k. Such a running time would 
generally not be considered very efficient, but, fortunately, there is a better way to 
solve this problem. 



183 4.2. Analysis ofAlgorithms 

Recursion Run Amok 

The next few example algorithms we study are for solving the element uniqueness 
problem, in which we are given a range, i, i + 1, ... ,j, of indices for an array, A, 
and we want to determine if the elements of this range, A[iJ,A [i +1], ... ,AU], are 
all unique, that is, there is no repeated element in this group of array entries. The 
first algorithm we give for solving the element uniqueness problem is a recursive 
one. But it uses recursion in a very inefficient manner, as shown in the following 
Java implementation. 

/ / Are all the entries in an array of int values unique from start to end? 
public static boolean isUnique(int[] arr, int start, int end) { 

if (start >= end) return true; / / the range is too small for repeats 
/ / check if first part of arr is recursively unique 
if (!isUnique(arr, start, end-I)) return false; 
/ / check if second part of arr is recursively unique 
if (!isUnique(arr, start+1. end)) return false; 
return (arr[start] != arr[end]); / / check if first and last are different 

} 

To analyze this recursive algorithm, let us first determine how much time we 
spend outside of recursive calls in any invocation of this method. Note, in particu
lar, that there are no loops-just comparisons, arithmetic operations, array element 
references, and method returns. Thus, the nonrecursive part of each method invo
cation runs in constant time, that is, 0(1) time; hence, to determine the worst-case 
running time ofthis method we only need to determine the worst-case total number 
of calls we make to the isUnique method. 

Let n denote the number of entries under consideration, that is, let 
6 

n = end -start+ 1.

Ifn = 1, then the running time of the isUnique is 0(1), since there are no recursive 
calls for this case. To characterize the running time of the general case, the impor
tant observation to make is that in order to solve a problem of size n, the isUnique 
method makes two recursive calls on problems of size n - 1. Thus, in the worst 
case, a call for a range of size n makes two calls on ranges of size n 1, which each 
make two calls on ranges of size n - 2, which each make two calls on ranges of size 
n - 3, and so on. Thus, in the worst case, the total number of method calls is given 
by the geometric summation 

11 2+4+... 2n- , 

which is equal to 2n -1 by Proposition 4.5. Thus, the worst-case running time of 
method isUnique is 0(2n). This is an incredibly inefficient method for solving the 
element uniqueness problem. Its inefficiency comes not from the fact that it uses 
recursion-it comes from the fact that it uses recursion poorly. 



184 Chapter 4. J.o/lathematical Foundations 

An Iterative Method for Solving the Element Uniqueness Problem 

We can do much better than the above exponential-time method by using the fol
lowing iterative algorithm: 

public static boolean isUniqueLoop(int[] arr, int start, int end) { 
if (start >= end) return true; / / the range is too small for repeats 
for (int i=start; i < end; i++) 

for (int j=i+1; j <= end; j++) 
if (arr(i] arrUD return false; 

return true; 
} 

This method solves the element uniqueness problem by looping through all 
distinct pairs of indices, i and j, and checking if any of them indexes a pair of 
elements that are equal to each other. It does this using two nested for loops, such 
that the first iteration of the outer loop causes n 1 iterations of the inner loop, the 
second iteration of the outer loop causes n - 2 iterations of the inner loop, the third 
iteration of the outer loop causes n 3 iterations of the inner loop, and so on. Thus, 
the worst-case running time of this method is proportional to 

1+2+3+"'+(n-l), 

which is 0(n2) as we have seen earlier in this chapter (Proposition 4.3). 

Using Sorting as a Problem-Solving Tool 

An even better algorithm for the element uniqueness problem is based on using 
sorting as a problem-solving tooL In this case, by sorting an array of eleJilents, 
we are guaranteed that any duplicate elements will be placed next to each other. 
Thus, to determine if there are any duplicates in the array, all we need to do is 
perform a single pass over the sorted array, looking for consecutive duplicates. A 
Java implementation of this algorithm is as follows: 

public static boolean isUniqueSort(int(] arr, int start, int end) { 
_if (start >= end) return true; / / the range is too small for repeats 
int[] buf = arr.cioneO; / / duplicate arr so that sorting doesn't change it 
Arrays.sort(buf); / / sort the copy of arr, putting duplicates together 
for (int i=start; i < end; i++) 

if (buf[;] == buf[i+1]) return false; 
return true; 

} 

Method Arrays.sort uses the quick-sort algorithm, which runs in O(nlogn) time 
(Section 11.2); Thus, the entire algorithm isUniqueSort runs in O(nlogn) time 
because all the other steps run in O(n) time. Incidentally, we can solve the element 
uniqueness problem even faster than O(nlog n) time, at least in terms of its average
case running time, by using the hash table data structure we explore in Section 9.2. 



185 4.3. Simple Justification Techniques 

4.3 Simple Justification Techniques 

Sometimes, we will want to make claims about an algorithm, such as showing that 
it is correct or that it runs fast. In order to rigorously make such claims, we must 
use mathematical language, and in order to back up such claims, we must justify or 
prove our statements. Fortunately, there are several simple ways to do this. 

4.3.1 By Example 

Some claims are of the generic form, "There is an element x in a set S that has 
property P." To justify such a claim, we only need to produce a particular x in S 
that has property P. Likewise, some hard-to-believe claims are of the generic form, 
"Every element x in a set Shas property P." To justify that such a claim is false, we 
only need to produce a particular x from S that does not have property P. Such an 
instance is called a counterexample. 

Example 4.17: Professor Amongus claims that every number of the form 2i 
is aprime, when i is an integer greater than 1. Professor Amongus is wrong. 

Justification: To prove Professor Amongus is wrong, we find acounter-example. 
Fortunately, we need not look too far, for 24 - 1= 15 = 3·5. • 

4.3.2 The IIContra" Attack 
$ 

Another set of justification techniques involves the ~se of the negative. The two 
primary such methods are the use of the contrapositive and the contradiction. The 
use of the contrapositive method is like looking through a negative mirror. To 
justify the statement "if p is true, then q is true" we establish that "if q is not true, 
then p is not true" instead. Logically, these two statements are the same, but the 
latter, which is called the contrapositive of the first, may be easier to think about. 

Example 4.18: Let a and b be integers. Ifab is even, then a is even or b is even. 

Justification: To justify this claim, consider the contrapositive, "If a is odd and 
b is odd, then ab is odd." So, suppose a = 2i +1and b - 2j +1, for some integers 
i and j. Thenab-4ij+2i+2j 1-2(2ij+i j) 1; hence,ab is odd. • 

Besides showing a use of the contrapositivejustification technique, the previous 
example also contains an application of DeMorgan's Law. This law helps us deal 
with negations, for it states that the negation of a statement of the form "p or q" is 
"not p and not q." Likewise, it states that the negation of a statement of the form 
"p and q" is "not p or not q." 

1 



186 Chapter 4. Mathematical Foundations 

Contradiction 

Another negative justification technique is justification by contradiction, which 
also often involves using DeMorgan's Law. In applying the justification by con
tradiction technique, we establish that a statement q is true by first supposing that 
q is false and then showing that this assumption leads to a contradiction (such as 
2#2 or 1 > 3). By reaching such a contradiction, we show that no consistent sit
uation exists with q being false, so q must be true. Of course, in order to reach this 
conclusion, we must be sure our situation is consistent before we assume q is false. 

Example 4.19: Let a and b be integers. Ifab is odd, then a is odd and b is odd. 

Justification: Let ab be odd. We wish to show that a is odd and b is odd. So, 
with the hope of leading to a contradiction, let us assume the opposite, namely, 
suppose a is even or b is even. In fact, without loss of generality, we can assume 
that a is even (since the case for b is symmetric). Then a 2i for some integer i. 
Hence, ab - (2i)b 2(ib), that is, ab is even. But this is a contradiction: ab cannot 
simultaneously be odd and even. Therefore a is odd and b is odd. • 

4.3.3 Induction and Loop Invariants 

Most of the claims we make about a running time or a space boundinvolve an inte
ger parameter n (usually denoting an intuitive notion ofthe "size" of the problem). 
Moreover, most of these claims are equivalent to saying some statement q(n) is true 
"for all n > 1." Since this is making a claim about an infinite set of numbers, we 
cannot justify this exhaustively in a direct fashion. 

Induction 

We can often justify claims such as those above as true, however, by using the 
technique of induction. This technique amounts to showing that, for any particular 
n ~ 1, there is a finite sequence of implications that starts with something known 
to be true and ultimately leads to showing that q(n) is true. Specifically, we begin a 
justification by induction by showing that q(n) is true for n 1 (and possibly some 
other values n 2,3, ... ,k, for some constant k). Then we justify that the inductive 
"step" is true for n> k, namely, we show "if q(i) is true for i < n, then q(n) is true." 
The combination of these two pieces completes the justification by induction. 



187 4.3. Simple Justification Techniques 

Proposition 4.20: Consider the Fibonacci function F(n), where we define F( 1 ) = 
1, F(2) = 2, and F(n) F(n -1) F(n - 2) for n > 2. (See Section 2.2.3.) We 
claim that F(n) < 2n. 

Justification: We will show our claim is right by induction. 

Base cases: (n ~ 2). F(l) 1 < 2 = 21 and F(2) 2 < 4 = 22. 

Induction step: (n >2). Suppose our claim is true for n' <n. Consider F(n). Since 

n > 2, F(n) = F(n - 1) +F(n 2). Moreover, since n 1< n and n - 2 < n, we 

can apply the inductive assumption (sometimes called the "inductive hypothesis") 

to imply that F(n) <2n- 1 2n- 2, since 


12n- 1+2n- 2 < 2n- 1+2n- 1 = 2. 2n- _ 2n. 

• 
Let us do another inductive argument, this time for a fact we have seen before. 

Proposition 4.21: (which is the same as Proposition 4.3) 

nI> _n(n+ 1) 
1=1 2 

Justification: We will justify this equality by induction. 

Base case: n = 1. Trivial, for 1= n(n +1 )/2, if n - 1. 

Induction step: n 2: 2. Assume the claim is true for n' < n. Consider n. 


n n-1 

I> n+ I>· 
i==l i==1 

By the induction hypothesis, then 

ItI> = n+ (n-1)n 
1=1 '" 

which we can simplify as 

2n+n2-n n 2 +n n(n+ 1) 
n 

2 2 2 

• 
We may sometimes feel overwhelmed by the task of justifying something true 

for all n 2: 1. We should remember, however, the concreteness of the inductive tech
nique. It shows that, for any particular n, there is a finite step-by-step sequence of 
implications that starts with something true and leads to the truth about n. In short, . 
the inductive argument is a formula for building a sequence of direct justifications. 



188 Chapter 4. Mathematical Foundations 

Loop Invariants 

The final justification technique we discuss in this section is the loop invariant. To 
prove some statement S about a loop is correct, define S in terms of a series of 
smaller statements So, SI , ... ,Sk. where: 

1. The initial claim, So, is true before the loop begins. 
2. If Si-l is true before iteration i, then Sj will be true after iteration i. 
3. The final statement, Sk, implies the statement S that we wish to be true. 

Let us give a simple example of rising a loop-invariant argument to justify the 
correctness of an algorithm. In particular, let us consider using a loop invariant to 
justify the correctness of arrayFind, shown in Code Fragment 4.5, for finding an 
element x in an array A. 

Algoritbm arrayFind(x,A): 
Input: An element x and an n-element array, A. 
Output: The index i such that x = A[i] or -1 if no element of A is equal to x. 

i +-0 
while i < n do 


if x =AU] then 

return i 


else 

i+-i+l 

return -1 

Code Fragment 4.5: Algorithm arrayFind for finding a,given,element in an array. 

To show that arrayFind is correct, we inductively define a series of statements, 
Si, that lead to the correctness of our algorithm. Specifically, we claim the follow
ing is true at the beginning of iteration i of the while loop: 

Si: x is not equal to any of the first i elements of A. 
This claim is true at the beginning of the first iteration of the loop, since there are 
no elements among the first 0 in A (this kind of a trivially true claim is said to hold 
vacuously). In iteration i, we compare element x to element A[i] and return the 
index i if these two elements are equal, which is clearly correct and completes the 
algorithm in this case. If the two elemerits x and A[i] are not equal, then we have 
found one more element not equal to x and we increment the index i. Thus, the 
claimSi:willbetrueforthis new value ofi;hence, it is true at the beginning of 
the next iteration. If the while-loop terminates without ever returning an index in 
A, then we have i - n. That is, Sn is true-.there are no elements of A equal to x. 
Therefore, the algorithm correctly returns 1 to indicate that x is not in A. 



189 4.4. Exercises 

4.4 Exercises 

For help with exercises, please visit the web site, www.wiley.com/go/globallgoodrich. 

Reinforcement 

R-4.1 	 Give a pseudo-code description of the O(n)-time algorithm for computing 
the power function p(x, n). Also, draw the recursion trace of this algorithm 
for the computation of p(2,5). 

R-4.2 Give a Java description of Algorithm Power for computing the power 
function p(x, n) (Code Fragment 4.4). 

R-4.3 Draw the recursion trace of the Power algorithm (Code Fragment 4.4, 
which computes the power function p(x,n)) for computing p(2, 9). 

R-4.4 Analyze the running time of Algorithm BinarySum (Code Fragment 3.34) 
for arbitrary values of the input parameter n. 

R-4.5 	Graph the functions 8n, 4nlogn, 2n2, n3, and 2n using a logarithmic scale 
for the x- and y-axes, that is, if the function value f(n) is y, plot this as a 
point with x-coordinate at logn and y-coordinate at logy. 

R-4.6 The number of operations executed by algorithms A and B is 8nlogn and 
2n2, respectively. Determine no such th~tA is better than B for n ~ no. 

R-4.7 The number of operations executed by algorithms A and B is 40n2 and 
2n3, respectively. Determine no such that A is better than B for n no. 

R-4.8 Give an example of a function that is plotted the same on a log-log scale 
as it is on a standard scale. 

R-4.9 Explain why the plot of the function nC is astraight line with slope c on a 
log-log scale. 

R-4.10 What is the sum of all the even numbers from 0 to 2n, for any positive 
integer n? 

R-4.11 Show that the following two statements are equivalent: 
(a) The running time of algorithm A is always O(f(n)). 
(b) In the worst case, the running time of algorithm A is O(f(n)). 

R-4.12 Order the following functions by asymptotic growth rate. 

210 	 2logn4nlogn+2n 

2n3n +100logn 4n 
3n2 +IOn n nlogn 

R-4.l3 	Show that if d(n) is O(f(n)), then ad(n) is O(f(n)), for any constant 
a>O. 

www.wiley.com/go/globallgoodrich


190 Chapter 4. Mathematical Foundations 

R-4.l4 Show that if d(n) is O(f(n)) ande(n) is O(g(n)), then the productd(n)e(n) 
is O(f(n)g(n)). 

R-4.15 Give a big-Oh characterization, in tenus of n, of the running time of the 
Ex1 method shown in Code Fragment 4.6. 

R-4.16 Give a big-Oh characterization, in terms of n, of the running time of the 
Ex2 method shown in Code Fragment 4.6. 

R-4.17 Give a big-Oh characterization, in tenus of n, of the running time of the 
Ex3 method shown in Code Fragment 4.6. 

R-4.18 Give a big-Oh characterization, in terms of n, of the running time of the 
Ex4 method shown in Code Fragment 4.6. 

R-4.19 Give a big-Oh characterization, in tenus of n, of the running time of the 
Ex5 method shown in Code Fragment 4.6. 

R-4.20 	Bill has an algorithm, find2D, to find an element x in an n x n array A. 
The algorithm find2D iterates over the rows of A, and calls the algorithm 
arrayFind, of Code Fragment 4.5, on each row, until x is found or it has 
searched all rows of A. What is the worst-case running time of find2D in 
terms of n? What is the worst-case running time of find2D in terms of N, 
where N is the total size of A? Would it be correct to say that Find2D is a 
linear-time algorithm? Why or why not? 

R-4.21 	 For each function f(n) and time t in the following table, determine the 
largest size n of a problem P that can be solved in time t if the algorithm 
for solving P takes f(n) microseconds (one entry is already completed). 

1Second 1Hour 1Month 
I 

1Century 

logn ~ 10300000 

n 

nlogn 

n2 

2n I 

j 

R-4.22 Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) +e(n) is 
O(f(n) +g(n)). 

R-4.23 Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) - e(n) is not 
necessarily O(f(n) - g(n)). 

R-4.24 Show that ifd(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is O(g(n)). 
R-4.25 ShowthatO(max{f(n),g(n)}) =O(f(n) +g(n)). 
R-4.26 Show that f(n) is O(g(n)) if and only if g(n) is Q(f(n)). 
R-4.27 Show that if p(n) is a polynomial in n, then logp(n) is O(logn). 
R-4.28 Show that (n+ 1)5 is O(n5). 



191 4.4. Exercises 

Algorithm Exl(A): 
Input: An array A storing n 2' 1 integers. 
Output: The sum of the elements in A. 

Sf- A [0] 

for if-I to n- 1do 


sf-s+A[i] 

return s 

Algorithm Ex2(A): 
Input: An array A storing n 2' 1integers. 
Output: The sum of the elements at even cells in A. 

Sf- A[0] 
for i f- 2 to n- 1by increments of 2 do 


sf-s+A[i] 

return s 

Algorithm Ex3(A): 
Input: An array A storing n 2' 1 integers. 
Output: The sum of the prefix sums in A. 

Sf-O 

for i f- 0 to n - 1do 

Sf- s+A[O] 

for j f- 1 to i do 


Sf- s+A[j] 
returns 

Algorithm Ex4(A): 

Input: An array A storing n 2' 1integers. 

Output: The sum of the prefix sums in A. 


Sf- A [0] 

t f- S 


for if-I to n - 1do 
Sf- s+A[i] 

tf-t+S 


return t 

Algorithm Ex5(A,B): 

Input: Arrays A and B each storing n 2' 1 integers. 
Output: The number of elements in B equal to the sum of prefix sums in A. 

ef-O 

for i f- 0 to n 1do 
Sf-O 

for j f- 0 to n - 1do 

Sf- s+A[O] 

for k f- 1 to j do 

. Sf- s+A[k] 
. ifB[i] ~s'then' 

e f- e+ 1 

retume 


Code Fragment 4.6: Some algorithms. 



Chapter 4. Mathematical Foundations192 

R-4.29 Show that 211+1 is 0(211). 

R-4.30 Show that n is O(nlogn). 

R-4.31 Show that n2 is Q(nlogn). 

R-4.32 Show that nlogn is Q(n). 

R-4.33 Show that rJ(n)l is O(1(n)), if j(n) is a positive nondecreasing function 
that is always greater than 1. 

R-4.34 Algorithm A executes an O(logn)-time computation for each entry of an 
n-element array. What is the worst-case running time of Algorithm A? 

R-4.35 Given an n-element array X, Algorithm B chooses logn elements in X 
at random and executes an O(n)-time calculation for each. What is the 
worst-case running time of Algorithm B? 

R-4.36 Given an n-element array X of integers, Algorithm C executes an O(n)
time computation for each even number in X, and an O(logn)-time com
putation for each odd number in X. What are the best-case and worst-case 
running times of Algorithm C? 

RA.37 Given an n-element array X, Algorithm D calls Algorithm E on each el
ement Xli}. Algorithm E runs in O(i) time when it is called on element 
Xli}. What is the worst-case running time of Algorithm D? 

R-4.38 Al and Bob are arguing about their algorithms. Al claims his O(nlogn)
time method is always faster than Bob's 0(n2)-tirrie method. To settle the 
issue, they perform a set of experiments. To AI's dismay, they find that if 
n < 100, the 0(n2)-time algorithm runs faster, and only when n > 100 is 
the O(n logn)-time one better. Ex:plain how this is possible. 

Creativity 

C-4.1 	 Describe a recursive algorithm to compute the integer part of the base-two 
logarithm of n using only addition and integer division. 

C-4.2 	Describe an efficient algorithm for finding the ten largest elements in an 
array of size n. What is the running time of your algorithm? 

C-4.3 	Suppose you are given an n-element array A containing distinct integers 
that are listed in increasing order. Given a number k, describe a recursive 
algorithm to find two integers in A that sum to k, if such a pair exists. 
What is the running time of your algorithm? 

C-4.4 	Given an n-element unsorted array A of n integers and an integer k, de
scribe a recursive algorithm for rearranging the elements in A so that all 
elements less than or equal to k come before any elements larger than k. 
What is the running time of your algorithm? 



193 4.4. Exercises 

C-4.5 	 Communication security is extremely important in computer networks, 
and one way many network protocols achieve security is to encrypt mes
sages. Typical cryptographic schemes for the secure transmission of mes
sages over such networks are based on the fact that no efficient algorithms 
are known for factoring large integers. Hence, if we can represent a secret 
message by a large prime number p, we can transmit, over the network, 
the number r - p. q, where q > p is another large prime number that acts 
as the encryption key. An eavesdropper who obtains the transmitted num
ber r on the network would have to factor r in order to figure out the secret 
message p. 

Using factoring to figure out a message is very difficult without knowing 
the encryption key q. To understand why, consider the following naive 
factoring algorithm: 

for p -	 2 ... ,r - 1do, 
if p divides r then 

return "The secret message is p!" 

a. 	 Suppose that the eavesdropper uses the above algorithm and has a 
computer that can carry out in 1 microsecond (1 millionth of a sec
ond) a division between two integers of up to lOO bits each. Give an 
estimate of the time that it will take in the worst case to decipher the 
secret message p if the transmitte~ message r has 100 bits. 

b. 	 What is the worst-case time complexity of the above algorithm? 
Since the input to the algorithm is just one large number r, assume 
that the input size n is the number of bytes needed to store r, that is, 
n l(log2 r)/8J 1, and that each division takes time O(n). 

C-4.6 Give an example of a positive function f(n): such that f(n) is neither O(n) 
nor Q(n). 

C-4.7 Show that E~l i2 is O(n3). 

C-4.8 Show that E~l i/2i < 2. (Hint: Try to bound this sum term by term with 
a geometric progression.) 

C-4.9 Show that logbf(n) is 0(logf(n)) if b > 1 is a constant. 

C-4.10 	Describe a method for finding both the minimum and maximum of n num
bers using fewer than 3n/2 comparisons. (Hint: First construct a group 
of candidate minimums and a group of candidate maximums.) 

C-4.ll 	Bob built a Web site and gave the URL only to his n friends, which he 
numbered from 1 to n. He told friend number i that he/she can visit the 
Web site at most i times. Now Bob has a counter, C, keeping track of 
the total number of visits to the site (but not the identities of who visits). 
What is the minimum value for C such that Bob should know that one of 
his friends has visited hislher maximum allowed number of times? 



194 	 Chapter 4. Mathematical Foundations 

C-4.12 	Al says he can prove that all sheep in a flock are the same color: 1\ 
Base case: One sheep. It is clearly the same color as itself. 

Induction step: A flock of n sheep. Take a sheep, a, out. The remaining 
n -1 are all the same color by induction. Now put sheep a back in and 
take out a different sheep, b. By induction, the n - 1 sheep (now with a) 
are all the same color. Therefore, all the sheep in the flock are the same 
color. 

What is wrong with AI's "justification"? 

C-4.13 Consider the following "justification" that the Fibonacci function, F(n) 
(see Proposition 4.20) is O(n): 
Base case (n ~ 2): F(l) 1 and F(2) = 2. 
Induction step (n > 2): Assume claim true for n' <n. Consider n. F(n) = 

F(n -1) +F(n 2). By induction, F(n -1) is O(n 1) and F(n 2) is 
O(n 2). Then, F(n) is O( (n - 1) +(n - 2)), by the identity presented in 
Exercise R-4.22. Therefore, F(n) is O(n). 
What is wrong with this ')ustification"? 

C-4.l4 Let p(x) be a polynomial of degree n, that is, p(x) = [7=Oaixi. 

(a) Describe a simple 0(n2) time method for computing p(x). 
(b) Now consider a rewriting of p(x) as 

p(x)-ao x(a1+x(a2 x(a3+'" X(a~-l+Xan)"')))' 

which is known as Horner's method. Using the big-Oh notation, charac
terize the number of arithmetic operations this method executes. • 

C-4.15 Consider the Fibonacci function, F(n) (see Proposition 4.20). Show by 
induction that F(n) is Q((3/2)lt). . 

C-4.16 	Given a set A = {a1 , a2, ... , an} of n integers, describe, in pseudo-code, 
an efficient method for computing each of partial sums Sk [1=1 ai, for 
k = I, 2, ... ,n. What is the running time of this method? 

C-4.17 	Draw a visual justification of Proposition 4.3 analogous to that of Fig
ure 4.l(b) for the case when n is odd. 

C-4.lS 	An array A contains n 1 unique integers in the range [O,n - 1] , that is, 
there is one number from this range that is not in A. Design an O(n)
time algorithm for finding that number. You are only allowed to use 0(1) 
additional space besides the array A itself. 

C-A.19 	Let S be a set of n lines in the plane such that no two are parallel and 
no three meet in the same point. Show, by induction, that the lines in S 
determine S(n2) intersection points. 

C-4.20 	Show that the summation [7=1 rlog2il is O(nlogn). 
I 



Chapter Notes 	 195 

C-4.21 	 An evil king has n bottles of wine, and a spy has just poisoned one of 
them. Unfortunately, they don't know which one it is. The poison is very 

11, deadly; just one drop diluted even a billion to one will still kill. Even so, 
it takes a full month for the poison to take effect. Design a scheme for 
determining exactly which one of the wine bottles was poisoned in just 
one month's time while expending O(logn) taste testers. 

C-4.22 	An array Acontains n integers taken from the interval [0,4n], with repeti
tions allowed. Describe an efficient algorithm for determining an integer 
value k that occurs the most often in A. What is the running time of your 
algorithm? 

C-4.23 	Describe, in pseudo-code, a method for mUltiplying an n X m matrix A 
and an m x p matrix B. Recall that the product C = AB is defined so that 
C[i][j] = Lk=1 A[i][k] .B[k]!)]. What is the running time of your method? 

C-4.24 	Suppose each row of an n X n array A consists of l's and O's such that, in 
any row i ofA, all the l's come before any O's. Also suppose that the num
ber of 1's in row i is at least the number in row i +1, for i 0,1, ... , n - 2. 
Assuming A is already in memory, describe a method running in O(n) 
time (not O(n2)) for counting the number of 1's in A. 

C-4.25 	Describe a recursive method for computing the nth Harmonic number, 
Hn L7=11/i. 

Projects 

P-4.1 	 Implement prefixAveragesl and prefixAverages2 from Section 4.2.5, and 
perform an experimental analysis of their running time~. Visualize their 
running times as a function of the input si~ with a log-log chart. 

P-4.2 Perform a careful experimental analysis that compares the relative running 
times of the methods shown in Code Fragments 4.6. 

P-4.3 Perform an experimental analysis to test the hypothesis that the Java li
t brary method, java.utiI.Arrays.sort, runs in O(nlogn) time on average.
f• P-4.4 	Perform an experimental analysis to determine the largest value of n for~ 

each of the three algorithms given in the chapter for solving the element~ 
i 	 uniqueness problem such that the given algorithm runs in one minute or 

less. 

Chapter Notes 

The big-Oh notation has prompted several comments about its proper use [1.7, 45, 61]. 
Knuth [62,61] defines it using the notation f(n) O(g(n)), but says this "equality" is only 
"one way." We have chosen to take a more standard view of equality and view the big-Oh 



196 Chapter 4. Mathematical Foundations 

notation as a set, following Brassard [17], The reader interested in studying average-case 
analysis is referred to the book chapter by Vitter and Flajolet [97), We found the story about 
Archimedes in [77], For some additional mathematical tools, please refer to Appendix A. 

i 



••••••• 
• •• • •••••• ••• 

•• •••••• • ••••• 
• •••• • •• • •• 

Chapter 

5 Stacks and Queues 

• • •• • ••• ~~ 0 0·· •• • ••• 
• •••• •••O~~O•••• ••00 000 ••• 
•• • 0.00 0 000000••••• ••• 
• • • O"O~ .: ••••••••••••• 

Contents 

5.1 Stacks ........................... · 198 

5.1.1 The StacK Abstract Data Type .. : .......... 199 


5.1.2 A Simple Array-Based Stack Implementation .... 202 


5.1.3 Implementing a Stack with a Generic Linked List .. 207 


5.1.4 Reversing an Array Using a Stack ....... .. 209 


5.1.5 Matching Parentheses and HTML Tags ....... 210 


. 5.2 Queues . . . . . . . . . . . . . . . . . . . . . . . . .. 214 


5.2.1 The Queue Abstract Data Type ........... 214 


5.2.2 A Simple Array-Based Queue Implementation .... 217 


5.2.3 Implementing a Queue with a Generic Linked List .. 220 


5.2.4 Round Robin Schedulers ............... 221 


5.3 Double-Ended Queues. . . . . . . . . . . . . . . . .. 223 

5.3.1 The Deque Abstract Data Type ... ~ ....... 223 


5.3.2 Implementing a Deque ................ 224 


5.3.3 Deques in the Java Collections Framework . . . . . . 227 


5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . .. 228 




198 Chapter 5. Stacks and Queues 

5.1 Stacks 

A stack is a collection of objects that are inserted and removed according to the 
last-in first-out (LIFO) principle. Objects can be inserted into a stack at any time, 
but only the most recently inserted (that is, "last") object can be removed at any 
time. The name "stack" is derived from the metaphor of a stack of plates in a 
spring-loaded, cafeteria plate dispenser. In this case, the fundamental operations 
involve the "pushing" and "popping" of plates on the stack. When we need a new 
plate from the dispenser, we "pop" the top plate off the stack, and when we add 
a plate, we "push" it down on the stack to become the new top plate. Perhaps an 
even more amusing metaphor would be a PEZ® candy dispenser, which stores mint 
candies in a spring-loaded container that "pops" out the top-most candy in the stack 
when the top of the dispenser is lifted. (See Figure 5.1.) Stacks are a fundamental 
data structure. They are used in many applications, including the following. 

$ 

Figure 5.1: A schematic drawing of a PEZ® dispenser; a physical implementation 
of the stack ADT. (PEZ® is a registered trademark of PEZ Candy, Inc.) 

Example 5.1: Internet Web browsers store the addresses ofrecently visited sites 
on a stack. Each time a user visits a new site, that site's address is "pushed" onto the 
stack of addresses. The browser then allows the user to "pop" back to previously 
visited sites using the "back" button. 

Example 5.2: Text editors usually provide an "undo" mechanism that cancels re
cent editing operations and reverts to former states ofa document. This undo oper
ation can be accomplished by keeping text changes in a stack. 



S.l. Stacks 199 

5.1.1 The Stack Abstract Data Type 

Stacks are the simplest of all data structures, yet they are also among the most 
important, as they are used in a host of different applications that include many 
more sophisticated data structures. Formally, a stack is an abstract data type (ADT) 
that supports the following two methods: 

push (e): Insert element e, to be the top of the stack. 

popO: Remove from the stack and return the top element on the 
stack; an error occurs if the stack is empty. 

Additionally, let us also define the following methods: 

sizeO: Return the number of elements in the stack. 

isEm ptyO: Return a Boolean indicating if the stack is empty. 

topO: Return the top element in the stack, without removing it; 
an error occurs if the stack is empty. 

Example 5.3: The following table shows a series of stack operations and their 
effects on an initially empty stack S of integers. 

I Operation . Output Stack Contents I 

push(5) (5) 
push(3} (5,3) 
popO 3 (5) 

push(7) (5,7) 
popO 7 (5) 
topO 5 (5) 
popO 5 0 
popO "error" 0 

isEmptyO true 0 
push(9) (9) 
push(7) (9,7) 
push(3) (9,7,3) 
push(5) (9,7,3,5) 
sizeO 4 (9,7,3,5) 
popO '5 (9,7,3) 

push(8) (9,7,3,8) 
popO 8 (9,7,3) 
popO 3 (9,7) 



200 

'-!'j 

Chapter s. Stacks and Queues 

A Stack Interface in Java 

Because of its importance, the stack data structure is included as a "built-in" class 
in the java.util package of Java. Class java.util.Stack is a data structure that stores 
generic Java objects and includes, among others, the methods pushO, popO, peekO 
(equivalent to topO), sizeO, and emptyO (equivalent to isEmptyO). Methods 
popO and peekO throw exception EmptyStackException if they are called on an 
empty stack. While it is convenient to just use the built-in class java.utiI.Stack, it 
is instructive to learn how to design and implement a stack "from scratch." 

Implementing an abstract data type in Java involves two steps. The first step 
is the definition of a Java Application Programming Interface (API), or simply 
interface, which describes the names of the methods that the ADT supports and 
how they are to be declared and used. 

In addition, we must define exceptions for any error conditions that can arise. 
For instance, the error condition that occurs when calling method popO or topO on 
an empty stack is signaled by throwing an exception of type EmptyStackException, 
which is defined in Code Fragment 5.1. 

/** 
* Runtime exception thrown when one tries to· perform operation top or 

* pop on an empty stack. 

*/ 

public class EmptyStackException extends RuntimeException { 


public EmptyStackException(String err) { 


super(err); 


} 

} 

Code Fragment 5.1: Exception thrown by methods popO and topO of the Stack 
interface when called on an empty stack. 

A complete Java interface for the stack ADT is given in Code Fragment 5.2. 
Note that this interface is very general since it specifies that elements of any given 
class (and its subclasses) can be inserted into the stack. It achieves this generality 
by using the concept of generics (Section 2.5.2). 

For a given ADT to be of any use, we need to provide a concrete class that im
plements the methods of the interface associated with that ADT. We give a simple 
implementation of the Stack interface in the following subsection. 



5.1. Stacks 	 201 

/**
* Interface for a stack: a collection of objects that are inserted 
* and removed according to the last-in first-out principle. This 
* interface includes the main methods of java.utiI.Stack. 


* 

* @author Roberto Tamassia 
* @author Michael Goodrich 
* @see EmptyStackException 

*/ 


public interface Stack<E> { 
/**
* Return the number of elements in the stack. 
* @return number of elements in the stack. 

*/ 

public int sizeO; 


/**

* Return whether the stack is empty.
* @return true if the stack is empty, false otherwise. 


*/

public boolean isEmptyO; 


/**

* Inspect the element at the top of the stack .. 
* @return top element in the stack. 
* @exception EmptyStackException if the stack is empty. 


*/

public E topO 


throws EmptyStackException; 

/**

* Insert an element at the top of the stack. 
* @param element to be inserted. 

*/ 

public void push (E element); 


/**

* Remove the top element from the stack. 
* @return element removed. 
* @exception EmptyStackExceptionif the stack is empty. 

*/ 

public 	E popO 


throws EmptyStackException; 

} 

Code Fragment 5.2: Interface Stack documented with comments in Javadoc style 
(Section 1.9.3). Note also the use of the generic parameterized type, E, which 
implies that a stack can contain elements of any specified class. 



202 Chapter 5. Stacks and Queues 

5.1.2 A Simple Array-Based Stack Implementation 

We can implement a stack by storing its elements in an array. Specifically, the stack 
in this implementation consists of an N-element array S plus an integer variable t 
that gives the the index of the top element in array S. (See Figure 5.2.) 

o 1 2 t N-l 

Figure 5.2: Implementing a stack with an array S. The top element in the stack is 
stored in the cell S[t]. 

Recalling that arrays start at index 0 in Java, we initialize t to 1, and we use 
this value for t to identify an empty stack. Likewise, we can use t to determine the 
number of elements (t +1). We also introduce a new exception, called FullStack
Exception, to signal the error that arises if we try to insert a new element into a full 
array. Exception FuliStackException is specific to this implementation and is not 
defined in the stack ADT, however. We give the details of the array-based stack 
implementation in Code Fragment 5.3. 

Algorithm sizeO: 

return t+ 1 
Algorithm isEmptyO: 

return (t < 0) 
Algorithm topO: 

if isEmptyO then i 

throw a EmptyStackException 
return S[t] 

Algorithm push (e): 
if sizeO = N then 

throw a FullStackException 

t t- t 1 

S[t] t- e 


Algorithm popO: 

if isEmptyO then 
throw a EmptyStackException 

e t- S[t]. 

S[t] t- null 

t +: tL 

return e 


Code Fragment 5.3: Implementing a stack using an array of a given size, N. 



5.1. Stacks 203 


Analyzing the Array-Based Stack Implementation 

The correctness of the methods in the array-based implementation follows imme
diately from the definition of the methods themselves. There is, nevertheless, a 
mildly interesting point here involving the implementation of the pop method. 

Note that we could have avoided resetting the old S[t] to null and we would still 
have a correct method. There is a trade-off in being able to avoid this assignment 
should we be thinking about implementing these algorithms in Java, however. The 
trade-off involves the Java garbage collection mechanism that searches memory for 
objects that are no longer referenced by active objects, and reclaims their space for 
future use. (For more details, see Section 14.1.3.) Let e S[t] be the top element 
before the pop method is called. By making S[t] a null reference, we indicate that 
the stack no longer needs to hold a reference to object e. Indeed, if there are no 
other active references to e, then the memory space taken by e will be reclaimed by 
the garbage collector. 

Table 5.1 shows the running times for methods in a realization of a stack by an 
array. Each of the stack methods in the array realization executes a constant number 
of statements involving arithmetic operations, comparisons, and assignments. In 
addition, pop also calls isEmpty, which itself runs in constant time. Thus, in this 
implementation of the stack ADT, each method runs in constant time, that is, they 
each run in 0(1) time. 

Method Time 
size 0(1) 

isEmpty 0(1) 
top 0(1) 

push 0(1) 
pop 0(1) 

Table 5.1: Performance of a stack realized by an array. The space usage is O(N), 
where N is the size of the array, determined at the time the stack is instantiated. 
Note that the space usage is independent from the number n ~ N of elements that 
are actually in the stack. 

A concrete Java implementation of the pseudo-code of Code Fragment 5.3, 
with Java class ArrayStack implementing the Stack interface, is given in Code 
Fragments 5.4 and 5.5. Unfortunately, due to space considerations, we omit most 
Javadoc comments for this and most other Java code fragments presented in the 
remainder of this book. Note that we use a symbolic name, CAPACITY, to specify 
the capacity of the array. This allows us to specify the capacity of the array in one 
place in our code and have that value reflected throughout. 



204 Chapter 5. Stacks and Queues 

/**
* Implementation of the stack ADT using a fixed-length array. An 
* exception is thrown if a push operation is attempted when the size 

* of the stack is equal to the length of the array. This class 

* includes the main methods of the built-in class java.utiI.Stack. 

*/ 


public class ArrayStack<E> implements Stack<E> { 
protected int capacity; // The actual capacity of the stack array 
public static final int CAPACITY = 1000; // default array capacity 
protected E S[]; // Generic array used to irnplement the stack 
protected int top = -1; // index for the top of the stack 
public ArrayStackO { 

this(CAPACITY); // default capacity 
} 
public ArrayStack(int cap) { 

capacity = cap; 
S (E[]) new Objett[capacity]; // compiler may give warning, but this is ok 

} 
public int sizeO { 


return (top + 1); 

} 
public boolean isEmptyO { 


return (top < 0); 

} 
public void push(E element) throws FullStackException { 


if (sizeO == capacity) 

throw new FuIiStackException("Stack is full. II); 


S[++top] = element; 

} 

public E topO throws EmptyStackException { 


if (isEmptyO) 

throw new EmptyStackException("Stack is empty. "); 


return S[top]; 

} 

public E popO throws EmptyStackException { 

E element; 

if (isEmptyO) 


throw new EmptyStackException("Stack is empty. "); 

element = S[top]; 

S[top--] null; // dereference S[top] for garbage collection. 

return element; 


} 

Code Fragment 5.4: Array-based Java implementation of the Stack interface. (Con
tinues in Code Fragment 5.5.) 



205 5.1. Stacks 

public String toStringO { 

String s; 

S II [II; 


if (sizeO > 0) S[OJ; 

if (sizeO > 1) 


for (int i 1; i <= sizeO-l; i++) { 

s += II, + Sri];
.1 

} 

return s + II] "; 


} 

/ / Prints status information about a recent operation and the stack. 

public void status(String op, Object element) { 
System.out.printC'------> " + op); / / print this operation 
System.out.println(", returns II + element); / / what was returned 
System.out.print(lIresult: size = II + sizeO + ", isEmpty = " + isEmptyO); 
System.out.println(lI, stack: II + this); / / contents of the stack 

} 

/**

* Test our program by performing a series of operations on stacks, 
* printing the operations performed, the returned elements and the 
* contents of the stack involved, after each operation. 
*/ 
public static void main(String[] args) { 

Object 0; 
ArrayStack<lnteger> A new ArrayStack<lnteger>(); 
A.status( "new ArrayStack<Integer> A", null); 
A.push(7); 
A.status( II A. push (7) ", null); 
o = A.pop(); 

AstatusCI A. pop 0", 0); 

A.push(9); 

AstatusC'A.push(9) II, null); 

o = Apop(); 

A.status(" A. pope) ", 0); 

ArrayStack<String> B new ArrayStack<String>O; 

B.status(lI new ArrayStack<String> BJ' , null); 

B.push(IIBob"); 

B.status("B. push (\"Bob\ ") ", null); 

B.push("Alice"); 

B.status( liB. push (\ II Alice \ ") ", null); 

o = B.popO; 

B.status(IIB. popO ", 0); 

8.push("Eve"); 

B.status( "B. push (\"Eve\ II) ", null); 


} 
} 

Code Fragment 5.5: Array-based Stack. (Continued from Code Fragment 5.4.) 



206 Chapter 5. Stacks and Queues 

Example Output 

Below, we show the output from the above ArrayStack program. Note that, through 
the use of generic types, we are able to create an ArrayStack Afor storing integers 
and another ArrayStack B that stores character strings. 

------> new ArrayStack<Integer> A, returns null 
result: size = 0, isEmpty = true, stack: [J 
------> A.push(7), returns null 
result: size 1, isEmpty = false, stack: [7J 
------> A.pop(), returns 7 
result: size = 0, isEmpty = true, stack: [J 
------> A.push(9), returns null 
result: size = 1, isEmpty = false, stack: [9J 
------> A.pop(), returns 9 
result: size = 0, isEmpty = true, stack: [J 
------> new ArrayStack<String> B, returns null 
result: size = 0, isEmpty = true, stack: [J 
------> B.push(IIBob ll ), returns null 
result: size = 1, isEmpty = false, stack: [BobJ 

------> B.push(HAlice ll ), returns null 

result: size = 2, isEmpty = false, stack: [Bob, AliceJ 
------> B.pop(), returns Alice 
result: size = 1, isEmpty = false, stack: [BobJ 
------> B.pushC"Eve fl ), returns null 
result: size = 2, isEmpty = false, stack: [Bob, EveJ 

A Drawback with the Array-Based Stack Implementation i 

The array implementation of a stack is simple and efficient Nevertheless, this 
implementation has one negative aspect-it must assume a fixed upper bound, CA
PACITY, on the ultimate size of the stack. In Code Fragment 5.4, we chose the 
capacity value 1,000 more or less arbitrarily. An application may actually need 
much less space than this, which would waste memory. Alternatively, an applica
tion may need more space than this, which would cause our stack implementation 
to generate an exception as soon as a client program tries to push its 1,001st object 
on the stack. Thus, even with its simplicity and efficiency, the array-based stack 
implementation is not necessarily ideaL 

Fortunately, there is another implementation, which we discuss next, that does 
not have a size limitation and use space proportional to the actual number of el
ements stored in the stack. Still, in cases where we have a good estimate on the 
number of items needing to go in the stack, the array-based implementation is hard 
to beat. Stacks serve a vital role in a number of computing applications, so it is 
helpful to have a fast stack ADT implementation such as the simple array-based 
implementation. 



S.l. Stacks 207 

5.1.3 Implementing a Stack with a Generic Linked List 

In this section, we explore using a singly linked list to implement the stack ADT. 
In designing such an implementation, we need to decide if the top of the stack is 
at the head or at the tail of the list. There is clearly a best choice here, however, 
since we can insert and delete elements in constant time only at the head. Thus, it 
is more efficient to have the top of the stack at the head of our list. Also, in order 
to perform operation size in constant time, we keep track of the current number of 
elements in an instance variable. 

Rather than use a linked list that can only store objects of a certain type, as 
we showed in Section 3.2, we would like, in this case, to implement a generic 
stack using a generic linked list. Thus, we need to use a generic kind of node to 
implement this linked list. We show such a Node class in Code Fragment 5.6. 

public class Node<E> { 
/ / Instance variables: 
private E element; 
private Node<E> next; 
/** Creates a node with null references to its element and next node. * / 
public NodeO { 

this(null, null); 

} 

/** Creates a node with the given element and next node. * / 

public Node(E e, Node<E> n) { 


element e; 
next n; 


} i 


/ / Accessor methods: 

public E getElementO { 


return element; 

} 

public I\lode<E> getNextO { 


return next; 

} 

/ / Modifier methods: 

public void setElement(E newElem) { 


element = newElem; 

} 

public void setNext(Node<E> newNext) { 


next = newNext; 

} 


} 

Code Fragment 5.6: Class Node, which implements a generic node for a singly 
linked list. 



208 Chapter 5. Stacks and Queues 

A Generic NodeStack Class 

A Java implementation of a stack, by means of a generic singly linked list, is given 
in Code Fragment 5.7. All the methods of the Stack interface are executed in 
constant time. In addition to being time efficient, this linked list implementation 
has a space requirement that is O(n), where n is the current number of elements 
in the stack. Thus, this implementation does not require that a new exception be 
created to handle size overflow problems. We use an instance variable top to refer 
to the head of the list (which points to the null object if the list is empty). When we 
push a new element e on the stack, we simply create a new node v for e, reference e 
from v, and insert vat the head of the list. Likewise, when we pop an element from 
the stack, we simply remove the node at the head of the list and return its element. 
Thus, we perform all insertions and removals of elements at the head of the list. 

public class NodeStack<E> implements Stack<E> { 
protected Node<E> top; / / reference to the head node 
protected int size; / / number of elements in the stack 
public NodeStackO { / / constructs an empty stack 

top = null; 
size =,0; 


} 

public int sizeO { return size; } 

public boolean isEmptyO { 


if (top == nUll) return true; 
return false; 


} 

public void push(E elem) { 


Node<E> v new Node<E>(elem. top); / / crea,te and, link-in a new node 

top = v; 

size++; 


} 
public E topO throws EmptyStackException { 

if (isEmptyO) throw new EmptyStackException(!!Stack is empty. II); 
return top.getElementO; 

} 
public E popO throws EmptyStackException { 

if (isEmptyO) throw new EmptyStackException(!!Stack is empty. !!); 
E temp top.getElementO; 
top top.getNext(); / / link-out the former top node 
slze--; 
return temp; 

} 
} 

Code Fragment 5.7: Class NodeStack, which implements the Stack interface using 
a singly linked list, whose nodes are objects of class Node from Code Fragment 5.6. 



5.1. Stacks 209 

5.1.4 Reversing an Array Using a Stack 

We can use a stack to reverse the elements in an array, thereby producing a nome
cursive algorithm for the array-reversal problem introduced in Section 3.5.1. The 
basic idea is simply to push all the elements of the array in order into a stack and 
then fill the array back up again by popping the elements off of the stack. In Code 
Fragment 5.8, we give a Java implementation of this algorithm. Incidentally, this 
method also illustrates how we can use generic types in a simple application that 
uses a generic stack. In particular, when the elements are popped off the stack in 
this example, they are automatically returned as elements of the Etype; hence, they 
can be immediately returned to the input array. We show an example use of this 
method in Code Fragment 5.9. 

/** A nonrecursive generic method for reversing an array * / 
public static <E> void reverse(E[] a) { 

Stack< S new ArrayStack<E>(a.length); 
for (int i=O; i < a.length; i++) 

S.push(a[i]); 
for (int i=O; i < a.length; i++) 

a[i] = S.pop(); 
} 

Code Fragment 5.8: A generic method that reverses the elements in an array of type 
E objects, using a stack declared using the Stack<E> interface. 

/** Tester routine for reversing arrays * / 
public static void main(String args[]) { i 

Integer[] a = {4. 8, 15, 16, 23. 42}; / / autoboxing allows this 
String(] s {" Jack". "Kate", II Hurley tI ,"lIJinlf, "Boone tl }; 
System.out.println("a = II + Arrays.toString(a)); 
System.out.println(lI s = tI + Arrays.toString(s)); 
System.out.println("Reversing ... "); 
reverse(a); 
reverse(s); 
System.out.println(" a = II + Arrays.toString(a)); 
System.out.println(" s = II + Arrays.toString(s)); 

} 

The output from this method is the following: 
a = [4, 8, 15, 16, 23, 42J 
s = [Jack, Kate, Hurley, Jin, 

. .' 
MichaelJ 

. : 

" Reversing ... " 
a = [42, 23, 16, 15, 8, 4J 
s = [Michael, Jin, Hurley, Kate, JackJ 


Code Fragment 5.9: A test of the reverse method using two arrays. 




210 Chapter S. Stacks and Queues 

5.1.5 Matching Parentheses and HTML Tags 

In this subsection, we explore two related applications of stacks, the first of which 
is for matching parentheses and grouping symbols in arithmetic expressions. 

Arithmetic expressions can contain various pairs of grouping symbols, such as 

• Parentheses: "(" and ")" 
• Braces: "{" and "}" 
• Brackets: "[" and "]" 
• Floor function symbols: "l" and "J" 
• Ceiling function symbols: "f" and "l," 

and each opening symbol must match with its corresponding closing symboL For 
example, a left bracket, "[''' must match with a corresponding right bracket, "]," as 
in the following expression: 

[(5+x) (y+z)]. 

The following examples further illustrate this concept: 

• Correct: () ( () ){ ([0]) } 
• Correct: (( () ( () ){ ( [ () ]) } ) ) 
• Incorrect:) ( () ){ ([()]) } 
• Incorrect: ({ [1) } 
• Incorrect: (. 

We leave the precise definition of matching of grouping symbols to Exercise R-5.6. 

An Algorithm for Parentheses Matching 

An important problem in processing arithmetic expressions is to make sure their 
grouping symbols match up correctly. We can use a stack S to perform the matching 
of grouping symbols in an arithmetic expression with a single left-to-right scan. 
The algorithm tests that left and right symbols match up and also that the left and 
right symbols are both of the same type. 

Suppose we are given a sequence X = XOXIX2 .. ,Xn-b where each Xi is a token 
that can be agrouping symbol, a variable name, an arithmetic operator, or anumber. 
The basic idea behind checking that the grouping symbols in S match correctly, is 
to process the tokens in X in order. Each time we encounter an opening symbol, 
we push that symbol onto S, and each time we encounter a closing symbol, we pop 
the top symbol from the stack S (assuming S is not empty) and we check that these 
two symbols are of the same type. If the stack is empty after we have processed 
the whole sequence, then the symbols in X match. Assuming that the push and pop 
operations are implemented to run in constant time, this algorithm runs in O(n), 
that is linear, time. We give a pseudo-code description of this algorithm in Code 
Fragment 5.10. 



5.1. Stacks 211 

Algorithm ParenMatch(X,n): 
Input: An array X of n tokens, each of which is either a grouping symbol, a 

variable, an arithmetic operator, or a number 
Output: true if and only if all the grouping symbols in X match 

Let S be an empty stack 
for it-O to n - 1do 

if Xli] is an opening grouping symbol then 
S.push(X[i]) 

else if Xli] is a closing grouping symbol then 
if S.isEmptyO then 

return false {nothing to match with} 
if S.popO does not match the type of Xli] then 

return false {wrong type} 
if S.isEmptyO then 

return true {every symbol matched} 
else 

return false {some symbols were never matched} 

Code Fragment 5.10: Algorithm for matching grouping symbols in an arithmetic 
expression. 

Matching Tags in an HTML" Document 

Another application in which matching is important is in the validation of HTML 
documents. HTML is the standard format for hyperlinked documents on the In
ternet. In an HTML document, portions of text are delimited by HTML tags. A 
simple opening HTML tag has the form "<name>" and the corresponding closing 
tag has the form "</name>." Commonly used HTML tags include 

• body: document body 

• hl: section header 

• center: center justify 

• p: paragraph 
• 01: numbered (ordered) list 

• Ii: list item. 

Ideally, an HTML document should have matching tags, although most browsers 
tolerate a certain number of mismatching tags. 



212 

.~ 

Chapter 5. Stacks and Queues 

We show a sample HTML document and a possible rendering in Figure 5.3. 

<body> 

<center> 

<hi> The Little Boat </hi> The Little Boat 

</center> 

<p> The storm tossed the little The storm tossed the little boat 
boat like a cheap sneaker in an an oldlike a cheap sneaker in 

old washing machine. The three 
 washing machine. The three 
drunken fishermen were used to 

drunken fishermen were used to
such treatment, of course, but 

such treatment, of course, but notnot the tree salesman, who even as 
the tree salesman, who even asa stowaway now felt that he 

had overpaid for the voyage. </p> a stowaway now felt that he had 
<01> overpaid for the voyage. 
<li> Will the salesman die? </li> 1. Will the salesman die? 
<Ii> What color is the boat? </li> 2. What color is the boat? 
<Ii> And what about Naomi? </li> 

3. And what about Naomi?
</01> 
</body> 

(a) (b) 

Figure 5.3: Illustrating HTML tags. (a) An HTML document; (b) its rendering. 

Fortunately, more or less the same algorithm as in Code Fragment 5.10 can be 
used to match the tags in an HTML document. In Code Fragments 5.11 and 5.12, 
we give a Java program for matching tags in an HTML document read from stan
dard input. For simplicity, we assume that all tags are the simple opening or closing 
tags defined above and that no tags are formed incorrectly. i 

import java.io. *; 

import java.util.5canner; 

import net.datastructures. *; 

/** Simplified test of matching tags in an HTML document. * / 

public class HTM L { 


/** Strip the first and last characters off a <tag> string. * / 
public static String stripEnds(String t) { 


if (t.lengthO <= 2) return null; / / this is a degenerate tag 

return t.substring(l,t.lengthO-l); 


} 

/** Test if a stripped tag string is empty or a true opening tag. * / 

public static boolean isOpeningTag(String tag) { 


return (tag.lengthO 0) II (tag.charAt(O) != 'I'); 

} 


Code Fragment 5.11: A complete Java program for testing if an HTML document 
has fully matching tags. (Continues in Code Fragment 5.12.) 

~':j 

.. 



5.1. Stacks 213 

/** Test if stripped tagl matches closing tag2 (first character is 'j'). * / 

public static boolean areMatchingTags(String tagl, String tag2) { 


return tag1.equals(tag2.substring(l)); / / test against name after 'j' 

}

/** Test if every opening tag has a matching closing tag. * / 

public static boolean isHTMLMatched(String[] tag) { 


Stack<String> S new f\lodeStack<String>0; / / Stack for matching tags 
for (int i = 0; (i < tag.length) && (tag[i] != null); i++) { 

if (isOpeningTag(tag[i])) 
S.push(tag[i]); / / opening tag; push it on the stack 

else { 
if (S.isEmptyO) 

return false; / / nothing to match 
if (!areMatchingTags(S.popO, tag[i])) 

return false; / / wrong match 
} 

} 

if (S.isEmptyO) return true; / / we matched everything 

return false; / / we have some tags that never were matched 


} 

public final static int CAPACITY = 1000; / / Tag array size 

/* Parse an HTML document into an array of html tags * / 

public static String[] parseHTML(Scanner s) { 


String[] tag = new String[CAPACITY]; / / our tag array (initially all nUll) 

int count = 0; / / tag counter 

String token; / / token returned by the scanner s 

while (s.hasNextLineO) { 


while ((token = s.findlnLine("< [~>] *>")) null) / / find the next tag 
tag[count++] = stripEhds(token); / / strip the ends off tf-kis tag 

s.nextLineO; / / go to the next line 

} 

return tag; / / our array of (stripped) tags 


} 
public static void main(String[] args) throws IOException { / / tester 

if (isHTMLMatched(parseHTML(new Scanner(System.in)))) 
System.out.println("The input file is a matched HTML document. "); 

else 
System.out.println("The input file is not a matched HTML document. "); 

} 
} 
Code Fragment 5.12: Java program for testing for matching tags in an HTML doc
ument. (Continued from 5.11.) Method isHTMLMatched uses a stack to store the 
names of the opening tags· seen so far, similar to how the stack was used in Code 
Fragment 5.10. Method parseHTML uses a Scanner 5 to extract the tags from the 
HTML document, using the pattern "<[" >]*>," which denotes a string that starts 
with '<', followed by zero or more characters that are not '>', followed by a '>'. 

http:Scanner(System.in


214 Chapter 5. 	 Stacks and Queues 

5.2 Queues 

Another fundamental data structure is the queue. It is a close "cousin" of the stack, 
as a queue is a collection of objects that are inserted and removed according to the 
first~in first~out (FIFO) principle. That is, elements can be inserted at any time, 
but only the element that has been in the queue the longest can be removed at any 
time. 

We usually say that elements enter a queue at the rear and are removed from 
the front. The metaphor for this terminology is a line of people waiting to get on 
an amusement park ride. People waiting for such a ride enter at the rear of the line 
and get on the ride from the front of the line. 

5.2.1 The Queue Abstract Data Type 

Formally, the queue abstract data type defines a collection that keeps objects in 
a sequence, where element access and deletion are restricted to the first element 
in the sequence, which is called the front of the queue, and element insertion is 
restricted to the end of the sequence, which is called the rear of the queue. This 
restriction enforces the rule that items are inserted and deleted in a queue according 
to the first-in first-out (FIFO) principle. 

The queue abstract data type (ADT) supports the following two fundamental 
methods: 

enqueue(e): Insert element e at the rear of the queue. 

dequeueO: 	Remove and return from the queue the object at the front; 
an error occurs if the queue is empty. 

Additionally, similar to the case with the stack ADT, the queue ADT includes 
the following supporting methods: 

sizeO: Return the number of objects in the queue. 

isEmptyO: 	Return a Boolean value that indicates whether the queue 
is empty. 

frontO: 	 Return, but do not remove, the front object in the queue; 
an error occurs if the queue is empty. 



5.2. Queues 215 

Example 5.4: The following table shows a series of queue operations and their 
effects on an initially empty queue Q of integer objects. For simplicity, we use 
integers instead ofinteger objects as arguments of the operations. 

- ...................._-- ...................._--- ..................._--_ ....................._-

Operation Output I -f(ont t- Q t- rear I 
enqueue(5) -: (5) i 

enqueue(3) (5,3) 
dequeue() 5 (3) 

enqueue(7) - (3,7) 
dequeueO 3 (7) 

front 0 7 (7) 
dequeue() 7 0 
isEmptyO true () 

enqueue(9) - (9) 
sizeO 1 (9) 

There are several possible applications for queues. Stores, theaters, reservation 
centers, and other similar services typically process customer requests according to 
the FIFO principle. Aqueue would therefore be a logical choice for a data structure 
to handle calls to the reservation center of the box office of a theater. 

The java.util.Queue Interface in Java 

Java provides a type of queue interface, java.utiI.Queue, which has functionality 
similar to the traditional queue ADT, given above, but the documentation for the 
java.util.Queue interface does not insist that it support only the FIFO principle. 
When supporting the FIFO principle, the methods of the java.utij.Queue interface 
have the equivalences with the queue ADT shown in Table 5.2. 

i iQueue ADT Interface java.util.Queue 

sizeO I ~s_iz_e(-,,-)~_---..,
I isEmptyO. isEmpty() 

enqueue(e) I add(e) or offer(e) 
! dequeueO remove() or poliO 
~ontO peekO or element() 

Table 5.2: Methods of the queue ADT and corresponding methods of the interface 
java.utiI.Queue, when supporting the FIFO principle. 

Concrete classes in Java that implement the java.util.Queue interface to support 
the FIFO principle include the following: . 

• java.util.concurrent.ArrayBlockingQueue 
• java.util.concurrent.ConcurrentLinkedQueue 
• java. util.concurrent. Lin ked Blocki ngQueue 



216 Chapter 5. Stacks and Queues 

A FIFO Queue Interface in Java 

A Java interface for the queue ADT is given in Code Fragment 5.13. 

This generic interface specifies that objects of arbitrary object types can be 
inserted into the queue, and it uses a generic identifier, E, to refer to this arbitrary 
type. Thus, we don't have to use explicit casting when removing elements. 

public interface Queue<E> { 


/**

* Returns the number of elements in the queue. 

* @return number of elements in the queue. 

*/ 
public int sizeO; 


/** 

* Returns whether the queue is empty. 

* @return true if the queue is empty, false otherwise. 

*/ 
public boolean isEmptyO; 


/**

* Inspects the element at the front of the queue. 

* @return element at the front of the queue. 

* @exception EmptyQueueException if the queue is empty. 

*/ 
public E frontO throws EmptyQueueException; 


/**

* Inserts an element at the rear of the queue. 

* @param element new element to be inserted. 

*/ 
public void enqueue (E element); 


/**

* Removes the element at the front of the queue. 

* @return element removed. 

* @exception EmptyQueueException if the queue is empty. 

*/ 
public E dequeueO throws EmptyQueueException; 


} 


Code Fragment 5.13: A Java interface, Queue, documented with comments in 
Javadoc style, which implements the queue ADT, with a standard FIFO protocol 
for insertions and removals. 

Note that the size and isEmpty methods have the same meaning as their counter
parts in the stack ADT. These two methods, as well as the front method, are known 
as accessor methods, for they return a value and do not change the contents of the 
data structure. 



~2Q~u~ 2tl 

5.2.2 A Simple Array-Based Queue Implementation 

Let us now consider how we could implement a queue using an array, Q, of fixed 
capacity, to store its elements. Since the main rule with the queue ADT is that we 
insert and delete objects according to the FIFO principle, we must decide how we 
are going to keep track of the front and rear of the queue. One possibility is to adapt 
the approach we used for the stack implementation, letting Q[O] be the front of the 
queue and then letting the queue grow from there. This is not an efficient solution, 
however, for it requires that we move all the elements forward one array cell each 
time we perform a dequeue operation. Such an implementation would therefore 
take O(n) time to perform the dequeue method, where n is the current number of 
objects in the queue. To avoid moving objects once they are placed in Q, we define 
two variables, f and r, which have the following meanings: 

• f is an index to the cell of Q storing the first element of the queue (which is 
the next candidate to be removed by a dequeue operation), unless the queue 
is empty (in which case f = r). 

• r is an index to the next available array cell in Q. 

Initially, we assign f = r = 0, which indicates that the queue is empty. Now, 
when we remove an element from the front of the queue, we increment f to in
dex the next celL Likewise, when we add an element, we store it in cell Q[r] and 
increment r to index the next available cell in Q. This scheme allows us to imple
ment methods front, enq ueue, and dequeue in constant time, that is, O( 1) time. 
However, there is still a problem with this approach. 

Consider, for example, what happens if we repeatedly enquelJe and dequeue a 
single element N different times. We would have f = r = N. If we were then to 
try to insert the element just one more time, we would get an array-out-of-bounds 
error, even though there is plenty of room in the array in this case. To be able to 
utilize all of the array Q, we let the f and r indices "wrap around" the end of Q. 
That is, we now view Qas a "circular array" that goes from Q[O] to Q[N 1] and 
then back to Q[O] again. (See Figure 5.4.) 

r N-l 

f N-l 

Figure 5.4: Using array Q in a circular fashion: (a) the "normal" configuration with 
f :::; r; (b) the "wrapped around" configuration with r < f. 



218 Chapter 5. Stacks and Queues 

Using the Modulo Operator to Implement a Circular Array 

Implementing this circular view of Q is actually pretty easy. Each time we incre
ment f or r, we compute this increment as "(f 1) mod N" or "(r 1) mod N," 
respectively. 

Recall that operator" mod" is the modulo operator, which is computed by tak
ing the remainder after an integral division. For example, 14 divided by 4 is 3 with 
remainder 2, so 14 mod 4 2. Specifically, given integers x and y such that x ~° 
and y > 0, we have x mod y x lx/yJy. That is, if r = x mod y, then there is a 
nonnegative integer q, such that x - qy +r. Java uses "%" to denote the modulo 
operator. By using the modulo operator, we can view Q as a circular array and im
plement each queue method in a constant amount of time (that is, O( 1) time). We 
describe how to use this approach to implement a queue in Code Fragment 5.14. 

Algorithm sizeO: 

return (N - f +r) mod N 

Algorithm isEmptyO: 

return (f = r) 

Algorithm frontO: 

if isEmpty() then 
throw a EmptyQueueException 

return Q[f] 

Algorithm dequeue(): 

if isEmpty() then i 

throw a EmptyQueueException 
temp ~Q[f] 
Q[fl ~ null 
f ~ (f + 1) mod N 
return temp 

Algorithm enqueue(e): 

if sizeO = N 1 then 
throw a FuliQueueException 

Q[r] ~ e 
r ~ (r+ 1) mod N 

Code Fragment 5.14: Implementation of a queue using a circular array. The imple
mentation uses the modulo operator to "wrap" indices around the end of the array 
and it also includes two instance variables, f and r, which index the front of the 
queue and first empty cell after the rear of the queue respectively. 



5.2. Queues 219 

The implementation above contains an important detail, which might be missed 
at first. Consider the situation that occurs if we enqueue N objects into Q without 
dequeuing any of them. We would have f - r, which is the same condition that 
occurs when the queue is empty. Thus, we would not be able to tell the difference 
between a full queue and an empty one in this case. Fortunately, this is not a big 
problem, and a number of ways for dealing with it exist. 

The solution we describe here is to insist that Q can never hold more than 
N 1 objects. This simple rule for handling a full queue takes care of the final 
problem with our implementation, and leads to the pseudo-coded descriptions of 
the queue methods given in Code Fragment 5.14. Note our introduction of an 
implementation-specific exception, called FuliQueueException, to signal that no 
more elements can be inserted in the queue. Also note the way we compute the 
size of the queue by means of the expression (N f r) mod N, which gives the 
correct result both in the "normal" configuration (when f < r) and in the "wrapped 
around" configuration (when r < f). The Java implementation of a queue by means 
of an array is similar to that of a stack, and is left as an exercise (P-5.9). 

Table 5.3 shows the running times of methods in a realization of a queue by an 
array. As with our array-based stack implementation, each of the queue methods in 
the array realization executes a constant number of statements involving arithmetic 
operations, comparisons, and assignments. Thus, each method in this implementa
tion runs in O(1) time. 

s 

0(1) 
0(1) 

enqueue 

0(1) 
0(1) 

dequeue 0(1) 

Table 5.3: Performance of a queue realized by an array. The space usage is O(N), 
where N is the size of the array, determined at the time the queue is created. Note 
that the space usage is independent from the number n < N of elements that are 
actually in the queue. 

As· with the array~based stack implementation, the only real disadvantage of 
. thearray;.basedqueue implementation is that we artificially set the capacity of the 
queue to be some fixed value. In a real application, we may actually need more 
or less queue capacity than this, but if we have a good capacity estimate, then the 
array-based implementation is quite efficient. 



220 Chapter S. Stacks and Queues 

5.2.3 Implementing a Queue with a Generic Linked List 

We can efficiently implement the queue ADT using a generic singly linked list. For 
efficiency reasons, we choose the front of the queue to be at the head of the list, and 
the rear of the queue to be at the tail of the list. In this way, we remove from the 
head and insert at the taiL (Why would it be bad to insert at the head and remove at 
the tail?) Note that we need to maintain references to both the head and tail nodes 
of the list. Rather than go into every detail of this implementation, we simply give 
a Java implementation for the fundamental queue methods in Code Fragment 5.15. 

public void enqueue(E elem) { 

Node<E> node = new Node<E>O; 

node.setElement(elem); 

node.setNext(null); / / node will be new tail node 

if (size == 0) 


head = node; / / special case of a previously empty queue 

else 


tail.setNext(node); / / add node at the tail of the list 

tail = node; / / update the reference to the tail node 

size++; 


} 

public E dequeueO throws EmptyQueueException { 

if (size == 0) 


throw new EmptyQueueException(IIQueue is empty. "); 

E tmp = head.getElementO; 


I
head head.getNextO; 

size--; 

if (size == 0) 


tail null; / / the queue is now empty 

return tmp; 


} 

Code' Fragment 5.15: Methods enqueue and dequeue in the implementation of the 
queue ADT by means of a singly linked list, using nodes from class Node of Code 
Fragment 5.6. 

Each of the methods of the singly linked list implementation of the queue ADT 
runs in O( 1) time. We also avoid the need to specify a maximum size for the queue, 
as was done in the array-based queue implementation, but this benefitcomes at the 
expense of increasing the amount of space used per element. Still, the methods in 
the .singly linked list queue implementation are more complicated than we might 
like, for we must take extra care in how we deal with special cases where the queue 
is empty before an enqueue or where the queue becomes empty after a dequeue. 



5.2. Queues 221 


5.2.4 Round Robin Schedulers 

A popular use of the queue data structure is to implement a round robin scheduler, 
where we iterate through a collection ofelements in a circular fashion and "service" 
each element by performing a given action on it. Such a schedule is used, for 
example, to fairly allocate a resource that must be shared by a collection of clients. 
For instance, we can use a round robin scheduler to allocate a slice of CPU time to 
various applications running concurrently on a computer. 

We can implement a round robin scheduler using a queue, Q, by repeatedly 
performing the following steps (see Figure 5.5): 

1. e{- Q.dequeueO 

2. Service element e 

3. Q.enqueue(e) 

The Queue

DDDDDD 

2. Service the 
next element 

Figure 5.5: The three iterative steps for using a queue to implement a round robin 
scheduler. 

The Josephus Problem 

In the children's game "hot potato," a group of n children sit in a circle passing 
an object, called the "potato," around the circle. The potato begins with a starting 
child in the circle, and the children continue passing the potato until a leader rings a 
bell, at which point the child holding the potato must leave the game after handing 
the potato to the next child in the circle. After the selected child leaves, the other 
children close up the circle. This process is then continued until there is only one 
child remaining, who is declared the winner. If the leader always uses the strategy 
of ringing the bell after the potato has been passed k times, for some fixed value k, 
then determining the winner for a given list of children is known as the Josephus 
problem. 



222 Chapter 5. Stacks and Queues 

Solving the Josephus Problem Using a Queue 

We can solve the Josephus problem for a collection of n elements using a queue, 
by associating the potato with the element at the front of the queue and storing el
ements in the queue according to their order around the circle. Thus, passing the 
potato is equivalent to dequeuing an element and immediately enqueuing it again. 
After this process has been performed k times, we remove the front element by de
queuing it from the queue and discarding it. We show a complete Java program for 
solving the Josephus problem using this approach in Code Fragment 5.16, which 
describes a solution that runs in O(nk) time. (We can solve this problem faster 
using techniques beyond the scope of this book.) 

import net.datastructures.*; 

public class Josephus { 
/** Solution of the Josephus problem using a queue. *1 
public static <E> E Josephus(Queue<E> Q, int k) { 

if (Q.isEmptyO) return null; 
while (Q.sizeO > 1) { 


System.out.println(1I Queue: II + Q + II k = II + k); 

for (int i=O; i < k; i++) 


Q.enqueue(Q.dequeueO); II move the front element to the end 
E e = Q.dequeue(); II remove the front element from the collection 
System.out.println(1I II + e + is out");It 

} 
return Q.dequeueO; II the winner 


} 

/** Build a queue from an array of objects *1 5 


public static <E> Queue<E> buildQueue(E am { 

Queue<E> Q = new NodeQueue<E>O; 

for (int i=O; i<a.length; i++) 


Q.enqueue(a[i]); 

return Q; 


} 

/** Tester method *I 

public static void main(String[] args) { 


String[] al = {IiAlice lt 
, "Bob ll 

, IICindy", "Doug", It Ed II , "Fred ll 
}; 


String[] a2 {IiGene ll , "Hope", "Irene ll
, II Jack II , II Kimll , "Lance"}; 


String[] a3 = {"Mike", "Roberto lt 
}; 


System.out.println("First winner is + Josephus(buildQueue(al), 3));
II 

System.out.println("Second winner is + Josephus(buildQueue(a2), 10));II 

System.out.println(IIThird winner is + Josephus(buildQueue(a3), 7));II1 . .. .. . . 
} 

.Code Fragment 5.16: A complete Java program for solving the Josephus problem 
using a queue. Class NodeQueue is shown in Code Fragment 5.15. 



223 5.3. 	Double-Ended Queues 

5.3 Double-Ended Queues 

Consider now aqueue-like data structure that supports insertion and deletion at both 
the front and the rear of the queue. Such an extension of a queue is called adouble
ended queue, or deque, which is usually pronounced "deck" to avoid confusion 
with the dequeue method of the regular queue ADT, which is pronounced like the 
abbreviation "D.Q." 

5.3.1 	 The Deque Abstract Data Type 

The deque abstract data type is richer than both the stack and the queue ADTs. The 
fundamental methods of the deque ADT are as follows: 

addFirst(e): Insert a new element e at the head of the deque. 

add Last(e): Insert a new element e at the tail of the deque. 

removeFirstO: Remove and return the first element of the deque~ an er
ror occurs if the deque is empty. 

removeLast(): Remove and return the last element of the deque; an error 
occurs if the deque is empty. 

Additionally, the deque ADT may also include the following support methods: 
getFi rst(): Return the first element of the deque; an error occurs if 

the deque is empty. 

getLast(): Return the last element of the deque; an error occurs if 
the deque is empty. 

sizeO: Return the number of ele~ents of the deque. 

isEmptyO: Determine if the deque is empty. 

Example 5.5: The following table shows a series of operations and their effects 
on an initially empty deque D of integer objects. For simplicity, we use integers 
instead ofinteger objects as arguments of the operations. 

D 	 !Operation Output 
- i (3)add First(3) 
- . (5,3) addFirst(5) 

removeFirstO 5 (3) 
add Last(7) (3,7) 

removeFirst0 3 (7) 
7removeLastO () 

"error"removeFirstO 0 
trueisEmptyO 0 



224 Cllapter S. Stacks and Queues 

5.3.2 Implementing a Oeque 

Since the deque requires insertion and removal at both ends of a list, using a singly 
linked list to implement a deque would be inefficient. We can use a doubly linked 
list, however, to implement a deque efficiently. 

As discussed in Section 3.3, inserting or removing elements at either end of a 
doubly linked list is straightforward to do in O(1) time, if we use sentinel nodes for 
the header and trailer, which is an implementation we support. 

For an insertion of a new element e, we can have access to the node p before 
the place e should go and the node q after the place e should go. To insert a new 
element between the two nodes p and q (either or both of which could be sentinels), 
we create a new node t, have t's prey and next links respectively refer to p and q, 
and then have p's next link refer to t, and have q's prey link refer to t. 

Likewise, to remove an element stored at a node t, we can access the nodes p 
and q on either side of t (and these nodes must exist, since we are using sentinels). 
To remove node t between nodes p and q, we simply have p and q point to each 
other instead of t. We need not change any of the fields in t, for now t can be 
reclaimed by the garbage collector, since no one is pointing to t. 

Performance and Linked List Implementation Details 

Table 5.4 shows the running times of methods for a deque ~mplemented with a 
doubly linked list. Note that every method runs in 0 (1) time. . 

Method 
size, isEmpty 

getFirst, getLast 
addFirst, addLast 

removeFirst, removeLast_u 

Time 
0(1) 
0(1) 
0(1) 
0(1) 

Table S.4: Performance of a deque realized by a doubly linked list. 

Thus, a doubly·linked list can be usedto implement each method of the deque 
ADT in constant time. We leave the complete details of implementing the deque 
ADT efficiently in Java as an exercise (see P-5.2). Nevertheless, we show a Deque 
interface in Code Fragment 5.17 and a partial implementation of this interface in 
Code Fragment 5.18. 



225 5.3. Double-Ended Queues 

/**
* Interface for a deque: a collection of objects that are inserted 
* and removed at both ends; a subset of java.util.LinkedList methods. 

* 
* ©author Roberto Tamassia 
* ©author Michael Goodrich 


*/ 


public interface Deque<E> { 
/**
* Returns the number of elements in the deque. 


*/

public int sizeO; 


/**

* Returns whether the deque is empty. 

*/ 

public boolean isEmptyO; 


/**
* Returns the first element; an exception is thrown if deque is empty. 

*/
public E getFirstO throws EmptyDequeException; 


/**

* Returns the last element; an exception is thrown if deque is empty. 

*/
public E getLastO throws EmptyDequeException; 


/**

* Inserts an element to be the first in the deque. 


*/

public void addFirst (E element); 


/**

* Inserts an element to be the last in the deque. 

*/ 

public void addLast (E element); 


/**
* Removes the first element; an exception is throvvn if deque is empty. 
*/ 
public E removeFirstO throws EmptyDequeException; 


/**

* Removes the last element; an exception is thrown if deque is empty. 

*/
public E removeLastO throws EmptyDequeException; 

} 

Code Fragment 5.17: Interface Deque documented with comments in lavadoc style 
(Section 1.9.3). Note also the use of the generic parameterized type, E, which 
implies that a deque can contain elements of any specified class. 



226 Chapter 5. Stacks and Queues 

public class NodeDeque<E> implements Deque<E> { 

protected DLI'Jode<E> header, trailer; / / sentinels 

protected int size; / / number of elements 

public NodeDequeO { / / initialize an empty deque 


header new DLNode<E>O; 

trailer = new DLNode<E>O; 

header.setNext(trailer); / / make header point to trailer 

trailer.setPrev(header); / / make trailer point to header 

size 0; 


} 
public int sizeO { 


return size; 

} 
public boolean isEmptyO { 


if (size == 0) 

return true; 


return false; 

} 
public E getFirstO throws EmptyDequeException { 

if (isEmptyO) 
throw new EmptyDequeException("Deque is empty. II); 

return header.getNextO .getElementO; 
} 
public void addFirst(E 0) { 

DLNode<E> second = header.getl\lext(); 
DLNode<E> first new DLNode<E>(0, header, second); 
second.setPrev(first); 
header.setNext(fi rst); 
size++; 

} 
public E removeLastO throws EmptyDequeException { 


if (isEmptyO) 

throw new EmptyDequeException(ItDeque is empty. "); 

DLNode<E> last = trailer.getPrevO; 
E 0 = last.getElementO; 
DLNode<E> secondtolast = last.getPrevO; 
tra iler.setPrev(secondtolast); 
secondtolast.setNext(tra iler); 
size--; 
return 0; 

} 

} 


Code Fragment 5.18: Class NodeDeque implementing the Deque interface, except 
that we have not shown the class DLNode, which is a generic doubly linked list 
node, nor have we shown methods getLast, add Last, and removeFirst. 



227 5.3. Double~Ended Queues 

5.3.3 Oeques in the Java Collections Framework 

Incidentally, all of the methods of the deque ADT, as described above, are included 
in the java.util.Deque interface. In the case of the update methods, which add or 
remove elements from the ends of the deque, the corresponding methods in the 
java.util.Deque interface are defined so that they throw an exception when used 
erroneously. Thus, the addFirst(e) method throws an exception if we try to add 
an element to a deque that is implemented in such a way that it is currently full 
and unable to accept additional elements, and the same is true for the addLast(e) 
method. Likewise, the removeFirstO method throws an exception if we attempt to 
remove an element from an empty deque, and the same is true for removeLastO. 

In addition to the above update methods, which fail in bad situations, there 
are also corresponding methods in the java.util.Deque interface that are defined to 
behave more gracefully in bad situations. In particular, these alternative methods 
are useful in applications, such as producer-consumer scenarios that use a fixed
size buffer, where it is normal for us to try to insert items in a full deque or try to 
remove elements from an empty deque. These methods are as follows: 

offerFi rst (e): 	 Inserts e at the head of the deque unless the deque is full, 
in which case this method returns false; if the method 
succeeds, it returns true. 

offerLast(e): 	 Inserts e at the tail ofthe deque unless the deque is full, 
in which case this method returns false; if the method 
succeeds, it returns true. 

poll Fi rstO: Removes and returns the first element ofthe deque; if the 
deqlie is empty, this method returns nutl. 

pollLastO: Removes and returns the last element of the deque; if the 
deque is empty, this method returns null. 

peekFirstO: Returns, but does not remove, the first element of the 
deque; if the deque is empty, this method returns null. 

peekLastO: Returns, but does not remove, the last element of the 
deque; if the deque is empty, this method returns null. 

There are several concrete classes in Java that implement the java.util.Deque 
interface. These include the following: 

• java.util.ArrayDeque 
• java.util.concurrent.LinkedBlockingDeque 
.• java.ut~LLinkedList 
·80, if we need t6 use a deque and would rather not implement one from scratch, 

we can simply use the built-in class java.utiI.LinkedList. 



228 Chapter 5. Stacks and Queues 

5.4 Exercises 

For help with exercises, please visit the web site, www.wiley.com/go/global/goodrich. 

Reinforcement 

R -S.1 	 Describe how to implement a capacity-limited queue, which uses the meth
ods of a capacity-limited Deque to perform the methods of the queue ADT 
in ways that do not throw exceptions when we attempt to perform a en
queue on a full queue or a dequeue on an empty queue. 

R-S.2 	Suppose an initially empty stack S has performed a total of 2S push op
erations, 12 top operations, and 10 pop operations, 3 of which generated 
EmptyStackExceptions, which were caught and ignored. What is the cur
rent size of S? 

R-S.3 	 If we implemented the stackS from the previous problem with an array, as 
described in this chapter, then what is the current value of the top instance 
variable? 

R-S.4 	Describe the output of the following series of stack operations: push(5), 
push(3), popO, push(2), push(8), popO, popO, push(9), push(l), popO, 
push(7), push(6), popO, popO, push(4), popO, popO. 

R-S.S 	Give a recursive method for removing all the elements in a stack. 

R-S.6 	Give a precise and complete definition of the concept of matching for 
grouping symbols in an arithmetic expression.. 

R-S.7 	Describe the output for the following sequence of queue operations: en
queue(5), enqueue(3), dequeueO, enqueue(2), enqueue(8), dequeueO, 
dequeueO, enqueue(9), enqueue(1), dequeueO, enq ueue(7), enq ueue(6), 
dequeueO, dequeueO, enqueue(4), dequeueO, dequeueO. 

R-S.8 	Suppose an initially-empty queue Qhas performed a total of 32 enqueue 
operations, 10 front operations, and IS dequeue operations, S of which 
generated EmptyQueueExceptions, which were caught and ignored. What 
is the current size of Q? 

R-S.9 	If the queue of the previous problem was implemented with an array of 
capacity N = 30, as described in the chapter, and it never generated a 
FuliQueueException, what would be the current values of f and r? 

R-S.lO 	Describe the output for the following sequence of deque ADT operations: 
addFirst(3), addLast(8), add Last(9), addFirst(S), removeFirstO, remove
LastO, firstO, addLast(7), removeFirstO, lastO, removeLastO. 

www.wiley.com/go/global/goodrich


229 
" 

5.4. Exercises 

R-5.11 	 Suppose you have a dequeD containing the numbers (1,2,3,4,5,6,7,8), 
in this order. Suppose further that you have an initially empty queue 
Q. Give a pseudo-code description of a method that uses only D and 
Q (and no other variables or objects) and results in D storing the elements 
(1,2,3,5,4,6,7,8), in this order. 

R-5.12 	Repeat the previous problem using the deque D and an initially empty 
stack S. 

Creativity 

C-5.1 	 Suppose you have a stack S containing n elements and a queue Qthat is 
initially empty. Describe how you can use Q to scan Sto see if it contains a 
certain element x, with the additional constraint that your algorithm must 
return the elements back to S in their original order. You may not use 
an array or linked list-only Sand Q and a constant number of reference 
variables. 

C-5.2 	Give a pseudo-code description for an array-based implementation of the 
double-ended queue ADT. What is the running time for each operation? 

C-5J 	Suppose Alice has picked three distinct integers and placed them into a 
stack S in random order. Write a short, straightline piece of pseudo-code 
(with no loops or-recursion) that uses only one comparison and only one 
variable x, yet guarantees with probability 2/3 that at the end of this code 
the variable x will store the largest of Alice's three integers. Argue why 
your method is correct. 

i 

C-5.4 	Describe how to implement the stack ADT using two queues. What is the 
running time of the pushO and popO methods in this case? 

C-5.5 	Suppose we have an n x n two-dimensional array A that we want to use 
to store integers, but we don't want to spend the O(n2) work to initialize 
it to all O's (the way Java does), because we know in advance that we 
are only going to use up to n of these cells in our algorithm, which itself 
runs in O(n) time (not counting the time to initialize A). Show how to 
use an array-based stack S storing (i, j, k) integer triples to allow us to 
use the array A without initializing it and still implement our algorithm in 
O(n) time, even though the initial values in the cells of A might be total 
garbage. 

C-5.6 	Describe a nonrecursive algorithm for enumerating all permutations of the 
numbers {1,2, ... ,n}. 

C-5.7 	Postfix notation is an unambiguous way of writing an arithmetic expres
sion without parentheses. It is defined so that if "(eJPI)op(exP2)" is anor
mal fully parenthesized expression whose operation is op, then the postfix 



230 Chapter S. Stacks and Queues 

version of this is "pexPl pexP2 op", where pexPl is the postfix version of 
eXPl and pexP2 is the postfix version of eXP2' The postfix version of a sin
gle number or variable is just that number or variable. So, for example, the 
postfix version of "( (S +2) *(8 - 3))/4" is "s 2 +8 3 - *4 /". Describe 
a nonrecursive way of evaluating an expression in postfix notation. 

C-S.8 	 Suppose you have two nonempty stacks Sand T and a deque D. Describe 
how to use D so that S stores all the elements of T below all of its original 
elements, with both sets of elements still in their original order. 

C-S.9 	 Alice has three array-based stacks, A, B, and C, such that A has capacity 
100, B has capacity S, and C has capacity 3. Initially, A is full, and B 
and C are empty. Unfortunately, the person who programmed the class for 
these stacks made the push and pop methods private. The only method 

. Alice can use is a static method, transfer(S, T), which transfers (by itera
tively applying the private pop and push methods) elements from stack S 
to stack T until either S becomes empty or T becomes full. So, for exam
ple, starting from our initial configuration and performing transfer(A, C) 
results in A now holding 97 elements and C holding 3. Describe a se
quence of transfer operations that starts from the initial configuration and 
results in B holding 4 elements at the end. 

C-S.lO 	Alice has two queues, Sand T, which can store integers. Bob gives Alice 
SO odd integers and SO even integers and insist~ that she stores all 100 
integers in Sand T. They then playa game where Bob picks S or T 
at random and then applies the round-robin scheduler, described in the 
chapter, to the chosen queue a random number of times. If the number 
left out of the queue at the end of this game is odd, Bob wins. OthtJrwise, 
Alice wins. How can Alice allocate integers .to queues to optimize her 
chances of winning? What is her chance of winning? 

C-S.ll 	Suppose Bob has four cows that he wants to take across a bridge, but only 
one yoke, which can hold up to two cows, side by side, tied to the yoke. 
The yoke is too heavy for him to carry across the bridge, but he can tie 
(and untie) cows to it in no time at alL Of his four cows, Mazie can cross 
the bridge in 2 minutes, Daisy can cross it in 4 minutes, Crazy can cross it 
in 10 minutes, and Lazy can cross it in 20 minutes. Of course, when two 
cows are tied to the yoke, they must go at the speed of the slower cow. 
Describe how Bob can get all his cows across the bridge in 34 minutes. 

C-S.12 	Show how to use a stack S and a queue Q to generate all possible subsets 
of an n-element set T nonrecursively. 

Projects 

P-S.1 	 Design an ADT for a two-color, double-stack ADT that consists of two 



231 5.4. Exercises 

stacks-one "red" and one "blue"-and has as its operations color-coded 
versions of the regular stack ADT operations. For example, this ADT 
should allow for both a red push operation and a blue push operation. 
Give an efficient implementation of this ADT using a single array whose 
capacity is set at some value N that is assumed to always be larger than 
the sizes of the red and blue stacks combined. 

P-S.2 	Implement the deque ADT with a doubly linked list. 

P-S.3 	Implement a capacity-limited version of the deque ADT, as given in Sec
tion 5.3.3, with an array used in a circular fashion. 

P-S.4 	Implement the Stack and Queue interfaces with a unique class that ex
tends class NodeDeque (Code Fragment 5.18). 

P-S.S 	 When a share of common stock of some company is sold, the capital 
gain (or, sometimes, loss) is the difference between the share's selling 
price and the price originally paid to buy it. This rule is easy to under
stand for a single share, but if we sell multiple shares of stock bought 
over a long period of time, then we must identify the shares actually be
ing sold. A standard accounting principle for identifying which shares of 
a stock were sold in such a case is to use a FIFO protocol-the shares 
sold are the ones that have been held the longest (indeed, this is the de
fault method built into several personal finance software packages). For 
example, suppose we buy 100 shares at $20 each on day 1, 20 shares at 
$24 on day 2, 200 shares at $36 on day 3, and then sell 150 shares on day 
4 at $30 each. Then applying the FIFO protocol means that of the 150 
shares sold, 100 were bought on day 1,20 were boughtion day 2, and 30 
were bought on day 3. The capital gain i,n this case would therefore be 
100· 10 +20 . 6 +30 . (-6), or $940. Write a program that takes as input 
a sequence of transactions of the form "buy x share (s) at $y each" 
or "sell x share (s) at $y each," assuming that the transactions oc
cur on consecutive days and the values x and y are integers. Given this 
input sequence, the output should be the total capital gain (or loss) for the 
entire sequence, using the FIFO protocol to identify shares. 

P-S.6 	Implement the stack ADT with a doubly linked list. 

P-S.7 	Implement the stack ADT using the Java ArrayList class (without using 
the built-in Java Stack class). 

P-S.8 	Implement a program that can input an expression in postfix notation (see 
Exercise C-5.7) and output its value. 

P-S.9 	Implement the queue ADT using an array. 

P-S.10 Implement the entire queue ADT using a singly linked list. 



232 Chapter 5. Stacks and Queues 

Chapter Notes 

We were introduced to the approach of defining data structures first in terms of their ADTs 
and then in terms of concrete implementations by the classic books by Aho, Hopcroft, and 
Ullman [4, 5], which incidentally is where we first saw a problem similar to Exercise C
5.5. Exercises C-5.9, C-5.l0, and C-5.l1 are similar to interview questions said to be from 
a well-known software company. For further study.of abstract data types, see Liskov and 
Guttag [69], Cardelli and Wegner [20], or Demurjian [27]. 

http:study.of


•• • •••••• 

•••••••••••••••••••••••••••••••• 

Chapter 

6 List Abstractions 

••~O.o. ~~•••••oo·o· ••••• / ~o~~ .~:~~•• 
• 0 ••°•• 0 100 ••000000 000•• 0000\0.00 •• 
• ~O~O~OO OOO·O.O.O~••• ~ 00 °O·O~g • 

Contents 
-""""""--

6.1 Array Lists ...................... . , 234 


6.1.1 The Array List Abstract Data Type .......... 234 


6.1.2 The Adapter Pattern . . . . .. . ......... 235 


6.1.3 A Simple Array-Based Implementation ........ 236 


6.1.4 A Simple Interface and the java.util.ArrayList Class . 238 


6.1.5 Implementing an Array List Using Extendable Arrays 239 


6.2 Node Lists . . . . . . . . . . . '. . . . . . . . . . . .. 243 


6.2.1 f\lode-Based Operations ................ 243 


6.2.2 Positions........................ 244 


6.2.3 The Node" List Abstract Data Type.' .... .1 . .•. 244 


6.2.4 Doubly Linked List Implementation .......... 248 


6.3 I terators. . . . . . . . . . . . . . . . . . . . . . . . .. 254 


6.3.1 The Iterator and Iterable Abstract Data Types .... 254 


6.3.2 The Java For-Each Loop ............... 256 


6.3.3 Implementing Iterators ................ 257 


6.3.4 List Iterators in Java ................. 259 


6.4 List ADTs and the Collections Framework ...... 260 


6.4.1 Lists in the Java Collections Framework ....... 260 


6.4.2 Sequences ....................... 264 


6.5 Case Study: The Move-to-Front Heuristic ...... 267 


6:5.1. . Using a Sorted List and a Nested Class ....... 267 


6.5.2 Using a List with the Move-to-Front Heuristic .... 270 


6.5.3 Possible Uses of a Favorites List ........... 271 


6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . .. 274 


http:0000\0.00


234 Chapter 6. List Abstractions 

6.1 Array lists 

Suppose we have a collection S of n elements stored in a certain linear order, so 
that we can refer to the elements in S as first, second, third, and so on. Such a 
collection is generically referred to as a list or sequence. We can uniquely refer 
to each element e in S using an integer in the range [0, n - 1] that is equal to the 
number of elements of S that precede e in S. The index of an element e in S is the 
number of elements that are before e in S. Hence, the first element in S has index 
oand the last element has index n 1. Also, if an element of S has index i, its 
previous element (if it exists) has index i-I, and its next element (if it exists) has 
index i+1. This concept of index is related to that of the rank of an element in a 
list, which is usually defined to be one more than its index; so the first element is at 
rank 1, the second is at rank 2, and so on. 

A sequence that supports access to its elements by their indices is called an 
array list (or vector, using an older term). Since our index definition is more con
sistent with the way arrays are indexed in Java and other programming languages 
(such as C and C++), we will be referring to the place where an element is stored 
in an array list as its "index," not its "rank" (although we may use r to denote this 
index, if the letter "i" is being used as a for-loop counter). 

This index concept is a simple yet powerful notion,. since it can be used to 
specify where to insert a new element into a list or where to remove an old element. 

6.1.1 The Array List Abstract Data Type 
s 

As an ADT, an array list S has the following methods (besides the standard sizeO 
and isErnptyO methods):· , 

get(i): Return the element of S with index i; an error condition 
occurs if i < 0 or i > sizeO - 1. 

set( i, e): Replace with eand return the element at index i; an error 
condition occurs if i < 0 or i > sizeO 1. 

add(i,e): Insert a new element e into S to have index i; an error 
condition occurs if i < 0 or i > sizeO. 

remove(i): Remove from S the element at index i; an error condition 
occurs if i < 0 or i > sizeO - 1. 

We do not insist that an array should be used to implement an array list, so that 
the element at index 0 is stored at index 0 in the array, although that is one (very 
natural) possibility. The index definition offers us a way to refer to the "place" 
where an element is stored in a sequence without having to worry about the exact 
implementation of that sequence. The index of an element may change whenever 
the sequence is updated, however, as we illustrate in the following example. 



235 6.1. Array Lists 


Example 6.1: We show below some operations on an initially empty array list s. 


Operation Output S 
add(0,7) (7) 
add(0,4) (4,7) 
get(l) 7 (4,7) 

add(2,2) (4,7,2) 
get(3) "error" (4,7,2) 

remove(l) 7 (4,2) 
add(1,5) (4,5,2) 
add(l,3) (4,3,5,2) 
add(4,9) . (4,3,5,2,9) 

get (2) 5 (4,3,5,2,9) 
set(3,8) 2 (4,3,5,8,9) 

6.1.2 The Adapter Pattern 

Classes are often written to provide similar functionality to other classes. The 
adapter design pattern applies to any context where we want to modify an existing 
cla-ss so that its methods match those of a related, but different, class or interface. 
One general way for applying the adapter pattern is to define the new class in such 
a way that it contains an instance of the old class as a hidden field, and implement 
each method of the new class using methods of this hidden instance variable. The 

6 

result of applying the adapter pattern. is that a new class that perfonns almost the 
same functions as a previous class, but in a more convenient way, has been created. 

With respect to our discussion of the array list ADT, we note that this ADT is 
sufficient to define an adapter class for the deque ADT, as shown in Table 6.1. (See 
also Exercise C-6.8.) 

Deque Method 
sizeO, isEmptyO 
getFirstO 
getLastO 
add Fi rst(e) 
add Last(e) 
removeFirstO 
removeLastO 

Realization with Array-List Methods I 
sizeO, isEmptyO 

get(0) 

get(sizeO - 1) 

add(O,e) 
add (sizeO, e) 
remove(O) . 
remove(sizeO - 1) 

Table 6.1: Realization of a deque by means of an array list. 



236 Chapter 6. List Abstractions 

6.1.3 A Simple Array-Based Implementation 

An obvious choice for implementing the array list ADT is to use an array A, where 
A[i] stores (a reference to) the element with index i. We choose the sizeN of array A 
sufficiently large, and we maintain the number of elements in an instance variable, 
n<N. 

The details of this implementation of the array list ADT are simple. To im
plement the get( i) operation, for example, we just return A [i]. Implementations of 
methods add(i,e) and remove(i) are given in Code Fragment 6.1. An important 
(and time-consuming) part of this implem~ntation involves the shifting of elements 
up or down to keep the occupied cells in the array contiguous. These shifting op
erations are required to maintain our rule of always storing an element whose list 
index is i at index i in the array A. (See Figure 6.1 and also Exercise R-6.12.) 

Algorithm add(i,e): 


for j = n 1, n - 2, ... ,i do 

A[j +1] <- A[j] {make room for the new element} 


Ali] <- e 

n<-n 1 


Algorithm remove(i): 


e <- A[i] {e is a temporary variable} 

for j=i,i+l, ... ,n 2do 


A[j] <- A[j +1] {fill in for the removed element} 

n<-n-l 

return e 

Code Fragment 6.1: Methods add(i,e) and remove(i) in the array implementation 
of the array list ADT. We denote, with n, the instance variable storing the number 
of elements in the array list. 

s 
o 2 n-l N-l 

(a) 

s 

o 1 2 N-l 

(b) 


Figure 6.1: Array-based implementation of an array list S that is storing n elements: 

(a) shifting up for an insertion at index i; (b) shifting down for a removal at index i. 



237 6.1. Array Lists 

The Performance of a Simple Array-Based Implementation 

Table 6.2 shows the worst-case running times of the methods of an array list with 
n elements realized by means of an array. Methods isEmpty, size, get and set 
clearly run in O( 1) time, but the insertion and removal methods can take much 
longer than this. In particular, add(i,e) runs in time O(n). Indeed, the worst case 
for this operation occurs when i 0, since all the existing n elements have to be 
shifted forward. A similar argument applies to method remove(i), which runs in 
O(n) time, because we have to shift backward n 1 elements in the worst case 
(i 0). In fact, assuming that each possible index is equally likely to be passed 
as an argument to these operations, their average running time is O(n), for we will 
have to shift nl2 elements on average. 

:Method Time 

sizeO 0(1) 
. isEmptyO 0(1) 

get(i) 0(1) 
set(i,e) 0(1) 

add(i,e) O(n) 
remove(i) O(n) 

Table 6.2: Performance of an array list with n elements realized by an array. The 
space usage is O(N), where N is the size of the array. 

Looking more closely at add (i, e) and rem~)Ve(i),. we note that they each run in 
time O(n- i+ 1), for only those elements at index i and higher have to be shifted up 
or down. Thus, inserting or removing an item at the end of an array list, using the 
methods add (n, e) and remove(n - 1), respectively take O(1) time each. Moreover, 
this observation has an interesting consequence for the adaptation of the array list 
ADT to the deque ADT given in Section 6.1.1. If the array list ADT in this case is 
implemented by means of an array as described above, then methods addLast and 
removeLast of the deque each run in O(1) time. However, methods add First and 
removeFirst of the deque each run in O(n) time. 

Actually, with a little effort, we can produce an array-based implementation of 
the array list ADT that achieves O( 1) time for insertions and removals at index 0, as 

.. well as· insertions and removals at the end of the array list. .Achieving this requires 
that we give up on our rule that an element at index i is stored in the array at index 
i, however, as we would have to use a circular array approach like the one we used 

:;. 	 in Section 5.2 to implement a queue. We leave the details of this implementation 
for an exercise (C-6.9). 



238 Chapter 6. I",ist Abstractions 

6.1.4 A Simple Interface and the java.util.ArrayList Class 

To prepare for constructing a Java implementation of the array list ADT, we show, 
in Code Fragment 6.2, a Java interface, IndexList, that captures the main methods 
from the array list ADT. In this case, we use a IndexOutOfBoundsException to 
signal an invalid index argument. 

public interface IndexList<E> { 
/** Returns the number of elements in this list. * / 
public int sizeO; 
/** Returns whether the list is empty. * / 
public boolean isEmptyO; 
/** Inserts an element e to be at index i, shifting all elements after this. * / 
public void add(int if E e) 

throws I ndexOutOfBou ndsException; 

/** Returns the element at index i, without removing it. * / 

public E get(int i) 


throws IndexOutOfBoundsException; 
/** Removes and returns the element at index i, shifting the elements after this. * / 
public E remove(int i) 

throws I ndexOutOfBou ndsException; 
/** Replaces the element at index i with e, returning the previous element at i. * / 
public E set(int if E e) 

throws IndexOutOfBoundsException; 

} 


Code Fragment 6.2: The IndexList interface for the array list ADT. s 

The java.util.ArrayList Class 

Java provides a class, java.utiI.ArrayList, that implements all the methods that we 
give above for our array list ADT. That is, it includes all of the methods included 
in Code Fragment 6.2 for the IndexList interface. Moreover, the java.util.ArrayList 
class has features in addition to those of our simplified array list ADT. For exam
ple, the class java.util.ArrayList also includes a method, clearO, which removes 
all the elements from the array list, and a method, toArrayO, which returns an ar
ray containing all the elements of the array list in the same order. In addition, the 
class java.util.ArrayList also has methods for searching the list, including a method 
indexOf(e); which returns the index of the first occurrence of an element equal to 
e in the array list, and a method lastlndexOf(e), which returns the index of the last 
occurrence of an element equal to e in the array list. Both of these methods return 
the (invalid) index value -1 if an element equal to e is not found. 



239 

B B A 

6.1. Array Lists 

6.1.5 Implementing an Array List Using Extendable Arrays 

In addition to implementing the methods of the IndexList interface (and some other 
useful methods), the class java .util.ArrayList provides an an interesting feature that 
overcomes a weakness in the simple array implementation. 

Specifically, a major weakness of the simple array implementation for the ar
ray list ADT given in Section 6.1.3, is that it requires advance specification of a 
fixed capacity, N, for the total number of elements that may be stored in the array 
list. If the actual number of elements, n, of the array list is much smaller than N, 
then this implementation will waste space. Worse, if n increases past N, then this 
implementation will crash. 

Instead, the java.util.ArrayList uses an interesting extendable-array technique 
so that we never have to worry about array overflows when using this class. 

As with the java.util.ArrayList class, let us provide a means to grow the array 
A that stores the elements of an array list S. Of course, in Java (and other program
ming languages), we cannot actually grow the array A; its capacity is fixed at some 
number N, as we have already observed. Instead, when an overflow occurs, that 
is, when n = N and we make a call to the method add, we perform the following 
additional steps: 

1. Allocate a new array B of capacity 2N 

2. Let B[i] ~ A[i], for i = 0, ... ,N 1 

3. Let A ~ B, that is, we use B as the array supporting S 

4. Insert the new element in A. 

This array replacement strategy is known as an' extendable array, for it can 
be viewed as extending the end of the underlying array to make room for more 
elements. (See Figure 6.2.) Intuitively, this strategy is much like that of the hermit 
crab, which moves into a larger shell when it outgrows its previous one. 

A __ AI_I ("~)/.-'"....... - _/ 


(a) (b) (c) 

Figure 6.2: An illustration of the three steps for "growing" an extendable array: (a) 
create new array B; (b) copy elements from A to B; (c) reassign reference A to the 
new array. Not shown is the future garbage collection of the old array. 



240 Chapter 6. List Abstractions 

Implementing the IndexList Interface with an Extendable Array 

We give portions of a Java implementation of the array list ADT using an extend
able array in Code Fragment 6.3. This class only provides means for the array to 
grow. Exercise C-6.2 explores an implementation that can also shrink.. 

/** Realization of an indexed list by means of an array, whir.h is doubled 
* when the size of the indexed list exceeds the capacity of the array. 

*/ 


public class ArraylndexList<E> implements IndexList<E> { 
private E[] A; / / array storing the elements of the indexed list 
private int capacity = 16; / / initial length of array A 
private int size = 0; / / number of elements stored in the indexed list 
/** Creates the indexed list with initial capacity 16. * / 
public ArraylndexListO { 

A = (Em new Object[capacity]; / / the compiler may warn, but this is ok 

} 

/** Inserts an element at the given index. * / 

public void add(int r, E e) 


throws IndexOutOfBoundsException { 

checklndex(r, sizeO + 1); 

if (size == capacity) { / / an overflow 


capacity 2; 

E[] B =(E[]) new Object[capacity]; 

for (int i=O; ksize; i++) 


B[i] A[i]; 
A B; 

} s 

for (int i--) / / shift elements up 
A[i+1] = A[i]; 


A[r] = e; 

size++; 


} 

/** Removes the element stored at the given index. * / 

public E remove(int r) 


throws IndexOutOfBoundsException { 

checklndex(r, sizeO); 

E temp A[r]; 

for (int ksize-1; i++) / / shift elements down 


A[i] A[i+l]; 

return temp; 
} 

Code Fragment 6.3: Portions of class ArraylndexList realizing the array list ADT 
by means of an extendable array. Method checklndex(r,n) (not shown) checks 
whether an index r is in the range IO,n -1]. 



241 6.1. Array Lists 

An Amortized Analysis of Extendable Arrays 


This array replacement strategy might at first seem slow, for performing a single 
array replacement required by some element insertion can take O(n) time. Still, 
notice that after we perform an array replacement, our new array allows us to add n 
new elements to the array list before the array must be replaced again. This simple 
fact allows us to show that performing a series of operations on an initially empty 
array list is efficient in terms of its total running time. As a shorthand notation, let 
us refer to the insertion of an element to be the last element in an array list as a 
push operation. (See Figure 6.3.) 

=:: 
~ 

~ 

~ 

§< 
.c 
CJ) 
::} 
Q. 

~ 

~ 
~ 

E: 
.~ 

c.o 
·S 

=:: 
=:: 

1:: 


2 3 4 5 6 7 8 9 10 11 1213 1415 16 
current number ofele111:ents 

Figure 6.3: Running times of a series of push operations on a java. util.ArrayList of 
initial size 1. 

Using an algorithmic design pattern called amortiwtion, we can show that per
forming a sequence of such push operations on an array list implemented with an 
extendable array is actually quite efficient. To perform an amortized analysis, we 
use an accounting technique where we view the computer as a coin-operated appli
ance that requires the payment of one cyber-rupee for a constant amount of com
puting time. When an operation is executed, we should have enough cyber-rupees 
available in our current "bank account" to pay for that operation's running time. 

. Thus, thetotal amount of cyber':rupees spent for any computation will be propor
tional to the total time spent on that computation. The beauty of using this analysis 
method is that we can overcharge some operations in order to save up cyber-rupees 
to pay for others. 



242 Chapter 6. List Abstractions 

Proposition 6.2: Let S be an array list implemented by means of an extendable 
array with initial length one. The total time to perform a series ofn push operations 
in S, starting from S being empty is O(n). 

Justification: Let us assume that one cyber-rupee is enough to pay for the exe
cution of each push operation in S, excluding the time spent for growing the alTay. 
Also, let us assume that growing the array from size k to size 2k requires k cyber
rupees for the time spent copying the elements. We shall charge each push oper
ation three cyber-rupees. Thus, we overcharge each push operation that does not 
cause an overflow by two cyber-rupees. Think of the two cyber-rupees profited in 
an insertion that does not grow the alTay as being "stored" at the element inserted. 
An overflow occurs when the array list S has 2i elements, for some integer i ~ 0, 
and the size of the alTay used by the alTay list representing S is 2i. Thus, doubling 
the size of the array will require i cyber-rupees. Fortunately, these cyber-rupees 
can be found at the elements stored in cells 2i- 1 through 2i 1. (See Figure 6.4.) 
Note that the previous overflow OCCUlTed when the number of elements became 

1larger than 2i- 1 for the first time, and thus the cyber-rupees stored in cells 21

through 2i 1 were not previously spent. Therefore, we have a valid amortization 
scheme in which each operation is charged three cyber-rupees and all the comput
ing time is paid for. That is, we can pay for the execution of n push operations 
using 3n cyber-rupees. In other words, the amortized running time of each push 
operation is O(1); hence, the total running time of n push operations is O(n). • 

®CDCDCD 

CD CD CD CD
(a) 

01234567 

CD 

CD
(b) 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 6.4: Illustration of a series of push operations on an alTay list: (a) an 8
cell array is full, with two cyber-rupees "stored" at cells 4 through 7; (b) a push 
operation caus~s an overflow and a doubling of capacity. Copying the eight old 
elelllents to the new ~ay is paid for by the cyber-rupees already stored in the 
table. Inserting the new element is paid for by one of the cyber-rupees charged to 
the push operation, and the two cyber-rupees profited are stored at cell 8. 



243 6.2. Node Lists 

;1;
, 

6.2 Node lists 

Using an index is not the only means of refelTing to the place where an element 
appears in a sequence. If we have a sequence S implemented with a (singly or 
doubly) linked list, then it could possibly be more natural and efficient to use a 
node instead of an index as a means of identifying where to access and update S. In 
this section, we define the node list ADT, which abstracts the concrete linked list 
data structure (Sections 3.2 and 3.3) using a related position ADT that abstracts the 
notion of "place" in a node list. 

6.2.1 Node-Based Operations 

Let S be a (singly or doubly) linked list. We would like to define methods for S that 
take nodes as parameters and provide nodes as return types. Such methods could 
provide significant speedups over index-based methods, because finding the index 
of an element in a linked list requires searching through the list incrementally from 
its beginning or end, counting elements as we go. 

For instance, we could define a hypothetical method remove(v) that removes 
the element of S stored at node v of the list. Using a node as a parameter allows us 
to remove an element in O( 1) ~ime by simply going directly to the place where that 
node is stored and then "linking out" this node through' an update of the next and 
prev links of its neighbors. Similarly, We could insert, in O(1) time, a new element 
e into S with an operation such as addAfter(v, e), which specifies the node v after 
which the node of the new element should be inserted. In this case, we simply "link 
in" the new node. 

Defining methods of a list ADT by adding such node-based operations raises 
the issue of how much information we should be exposing about the implemen
tation of our list. Certainly, it is desirable for us to be able to use either a singly 
or doubly linked list without revealing this detail to a user. Likewise, we do not 
wish to allow a user to modify the internal structure of a list without our knowl
edge. Such modification would be possible, however, if we provided a reference to 
a node in our list in a form that allowed the user to access internal data in that node 
.(such as a next orprev field). 

To abstract and unify the different ways of storing elements in the various im
plementations of a list, we introduce the concept ofposition, which formalizes the 
intuitive notion of "place" of an element relative to others in the list. 



244 Chapter 6. List Abstractions 

6.2.2 	 Positions 

So as to safely expand the set of operations for lists, we abstract a notion of "po
sition" that allows us to enjoy the efficiency of doubly or singly linked list imple
mentations without violating object-oriented design principles. In this framework, 
we view a list as a collection of elements that stores each element at a position and 
that keeps these positions arranged in a linear order. A position is itself an abstract 
data type that supports the following simple method: 

elernentO: Return the element stored at this position. 

A position is always defined relatively, that is, in terms of its neighbors. In a 
list, a position p will always be "after" some position q and "before" some position 
s (unless p is the first or last position). A position p, which is associated with some 
element e in a list S, does not change, even if the index of e changes in S, unless 
we explicitly remove e (and, hence, destroy position p). Moreover, the position p 

does not change even if we replace or swap the element e stored at p with another 
element. These facts about positions allow us to define a set of position-based list 
methods that take position objects as parameters and also provide position objects 
as return values. 

6.2.3 	 The Node List Abstract Data Type 

Using the concept of position to encapsulate the idea of "node" in a list, we can 
define another type of sequence ADT called the node list ADT. This ADT supports•the following methods for a list S: 

firstO: 	 Return the position of the first element of S; an error oc
curs if S is empty. 

lastO: 	Return the position of the last element of S; an error oc
curs if S is empty. 

prev (p ): 	 Return the position of the element of S preceding the one 
at position p; an error occurs if p is the first position. 

next(p): 	Return the position of the element of Sfollowing the one 
at position p; an error occurs if p is the last position. 

The above methods allow us to refer to relative positions in a list, starting at the 
beginning or end, and to move incrementally up or down the list. These positions 
can intuitively be thought of as nodes in the list, but note that there are no specific 
references to node objects. Moreover, if we provide a position as an argument to a 
list method, then that position must represent a valid position in that list. 



245 6.2. Node Lists 

Node List Update Methods 

In addition to the above methods and the generic methods size and isEmpty, we also 
include the following update methods for the node list ADT, which take position 
objects as parameters and/or provide position objects as return values. 

set(p, e): Replace the element at position p with e, returning the 
element formerly at position p. 

add First(e): Insert a new element e into S as the first element. 

addLast(e): Insert a new element e into S as the last element. 

add Before(p, e): Insert a new element e into S before position p. 

addAfter(p,e): Insert a new element e into S after position p. 

remove(p): Remove and return the element at position pin S, invali
dating this position in S. 

The node list ADT allows us to view an ordered collection of objects in terms 
of their places, without worrying about the exact way those places are represented. 
(See Figure 6.5.) 

New York Paris Providence 

p q r s 

Figure 6.5: A node list. The positions in the current order are p, q, r, and s. 

There may at first seem to be redundancy in the above repertory of opera
tions for the node list ADT, since we can perform operation addFirst(e) with 
addBefore(first(),e), and operation addLast(e) with addAfter(getLastO, e). But 
these substitutions can only be done for a nonempty list. 

Note that an error condition occurs if a position passed as argument to one of 
the list operations is invalid. Reasons for a position p to be invalid include: 

• p = null 
• p was previously deleted from the list 

• p is a position of a differen~ list 

• p is the first position of the list and we call prev(p) 

• p is the last position of the list and we call next(p). 

We illustrate the operations of the node list ADT in the following example. 



246 Chapter 6. List Abstractions 

Example 6.3: We show below a series of operations for an initially empty list 
node S. We use variables PI, P2, and so on, to denote different positions, and we 
show the object currently stored at such aposition in parentheses. 

Operation 
~ 

Output S I 
addFirst(8) (8) i 

(8)firstO Pi (8) 
I- (8,5)addAfter(Pi,5) 

(8,5)next(pt) P2(5) 
- (8,3,5)add Before(P2, 3) 

(8,3,5)prev(P2) P3(3) 
(9,8,3,5)addFirst(9) 
(9,8,3,5)lastO P2(5) 
(8,3,5)remove(firstO) 9 
(8,7,5)3set(P3,7) 

(8,2,7,5)addAfter(firstO,2) 

The node list ADT, with its built-in notion of position, is useful in a number 
of settings. For example, a program that simulates a game of cards could model 
each person's hand as a node list. Since most people keep cards of the same suit 
together, inserting and removing cards from a person's hand could be implemented 
using the methods of the node list ADT, with the positions. being determined by a 
natural ordering of the suits. Likewise, a simple text editor embeds the notion of 
positional insertion and removal, since such editors typically perform all updates 
relative to a cursor, which represents the current position in the list of characters of 
text being edited. . .• 

A Java interface representing the position ADT is given in Code Fragment 6.4. 

public interface Position<E> { 
/** Return the element stored at this position. * / 
E elementO; 

} 
Code Fragment 6.4: Java interface for the position ADT. 

An interface for the node list ADT, called PositionList, is given in Code Frag
ment 6.5. This interface uses the following exceptions to indicate error conditions. 

BoundaryViolationException: Thrown if an attempt is made at accessing an ele
ment whose position is outside the range of positions of the list (for example, 
calling method next on the last position of the sequence). 

InvalidPositionException: Thrown if a position provided as argument is not valid 
(for example, it is a null reference or it has no associated list). 



247 6.2. Node Lists 
public interface PositionList<E> { 

/** Returns the number of elements in this list. * / 

public int sizeO; 

/** Returns whether the list is empty. * / 

public boolean isEmptyO; 

/** Returns the first node in the list. * / 

public Position<E> firstO; 

/** Returns the last node in the list. * / 

public Position<E> lastO; 

/** Returns the node after a given node in the list. * / 

public Position < E> next(Position < E> p) 


throws Invalid Position Exception, BoundaryViolation Exception; 

/** Returns the node before a given node in the list. * / 

public Position<E> prev(Position<E> p) 


throws Invalid Position Exception, BoundaryViolationException; 

/** Inserts an element at the front of the list, returning new position. * / 

public void addFirst(E e); 

/** Inserts and element at the back of the list, returning new position. * / 

public void addLast(E e); 

/** Inserts an element after the given node in the list. * / 

public void addAfter(Position<E> p, E e) 


throws Invalid Position Exception; 

/** Inserts an element before the given node in the list. * / 

public void addBefore(Position<E> p, E e) . 


throws Inva Iid Position Exception; 
/** Removes a node from the list, returning the element stored there. * / 
public E remove(Position<E> p) throws Invalid Position Exception; 
/** Replaces the element stored at the given node, returning old element. * / 
public E set(Position<E> p, E e) throws InvalidPositionException;

• 
} Code Fragment 6.5: Java interface fo~ the node list ADT. 

Yet Another Oeque Adapter 

With respect to our discussion of the node list ADT, we note that this ADT is 
sufficient to define an adapter class for the deque ADT, as shown in Table 6.3. 

· Deque Method IRealization with Node-list Methods 
sizeO, isEmptyO sizeO, isEmptyOI 

: getFirstO' . firstO.elementO 
getLastO lastO·elementO 

.addFirst(e) add First(e) 
..1.addLast(e)addLast(e) . 

removeFirstO remove(firstO) 
removeLastO remove(lastO) 

Table 6.3: Realization of a deque by means of a node list. 



248 Chapter 6. List Abstractions 

6.2.4 Doubly Linked List Implementation 

Suppose we would like to implement the node list ADT using a doubly linked 
list (Section 3.3). We can simply make the nodes of the linked list implement 
the position ADT. That is, we have each node h:nplement the Position interface 
and therefore define a method, elementO, which returns the element stored at the 
node. Thus, the nodes themselves act as positions. They are viewed internally by 
the linked list as nodes, but from the outside, they are viewed only as positions. 
In the internal view, we can give each node v instance variables prey and next 
that respectively refer to the predecessor and successor nodes of v (which could 
in fact be header or trailer sentinel nodes marking the beginning and end of the 
list). Instead of using variables prey and next directly, we define methods getPrev, 
setPrev, get 1\1 ext, and setNext of a node to access and modify these variables. 

In Code Fragment 6.6, we show a Java class DNode for the nodes of a doubly 
linked list implementing the position ADT. This class is similar to class DNode 
shown in Code Fragment 3.17, except that now our nodes store a generic element 
instead of a character string. Note that the prey and next instance variables in the 
DNode class below are private references to other DNode objects. 

public class DNode<E> implements Position<E> { 
private DNode<E> prey, next; II References to the nodes before and after 
private E element; II Element stored in this position 
/** Constructor *1 
public Dl\lode(DNode<E> newPrev, DNode<E> newNext, E elem) { 

prey newPrev; 

next = newNext; 

element = elem; 


} 
II Method from interface Position 
public E elementO throws InvalidPositionException { 

if ((prev == nUll) && (next null)) 
throw new InvalidPositionException(UPosition is not in a list! "); 

return element; 
}
II Accessor· methods 

public DNode<E> getNextO { return next; } 

public DNode<E> getPrevO { return prev; } 

II Update methods 

public void setNext(DNode<E> newNext) { next = newNext; } 

public void setPrev(DNode<E> newPrev) { prev = newPrev; } 

public void setElement(E newElement) { . element newElement;} 


} 

Code Fragment 6.6: Class DNode realizing a node of a doubly linked list and im
plementing the Position interface (ADT). 



249 6.2. Node Lists 

Given a position p in S, we can "unwrap" p to reveal the underlying node v. 
This is accomplished by casting the position to a node. Once we have node v, 
we can, for example, implement method prev(p) with v.getPrev (unless the node 
returned by v.getPrev is the header, in which case we signal an elTor). Therefore, 
positions in a doubly linked list implementation can be supported in an object
oriented way without any additional time or space overhead. 

Consider how we might implement the addAfter(p, e) method, for inserting an 
element e after position p. Similar to the discussion in Section 3.3.1, we create a 
new node vto hold the element e, link vinto its place in the list, and then update the 
next and prev references of v's two new neighbors. This method is given in Code 
Fragment 6.7, and is illustrated (again) in Figure 6.6. Recalling the use of sentinels 
(Section 3.3), note that this algorithm works even if pis the last real position. 

Algorithm addAfter(p, e): 
Create a new node v 
v.setElement(e) 
v.setPrev(p) {link v to its predecessor} 
v.setNext(p. get1\1 ext0 ) {link v to its successor} 
(p.getNextO).setPrev(v) {link p's old successor to v} 
p.setNext(v) {link p to its new successor, v} 

Code Fragment 6.7: Inserting an element e after a position p in a linked list. 

header trailer 

~IJFKlnlpVDln'SFOI~ 
(a) s 

header trailer 

~! JFK I~~! pVDIQ§~ 

I I 

IIlsw,lII
LL_li 

(b) 

header trailer 

~IJFKIPIBWllplpVDlnISFOI~ 

(c) 

Figure 6.6: Adding a new node after the position for "JFK": (a) before the insertion; 
(b) creating node v with element "BWI" and linking it in; (c) after the insertion. 

The algorithms for methods add Before, addFirst, and addLast are similar to 
that for method addAfter. We leave their details as an exercise (R-6.5). 



250 Chapter 6. List Abstractions 

Next, consider the remove(p) method, which removes the element e stored at 
position p. Similar to the discussion in Section 3.3.2, to perform this operation, we 
link the two neighbors of p to refer to one another as new neighbors-linking out p. 
Note that after p is linked out, no nodes will be pointing to p; hence, the garbage 
collector can reclaim the space for p. This algorithm is given in Code Fragment 6.8 
and is illustrated in Figure 6.7. Recalling our use of header and trailer sentinels, 
note that this algorithm works even if p is the first, last, or only real position in the 
list. 

Algorithm remove(p): 

t <- p.elementO {a temporary variable to hold the return value} 

(p.getPrevO).setNext(p.getNext()) {linking out p} 

(p.getNextO ).setPrev(p.getPrevO) 

p.setPrev(null) {invalidating the position p} 

p.setNext(nUll) 

return t 


Code Fragment 6.8: Removing an element e stored at a position p in a linked list. 

header trailer 

~! JFK 101 BWIIOI PVD 101 SFO I~ 

(a) 
s 

header 

(b) 

header trailer 

B=>I BWII-DI JFK I~ISFol~ 
(c) 

Figure 6.7: Removing the object stored at the position for "PVD": (a) before the 
removal; (b) linking out the old node; (c) after the removal (andgarbage collection). 

In conclusion, using a doubly linked list, we can perform all the methods of the 
node list ADT in 0(1) time. Thus, a doubly linked list is an efficient implementa
tion of the node list ADT. 



251 6.2. Node Lists 

A Node List Implementation in Java 

Portions of the Java class NodePositionList, which implements the node list ADT 
using a doubly linked list, are shown in Code Fragments 6.9-6.11. Code Frag
ment 6.9 shows NodePositionList's instance variables, its constructor, and a method, 
checkPosition, which performs safety checks and "unwraps" a position, casting it 
back to a Dl\lode. Code Fragment 6.10 shows additional accessor and update meth
ods. Code Fragment 6.11 shows additional update methods. 

public class NodePositionList<E> implements PositionList<E> { 
protected int numElts; / / Number of elements in the list 
protected DNode<E> header, trailer; / / Special sentinels 
/** Constructor that creates an empty list; 0(1) time * / 
public NodePositionListO { 

numElts = 0; 
header = new DNode<E>(null, null, null); / / create header 
trailer new DNode<E>(header, null, nUll); / / create trailer 
header.setNext(trailer); / / make header and trailer point to each other 

}
/** Checks if position is valid for this list and converts it to 
* DNode if it is valid; 0(1) time * / 

protected DNode<E> checkPosition(Position<E> p) 
throws InvalidPositionException { 
if 	(p == null) 

throw new InvalidPositionException 
("Null position passed to NodeList"); 

if 	(p == header) 
throw new InvalidPositionException 

(liThe header node is not a valid position"); 
if 	(p trailer) . , 

throw new InvalidPositionException 
(lithe trailer node is not a valid position ll 

); 

try { 
Dt\lode<E> temp = (DNode<E» p; 
if 	((temp.getPrevO == nUll) II (temp.getNextO == null)) 

throw 	new InvalidPositionException 

(llposition does not belong to a valid NodeList ll ); 


return temp; 

} catch (ClassCastException e) { 


throw new InvalidPositionException 

("Position is of wrong type for this list "); 


} 

} 

Code Fragment 6.9: Portions of the NodePositionList class implementing the node 
list ADT with a doubly linked list. (Continues in Code Fragments 6.10 and 6.11.) 

http:6.9-6.11


252 Chapter 6. List Abstractions 

/** Returns the number of elements in the list; 0(1) time * / 
public int sizeO { return numElts; } 
/** Returns whether the list is empty; 0(1) time * / 
public boolean isEmptyO { return (numElts 0); } 
/** Returns the first position in the list; 0(1) time */ 
public Position<E> firstO 

throws EmptyListException { 
if (isEmptyO) 

throw new EmptyListException("List is emptyll); 
return header.getNext(); 

} 
/** Returns the position before the given one; 0(1) time * / 
public Position<E> prev(Position <E> p) 

throws Invalid Position Exception I BoundaryViolation Exception { 
DNode<E> v = checkPosition(p); 
DNode<E> prey v.getPrevO; 
if (prev == header) 

throw new BoundaryViolationException 
(lfCannot advance past the beginning of the list II); 

return prey; 

} 

/** Insert the given element before the given position; 


* 0(1) time * / 

public void addBefore(Position<E> P, E element) 


throws InvalidPositionException { 

DNode<E> v = checkPosition(p); 

numElts++: 

DNode<E> newNode = new DNode<E>(v.getPrevO, v, element); 

v.getPrevO.setNext(newNode); 

v.setPrev( newNode); 


} 


Code Fragment 6.10: Portions of the NodePosition List class implementing the node 
list ADT with a doubly linked list. (Continued from Code Fragment 6.9. Continues 
in Code Fragment 6.11.) 



253 6.2. Node Lists 

/** Insert the given element at the beginning of the list, returning 
* the new position; 0(1) time * / 

public void addFirst(E element) { 
numElts++; 
DNode<E> newNode = new DNode<E>(header, header.getNextO, element); 
header.getNextO.setPrev(newNode); 
header.setNext( newNode); 

} 
/**Remove the given position from the list; 0(1) time * / 
public E remove( Position < E> p) 

throws InvalidPositionException { 
DNode<E> v = checkPosition(p); 
numElts--; 
DNode<E> vPrev = v.getPrevO; 
DNode<E> vNext = v.getNextO; 
vPrev.setNext(vNext); 
vNext.setPrev(vPrev); 
E vElem v.elementO; 
/ / unlink the position from the list and make it invalid 
v.setNext(null); 
v.setPrev(null); 
return vElem; 

} 
/** Replace the element at t~e given position with the new element 
* and return the old element; 0(1) time * / . i 

public E set(Position<E> p, E element) 
throws InvalidPositionException { 

DNode<E> v = checkPosition(p); 
E oldElt = v.elementO; 
v.setElement(element); 
return oldElt; 

} 

Code Fragment 6.11: Portions of the NodePosition List class implementing 
the node list ADT with a doubly linked list. (Continued from Code Frag
ments 6.10 and 6.11.) Note that the mechanism used to invalidate a position in 
the remove method is consistent with one of the checks performed in the checkPo
sition convenience function•.. 



254 Chapter 6. List Abstractions 

6.3 Iterators 

A typical computation on an array list or a node list is to march through its elements 
in order, one at a time, for example, to look for a specific element. 

6.3.1 The Iterator and Iterable Abstract Data Types 

An aerator is a software design pattern that abstracts the process of scanning 
through a collection of elements one element at a time. An iterator consists of 
a list S, a current element in S, and a way of stepping to the next element in Sand 
making it the current element. Thus, an iterator extends the concept of the position 
ADT we introduced in Section 6.2. In fact, a position can be thought of as an itera
tor that doesn't go anywhere. An iterator encapsulates the concepts of "place" and 
"next" in a collection of objects. 

We define the iterator ADT as supporting the following two methods: 

hasNextO: Test whether there are elements left in the iterator. 

nextO: Return the next element in the iJerator. 

Note that the iterator ADT has the cursor notion of the "current" element in a 
traversal of a list. The first element in an iterator is returned by the first call to the 
method next, assuming of course that the iterator contains at least one element. 

An iterator provides a unified scheme to access all the elements of a collection 
of objects in a way that is independent from the specific organization of the collec
tion. An iterator for an array list or node list should return the elements according 
to their linear ordering. 

Simple Iterators in Java 

Java provides an iterator through its java.util.lterator interface. We note that the 
java.utiLScanner class (Section 1.6) implements this interface. This interface sup
ports an additional (optional) method to remove the previously returned element 
from the collection. This functionality (removing elements through an iterator) is 
somewhat controversial from an object-oriented viewpoint, however, and it is not 
surprising that its implementation by classes is optional. Incidentally, Java also 
provides the java.uti!. Enumeration interface, which is historically older than the 
iterator interface and uses names hasMoreElementsO and nextElementO. 



6.3. Iterators 255 


The Iterable Abstract Data Type 

In order to provide a unified generic mechanism for scanning through a data struc
ture, ADTs storing collections of objects should support the following method: 

iteratorO: Return an iterator of the elements in the collection. 

This method is supported by the java.util.ArrayList class. In fact, this method is 
so important, that there is a whole interface, java.lang.lterable, which has only this 
method in it. This method can make it simple for us to specify computations that 
need to loop through the elements of a list. To guarantee that a node list supports 
the above methods, for example, we could add this method to the PositionList 
interface, as shown in Code Fragment 6.12. In this case, we would also want to 
state that PositionList extends Iterable. Therefore, let us assume that our array lists 
and node lists lists support the iteratorO method. 

public interface PositionList<E> extends Iterable<E> { 
/ / ...all the other methods of the list ADT ... 
/** Returns an iterator of all the elements in the list. * / 
public Iterator<E> iteratorO; 

} 

Code Fragment 6.12: Adding the iterator method to the PositionList interface. 

Given such a PositionList definition, we could use an iterator,etumed by the 
iteratorO method to create a string representation of a node list, as shown in Code 
Fragment 6.13. . . 

/** Returns a textual representation of a given node list * / 
public static <E> String toString(PositionList<E> I) { 

Iterator< E> it I.iteratorO; 
String 5 = II [II; 
while (it.hasNextO) { 

s it.nextO; / / implicit cast of the next element to String 
if (it.hasNextO) 

II II.5 , 
} 


s += IIJ II; 

return s; 


} 

Code Fragment 6.13: Example of a Java iterator used to convert a node list to a 
string. 



256 Chapter 6. List Abstractions 

6.3.2 The Java For-Each Loop 

Since looping through the elements returned by an iterator is such a common con
struct, Java provides a shorthand notation for such loops, called the/or-each loop. 
The syntax for such a loop is as follows: 

for (Type name: expression) 

loop-.Statement 


where expression evaluates to a collection that implements the java.lang.lterable 
interface, Type is the type of object returned by the iterator for this class, and name 
is the name of a variable that will take on the values of elements from this iterator 
in the loop-.Statement. This notation is really just shorthand for the following: 

for 	 (Iterator<Type> it = expression.iteratorO; it.hasNextO; ) { 
Type name = it.nextO; 
loop-.Statement 

} 

For example, if we had a list, values, of Integer objects, and values implements 
java.lang.lterable, then we can add up all the integers in values as follows: 

List <I nteger> va lues; 

/ / ... statements that create anew values list and fill it w,ith Integers.. , 

int sum = 0; 

for (Integer i : values) 


sum 	+= i; / / unboxing allows this 

We would read the above loop as, "for each Integer i in values, do the loop body 
(in this case, add i to sum)." 

In addition to the above form of for-each loop, Java also allows a for-each loop 
to be defined for the case when expression is an array of type Type, which, in this 
case, can be either a base type or an object type. For example, we can total up the 
integers in an array, v, which stores the first ten positive integers, as follows: 

int[] v = {I, 2, 3, 4, 5, 6, 7, 8, 9, IO}; 

int total = 0; 


for (int i : v) 


total += i; 



6.3. Iterators 257 


6.3.3 Implementing Iterators 

One way to implement an iterator for a collection of elements is to make a "snap
shot" of it and iterate over that. This approach would involve storing the collection 
in a separate data structure that supports sequential access to its elements. For ex
ample, we could insert all the elements of the collection into a queue, in which case 
method hasNextO would correspond to !isEmptyO and nextO would correspond to 
dequeueO. With this approach, the method iteratorO takes O(n) time for a collec
tion of size n. Since this copying overhead is relatively costly, we prefer, in most 
cases, to have iterators operate on the collection itself, not a copy. 

In implementing this direct approach, we need only to keep track of where 
in the collection the iterator's cursor points. Thus, creating a new iterator in this 
case simply involves creating an iterator object that represents a cursor placed just 
before the first element of the collection. Likewise, performing the nextO method 
involves returning the next element, if it exists, and moving the cursor just past this 
element's position. Thus, in this approach, creating an iterator takes O(1) time, as 
do each of the iterator's methods. We show a class implementing such an iterator in 
Code Fragment 6.14, and we show in Code Fragment 6.15 how this iterator could 
be used to implement the iteratorO method in the NodePositionList class. 

public class Elementlterator<E> implements Iterator<E> { 

protected PositionList<E> list; / / the underlying list 

protected Position<E> cursor; / / the next position 

/** Creates an element iterator over the given list. * / 

public Elementlterator(PositionList<E> L) { 


list = L; 

cursor = (list.isEmptyO)? null: Iist.firstO; 


} 

public boolean hasNextO { return (cursor null);} 

public E nextO throws NoSuchElementException { 


if (cursor == nUll) 

throw new NoSuchElementException("No next element"); 


E toReturn = cursor.elementO; 

cursor = (cursor == list.lastO)? null: list.next(cursor); 

return toReturn; 


} 

} 


Code Fragment 6.14: An element iterator class for a PositionList. 

/** Returns an iterator of all the elements in the list. * / 
public Iterator<E> iteratorO { return new Elementiterator<E>(this); } 

Code Fragment 6.15: The iteratorO method of class NodePositionList. 



258 	 Chapter 6. List Abstractions 

Position Iterators 

For ADTs that support the notion of position, such as with the list ADT, we can 
also provide the following method: 

positionsO: 	Return an Iterable object (like an array list or node list) 
containing the positions in the collection as elements. 

An iterator returned by this method allows us to loop through the positions of a 
list. To guarantee that a node list supports this method, we could add it to the Posi
tionList interface, as shown in Code Fragment 6.16. Then we could, for example, 
add an implementation of this method to the NodePositionList, as shown in Code 
Fragment 6.17. This method uses the NodePosition List class itself to create a list 
that contains the positions of the original list as its elements. Returning this list of 
positions as our Iterable object allows us to then call iteratorO on this object to get 
an iterator of positions from the original list. 

public interface PositionList<E> extends Iterable<E> { 
/ / ...all the other methods of the list ADT ... 
/** Returns an iterable collection of all the nodes in the list. * / 
public Iterable<Position<E> > positionsO; 

} 

Code Fragment 6.16: Adding iterator methods to the PositionList interface. 

/** Returns 	an iterable collection of all the nodes in the list. * / 
public Iterable<Position<E> > positionsO { / / create a list of posiitons ~ 

PositionList<Position<E> > P = new NodePositionList<Position<E> >0; 
if (!isEmptyO) { 

Position<E> p first{); 
while (true) { 

P.addLast(p); / / add position p as the last element of list P 
if (p lastO) 

break; 

p next(p); 


} 

} 

return P; / / return P as our Iterable object 


} 

Code Fragment 6.17: The positionsO method of class NodePositionList. 

The iterator returned by iteratorO and other Iterable objects defines a restricted 
type of iterator that allows only one pass through the elements. More powerful iter
ators can also be defined, however, which allows us to move forward and backward 
over a certain ordering of the elements. 



6.3. Iterators 259 

6.3.4 List Iterators in Java 

The java.util.LinkedList class does not expose a position concept to users in its API. 
Instead, the preferred way to access and update a LinkedList object in Java, without 
using indices, is to use a Listlterator that is generated by the linked list, using a 
listlteratorO method. Such an iterator provides forward and backward traversal 
methods as well as local update methods. It views its current position as being 
before the first element, between two elements, or after the last element. That is, 
it uses a list cursor, much like a screen cursor is viewed as being located between 
two characters on a screen. Specifically, the java.util.Listlterator interface includes 
the following methods: 

add(e): Add the element e at the current position of the iterator. 

hasNext(): True if and only if there is an element after the current 
position of the iterator. 

hasPrevious(): True if and only if there is an element before the current 
position of the iterator. 

previous(): Return the element e before the current position and sets 
the current position to be before e. 

nextO: Return the element e after the current position and sets 
the current position to be after e. 

nextlndexO: Return the index of the next element. 

previousl ndex(): Return the index of the previous element. 

set(e): Replace the element returned by the prevjous next or pre
vious operation with e. 

remove(): Remove the element returned by the previous next or pre
vious operation. 

It is risky to use mUltiple iterators over the same list while modifying its con
tents. If insertions, deletions, or replacements are required at mUltiple "places" in a 
list, it is safer to use positions to specify these locations. But the java. util. Linked List 
class does not expose its position objects to the user. So, to avoid the risks of mod
ifying a list that has created multiple iterators (by calls to its iteratorO method), 
java.util.lterator objects have a "fail-fast" feature that immediately invalidates such 
an iterator if its underlying collection is modified unexpectedly. For example, if a 
java.utiLLinkedList object L has returned five different iterators and one of them 
modif.iesL, tpentheother ,four all become immediately. invalid. That is, Java al
'lows ~any'list iterator's to be traversing a linked list L at the same time, but ifone of 
them modifies L (using an add, set, or remove method), then all the other iterators 
for L become invalid. Likewise, if L is modified by one of its own update methods, 
then all existing iterators for L immediately become invalid. 



260 Chapter 6. List Abstractions 

6.4 List ADTs and the Collections Framework 

In this section, we discuss general list ADTs, which combine methods of the deque, 
array list, and node list ADTs, and how they fit into the Java Collections Frame
work. 

6.4.1 Lists in the Java Collections Framework 

Java provides a package of data structure interfaces and classes, which together de
fine the lava Collections Framework. This package, java.util, includes versions of 
several of the data structures discussed in this book, some of which we have already 
discussed and others of which we discuss later in this book. The root interface in 
the Java collections framework is the Collection interface. This is a general inter
face for any data structure that contains a collection of elements, such as a list. It 
extends java .Ia ng.ltera ble; hence, it includes an iteratorO method, which returns an 
iterator of the elements in this collection. It is a superinterface for other interfaces 
in the Java Collections Framework that can hold elements, including the java.util 
interfaces Deque, List, and Queue, which are discussed above. In addition, it also 
has a subinterface that defines another type of collection, Set, which we discuss in 
Section 11.4, and it has several important related interfaces, including the Iterator 
and Listlterator interfaces discussed above, as well as the Map interface discussed 
in Section 9.1. 

The Java Collections Framework also includes several concrete list-based classes 
implementing various combinations of list-based interfaces. These include the fol•lowing java.util classes: 

ArrayBIockingQueue: An array implementation of the Queue interface that al
lows for a capacity limit. 

ArrayDeque: An implementation of the Deque interface that uses an 
array, which can grow or shrink, as needed. 

ArrayList: An implementation of the List interface that uses an ar
ray, which can grow or shrink, as needed. 

ConcurrentLinkedQueue: A linked list FIFO queue implementation of the Queue 
interface that is thread safe. 

LinkedBlockingDeque: A linked list implementation of the Deque interface that 
allows for a capacity limit. 

LinkedBlockingQLieue: A linked list implementation of the Queue interface that 
allows for a capacity limit. 

LinkedList: A linked list implementation of the List interface. 

Stack: An implementation of the stack ADT. 



261 6.4. List ADTs and the Collections Framework 

Collections are 	Iterable 

Each of the above list-based classes in the Java Collections Framework implements 
the java.lang.lterable interface; hence, it includes an iteratorO method and can 
be used in a for-each loop. In addition, any class implementing the java.util.List 
interface, such as the ArrayList and Lin ked List classes, also includes a listlteratorO 
method, as well. As we observed above, such interfaces are useful for looping 
through the elements of a collection or list. 

List-Based 	Algorithms in the Java Collections Framework 

In addition to the list-based classes that are provided in the Java Collections Frame
work, there are a number of simple algorithms that it provides as welL These algo
rithms are implemented as static methods in the java.util.Collections class and they 
include the following methods: 

disjoint(C,D): 	Returns a Boolean value indicating whether the collec
tions C and D are disjoint. 

fill(L, e): 	 Replaces each of the elements in the list L with the same 
element, e. 

frequency(C,e): 	 Returns the number of elements in the collection C that 
are equal to e. 

max(C): 	 Returns the maximum element in the COllection C, based 
on the natural ordering of its elements. 

, , 

min(C): 	Returns the minimum element in the collection C, based 
on the natural ordering of its elements. 

replaceAII(L,e,J): 	Replaces each element in L that is equal to e with the 
same element, f. 

reverse(L): 	 Reverses the ordering of elements in the list L. 

rotate(L,d): 	Rotates the elements in the listL by the distance d (which 
can be negative), in a circular fashion. 

shuffle(L): 	 Pseudo-randomly permutes the ordering of the elements 
in the list L. 

sort(L): 	 Sorts the list L, using the natural ordering of the elements 
in L. 



262 Chapter 6. 	 lAst Abstractions 

Converting 	Lists into Arrays 

Lists are a beautiful concept and they can be applied in a number of different con
texts, but there are some instances where it would be useful if we could treat a list 
like an array. Fortunately, the java.util.Coliection interface includes the following 
helpful methods for generating an array that has the same elements as the given 
collection: 

toArrayO: 	Returns an array of elements of type Object containing 
all the elements in this collection. 

toArray(A): 	Returns an array of elements of the same element type as 
Acontaining all the elements in this collection. 

If the collection is a list, then the returned array must have its elements stored in 
the same ordering as that of the original list. Thus, if we have a useful array
based method that we want to use on a list or other type of collection, then we can 
do so by simply using that collection's toArrayO method to to produce an array 
representation of that collection. For instance, if we want to print out a list of 
arrays, arrList, performing the following won't work: 

System.out.println("arrList + arrList.toStringO); / / WRONG!II 

Instead, we should do something like this: 

System.out.println("arrList = " + Arrays.deepToString(arrList.toArrayO)); 

Converting 	Arrays into Lists 

In a similar vein, it is often useful to be able to convert an array into an equivalent 
list. Fortunately, the java.util.Arrays class includes the following method: 

asList(A): 	Returns a list representation of the array A, with the same 
element type as the elements of A. 

The list returned by this method uses the array A as its internal representation for 
the list. So this list is guaranteed to be an array-based list and any changes made to 
it will automatically be reflected in A. Because of these types of side effects, use of 
the asList method should always be done with caution, so as to avoid unintended 
consequences. But, used with care, this method can often save us a lot of work. For 
instance, the following code fragment could be used to randomly shuffle an array 
of integers,arr: 

Integer[J arr = {I, 2, 3, 4, 5, 6, 7, 8}; / / allowed by autoboxing 
List<lnteger> listArr= Arrays.asList(arr); 
Collections.shuffle(listArr); / / this has side effect of shuffling arr 



263 6.4. List ADTs and the Collections Framework 

The java.util.List Interface and Its Implementations 

Java provides functionality similar to our array list and node lists ADT in the 
java.util.List interface, which is implemented with an alTay in java.util.ArrayList 
and with a linked list in java.utiI.LinkedList. There are some trade-offs between 
these two implementations, which we explore in more detail in the next section. 
Moreover, Java uses iterators to achieve a functionality similar to what our node 
list ADT derives from positions. Table 6.4 shows cOlTesponding methods between 
our (array and node) list ADTs and the java.util interfaces List and Listlterator in
terfaces, with notes about their implementations in the java.util classes ArrayList 
and LinkedList. 

ListADT 
Method 

sizeO 
isEmptyO 

get(i) 

firstO 
lastO 

prev(p) 
next(p) 
set(p, e) 
set(i,e) 

java.util.List 
Method 

sizeO 
isEmptyO 

get(i) 

I istlteratorO 
listlterator(sizeO) 

set(i,e) 

ListIterator 
Method 

previousO 
nextO 
set(e) 

Notes 
0(1) time 
0(1) time 
A is 0(1), 
Lis O(min{i, n- i}) 
first element is next 
last element is previous 
0(1) time 
0(1) time 
0(1) time 
AisO(I), 
Lis O(min{i,n i} ) 

add(i,e) add(i,'e) O(n) time 
remove(i) 

addFirst(e) 
addFirst(e) 
addLast(e) 
addLast(e) 

addAfter(p,e) 

add Before(p, e) 

remove(p) 

remove(i) 

addeO, e) 
add First(e) 

add(e) 
add Last(e) 

add(e) 

add(e) 

removeO 

AisO(I), 
Lis O(min{i,n i}) 
A is O(n), L is 0(1) 
only exists in L, 0(1) 
0(1) time 
only exists in L, O( 1) 
insertion is at cursor; 
A is O(n), L is 0(1) 
insertion is at cursor; 
A is 0 (n), L is 0 (1 ) 
deletion is at cursor; 
A is O(n), Lis 0(1) 

Table 6.4: COlTespondences between methods in the alTay list and node list ADTs 
and the java.util interfaces List and Listlterator. We use A and L as abbreviations 
for java.util.ArrayList and java.util.LinkedList (or their running times), 



264 Chapter 6. 	 List Abstractions 

6.4.2 Sequences 

A sequence is an ADT that supports all of the methods of the deque ADT (Sec
tion 5.3), the array list ADT (Section 6.1), and the node list ADT (Section 6.2). 
That is, it provides explicit access to the elements in the list either by their indices 
or by their positions. Moreover, since it provides this dual access capability, we also 
include, in the sequence ADT, the following two "bridging" methods that provide 
connections between indices and positions: 

atlndex(i): 	Return the position of the element with index i; an error 
condition occurs if i < 0 or i > sizeO - 1. 

indexOf(p ): Return the index of the element at position p. 

Multiple Inheritance in the Sequence ADT 

The definition of the sequence ADT as including all the methods from three dif
ferent ADTs is an example of multiple inheritance (Section 2.4.2). That is, the 
sequence ADT inherits methods from three "super" abstract data types. In other 
words, its methods include the union of the methods of these super ADTs. See 
Code Fragment 6.18 for a Java specification of the sequence ADT as a Java inter
face. 

/**
* An interface for a sequence, a data structure supporting all 

* operations of a deque, indexed list and position list. 

*/ 


public interface Sequence<E> 
extends Deque<E>, IndexList<E>, PositionList<E> { 

/** Returns the position containing the element at the given index. * / 
public Position<E> atlndex(int r) throws BoundaryViolationException; 
/** Returns the index of the element stored at the given position. * / 
public int indexOf(Position<E> p) throws InvalidPositionException; 

} 

Code Fragment 6.18: The Seq uenee interface defined via multiple inheritance. It in
cludes allthe mythods of the Deq ue, IndexList, and Position List interfaces (defined 
for any generic type E), and adds two more methods. 

.In essence, the sequence ADT combines the functionality of the java.util.List 
and java.util.Listlterator interfaces. 



265 6.4. List ADTs and the Collections Framework 

Implementing a Sequence with a Linked list 

Suppose we implement a sequence with a doubly linked list, which, as the docu
mentation for the java. uti I. Li nked List class makes clear, is the implementation for 
this class. With this implementation, all of the position-based update methods run 
in 0(1) time each Gust like the list iterator update methods injava.utiI.LinkedList). 
Likewise, all of the methods of the deque ADT also run in O( 1) time each, since 
they merely involve updating or querying the list at its ends. But the methods from 
the array list ADT (which are also included in the java.util.LinkedList class) are 
not well-suited to an implementation of a sequence with a doubly linked list. 

Efficiency Trade-Offs with a Linked-list-Based Sequence 

Since a linked list does not allow for indexed access to its elements, performing the 
operation get(i), to return the element at a given index i, requires that we perform 
link "hopping" from one of the ends of the list, counting up or down, until we locate 
the node storing the element with index i. As a slight optimization, we observe that 
we can start this hopping from the closer-end of the list, thus achieving a running 
time that is 

O(min(i+ l,n - i)), 

- . 
where n is the number of elements in the list. The worst case for this kind of search 
occurs when 

r= In/2J. 

Thus, the running time is still O(n). 
The index-based update operations add(i,e) and remove(i) also must perform 

link hopping to locate the node storing the element with index i, and then insert 
or delete a node. The running times of these implementations of add(i,e) and 
remove( i) are likewise 

O(min(i+ 1,n i+ 1)), 

which is O(n). One advantage of this approach is that, 

. ifi = 0 or i n- 1, 

as is the case in the adaptation of the array list ADT to the deque ADT given in 
Section 6.1.1, then add and remove run in O( 1) time. Thus, in general, using 
array-list methods with a sequence implemented with a linked list is inefficient. 



266 Chapter 6. List Abstractions 

Implementing a Sequence with an Array 

Suppose instead we implement a sequence S by storing each element e of S in a 
cell A[i] of an array A. We can define a position object p to hold an index i and 
a reference to array A, as instance variables, in this case. We can then implement 
method element(p) simply by retumingA[i]. A major drawback with this approach, 
however, is that the cells in A have no way to reference their corresponding posi
tions. Thus, after performing an addFirst operation, we have no way of informing 
the existing positions in S that their indices each went up by 1 (remember that po
sitions in a sequence are always defined relative to their neighboring positions, not 
their indices). Hence, if we are going to implement a general sequence with an 
array, we need a different approach. 

Consider an alternate solution, then, in which, instead of storing the elements 
of S in array A, we store a new kind of position object in each cell of A, and we 
store elements in positions. The new position object p holds the index i and the 
element e associated with p. 

With this data structure, illustrated in Figure 6.8, we can easily scan through the 
array to update the index variable i for each position whose index changes because 
of an insertion or deletion. 

o I JFK 1 I BWI 2 I PVD 3 I SFO 

s 

s 

o 1 2 3 N-l 

Figure 6.8: An array-based implementation of the sequence ADT. 

Efficiency Trade-Offs with an Array-Based Sequence 

In this array implementation of ~ sequence, the add First, add Before, addAfter, and 
remove methods take O(n) time, because we have to shift position objects to make 
room for the new position or to fill in the hole created by the removal of the old 
position Gust as in the insert and remove methods based on index). All the other 
position-based methods take O( 1) time. 



267 6.5. Case Study: The Move-to-Front Heuristic 

6.5 Case Study: The Move-to-Front Heuristic 

Suppose we would like to maintain a collection of elements while keeping track of 
the number of times each element is accessed. Keeping such access counts allows 
us to know which elements are among the "top ten" most popular, for instance. Ex
amples of such scenarios include a Web browser that keeps track of the most popu
lar Web addresses (or URLs) a user visits or a photo album program that maintains 
a list of the most popular images a user views. In addition, a favorites list could be 
used in a graphical user interface (GUI) to keep track of the most popular buttons 
used in a pull-down menu, and then present the user with condensed pull-downs 
containing the most popular options. 

Therefore, in this section, we consider how we can implement a favorite list 
ADT, which supports the sizeO and isEm ptyO methods as well as the following: 

access(e): 	Access the element e, incrementing its access count, and 
adding it to the favorites list if it is not already present. 

remove(e): 	Remove element e from the favorites list, provided it is 
already there. 

top(k): 	Return an iterable collection of the k most accessed ele
ments. 

6.5.1 Using a Sorted List and a Nested Class 

The first implementation of a favorite list that we consider (in Code Fragments 6.19 
and 6.20) is to build a class, FavoriteList, storing references to accessed objects 
in a linked list ordered by nonincreasing access counts. This class also uses a 
feature of Java that allows us to define a related class nested inside an enclosing 
class definition. Such a nested class must be declared static, to indicate that this 
definition is related to the enclosing class, not any specific instance of that class. 
Using nested classes allows us to define "helper" or "support" classes that can be 
protected from outside use. 

In this case, the nested class, Entry, stores, for each element e in our list, a pair· 
(c, v), where c is the access count for e and v is a value reference to the element e 
itself. Each time an element is accessed, we find it in the linked list (adding it if it is 
not already there) and increment its access count. Removing an element amounts 
to finding it and taking it out of our linked list. Returning the k most accessed 
elements simply involves our copying the entry values into an output list according 
to their order in the internal linked list. 



268 Chapter 6. List Abstractions 

/** List of favorite elements, with their access counts. *1 
public class FavoriteList<E> { 

protected PositionList<Entry<E> > fList; I I List of entries 
1** Constructor; 0(1) time *1 
public FavoriteListO { fList new NodePositionList<Entry<E> >0; } 
/** Returns the number of elements in the list; 0(1) time *1 
public int sizeO { return fList.sizeO; } 
/** Returns whether the list is empty; 0(1) time *1 
public boolean isEmptyO { return fList.isEmptyO; } 
/** Removes a given element, provided it is in the list; O(n) time *1 
public void remove(E obj) { 

Position<Entry<E» p find(obj); I I search for obj 
if (p! null) 

fList. remove(p); I I remove the entry 
} 

/** Increments the access count for the given element and inserts it 
* if it is not already present; O(n) time *1 

public void access(E obj) { 
Position<Entry<E» p = find(obj); II find the position of obj 
if (p != nUll) 

p.elementO·incrementCountO; I I increment access count 
else { 

fList.addLast(new Entry<E>(obj)); I I add the new entry at the end 
p fList.lastO; 

} 
moveUp(p); I I moves the entry to its final position 

} 
/** Finds the position of a given element, or returns null; O(n) time *1 
protected Position<Entry<E> > find(E obj) { 

for (Position<Entry<E» p: fList.positionsO) 
if (value(p) .equals(obj)) 

return p; I I fount at position p 
return null; I I not found 

} 
1** Moves up an entry to its correct position in the list; O( n) time *1 
protected void moveUp(Position<Entry<E> > cur) { 


Entry<E> e cur.elementO; 

int c count(cur); 

while (cur != fLisUirstO) { 


Position<Entry<E> > prev = fList.prev( cur); I I previous position 
if (c <= count(prev)) break; I I entry is at correct position 
fList.set( cur, prev.elementO); I I move down previous entry 
cur = prev; 

} 
fList.set(cur, e); I I store the entry in its final position 

} 
Code Fragment 6.19: Class FavoritesList. (Continues in Code Fragment 6.20.) 



269 6.5. Case Study: The Move-to-Front Heuristic 

/** Returns the k most accessed elements, for a given k; O(k) time * / 
public Iterable<E> top(int k) { 

if (k < 0 II k > sizeO) 
throw new IliegaIArgumentException("Invalid argument "); 

PositionList<E> T = new NodePositionList<E>(); / / top-k list 
int i = 0; / / counter of the entries added to the list 
for (Entry<E> e: fList) { 

if (i++ >= k) 
break; / / all the k entries have been added 

T.addLast(e.valueO); / / add one entry to the list 
} 
return T; 

}
/** String representation of the favorite list * / 
public String toStringO { return fListtoStringO; } 
/** Helper method that extracts the value of the entry at a given position * / 
protected E value(Position<Entry<E» p) { return ( p.elementO).valueO; }
/** Helper method that extracts the counter of the entry at a given position * / 
protected int count(Position<Entry<E» p) { return ( p.elementO).countO; } 
/** Inner class storing elements and their access counts. * / 
protected static class Entry<E> { . 

private E value; / / element 
private int count; / / access count 
/** Constructor * / 
Entry(E v) {count 1; value = v; } 

i 

/** Returns the element * / 
public E valueO { return value; } 
/** Returns the access count * / 
public int countO { return count; } 
/** Increments the access count * / 
public int incrementCountO { return ++count; } 
/** String representation of the entry as [count,value] * / 
public String toStringO { return II [II + count + ", II + value + IIJ II; } 

} 
} / / End of FavoriteList class 

Code Fragment 6.20: Class FavoriteList, including a nested class, Entry, for repre
senting elements and their access count. (Continued from Code Fragment 6.19.) 



270 Chapter 6. List Abstractions 

6.5.2 Using a List with the Move-to-Front Heuristic 

The previous implementation of a favorite list performs the access(e) method in 
time proportional to the index of e in the favorite list. That is, if e is the kth most 
popular element in the favorite list, then accessing it takes O(k) time. In many real
life access sequences, including those formed by the visits that users make to Web 
pages, it is common that, once an element is accessed, it is likely to be accessed 
again in the near future. Such scenarios are said to possess locality ofreference. 

A heuristic, or rule of thumb, that attempts to take advantage of the locality of 
reference that is present in an access sequence is the move-to-front heuristic. To 
apply this heuristic, each time we access an element we move it all the way to the 
front of the list. Our hope, of course, is that this element will then be accessed again 
in the near future. Consider, for example, a scenario in which we have n elements 
and the following series of n2 accesses: 

• element 1 is accessed n times 
• element 2 is accessed n times·... 
• element n is accessed n times. 

If we store the elements sorted by their access counts, inserting each element the 
first time it is accessed, then 

• each access to element 1 runs in 0(1) time 
• each access to element 2 runs in 0(2) time·... 
• each access to element nruns in O(n) time. 

Ii 

Thus, the total time for performing the series of accesses:is proportional to 

n(n+ 1)
n+2n 3n+···+n·n n(I+2+3+ .. · n)-n· '"' ) 

which is 0(n3). 

On the other hand, if we use the move-to-front heuristic, inserting each element 
the first time it is accessed, then 

• each access to element 1 takes 0(1) time 
• each access to element 2 takes 0 (1) time·... 
• each access to element n runs in O(1) time. 

So the running time for performing all the accesses in this case is 0(n2). Thus, the 
move-to-front implementation has faster access times for this scenario. This benefit 
comes at a cost, however. 



271 6.5. Case Study: The Move-to-Front Heuristic 

Implementing the Move-to-Front Heuristic in Java 

In Code Fragment 6.21, we give an implementation of a favorite list using the 
move-to-front heuristic. We implement the move-to-front approach in this case 
by defining a new class, FavoriteListMTF, which extends the FavoriteList class 
and then overrides the definitions of the moveU p and top methods. The moveU p 
method in this case simply removes the accessed element from its present position 
in the linked list and then inserts this element back in this list at the front. The top 
method, on the other hand, is more complicated. 

The Trade-Offs with the Move-to-Front Heuristic 

Now that we are no longer maintaining the favorite list as a list of entries ordered by 
their value's access counts, when we are asked to find the k most accessed elements, 
we need to search for them. In particular, we can implement method top{k) as 
follows: 

1. 	 We copy the entries of our favorite list into another list, C, and we create an 
empty list, T. 

2. 	 We scan list C k times. In each scan, we find an entry of C with the largest 
access count, remove this entry from C, and insert its value at the end of T. 

3. 	We return list T. 

This implementation of method top takes O(kn) time. Thus, when k is a constant, 
method top runs in O(n) time. This occurs, for example, when we want to get the 
"top ten" list. However, if k is proportional to n, then top runs in O(n2) time. This 
occurs, for example, when we want a "top 25%" list. 

Still, the move-to-front approach is just a heuristic, or rule of thumb, for there 
are access sequences where using the move-to-front approach is slower than simply 
keeping the favorite list ordered by access counts. In addition, it trades off the po
tential speed of performing accesses that possess locality of reference, for a slower 
reporting of the top elements. 

6.5.3 Possible Uses of a Favorites List 

In Code Fragment 6.22, we use an example application of our favorite list imple
mentations to solve the problem of maintaining the most popular URLs in a sim
ulated sequence of Web page accesses. This program accesses a set of URLs in 
decreasing order and then pops up a window showing the most popular Web page 
accessed in the simulation. 



272 Chapter 6. List Abstractions 

public class FavoriteListMTF <E> extends FavoriteList<E> { 
/** Default constructor * / 

public FavoriteListMTFO { } 

/** Moves up an entry to the first position; 0(1) time * / 

protected void moveUp(Position<Entry<E> > pos) { 


fList.add First(fList.remove(pos)); 

} 
/** Returns the k most accessed elements, for a given k; O(kn) time * / 

public Iterable<E> top(int k) { 


if (k < 0 II k > sizeO) 

throw new IllegaIArgumentException("Invalid argument "); 


PositionList<E> T = new NodePositionList<E>O; / / top-k list 

if (!isEmptyO) { 


/ / copy entries into temporary list C 

PositionList<Entry<E> > C = new NodePositionList<Entry<E> >0; 

for (Entry<E> e: fList) 


C.addLast(e); 

/ / find the top k elements, one at a time 

for (int i = 0; i < k; i++) { 


Position<Entry<E> > maxPos = null; / / position of top entry 
int maxCount = -1; / / access CO.unt of top entry 
for (Position<Entry<E» p: C.positionsO) { 

/ / examine all entries of C 

int c = count(p); 

if (c > maxCount) { / / found -an entry with higher access count i 

maxCount = c; 
maxPos = p; 

} 
} 
T.addLast(value( maxPos)); / / add top entry to list T 
C. remove( maxPos); / / remove top entry from list C 

} 

} 

return T; 

} 
} 

Code Fragment 6.21: Class FavoriteListlVlTF implementing the move-to-front 
heuristic. This class extends FavoriteList (Code Fragments 6.19 and 6.20) and 
overrides methods moveUp and lop. ' 



273 

'~ 

6.5. Case Study: The Move-to-Front Heuristic 

import java.io.*; 

import javax.swing.*; 

import java.awt.*; 

import java.net.*; 

import java.util.Random; 

/** Example program for the FavoriteList and FavoriteListMTF classes * / 

public class FavoriteTester { 


public static void main(String[] args) { 
String[] uriArray = { ..http://wiley.comll , ''http://datastructures . net", 

''http://algorithmdesign.net'' , ''http://www . brown. edu", 
''http://ucLedu" }; 

FavoriteList<String> Ll = new FavoriteList<String>O; 

FavoriteListMTF<String> L2 new FavoriteListMTF<String>O; 

int n = 20; / / number of access operations 

/ / Simulation scenario: access n times a random URL 

Random rand = new Random(); 

for (int k 0; k < n; k++) { 


System.out. println( " ___________________________________________ 11); 

int i rand.nextlnt(uriArray.length); / / random index 
String uri = uriArray[i]; / / random URL 
System.out.println("Accessing: + uri);II 

Ll.access( uri); 
System.out.println("L1 = It + Ll); 
L2.access(uri); 
System.out.println("L2 = " + L2); 

} 
int t Ll.sizeO/2;
System .out.printl n(" ___________________________________________ 11); 

System.out.println("Top + t + II in L1 = II + Ll.top(t)); •It 

System.out.println("Top + t + ". in L2 = " + L2.top(t)); II 

/ / Pop up a browser window displaying the most popular URL in Ll 
try { 

String popular = Ll.top(l).iteratorO.next(); / / most popular URL in Ll 
JEditorPane jep = new JEditorPane(popular); 
jep.setEditable( false); 
JFrame frame = new JFrame(popular); 
frame.getContentPaneO.add( new JScroIIPane(jep), BorderLayout.CENTER); 
frame.setSize(640, 480); 
fra me.setVisible(true); 

} catch (IOException e) { / / ignore I/O exceptions 
} 

} 
} 

Code Fragment 6.22: Illustrating the use of the FavoritesList and FavoriteListMTF 
classes for counting Web page access counts. This simulation randomly accesses 
several Web pages and then displays the most popular page. 

http://ucLedu
http://www
http:http://algorithmdesign.net
http://datastructures
http://wiley.comll
http:java.net


274 Chapter 6. List Abstractions 

6.6 Exercises 

For help with exercises, please visit the web site, www.wiley.com/go/global/goodrich. 

Reinforcernent 

R-6.1 	 Draw a representation of an initially empty array list A after perform
ing the following sequence of operations: add(O,4), add(O,3), add(O,2), 
add(2, 1), add(l, 5), add(l, 6), add(3, 7), add(O, 8). 

R-6.2 Give a justification of the running times shown in Table 6.2 for the meth
ods of an array list implemented with a (nonexpanding) array. 

R-6.3 Give an adapter class to support the Stack interface using the methods of 
the array list ADT. 

R-6.4 	Redo the justification of Proposition 6.2 assuming that the the cost of 
growing the array from size k to size 2k is 3k cyber-rupees. How much 
should each push operation be charged to make the amortization work? 

R-6.5 	 Give pseudo-code descriptions of algorithms for performing the methods 
addBefore(p,e), addFirst(e), and addLast(e) of the node list ADT, as
suming the list is implemented using a doubly linked list. 

R-6.6 Draw pictures illustrating each of the major steps in the algorithms given 
in the previous exercise. 

R-6.7 Provide the details of an array implementation of the node list ADT, in
cluding how to perform the methods add Before and addAfter. 

R-6.8 Provide Java code fragments for the methods of the Position List interface 
of Code Fragment 6.5 that are not included in Code Fragments 6.9-6.11. 

R-6.9 Describe a nonrecursive method for reversing a node list represented with 
a doubly linked list using a single pass through the list. 

R-6.10 	Given the set of element {a,b, c, d, e,f} stored in a list, show the final state 
of the list, assuming we use the move-to-front heuristic and access the ele
ments according to the following sequence: (a,b,c,d,e,j,a,c,j,b,d,e). 

R-6.11 	 Suppose that we have made kn total accesses to the elements in a list L of 
n elements, for some integer k ::::: 1. What are the minimum and maximum 
number of elements that have been accessed fewer than k times? 

R-6.12 	Give pseudo-code describing how to implement all the operations in the 
array list ADT using an array whose elements are stored in a contiguous 
fashion. What is the running time of each method? 

R-6.13 	 Using the Sequence interface methods, describe a recursive method for 
determining if a sequence S of n integers contains a given integer k. Your 
method should not contain any loops. How much space does your method 
use in addition to the space used for S? 

http:6.9-6.11
www.wiley.com/go/global/goodrich


275 6.6. Exercises 

R-6.l4 	Briefly describe how to perform a new sequence method makeFirst(p) 
that moves an element of a sequence S at position p to be the first element 
in S while keeping the relative ordering of the remaining elements in S 
unchanged. That is, makeFirst(p) performs a move-to-front. Your method 
should run in O( 1) time if S is implemented with a doubly linked list. 

R-6.15 	 Describe how to use an array list and an int field to implement an iterator. 
Include pseudo-code fragments describing hasNextO and nextC). 

R-6.16 	Describe how to create an iterator for a node list that returns every other 
element in the list. 

R-6.17 	Suppose we are maintaining a collection C of elements such that, each 
time we add a new element to the collection, we copy the contents of C 
into a new array list of just the right size. What is the running time of 
adding n elements to an initially empty collection C in this case? 

R-6.18 	Describe an implementation of the methods addLastand add Before real
ized by using only methods in the set {isEmpty, checkPosition, first, last, 
prev, next, addAfter, addFirst}. 

R-6.19 Let L be maintained to be a list of n items ordered by decreasing access 
count. Describe a series of O(n2) accesses that will reverse L. 

R-6.20 LetL be a list of n items maintained according to the move-to-front heuris
tic. Describe a series of O(n) accesses that will reverse L. 

R-6.21 Give a short Java code fragment for sorting a list by converting it to an 
array and using the java.utiI.Arrays.sort method. 

i 

Creativity 

C-6.1 	 Give pseudo-code for the methods of a class, ShrinkingArrayList, that 
extends the class ArraylndexList shown in Code Fragment 6.3 and adds 
a method, shrinkToFitO, which replaces the underlying array with one 
whose capacity is equal to the number of elements currently in the list. 

C-6.2 	Describe the changes needed to the extendable array implementation given 
in Code Fragment 6.3 in order to have it shrink by half the size, N, of the 
array any time the number of elements in the array list goes below N/ 4. 

C-6.3 	Show that, using an extendable array that grows and shrinks as in the 
previous exercise, the following series of 2n operations takes O(n) time: 
(i) npush operations on an array list with initial capacity N = 1; (ii) n pop 
.(rernoval of the last element) operations. 

C-6.4 	Show how to improve the implementation of method add in Code Frag
ment 6.3 so that, in case of an overflow, elements are copied into their 
final place in the new array, that is, no shifting should be done. 



276 Chapter 6. List Abstractions 

C-6.5 	Consider an implementation of the array list ADT using an extendable 
array, but instead of copying the elements into an array of double the size 
(that is, from N to 2N) when its capacity is reached, we copy the elements 
into an array with rN/41 additional cells, going from capacity N to N 
rN/41. Show that performing a sequence of n push operations (that is, 
insertions at the end) still runs in O(n) time in this case. 

C-6.6 	The NodePositionList implementation given in Code Fragments 6.9-6.11 
does not do any error checks to test if a given position p is actually a 
member of this particular list. For example, if p is a position in list Sand 
we call T.addAfter(p, e) on a different list T, then we actually will add the 
element to S just after p. Describe how to change the NodePositionList 
implementation in an efficient manner to disallow such misuses. 

C-6.7 	Suppose we want to extend the Sequence abstract data type with methods 
indexOfElement(e) and positionOfElement(e), which respectively return 
the index and the position of the (first occurrence of) element e in the 
sequence. Show how to implement these methods by expressing them in 
terms of other methods of the Seq uence interface. 

C-6.8 	Give an adaptation of the array list ADT to the deque ADT that is different 
from that given in Table 6.1. 

C-6.9 	Give a pseudo-code description for an array-based implementation of the 
array list ADT that achieves O( 1) time for insertions and removals at index 
0, as well as insertions and removals at the end of the array list. Your 
implementation should also provide for a constant-time get method. 

C-6.10 	Describe an efficient way of putting an array list representing a geck of 
n cards into random order. You may use a function, random Integer(n), 
which returns a random number between 0 and n' 1, inclusive. Your 
method should guarantee that every possible ordering is equally likely. 
What is the running time of your method? 

C-6.11 	 Describe an efficient method for maintaining a favorites list L such that 
every element in L has been accessed at least once in the last n accesses, 
where n is the size of L. 

C-6.12 	Suppose we have an n-element list L maintained according to the move
to-front heuristic. Describe a sequence of n2 accesses that is guaranteed 
to take Q(n3) time to perform on L. 

C-6.13 	Design a circular node list ADT that abstracts a circularly linked list in the 
same way that the node list ADT abstracts a doubly linked list. 

C-6.14 	Describe how to implement an iterator for a circularly linked list. Since 
hasNextO will always return true in this case, describe how to perform 
hasNewNextO, which returns true if and only if the next node in the list 
has not previously had its element returned by this iterator. 

http:6.9-6.11


277 6.6. Exercises 

C-6.15 	Describe a scheme for creating list iterators that fail fast, that is, they all 
become invalid as soon as the underlying list changes. 

C-6.16 	An array is sparse if most of its entries are null. A list L can be used to 
implement such an array, A, efficiently. In particular, for each nonnull cell 
A [i], we can store an entry (i, e) in L, where e is the element stored at A [i]. 
This approach allows us to represent A using O(m) storage, where m is 
the number of nonnull entries in A. Describe and analyze efficient ways of 
performing the methods of the array list ADT on such a representation. 

C-6.17 	There is a simple, but inefficient, algorithm, called bubble-sort, for sort
ing a sequence S of n comparable elements. This algorithm scans the 
sequence n 1 times, where, in each scan, the algorithm-compares the 
current element with the next one and swaps them if they are out of or
der. Give a pseudo-code description of bubble-sort that is as efficient as 
possible assuming S is implemented with a doubly linked list. What is the 
running time of this algorithm? 

C-6.1S 	Answer Exercise C-6.17 assuming S is implemented with an array list. 

C-6.19 	A useful operation in databases is the naturaljoin. If we view a database 
as a list of ordered pairs of objects, then the natural join of databases A 
and B is the list of all ordered triples (x,y,z) such that the pair (x,y) is in 
A and the pair (y,z) is in B. Describe and analyze an efficient algorithm 
for computing the natural join of a list A of n pairs and a list B of m pairs. 

C-6.20 When Bob wants to send Alice a message M on the Internet, he breaks M 
into n data packets, numbers the packets consecutivelYi and injects them 
into the network. When the packets arrive at Alice's computer, they may 
be out of order, so Alice must assemble the sequence of n packets in order 
before she can be sure she has the entire message. Describe an efficient 
scheme for Alice to do this. What is the running time of this algorithm? 

C-6.21 	Given a list L of n positive integers, each represented with k Ilog nl +1 
bits, describe an O(n)-time method for finding a k-bit integer not in L. 

C-6.22 	Argue why any solution to the previous problem must run in Q(n) time. 

C-6.23 	Given a list L of n arbitrary integers, design an O(n)-time method for 
finding an integer that cannot be formed as the sum of two integers in L. 

C-6.24 	Isabel has an interesting way of summing up the values in an array A of 
n integers, where n is a power of two. She creates an array B of half the 
size of A and sets B[i] A[2i] +A[2i +1], for i = 0, 1, ... , (nI2) -1. IfB 
has size 1, then she outputs B[O]. Otherwise, she replaces A with B, and 
repeats the process. What is the running time of her algorithm? 



278 Chapter 6. List Abstractions 

Projects 

P-6.1 	 Implement the array list ADT by means of an extendable array used in a 
circular fashion, so that insertions and deletions at the beginning and end 
of the array list run in constant time. 

P-6.2 	Implement the array list ADT using a doubly linked list. Showexperimen
tally that this implementation is worse than the array-based approach. 

P-6.3 	Write a simple text editor, which stores and displays a string of characters 
using the list ADT, together with a cursor object that highlights a position 
in this string. Your editor should support the following operations: 

• left: 	Move cursor left one character (do nothing if at text end). 
• right: Move cursor right one character (do nothing if at text end). 
• cut: 	Delete the character right of the cursor (do nothing at text end). 
• paste c: Insert the character c just after the cursor. 

P-6.4 Implement a phased favorites list. A phase consists of N accesses in the 
list, for a given parameter N. During a phase, the list should maintain 
itself so that elements are ordered by decreasing access counts during that 
phase. At the end of a phase, it should clear all the access counts and start 
the next phase. Test this implementation's efficiency. 

P-6.5 Write a complete adapter class that implements the sequence ADT using 
a java.util.ArrayList object. 


P-6.6 Implement the favorites list application using an array list. 


Chapter Notes 	 i 

The concept of viewing data structures as collections (and other principles ofobject-oriented 
design) can be found in object-oriented design books by Booch [15], Budd [18], Golberg 
and Robson [38], and Liskov and Guttag [69]. Lists and iterators are pervasive concepts 
in the Java Collections Framework. Our node list ADT is derived from the "position" ab
straction introduced by Aho, Hopcroft, and Ullman [5], and the list ADT of Wood [100]. 
Implementations of lists via arrays and linked lists are discussed by Knuth [62]. 



•••• 

••••• ••• 

Chapter 

7 Tree Structures 

••••••••·ooo~.·
.:g6>i)'6:: 

00.\.~81fp~·· 0 
0 0 •• ~ •••• ••0 

....~.~o~.~ •• ~~o ~~oo 
•••••••• 00 0.0·••'tb90 •• 0 o ••••• 
•• 0'~~c08.. o.:·M·.·· 
••0. • 0 ooo•••rfJJoo/• a .:S8jb'\i:· 

00•• 0..........0 ..oocP •• 

....~.~o~••o•• ~.~o ,~oo •••~'f'~..: 
........ 00 a .00'. • ... 
••wgoo•• o 0 • ••••••
••0'0.<68.. 0 •••~. •••~q:;oo •• • ·80oa~·••0010•• 000 •• •• Q.O'6. 

........ ..0 0 .'
••• ••• 000 .: 

Contents 

7.1 General Trees ....... . · . . . . .. 280 


7.1.1 Tree Definitions and Properties. 281 


7.1.2 The Tree 'Abstract Data Type .. J . 284 


7.1.3 Implementing a Tree ...... . 285 

7.2 Tree Traversal Algorithms ...... . · . . . . .. 287 


7.2.1 Depth and Height . 287 

7.2.2 Preorder Traversal. 290 


7.2.3 Postorder Traversal 293 


7.3 Binary Trees . . . . . . . . . . . . . . . · . . . . .. 296 


7.3.1 The Binary Tree ADT ..... . 298 

7.3.2 A Binary Tree Interface in Java. 298 

7.3.3 Properties of Binary Trees ... 299 


7.3.4 A Linked Structure for Binary Trees 301 


7.3.5 An Array-List Representation of a Binary Tree .... 310 


7.3.6 Traversals of Binary Trees ............... 312 


7.3.7 The Template Method Pattern ............ 319 


7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . .. 323 




280 Chapter 7. Tree Structures 

7.1 General Trees 


Productivity experts say that breakthroughs come by thinking "nonlinearly." In 
this chapter, we discuss one of the most important nonlinear data structures in 
computing-trees. Tree structures are indeed a breakthrough in data organization, 
for they allow us to implement a host of algorithms much faster than when using 
linear data structures, such as list. Trees also provide a natural organization for data, 
and consequently have become ubiquitous structures in file systems, graphical user 
interfaces, databases, Web sites, and other computer systems. 

It is not always clear what productivity experts mean by "nonlinear" thinking, 
but when we say that trees are "nonlinear," we are referring· to an organizational 
relationship that is richer than the simple "before" and "after" relationships be
tween objects in sequences. The relationships in a tree are hierarchical, with some 
objects being "above" and some "below" others. Actually, the main terminology 
for tree data structures comes from family trees, with the terms "parent," "child," 
"ancestor," and "descendent" being the most common words used to describe rela
tionships. We show an example of a family tree in Figure 7.1. 

>
0" 

g. 
to 

E! 

t;;' N t;;'CIlI-< 

::r ,... 0' ~ ~ 

A 
'" ::><;' (b 0. ga!lJ ~ 00 0.. jooooI..::r po poE! !lJ ~& 

~' ~'~ 
() ~Z~':i!I:~t1~~>-~z CIl t1 ~~!I:>-8o tr.I 8...§ a S~ ~ § tj;. a g: 8.. g. 5" 8.. ::;.::;.§ go.0" '" 
""' !lJ (1)O"'''!lJ!lJ'''~O"'''otopoE! tj;. 0. po ::r 8 po g. lot o· g- § &~ g g.~

&::r poE! go 0" 

!r ~c! 

~~'-<'-<~tr.Ig s. (1) C ~ Z 0 >- t;;' N <.;., o~(D(t):=:0" (1j ;S. g. ::I'§ ~ f9. '" (1) Sf. 0 b:i .... po!;l <'0g g 0" g: ~ ~ [ ~~ 2 . &El::r~~ ,... e; § ::r §. N 
::l 

Figure 7.1: A family tree showing some descendents of Abraham, as recorded in 
Genesis, chapters 25-36. 



281 7.1. General Trees 

7.1.1 Tree Definitions and Properties 

A tree is an abstract data type that stores elements hierarchically. With the excep
tion of the top element, each element in a tree has a parent element and zero or 
more children elements. A tree is usually visualized by placing elements inside 
ovals or rectangles, and by drawing the connections between parents and children 
with straight lines. (See Figure 7.2.) We typically call the top element the root 
of the tree, but it is drawn as the highest element, with the other elements being 
connected below Gust the opposite of a botanical tree). 

Figure 7.2: A tree with 17 nodes representing the organization ef a fictitious cor
poration. The root stores Electronics R'Us. '.The children of the root store R&D, 
Sales, Purchasing, and Manufacturing. The internal nodes store Sales, Interna
tional, Overseas, Electronics R'Us, and Manufacturing. 

Formal Tree Definition 

Formally, we define a tree T as a set of nodes storing elements such that the nodes 
have aparent-child relationship, that satisfies the following properties: 

• IfT is nonempty, it has a special node, called the root of T, that has no parent. 
• Each node v of T different from the root has a unique parent node w; every 

l1ode.With parent wis a child of w. 
Note that according to our definition, a tree can be empty, meaning that it doesn't 
have any nodes. This convention also allows us to define a tree recursively, such 
that a tree T is either empty or consists of a node r, called the root of T, and a 
(possibly empty) set of trees whose roots are the children of r. 



282 Chapter 7. Tree Structures 

Other Node Relationships 

Two nodes that are children of the same parent are siblings. A node v is external 
if v has no children. A node v is internal if it has one or more children. External 
nodes are also known as leaves. 

Example 7.1: In most operating systems, files are organized hierarchically into 
nested directories (also called folders), which are presented to the user in the form 
of a tree. (See Figure 7.3.) More specifically, the internal nodes of the tree are 
associated with directories and the external nodes are associated with regular files. 
In the UNIX and Linux operating systems, the root of the tree is appropriately 
called the "root directory," and is represented by the symbol "/." 

/user/rtlcourses/ 

cs252/ 

Igradesl horneworks/ programs/ Igradesl 

uuuLJLJLJ" .' demos/ 

I buylow II sellhigh II market I 

Figure 7.3: Tree representing a portion of a file system. 

A node u is an ancestor of a node v if u = v or u is an ancestor of the parent 
of v. Conversely, we say that a node v is a descendent of a node u if u is an ancestor 
of v. For example, in Figure 7.3, cs252/ is an ancestor of papers/, and pr3 is a 
descendent of cs016/. The subtree of T rooted at a node v is the tree consisting of 
all the descendents of v in T (including v itselt). In Figure 7.3, the subtree rooted at 
cs016/ consists of the nodes cs016/, grades, homeworks/, programs/, hwl, hw2, 
hw3, prl, pr2, and pr3. 



283 7.1. General Trees 

Edges and Paths in Trees 

An edge of tree T is a pair of nodes (u, v) such that u is the parent of v, or vice 
versa. Apath of T is a sequence of nodes such that any two consecutive nodes in 
the sequence form an edge. For example, the tree in Figure 7.3 contains the path 
(cs252/, projects/, demos/, market). 

Example 7.2: The inheritance relation between classes in a Java program forms 
a tree. The root,)ava.lang.Object, is an ancestor ofall other classes. Bach class, C, 
is a descendent of this root and is the root ofasubtree of the classes that extend C. 
Thus, there is a path from C to the root, java.lang.Object, in this inheritance tree. 

Ordered Trees 

A tree is ordered if there is a linear ordering defined for the children of each node; 
that is, we can i¢(entify the children of a node as being the first, second, third, and 
so on. Such an ordering is usually visualized by arranging siblings left to right, 
according to their ordering. Ordered trees typically indicate the linear order among 
siblings by listing them in the correct order. 

Example 7.3: The components of a structured document, such as a book, are hi
erarchically organized as a tree whose internal nodes are parts, chapters, and sec
tions, and whose external nodes are paragraphs, tables, figures, and so on. (See 
Figure 7.4.) The root of the tree corresponds to the book itself. We could, in fact, 
consider expanding the tree further to show paragraphs consisting of sentences, 
sentences consisting of words, and words consisting of characters. Such a tree is 
an example of an ordered tree, "because there is a well-defined ordering among the 
children ofeach node. 

Figure 7.4: Anordered tree associated with a book. 



284 Chapter 7. Tree Structures 


7.1.2 The Tree Abstract Data Type 

The tree ADT stores elements at positions, which, as with positions in a list, are 
defined relative to neighboring positions. The positions in a tree are its nodes, and 
neighboring positions satisfy the parent-child relationships that define a valid tree. 
Therefore, we use the terms "position" and "node" interchangeably for trees. As 
with a list position, a position object for a tree supports the method: 

elementO: Return the object stored at this position. 

The real power of node positions in a tree, however, comes from the accessor 
methods of the tree ADT that return and accept positions, such as the following: 

root() : Return the tree's root; an error occurs if the tree is empty. 

parent(v): Return the parent of v; an error occurs if v is the root. 

children(v): Return an iterable collection containing the children of 
node v. 

If a tree T is ordered, then the iterable collection, children(v), stores the children of 
v in order. Ifv is an external node, then children(v) is empty. 

In addition to the above fundamental accessor methods, we also include the 
following query methods: 

islnternal(v): Test whether node v is internal. 

isExternal(v): Test whether node v is externaL 

isRoot(v): Test whether node v is the root. 

These methods make programming with trees easier and more readable, since we 
can use them in the conditionals of if statements and while loops, rather than using 
a nonintuitive conditional. 

There are also a number ofgeneric methods a tree should probably support that 
are not necessarily related to its tree structure, including the following: 

sizeO: Return the number of nodes in the tree. 

isEmptyO: Test whether the tree has any nodes or not. 

iteratorO: Return an iterator of all the elements stored at nodes of 
the tree. 

positionsO: Return an iterable collection of all the nodes of the tree. 

replace(v, e): Replace with e and return the element stored at node v. 

Any method that takes a position as an argument should generate an error condition 
if thatposition is invalid. We do not define any specialized update methods for trees 
here. Instead, we prefer to describe different tree update methods in conjunction 
with specific applications of trees in subsequent chapters. In fact, we can imagine 
several kinds of tree update operations beyond those given in this book. 



285 7.1. General frees 

7.1.3 Implementing a Tree 

The Java interface shown in Code Fragment 7.1 represents the tree ADT. Error 
conditions are handled as follows: Each method that can take a position as an 
argument, may throw an InvalidPositionException, to indicate that the position is 
invalid. Method parent throws a BoundaryViolationException if it is called on the 
root. Method root throws an EmptyTreeException if it is called on an empty tree. 

/**
* An interface for a tree where nodes can have an arbitrary number of children. 

*/ 
public interface Tree<E> { 


/** Returns the number of nodes in the tree. * / 

public int sizeO; 

/** Returns whether the tree is empty. * / 

public boolean isEmptyO; 

/** Returns an iterator of the elements stored in the tree. * / 

public Iterator<E> iteratorO; 

/** Returns an iterable collection of the the nodes. * / 

public Iterable<Position<E> > positionsO;

/** Replaces the element stored at a given node. * / 

public E replace(Position<E> v, E e) 


throws Inva Iid Position Exception; 

/** Returns the root of the tree: * / 

public Position<E> rootO throws EmptyTreeException; 

/** Returns the parent of a given node. * / 

public Position<E> parent(Position<E> v) 


throws InvalidPositionException, BoundaryViolationE~ception; I 


/** Returns an iterable collection of the children of a given node. * / 

public Iterable<Position<E> > children(Position<E> v) 


throws Invalid Position Exception; 

/** Returns whether a given node is internal. * / 

public boolean islnternal(Position<E> v) 


throws InvalidPositionException; 

/** Returns whether a given node is external. * / 

public boolean isExternal(Position<E> v) 


throws Invalid Position Exception; 

/** Returns whether a given node is the root of the tree. * / 

public boolean isRoot(Position<E> v) 


throws Inva Iid Position Exception; 

} 


Code Fragment 7.1: Java interface Tree representing the tree ADT. Additional up
date methods may be added, depending on the application. We do not include such 
methods in the interface, however. 



286 Chapter 7. lree Structures 

A Linked Structure for General Trees 

A natural way to realize a tree T is to use. a linked stractare, where we represent 
each node v of T by a position object (see Figure 7.5a) with the following fields: 
A reference to the element stored at v, a link to the parent of v, and a some kind 
of collection (for example, a list or array) to store links to the children of v. If v 
is the root of T, then the parent field of v is null. Also, we store a reference to 
the root of T and the number of nodes of T in internal variables. This structure is 
schematically illustrated in Figure 7.5b. 

parent 

element 

chiidrenColiection 
(a) (b)

Figure 7.5: The linked structure for a general tree: (a) the position object associated 
with a node; (b) the portion of the data structure associated with a node and its 
children. 

Table 7.1 summarizes the performance of the implementation of a general tree 
using a linked structure. The analysis is left as an exercise (C-7.25), but we note 
that, by using a collection to store the children of each node v, we can implement 
children(v) simply by returning a reference to this collection. 

Operation Time I 

size, isEmpty 0(1) 
iterator, positions O(n) 

replace 0(1) 
root, parent 0(1) 
children(v) O(cv) 

l islnternal, isExternal, isRoot 0(1) 

Table 7.1: Running times of the methods of an n-node general tree implemented 
with a linked structure. We let Cv denote the number of children of a node v. The 
space usage is O(n). 



287 7.2. Tree Traversal Algorithms 

7.2 Tree Traversal Algorithms 

In this section, we present algorithms for performing traversal computations on a 
tree by accessing it through the tree ADT methods. 

7.2.1 Depth and Height 

Let v be a node of a tree T. The depth of v is the number of ancestors of v, excluding 
v itself. For example, in the tree of Figure 7.2, the node storing International has 
depth 2. Note that this definition implies that the depth of the root of T is O. 

The depth of a node v can also be recursively defined as follows: 

• If v is the root, then the depth of v is 0 
• Otherwise, the depth of v is one plus the depth of the parent of v. 

Based on this definition, we present a simple, recursive algorithm, depth, in Code 
Fragment 7.2, for computing the depth of a node v in T. This method calls itself 
recursively on the parent of v, and adds 1 to the value returned. A simple Java 
implementation of this algorithm is shown in Code Fragment 7.3. 

Algorithm depth(T, v): 
if v is the root of T then 

return 0 
else 

return 1+depth(T, w), where w is the parent of v in T 

Code Fragment 7.2: Algorithm for computing the depth of a node v in a tree T. 

public static <E> int depth (Tree<E> T, Position<E> v) { 

if (T. isRoot(v ) ) 


return 0; 

else 


return 1 + depth(T, T.parent(v)); 

} 

Code Fragment 7.3: Method depth written in Java. 

The running time of algorithm depth (T, v) is O(dv), where dv denotes the depth 
of the node v in the tree T, because the algorithm performs aconstant-time recursive 
stepfor each ancestor of v. Thus, algorithm depth(T, v) runs inO(n) worst-case 
time; where n is the total number of nodes of T, since a node of T may have 
depth n 1in the worst case. Although such arunning time is afunction of the input 
size, it is more accurate to characterize the running time in terms of the parameter 
dv, since this parameter can be much smaller than n. 



288 Chapter 7. Tree Structures 

Height 

The height of a node v in a tree T is also defined recursively: 

• If v is an external node, then the height of v is 0 

• Otherwise, the height of v is one plus the maximum height of a child of v. 

The height of a nonempty tree T is the height of the root of T. For example, the 
tree of Figure 7.2 has height 4. In addition, height can also be viewed as follows. 

Proposition 7.4: The height of a nonempty tree T is equal to the maximum depth 
ofan external node ofT. 

We leave the justification of this fact to an exercise (R-7.6). We present an al
gorithm, heightl, shown in Code Fragment 7.4 and implemented in Java in Code 
Fragment 7.5, for computing the height of a nonempty tree T based on the propo
sition above and the algorithm depth from Code Fragment 7.2. 

Algorithm heightl(T): 

h~O 

for each vertex v in T do 

if v is an external node in T then 


h ~ max(h,depth(T, v)) 

return h 

Code Fragment 7.4: Algorithm heightl for computing the height of a nonempty 
tree T. Note that this algorithm calls algorithm depth (Code Fragment 7.2). 

public static <E> int heightl (Tree<E> T) { 
int h 0; 
for (Position<E> v : T.positionsO) { 

if (T.isExternal(v)) 
h = Math.max(h, depth(T, v)); 

} 
return h; 


} 


Code Fragment 7.5: Method heightl written in Java. Note the use of the max 
method of class java.lang.Math. 

Unfortunately, algorithm heightl is not very efficient. Since heightl calls algo
rithm depth(v) on each external node·v of T, the running time of heightl is given 
by O(n+ Lv (1 dv)), where n is the number of nodes ofT, dvis the depth of node 
v, and E is the set of external nodes of T. In the worst case, the sum Lv(1 dv) 

2is proportional to n • (See Exercise C-7.6.) Thus, algorithm heightl runs in O(n2) 

time. 



289 

~': 

7.2. Tree Traversal Algorithms 

Algorithm height2, shown in Code Fragment 7.6 and implemented in Java in 
Code Fragment 7.7, computes the height of tree T in a more efficient manner by 
using the recursive definition of height. 

Algorithm height2(T, v): 
if v is an external node in T then 

return 0 
else 

h+-O 
for each child wof v in T do 

h +- max(h, height2(T, w)) 
return 1 +h 

Code Fragment 7.6: Algorithm height2 for computing the height of the subtree of 
tree T rooted at a node v. 

public static <E> int height2(Tree<E> T, Position<E> v) { 
if (T.isExternal(v)) return 0; 
int h 0; 
for (Position<E> w : T.children(v)) 

h = Math.max(h, height2(T, w)); 
return 1 + h; 

} 

Code Fragment 7.7: Method height2 written in Java. 

Algorithm height2 is more efficient than heightl (from Code Fragment 7.4). 
The algorithm is recursive, and, if it is initially called on the 

; 
root of T, it will 

eventually be called on each node of T. Thus, we can determine the running time 
of this method by summing, over all the nodes, the amount of time spent at each 
node (on the nonrecursive part). Processing each node in children(v) takes O(cv) 

time, where Cv denotes the number of children of node v. Also, the while loop 
has Cv iterations and each iteration of the loop takes O( 1) time plus the time for 
the recursive call on a child of v. Thus, algorithm height2 spends O(1+cv) time 
at each node v, and its running time is O(Lv(1 cv)). In order to complete the 
analysis, we make use of the following property. 

Proposition 7.5: Let T be a tree with n nodes, and let Cv denote the number of 
children ofanode v ofT. Then, summing over the vertices in T, Lv Cv =n 1. 

Justification: Each nddeof T, with the exception ofthe root, is a child of another 
node, and thus contributes one unit to the above sum. _ 

By Proposition 7.5, the running time of algorithm height2, when called on the 
root of T, is O(n), where n is the number of nodes of T. 



290 Chapter 7. Tree Structures 

7.2.2 Preorder Traversal 

A traversal of a tree T is a systematic way of accessing, or "visiting," all the nodes 
of T. In this section, we present a basic traversal scheme for trees, called preorder 
traversaL In the next section, we will study another basic traversal scheme, called 
postorder traversal. 

In a preorder traversal of a tree T, the root of T is visited first and then the 
subtrees rooted at its children are traversed recursively. If the tree is ordered, then 
the subtrees are traversed according to the order of the children. The specific action 
associated with the "visit" of a node v depends on the application of this traversal, 
and could involve anything from incrementing a counter to performing some com
plex computation for v. The pseudo-code for the preorder traversal of the subtree 
rooted at a node v is shown in Code Fragment 7.8. We initially call this algorithm 
with preorder(T, T. rootO). 

Algorithm preorder(T, v): 

perform the "visit" action for node v 

for each child w of v in T do 


preorder(T, w) {recursively traverse the subtree rooted at w} 


Code Fragment 7.8: Algorithm preorder for performing the preorder traversal of the 
subtree of a tree T rooted at a node v. 

The preorder traversal algorithm is useful for producing a linear ordering of 
the nodes of a tree where parents must 'always come before their children in the 
ordering. Such orderings have several different applications. ,We explore a simple 
instance of such an application in the next example. 

Figure 7.6: Preorder traversal of an ordered tree, where the children of each node 
are ordered from left to right. 



291 7.2. Tree Traversal Algorithms 

Example 7.6: The preorder traversal ofthe tree associated with a document, as in 
Example 7.3, examines an entire document sequentially, from beginning to end. If 
the external nodes are removed before the traversal, then the traversal examines the 
table ofcontents of the document. (See Figure 7.6.) 

The preorder traversal is also an efficient way to access all the nodes of a tree. 
To justify this, let us consider the running time of the preorder traversal of a tree 
T with n nodes under the assumption that visiting a node takes O( 1) time. The 
analysis of the preorder traversal algorithm is actually similar to that of algorithm 
height2 (Code Fragment 7.7), given in Section 7.2.1. At each node v, the nonre
cursive part of the preorder traversal algorithm requires time O( 1+cv), where Cv is 
the number of children of v. Thus, by Proposition 7.5, the overall running time of 
the preorder traversal of T is O(n). 

Algorithm toStringPreorder(T, v), implemented in Java in Code Fragment 7.9, 
performs a preorder printing of the subtree of a node v of T, that is, it performs the 
preorder traversal of the subtree rooted at v and prints the element stored at a node 
when the node is visited. Recall that, for an ordered tree T, method T.children(v) 
returns an iterable collection that accesses the children of v in order. 

public static <E> String toStringPreorder(Tree<E> T. Position<E> v) { 
String s v.elementO.toStringO; / / the main "visit" action 
for (Position<E> w : T.children(v)) 

s += n, n + toStringPreorder(T. w); 
return s; 

} 

Code Fragment 7.9: Method toStringPreorder(T, v) that.performs a preorder print-
i 

ing of the elements in the subtree of node v of T. 

There is an interesting application of the preorder traversal algorithm that pro
duces a string representation of an entire tree. Let us assume again that for each 
element e stored in tree T, calling e.toStringO returns a string associated with e. 
The parenthetic string representation P(T) of tree T is recursively defined as fol
lows. If T consists of a single node v, then 

P(T) v.elementO.toString(). 

Otherwise, 

P(T)=v.element(),toString()+"(n P(Tl)+"," ... ","+p(n) II)", 

where v is the root of T and Tl, T2, ... ,n are the subtrees rooted at the children of v, . 
which are given in order if T is an ordered tree. 



I 

292 Chapter 7. Tree Structures 

Note that the above definition of P(T) is recursive. Also, we are using "+" 
here to denote string concatenation. The parenthetic representation of the tree of 
Figure 7.2 is shown in Figure 7.7. 

Electronics R'Us (R&D I 

Sales ( Domestic 
International ( Canada S. America 

Overseas ( Africa Europe Asia Australia) ) ) 
Purchasing 
Manufacturing ( TV CD Tuner) ) 

Figure 7.7: Parenthetic representation of the tree of Figure 7.2. Indentation, line 
breaks and spaces have been added for clarity. 

Note that, technically speaking, there are some computations that occur be
tween and after the recursive calls at a node's children in the above algorithm. We 
still consider this algorithm to be a preorder traversal, however, since the primary 
action of printing a node's contents occurs prior to the recursive calls. 

The Java method parentheticRepresentation, shown in Code Fragment 7.10, is 
a variation of method toStringPreorder (Code Fragment 7.9). It implements the 
definition given above to output a parenthetic string representation of a tree T. As 
with the method toStringPreorder, the method parentheti~Representation makes 
use of the toString method that is defined for every Java object. In fact, we can 
view this method as a kind of toStringO method for tree objects. 

public static <E> String parentheticRepresentation(Tree<E> T, Position<E;> v) { 
String s = v.elementO.toStringO; / / main visit action 
if (T.islnternal(v)) { , 

Boolean firstTime = true; 
for (Position<E> w : T.children(v)) 

if (firstTime) { 
s += II ( + parentheticRepresentation(T, w); / / the first childII 

firstTime = false; 
} 
else s += ", " + parentheticRepresentation(T, w); / / subsequent child 


s += II ) "; / / close parenthesis 

} 
return s; 

} 

Code Fragment 7.10: Algorithm parentheticRepresentation. Note the use of the + 
. . " 

operator to concatenate two strings. 

We explore a modification to Code Fragment 7.10 in Exercise R-7.9, to display 
a tree in a fashion more closely matching that given in Figure 7.7. 



293 7.2. Tree Traversal Algorithms 

7.2.3 Postorder Traversal 

Another important tree traversal algorithm is the postorder traversal. This algo
rithm can be viewed as the opposite of the preorder traversal, because it recursively 
traverses the subtrees rooted at the children of the root first, and then visits the 
root. It is similar to the preorder traversal, however, in that we use it to solve a 
particular problem by specializing an action associated with the "visit" of a node v. 
Still, as with the preorder traversal, if the tree is ordered, we make recursive calls 
for the children of a node v according to their specified order. Pseudo-code for the 
postorder traversal is given in Code Fragment 7.11. 

Algorithm postorder(T, v): 

for each child w of v in T do 


postorder(T, w) {recursively traverse the subtree rooted at w} 

perform the "visit" action for node v 


Code Fragment 7.11: Algorithm postorder for performing the postorder traversal of 
the subtree of a tree T rooted at a node v. 

The name of the postorder traversal comes from the fact that this traversal 
method will visit a node v after it has visited all the other nodes in the subtree 
rooted at v. (See Figure 7.8.) 

Figure 7.8: Postorder traversal of the ordered tree of Figure 7.6. 

The analysis of the running time of a postorder traversal is analogous to that of 
a preordertraversal. (See Section 7.2.2.) The total time spent in the nonrecursive 
.	portions of the algorithm is proportional to the time spent visiting the children of 
each node in the tree. Thus, a postorder traversal of a tree T with n nodes takes 
O(n) time, assuming that visiting each node takes O(1) time. That is, the postorder 
traversal runs in linear time. 



294 Chapter 7. Tree Structures 

As an example of postorder traversal, we show a Java method toStringPos
torder in Code Fragment 7.12, which performs a postorder traversal of a tree T. 

This method prints the element stored at a node when it is visited. 

public static <E> String toStringPostorder(Tree<E> T, Position<E> v) { 
String s ""; 
for (Position<E> w : T.children(v)) 

s toStringPostorder(T, w) + " "; 
s v.element(); / / main visit action 
return s; 

} 
Code Fragment 7.12: Method toStringPostorder(T) v) that performs a postorder 
printing of the elements in the subtree of node v of T. The method implicitly calls 
toString on elements, when they are involved in a string concatenation operation. 

The postorder traversal method is useful for solving problems where we wish 
to compute some property for each node v in a tree, but computing that property for 
vrequires that we have already computed that same property for v's children. Such 
an application is illustrated in the following example. 

Example 7.7: Consider a file system tree T, where external nodes represent files 
and internal nodes represent directories (Example 7.1). Suppose we want to com
pute the disk space used by a directory, which is recursively given by the sum of: 

• The size of the directory itself 

• The sizes of the files in the directory 
5 

• The space used by the children directories. 

(See Figure 7.9.) This computation can be done with apostorder traversal of tree T. 
After the subtrees ofan internal node v have been traversed, we compute the space 
used by v by adding the sizes of the directory v itself and of the files contained in v 
to the space used by each internal child ofv, which was computed by the recursive 
postorder traversals of the children ofv. 

A Recursive Java Method for Computing Disk Space 

Motivated by Example 7.7, Java method diskSpace, shown in Code Fragment 7.13, 
perfonnsapostorder traversal of a file-system tree T, printing the name and disk 
space used by the directory associated with each internal node of T. When called 
on the root of tree T, diskSpace runs in time O(n), where n is the number of nodes 
ofT, provided the auxiliary methods name and size take 0(1) time. 



295 7.2. Tree Traversal Algorithms 
5124K 

8K 

luser/rVcoursesl 
1K 

buylow 

26K 4786K 

Figure 7.9: The tree of Figure 7.3 representing a file system, showing the name and 
size of the associated file/directory inside each node, and the disk space used by the 
associated directory above each internal node. 

public static <E> int diskSpace (Tree<E> T, Position< v) { 

int s = size(v); / / start with the size of the node itself 

for (Position<E> w : T.children(v)) 


/ / add the recursively computed space used by the children of v 

s += diskSpace(T, w); 


if (T.isl nterna I(v)) { 

/ / print name and disk space used 

System.out.print(name(v) + ": + s);
II 

} 
return s; 

} 

Code Fragment 7.13: Method diskSpace prints the name and disk space used by the 
directory associated with each internal node of a file-system tree. This method calls 
the auxiliary methods name and size, which should be defined to return the name 
and size of the file/directory associated with a node. 

Other Kinds of Traversals 

A~though the preorder and.postorder traversals are common ways of visiting the 
nodes ofatree, we can also imagine other traversals. For example, we could tra
verse a tree so that we visit all the nodes at depth d before we visit the nodes at 
depth d 1. Consecutively numbering the nodes of a tree T as we visit them in this 
traversal is called the level numbering of the nodes of T (see Section 7.3.5). 



296 Chapter 7. Tree Structures 

7.3 Binary Trees 

Abinary tree is an ordered tree with the following properties: 

1. Every node has at most two children. 1 
I 

2. Each child node is labeled as being either a left child or a right child. 
3. A left child precedes a right child in the ordering of children of a node. 

The subtree rooted at a left or right child of an internal node vis called a left subtree 
or right subtree, respectively, of v. A binary tree is proper if each node has either 
zero or two children.. Some people also refer to such trees as being full binary 
trees. Thus, in a proper binary tree, every internal node has exactly two children. 
A binary tree that is not proper is improper. 

Example 7.8: An important class ofbinary trees arises in contexts where we wish 
to represent anumber ofdifferent outcomes that can result from answering aseries 
ofyes-or-no questions. Each internal node is associated with aquestion. Starting at 
the root, we go to the left or right child of the current node, depending on whether 
the answer to the question is "Yes" or "No." With each decision, we follow an 
edge from aparent to a child, eventually tracing a path in the tree from the root 
to an external node. Such binary trees are known as decision trees, because each 
external node v in such a tree represents a decision of what to do if the questions 
associated with v's ancestors are answered in a way that-leads to v. A decision 
tree is a proper binary tree. Figure 7.10 illustrates a decision tree that provides 
recommendations to aprospective investor. 

i 

Yes 

Will you need to access most of the 
money within the next 5 years? 

No 

Are you willing to accept risks in 
exchange for higher expected returns? 

No 

Diversified portfolio with stocks, 
Stockportfolio. bonds, and short-term instruments. 

Figure 7.10: A decision tree providing investment advice. 



297 7.3. Binary Trees 

Example 7.9: An arithmetic expression can be represented by a binary tree whose 
external nodes are associated with variables or constants, and whose internal nodes 

:\' 

are associated with one of the operators +, -, x, and /. (See Figure 7.11.) Each 
node in such a tree has a value associated with it. 

• Ifa node is external, then its value is that ofits variable or constant. 

• Ifa node is internal, then its value is defined by applying its operation to the 
values ofits children. 

An arithmetic expression tree is a proper binary tree, since each operator +, -, 
x, and / takes exactly two operands. Of course, if we were to allow for unary 
operators, like negation (-), as in "-x," then we could have an improper binary 
tree. 

Figure 7.11: A binary tree representing an arithmetic expression. This tree repre
sents the expression (( ((3 +1) x 3) /( (9 - 5) +2)) - ((3 x (7 -4)) +6)). The value 
associated with the internal node labeled "j" is 2. 

A Recursive Binary Tree Definition 

Incidentally, we can also define a binary tree in a recursive way such that a binary 
tree is either empty or consists of: 

• Anode r~called the root of T and storing an element 

• A binary tree, called the left subtree of T 

• A binary tree, called the right subtree of T. 


We discuss some of the specialized topics for binary trees below. 




298 Chapter 7. Tree Structures 

7.3.1 The Binary Tree ADT 

As an abstract data type, a binary tree is a specialization of a tree that supports three 
additional accessor methods: 

left(v): Return the left child of v; an error condition occurs if v 

has no left child. 

right(v): Return the right child of v; an error condition occurs if v 

has no right child. 

hasLeft(v): Test whether v has a left child. 

hasRight(v): Test whether v has a right child. 

Just as in Section 7.1.2 for the tree ADT, we do not define specialized update 
methods for binary trees here. Instead, we will consider some possible update 
methods when we describe specific implementations and applications of binary 
trees. 

7.3.2 A Binary Tree Interface in Java 

We model a binary tree as an abstract data type that extends the tree ADT and 
adds the three specialized methods for a binary tree. In Code Fragment 7.14, we 
show the simple Java interface we can define using this _approach. By the way, since 
binary trees are ordered trees, the iterable collection returned by method children(v) 
(inherited from the Tree interface) stores the left child of v before the right child 
ofv. 

/** p 

* An interface for a binary tree, where each node can have zer.o, one, 
* or two children. . 


*/

public interface BinaryTree<E> extends Tree<E> { 


/** Returns the left child of a node. * / 

public Position<E> left(Position<E> v) 


throws InvalidPositionException, BoundaryViolationException; 

j** Returns the right child of a node. * / 

public Position<E> right(Position<E> v) 


throws I nval id Position Exception , Bou ndaryViolation Exception; 
/** Returns whether a node has a left child. * / 
public boolean hasLeft(Position<E> v) throws InvalidPositionException; 
j** Returns whether a node has a right child. * / 
public booleanhasRight(Position<E> v). throws InvalidPositionException;} ". 

Code Fragment 7.14: Java interface BinaryTree for the binary tree ADT. Interface 
BinaryTree extends interface Tree (Code Fragment 7.1). 



-------------

299 7.3. Binary Trees 

7.3.3 Properties of Binary Trees 

Binary trees have several interesting properties dealing with relationships between 
their heights and number of nodes. We denote the set of all nodes of a tree T at the 
same depth d as the level d of T. In a binary tree, level 0 has at most one node (the 
root), level 1 has at most two nodes (the children of the root), level 2 has at most 
four nodes, and so on. (See Figure 7.12.) In general, level d has at most 2d nodes. 

Level Nodes 

~---- ---------------------,n I 

o 1 

(------~-------------~------] 2 

2 I I 
I I~ ~ ~ ~ 4 

----- ----- ----- ------ , 
I 

\ I 

3 8fdbdbdbdb': 

\ I 
----------------------------------------~ 

Figure 7.12: Maximum number of nodes in the levels of a binary tree. 

We can see that the maximum number of nodes on· the levels of a binary tree 
grows exponentially as We go down the tree. From this simple observation, we can 
derive the following properties relating the height of a binary T with its number of 
nodes. A detailed justification of these properties is left as an exercise (R-7.15). 

Proposition 7.10: Let T be a nonempty binary tree, and let n, nE, n[ and h denote 
the number of nodes, number of external nodes, number of internal nodes, and 
height ofT, respectively. Then T has the following properties: 

1. h+1~ n ~ 2h+1 - 1 

2. 1 ~ nE ~ 2h 
3. h ~ n[ ~ 2h - 1 
4. log(n +1) - 1 ~ h ~ n-1. 

Also, ifT is proper, then T has the following properties: 
1. 2h + 1 ~ n ~ 2h+ 1 - 1 

2. h+1 ~ nE < 2h 
3. h ~ n[ ~ 2h - 1 
4. log(n+ 1) -1 ~h ~ (n-l)/2. 



300 Chapter 7. Tree Structures 

Relating Internal Nodes to External Nodes in a Proper Binary Tree 

In addition to the binary tree properties above, we also have the following relation
ship between the number of internal nodes and external nodes in a proper binary 
tree. 

Proposition 7.11: In a nonempty proper binary tree T, with nE external nodes 
and n[ internal nodes, we have nE =n[ +1. 

Justification: We justify this proposition by removing nodes from T and divid
ing them up into two "piles", an internal-node pile and an external-node pile, until 
T becomes empty. The piles are initially empty. At the end, the external-node pile 
will have one more node than the internal-node pile. We consider two cases: 
Case 1: If T has only one node v, we remove v and place it on the external-node 

pile. Thus, the external-node pile has one node and the internal-node pile is 
empty. 

Case 2: Otherwise (T has more than one node), we remove from T an (arbitrary) 
external node w and its parent v, which is an internal node. We place w on 
the external-node pile and v on the internal-node pile. If v has a parent u, 
then we reconnect u with the former sibling zof w, as shown in Figure 7.13. 
This operation, removes one internal node and one external node, and leaves 
the tree being a proper binary tree. 
Repeating this operation, we eventually are left with a final tree consisting 
of a single node. Note that the same number of external and internal nodes 
have been removed and placed on their respective piles by the sequence of 
operations leading to this final tree. Now, we remove the node of the final 
tree and we place it on the external-node pile. Thus, the the external-node 
pile has one more node than the internal-node pile. 

• 
"........ " 
, . 

I ;., u..'. .
''.

z \. ..,,.. .. . ... 
, ,,-.,' 'J{; 

(a) (b) (c) 

Figure 7.13: Operation that removes an external node and its parent node, used in 
the justification of Proposition 7.11. 

Note that the above relationship does not hold, in general, for improper binary 
trees and nonbinary trees, although there are other interesting relationships that can 
hold, as we explore in an exercise (C-7.7). 



301 7.3. Binary Trees 

7.3.4 A Linked Structure for Binary Trees 

As with a general tree, a natural way to realize a binary tree T is to use a linked 
structure, where we represent each node v of T by a position object (see Fig
ure 7.14a) with fields providing references to the element stored at v and to the 
position objects associated with the children and parent of v. If v is the root of T, 
then the parent field of v is null. If v has no left child, then the left field of v is null. 

If v has no right child, then the right field of v is null. Also, we store the number of 
nodes of T in a variable, called size. We show the linked structure representation 
of a binary tree in Figure 7.14b. 

parent 

right 
element 

(a) 

(2) 

root 

CD 
size 

(b) 

Figure 7.14: A node (a) and a linked structure (b) for representing a binary tree. 



302 Chapter 7. Tree Structures 

Java Implementation of a Binary Tree Node 

We use a Java interface BTPosition (not shown) to represent a node of a binary 
tree. This interfaces extends Position, thus inheriting method element, and has 
additional methods for setting the element stored at the node (setElement) and for 
setting and returning the left child (setLeft and getLeft), right child (setRight and 
getRight), and parent (setParent and getParent) of the node. Class BTNode (Code 
Fragment 7.15) implements interface BTPosition by an object with fields element, 
left, right, and parent, which, for a node v, reference the element at v, the left child 
of v, the right child of v, and the parent of v, respectively. 

/**
* Class implementing a node of a binary tree by storing references to 
* an element, a parent node, a left node, and a right node. 
*/ 

public class BTNode<E> implements BTPosition<E> { 
private E element; / / element stored at this node 
private BTPosition left, right, parent; / / adjacent nodes 
/** Main constructor * / 
public BTNode(E element, BTPosition<E> parent, 

BTPosition< left, BTPosition<E> right) { 
setElement(element); 
setParent(parent) ; 
setLeft(left) ; 
setRight(right); 

} 

/** Returns the element stored at this' position * / 

public E elementO { return element; } 

/** Sets the element stored at th is position * / 

public void setElement(E 0) { element=o; } 

/** Returns the left child of this position * / 

public BTPosition < E> getLeftO { return left; } 

/** Sets the left child of this position * / 

public void setLeft(BTPosition<E> v) { left=v; } 

/** Returns the right child of this position * / 

public BTPosition<E> getRightO { return right; } 

/** Sets the right child of this position * / 

public void setRight(BTPosition< v) { right=v; } 

/** Returns the parent of this position * / 

public BTPosition<E> getParentO { return parent; } 

/** Sets the parent of this position * / 

public void setParent(BTPosition<E> v) { parent=v; } 


} 

Code Fragment 7.15: Auxiliary class BTf\lode for implementing binary tree nodes. 



303 7.3. Binary Trees 

Java Implementation of the Linked Binary Tree Structure 

In Code Fragments 7.16-7.20, we show portions of class LinkedBinaryTree that im
plements the BinaryTree interface (Code Fragment 7.14) using a linked data struc
ture. This class stores the size of the tree and a reference to the BTNode object 
associated with the root of the tree in internal variables. In addition to the Bina
ryTree interface methods, LinkedBinaryTree has various other methods, including 
accessor method sibling(v), which returns the sibling of a node v, and the following 
update methods: 

addRoot(e): 	Create and return a new node r storing element e and 
make r the root of the tree; an error occurs if the tree is 
not empty. 

insertLeft(v,e): 	Create and return a new node w storing element e, add w 
as the the left child of v and return w; an error occurs if v 
already has a left child. 

insertRight(v,e): 	Create and return a new node z storing element e, add z 
as the the right child of v and return z; an error occurs if 
v already has a right child. 

remove(v): 	 Remove node v, replace it with its child, if any, and re
turn the element stored at v; an error occurs if v has two 
children. 

I 

attach (v, Tl )T2): 	 Attach Tl and T2, respectiv~ly, as the left and right sub-
trees of the external node v; an error condition occurs if 
v is not external. 

Class LinkedBinaryTree has a constructor with no arguments that returns an 
empty binary tree. Starting from this empty tree, we can build any binary tree by 
creating the first node with method addRoot and repeatedly applying the insertLeft 
and insertRight methods and/or the attach method. Likewise, we can dismantle 
any binary tree T using the remove operation, ultimately reducing such a tree T to 
an empty binary tree. 

When a position v is passed as an argument to one of the methods of class 
LinkedBinaryTree, its validity is checked by calling an auxiliary helper method, 
checkPosition(v). A list of the nodes visited in a preorder traversal of the tree 
is constructed by recursive method preorderPositions. Error conditions are indi
cated by throwing exceptions Inva Iid Position Exception, Bou ndaryViolation Excep
tion, EmptyTreeException, and NonEmptyTreeException. 

http:7.16-7.20


304 Chapter 7. Tree Structures 

/**
* An implementation of the BinaryTree interface by means of a linked structure. 

*/
public class LinkedBinaryTree<E> implements BinaryTree<E> { 

protected BTPosition<E> root; / / reference to the root 
protected int size; / / number of nodes 
/** Creates an empty binary tree. * / 
public LinkedBinaryTreeO { 

root = null; / / start with an empty tree 
size = 0; 


} 

/** Returns the number of nodes in the tree. * / 

public int sizeO { 


return size; 
} 
/** Returns whether a node is internal. * / 
public boolean islnternal(Position<E> v) throws InvalidPositionException { 

checkPosition(v); / / auxiliary method 
return (hasLeft(v) II hasRight(v)); 

} 
/** Returns whether a node is the root. * / 
public boolean isRoot(Position<E> v) throws InvalidPositionException { 

checkPosition(v); 
return (v rootO); 

} 
/** Returns whether a node has a left child. * / 
public boolean hasLeft(Position<E> v) throws InvalidPositionException { 

BTPosition<E> vv = checkPosition(v); 

return (vv.getLeftO != null); 


} , 

/** Returns the root of the tree. * / 
public Position<E> rootO throws EmptyTreeException { 

if (root == nUll) 
throw new EmptyTreeException("The tree is empty"); 

return root; 

} 

/** Returns the left child of a node. * / 

public Position<E> left(Position<E> v) 


throws InvalidPositionException, BoundaryViolationException { 

BTPosition<E> vv = checkPosition(v); 

Position<E> leftPos vv.getLeft(); 

if (leftPos == null) 


throw new BoundaryViolationException( I1 No left child"); 
return leftPos; 

} 

Code Fragment 7.16: Portions of the LinkedBinaryTree class, which implements 
the BinaryTree interface. (Continues in Code Fragm~nt 7.17.) 



305 

~j '. 

7.3. Binary Trees 

/** Returns the parent of a node. * / 
public Position<E> parent{Position<E> v) 

throws InvalidPositionException, BoundaryViolationException { 
BTPosition<E> w checkPosition(v); 
Position<E> parentPos w.getParentO; 
if (parentPos null) 

throw new BoundaryViolationException("No parent "); 
return parentPos; 

} 

/** Returns an iterable collection of the children of a node. * / 

public Iterable<Position<E> > children{Position<E> v) 


throws InvalidPositionException { 
PositionList<Position<E> > children = new NodePositionList<Position<E> >0; 
if (hasLeft(v)) 

children.addLast(left(v)); 
if (hasRight(v)) 

children.addLast(right(v)); 
return children; 

} 

/** Returns an iterable collection of the tree nodes. * / 

public Iterable<Position<E> > positionsO { 

Position List<Position<E> > positions new NodePositionList<Position<E> >0; 
if(size != 0) 

preorderPositions(rootO, positions); / / assign positions in preorder 
return positions; 

} 
/** Returns an iterator of the elements stored at the nodes * / 
public Iterator<E> iteratorO { . 

Iterable<Position<E> > positions = positionsO; . 
PositionList<E> elements = new NodePositionList<E>O; 
for (Position<E> pos: positions) 

elements.add Last{pos.elementO); 
return elements.iterator(); / / An iterator of elements 

} 
/** Replaces the element at a node. *1 
public E replace{Position<E> v, E 0) 

throws InvalidPositionException { 

BTPosition<E> vv = checkPosition{v); 

E temp = v.elementO; 

vv.setElement(0); 

return temp; 


-} 

Code Fragment 7.17: Portions of the LinkedBinaryTree class, which implements 
the BinaryTree interface. (Continues in Code Fragment 7.18.) 



306 Chapter 7. Tree Structures 


/ / Additional accessor method 
/** Return the sibling of a node * / 
public Position<E> sibling(Position<E> v) 

throws Invalid Position Exception, BoundaryViolationException { 
BTPosition<E> vv = checkPosition(v); 
BTPosition<E> parentPos vv.getParentO; 
if (parentPos != nUll) { 

BTPosition<E> sibPos; 
BTPosition<E> leftPos parentPos.getLeftO; 
if (leftPos vv) 

sibPos = parentPos.getRightO; 
else 

sibPos parentPos.getLeftO; 
if (sibPos null) 

return sibPos; 
} 
throw new BoundaryViolationException("No sibling"); 

} 
/ / Additional update methods 
/** Adds a root node to an empty tree * / 
public Position<E> addRoot(E e) throws NonEmptyTreeException { 

if(!isEmptyO} . 
throw new NonEmptyTreeException("Tree already has a root"); 

size = 1; 
root createNode( e,null,null,null); 
return root; 

} 
/** Inserts a left child at a given node. * / 
public Position<E> insertLeft(Position<E> v, E e) 

throws InvalidPositionException { 
BTPosition<E> vv checkPosition (v); 
Position<E> leftPos vv.getLeftO; 
if (leftPos! null) 

throw new InvalidPositionExceptionC'Node already has a left child"); 
BTPosition<E> ww = createNode(e, vv, null, null); 
vv.setLeft(ww); 
size++; 
return ww; 

} 

Code Fragment 7.18: Portions of the LinkedBinaryTree class, which implements 
the BinaryTree interface. (Continues in Code Fragment 7.19.) 



7.3. Binary Trees 307 

/** Removes a node with zero or one child. *1 
public E remove(Position<E> v) 


throws InvalidPositionException { 

BTPosition<E> vv = checkPosition(v); 

BTPosition<E> leftPos = vv.getLeftO; 

BTPosition<E> rightPos = vv.getRightO; 

if (leftPos null && rightPos nUll) 


throw new InvalidPositionException("Cannot remove node with two children"~. 
BTPosition<E> ww; II the only child of v, if any 
if (leftPos nUll) 

ww leftPos; 

else if (rightPos null) 


ww rightPos; 

else II v is a leaf 


ww = null; 

if (vv -- root) { II v is the root 


if (ww nUll) 

ww.setParent(null); 


root = ww; 

} 

else { II v is not the root 


BTPosition<E> uu vv.getParent{); 

if (vv == uu.getLeft{)) 
 ,

uu.setLeft{ww); 
else 

uu .setRight(ww); 

if(ww != null) 


ww.setParent(uu); 

} 

size--; 

return v.element{); 


} 

Code Fragment 7.19: Portions of the LinkedBinaryTree class, which implements 
the BinaryTree interface. (Continues in Code Fragment 7.20.) 



308 Chapter 7. Tree Structures 

/** Attaches two trees to be subtrees of an external node, * / 
public void attach(Position<E> v, BinaryTree<E> Tl, BinaryTree<E> T2) 


throws InvalidPositionException { 

BTPosition<E> vv checkPosition(v); 

if (islnternal(v)) 


throw new InvalidPositionException(IlCannot attach from internal node "); 
int newSize size + T1.sizeO + T2,size(); 
if (!T1.isEmpty()) { 

BTPosition<E> rl = checkPosition(T1.rootO); 

vv.setLeft(rl); 

rl,setParent(vv); / / Tl should be invalidated 


} 

if (!T2.isEmpty()) { 


BTPosition<E> r2 = checkPosition(T2.rootO); 

vv,setRight( r2); 

r2,setParent(vv); / / T2 should be invalidated 


} 

;Ize newSize; 


} 

/** If v is a good binary tree node, cast to BTPosition, else throw exception * / 

protected BTPosition<E> checkPosition(Position v) 


throws InvalidPositionException { 

if (v == null II !(v instanceof BTPosition)) 


throw new InvalidPositionException(I!The position is invalid!!); 

return (BTPosition<E» v; 


} 

/** Creates a new binary tree node * / i 


protected BTPosition<E> createNode(E element, BTPositiQn<E> parent, 

BTPosition<E> left, BTPosition<E> right) { 


return new BTNode<E>(element,parent,left,right); } 

/** Creates a list storing the the nodes in the subtree of a node, 

* ordered according to the preorder traversal of the subtree, * / 


protected void preorderPositions( Position < E> v, Position List< Position < E> > pos) 
throws InvalidPositionException { 
pos,addLast(v); 
if (hasLeft(v)) 

preorderPositions(left(v), pos); / / recurse on left child 

if (hasRight(v)) 


preorderPositions(right(v), pos); / / recurse on right child 

} 


Code Fragment 7.20: Portions of the LinkedBinaryTree class, which implements 
the BinaryTree interface. (Continued from Code Fragment 7.19.) 



309 7.3. Binary Trees 

Performance of the LinkedBinaryTree Implementation 

Let us now analyze the running times of the methods of class LinkedBinaryTree, 
which uses a linked structure representation: 

• 	Methods sizeO and isEmptyO use an instance variable storing the number of 
nodes of T, and each take 0 ( 1) time. 

• 	The accessor methods root, left, right, sibling and parent take 0(1) time. 

• 	Method replace(v,e) takes 0(1) time. 

• 	Methods iteratorO and positionsO are implemented by performing a pre
order traversal of the tree (using the auxiliary method preorderPositions). 
The nodes visited by the traversal are stored in a position list implemented 
by class NodePositionList (Section 6.2.4) and the output iterator is gener
ated with method iteratorO of class NodePositionList. Methods iterator() 
and positionsO take O(n) time and methods hasNextO and next() of the 
returned iterators run in O( 1) time. 

• 	Method children uses a similar approach to construct the returned iterable 
collection, but it runs in O(1) time, since there are at most two children for 
any node in a binary tree. 

• 	The update methods insertLeft, insertRight, attach, and remove all run in 
0(1) time, as they involve constant-time manipulation of a constant number 
of nodes. 

Considering the space required by this data structure for a tree with n nodes, 
note that there is an object of class BTNode (Code Fragment 7.11) for every node 
of tree T. Thus, the overall space requirement is O(n). Table 7.2 summarizes the 
performance of the linked structure implementation of a binary tree. 

I 	 Operation Time 
size, isEmpty 0(1) 

iterator, positions O(n) 
replace • 0(1) 

root, parent, children, left, right, sibling 0(1) 
hasLeft, hasRight, islnternal, isExternal, isRoot 0(1) 

insertLeft, insertRight, attach, remove 0(1) 

". 'Table"7:2:Rtinnil1gtimes for the methods of an n-node binary tree implemented 
wIth a lil1ked structure. Methods hasNext() and next() of the iterators returned by 
iteratorO, positionsO.iteratorO, and chiidren(v).iteratorO run in 0(1) time. The 
space usage is O(n). 



310 Chapter 7. Tree Structures 

7.3.5 An Array-List Representation of a Binary Tree 

An alternative representation of a binary tree T is based on a way of numbering the 
nodes of T. For every node vof T, let p(v) be the integer defined as follows. 

• If v is the root of T, then p(v) - 1. 

• If vis the left child of node u, then p(v) 2p(u). 

• If vis the right child of node u, then p(v) = 2p(u) +1. 

The numbering function p is known as a level numbering of the nodes in a binary 
tree T, for it numbers the nodes on each level of T in increasing order from left to 
right, although it may skip some numbers. (See Figure 7.15.) 

(a) 

(b) 

Figure 7.15: Binary tree level numbering: (a) general scheme; (b) an example. 

The level numbering function p suggests a representation of a binary tree T by 
means of an array list S such that node vof T is the element of S at index p(v). As 
mentioned in the previous chapter, we realize the array list S by means of an ex
tendablearray.(See Section 6.1.4.) Such an implementation is simple and efficient, 
for . we can 

. 
use it to easily perform the methods root, parent, left, right, hasLeft, 

has Right, islnternal, isExternal, and isRoot by using simple arithmetic operations 
on the numbers p(v) associated with each node v involved in the operation. We 
leave the details of this implementation as an exercise (R-7.26). 



311 7.3. Binary Trees 


We show an example array-list representation of a binary tree in Figure 7.16. 


T 

Figure 7.16: Representation of a binary tree T by means of an array list S. 

Let n be the number of nodes of T, and let PM be the maximum value of p(v) 
over all the nodes of T. The array list Shas size N PM +1since the element of Sat 
index 0 is not associated with any node of T. Also, Swill have, in general, a number 
of empty elements that do not refer to existing nodes of T. In fact, in the worst case, 
N = 2n, the justification of which is left as an exercise (R-7.23). In Section 8.3, we 
will see a class of binary trees, called "heaps" for which N = ~ +1. Thus, in 
spite of the worst-case space usage, there are applications for which the array-list 
representation of a binary tree is space efficient. Still, for general binary trees, the 
exponential worst-case space requirement of this representation is prohibitive. 

Table 7.3 summarizes running times of the methods of a binary tree imple
mented with an array list. We do not include any tree update methods here. 

s 

J 

G)
III 

I 
I 

I 

J 
J 

J 

.... -- .... , 

"""'" 

+)"'" 
... , 

\ 
\ 
\ 
\ 
I 
I 
I 
I 
I 
I 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 

Operation 
size, isEmpty 

iterator, positions 
replace 

root, parent, children, left, right 
I~~~~~~~ 

hasLeft, hasRight,islnternal, isExternal, isR 

Table 7.3: Running times for a binary tree T implemented with an array list S. We 
denote the number of nodes of T with n, and N denotes the size of S. The space 
usage is O(N), which is O(2n) in the worst case. 



312 Chapter 7.. Tree Structures 

7.3.6 	 Traversals of Binary Trees 

As with general trees, binary tree computations often involve traversals. 

Building an Expression Tree 

Consider the problem of constructing an expression tree from a fully parenthesized 
arithmetic expression of size n. (Recall Example 7.9 and see Code Fragment 7.24.) 
In Code Fragment 7.21, we give algorithm build Expression for building such an 
expression tree, assuming all arithmetic operations are binary and variables are not 
parenthesized. Thus, every parenthesized sUbexpression contains an operator in the 
middle. The algorithm uses a stack S while scanning the input expression E looking 
for variables, operators, and right parentheses. 

• 	When we see a variable or operator x, we create a single-node binary tree T, 

whose root stores x and we push T on the stack. 
• 	When we see a right parenthesis, ")", we pop the top three trees from the 

stack S, which represent a subexpression (E1 OE2). We then attach the trees 
for E1 and E2 to the one for 0, and push the resulting tree back on S. 

We repeat this until the expression E has been processed, at which time the top 
element on the stack is the expression tree for E. The total running time is O(n). 

Algorithm buildExpression(E): 
Input: A fully-parenthesized arithmetic expression E eO,el, ... ,en-I, with 

each ei being a variable, operator, or parenthetic symbol 
Output: A binary tree T representing arithmetic expression E· i 

S t- a new initially-empty stack 

for it-O to n - 1 do 


if ei is a variable or an operator then 

T t- a new empty binary tree 

T.addRoot(ei) 

S.push(T) 


else if ei ='(' then 

Continue looping 


else {ei )'} 

T2 S.popO {the tree representing E2} 

T S.pop() {the tree representing o} 

T1 t- S.popO {the tree representing Ed 

T.attach (T.rootO) T1, T2) 

S.push(T) 


return S.popO 


Code Fragment 7.21: Algorithm buildExpression. 




313 7.3. Binary Trees 

Preorder Traversal of a Binary Tree 

Since any binary tree can also be viewed as a general tree, the preorder traversal 
for general trees (Code Fragment 7.8) can be applied to any binary tree. We can 
simplify the algorithm in the case of a binary tree traversal, however, as we show 
in Code Fragment 7.22. 

Algorithm binaryPreorder(T, v): 
perform the "visit" action for node v 
if v has a left child u in T then 

binaryPreorder(T,u) {recursively traverse left subtree} 
if v has a right child w in T then 

binaryPreorder(T, w) {recursively traverse right subtree} 

Code Fragment 7.22: Algorithm binaryPreorder for performing the preorder traver
sal of the subtree of a binary tree T rooted at a node v. 

As is the case for general trees, there are many applications of the preorder 
traversal for binary trees. 

Postorder Traversal of a Binary Tree 

Analogously, the postorder traversal for general trees (Code Fragment 7.11) can be 
specialized for binary trees, as shown in Code Fragment 7.23. 

Algorithm binaryPostorder(T, v): 
if v has a left child u in T then 

binaryPostorder(T, u) {recursively trav((rse left subtree} 
if v has a right child win T then . 

binaryPostorder(T, w) . {recursively traverse right subtree} 
perform the "visit" action for node v 

Code Fragment 7.23: AlgOlithm binaryPostorder for performing the postorder 
traversal of the subtree of a binary tree T rooted at node v. 

Expression Tree Evaluation 

The postorder traversal of a binary tree can be used to solve the expression tree 
evaluation problem. In this problem, weare given an arithmetic expression tree, 
that is, a binary tree where each external node has a value associated with it and 
each internal node has an arithmetic operation associated with it (see Example 7.9), 
and we want to compute the value of the arithmetic expression represented by the 
tree. 



314 Cl1apter 7. Tree Structures 

Algorithm evaluateExpression, given in Code Fragment 7.24, evaluates the ex
pression associated with the subtree rooted at a node v of an arithmetic expression 
tree T by performing a postorder traversal of T starting at v. In this case, the "visit" 
action consists of performing a single arithmetic operation. Note that we use the 
fact that an arithmetic expression tree is a proper binary tree. 

Algorithm evaluateExpression(T, v): 

if v is an internal node in T then 


let 0 be the operator stored at v 

x f- evaluateExpression(T, T.left(v)) 

y f- evaluateExpression(T, T.right(v)) 

returnxoy 


else 

return the value stored at v 


Code Fragment 7.24: Algorithm evaluateExpression for evaluating the expression 
represented by the subtree of an arithmetic expression tree T rooted at node v. 

The expression-tree evaluation application of the postorder traversal provides 
an O(n)-time algorithm for evaluating an arithmetic expression represented by a 
binary tree with n nodes. Indeed, like the general postorder traversal, the postorder 
traversal for binary trees can be applied to other "bottom-up" evaluation problems 
(such as the size computation given in Example 7.7) as welL 

Inorder Traversal of a Binary Tree 

An additional traversal method for a binary tree is the inorder traversaL In this 
traversal, we visit a node between the recursive traversals of its left and right sub
trees. The inorder traversal of the subtree rooted at a node v in a binary tree T is 
given in Code Fragment 7.25. 

Algorithm inorder(T, v): 
if v has a left child u in T then 

inorder(T, u) {recursively traverse left subtree} 
perform the "visit" action for node v 
if v has aright child win r then 

··.inorder(T,w) {recursively traverse right subtree} 

Code Fragment 7.25: Algorithm inorder for performing the inorder traversal of the 
subtree of a binary tree T rooted at a node v. 



315 7.3. Binary Trees 

The inorder traversal of a binary tree T can be informally viewed as visiting 
the nodes of T "from left to right." Indeed, for every node v, the inorder traversal 
visits v after all the nodes in the left subtree of v and before all the nodes in the right 
subtree ofv. (See Figure 7.17.) 

Figure 7.17: Inorder traversal of a binary tree. 

Binary Search Trees 

Let S be a set whose elements have an order relation. For example, S could be a set 
of integers. Abinary search tree for S is a proper binary tree T such that 

• 	Each internal node vof T stores an elem~~t of S, denoted with x(v). 
• 	For each internal node v ofT, the elements stored in the left subtree of v are 

less than or equal to x(v) and the elements stored in the right subtree of vare 
greater than or equal to x(v). 

• 	The external nodes of T do not store any element. 

An inorder traversal of the internal nodes of a binaty search tree T visits the ele
ments in nondecreasing order. (See Figure 7.18.) 

.... ...... ...... .... .... .... 
... 90 

Figure 7.18: A binary search tree storing integers. The blue solid path is traversed 
when searching (successfully) for 36. The blue dashed path is traversed when 
searching (unsuccessfully) for 70. 



316 Chapter 7. Tree Structures 

We can use a binary search tree T for set S to find whether a given search 
value y is in S, by traversing a path down the tree T, starting at the root. (See 
Figure 7.18.) At each internal node v encountered, we compare our search value y 
with the element x(v) stored at v. If y < x(v), then the search continues in the left 
subtree of v. If y = x(v), then the search terminates successfully. If y ~ x(v), then 
the search continues in the right subtree of v. Finally, if we reach an external node, 
the search terminates unsuccessfully. In other words, a binary search tree can be 
viewed as a binary decision tree (recall Example 7.8), where the question asked 
at each internal node is whether the element at that node is less than, equal to, or 
larger than the element being searched for. Indeed, it is exactly this correspondence 
to a binary decision tree that motivates restricting binary search trees to be proper 
binary trees (with "place-holder" external nodes). 

Note that the running time of searching in a binary search tree T is proportional 
to the height of T. Recall from Proposition 7.10 that the height of a proper binary 
tree with n nodes can be as small as log(n 1) 1or as large as (n 1)/2. Thus, 
binary search trees are most efficient when they have small height. We illustrate 
an example search operation in a binary search tree in Figure 7.18, and we study 
binary search trees in more detail in Section 10.1. 

Using Inorder Traversal for Tree Drawing 

The inorder traversal can also be applied to the problem of computing a drawing of 
a binary tree. We can draw a binary tree T with an algorithm that assigns x- and 
y-coordinates to a node v of T using the following two rules (see Figure 7.19): 

• x(v) is the number of nodes visited before v in the inorder traversal of T 
• y(v) is the depth ofv in T. 

In this application, we take the convention common in computer graphics that x
coordinates increase left to right and y-coordinates increase top to bottom. So the 
origin is in the upper left corner of the computer screen. 

0 -+--f-
I I 

1 
I - r

2 

3 -

4 
r 

012 3 4 5 6 7 8 9 10 11 12 
Figure 7.19: An inorder drawing of a binary tree. 



317 7.3. Binary Trees 

The Euler Tour Traversal of a Binary Tree 

The tree-traversal algorithms we have discussed so far are all forms of iterators. 
Each traversal visits the nodes of a tree in a certain order, and is guaranteed to visit 
each node exactly once. We can unify the tree-traversal algorithms given above into 
a single framework, however, by relaxing the requirement that each node be visited 
exactly once. The resulting traversal method is called the Euler tour traversal, 
which we study next. . The advantage of this traversal is that it allows for more 
general kinds of algorithms to be expressed easily. 

The Euler tour traversal of a binary tree T can be informally defined as a "walk" 
around T, where we start by going from the root toward its left child, viewing the 
edges of T as being "walls" that we always keep to our left. (See Figure 7.20.) 
Each node v of T is encountered three times by the Euler tour: 

• "On the left" (before the Euler tour of v's left subtree) 

• "From below" (between the Euler tours of v's two subtrees) 
• "On the right" (after the Euler tour of v's right subtree). 

If v is external, then these three "visits" actually all happen at the same time. We 
describe the Euler tour of the subtree rooted at v in Code Fragment 7.26. 

Figure 7.20: Euler tour traversal of a binary tree. 

Algorithm eulerTour(T, v): 
perform the action for visiting node v on the left 
if v has a left child u in T then 

eulerTour(T, u) { recursively tour the left subtree of v } 
perform the action for visiting node v from below 
ifv has a right child win T then 

eulerTour(T, w) { recursively tour the right subtree of v} 
perform the action for visiting node v on the right 

Code Fragment 7.26: The Euler tour of the subtree of a binary tree T rooted at v. 



318 Chapter 7. Tree Structures 

The running time of the Euler tour traversal of an n-node tree is easy to analyze, 
assuming each visit action takes 0(1) time. Since we spend a constant amount of 
time at each node of the tree during the traversal, the overall running time is O(n). 

The preorder traversal of a binary tree is equivalent to an Euler tour traversal 
such that each node has an associated "visit" action occur only when it is encoun
tered on the left. Likewise, the inorder and postorder traversals of a binary tree 
are equivalent to an Euler tour such that each node has an associated "visit" action 
occur only when it is encountered from below or on the right, respectively. The 
Euler tour traversal extends the preorder, inorder, and postorder traversals, but it 
can also perform other kinds of traversals. For example, suppose we wish to com
pute the number of descendents of each node v in an n-node binary tree. We start 
an Euler tour by initializing a counter to 0, and then increment the counter each 
time we visit a node on the left. To determine the number of descendents of a node 
v, we compute the difference between the values of the counter when v is visited 
on the left and when it is visited on the right, and add 1. This simple rule gives 
us the number of descendents of v, because each node in the subtree rooted at v is 
counted between v's visit on the left and v's visit on the right. Therefore, we have 
an O(n)-time method for computing the number of descendents of each node. 

Another application of the Euler tour traversal is to print a fully parenthesized 
arithmetic expression from its expression tree (Example 7.9). Algorithm printEx
pression, shown in Code Fragment 7.27, accomplishes this task by performing the 
following actions in an Euler tour: 

• "On the left" action: if the node is internal, print "(" 
• "From below" action: print the value or operator stored at the node 
• "On the right" action: if the node is internal, print ")". 

Algorithm printExpression(T, v): . 
if T.islnternal(v) then 

print "(" 
if T.hasLeft(v) then 

printExpression(T, T.left(v)) 
ifT.islnternal(v) then 

print the operator stored at v 
else 

print the value stored at v 
if T.hasRight(v) then 

printExpression(T, T.right(v)) 
if T. isl nterna I ( v) then 

print ")" 
Code Fragment 7.27: An algorithm for printing the arithmetic expression associated 
with the subtree of an arithmetic expression tree T rooted at v. 



319 7.3. Binary Trees 

7.3.7 The Template Method Pattern 

The tree traversal methods described above are actually examples of an interest
ing object-oriented software design pattern, the template method pattern. The 
template method pattern describes a generic computation mechanism that can be 
specialized for a particular application by redefining certain steps. Following the 
template method pattern, we design an algorithm that implements a generic Euler 
tour traversal of a binary tree. This algorithm, called templateEulerTour, is shown 
in Code Fragment 7.28. 

Algorithm templateEulerTour(T, v): 

r f- new object of type Tou rResu It 

visitLeft(T, v, r) 

if T.hasLeft(v) then 


r.left f- templateEulerTour(T, T.left(v)) 

visitBelow(T, v, r) 

if T.hasRight(v) then 


r.right f- templateEulerTour(T, T.right(v)) 

visitRight(T, v,r) 

return r.out 


Code Fragment 7.28: An Euler tour traversal of the subtree of a binary tree T rooted 
at a node v, following the template method pattern. 

When called on a node v, method templateEulerTour calls several other auxil
iary methods at different phases of the traversal. Namely, it 

• 	Creates a local variable r of type TourResult, Which is used to store interme
diate results of the computation and has fields reft, right, and out 

• 	Calls auxiliary method visitLeft(T, v,r), which performs the computations 
associated with encountering the node on the left 

• If v has a left child, recursively calls itself on the left child of vand stores the 
returned value in r.left 

• 	Calls auxiliary method visitBelow(T, v,r), which performs the computations 
associated with encountering the node from below 

• 	If v has a right child, recursively calls itself on the right child and stores the 
returned value in r. right 

• 	Calls auxiliary method visitRight(T, v, r), which performs the computations 
associated with encountering the node on the right 

• 	Returns r.out. 

Method templateEulerTour can be viewed as atemplate or "skeleton" of an Euler 
tour. (See Code Fragment 7.28.) 



320 Chapter 7. Tree Structures 

Java Implementation 

Java class EulerTour, shown in Code Fragment 7.29, implements an Euler tour 
traversal using the template method pattern. The recursive traversal is performed 
by method eulerTour. The auxiliary methods called by eulerTour are empty place 
holders. That is, they have an empty body or they just return null. Class EulerTour 
is abstract and thus cannot be instantiated. It contains an abstract method, called 
execute, which needs to be specified in the concrete subclass of EulerTour. Class 
TourResult, with fields left, right, and out, is not shown. 

/**
* Template for algorithms traversing a binary tree using an Euler 
* tour. The subclasses of this class will redefine some of the 
* methods of this class to create a specific traversal. 

*/ 


public abstract class EulerTour<E, R> { 
protected BinaryTree<E> tree; 
/** Execution of the traversal. This abstract method must be 
* specified in a concrete subclass. * / 


public abstract R execute(BinaryTree<E> T); 

/** Initialization of the traversal * / 

protected void init(BinaryTree<E> T) {tree T;} 

/** Template method * / 

protected R eulerTour(Position<E> v) { 


TourResult<R> r = new TourResult<R>O; 

visitLeft(v, r); . 

if (tree. hasLeft(v)) 


r.left eulerTour(tree.left(v)); / / recursive traversal i 

visitBelow(v, r); 
if (tree.hasRight(v)) 

r.right eulerTour(tree.right(v)); / / recursive traversal 

visitRight(v, r); 

return Lout; 


} 

/ / Auxiliary methods that can be redefined by subclasses: 

/** Method called for the visit on the left * / 

protected void visitLeft(Position<E> v, TourResult<R> r) {} 

/** Method called for the visit on from below * / 

protected void visitBelow(Position<E> v, TourResult<R> r) {} 

/** Method called for the visit on the right * / 

protected void visitRight(Position<E> v, TourResult<R> r) {} 


} 
Code Fragment 7.29: Java class EulerTour defining a generic Euler tour of a binary 
tree. This class realizes the template method pattern and must be specialized in 
order to get an interesting computation. 



321 7.3. Binary Trees 

The class, EulerTour, itself does not perform any useful computation. Nev
ertheless, we can extend it and override the empty auxiliary methods to do use
ful tasks. We illustrate this concept using arithmetic expression trees (see Exam
ple 7.9). We assume that an arithmetic expression tree has objects of type Expres
sionTerm at each node. Class ExpressionTerm has subclasses ExpressionVariable 
(for variables) and ExpressionOperator (for operators). In tum, class Expression
Operator has subclasses for the arithmetic operators, such as AdditionOperator 
and MultiplicationOperator. Method value of ExpressionTerm is overridden by its 
subclasses. For a variable, it returns the value of the variable. For an operator, it re
turns the result of applying the operator to its operands. The operands of an operator 
are set by method setOperands of ExpressionOperator. In Code Fragment 7.30, 
we show the classes ExpressionTerm, ExpressionVariable, ExpressionOperator and 
AdditionOperator. 

/** Class for a term (operator or variable) of an arithmetic expression. * / 
public class ExpressionTerm { 

public Integer getValueO { return 0; } 
public String toString() { return new String(IlII); } 

}

/** Class for a variable of an arithmetic expression. * / 

public class ExpressionVariable extends ExpressionTerm { 


protected Integer var; 

public ExpressionVariable(lnteger x) { var = x;'} 

public void setVariable(lnteger x) { var = x; }. 

public Integer getValueO { return var; } 

public String toStringO { return var.toStringO; } 


} . 

/** Class for an operator of an arithmetic expression * / 
public class ExpressionOp'erator extends ExpressionTerm { 

protected Integer firstOperand, secondOperand; . 
public void setOperands(lnteger x, Integer y) { 

firstOperand x; 
secondOperand y; 

} 
}
/** Class for the addition operator in an arithmetic expression. * / 
public class AdditionOperator extends ExpressionOperator { 

public Integer getValue() {. 
return (firstOperand + secondOperand); / / unboxing and then autoboxing 

} 
public String toStringO { ,return new String("+"); } } ". .. . . . . 

Code Fragment 7.30: Classes for a variable, generic operator, and addition operator 
of an arithmetic expression. 



322 Chapter 7. Tree Structures 

In Code Fragments 7.31 and 7.32, we show classes EvaluateExpressionTour 
and PrintExpressionTou r, specializing Eu lerTou r, that evaluate and print the arith
metic expression stored in a binary tree, respectively. Class EvaluateExpression
Tour overrides auxiliary method visitRight(T, v, r) with the following computation: 

• If v is an external node, set r.out equal to the value of the variable stored at v 
• Else (v is an internal node), combine r.left and r.right with the operator stored 

at v, and set r.out equal to the result of the operation. 
Class PrintExpressionTour overrides methods visitLeft, visitBelow, and visitRight 
following the approach of pseudo-code version shown in Code Fragment 7.27. 

/** Compute the value of an arithmetic expression tree. * / 

public class EvaluateExpressionTour extends EulerTour<ExpressionTerm, Integer> { 


public Integer execute(BinaryTree< ExpressionTerm> T) { 

init(T); / / calls method of superclass 

return eulerTour(tree.rootO); / / returns the value of the expression 


} 
protected void visitRight(Position<ExpressionTerm> v, TourResult<lnteger> r) { 

ExpressionTerm term = v.elementO: 
if (tree.islnternal(v)) { 

ExpressionOperator op = (ExpressionOperator) term; 
op.setOpera nds( r.left, r. right); 


} 

Lout = term.getValueO; 


} 
} 
Code Fragment 7.31: Class EvaluateExpressionTour that specializes EulerTour to 
evaluate the expression associated with ~n arithmetic expression tree. 

s 

/** Print out the expression stored in an arithmetic expression tree. * / 
public class PrintExpressionTour extends EulerTour<ExpressionTerm, String> { 

public String execute(BinaryTree<ExpressionTerm> T) { 

init(T); 

System.out.print(IIExpression: II); 

eulerTour(T.rootO ); 

System.out.printlnO; 

return null; / / nothing to return 


} 
protected void visitLeft(Position<ExpressionTerm> v, TourResult<String> r) { 

if (tree.islnternal(v)) System.out.print(" (II); } 
protected void visitBelow(Position<ExpressionTerm> v, TourResult<String> r) { 

System.out.print(v.elementO); } 
protected void visitRight(Position<ExpressionTerm> v, TourResult<String> r) { 

if (tree.islnternal(v)) System.out.print(lI) !I); } 
} 
Code Fragment 7.32: Class PrintExpressionTour that specializes EulerTour to print 
the expression associated with an arithmetic expression tree. 



7.4. Exercises 323 

7.4 Exercises 

For help with exercises, please visit the web site, www.wiley.com/go/global/goodrich. 

Reinforcement 

R-7.1 The following questions refer to the tree of Figure 7.3. 

a. Which node is the root? 
b. What are the internal nodes? 
c. How many descendents does node cs016/ have? 
d. How many ancestors does node cs016/ have? 
e. What are the siblings of node homeworks/? 
f. Which nodes are in the subtree rooted at node projects/? 
g. What is the depth of node papers/? 
h. What is the height of the tree? 

R-7.2 Find the value of the arithmetic expression associated with each subtree 
of the binary tree of Figure 7.11. 

R-7.3 Let T be an n-node binary tree that may be improper. Describe how to 
represent T by means of aproper binary tree T' with O(n) nodes. 

R-7.4 What are the minimum and maximum' number of internal and external 
nodes in an improper binary tree with n nodes? 

R-7.5 Show a tree achieving the worst-case running time for algorithm depth. 

R-7.6 Give a justification of Proposition 7.4. 

R-7.7 What is the running time of algorithm heigbt2(T, v) (Code Fragment 7.6) 
when called on a node vdistinct from the root of T? 

R-7.8 Let T be the tree of Figure 7.3, and refer to Code Fragments 7.9 and 7.10. 

a. Give the output oftoStringPostorder(T, T.rootO). 
b. Give the output of parentheticRepresentation(T, T. rootO). 

R-7.9 Describe a modification to parentheticRepresentation, from Code Frag
ment 7.10, so that it uses the lengthO method for String objects to output 
the parenthetic representation of a tree with line breaks and spaces added 
to display the tree in a text window that is 80 characters wide. 

R -7.10 Draw an arithmetic expression tree that has four external nodes, storing 
the numbers 1,5,6, and 7 (with each number stored in a distinct external 
node, but not necessarily in this order), and has three internal nodes, each 
storing an operator from the set {+, -, x, /}, so that the value of the root 
is 21. The operators may return and act on fractions, and an operator may 
be used more than once. 

www.wiley.com/go/global/goodrich


324 	 Chapter 7. Tree Structures 

R-7.11 	 Let T be an ordered tree with more than one node. Is it possible that the 
preorder traversal of T visits the nodes in the same order as the postorder 
traversal of T? If so, give an example; otherwise, argue why this cannot 
occur. Likewise, is it possible that the preorder traversal of T visits the 
nodes in the reverse order of the postorder traversal of T? If so, give an 
example; otherwise, argue why this cannot occur. 

R-7.12 	Answer the previous question for the case when T is a proper binary tree 
with more than one node. 

R-7.13 	What is the running time ofparentheticRepresentation(T, T. root 0 ) (Code 
Fragment 7.10) for a tree T with n nodes? 

R-7.I4 	Draw a (single) binary tree T such that 

• 	Each internal node of T stores a single character 
• Apreordertraversal of T yields EXAMFUN 
• An inorder traversal of T yields MAFXU EN. 

R-7.15 Answer the following questions so as to justify Proposition 7.10. 

a. 	 What is the minimum number of external nodes for a proper binary 
tree with height h? Justify your answer. 

b. 	 What is the maximum number of external nodes for a proper binary 
tree with height h? Justify your answer. 

c. 	 Let T be a proper binary tree with height hand n nodes. Show that 

log(n+ 1) 1< h ~ (n-I)/2. 

d. 	For which values of n andh can the above lower and upper ljounds 
on h be attained with equality? 

R-7.16 	Describe a generalization of the Euler tour traversal to trees such that each 
internal node has three children. Describe how you could use this traversal 
to compute the height of each node in such a tree. 

R-7.17 	Compute the output of algorithm toStringPostorder(T,T.rootO), from 
Code Fragment 7.12, on the tree T of Figure 7.3. 

R-7.18 Illustrate the execution of algorithm diskSpace(T,T.rootO) (Code Frag
ment7.l3) on the tree T of Figure 7.9. 

R-7.19 Let T be the binary tree of Figure 7.11. 
a. 	Give the output oftoStringPostorder(T, T.root()) (Code Fragment 7.9). 
b. Give the output of parentheticRepresentation(T, T. rootO) (Code Frag
ment 7,10).
, . .' 	. ". . 

R-7.20 	Let T be the binary tree of Figure 7.11. 
a. Give the output of toStringPostorder(T, T. root0 ) (Code Fragment 7.12). 
b. Give the output of printExpression(T, T.rootO) (Code Fragment 7.27). 

http:ment7.l3


325 7.4. Exercises 

R-7.21 	 Describe, in pseudo-code, an algorithm for computing the number of de
scendents of each node of a binary tree. The algorithm should be based 
on the Euler tour traversal. 

R-7.22 	Let T be a (possibly improper) binary tree with n nodes, and let D be the 
sum of the depths of all the external nodes of T. Show that if T has the 
minimum number of external nodes possible, then Dis O(n) and if T has 
the maximum number of external nodes possible, then Dis O(nlogn). 

R-7.23 	 Let T be a binary tree with n nodes, and let p be the level numbering of 
the nodes of T, as given in Section 7.3.5. 
a. Show that, for every node v of T, p(v) :::; 2n - 1. 

b. Show an example of a binary tree with seven nodes that attains the 
above upper bound on p(v) for some node v. 

R-7.24 Show how to use the Euler tour traversal to compute the level number, 
defined in Section 7.3.5, of each node in a binary tree T. 

R-7.25 Draw the binary tree representation of the following arithmetic expres
sion:"(((5 2)*(2-1))/((29) ((7-2)-1))*8)". 

R-7.26 	Let T be a binary tree with n nodes that is realized with an array list, S, and 
let p be the level numbering of the nodes in T, as given in Section 7.3.5. 
Give pseudo-code descriptions of each of the methods root, parent, left, 
right, hasleft, hasRight, islnternal, isExternal, and isRoot. 

Creativity 

C-7.1 	 For each node v in a tree T, let pre (v) be the rank: o~ v in a preorder 
traversal of T, let post(v) be the rank.of v in a postorder traversal of T, let 
depth(v) be the depth of v, and let desc(v)' be the number of descendents 
of v, not counting v itself. Derive a formula defining post(v) in terms of 
desc(v), depth(v), and pre(v), for each node v in T. 

C-7.2 	Let T be a tree whose nodes store strings. Give an efficient algorithm that 
computes and prints, for every node v of T, the string stored at v and the 
height of the subtree rooted at v. 

C-7.3 	Design algorithms for the following operations for a binary tree T: 

• 	preorderNext(v): return the node visited after node v in a preorder 
traversal of T 

• 	inorderNext(v): return the node visited after node v in an inorder 
traversal of T 

• 	postorderNext(v): return the node visited after node v in a postorder 
traversal of T. 

What are the worst-case running times of your algorithms? 



(a) 

326 	 Chapter 7. Tree Structures 

C-7.4 	Give an O(n)-time algorithm for computing the depth of all the nodes of 
a tree T, where n is the number of nodes of T. 

C-7.5 	The indented parenthetic representation of a tree T is a variation of the 
parenthetic representation of T (see Figure 7.7) that uses indentation and 
line breaks as illustrated in Figure 7.21. Give an algorithm that prints this 
representation of a tree. 

Sales ( 
Domestic 
International ( 

Canada 
S. America 
Overseas ( 

Africa 
Europe 
Asia 
Australia 

(b) 

Figure 7.21: (a) Tree T; (b) indented parenthetic representation of T. 

C-7.6 	LetT be a (possibly improper) binary tree with n nodes, and let D be the 
sum of the depths of all the external nodes of T. Describe a configuration 
for T such that Dis Q(n2). Such a tree would be the worst case for the 
asymptotic running time of Algorithm heightl (Code Fragment 7.5). 

C-7.7 	For a tree T, let nj denote the number of its internal nodes, and~let nE 
denote the number of its external nodes. Show that if every internal node 
in T has exactly 3 children, then nE = 2nj +1. 

C-7.S 	Describe how to clone a proper binary tree using the attach method in
stead of methods insertLeft and insertRight. 

C-7.9 	The balance factor of an internal node v of a proper binary tree is the 
difference between the heights of the right and left subtrees of v. Show 
how to specialize the Euler tour traversal of Section 7.3.7 to print the 
balance factors of all the internal nodes of a proper binary tree. 

C-7.10 	Two ordered trees T' and Tff are said to be isomorphic if one of the fol
lowing holds: 

• Both T' and Tff are empty 
• Both T' and Tff consist of a single node 
• Both T' and Tff have the same number k 2 1 of subtrees, and the ith 

subtree ofT' is isomorphic to the ith subtree of Tff, for i = 1, ... ,k. 
Design an algorithm that tests whether two given ordered trees are iso
morphic. What is the running time of your algorithm? 



7.4. Exercises 	 327 

C-7.11 	 Extend the concept of an Euler tour to an ordered tree that is not necessar
ily a binary tree. 

C-7.12 	We can define a binary tree representation T' for an ordered general tree 
T as follows (see Figure 7.22): 

• 	For each node u of T, there is an internal node u' of T' associated 
with u. 

• 	Ifu is an external node of T and does not have a sibling immediately 
following it, then the children of u' in T' are external nodes. 

• 	If u is an internal node of T·and v is the first child of u in T, then v' 
is the left child of u' in T. 

• If node v has a sibling w immediately following it, then w' is the 
right child ofv' in T'. 

Given such a representation T' of a general ordered tree T, answer each 
of the following questions: 

a. 	 Is a preorder traversal of T' equivalent to a preorder traversal of T? 
b. 	 Is a postorder traversal of T' equivalent to a postorder traversal of T? 
c. 	 Is an inorder traversal of T' equivalent to one of the standard traver

sals of T? If so, which one? 

A 

'@ 
'0 c/

(a) 	 (b) 

Figure 7.22: Representation of a tree with a binary tree: (a) tree T; (b) binary tree 
T' for T. The dashed edges connect nodes of T' that are siblings in T. 

C-7.13 	As mentioned in Exercise C-5.7,posifix notation is an unambiguous way 
of writing an arithmetic expression without parentheses. It is defined so 
that if "(exPl )op(exP2)" is a normal (infix) fully parenthesized expression 
with operation op, then its postfix equivalent is "pexPl pexp2 op", where 
pexp1 is the postfix version of exp1 and pexp2 is the postfix version of 
exp2' The postfix version of a single number of variables is just that num
beror variable. So, for example, the postfix version of the infix expression 
"((5 2) *(8 - 3))/4" is "5 2 +8 3 *4 /". Give an efficient algorithm 
for converting an infix arithmetic expression to its equivalent postfix no
tation. (Hint: First convert the infix expression into its equivalent binary 
tree representation, using the algorithm of Code Fragment 7.21.) 



328 

" 
:j 

Chapter 7. Tree Structures 

C-7.14 	Given a proper binary tree T, define the reflection of T to be the binary 
tree T' such that each node v in T is also in T', but the left child of v in T 
is v's right child in T' and the right child of v in T is v's left child in T'. 
Show that a preorder traversal of a proper binary tree T is the same as the 
postorder traversal of T's reflection, but in reverse order. 

C-7.15 	Algorithm preorderD raw draws a binary tree T by assigning x- and y
coordinates to each node v such that x(v) is the number of nodes preceding 
v in the preorder traversal of T and y(v) is the depth of v in T. Algorithm 
postorderDraw is similar to preorderDraw but assigns x-coordinates using 
a postorder traversal. 

a. 	 Show that the drawing of T produced by preorderDraw has no pairs 
of crossing edges. 

b. 	 Redraw the binary tree of Figure 7.19 using preorderDraw. 
c. 	 Show that the drawing of T produced by postorderDraw has no pairs 

of crossing edges. 
d. Redraw the binary tree of Figure 7.19 using postorderDraw. 

C-7.16 Design an algorithm for drawing general trees that generalizes the inorder 
traversal approach for drawing binary trees. 

C-7.17 Let a visit action in the Euler tour traversal be denoted by a pair (v, a), 
where v is the visited node and a is one of left; below, or right. Design 
and analyze an algorithm for performing operation tourNext(v,aY, which 
returns the visit action (w,b) following (v,a). 

C-7.18 Consider a variation of the linked data structure for binary trees where 
• 	 each node object has references to the node objects of ,the chik!ren but 

not to the node object of the parent. Describe an implementation of the 
methods of a binary tree with this data structure ~llld analyze the time 
complexity for these methods. 

C-7.19 	Design an alternative implementation ofthe linked data structure for proper 
binary trees using a class for nodes that specializes into subclasses for an 
internal node, an external node, and the root node. 

C-7.20 	Within the linked data structure for binary trees, explore an alternative 
design for implementing the iterators returned by the methods iteratorO, 
positionsO.iteratorO, and children(v).iteratorO such that each of these 
methods takes O( 1) time. Can you still achieve constant time implemen
tations for the methods hasNextO and nextO of the iterators returned? 

C-7.21 Let T be a tree with n nodes; Definethelowest common ancestor (LCA) 
,', ,between two nodes v and w as the lowest node in T that has both v and 

w as descendents (where we allow a node to be a descendent of itself). 
Given two nodes v and w, describe an efficient algorithm for finding the 
LCA of v and w. What is the running time of your algorithm? 



329 7.4. Exercises 

C-7.22 	Let T be a binary tree with n nodes, and, for any node v in T, let dv denote 
the depth of v in T. The distance between two nodes v and w in T is 
dv +dw - 2du, where u is the lowest common ancestor (LCA) u of v and 
w. The diameter of T is the maximum distance between two nodes in T. 
Describe an efficient algorithm for finding the diameter of T. What is the 
running time of your algorithm? 

C-7.23 	Suppose each node v of a binary tree T is labeled with its value p(v) in 
a level numbering of T. Design a fast method for determining p(u) for 
the lowest common ancestor (LCA), u, of two nodes v and w in T, given 
p(v) and p(w). You do not need to find node u, just compute its level
numbering label. 

C-7.24 	Justify the bounds in Table 7.3 by providing a detailed analysis of the 
running times of the methods of a binary tree T implemented with an 
array list, S, where S is realized by means of an array. 

C-7.25 	Justify Table 7.1, summarizing the running time of the methods of a tree 
represented with a linked structure, by providing, for each method, a de
scription of its implementation, and an analysis of its running time. 

C-7.26 	Describe a nonrecursive method for evaluating a binary tree representing 
an arithmetic expression. 

C-7.27 	Let T be a binary tree with n nodes. Define a Roman node to be a node 
v in T, such that the number of descendents in v's left subtree differ from 
the number of descendents in v's right subtree by at most 5. Describe 
a linear-time method for finding each node v of T, such that v is not a 
Roman node, but all of v's descendents are Roman nodes.. 

C-7.28 Describe a nonrecursive method for performing an Euler,Itour traversal of 
a binary tree that runs in linear time and do~s not use a stack. 

C-7.29 Describe, in pseudo-code, a nonrecursive 'method for performing an in
order traversal of a binary tree in linear time. 

C-7.30 	Let T be a binary tree with n nodes (T may be realized with an array list 
or a linked structure). Give a linear-time algorithm that uses the methods 
of the BinaryTree interface to traverse the nodes of T by increasing values 
of the level numbering function p given in Section 7.3.5. This traversal is 
known as the level order traversal. 

C-7.31 	The path length of a tree T is the sum of the depths of all the nodes in T. 
Describe a linear-time method for computing the path length of a tree T 
(which is not necessarily binary), 

C-7.32 	Definethe internal path length, I(T), of a tree T to be the sum of the 
depths of all the internal nodes in T, Likewise, define the external path 
length, E(T), of a tree T to be the sum of the depths of all the external 
nodes in T, Show that if T is a proper binary tree with n nodes, then 
E(T) =I(T)+n-l. 



330 Chapter 7. Tree Structures 

Projects 

P-7.l Implement the binary tree ADT using an array list. 


P-7.2 Implement the tree ADT using a linked structure. 


P-7.3 Write a program that draws a binary tree. 


P-7.4 A slicing jloorplan divides a rectangle with horizontal and vertical sides 

using horizontal and vertical cuts. (See Figure 7.23a.) A slicing fioorplan 
can be represented by a proper binary tree, called a slicing tree, whose 
internal nodes represent the cuts, and whose external nodes represent the 
basic rectangles into which the fioorplan is decomposed by the cuts. (See 
Figure 7.23b.) The compaction problem for a slicing fioorplan is defined 
as follows. Assume that each basic rectangle of a slicing fioorplan is as
signed a minimum width wand a minimum height h. The compaction 
problem is to find the smallest possible height and width for each rectangle 
of the slicing fioorplan that is compatible with the minimum dimensions 
of the basic rectangles. Namely, this problem requires the assignment of 
values h(v) and w(v) to each node v of the slicing tree such that: 

if v is an external node whose basic rect
w 

angle has minimum width w 

if v is an internal node associated with a 

w(v) = < max(w(w),w(z)) horizontal cut with left child w and right 
child z 

if v is an internal node associated, with 
w(w) w(z) a vertical cut with lef~ child wand right 

child z 

if v is an external node whose basic rect
h 

angle has minimum height h 

if v is an internal node associated with a 

h(v) < 
h(w) +h(z) horizontal cut with left child wand right 

child z 

if v is an internal node associated with 
max(h(w), h(z)) a vertical cut with left child w and right 

child z 

Design a data structure for slicing fioorplans that supports the operations: 

• Create a fioorplan consisting of a single basic rectangle. 
• Decompose a basic rectangle by means of a horizontal cut. 



331 7.4. Exercises 

• Decompose a basic rectangle by means of a vertical cut. 
• Assign minimum height and width to a basic rectangle. 
• Draw the slicing tree associated with the fioorplan. 
• Compact and draw the fioorplan. 

A 

(a) (b) 

Figure 7.23: (a) Slicing fioorplan; (b) slicing tree associated with the floorplan. 

P-7.5 	 Write a program that takes as input a fully parenthesized, arithmetic ex
pression and converts it to a binary expression tree. Your program should 
display the tree in some way and also print the value associated with the 
root. For an additional challenge, allow for the leaves to store variables 
of the form Xl, X2, X3, and so on, which are initially 0 and which can be 
updated interactively by your program, with the corresponding update in 
the printed value of the root of the expression tree. 

P-7.6 Write a program that draws a general tree. 


P-7.7 Write a program that can input and display a person's family tree. 


P-7.8 Implement the tree ADT using the binary tree representation described in 

Exercise C-7.l2. You may reuse the'Lil1ke~BjnaryTree implementation of 
a binary tree. 

P-7.9 	Write a program that visualizes an Euler tour traversal of a proper binary 
tree, including the movements from node to node and the actions associ
ated with visits on the left, from below, and on the right. Illustrate your 
program by having it compute and display preorder labels, inorder labels, 
postorder labels, ancestor counts, and descendent counts for each node in 
the tree (not necessarily all at the same time). 

P-7.10 	The arithmetic expression code in Code Fragments 7.29-7.32 only works 
for Integer expressions with the addition operator. Write a Java program 
that can evaluation arbitrary expressions of any Number type of object. 

P-7.11 	 Write aprogram that can play Tic-Tac-Toe effectively. (See Section 3.1.5.) 
To do this, you will need to create a game tree T, which is a tree where 
each node cOlTesponds to a game configuration, which, in this case, is 
a representation of the tic-tac-toe board. The root node corresponds to 

http:7.29-7.32


332 Chapter 7. Tree Structures 

the initial configuration. For each internal node v in T, the children of v 

correspond to the game states we can reach from v's game state in a single 
legal move for the appropriate player, A (the first player) or B (the second 
player). Nodes at even depths correspond to moves for A and nodes at 
odd depths correspond to moves for B. External nodes are either final 
game states or are at a depth beyond which we don't want to explore. We 
score each external node with a value that indicates how good this state 
is for player A. In large games, like chess, we have to use a heuristic 
scoring function, but for small games, like tic-tac-toe, we can construct 
the entire game tree and score external nodes as +1, 0, 1, indicating 
whether player A has a win, draw, or lose in that configuration. A good 
algorithm for choosing moves is minimax. In this algorithm, we assign a 
score to each internal node v in T, such that if v represents A's tum, we 
compute v's score as the maximum of the scores of v's children (which 
corresponds to A's optimal play from v). If an internal node v represents 
B's tum, then we compute v's score as the minimum of the scores of v's 
children (which corresponds to B's optimal play from v). 

Chapter Notes 
Discussions of the classic preorder, inorder, and postorder tree traversal methods can be 
found in Knuth's Fundamental Algorithms book [62J. The Euler tour traversal technique 
comes from the parallel algorithms community, as itis introduced by Tarjan and Vishkin [89] 
and is discussed by JaTa [53] and by Karp and Ramachandran [57]. The algorithm for 
drawing a tree is generally considered to be a part of the "folklore" of graph dra'}'ing al
gorithms. The reader interested in graph drawing is referred to the book by Di Battista, 
Eades, Tamassia and Tollis [28] and the survey by Tamassia<and Libtta [88]. The puzzler 
in Exercise R-7.10 was communicated by Micha Sharif. 



Chapter 

8 Priority Queues 

0000 0o •••• 00OO.:.~.:.O 00000 
0 •••~~~;t6•• 00 ••••• 0....00 0.· 0 
o \. ~•••o 0 •••~ ••• 0 
00 e:••••:...J>0.~0 •• • gO§QOQ.···0 0O. 0 00 .)'0. .

09 0oo~oooiiOo 000 00:0 ...... 0°0°•• 0000 0 0 • 
0.... • • 000 o. 0 0 o· • • • 000 •Oo".OOOOO~~••Orr~~O.~.<?O OOCj,.OO OOO.,i/',OOOO· •• ••• 0 

o 0 0..... 0 00 •• 0 • • • • 0~. 0 
.0 q; •••° 0 00000·.,.···· ~~ 00°00 0 

OV ° 
o"il'i9"00 
00 

0 0 0o °0•••, •••°0 °000° 000 ~ 0 0 0 000 ° °0 
° • ••••••• ° 00". °0 
••OOi8~..

0

0 ...:::.. 0 
0 
0 

••8. 8•• 0 
0 

•••~. 0o • ..0 0:' •• 
0 o •••OQ~•• 0 ••goce.. 00 

o ••••••• 0 0 •...i'!.. 0..·oo •• 0 0 ....000 
0 0 00000 

00Contents 

8.1 The Priority Queue Abstract Data Type. . . . . . .. 334 

8.1.1 Keys, Priorities, and Total Order Relations. . 334 

8.1.2 Entries and Comparators .. . . . . . . . . . 336 

8.1.3 The Priority Queue ADT . . . . . . . . . . . . 338 

8.1.4 Sorting with a Priority Queue. . . . . . . . . . 339 

8.2 Implementing a Priority Queue with a List . . . . .. 340 

8.2.1 A Java Priority Queue Implementation Using 1 List . 341 

8.2.2 Selection-Sort and Insertion-Sort ........... 344 


8.3 Heaps................ '. . . . . . . . . .. 346 


8.3.1 The Heap Data Structure ............... 346 


8.3.2 Complete Binary Trees and Their Representation .. 349 

8.3.3 Implementing a Priority Queue with a Heap 354 

8.3.4 A Java Heap Implementation 359 

8.3.5 Heap-Sort ............ . 362 


8.3.6 Bottom-Up Heap Construction * 364 

8.4 Adaptable Priority Queues . . . . . . . . . . .. 368 

8.4.1 Using the java.util.PriorityQueue Class. 369 

8.4.2 .' Location-Aware Entries . . . . . . . . . 370 
8:4.3 Implementing an Adaptable Priority Queue 371 

8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . .. 374 

http:OOCj,.OO


334 Chapter 8. Priority Queues 

8.1 The Priority Queue Abstract Data Type 

Apriority queue is an abstract data type for storing a collection of prioritized el
ements that supports arbitrary element insertion but supports removal of elements 
in order of priority, that is, the element with first priority can be removed at any 
time. This ADT is fundamentally different from the position-based data structures 
we discussed in previous chapters, such as stacks, queues, deques, lists, and even 
trees. These other data structures store elements at specific positions, which are 
often positions in a linear arrangement of the elements determined by the inser
tion and deletion operations performed. The priority queue ADT stores elements 
according to their priorities, and exposes no notion of "position" to the user. 

8.1.1 Keys, Priorities, and Total Order Relations 

Applications commonly require that we compare objects according to parameters 
or properties, called "keys," that are assigned for each object in a collection. For
mally, we define a key to be an object that is assigned to an element as a specific 
attribute for that element, which can be used to identify or weigh that element. Note 
that the key is assigned to an element, typically by a user or application; hence, a 
key might represent a property that an element did not originally possess. 

The key an application assigns to an element is not necessarily unique, however, 
and an application may even change an element's key if it needs to. For example, 
we can compare companies by earnings or by number of employees; hence,#either 
of these parameters can be used as a key for a company, depending on the infor
mation we wish to extract. Likewise, we can compare restaurants by a critic's food 
quality rating or by average entree price. To achieve the most generality then, we 
allow a key to be of any type that is appropriate for a particular application. 

As in the examples above from an airport, the key used for comparisons is 
often more than a single numerical value, such as price, length, weight, or speed. 
That is, a key can sometimes be a more complex property that cannot be quantified 
with a single number. For example, the priority of standby passengers is usually 
determined by taking into account a host of different factors, including frequent
flyer status, the fare paid, and check-in time. In some applications, the key for 
an object is part of the object itself (for example, it might be an instance variable 
storing the list price of a book, or the weight of a car). In other applications, the key 
is not part of the object but the object gets assigned its key by the application (for 
example, the quality rating given to a stock by a financial analyst, or the priority 
assigned to a standby passenger by a gate agent). 



335 8.1. The Priority Queue Abstract Data Type 

Comparing Keys with Total Orders 

A priority queue needs a comparison rule that will never contradict itself. In order 
for a comparison rule, which we denote by ~, to be robust in this way, it must 
define a total order relation, which is to say that the comparison rule is defined for 
every pair of keys and it must satisfy the following properties: 

• 	Reflexive property: k ~ k. 

• Antisymmetric property: if kl < k2 and k2 ~ kl' then kl = k2. 

• Transitive property: if kl ~ k2 and k2 ~ k3, then kl < k3. 

Any comparison rule, ~, that satisfies these three properties will never lead to a 
comparison contradiction. In fact, such a rule defines a linear ordering relationship 
among a set of keys; hence, if a (finite) collection of elements has a total order 
defined for it, then the notion of a smallest key, killin, is well defined, as a key in 
which kmin ~ k, for any other key k in our collection. 

A priority queue is a collection of elements, called values, each having an 
associated key that is provided at the time the element is inserted. Akey-value pair 
inserted into a priority queue is called an entry of the priority queue. The name 
"priority queue" comes from the fact that keys determine the "priority" used to 
pick entries to be removed. The two fundamental methods of a priority queue P are 
as follows: 

• 	insert(k,x): Insert a value x with key k into P. 

• 	removeMinO: Return and remove from P an entry with the smallest key, that 
is, an entry whose key is less than or equal to that of everyi0ther entry in P. 

By the way, some people refer to the removeMi.n method as the "extractMin" 
method, so as to stress that this method simultaneously removes and returns an 
entry P. There are many applications where the insert and removeMin operations 
play an important role. We consider such an application in the example that follows. 

Example 8.1: Suppose a certain flight is fully booked an hour prior to departure. 
Because of the possibility ofcancellations, the airline maintains a priority queue of 
standby passengers hoping to get a seat. The priority of each standby passenger is 
determined by the airline taking into account the fare paid, the frequent-flyer sta
tus, and the time that the passenger is inserted into the priority queue. A standby 
passenger reference is inserted into the priority queue with an insert operation as 
soon as he or she requests to fly standby. Shortly before the flight departure, ifseats 
become available (for example, due to no-shows or last-minute cancellations), the 
airline removes a standby passenger with tirst priority from the priority queue, us
ing a removeMin operation and lets this person board. This process is then repeated 
until all available seats have been tilled or the priority queue becomes empty. 



336 Chapter 8. Priority Queues 

8.1.2 Entries and Comparators 

There are still two important issues that we have left undetermined to this point: 

• How do we keep track of the associations between keys and values? 

• How do we compare keys so as to determine a smallest key? 

Answering these questions involves the use of two interesting design patterns. 

The definition of a priority queue implicitly makes use of two special kinds 
of objects that answer the above questions, the entry and comparator, which we 
discuss in this subsection. 

Entries 

An entry is an association between a key k and a value x, that is, an entry is simply 
a key-value pair. We use entries in a priority queue Q to keep track of the way Q is 
associating keys and their corresponding values. 

An entry is actually an example of a more general object-oriented design pat
tern, the composition pattern, which defines a single object that is composed of 
other objects. We use this pattern in a priority queue when we define the entries 
being stored in the priority queue to be pairs consisting of a key k and a value x. 
A pair is the simplest composition, for it combines two objects into a single pair 
object. To implement this concept, we define a class that stores two objects in its 
first and second instance variables, respectively, and provides methods to jtccess 
and update these variables. 

In Code Fragment 8.1, we show an implementation of the 'composition pattern 
for entries storing key-value pairs in a priority queue. We realize this composition 
with an interface called Entry (the java.util package includes a similar Entry inter
face, by the way). Other kinds of compositions include triples, which store three 
objects, quadruples, which store four objects, and so on. 

/** Interface for a key-value pair entry **/ 
public interface Entry<K,v> { 


/** Returns the key stored in this entry. * / 

public K getKeyO; 

/** Returns the value stored in this entry. * / 

public V getValueO; 


} 

Code Fragment 8.1: Java interface for an entry storing key-value pairs in a priority 
queue. 



337 S.l. The Priority Queue Abstract Data Type 

Comparators 

Another important issue in the priority queue ADT that we need to define is how to 
specify the total order relation for comparing keys. One possibility is to implement 
a different priority queue for each key type we want to use and each possible way 
of comparing keys of such types. The problem with this approach is that it is not 
very general and it requires that we create a lot of similar code. 

An alternative strategy is to require that keys be able to compare themselves 
to one another. This solution allows us to write a general priority queue class that 
can store instances of a key class that has a well-established natural ordering, 
that is, a natural way of comparing such keys in a way that defines a total order. 
Such an ordering is defined in Java, for instance, by objects that implement the 
java.lang.Comparable interface. This solution is an improvement over the special
ized approach, for it allows us to write a single priority queue class that can handle 
lots of different types of keys. But there are contexts in which this solution is ask
ing too much of the keys, such as when there are at least two natural ways for 
comparing them, as in the following example. 

Example 8.2: There are atleasttwo ways ofcomparing the strings, "4" and "12". 
In the lexicographic ordering, which is an extension of the alphabetic ordering to 
Unicode, we have "4" > //12". But if we interpret these strings as integers, then 
"4" < "12//. . 

Thus, for a general and reusable form of a priority queue, we should not rely 
on the keys to provide their comparison rules. Instead, we use spacial comparator 
objects that are external to the keys to supply.the comparison rules. A comparator 
is an object that compares two keys. We assume that a priority queue P is given 
a comparator when P is constructed, and we might also imagine the ability of a 
priority queue to be given a new comparator if its old one ever becomes "out of 
date." When P needs to compare two keys, it uses the comparator it was given to 
perform the comparison. Thus, a programmer can write a general priority queue 
implementation that works correctly in a wide variety of contexts. Formally, the 
comparator ADT provides the following method: 

compare(a, b): 	Returns an integer i such that i 0 if a < b, i 0 if a = b, 
and i > 0 if a > b; an error occurs if a and b cannot be 
compared. 

The standard Java interface java,util.Comparator corresponds to the comparator 
ADT above, which offers a general, dynamic, reusable way to compare objects. It 
also includes an equals() method for comparing a comparator to other comparators. 



338 Chapter 8. 	 Priority Queues 

8.1.3 The Priority Queue ADT 

Having described the composition and comparator patterns, let us now define the 
priority queue ADT, to support the following method for a priority queue P: 

size(): Return the number of entries in P. 

isEmpty(): 	Test whether P is empty. 

minO: 	 Return (but do not remove) an entry of P with smallest 
key; an error condition occurs if P is empty. 

insert(k,x): 	Insert into P key k with value x and return the entry stor
ing them; an error condition occurs if k is invalid (that is, 
k cannot be compared with other keys. 

remove Min (): 	Remove from P and return an entry with smallest key; an 
error condition occurs if P is empty. 

As mentioned above, the primary methods of the priority queue ADT are the 
insert and removeMin operations. The other methods are query operation min and 
the generic collection operations size and isEmpty. Note that we allow a priority 
queue to have multiple entries with the same key. 

Example 8.3: The following table shows a series of operations and their ~ffects 
on an initially empty priority queue P. We denote with ei an ~ntry object returned 
by method insert. The "Priority Queue" column is somewhat deceiving since it 
shows the entries sorted by key. This is more than is required of a priority queue. 

Operation Output Priority Queue 
insert(S,A) ed= (S,A)] {(S,A)} 
insert(9,C) e2 (9,C)] {(S,A), (9, C)} 
insert(3,B) I e3 (3,B)] {(3,B), (S,A), (9,C)} 
insert(7,D) e4 (7,D)] {(3,B), (S,A), (7,D), (9,C)} 

minO e3 {(3,B), (S,A), (7,D), (9,C)} 
removeMinO . e3 {(S,A), (7,D), (9,C)} 

sizeO 3 {(S,A), (7,D), (9,C)} 
removeMin() el {(7,D), (9,C)} 
removeMinO e4 {(9,C)} 
removeMinO e2 {} 



.. '··' 

.;.". 	 'r· 
I 
I 

i 
! S.l. The Priority Queue Abstract Data Type 	 339 

8.1.4 Sorting with a Priority Queue 

Another important application of a priority queue is sorting, where we are given a 
collection S of n elements that can be compared according to a total order relation, 
and we want to rearrange them in increasing order (or at least in nondecreasing 
order if there are ties). The algorithm for sorting S with a priority queue Q, called 
PriorityQueueSort, is quite simple and consists of the following two phases: 

1. 	 In the first phase, we put the elements of S into an initially empty priority 
queue P by means of a series of n insert operations, one for each element. 

2. 	 In the second phase, we extract the elements from P in nondecreasing order 
by means of a series of n removeM i n operations, putting them back into S in, 
order. 

We give pseudo-code for this algorithm in Code Fragment 8.2, assuming that S is 
a sequence (pseudo-code for a different type of collection, such as an array list or 
node list, would be similar). The algorithm works correctly for any priority queue 
P, no matter how P is implemented. However, the running time of the algorithm 
is determined by the running times of operations insert and removeMin, which do 
depend on how P is implemented. Indeed, PriorityQueueSort should be considered 
more a sorting "scheme" than a sorting "algorithm," because it does not specify 
how the priority queue P is implemented. The PriorityQueueSort scheme is the 
paradigm of several popular sorting algorithms, including selection-sort, insertion-
sort, and heap-sort, which we discuss in this chapter.' • 

Algorithm PriorityQueueSort(S,P): 
Input: A sequence S storing n elements, on which a total order relation is 

defined, and a priority queue, P, that compares keys using the same total 
order relation 

Output: The sequence S sorted by the total order relation 

while !S.isEmptyO do 
e f- S.removeFirstO 
P.insert(e, 0) {a null value is used} 

while !P.isEmptyO do 
e f- P.removeMinO.getKeyO 

.S.add Last(e) {the smallest key in P is added to the end of S} 

Code Fragment 8.2: Algorithm PriorityQueueSort. Note that the elements of the 
input sequence S serve as keys of the priority queue P. 



340 Chapter 8. Priority Queues 

8.2 Implementing a Priority Queue with a List 

In this section, we show how to implement a priority queue by storing its entries 
in a list S. (See Chapter 6.2.) We provide two realizations, depending on whether 
or not we keep the entries in S sorted by key. When analyzing the running time 
of the methods of a priority queue implemented with a list, we will assume that a 
comparison of two keys takes O(1) time. 

Implementation with an Unsorted List 

As our first implementation of a priority queue P, let us consider storing the entries 
of P in a list S, where Sis implemented with a doubly linked list. Thus, the elements 
of S are entries (k,x), where k is the key and x is the value. 

A simple way of performing operation insert(k,x) on P is to create a new entry 
object e= (k,x) and add it at the end of list S, by executing method addLast(e) 
on S. This implementation of method insert takes O( 1) time. 

The above insertion algorithm implies that S will be unsorted, for always in
serting entries at the end of S does not take into account the ordering of the keys. 
As a consequence, to perform operation min or rernoveMin on P, we must inspect 
all the elements of list S to find an entry (k, x) of S with minimum k. Thus, meth~ds 
min and removeMin take O(n) time each, where n is the number of entries in P at 
the time the method is executed. Moreover, these methods run in time proportional 
to n even in the best case, since they each require searching the entire list to find a 
minimum-key entry. That is, using the notation of Section 4.2.3, we can say that 
these methods run in 8(n) time. Finally, we implement methods size and isEmpty 
by simply returning the output of the corresponding methods executed on list S. 

Thus, by using an unsorted list to implement a priority queue, we achieve 
constant-time insertion, but linear-time search and removal. 

Implementation with a Sorted List 

An alternative implementation of a priority queue P also uses a list S, except that 
this time let us store the entries sorted by key. Specifically, we represent the priority 
queue P by using a list S of entries sorted by nondecreasing keys, which means that 
the first element of S is an entry with the smallest key. 

We can implement method min in this case simply by accessing the first element 
of the list with tf1e first method of S.' Likewise, we can implement the removeMin 
method of Pas S.remove(S.firstO). Assuming that S is implemented with a doubly 
linked list, operations min and removeMin in P take 0(1) time. Thus, using a 
sorted list allows for simple and fast implementations of priority queue access and 

,removal methods. 



341 S.2. Implementing a Priority Queue with a List 

This benefit comes at a cost, however, for now method insert of P requires that 
we scan through the list S to find the appropriate position to insert the new entry. 
Thus, implementing the insert method of P now takes O(n) time, where n is the 
number of entries in P at the time the method is executed. In summary, when using 
a sorted list to implement a priority queue, insertion runs in linear time whereas 
finding and removing the minimum can be done in constant time. 

Table 8.1 compares the running times of the methods of a priority queue re
alized by means of a sorted and unsorted list, respectively. We see an interesting 
trade-off when we use a list to implement the priority queue ADT. An unsorted list 
allows for fast insertions but slow queries and deletions, while a sorted list allows 
for fast queries and deletions, but slow insertions. 

! Method Unsorted List Sorted List 
I size, isEmpty 0(1) 0(1) 

insert 0(1) O(n) 
I min, removeMin O(n) 0(1) 

Table 8.1: Worst-case running times of the methods of a priority queue of size n, 
realized by means of an unsorted or sorted list, respectively. We assume that the 
list is implemented by a doubly linked list. The space requirement is O(n). 

8.2.1 A Java Priority Queue Implementation Using a List 

Let us consider how we could Implement a priority queue in Jaw using a sorted 
list. We begin with a Java interface, called PriorityQueue, for the priority queue 
ADT, which is shown in Code Fragment 8.3. 

/** Interface for the priority queue ADT * / 
public interface PriorityQueue<K,v> { 


/** Returns the number of items in the priority queue. * / 

publiC int sizeO; 

/** Returns whether the priority queue is empty. * / 

public boolean isEmpty(); 

/** Returns but does not remove an entry with minimum key. * / 

public Entry<K,V> minO throws EmptyPriorityQueueException; 

/** Inserts a key-value pair and return the entry created. * / 

public Entry<K.V> insert(K key, V value) throws Invalid KeyException;

/** Removes and returns an entry with minimum· key. * / 

public Entry<K,V> removeMinO throws EmptyPriorityQueueException; 


} 


Code Fragment 8.3: Java interface for the priority queue ADT. 




342 

I 

I 

Chapter 8. Priority Queues 

A Java Implementation with a Sorted List 

In Code Fragments 8.5 and 8.6, we give a Java implementation of the priority queue 
ADT that uses a sorted node list. This implementation uses a class, DefaultCom
parator, which realizes a comparator using the natural ordering, as shown in Code 
Fragment 8.4. This implementation also uses a nested class, called MyEntry, to 
implement the Entry interface (see Section 6.5.1). We do not show an auxiliary 
method, checkKey(k), which throws an InvalidKeyException if key k cannot be 
compared with the comparator of the priority queue. 

public class DefaultComparator<E> implements Comparator<E> { 
public int compare(E a, E b) throws ClassCastException { 

return ((Comparable<E» a).compareTo(b); 
} 

} 
Code Fragment 8.4: Java class DefaultComparator that implements a comparator 
using the natural ordering. 

public class SortedListPriorityQueue<K,V> implements PriorityQueue<K,V> { 
protected PositionList<Entry<K,V» entries; 
protected Comparator<K> c; 
protected Position<Entry<K,V> > actionPos; / / variable used by subclasses 
/** Inner class for entries * / 
protected static class MyEntry<K,V> implements Entry<K,V> { 

protected K k; / / key 

protected V v; / / value 

public MyEntry(K key, V value) { 


k = key; p 


v = value; 

} 

/ / methods of the Entry interface 

public K getKeyO { return k; } 

public V getValueO { return v; } 


} 

/** Creates the priority queue with the default comparator. * / 

public SortedListPriorityQueue 0 { 


entries = new NodePositionList<Entry<K,V> >0; 
c new DefaultComparator<K>O; 


} 

/** Creates the priority queue with the given comparator. * / 

public Sorted ListPriorityQueue (Comparator< K> comp) { 


entries = new NodePositionList<Entry<K,V»O; 

c comp; 


} 

Code Fragment 8.5: Portions of the Java class SortedListPriorityQueue, which im
plements the PriorityQueue interface. (Continues in Code Fragment 8.6.) 



343 8.2. Implementing a Priority Queue with a List 

/** Returns but does not remove an entry with minimum key. * / 

public Entry<K,V> min 0 throws EmptyPriorityQueueException { 


if (entries. isEmptyO) 

throw new EmptyPriorityQueueException("priority queue is empty"); 


else 

return entries.firstO.elementO; 


} 

/** Inserts a key-value pair and return the entry created. *1 

public Entry<K,V> insert (K k, V v) throws InvalidKeyException { 


checkKey(k); II auxiliary key-checking method (could throw exception) 

Entry<K,V> entry = new MyEntry<K,V>(k, v); 

insertEntry(entry); II auxiliary insertion method 

return entry; 


} 

/** Auxiliary method used for insertion. *1 

protected void insertEntry(Entry<K,V> e) { 


if (entries.isEmptyO) { 

entries. add Fi rst(e); / / insert into empty list 

action Pos = entries.fi rstO; / I insertion position 


} 
else if (c.compare(e.getKeyO, entries.lastO.elementO.getKeyO) > 0) { 


entries.addLast(e); I I insert at the end of the list 

actionPos = entries.lastO; / / insertion position 


} 
else { 


Position<Entry<K,V> > curr entries.firstO; 

while (c.compare(e.getKeyO, curr.elementO.getKeyO» 0) {i 


curr = entries.next(curr); / / advance toward insertion position} .. 

entries.addBefore(curr, e); 

actionPos = entries.prev(curr); / / insertion position 


} 

} 

/** Removes and returns an entry with minimum key. * / 

public Entry<K,V> removeMinO throws EmptyPriorityQueueException { 


if (entries.isEmptyO) 

throw new EmptyPriorityQueueException("priority queue is emptyll); 


else 

return entries.remove(entries.firstO); 


} 


Code Fragment 8.6: Portions of the Java class SortedUstPriorityQueue, which im
plements the PriorityQueue interface. (Continued from Code Fragment 8.5.) 

http:entries.fi


344 Chapter 8. Priority Queues 

8.2.2 Selection-Sort and Insertion-Sort 

Recall the PriorityQueueSort scheme introduced in Section 8.1.4. We are given an 
unsorted sequence S containing n elements, which we sort using a priority queue 
P in two phases. In Phase 1 we insert all the elements into P and in Phase 2 we 
repeatedly remove the elements from P using the removeMinO method. 

Selection-Sort 

If we implement P with an unsorted list, then Phase 1 of PriorityQueueSort takes 
O(n) time, for we can insert each element in O(1) time. In Phase 2, the running time 
of each removeMin operation is proportional to the size of P. Thus, the bottleneck 
computation is the repeated "selection" of the minimum element in Phase 2. For 
this reason, this algorithm is better known as selection-sort. (See Figure 8.1.) 

As noted above, the bottleneck is in Phase 2 where we repeatedly remove an 
entry with smallest key from the priority queue P. The size of P starts at n and 
incrementally decreases with each removeMin until it becomes O. Thus, the first 
removeMin operation takes time O(n), the second one takes time O(n 1), and so 
on, until the last (nth) operation takes time 0(1). Therefore, the total time needed 
for the second phase is 

O(n+(n-l)+,,·+2+1) o(~t)-

By Proposition 4.3, we have 1:7=1 i n(n+ 1)/2. Thus, Phase 2 takes time 9(n2), 

as does the entire selection-sort algorithm. 

Sequence S Priority Queue P I 
I Input (7,4,8,2,5,3,9) 0 I 

(4,8,2,5,3,9) ! (7) 
i (b) 
i Phase 1 (a) 

(8,2,5,3,9) I (7,4) 

(g) (7,4,8,2,5,3,9)0 
!Phase 2 (a) (2) (7,4,8,5,3,9) 

(b) (2,3) (7,4,8,5,9) 
I(c) (2,3,4) (7,8,5,9) 

(d) (2,3,4,5) (7,8,9) 
(e) (2,3,4,5,7) (8,9) 
,(f) (2,3,4,5,7,8) (9) 
(g) ()(2,3,4,5,7,8,9) 

Figure 8.1: Execution of selection-sort on sequence S = (7,4,8,2,5,3,9). 



345 S.2. Implementing a Priority Queue with a List 

Insertion-Sort 

If we implement the priority queue P using a sorted list, then we improve the run
ning time of Phase 2 to O(n), for each operation removeMin on P now takes 0(1) 
time. Unfortunately, Phase 1 now becomes the bottleneck for the running time, 
since, in the worst case, each insert operation takes time proportional to the size 
of P. This sorting algorithm is therefore better known as insertion-sort (see Fig
ure 8.2), for the bottleneck in this sorting algorithm involves the repeated "inser
tion" of a new element at the appropriate position in a sorted list. 

Sequence S Priority queue P i 

• Input (7,4,8,2,5,3,9) 0 
I Phase 1 (a) 

(b) 
(c) 
(d) 
(e) 
(f) 
(g) 

(4,8,2,5,3,9) 
(8,2,5,3,9) 
(2,5,3,9) 
(5,3,9) 
(3,9) 
(9) 
() 

(7) I 
(4,7) 

(4,7,8) 
.(2,4,7,8) 
(2,4,5,7,8) 

(2,3,4,5,7,8) 
(2,3,4,5,7,8,9) 

Phase 2 

i 

(a) 
(b) 

(g) 

(2) 
(2,3) 

(2,3,4,5,7,8,9) 

(3,4,5,7,8,9) 
(4,5,7,8,9) 

. 0 

Figure 8.2: Execution of insertion-sort on sequence S = (7,4,8,2,5,3,9). In 
Phase 1, we repeatedly remove the first element of S and insert it into P, by scan
ning the list implementing P, until we find the correct place for Ihis element. In 
Phase 2, we repeatedly perform removeMin operations on P, each of which returns 
the first element of the list implementing p,. and we add the element at the end 
ofS. 

Analyzing the running time of Phase 1 of insertion-sort, we note that it is 

0(1 +2+ ... +(n-l) +n) = 0 (ti).
1=1 

Again, by recalling Proposition 4.3, Phase 1runs in 0(n2) time, and hence, so does 
the entire insertion-sort algorithm. 

Alternatively, we could change our definition of insertion-sort so that we insert 
elements starting from the end of the priority-queue list in Phase 1, in which case 
performing insertion-sort on a sequence that is already sorted would run in O(n) 
time. Indeed, the running time of insertion-sort in this case is O(n + I), where I is 
the number of inversions in the sequence, that is, the number of pairs of elements 
that start out in the input sequence in the wrong relative order. 



346 Chapter 8. Priority Queues 

8.3 Heaps 

The two implementations of the PriorityQueueSort scheme presented in the previ
ous section suggest a possible way of improving the running time for priority-queue 
sorting. For one algorithm (selection-sort) achieves a fast running time for Phase 1, 
but has a slow Phase 2, whereas the other algorithm (insertion-sort) has a slow 
Phase 1, but achieves a fast running time for Phase 2. If we can somehow balance 
the running times of the two phases, we might be able to significantly speed up the 
overall running time for sorting. This is, in fact, exactly what we can achieve using 
the priority-queue implementation discussed in this section. 

An efficient realization of a priority queue uses a data structure called a heap. 
This data structure allows us to perform both insertions and removals in logarith
mic time, which is a significant improvement over the list-based implementations 
discussed in Section 8.2. The fundamental way the heap achieves this improvement 
is to abandon the idea of storing entries in a list and take the approach of storing 
entries in a binary tree instead. 

8.3.1 The Heap Data Structure 

A heap (see Figure 8.3) is a binary tree T that stores a collection of entries at its 
nodes and that satisfies two additional properties: a relational property defined in 
terms of the way keys are stored in T and a structural property defined in terms of 
the nodes of T itself. We assume that a total order relation on the keys is given, for 
example, by a comparator. 

The relational property of T, defined in terms of the way ~eys are stored, is the 
following: 

Heap-Order Property: In a heap T, for every node v other than the root, the key 
stored at v is greater than or equal to the key stored at v's parent. 

As a consequence of the heap-order property, the keys encountered on a path from 
the root to an external node of T are in nondecreasing order. Also, a minimum key 
is always stored at the root of T. This is the most important key and is informally 
said to be "at the top of the heap"; hence, the name "heap" for the data structure. 
By the way, the heap data structure defined here has nothing to do with the memory 
heap (Section 14.1.2) used in the run-time environment supporting a programming 
language like Java. 

If we define our comparator to indicate the opposite of the standard total order 
relation between keys (so that, for example, compare(3,2) < 0), then the root of 
the heap stores the largest key. This versatility comes essentially "for free" from 
our use of the comparator pattern. By defining the minimum key in terms of the 
comparator, the "minimum" key with a "reverse" comparator is in fact the largest. 



S.3. Heaps 347 

Figure 8.3: Example of a heap storing 13 entries with integer keys. The last node is 
the one storing entry (8, W). 

Thus, without loss of generality, we assume that we are always interested in the 
minimum key, which will always be at the root of the heap. 

For the sake of efficiency, as will become clear later, we want the heap T to have 
as small a height as possible. We enforce this requirement by insisting that the heap 
T satisfy an additional structural property: it ml:lst be complete. Before we define 
this structural property, we need some definitions. We recall from Section 7.3.3 
that level i of a binary tree T is the set of nodes of T that have depth i. Given nodes 
v and w on the same level of T, we say that v is to the left ofw if v is encountered 
before w in an inorder traversal of T. That is, there is a node u of T such that v is 
in the left subtree of u and w is in the right subtree of u. For example, in the binary 
tree of Figure 8.3, the node storing entry (15, K) is to the left of the node storing 
entry (7, Q). In a standard drawing of a binary tree, the "to the left of" relation is 
visualized by the relative horizontal placement of the nodes. 

Complete Binary Tree Property: A heap T with height h is acomplete binary tree 
if leyels 0,1,2, ... ,h -1 of T have the maximum number of nodes possible 
(namely, level i has i nodes, for °~ i < h 1) and in level h - 1, all the 
internal nodes are to the left of the external nodes and there is at most one 
node with one child, which must be a left child. 

By insisting that a heap T be complete, we identify another important node in a 
heap T, other th~ the root, namely, the last node of T, which we define to be the 
right-most, deepest external node of T (see Figure 8.3). 



348 Chapter 8. Priority Queues 

The Height of a Heap 

Let h denote the height of T. Another way of defining the last node of T is that 
it is the node on level h such that all the other nodes of level h are to the left of 
it. Insisting that T be complete also has an important consequence, as shown in 
Proposition 8.4. 

Proposition 8.4: A heap T storing n entries has height 

h = llognJ. 

Justification: From the fact that T is complete, we know that the number of 
nodes of T is at least 

1 2+4 . . . 2h- 1+1 	 2h_l 1 

2h. 

This lower bound is achieved when there is only one node on level h. In addition, 
also following from T being complete, we have that the number of nodes of T is at 
most 

1 + 2 4 + ... + 2h = 2h+1 1. 

This upper bound is achieved when level h has 2h nodes. Since the number of nodes 
is equal to the number n of entries, we obtain 

2h n 

and 
n:; 2h+1 -1. . 

Thus, by taking logarithms of both sides of these two inequalities, we see that 

h :; logn 

and 
log(n+ 1) 1:; h. 

Since h is an integer, the two inequalities above imply that 

h = llognJ. 

• 
Proposition 8.4 has an important consequence, for it implies that if we can 

perform update operations on a heap in time proportional to its height,· then those 
operations will run in logarithmic time. Let us therefore tum to the problem of how 
to efficiently perform various priority queue methods using a heap. 



S.3. Heaps 	 349 

8.3.2 Complete Binary Trees and Their Representation 

Let us discuss more about complete binary trees and how they are represented. 

The Complete Binary Tree ADT 

As an abstract data type, a complete binary T supports all the methods of binary 
tree ADT (Section 7.3.1), plus the following two methods: 

add(o): 	Add to T and return a new external node v storing ele
ment a such that the resulting tree is a complete binary 
tree with last node v. 

remove(): Remove the last node of T and return its element. 

Using only these update operations guarantees that we will always have a complete 
binary tree. As shown in Figure 8.4, there are two cases for the effect of an add or 
remove. Specifically, for an add, we have the following (remove is similar). 

• 	If the bottom level of T is not full, then add inserts a new node on the bottom 
level of T, immediately after the right-most node of this level (that is, the last 
node); hence, T's height remains the same. 

• 	If the bottom level is full, then add inserts a new node as the left child of the 
left-most node of the bottom level of T; hence, T's height increases by one. 

w 

(a) 	 (b) 

w 

(c) 	 (d) 

Figure 8.4: Examples of operations add and remove on a complete binary tree, 
where:w denotes the node inserted by add or deleted by remove. The trees shown 
in (b) and (d) are the results of performing add operations on the trees in (a) and (c), 
respectively. Likewise, the trees shown in (a) and (c) are the results of performing 
remove operations on the trees in (b) and (d), respectively. 



350 Chapter 8. Priority Queues 

The Array List Representation of a Complete Binary Tree 

The array-list binary tree representation (Section 7.3.5) is especially suitable for a 
complete binary tree T. We recall that in this implementation, the nodes of Tare 
stored in an array list A such that node v in T is the element of A with index equal 
to the level number p(v) of v, defined as follows: 

• If v is the root of T, then p(v) = 1. 

• If vis the left child of node u, then p(v) 2p(u). 

• If v is the right child of node u, then p(v) = 2p(u) + 1. 

With this implementation, the nodes of T have contiguous indices in the range [1, n] 
and the last node of T is always at index n, where n is the number of nodes of T. 
Figure 8.5 shows two examples illustrating this property of the last node. 

w 

w 

(a) a (b) 

0123456 o 123 4 5 678 

i 

w w 
(c) (d) 

Figure 8.5: Two examples showing that the last node w of a heap with n nodes has 
level number n: (a) heap TI with more than one node on the bottom level; (b) heap 
T2 with one node on the bottom level; (c) array-list representation of TI; (d) array
list representation of T2. 

The simplifications that come from representing a complete binary tree T with 
an array list aid in the implementation of methods add and remove. Assuming 
that no array expansion is necessary, methods add and remove can be performed in 
O( 1) time, for they simply involve adding or removing the last element of the array 
list. Moreover; the array list associated with T has n+I elements (the element at 

. index Oisaplace-holder), If we use an extendable array that grows and shrinks for 
the implementation of the array list (Section 6.1.4 and Exercise C-6.2), the space 
used by the array-list representation of a complete binary tree with nnodes is O(n) 
and operations add and remove take O( 1) amortized time. 



S.3. Heaps 351 

Java Implementation of a Complete Binary Tree 

We represent the complete binary tree ADTin interface CompleteBinaryTree shown 
in Code Fragment 8.7. We provide a Java class ArrayListCompleteBinaryTree that 
implements the CompleteBinaryTree interface with an array list and supports meth
ods add and remove in 0(1) time in Code Fragments 8.8-8.10. 

public interface CompleteBinaryTree<E> extends BinaryTree<E> { 
public Position<E> add(E elem); 
public E remove(); 

} 

Code Fragment 8.7: Interface CompleteBinaryTree for a complete binary tree. 

public class ArrayListCompleteBinaryTree<E> 
implements CompleteBinaryTree<E> { 


protected ArrayList<BTPos<E> > T; / / indexed list of tree positions 

/** I\lested class for a index list-based complete binary tree node. * / 

protected static class BTPos<E> implements Position<E> { 


E element; / / element stored at this position 

int index; / / index of this position in the array list 

public BTPos(E elt, int i) { 


element = elt; 
index = i; 


} 

public E element() { return element; } 

public int index() { return index; } 

public E setElement(E elt) { 


E temp = element; 

elernent = elt; 

return temp; 


} 

} 

/** default constructor * / 

public ArrayListCompleteBinaryTree() { 


T = new ArrayList<BTPos<E> >(); 
. T.add(O, null); / / the location at rank 0 is deliberately empty 

} 

/** Returns the number of (internal and external) nodes. * / 

public int size() { return T.sizeO - 1; } 

/** Returns whether the tree is empty. * / 

public boolean isEmptyO { return (sizeO == 0); } 


Code Fragment 8.8: Class ArrayListCompleteBinaryTree implementing inter
face CornpleteBinaryTree using a java.utiI.ArrayList. (Continues in Code Frag
ment 8.9.) 

http:8.8-8.10


352 Chapter 8. Priority Queues 

/** Returns whether v is an internal node. * / 
public boolean islnternal(Position<E> v) throws InvalidPositionException { 

return hasLeft(v); / / if v has a right child it will have a left child 
} 
/** Returns whether v is an external node. * / 
public boolean isExternal(Position<E> v) throws InvalidPositionException { 

return !islnternal(v); 
} 
/** Returns whether v is the root node. * / 
public boolean isRoot(Position<E> v) throws InvalidPositionException { 


BTPos<E> vv checkPosition(v); 

return vv.indexO 1; 


} 
/** Returns whether v has a left child. * / 
public boolean hasLeft(Position<E> v) throws InvalidPositionException { 


BTPos<E> vv checkPosition(v); 

return 2*vv.indexO <= sizeO; 


} 
/** Returns whether v has a right child. * / 
public boolean hasRight(Position<E> v) throws InvalidPositionException { 

BTPos<E> vv checkPosition(v); 
return 2*vv.indexO + 1 <= sizeO; 

} 
/** Returns the root of the tree. * / 
public Position<E> rootO throws EmptyTreeException { 


if (isEmptyO) throw new EmptyTreeException("Tree is emptyll); 

return Tget(l); 


} i 

/** Returns the left child of v. * / 
public Position<E> left(Position<E> v) 

throws Invalid Position Exception , BoundaryViolationException { 
if (!hasLeft(v)) throw new BoundaryViolationException("No left child"); 
BTPos<E> vv checkPosition(v); 
return Tget(2*vv.indexO); 

} 
/** Returns the right child of v. * / 
public Position<E> right(Position<E> v) 

throws InvalidPositionException { 
if (!hasRight(v)) throw new BoundaryViolationExceptionC'No right child"); 
BTPos<E> vv checkPosition(v); 
return Tget(2*vv.indexO + 1); 

} 

Code Fragment 8.9: Class ArrayListCompleteBinaryTree implementing the com
plete binary tree ADT. (Continues in Code Fragment 8.10.) 



.8.3. Heaps 353 


/** Returns the parent of v. * / 
public Position<E> parent(Position<E> v) 

throws Invalid Position Exception, BoundaryViolationException { 
if (isRoot(v)) throw new BoundaryViolationException('INo parent II); 
BTPos<E> vv = checkPosition(v); 
return T.get(vv.indexO/2); 

} 

/** Replaces the element at v. * / 

public E replace(Position<E> v, E 0) throws InvalidPositionException { 


BTPos<E> vv checkPosition(v); 

return vv.setElement(0); 


} 

/** Adds an element just after the last node (in a level numbering). * / 

public Position<E> add(E e) { 


int i sizeO + 1; 

BTPos<E> p new BTPos<E>(e,i); 

T.add(i, p); 

return p; 


} 

/** Removes and returns the element at the last node. * / 

public E removeO throws EmptyTreeException { 


if(isEmptyO) throw new EmptyTreeException("Tree is emptyll); 
return T.remove(sizeO ).elementO; 


} 

/** Determines whether-the given position is a valid node. * / 

protected BTPos<E> checkPosition(Position<E> v) 


throws InvalidPositionException 
{ 

if (v null II !(v instanceof BTPos)) 
throw new InvalidPositionException(IIPos;ition, is invalidll ); 

return (BTPos<E» v; 
} 

/** Returns an iterator of the elements stored at all nodes in the tree. * / 

public Iterator<E> iteratorO { 


ArrayList<E> list = new ArrayList<E>O; 

Iterator<BTPos<E> > iter = T .iteratorO; 

iter.nextO; / / skip the first element 

while (iter.hasNextO) 


list.add(iter. nextO .elementO); 
return Iist.iteratorO; 

} 
} 

Code Fragment 8.10: Class ArrayListCompleteBinaryTree implementing the com
plete binary tree ADT. Methods children and positions are omitted. (Continued 
from Code Fragment 8.9.) 



354 Chapter 8. Priority Queues 

8.3.3 Implernenting a Priority Queue with a Heap 

We now discuss how to implement a priority queue using a heap. Our heap-based 
representation for a priority queue P consists of the following (see Figure 8.6): 

• 	heap, a complete binary tree T whose internal nodes store entries so that the 
heap-order property is satisfied. We assume T is implemented using an array 
list, as described in Section 8.3.2. For each internal node v of T, we denote 
the key of the entry stored at v as k(v) . 

• comp, a comparator that defines the total order relation among the keys. 

With this data structure, methods size and isEm pty take O( 1) time, as usuaL In 
addition, method min can also be easily performed in 0(1) time by accessing the 
entry stored at the root of the heap (which is at index 1 in the array list). 

Insertion 

Let us consider how to perform insert on a priority queue implemented with a 
heap T. To store a new entry (k,x) into T we add a new node z to T with opera
tion add so that this new node becomes the last node of T and stores entry (k,x). 

After this action, the tree T is complete, but it may violate the heap-order prop
erty. Hence, unless node z is the root of T (that is, the priority queue was empty 
before the insertion), we compare key k(z) with the key k(u) stored at the parent 
U of z. If k(z) 2: k(u), the heap-order property is satisfied and the algorithm ter
minates. If instead k(z) k(U), then we need to restore the heap-order property, 
which can be locally achieved by swapping the entries stored at zand u. (See Fig
ure 8.7c and d.) This swap causes the new entry (k, e) to move up one leveL Again, 
the heap-order property may be violated, imd we continue swapping, going up in T 
until no violation of the heap-order property occurs. (See Figure 8.7e and h.) 

T ~ 
CD 

Figure 8.6: Illustration of the heap-based implementation of a priority queue. 



S.3. Heaps 355 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 8.7: Insertion of a new entry with key 2 into the heap of Figure 8.6: (a) 
. initial heap; (b) aft~r performing operation add; (c and d) swap to locally restore 
thepartfalorderproperty; (e and f) another swap; (g and h) final swap. 



356 Chapter 8. Priority Queues 

The upward movement of the newly inserted entry by means of swaps is con
ventionally called up-heap bubbling. A swap either resolves the violation of the 
heap-order property or propagates it one level up in the heap. In the worst case, up
heap bubbling causes the new entry to move all the way up to the root of heap T. 
(See Figure 8.7.) Thus, in the worst case, the number of swaps performed in the 
execution of method insert is equal to the height of T, that is, it is llog nJby Propo
sition 8.4. 

Removal 

Let us now tum to method removeMin of the priority queue ADT. The algorithm 
for performing method removeMin using heap T is illustrated in Figure 8.8. 

We know that an entry with the smallest key is stored at the root r of T (even 
if there is more than one entry with smallest key). However, unless r is the only 
internal node of T, we cannot simply delete node r, because this action would 
disrupt the binary tree structure. Instead, we access the last node w of T, copy its 
entry to the root r, and then delete the last node by performing operation remove of 
the complete binary tree ADT. (See Figure 8.8a ,and b.) 

Down-Heap Bubbling after a Removal 

We are not necessarily done, however, for, even though T is now complete, T may 
now violate the heap-order property. If T has only one node (the root), then the 
heap-order property is trivially satisfied and the algorithm terminates. Otherwise, 
we distinguish two cases, where r denotes the root of T: i 

• If r has no right child, let s be the left child of r. > 

• Otherwise (r has both children), let s be a child of r with the smallest key. 

If k(r) ::; k(s), the heap-order property is satisfied and the algorithm terminates. If 
instead k(r) >k(s), then we need to restore the heap-order property, which can be 
locally achieved by swapping the entries stored at r and s. (See Figure 8.8c and 
d.) (Note that we shouldn't swap r with s's sibling.) The swap we perform restores 
the heap-order property for node r and its children, but it may violate this property 
at s; hence, we may have to continue swapping down T until no violation of the 
heap-order property occurs. (See Figure 8.8e and h.) 

This downward swapping process is called down-heap bubbling. Aswap either 
resolves th.e violation of the heap"qrder p~opertyor propagates it one level down in 
the heap. In the worstcase, an entry moves all the way down to the bottom level. 
(See Figure 8.8.) Thus, the number of swaps performed in the execution of method 
removeMin is, in the worst case, equal to the height of heap T, that is, it is llognJ 
by Proposition 8.4. 



8.3. Heaps 357 


(4,C) 

(a) (b) 

(c) (d) 

(e) (t) 

(g) (h) 

Figure 8.8: Removal of the entry with the smallest key from a heap: (a and b) 
qeleti(m ()( tl1e iast:n6de, whose entry· gets stored into the root; (c and d) swap to 
l~c~llyrest~~e'theheap-order property; (e and t) another swap; (g and h) final swap. 



358 Chapter S. Priority Queues 

Analysis 

Table 8.2 shows the running time of the priority queue ADT methods for the heap 
implementation of a priority queue, assuming that two keys can be compared in 
O(1) time and that the heap T is implemented with either an array list or linked 
structure. 

Operation Time 
size, isEmpty 0(1) 

min, 0(1) 
insert O(Iogn) 

removeMin O(logn) 

Table 8.2: Performance of a priority queue realized by means of a heap, which 
is in turn implemented with an array list or linked structure. We denote with n 
the number of entries in the priority queue at the time a method is executed. The 
space requirement is O(n). The running time of operations insert and removeMin 
is worst case for the array-list implementation of the heap and amortized for the 
linked representation. 

In short, each of the priority queue ADT methods can be performed in O( 1) or 
in O(logn) time, where n is the number of entries at the time the method is exe
cuted. The analysis of the running time of the methods is based on the following: 

• 	The heap T has n nodes, each storing a reference to an entry. 

• 	Operations add and remove on T take either 0(1) amortized time (array-list 
representation) or O(logn) worst-case time. 

• 	In the worst case, up-heap and down-heap bubbling perform a number of 
swaps equal to the height of T. 

• 	The height of heap T is O(logn), since T is complete (Proposition 8.4). 

We conclude that the heap data structure is a very efficient realization of the 
priority queue ADT, independent of whether the heap is implemented with a linked 
structure or an array list. The heap-based implementation achieves fast running 
tImes f~r bbth illserti6nand rell16val, unlike the'list-based priority queue imple
me~tations. Indeed, an important consequence of the efficiency of the heap-based 
implementation is that it can speed up priority-queue sorting to be much faster than 
the list-based insertion-sort and selection-sort algorithms. 



8.3. Heaps 359 

8.3.4 A Java Heap Implementation 


A Java implementation of a heap-based priority queue is shown in Code Frag
ments 8.11-8.13. To aid in modularity, we delegate the maintenance of the structure 
of the heap itself to a complete binary tree. 

/**
* Realization of a priority queue by means of a heap. A complete
* binary tree realized by means of an array list is used to 
* represent the heap. 

*/ 


public class HeapPriorityQueue<K,V> implements PriorityQueue<K,v> { 
protected CompleteBinaryTree<Entry<K,V» heap; / / underlying heap 
protected Comparator<K> comp; / / comparator for the keys 
/** Inner class for heap entries. * / 
protected static class MyEntry<K,V> implements Entry<K,V> { 

protected K key; 
protected V value; 
public MyEntry(K k, V v) {key k; value v;} 
public K getKeyO { return key; } 
public V getValueO { return value; } 
public String toString() { return II (" + key + ", II + value +11) II; } 

} 
/** Creates an empty heap with the default comparator * / 
public HeapPriorityQueueO { '.' 

heap new ArrayListCompleteBinaryTree<Entry<K,V»(); / / use an array list 
comp new DefaultComparator<K>(); / / use the default comparator 

} 
/** Creates an empty heap with the given comparator * / 
public HeapPriorityQueue(Comparator<K> c) { 

heap new ArrayListCompleteBinaryTree<Entry<K,V> >0; 
camp = c; 


} 

/** Returns the size of the heap * / 

public int sizeO { return heap.sizeO; } 

/** Returns whether the heap is empty * / 

public boolean isEmptyO { return heap.sizeO == 0; } 


Code Fragment 8.11: Class HeapPriorityQueue, which implements a priority queue 
with a heap. A nested class MyEntry is used for the entries of the priority queue, 
which form the elements in the heap tree. (Continues in Code Fragment 8.12.) 

http:8.11-8.13


360 Chapter S. Priority Queues 

/** Returns but does not remove an entry with minimum key * / 
public Entry<K,V> minO throws EmptyPriorityQueueException { 

if (isEmptyO) 
throw new EmptyPriorityQueueException("Priority queue is empty"); 

return heap.rootO.elementO; 
} 

/** Inserts a key-value pair and returns the entry created * / 

public Entry<K,V> insert(K k, V x) throws InvalidKeyException { 


checkKey(k); / / may throw an InvalidKeyException 

Entry<K,V> entry new MyEntry<K,V>(k,x); 

upHeap(heap.add(entry)); 

return entry; 


} 
/** Removes and returns an entry with minimum key * / 
public Entry<K,V> removeMinO throws EmptyPriorityQueueException { 

if (isEmptyO) 
throw new EmptyPriorityQueueExceptionC!Priority queue is empty"); 

Entry<K,V> min = heap.rootO.elementO; 
if (sizeO == 1) 

heap.removeO; 
else { 


hea p. replace(heap. rootO. heap. removeO); 

downHeap(heap.rootO); 


} I 

return min; 

} 

/** Determines whether a given key is valid * / 

protected void checkKey(K key) throws InvalidKeyException { 


try { 
comp.compare(key,key); 


} 

catch(Exception e) { 


throw new InvalidKeyException("Invalid key"); 

} 


} 
Code Fragment 8.12: Methods min, insert and removeMin and some auxiliary 
methods of class HeapPriorityQueue. (Continues in Code Fragment 8.13.) 



8.3. Heaps 361 

/** Performs up-heap bubbling * / 
protected void upHeap(Position<Entry<K,v> > v) { 


Position<Entry<K,V> > u; 

while (lheap.isRoot(v)) { 


u heap.parent(v); 

if (comp.compare(u.elementO.getKeyO, v.elementO.getKeyO) <= 0) break; 

swap(u, v); 

v u; 


} 

} 

/** Performs down-heap bubbling * / 

protected void downHeap(Position<Entry<K,V> > r) { 


while (heap.islnternal(r)) { 

Position<Entry<K,V» s; / / the position of the smaller child 

if (!heap.hasRight(r)) 


s heap.left(r); 
else if (comp.compare(heap.left(r).elementO.getKeyO, 

heap.right(r).elementO.getKeyO) <=0) 
s = heap.left(r); 

else 
s = heap.right(r); 

if (comp.compare(s.elementO.getKeyO, r.elementO.getKeyO) < 0) { 
swap(r, s); 
r s; 

} 

else 


break; 

} 

}
/** Swa ps the entries of the two given positions * / 
protected void swap(Position<Entry<K,V> > x, Position<Entry<K,V> > y) { 

Entry<K,V> temp x.elementO; 

heap.replace(x, y.elementO); 

heap.replace(y, temp); 


} 

/** Text visualization for debugging purposes * / 

public String toStringO { 


return heap.toStringO; 

} 


Co(jeFragment.8.13: . Remaining auxiliary methods of class HeapPriorityQueue. 
(Continued from Code Fragment 8.12.) 

http:Co(jeFragment.8.13


362 	 Chapter 8. Priority Queues 

8.3.5 Heap-Sort 

As we have previously observed, realizing a priority queue with a heap has the 
advantage that all the methods in the priority queue ADT run in logarithmic time or 
better. Hence, this realization is suitable for applications where fast running times 
are sought for all the priority queue methods. Therefore, let us again consider the 
PriorityQueueSort sorting scheme from Section 8.1.4, which uses a priority queue 
P to sort a sequence S with n elements. 

During Phase 1, the i-th insert operation (l < i < n) takes 0(1 logi) time, 
since the heap has i entries after the operation is performed. Likewise, during 
Phase 2, the j-th removeMin operation (1 < j <n) runs in time 0(1 +log(n - j 1), 
since the heap has n - j + 1 entries at the time the operation is performed. Thus, 
each phase takes O(nlogn) time, so the entire priority-queue sorting algorithm runs 
in O(nlogn) time when we use a heap to implement the priority queue. This sorting 
algorithm is better known as heap-sort, and its performance is summarized in the 
following proposition. 

Proposition 8.5: The heap-sort algorithm sorts a sequence S of n elements in 
O(nlogn) time, assuming two elements ofS can be compared in 0(1) time. 

Let us stress that the O(nlogn) running time of heap-sort is considerably better 
than the 0(n2) runninglime of selection-sort and insertion:-sort (Section 8.2.2). 

Implementing Heap-Sort In-Place 
i 

If the sequence S to be sorted is implemented by means of an ,array, we can speed 
up heap-sort and reduce its space requirement by a constant factor using a portion 
of the sequence S itself to store the heap, thus avoiding the use of an external heap 
data structure. This is accomplished by modifying the algorithm as follows: 

1. 	 We use a reverse comparator, which corresponds to a heap where an entry 
with the largest key is at the top. At any time during the execution of the 
algorithm, we use the left portion of S, up to a certain index i - 1, to store 
the entries of the heap, and the right portion of S, from index ito n 1, to 
store the elements of the sequence. Thus, the first i elements of S (at indices 
0, ... ,i - 1) provide the array-list representation of the heap (with modified 
level numbers starting at 0 instead of 1), that is, the element at index k is 
greater than or equal to its "children" at indices 2k +1 and 2k+2. 

2. 	 In the first phase of the algorithm, we start with an empty heap and move the 
boundary between the heap and the sequence from left to right, one step at 
a time. In step i (i - 1, ... ,n), we expand the heap by adding the element at 
index i -1. 



----

S.3. Heaps 	 363 

3. 	 In the second phase of the algorithm, we start with an empty sequence and 
move the boundary between the heap and the sequence from right to left, one 
step at a time. At step i (i = 1, ... ,n), we remove a maximum element from 
the heap and store it at index n - i. 

The variation of heap-sort above is said to be in-place because we use only a 
small amount of space in addition to the sequence itself. Instead of transferring 
elements out of the sequence and then back in, we simply rearrange them. We il
lustrate in-place heap-sort in Figure 8.9. In general, we say that a sorting algorithm 
is in-place if it uses only a small amount of memory in addition to the sequence 
storing the objects to be sorted. 

I 1 

(a) 14171211 131 
I 
I 8) I 

I 
I I 
I I 
I I 
I I 

(b) 14[7121113[ I 
I 

I 
I 

I 
I . 

I 
I 

I I 
I I 

(c) [7 [ 4 [ 2\1 [31 I i I 
I I 
I I 
I I 
I I 

(d) [ 7 [ 4 [ 2 [ 1 13 [ I 
I 

I 
I 

I I 
I I 

- ---' 

Figure 8.9: First three steps of Phase 1 of in-place heap-sort. The heap portion of 
the sequence is highlighted in blue. We draw next to the sequence a binary tree 

.view of the heap, even though·this tree is not actually constructed by the in-place 
algorithm. 



364 Chapter 8. Priority Queues 

8.3.6 Bottorn-U p Heap Construction * 
The analysis of the heap-sort algorithm shows that we can construct a heap storing 
n entries in O(nlogn) time, by means of n successive insert operations, and then 
use that heap to extract the entries in order by nondecreasing key. However, if all 
the n key-value pairs to be stored in the heap are given in advance, there is an al
ternative bottom-up construction method that runs in 0(11) time. We describe this 
method in this section, observing that it could be included as one of the constructors 
of a class implementing a heap-based priority queue. For simplicity of exposition, 
we describe this bottom-up heap construction assuming the number 11 of keys is an 
integer of the type n = 2h+ 1 - 1. That is, the heap is a complete binary tree with 
every level being full, so the heap has height h = log(n +1) - 1. Viewed nonre
cursively, bottom-up heap construction consists of the following h +1= log(n+1) 
steps: 

1. 	 In the first step (see Figure 8.10a), we construct (11 +1) /2 elementary heaps 
storing one entry each. 

2. 	 In the second step (see Figure 8.1 Ob-c), we form (n +1) /4 heaps, each stor
ing three entries, by joining pairs of elementary heaps and adding a new 
entry. The new entry is placed at the root and may have to be swapped with 
the entry stored at a child to preserve the heap-order property. 

3. 	 In the third step (see Figure 8.10d-e), we form (n+ i)/8 heaps, each storing 
7 entries, by joining pairs of 3-entry heaps (constructed in the previous step) 
and adding a new entry. The new entry is placed initially at the root, but may 
have to move down with a down-heap bubbling to preserve the heap.order 
property. 

i. 	 In the generic ith step, 2 :::; i :::; h, we form (n +1) /2i heaps, each storing 2i - 1 
1entries, by joining pairs of heaps storing (2i- - 1) entries (constructed in the 

previous step) and adding a new entry. The new entry is placed initially at 
the root, but may have to move down with a down-heap bubbling to preserve 
the heap-order property. 

h +1. 	 In the last step (see Figure 8.1 Of-g), we form the final heap, storing all the 
n entries, by joining two heaps storing (n - 1) /2 entries (constructed in the 
previous··step) and adding a new entry, The new entry is placed initially at 
the root, but may have to move down with a down-heap bubbling to preserve 
the heap-order property. 

We illustrate bottom-up heap construction in Figure 8.10 for h = 3. 



8.3. Heaps 365 

/"") /"") 

....J . ...,., /'~.../,


/' , /' ,
/' , /' ,

/' , /' ,
/"" l' '/"") /"" l' '/"")

)-A >___L" L... 
/ '\ / '\ / '\ / '\ 

/ '\ / '\
/"") /"") /"") ~) 

~~ ~...,. ~~ ~~ ~rf r;i '\~ 
1\ 1\ 1\ 1\ 

@@0@@0@@) @@0@08@~ 

(a) (b) 
/"") /"")

/,~...,., /,~...,.,
/' , /' ,

/' , /' ,
/' , /' , ,/"" l' 'r")

)-A >___ 
/ '\ / '\ 

yJf ~ (jj '\~ 
@@0@@0@@ 

(c) (d) 
/"") 


/' 
/,\...,., ,


/' ,

/' ,,

/' 

(e) . (t) s 

(g) 

Figure 8.10: Bottom-up construction of a heap with 15 entries: (a) we begin by 
constructing I-entry heaps on the bottom levet (b and c) we combine these heaps 
into 3-entry heaps and then (d and e) 7-entry heaps, until (f and g) we create 
the final heap. The paths of the down-heap bubblings are highlighted in blue. For 
simplicity, we only show the key within each node instead of the entire entry. 



366 Chapter S. Priority Queues 

Recursive Bottom-Up Heap Construction 

We can also describe bottom-up heap construction as a recursive algorithm, as 
shown in Code Fragment 8.14, which we call bypassing a list storing the key-value 
pairs for which we wish to build a heap. 

Algorithm Bottom UpHeap(S): 
Input: A list L storing n - 2h+1 1 entries 
Output: A heap T storing the entries in L. 

if S.isEmptyO then 
return an empty heap 

e ~ L.rernove(L.firstO) 
Split L into two lists, Ll and li]" each of size (n 1)/2 
Tl ~ BottomUpHeap(LI) 
T2 ~ BottomUpHeap(L2) 
Create binary tree T with root r storing e, left subtree TI, and right subtree T2 
Perform a down-heap bubbling from the root r of T, if necessary 
return T 

Code Fragment 8.14: Recursive bottom-up heap .construction. 

Bottom-up heap construction is asymptotically faster than incrementally insert
ing n keys into an initially empty heap, as the following proposition shows. 5 

Proposition 8.6: Bottom-up construction of a heap with n entries takes O(n) 
time, assuming two keys can be compared in O( 1) time. 

Justification: We analyze bottom-up heap construction using a "visual" ap
proach, which is illustrated in Figure 8.11. 

Let T be the final heap, let vbe a node of T, and let T(v) denote the subtree of 
T rooted at v. In the worst case, the time for forming T(v) from the two recursively 
formed subtrees rooted at v's children is proportional to the height of T(v). The 
worst case occurs when down-heap bubbling from v traverses a path from v all the 
way to abottom~mostnbdeof T(v) .. 

. . .. . 

Now consider the path p(v) of T from node v to its inorder successor external 
node, that is, the path that starts at v, goes to the right child of v, and then goes 
down leftward until it reaches an external node. We say that path p(v) is associated 



8.3. Heaps 367 

with node v. Note that p(v) is not necessarily the path followed by down-heap 
bubbling when forming T(v). Clearly, the size (number of nodes) of p(v) is equal 
to the height of T(v) plus one. Hence, forming T(v) takes time proportional to the 
size of of p(v), in the worst case. Thus, the total running time of bottom-up heap 
construction is proportional to the sum of the sizes of the paths associated with the 
nodes ofT. 

Observe that each node vof T belongs to at most two such paths: the path p(v) 
associated with v itself and possibly also the path p(u) associated with the closest 
ancestor u of v preceding v in an inorder traversal. (See Figure 8.11.) In particular, 
the root r of T and the nodes on the leftmost root-to-Ieaf path each belong only to 
one path, the one associated with the node itself. Therefore, the sum of the sizes 
of the paths associated with the internal nodes of T is at most 2n 1. We conclude 
that the bottom-up construction of heap T takes O(n) time. • 

/ 
/ 

/
/' 

/ 

Figure 8.11: Visual justification of the linear running time of bottom-up heap con
struction, where the paths associated with the internal nodes have been highlighted 
with alternating colors. For example, the path associated with the root consists of 
the nodes storing keys 4, 6, 7, and 11. Also, the path associated with the right child 
of the root consists of the internal nodes storing keys 6, 20, and 23. 

To summarize, Proposition 8.6 states that the running time for the first phase 
of heap-sort can be reduced to be O(n). Unfortunately, the running time of the 
second phase of hear-sort cannot be made asymptotically better than O(nlogn) 

;(tha{is, it Wil1~lways be Q(nlog n) in the worst case). We will not justify this lower 
bound until Chapter 11, however. Instead, we conclude this chapter by discussing 
a design pattern that allows us to extend the priority queue ADT to have additional 
functionality. 



368 Chapter 8. Priority Queues 

8.4 Adaptable Priority Queues 

The methods of the priority queue ADT given in Section 8.1.3 are sufficient for 
most basic applications of priority queues, such as sorting. However, there are 
situations where additional methods would be useful, as shown in the scenarios 
below, which refer to the standby airline passenger application. 

• A standby passenger with a pessimistic attitude may become tired of waiting 
and decide to leave ahead of the boarding time, requesting to be removed 
from the waiting list. Thus, we would like to remove from the priority queue 
the entry associated with this passenger. Operation removeMin is not suitable 
for this purpose since the passenger leaving is unlikely to have first priority. 
Instead, we would like to have a new operation remove(e) that removes an 
arbitrary entry e. 

• 	Another standby passenger finds her gold frequent-flyer card and shows it to 
the agent. Thus, her priority has to be modified accordingly. To achieve this 
change of priority, we would like to have a new operation replaceKey(e,k) 
that replaces with k the key of entry e in the priority queue. 

• 	Finally, a third standby passenger notices her name is misspelled on the 
ticket and asks it to be corrected. To perform the change, we need to up
date the passenger's record. Hence, we would like to have a new operation 
replaceValue(e,x) that replaces with x the value of entry e in the priority 
queue. 

Methods of the Adaptable Priority Queue ADT 

The above scenarios motivate the definition of a new ADT that extends the prior
ity queue ADT with methods remove, replaceKey, and replaceValue. Namely, an 
adaptable priority queue P supports the following methods in addition to those of 
the priority queue ADT: 

rernove(e): Remove from P and return entry e. 

replaceKey(e,k): Replace with k and return the key of entry e of P; an 
.. error condition occurs if k isinvalid (that is, k cannot be 

compared with other keys). 

replaceValue(e,x): Replace with x and return the value of entry e of P. 



369 S.4. Adaptable Priority Queues 

8.4.1 Using the java.util.PriorityQueue Class 

There is no priority queue interface built into Java, but Java does include a class, 
java.utiLPriorityQueue, which implements the java.uti!.Queue interface. Instead 
of adding and removing elements according to the FIFO policy, however, which 
is the standard queue policy, the java.util.PriorityQueue class processes its entries 
according to a priority. This priority is defined by a given comparator object, which 
is passed to the queue in a constructor, or it is defined by the natural ordering of 
the elements being stored in the queue. Thus, the java.util.PriorityQueue class is a 
type of priority queue, which is based on inserting and removing general elements 
rather than key-value pair entries. 

The java.utiLPriorityQueue class is implemented with a heap, so it guarantees 
o(log n) time performance for inserting an element and removing the minimum el
ement. In addition, it provides a method, remove(e), for removing an element, e. 
It doesn't have methods for replacing keys or values, though, since it operates on 
general objects, not entries. Still, we can define it to use entry objects as its ele
ments, and we can perform key and value replacement by the appropriate element 
removal and insertion. Indeed, the Java Collections Framework includes an entry 
object, called java.utiI.AbstractMap.5impleEntry, which implements an interface, 
java.utiI.Map.Entry, that includes the entry ADT discussed above in Section 8.1.2. 
Thus, we can use built-in Java classes to construct a simple adapter pattern imple
mentation of the adaptable priority queue ADT, as shown in Table 8.3. 

The only drawback with this implementation of the adaptable priority queue 
ADT is that, even though the priority queue methods min () and removeM in 0run in 
O(logn) time using this implementation, the methods remove(e), replaceKey(e,k), 
and replaceValue(e,x) ru'n in O(n) time. The main problem is that this adaptation 
has no fast way of locating element e in the heap; sci we have to search through the 
entire heap to find e and remove it. 

Method java.uti!. PriorityQueue Adaptation 
sizeO sizeO 

isEmptyO isEmptyO 
insert(k, v) add(new SimpleEntry(k, v)) 

minO peekO 
removeMinO removeO 

remove(e) remove(e) 
replaceKey(e, k) 

replaceValue(e,x) 
remove(e); add(new SimpleEntry(k, e.getValueO)) 
remove(e); add(new SimpleEntry(~.getKeyO,x)) 

Table 8.3: Methods of the adaptable priority queue ADT and corresponding adapter 
pattern implementations using the java.util.PriorityQueue class. 



370 	 Chapter 8. Priority Queues 

8.4.2 Location-Aware Entries 

In order to implement methods remove, replaceKey, and replaceValue of an adapt
able priority queue P efficiently, we need a mechanism for finding the position of 
an entry of P. Namely, given the entry e of P passed as an argument to one of the 
above methods, we need to find the position storing e in the the data structure im
plementing P (for example, a doubly linked list or a heap). This position is called 
the location of the entry. 

Instead of searching for the location of a given entry e, we augment the entry 
object with an instance variable of type Position storing the location. This im
plementation of an entry that keeps track of its position is called a location-aware 
entry. A summary description of the the use of location-aware entries for the sorted 
list and heap implementations of an adaptable priority queue is provided below. We 
denote the number of entries in the priority queue at the time an operation is per
formed, with n . 

• 	Sorted list implementation. In this implementation, after an entry is inserted, 
we set the location of the entry to refer to the position of the list containing 
the entry. Also, we update the location of the entry whenever it changes 
position in the list. Operations remove(e) and replaceValue(e,x) take 0(1) 
time, since we can obtain the position p of entry e in" O( 1) time following the 
location reference stored with the entry. Instead, operation replaceKey(e,k) 
runs in O(n) time, because the modification of the key of entry emay require 
moving the entry to a different position in the list to preserve the ord~ing of 
the keys. The use of location-aware entries increases th~ running time of the 
standard priority queue operations by a constant factor." 

• 	Heap implementation. In this implementation, after an entry is inserted, we 
set the location of the entry to refer to the node of the heap containing the 
entry. Also, we update the location of the entry whenever it changes node 
in the heap (for example, because of the swaps in a down-heap or up-heap 
bubbling). Operation replaceValue(e,x) takes 0(1) time since we can obtain 
the position p of entry e in O( 1) time following the location reference stored 
with the entry. Operations remove(e) and replaceKey(e, k) run instead in 
O(1ogn) (details are explored in Exercise C-S.22). The use oflocation-aware 
entries increases the runningtirp.e of operations insert and removeMin by a 
constant factor overhead. 

The use of location-aware entries for the unsorted list implementation is explored 
in Exercise C-S.21. 



371 S.4. Adaptable Priority Queues 

Performance of Adaptable Priority Queue Implementations 

The performance of an adaptable priority queue implemented by means of various 
data structures with location-aware entries is summarized in Table 8.4. 

Method Unsorted List Sorted List Heap 
size, isEmpty 0(1) 0(1) 0(1) 

insert 0(1) O(n) O(logn) 
mm O(n) 0(1) 0(1) 

removeMin O(n) 0(1) O(logn) 
remove 0(1) 0(1) O(1ogn) 

replaceKey 0(1) O(n) O(logn) 
replaceValue 0(1) 0(1) 0(1) 

Table 8.4: Running times of the methods of an adaptable priority queue of size n, 
realized by means of an unsorted list, sorted list, and heap, respectively. The space 
requirement is O(n). 

8.4.3 Implementing an Adaptable Priority Queue 

In Code Fragment 8.15 and 8.16, we show the Java implementation of an adaptable 
priority queue based on a sorted list. This implementation is obtained by extending

i 

class SortedListPriorityQueue shown in Code Fragment 8.5. In particular, Code 
Fragment 8.16 shows how to realize a location-aware entry in Java by extending a 
regular entry. 

The main idea behind this implementation is that the LocationAwareEntry 
class, which implements the Entry interface, now contains a field, loc, that stores 
the location of each entry. That is, loc is a pointer to the position of this entry in 
the list representing the priority queue. In addition, location-aware entry objects 
support a method, setLocation, and each time the list-based priority queue moves 
an entry, it notifies the entry of this change using its setLocation method. This al
lows for each update operation to have the same asymptotic time performance as in 
a nonadaptive priority queue while also allowing for constant-time location of any 
location-aware entry. 



372 Chapter S. Priority Queues 

/** Implementation of an adaptable priority queue by means of a sorted list. *1 
public class SortedListAdaptablePriorityQueue<K,V> 

extends Sorted ListPriorityQueue<K,V> 
implements AdaptablePriorityQueue<K,V> { 

/** Creates the priority queue with the default comparator *1 

public SortedListAdaptablePriorityQueueO { 


superO; 

} 

/** Creates the priority queue with the given comparator *1 

public SortedListAdaptablePriorityQueue(Comparator<K> comp) { 


super(comp); 

} 

/** Inserts a key-value pair and returns the entry created *1 

public Entry<K,V> insert (K k, V v) throws InvalidKeyException { 


checkKey(k); 

LocationAwareEntry<K,V> entry - new LocationAwareEntry<K,V>(k,v); 

insertEntry(entry); 

entry.setLocation(actionPos); II position of the new entry 

return entry; 


} 

/** Removes and returns the given entry *1 

public Entry<K,V> remove(Entry<K,V> entry) { 


checkEntry(entry); 

LocationAwareEntry<K,V> e (LocationAwareEntry<:K,V» entry; 

Position<Entry<K,V> > p e.locationO; 

entries. remove(p); 

e.setLocation(null); 

return e; i 


}

1** Replaces the key of the given entry *1 

public K replaceKey(Entry<K,V> entry, K k) { 


checkKey{k); 

checkEntry(entry); 

LocationAwareEntry<K,V> e = (LocationAwareEntry<K,V» remove(entry); 

K oldKey = e.setKey(k); 

insertEntry(e); 

e.setLocation(actionPos); II position of new entry 

return old Key; 


} 

Code Fragment 8.15: Java implementation of an adaptable priority queue by means 
of a sorted list storing location-aware entries. Class SortedListAdaptablePriori
tyQueue extends class SortedListPriorityQueue (Code Fragment 8.5) and imple
ments interface AdaptablePriorityQueue. (Continues in Code Fragment 8.16.) 



373 S.4. Adaptable Priority Queues 

/** Replaces the value of the given entry * / 
public V replaceValue(Entry<K,V> e, V value) { 


checkEntry(e); 

V oldValue ((LocationAwareEntry<K,V» e).setValue(value); 

return oldValue; 


}

/** Determines whether a given entry is valid * / 

protected void checkEntry(Entry ent) throws InvalidEntryException { 


if(ent == null II !(ent instanceof LocationAwareEntry)) 
throw new InvalidEntryException("invalid entryll); 


}

/** Inner class for a location-aware entry * / 

protected static class LocationAwareEntry<K,V> 


extends MyEntry<K.V> implements Entry<K,V> { 

/** Position where the entry is stored. * / 

private Position<Entry<K.V» loc; 

public LocationAwareEntry(K key, V value) { 


super(key, value); 
} 
public LocationAwareEntry(K key, V value, Position<Entry<K,V> > pos) { 

super(key, value); 

loc = pos; 


} 
protected Position<Entry<K,V> > 10cationO { 


return loc; . 

} 
protected Position<Entry<K.V» setLocation(Position<Entry<K,V> > pos) { 

Position<Entry<K,V» oldPosition = location(); 
loc pos; 
return old Position; 

} 
protected K setKey(K key) { 


K old Key getKeyO; 

k key; 

return old Key; 


} 
protected V setValue(V value) { 


V oldValue = getValueO; 

v = value; 

return oldValue; 


} 

} 


Code.Fragment8.16: An adaptable priority queue implemented with a sorted list 
storing location-aware entries. (Continued from Code Fragment 8.15.) The nested 
class LocationAwareEntry realizes a location-aware entry and extends nested class 
MyEntry of SortedListPriorityQueue shown in Code Fragment 8.5. 

http:Code.Fragment8.16


374 Chapter S. Priority Queues 

8.5 Exercises 

For help with exercises, please visit the web site, www.wiley.com/go/global/goodrich. 

Rei nforcement 

R-8.l 	Suppose you label each node v of a binary tree T with a key equal to the 
preorder rank of v. Under what circumstances is T a heap? 

R-8.2 	What is the output from the following sequence of priority queue ADT 
methods: insert(5,A), insert(4,B), insert(7,I), insert(I,D), removeMinO, 
insert(3,J), insert(6,L), removeMinO, removerviinO, insert(8, G), remove
MinO, insert(2,H), removeMinO, removeMinO ? 

R-8.3 	An airport is developing a computer simulation of air-traffic control that 
handles events such as landings and takeoffs. Each event has a time-stamp 
that denotes the time when the event occurs. The simulation program 
needs to efficiently perform the following two fundamental operations: 

• 	Insert an event with a given time-stamp (that is, add a future event). 
• 	Extract the event with smallest time-stamp (that is, determine the 

next event to process). 
Which data structure should be used for the aboye operations? Why? 

R-8.4 	Although it is correct to use a "reverse" comparator with the priority queue 
ADT so that we retrieve and remove an entry with the maximum key each 
time, it is confusing to have an entry with maximum key returned by a 
method named "removeMin." Write a short adapter class that tan take 
any priority queue P and an associated comparator C and implement a 
priority queue that concentrates on the element with maximum key, using 
methods with names like removeMax. 

R-8.5 	Illustrate the execution of the selection-sort algorithm on the following 
input sequence: (22,15,36,44,10,3,9,13,29,25). 

R-8.6 	Illustrate the execution of the insertion-sort algorithm on the input se
quence of the previous problem. 

R-8.7 	Give an example of a worst-case sequence with n elements for insertion
sort, and show that insertion-sort runs in Q(n2) time on such a sequence. 

R-8.8 	At which nodes of a heap can an entry with the largest key be stored? 

R:·8.9 	In defining the relation "to the left of' for two nodes of a binary tree (Sec
.tion 8.3.1), can we use a preorder traversal instead of an inorder traversal? 
How about a postorder traversal? 

R-8.l0 	Illustrate the execution of the heap-sort algorithm on the following input 
sequence: (2,5,16,4,10,23,39,18,26,15). 

www.wiley.com/go/global/goodrich


375 8.5. Exercises 

R-S.11 	 Let T be a complete binary tree such that node v stores the entry (p(v) ,0), 
where p(v) is the level number of v. Is tree T a heap? Why or why not? 

R-S.l2 	Explain why the case where node r has a right child but not a left child 
was not considered in the description of down-heap bubbling. 

R-S.13 	 Is there a heap T storing seven entries with distinct keys such that a pre
order traversal of T yields the entries of T in increasing or decreasing 
order by key? How about an inorder traversal? How about a postorder 
traversal? If so, give an example; if not, say why. 

R-S.l4 	Let H be a heap storing 15 entries using the array-list representation of a 
complete binary tree. What is the sequence of indices of the array list that 
are visited in a preorder traversal of H? What about an inorder traversal 
of H? What about a postorder traversal of H? 

R-S.15 	 Show that the sum 
n 

[logi, 
i==l 

which appears in the analysis of heap-sort, is Q(nlogn). 

R-S.16 	Bill claims that a preorder traversal of a heap will list its keys in nonde
creasing order. Draw an example of a heap that proves him wrong. 

R-S.17 	 Hillary claims that a postorder traversa~ of a heap will list its keys in non
increasing order. Draw an example of a heap that proves her wrong. 

R-S .IS 	Show all the steps of the algorithm for removing key 16 from the heap of 
Figure S.3. 

s 
R-S.l9 	Show all the steps of the algorithm for replacing key 5 with IS in the heap 

ofFigureS.3. ". ' 

R-S.20 	Draw an example of a heap whose keys are all the odd numbers from 1 to 
59 (with no repeats), such that the insertion of an entry with key 32 would 
cause up-heap bubbling to proceed all the way up to a child of the root 
(replacing that child's key with 32). 

R-S.21 	 Complete Figure S.9 by showing all the steps of the in-place heap-sort 
algorithm. Show both the array and the associated heap at the end of each 
step. 

R-S.22 	Give a pseudo-code description of a nonrecursive in-place heap-sort algo
rithm. 

R-:S.23 	 A group.of children want to play a game, called Unmonopoly, where in 
each tum the player with the most money must give half of hislher money 
to the. player with the least amount of money. What data structure(s) 
should be used to play this game efficiently? Why? 

http:group.of


376 Chapter S. Priority Queues 

Creativity 

C-S.1 	 An online computer system for trading stock needs to process orders of 
the form "buy 100 shares at $x each" or "sell 100 shares at $y each." A 
buy order for $x can only be processed if there is an existing sell order 
with price $y such that y ~ x. Likewise, a sell order for $y can only be 
processed if there is an existing buy order with price $x such that y ~ x. 
If a buy or sell order is entered but cannot be processed, it must wait 
for a future order that allows it to be processed. Describe a scheme that 
allows for buy and sell orders to be entered in O(logn) time, independent 
of whether or not they can be immediately processed. 

C-S.2 	Extend a solution to the previous problem so that users are allowed to 
update the prices for their buy or sell orders that have yet to be processed. 

C-S.3 	 Write a comparator for nonnegative integers that determines order based 
on the number of 1's in each integer's binary expansion, so that i < j if 
the number of 1's in the binary representation of i is less than the number 
of l's in the binary representation of j. 

C-S.4 Show how to implement the stack ADT using only a priority queue and 
one additional integer instance variable. 

C-S.5 Show how to implement the (standard) queue ADT using only a priority 
queue and one additional integer instance variable. 

C-S.6 	Describe in detail an implementation of a priority queue based on a sorted 
array. Show that this implementation achieves O( 1) time for operations 
min and removeMih and O(n) time for operation insert. 

C-S.7 	Describe an in-place version of the selection-sort algorithm that uses only 
0(1) space for instance variables in addition to an input array itself. 

C-S.S 	Assuming the input to the sorting problem is given in an array A, describe 
how to implement the insertion-sort algorithm using only the array A and, 
at most, six additional (base-type) variables. 

C-S.9 Describe how to implement the heap-sort algorithm using, at most, six 
integer variables in addition to an input array itself. 

C-S.10 Describe a sequence of n insertions in a heap that requires .0.(nlog n) time 
to process. 

C-S.11 	 An alternative method for finding the last node during an insertion in a 
heap T is to store, in the last node and each external node of T, areference 
td'the external node immediately to its right (wrapping to the first node 
in the next lower level for the right-most external node). Show how to 
maintain such references in O(1) time per operation of the priority queue 
ADT assuming T is implemented as a linked structure. 



377 8.5. Exercises 

C-8.12 	Describe an implementation of complete binary tree T by means of a 
linked structure and a reference to the last node. In particular, show how 
to update the reference to the last node after operations add and remove in 
o(log n) time, where n is the current number of nodes of T. Be sure and 
handle all possible cases, as illustrated in Figure 8.12. 

u 

(b) 

Figure 8.12: Updating the last node in a complete binary tree after operation add or 
remove. Node w is the last node before operation add or after operation remove. 
Node z is the last node after operation add or before operation remove. 

C-8.13 	We can represent a path from the root to a given node of a binary tree 
by means of a binary string, where 0 means "go to the left child" and 1 
means "go to the right child." For example, the path from the root to the 
node storing (8, W) in the heap of Fig~re 8.l2a is represented by "101." 
Design an O(logn)-time algorithm for finding the last node of a complete 
binary tree with n nodes, based on the above representation. Show how 
this algorithm can be used in the implementation of a complete binary tree 
by means of a linked'structure that does not keep a reference to the last 
node. 

C-8.l4 Given a heap T and a key k, give an algorithm to compute all the entries 
in T with key less than or equal to k. For example, given the heap of 
Figure 8.12a and query k = 7, the algorithm should report the entries with 
keys 2, 4, 5, 6, and 7 (but not necessarily in this order). Your algorithm 
should run in time proportional to the number of entries returned. 

C-S.15 Provide a justification of the time bounds in Table 8.4. 

C-S.16 Tamarindo Airlines wants to give a first-class upgrade coupon to their top 
log n frequent flyers, based on the number of miles accumulated, where 
n is the total number of the airlines' frequent flyers. The algorithm they 
cunertdyp.se; which runs in O(nlogn) time, sorts the flyers by the number 

.. of miles flown and then scans the sorted list to pick the top logn flyers. 
Describe an algorithm that identifies the top logn flyers in O(n) time. 

e-S.17 Develop an algorithm that computes the kth smallest element of a set of n 
distinct integers in O(n klogn) time. 

http:cunertdyp.se


378 	 Chapter 8. Priority Queues 

C-8.18 	Suppose two binary trees, Tl and T2, hold entries satisfying the heap-order 
property. Describe a method for combining TI and T2 into a tree T whose 
internal nodes hold the union of the entries in TI and T2 and also satisfy 
the heap-order property. Your algorithm should run in time O(hi +h2) 
where hI and h2 are the respective heights of TI and T2. 

C-8.l9 	Give an alternative analysis of bottom-up heap construction by showing 
the following summation is O( 1), for any positive integer h: 

h

.E (i/2i
) . 

i=1 

C-8.20 	Give an alternate description of the in-place heap-sort algorithm that uses 
a standard comparator instead of a reverse one. 

C-8.21 	 Describe efficient algorithms for performing operations remove(e) and 
replaceKey(e,k) on an adaptable priority queue realized by means of an 
unsorted list with location-aware entries. 

C-8.22 	Describe efficient algorithms for performing operations remove(e) and 
replaceKey(e, k) on an adaptable priority queue realized by means of a 
heap with location-aware entries. 

C-8.23 	Let S be a set of n points in the plane with distinct integer x- and y
coordinates. Let T be a complete binary tree storing the points from S 
at its external nodes, such that the points are ordered left-to-right by in
creasingx-coordinates. For each node v in T, lefS(v) denote the subset of 
S consisting of points stored in the subtree rooted at v. For the root r of 
T, define top(r) to be the point in S = S(r) with maximum y-coordinate. 
For every other node v, definetop(r) to be the point in S with hi.,ghest y
coordinate in S(v) that is not also the highest}-coo~dinate in S(u), where 
u is the parent of v in T (if such a point exists). Such labeling turns T into 
apriority search tree. Describe a linear-time algorithm for turning T into 
a priority search tree. 

Projects 

P-8.1 Give a Java implementation of a priority queue based on an unsorted list. 
P-8.2 Write an applet or stand-alone graphical program that animates both the 

insertion-sort and selection-sort algorithms. Your animation should visu
alize the movement of elements to their correct locations. 

P-8.3 Write an applet or stand-alone graphical program that animates a heap. 
Yourprograrn should support all the priority queue operations and should 
visualize the swaps in the up-heap and down-heap bubblings. (Extra: Vi
sualize bottom-up heap construction as well.) 

P-8.4 Implement the heap-sort algorithm using bottom-up heap construction. 



379 Chapter Notes 

P-8.5 Implement the in-place heap-sort algorithm. Experimentally compare its 
running time with that of the standard heap-sort that is not in-place. 

P-8.6 Implement a heap-based priority queue that supports the following addi
tional operation in linear time: 

replaceComparator(c): Replace the CUlTent comparator with c. 
(Hint: Utilize the bottom-up heap construction algorithm.) 

P-8.7 Write a program that can process a sequence of stock buy and sell orders 
as described in Exercise C-8.l. 

P-8.8 	One of the main applications of priority queues is in operating systems
for scheduling jobs on a cpu. In this project you are to build a program 
that schedules simulated CPU jobs. Your program should run in a loop, 
each iteration of which cOlTesponds to a time slice for the CPU. Each job 
is assigned a priority, which is an integer between -20 (highest priority) 
and 19 (lowest priority), inclusive. From among all jobs waiting to be pro
cessed in a time slice, the CPU must work on a job with highest priority. 
In this simulation, each job will also come with a length value, which is an 
integer between 1 and 100, inclusive, indicating the number of time slices 
that are needed to process this job. For simplicity, you may assume jobs 
cannot be intelTupted-once it is scheduled on the CPU, a job runs for a 
number of time slices equal to its length. Your simulator must output the 
name of the job running on the CPU in each time slice and must process 
a sequence of commands, one per time'slice, each of which is of the form 
"add job name with length n and priority p" or "no new job this slice". 

P-8.9 Develop a Java implementation of an adaptable priority queue that is based 
on an unsorted list and supports location-aware·entries. s 

P-8.l0 Develop a Java implementation of an adap~able priority queue that is based 
on a heap and supports location-aware entries. 

Chapter Notes 

Knuth's book on sorting and searching [63] describes the motivation and history for the 
selection-sort, insertion-sort, and heap-sort algorithms. The heap-sort algorithm is due 
to Williams [99], and the linear-time heap construction algorithm is due to Floyd [34]. 
Additional algorithms and analyses for heaps and heap-sort variations can be found in 
papers by Bentley [13], Carlsson [21], Gonnet and Munro [40], McDiarmid and Reed [71], 
and Schaffer and Sedgewick [85]. The design pattern of using location-aware entries (also 
described in [41]) appears to be new. 





Chapter 

9 	 Maps and Dictionaries 

•••.-:::-·0Qri...:.. 00 0000000 
• .PQ~).""""".'i0~ooo~OO 0 OO~OOO~OOO 

__ t.... 0000 00 OOOOO~O~ ~~ O~ ~~~~~O~ ~~ O~ ~~~ 
'.~O0.... ......:....:. ...~... 
••~:.OOO 0 000 0 OO.':~O'OOO 0 000 0 0000 a 000 a 00 
'0 •••••••••,. • "'"................... .
'.', rJ!Ii:: O 0000 0 0 0000-:. ~••OO 00 00 00000000 00 00..... ..... 	 0 

~0·.·· . ....~ .....
0 ••0 	 0....... .....


•" .,.0 .':". 0"'llf," .'. 0 0 "if~~~·. 0-0

:'~~~:: ~~~u~~~~i:~i};::(~51*~~1~;~~~~~~:i;~~~.;J\l&m.:;s
....,-8f/jfI:..0••0.~••• '~•••000000 •••~ •• 10000000oo •••• 00000 
••• _. 0 0 0 ••••• • ••••.... .., 

Contents 

9.1 Maps ....... . 	 382 


9.1.1 The Map ADT 	 383 
9.1.2 A Simple List-Based Map Implementation 385 

9.2 Hash Tables .......... . 	 386 


9.2.1 Bucket Arrays . 	 386 
9.2.2 Hash Functions 	 387 
9.2.3 Hash Codes .. 	 388 
9.2.4 Compression Functions 	 391 
9.2.5 Collision-Handling Schemes . 	 I 393 
9.2.6 A Java Hash Table Implementation. 	 397 
9.2.7 Load Factors and Rehashing .... 	 401 
9.2.8 Application: Counting Word Frequencies. 402 

9.3 	 Ordered Maps . . . . . . . . . . . . . . . . . 403 

9.3.1 Ordered Search Tables and Binary Search 404 
9.3.2 Two Applications of Ordered Maps. 	 408 

9.4 	 Skip Lists . . . . . . . . . . . . . . . . . 411 

9.4.1 Search and Update Operations in a Skip List 413 

9.4.2 .A Probabilistic Analysis of Skip Lists * 417 

9.5 	 Dictionaries. . . . . . . . 420 

9S1 The Dictionary ADT 420 
9.5.2 Implementations with Location-Aware Entries .... 422 
9.5.3 An Implementation Using the java.util Package ... 423 

9.6 	 Exercises . . . . . . . . . . . . . . . . . . . • . . . .. 426 



382 Chapter 9. Maps and Dictionaries 

9.1 Maps 


" " ,, 
\ 
\ 
\ 
\, 
I 
I 

I 
Map 

Figure 9.1: Aconceptual illustration of the map ADT. Keys (labels) are assigned to 
values (folders) by a user. The resulting entries (labeled folders) are inserted into 
the map (file cabinet). The keys can be used later to retrieve or remove values. 

\ 

I 

A map allows us to store elements so they can be located quickly using keys. 
The motivation for such searches is that each element typically stores additional 
useful information besides its search key, but the only way to get at that information 
is to use the search key. Specifically, a map stores key-value pairs (k, v), which we 
call entries, where k is the key and v is its corresponding value. In addition,1:he map 
ADT requires that each key be unique, so the association of keys to values defines a 
mapping. In order to achieve the highest level of generality, we allow both the keys 
and the values stored in a map to be of any object type. (See Figure 9.1.) In a map 
storing student records' (such as the student's name, address, and course grades), 
the key might be the student's ID number. In some applications, the key and the 
value may be the same. For example, if we had a map storing prime numbers, we 
could use each number itself as both a key and its value. 

In either case, we use a key as a unique identifier that is assigned by an appli
cation or user to an associated value object. Thus, a map is most appropriate in 
situations where each key is to be viewed as a kind of unique index address for its 
value, that is, an object that serves as a kind of location for that value. For exam
.	pIe, if we wish to store student records, we would probably want to use student ID 
objects .as keys (and disallow two students having the same student ID). In other 
words, the key associated with an object can be viewed as an "address" for that 
object. Indeed, maps are sometimes referred to as associative stores, because the 
key associated with an object determines its "location" in the data structure. 



9.1. Maps 	 383 

9.1.1 	 The Map ADT 

Since a map stores a collection of objects, it should be viewed as a collection of 
key-value pairs. As an ADT, a map M supports the following methods: 

size(): Return the number of entries in M. 

isEmptyO: 	 Test whether M is empty. 

get (k): 	 If Mcontains an entry e (k, v), with key equal to k, then 
return the value, v, for e, else return null. 

put(k, v): 	 IfM does not have an entry with key equal to k, then add 
entry (k, v) to M and return null; else, replace with v the 
existing value of the entry with key equal to k and return 
the old value. 

remove(k): 	 Remove from M the entry with key equal to k, and return 
its value; if M has no such entry, then return null. 

keySetO: 	 Return an iterable collection containing all the keys stored 
in M (so keySetO.iteratorO returns an iterator of keys). 

valuesO: 	 Return an iterable collection containing all the values 
associated with keys stored in M (so valuesO.iteratorO 
returns an iterator of values).. 

i 

entrySetO: 	 Return an iterable collec~ion containing all the key-value 
entries in M (so entrySetO.iteratorO returns an iterator 
of entries). 

When operations get(k), put(k, v) and remove(k) are performed on a map M that 

has no entry with key equal to k, we use the convention of returning null. A special 

value such as this is known as a sentinel. (See also Section 3.3.) The disadvantage 

with using null as such a sentinel is that this choice can create ambiguity should 

we ever want to have an entry (k, null) with value null in the map. Another choice, 

of course, would be to throw an exception when someone requests a key that is 

not in our map. This would probably not be an appropriate use of an exception, 


. 
however, since. it is nOnnal to ask for something that might not be in our map.
.. 

Moreover, throwing and catching an exception is typically slower than a test against 
a sentinel; hence, using a sentinel is more efficient (and, in this case, conceptually 
more appropriate). So we use null as a sentinel for a value associated with a missing 
key. 



384 Chapter 9. Maps and Dictionaries 

Example 9.1: In the following, we show the effect ofaseries ofoperations on an 
initially empty map storing entries with integer keys and single-character values. 

----_............................_---_ ........-

I Operation Output Map 
isEmptyO true 0 
put(5,A) null {(5,A)} 
put(7,B) null {(5,A), (7,B)} 
put(2,C) null {(5,A), (7,B), (2,C)} 
put(S,D) null {(5,A), (7,B), (2,C), (S,D)} 
put(2,E) C {(5,A), (7,B), (2,E), (S,D)} 
get(7) B {(5,A), (7,B), (2,E), (S,D)} 
get(4) null {(5,A), (7,B), (2,E), (S,D)} 
get(2) E {(5,A), (7,B), (2,E), (8,D)} 
sizeO 4 {(5,A), (7,B), (2,E), (8,D)} 

remove(5) A {(7,B), (2,E), (8,D)} 
remove(2) E {(7,B), (8,D)} 

get(2) null {(7,B), (8,D)} 
isEmptyO false {(7,B), (8,D)} 
entrySetO {(7,B), (8,D)} {(7,B), (8,D)} 
keySet() {7,8} {(7,B), (8,D)} 
valuesO {B,D} {(7,B),t8,D)} 

i 

Maps in the java.util Package 

The Java package java.util includes an interface for the map ADT, which is called 
java.util. Map. This interface is defined so that an implementing class enforces 
unique keys, and it includes all of the methods of the map ADT given above. It 
also includes some additional methods, as well, for adding and removing large 
collections of entries at once. 

In addition, the java. uti I. Map interface assumes that all the associated entries, 
which would be returned in the collection provided by entrySetO, are of type 
java.utiI.Map.Entry. As we have noted above, the java.utiI.Map.Entry interface 
includes all the methods of the entry ADT given in Section 8.1.2, including the 
methods getKeyO and getValueO. 

Having defined the map abstract data type, and its Java counterpart, let us now 
discuss some ways of implementing this ADT. 



9.1. Maps 385 

9.1.2 A Simple List-Based Map Implementation 

Asimple way of implementing a map is to store its n entries in a list S, implemented 
as a doubly linked list. Performing the fundamental methods, get(k), put(k) v), and 
remove(k), involves simple scans down S looking for an entry with key k. We give 
pseudo-code for performing these methods on a map M in Code Fragment 9.1. 

This list-based map implementation is simple, but it is only efficient for very 
small maps. Everyone of the fundamental methods takes O(n) time on a map with 
n entries, because each method involves searching through the entire list in the 
worst case. Thus, we would like something faster. 

Algorithm get(k): 

Input: A key k 

Output: The value for key k in M, or null if there is no key k in M 


for each position pin S.positionsO do 

if p.elementO.getKeyO k then 


return p.element().getValue() 

return null {there is no entry with key equal to k} 


Algorithm put(k, v): 

Input: A key-value pair (k, v) 

Output: The old value associated with key kin M, or null if k is new 


for each position pin S.positionsO do 

if p.element().getKey() = k then 


t +- p.element().getValueO 

IS.set(p, (k, v)) 

return t {return the old value} 
S.addLast((k, v)) 
n +- n 1 {increment variable storing number of entries} 
return null {there was no previous entry with key equal to k} 

Algorithm remove(k): 

Input: A key k 

Output: The (removed) value for key kin M, or null if k is not in M 


for each position p in S.positionsO do 

if p.element().getKey() = k then 


t +- p.element().getValueO 

S. remove(p) 

n~n':':'l' {decrement variable storing number of entries} 

return t {return the removed value} 


return null {there is no entry with key equal to k} 

Code Fragment 9.1: Algorithms for the fundamental map methods with a list S. 



386 Chapter 9. Maps and Dictionaries 

9.2 Hash Tables 

The keys associated with values in a map are typically thought of as "addresses" for 
those values. Examples of such applications include a compiler's symbol table and 
a registry of environment variables. Both of these structures consist of a collection 
of symbolic names where each name serves as the "address" for properties about 
a variable's type and value. One of the most efficient ways to implement a map in 
such circumstances is to use a hash table. Although, as we will see, the worst-case 
running time of map operations in an n-entry hash table is O(n), a hash table can 
usually perform these operations in O( 1) expected time. In general, a hash table 
consists of two major components, a bucket array and a hash function. 

9.2.1 Bucket Arrays 

A bucket array for a hash table is an array A of size N, where each cell of A is 
thought of as a "bucket" (that is, a collection of key-value pairs) and the integer 
N defines the capacity of the array. If the keys are integers well distributed in the 
range [O,N 1], this bucket array is all that is needed. An entry e with key k is 
simply inserted into the bucket A[k]. (See Figure 9.2.) To save space, an empty 
bucket may be replaced by a null object. 

2 3 4 5 8 

f\ ( f\ 

g;~J l1 ~~ ~7:~J 
Figure 9.2: A bucket array of size 11 for the entries (I,D), (3,C), (3,F), (3,Z), (6,A), 
(6,C) and (7,Q), 

If our keys are unique integers in the range [O,N 1J, then each bucket holds 
at most one entry. Thus, searches, insertions, and removals in the bucket array take 
O( 1) time. This sounds like a great achievement, but it has two drawbacks. First, 
the space uspdispr()portional to N. Thus, if N is much larger than the number of 
entries n actually present in the map, wehave a waste of space. The second draw
back is that keys are required to be integers in the range [0, N - 1], which is often not 
the case. Because of these two drawbacks, we use the bucket array in conjunction 
with a "good" mapping from the keys to the integers in the range [O,N -1]. 



••••••••••• 

·.·'··'·'...r
I 

9.2. Hash Tables 387~ 

9.2.2 Hash Functions 


The second part of a hash table structure is a function, h, called a hash junction, 
that maps each key k in our map to an integer in the range [O,N -1], where N is 
the capacity of the bucket array for this table. Equipped with such a hash function, 
h, we can apply the bucket array method to arbitrary keys. The main idea of this 
approach is to use the hash function value, h(k), as an index into our bucket array, 
A, instead of the key k (which is most likely inappropriate for use as a bucket array 
index). That is, we store the entry (k, v) in the bucketA[h(k)]. 

Of course, if there are two or more keys with the same hash value, then two 
different entries will be mapped to the same bucket in A. In this case, we say 
that a collision has occurred. Clearly, if each bucket of A can store only a single 
entry, then we cannot associate more than one entry with a single bucket, which 
is a problem in the case of collisions. To be sure, there are ways of dealing with 
collisions, which we will discuss later, but the best strategy is to try to avoid them 
in the first place. We say that a hash function is "good" if it maps the keys in our 
map so as to minimize collisions as much as possible. For practical reasons, we 
also would like a hash function to be fast and easy to compute. 

Following the convention in Java, we view the evaluation of a hash function, 
h(k), as consisting of two actions-mapping the key k to an integer, called the 
hash code, and mapping the hash code to an integer within thesrange of indices 
([0, N 1]) of a bucket array, called the compressio,!- junction. (See Figure 9.3.) 

hash code 

~ 
............................. 

~"'-2-1012"'~ 

compression function 

.~ 


o 1 2 ... N-l 

Figure 9.3: The two parts of a hash function: a hash code and a compression func
tion. 



388 Chapter 9. Maps and Dictionaries 

9.2.3 Hash Codes 

The first action that ahash function performs is to take an arbitrary key k in our map 
and assign it an integer value. The integer assigned to a key k is called the hash 
code for k. This integer value need not be in the range [O,N - 1], and may even be 
negative, but we desire that the set of hash codes assigned to our keys should avoid 
collisions as much as possible. For if the hash codes of our keys cause collisions, 
then there is no hope for our compression function to avoid them. In addition, to 
be consistent with all of our keys, the hash code we use for a key k should be the 
same as the hash code for any key that is equal to k. 

Hash Codes in Java 

The generic Object class defined in a Java comes with a default hashCodeO method 
for mapping each object instance to an integer that is a "representation" of that ob
ject. Specifically, the hashCodeO method returns a 32-bit integer of type into Un
less specifically overridden, this method is inherited by every object used in a Java 
program. We should be careful in using the default Object version of hashCodeO, 
however, as this could just be an integer interpretation of the object's location in 
memory (as is the case in many Java implementations).. This type of hash code 
works poorly with character strings, for example, because two different string ob
jects in memory might actually be equal, in which case we would like them to have 
the same hash code. Indeed, the Java String class overrides the hashCode method 

I 

of the Object class to be something more appropriate for character strings. Like
wise, if we intend to use certain objects as keys in a map, then we should override 
the built-in hashCodeO method for these objects, replacing it with a mapping that 
assigns well-spread, consistent integers to these types of objects. 

Let us consider, then, several common data types and some example methods 
for assigning hash codes to objects of these types. 

. Casting to an Integer 

To begin, we note that, for any data type X that is represented using at most as many 
bits as our integer hash.codes, we can simply take as a hash code for X an integer 
interpretation of its bits. Thus, for Java base types byte, short, int, and char, 
we can achieve a good hash code simply by casting this type to into Likewise, 
for a variable x ofbase type float, we can convert x to an integer using a call to 
Float.floatTolntBits(x), and.then use this integer as x's hash code. 



389 9.2. Hash Tables 

Summing Components 

For base types, such as long and double, whose bit representation is double that 
of a hash code, the above scheme is not immediately applicable. Still, one possible 
hash code, and indeed one that is used by many Java implementations, is to simply 
cast a (long) integer representation of the type down to an integer the size of a 
hash code. This hash code, of course, ignores half of the information present in the 
original value, and if many of the keys in our map only differ in these bits, then 
they will collide using this simple hash code. An alternative hash code, then, which 
takes all the original bits into consideration, is to sum an integer representation of 
the high-order bits with an integer representation of the low-order bits. Such a hash 
code can be written in Java as follows: 

static int hashCode(long i) {return (int)((i » 32) + (int) i);} 

Indeed, the approach of summing components can be extended to any object x 
whose binary representation can be viewed as a k-tuple (XO,Xl, ... ,Xk-1) of integers, 
for we can then form a hash code for x as Eto1

Xi. For example, given any fioating
point number, we can sum its mantissa and exponent as long integers, and then 
apply a hash code for long integers to the result. 

Polynomial Hash Codes 

The summation hash code, described above, i~ not a good choice for character 
strings or other variable-length objects that can be viewed as tuples of the form 
(XO,Xl, ... ,Xk-l), where the order of the Xi'S is significant. For example, consider a 
hash code for a character string s that sums the ASCII (or Unicode) values of the 
characters in s. This hash code'unfortunately produces lots of unwanted collisions 
for common groups of strings. In particular, II tempO! II and Itemp!O" collide using 
this function, as do "stop", "tops", "pots", and "spot", A better hash code 
should somehow take into consideration the positions of the xi's. An alternative 
hash code, which does exactly this, is to choose a nonzero constant, a i- I, and use 
as a hash code the value 

k-l k-2 xoa +X1a +... +Xk-2a+xk-1. 

Mathematically speaking, this is simply a polynomial in a that takes the compo
nents (XO,Xl, ... ,Xk-l) of an object x as its coefficients. This hash code is therefore 
called apolynomial hash code. By Homer's rule (see Exercise C-4.14), this poly
nomial can be written as 

Xk-l +a(xk-2 +a(xk-3 +... +a(x2 +a(xl +axo))" .)). 

Intuitively, a polynomial hash code uses multiplication by the constant a as a 
way of "making room" for each component in a tuple of values while als'o preserv
ing a characterization of the previous components. 



390 Chapter 9. Maps and Dictionaries 

Of course, on a typical computer, evaluating a polynomial will be done using 
the finite bit representation for a hash code; hence, the value will periodically over
flow the bits used for an integer. Since we are more interested in a good spread of 
the object x with respect to other keys, we simply ignore such overflows. Still, we 
should be mindful that such overflows are occurring and choose the constant a so 
that it has some nonzero, low-order bits, which will serve to preserve some of the 
information content even as we are in an overflow situation. 

We have done some experimental studies that suggest that 33, 37, 39, and 41 
are particularly good choices for a when working with character strings that are 
English words. In fact, in a list of over 50,000 English words formed as the union 
of the word lists provided in two variants of Unix, we found that takingB to be 33, 
37, 39, or 41 produced less than 7 collisions in each case! It should come as no 
surprise, then, to learn that many Java implementations choose the polynomial hash 
function, using one of these constants for a, as a default hash code for strings. For 
the sake of speed, however, some Java implementations only apply the polynomial 
hash function to a fraction of the characters in long strings. 

Cyclic Shift Hash Codes 

A variant of the polynomial hash code replaces multiplication by a with a cyclic 
shift of a partial sum by a certain number of bits. Such a function, applied to 
character strings in Java could, for example, look like the following: 

static int hashCode(String s) { i 

int h=O; 

for (int i=O; ks.length(); i++) { 
h (h < < 5) I (h > > > 27); / / 5-bit cyclic shift of the running sum 

h += (int) s.charAt(i); / / add in next character 

} 
return h; 

} 

As with the traditional polynomial hash code, using the cyclic-shift hash code re
quires some fine-tuning. In this case, we must wisely choose the amount to shift 
by for each new character. We show in Table 9.1 the results of some experiments 
run on a list of justover 25,000 English words, which compare the number of col
lisions for various shift amounts. These and our previous experiments show that if 
we choose our constant a or our shift value wisely, then either the polynomial hash 
code or its cyclic-shift variant are suitable for any object that can be written as a 
tuple (XO,XI,. " ,xk-d, where the order in tuples matters. 



391 9.2. Hash Tables 

1 Collisions 
Total Max 

0 23739 86 
1 10517 21 
2 2254 6 
3 448 3 
4 89 2 
5 4 2 
6 6 2 
7 14 2 
8 105 2 
9 18 2 

10 277 3 
11 453 4 
12 43 2 
13 13 2 
14 135 3 
15 1082 6 
16 8760 9 

Table 9.1: Comparison of collision behavior for the cyclic shift variant of the poly
nomial hash code as applied to a list of just over 25,000 English words. The "Total" 
column records the total number ofcollisions and the "Max" column records the 
maximum number of collisions for anyone hash code. Note that with a cyclic shift 
of 0, this hash code reverts to the one that simply sums aU the characters. 

9.2.4 Compression Functions 

The hash code for a key k will typically not be suitable for immediate use with a 
bucket array, because the range of possible hash codes for our keys will typically 
exceed the range of legal indices of our bucket array A. That is, incorrectly using 
a hash code as an index into our bucket array may result in an array out-of-bounds 
exception being thrown, either because the index is negative or it exceeds the ca
pacityof A.· Thus, once we have determined an integer hash code for a key object 
k, there is still the issue of mapping that integer into the range [O,N -1]. This map
ping is the second action that a hash function performs, and a good compression 
function is one that minimizes the possible number of collisions in a given set of 
hash codes. 



392 Chapter 9. Maps and Dictionaries 

The Division Method 

One simple compression function is the division method, which maps an integer i 
to 

imodN, 

where N, the size of the bucket array, is a fixed positive integer. Additionally, if 
we take N to be a prime number, then this compression function helps "spread out" 
the distribution of hashed values. Indeed, if N is not prime, then there is a higher 
likelihood that patterns in the distribution of hash codes will be repeated in the 
distribution of hash values, thereby causing collisions. For example, if we insert 
keys with hash codes {200, 205, 210, 215, 220, ... , 600} into a bucket array of size 
100, then each hash code will collide with three others. But if we use a bucket 
array of size 101, then there will be no collisions. If a hash function is chosen 
well, it should ensure that the probability of two different keys getting hashed to 
the same bucket is liN. Choosing N to be a prime number is not always enough, 
however, for if there is a repeated pattern of hash codes of the form pN q for 
several different p's, then there will still be collisions. 

The MAD Method 

A more sophisticated compression function, which helps eliminate repeated pat
terns in a set of integer keys is the multiply-add-and-divide (or "MAD") method. 
This method maps an integer i to 

J 

[(ai +b) mod p] mod N, ' 

where N is the size of the bucket array, p is a prime number larger than N, and a 

and b are integers chosen at random from the interval [O,p - 1], with a > 0. This 
compression function is chosen in order to eliminate repeated patterns in the set of 
hash codes and get us closer to having a "good" hash function, that is, one such that 
the probability any two different keys collide is 1IN. This good behavior would be 
the same as we would have if these keys were "thrown" into A uniformly at random. 

With a compression function such as this, which spreads integers fairly evenly 
in the range [O,N -1], and a hash code that transforms the keys in our map into 
integers, we have an effective hash function. Together, such a hash function and 
a bucket array define the main ingredients of the hash table implementation of the 

.mapADT. 

But before we can give the details of how to perform such operations as put, 
get, and remove, we must first resolve the issue of how we will be handling colli
SlOns. 



393 9.2. Hash Tables 

9.2.5 Collision-Handling Schemes 

The main idea of a hash table is to take abucket array, A, and a hash function, h, and 
use them to implement a map by storing each entry (k, v) in the "bucket" A[h(k)]. 
This simple idea is challenged, however, when we have two distinct keys, kl and k2, 
such that h(kr) h(k2)' The existence of such collisions prevents us from simply 
inserting a new entry (k, v) directly in the bucketA[h(k)]. They also complicate our 
procedure for performing the get(k), put(k, v), and remove(k) operations. 

Separate Chaining 

A simple and efficient way for dealing with collisions is to have each bucket A[i] 
store a small map, Mi, implemented using a list, as described in Section 9.1.2, 
holding entries (k, v) such that h(k) = i. That is, each separate Mi chains together 
the entries that hash to index i in a linked list. This collision resolution rule is 
known as separate chaining. Assuming that we initialize each bucketA[iJ to be an 
empty list-based map, we can easily use the separate chaining rule to perform the 
fundamental map operations, as shown in Code Fragment 9.2. 

Algorithm get(k): 
Output: The value associated with the key k in the map, or null if there is no 

entry with key equal to k in the map 

return A[h(k)].get(k) {delegate the get to the list-based map at A[h(k)]} 

Algorithm put(k, v): 
Output: If there is an existing entry in our map with key equal to k, then we 

return its value (replacing it with v); otherwise, we return null 

t +-- A[h(k)].put(k, v) {delegate the put to the list-based map at A[h(k)]} 
if t null then {k is a new key} 

n+--n 1 
return t 

Algorithm remove(k): 
Output: The (removed) value associated with key k in the map, or null if there 

is no entry with key equal to k in the map 

t +-- A[h(k)].remove(k) {delegate the remove to the list-based map at A[h(k)]} 
if t #- null then {k was found} 

n+--n-l 


return t 


Code Fragment 9.2: The fundamental methods of the map ADT, implemented with 
a hash table that uses separate chaining to resolve collisions among its n entries. 



394 Chapter 9. Maps and Dictionaries 

For each fundamental map operation, involving a key k, the separate-chaining 
approach delegates the handling of this operation to the miniature list-based map 
stored at A[h( k)]. So, put(k, v) will scan this list looking for an entry with key equal 
to k; if it finds one, it replaces its value with v, otherwise, it puts (k, v) at the end 
of this list. Likewise, get(k) will search through this list until it reaches the end or 
finds an entry with key equal to k. And remove(k) will perform a similar search 
but additionally remove an entry after it is found. We can "get away" with this 
simple list-based approach, because the spreading properties of the hash function 
help keep each bucket's list small. Indeed, a good hash function will try to minimize 
collisions as much as possible, which will imply that most of our buckets are either 
empty or store just a single entry. This observation allows us to make a slight 
change to our implementation so that, if a bucket A[i] is empty, it stores null, and 
if A[i] stores just a single entry (k, v), we can simply have A[i] point directly to the 
entry (k, v) rather than to a list-based map holding only the one entry. We leave the 
details of this final space optimization to an exercise (C-9.5). In Figure 9.4, we give 
an illustration of a hash table with separate chaining. 

Assuming we use a good hash function to index the n entries of our map in a 
bucket array of capacity N, we expect each bucket to be of size n/N. This value, 
called the loadfactor of the hash table (and denoted with A), should be bounded by 
a small constant, preferably below 1. For, given a good hash function, the expected 
running time of operations get, put, and remove in a map implemented with a hash 
table that uses this function is O( In/Nl). Thus, we can implement these operations 
to run in 0 ( 1) expected time, provided n is 0 (N) . 

o 1 2 3 4 5 6 7 8 9 10 11 12 

A 

iii iii iii iii 

G G ®.® 
G ®® 
G ® 

® 
Figure 9.4: A hash table of size 13, storing 10 entries with integer keys, with colli
sions resolved by separate chaining. The compression function is h(k) = k mod 13. 
For simplicity, we do not show the values associated with the keys. 



395 9.2. Hash Tables 

Open Addressing 

The separate chaining rule has many nice properties, such as allowing for simple 
implementations of map operations, but it nevertheless has one slight disadvan
tage: it requires the use of an auxiliary data structure-a list-to hold entries with 
colliding keys. We can handle collisions in other ways besides using the separate 
chaining rule, however. In particular, if space is at a premium (for example, if we 
are writing a program for a small handheld device), then we can use the alternative 
approach of always storing each entry directly in a bucket, at most one entry per 
bucket. This approach saves space because no auxiliary structures are employed, 
but it requires a bit more complexity to deal with collisions. There are several vari
ants of this approach, collectively referred to as open addressing schemes, which 
we discuss next. Open addressing requires that the load factor is always at most 1 
and that entries are stored directly in the cells of the bucket array itself. 

Linear Probing and its Variants 

A simple open addressing method for collision handling is linear probing. In this 
method, if we try to insert an entry (k, v) into a bucket A[i) that is already occupied, 
where i = h(k), then we try next at A[(i +1) mod NJ. IfA[(i+ 1) modN] is also 
occupied, then we try A[(i +2) mod NJ, and so on, until we find an empty bucket 
that can accept the new entry. Once this bucket is located, we simply insert the 
entry there. Of course, this collision resolution strategy requires that we change the 
implementation of the get(k, v) operation. In particular, to perform such a search, 
followed by either a replacement or insertion, we must examine c~nsecutive buck
ets, starting from A[h(k)], until we either finQ an eq.try with key equal to k or we 
find an empty bucket. (See Figure 9.5.) The name "linear probing" comes from the 
fact that accessing a cell of the bucket array can be viewed as a "probe." 

must probe 4 times 
New element with before finding empty slot 

key =15 to be inserted \ :-... ('4..A('4.. ~ 
o 1 2 3 4 5 6 7 8 9 10 

I 11 
13 

I I 
26 

1 5 1 
37 

1
16 

1 1 1 2t 1 

Figure 9.5: Insertion into a hash table with integer keys using linear probing. The 
hash function is h(k) k mod 11. Values associated with keys are not shown. 



396 Chapter 9. Maps and Dictionaries 

To implement remove(k), we might, at first, think we need to do a consider
able amount of shifting of entries to make it look as though the entry with key k 
was never inserted, which would be very complicated. A typical way to get around 
this difficulty is to replace a deleted entry with a special "available" marker object. 
With this special marker possibly occupying buckets in our hash table, we modify 
our search algorithm for remove(k) or get(k) so that the search for a key k will 
skip over cells containing the available marker and continue probing until reach
ing the desired entry or an empty bucket (or returning back to where we started 
from). Additionally, our algorithm for put(k, v) should remember an available cell 
encountered during the search for k, since this is a valid place to put a new entry 
(k, v). Thus, linear probing saves space, but it complicates removals. 

Even with the use of the available marker object, linear probing suffers from an 
additional disadvantage. It tends to cluster the entries of the map into contiguous 
runs, which may even overlap (particularly if more than half of the cells in the hash 
table are occupied). Such contiguous runs of occupied hash cells causes searches 
to slow down considerably. 

Another open addressing strategy, known as quadratic probing, involves itera
tively trying the buckets A[(i +f(j)) mod NJ, for j = 0, 1,2, ... , where f(j) = p, 
until finding an empty bucket. As with linear probing, the quadratic probing strat
egy complicates the removal operation, but it does avoid the kinds of clustering 
patterns that occur with linear probing. Nevertheless, it-creates its own kind of 
clustering, called secondary clustering, where the set of filled array cells "bounces" 
around the array in a fixed pattern. IfN is not chosen as a prime, then the quadratic 
probing strategy may not find an empty bucket in A even if one exists. In fa~t, even 
if N is prime, this strategy may not find an empty slot, if the bucket array is at least 
half full; we explore the cause of this type of clustering in an exercise (C-9.9). 

Another open addressing strategy that does not cause clustering of the kind 
produced by linear probing or the kind produced by quadratic probing is the double 
hashing strategy. In this approach, we choose a secondary hash function, h', and 
if h maps some key k to a bucketA[i]' with i = h(k), that is already occupied, then 
we iteratively try the buckets A[(i +f(j)) mod N] next, for j = 1,2,3, ... , where 
f(j) = j. h'(k). In this scheme, the secondary hash function is not allowed to 
evaluate to zero; acommon choice is h'(k) =q- (k mod q), for some prime number 
q < N. Also, N should be a prime. Moreover, we should choose a secondary hash 
function that will attempt to minimize clustering as much as possible. 

These open addressing schemes save some space over the separate chaining 
method, but they are not necessarily faster. In experimental and theoretical anal
yses, the chaining method is either competitive or faster than the other methods, 
depending on the load factor of the bucket array. So, if memory space is not a ma
jor issue, the collision-handling 

I 

method of choice seems to be separate chaining. 



397 9.2. Hash Tables 

9.2.6 A Java Hash Table Implementation 

The Java Collections Framework provides a hash table implementation in the class 
java.util.HashlVlap. This class implements the java.util.Map interface; hence, it 
performs all the methods of the map ADT, as well as several others, such as a 
clearO method, which removes all the entries from the map. It implements collision 
resolution using the separate chaining scheme described above, and it even allows 
users to specify the initial capacity of the hash table and the load factor that the table 
should not exceed. Standard instances of this class start with a default capacity of 
11 and default load factor of 0.75. Thus, if we want to have a hash table that uses 
some form of linear probing to resolve collisions, we will have to implement it 
"from scratch." 

In Code Fragments 9.3-9.5, we show a class, HashTableMap, which imple
ments the map ADT using a hash table with linear probing to resolve collisions. 
These code fragments include the entire implementation of the map ADT, except 
for the methods valuesO and entrySetO, which we leave as an Exercise (R-9.11). 

The main design elements of the Java class HashTableMap are as follows: 

• 	We maintain, in instance variables, the size, n, of the map, the bucket array, 
A, and the capacity, N, of A. 

• 	We use method hashValue to compute the hash function of a key by means 
of the built-in hashCode method and the' multiply-add-and-divide (MAD) 
compression function. 

• 	We define a sentinel, AVAILABLE, as a marker for deactivated entries. 

• 	We provide an optional constructor that allows us to specify the initial capac
ity of the bucket array. 

• 	If the current bucket array is full and one tries to insert a new entry, we rehash 
the entire contents into a new array that is twice the size as the old version. 

• 	The following (protected) auxiliary methods are used: 

o 	checkKey(k), which checks if the key k is valid. This method currently 
just checks that k is not null, but a class that extends HashTableMap 
can override this method with a more elaborate test. . 

o 	 rehashO, which computes a new MAD hash function with random pa
rameters and rehashes the entries into a new array with double capacity. 

o 	findEntry(k), which looks for an entry with key equal to k, starting at 
.lheindex A[h( k)Land going through the array in a circular fashion. If 
the method finds a cell with such an entry, then it returns the index i of 
this cell. Otherwise, it returns 1, where i is the index of the last 
empty or available cell encountered. 



398 Chapter 9. Maps and Dictionaries 

/** A hash table with linear probing and the MAD hash function *1 
public class HashTableMap<K,v> implements Map<K,V> { 

public static class HashEntry<K,V> implements Entry<K,V> { 

protected K key; 

protected V value; 

public HashEntry(K k, V v) { key:::: k; value v;} 

public V getValueO { return value; } 

public K getKeyO { return key; } 

public V setValue(V val) { 


V oldValue :::: value; 

value:::: val; 

return oldValue; 

} 


public boolean equals(Object 0) { 

HashEntry<K,V> ent; 

try { ent :::: (HashEntry<K,V» 0; } 

catch (CiassCastException ex) { return false; } 

return (ent.getKeyO =:::: key) && (ent.getValueO :::::::: value); 


} 

} 

protected Entry<K,v> AVAILABLE = new HashEntry<K,V>(null, null); 

protected int n 0; II number of entries in the dictionary 

protected int prime, capacity; II prime factor and capacity of bucket array 

protected Entry<K,V>(] bucket;11 bucket array 

protected long scale, shift; II the shift and scaling factors 

/** Creates a hash table with prime factor 109345121 and given capacity. *1 

public HashTableMap(int cap) { this(109345121, cap); } 

1** Creates a hash table with the given prime factor and capacity. *1 

public HashTableMap{int p, int cap) { 


prime = p; 

capacity = cap; 

bucket = (Entry<K,V>(D new Entry[capacity]; II safe cast 

java.util.Random rand = new java.utiI.RandomO; 

scale = rand.nextlnt{prime-1) + 1; 

shift rand.nextlnt(prime); 


}

/** Determines whether a key is valid. *1 

protected void checkKey{ K k) { 


if (k null) throw new InvalidKeyException("Invalid key: null. "); 

} 

1** Hash function applying IVIAD method to default hash code. *1 

public int hashValue(K key) { 


return (int) ((Math.abs(key;hashCodeO*scale + shift) % prime) % capacity); 
} 

Code Fragment 9.3: Class HashTableMap implementing the map ADT using ahash 
table with linear probing. (Continues in Code Fragment 9.4.) 



399 9.2. Hash Tables 

/** Returns the number of entries in the hash table. * / 

public int sizeO { return n; } 

/** Returns whether or not the table is empty. * / 

public boolean isEmptyO { return (n == 0); } 

/** Returns an iterable object containing all of the keys. * / 

public Iterable<K> keySetO { 


PositionList<K> keys = new f\lodePositionList<K>O; 

for (int i=O; i<capacity; i++) 


if ((bucket[i] null) && (bucket[iJ AVAILABLE)) 

keys.addLast(bucket[iJ .getKeyO); 


return keys; 

}

/** Helper search method - returns index of found key or -(a + 1),

* where a is the index of the first empty or available slot found. * / 

protected int findEntry(K key) throws InvalidKeyException { 
int avail -1; 
checkKey(key); 
int i = hashValue(key); 
int j = i; 
do { 

Entry<K,V> e bucket[i]; 

if ( e nUll) { 


if (avail < 0) 

avail = i; / / key is not in table 


break; 

} 

if (key.equals(e.getKeyO)) / / we have found our key 


return i; / / key found 

if (e == AVAILABLE) { / / bucket is deactivated 


if (avail < 0) , 

avail = i; / / remember that this slot is available 


} 

i = (i + 1) % capacity; / / keep looking 


} while (i != j); 

return -(avail + 1); / / first empty or available slot 


}

/** Returns the value associated with a key. * / 

public V get (K key) throws InvalidKeyException { 


int i = findEntry(key); / / helper method for finding a key 
if (i < 0) return null; / / there is no value for this key, so reutrn null 
return bucket[i].getValue(); / / return the found value in this case 

} 

Code Fragment 9.4: Class HashTableMap implementing the map ADT using a hash 
table with linear probing. (Continues in Code Fragment 9.5.) 



400 Chapter 9. Maps and Dictionaries 

/** Put a key-value pair in the map, replacing previous one if it exists. *1 
public V put (K key, V value) throws InvalidKeyException { 

int i findEntry(key); Ilfind the appropriate spot for this entry 
if (i >= 0) II this key has a previous value 

return ((HashEntry<K,V» bucket[i]).setValue(value); II set new value 
if (n >= capacity12) { 

rehashO; II rehash to keep the load factor <= 0.5 
findEntry(key); Ilfind again the appropriate spot for this entry 

} 
bucket[-i-1] new HashEntry<K,V>(key, value); II convert to proper index 
n++; 
return null; II there was no previous value 

} 
1** Doubles the size of the hash table and rehashes all the entries. *1 
protected void rehash() { 

capacity = 2*capacity; 
Entry<K,V>[] old bucket; 
bucket = (Entry<K,V>[]) new Entry[capacityJ; II new bucket is twice as big 
java.util.Random rand = new java.utiI.Random(); 
scale rand.nextlnt(prime-1) + 1; II new hash scaling factor 
shift = rand.nextlnt(prime); II new hash shifting factor 
for (int i=O; kold.length; i++) { 

Entry<K,V> e old[i]; 
if ((e != nUll) && (e AVAILABLE)) { II a valid entry 

int j = - 1 - findEntry(e.getKeyO); 
bucketOJ e; 

} 
} 


} 

1** Removes the key-value pair with a specified key. *1 
public V remove (K key) throws InvalidKeyException { 

int i = findEntry(key); II find this key first 
if (i < 0) return null; II nothing to remove 
V toReturn bucket[iJ.getValueO; 
bucket[i] AVAILABLE; II mark this slot as deactivated 
n--; 
return toReturn; 

} 
} 

Code Fragment 9.5: Class HashTableMap implementing the map ADT using a 
hash table with linear probing.. (Continued from Code Fragment 9.4.) We have 
omitted the valuesO and entrySetO methods in the listing above, as they are similar 
to keySetO. 



401 9.2. Hash Tables 

9.2.7 Load Factors and Rehashing 

In the hash table schemes described above, we should desire that the load factor, 
A=n/N, be kept below 1. Experiments and average-case analyses suggest that we 
should maintain A< 0.5 for the open addressing schemes and we should maintain 
A< 0.9 for separate chaining. As we mention above, the Java Collections Frame
work class java.utiI.HashMap, which implements the map ADT, uses the thresh
old 0.75 as a default maximum load factor and rehashes any time the load factor 
exceeds this (or an optional user-set load factor). The choice of 0.75 is fine for 
separate chaining (which is the implementation in java.utiI.HashMap), but, as we 
explore in Exercise C-9.9, the performance of some open addressing schemes can 
start to degrade when A> 0.5. Although the details of the average-case analysis of 
hashing are beyond the scope of this book, its probabilistic basis is quite intuitive. 
If our hash function is good, then we expect the entries to be uniformly distributed 
in the N cells of the bucket array. Thus, to store n entries, the expected number of 
keys in a bucket would be rn/Nl, which is 0(1) if n is O(N). 

With separate chaining, as k. gets very close to 1, the probability of a collision 
also approaches 1, which adds overhead to our operations, since we must revert 
to linear-time list-based methods in buckets that have collisions. Of course, in the 
worst case, a poor hash function could map every entry to the same bucket, which 
would result in linear-time performance for all map operations, but this is unlikely. 

With open addressing, on the other hand, as the load factor Agrows beyond 0.5 
and starts approaching 1, clusters of entries in the bucket array start to grow as welL 
These clusters cause the probing strategies to "bounce around" the bucket array for 
a considerable amount of time before they can finish. 

Thus, keeping the load factor below a certain t~eshold is vital for open ad
dressing schemes and is also of concern with the separate chaining method. If the 
load factor of a hash table goes significantly above the specified threshold, then it 
is common to require that the table be resized (to regain the specified load factor) 
and all the objects inserted into this new table. When rehashing to a new table, 
it is a good requirement for the new array's size to be at least double the previous 
size. Once we have allocated this new bucket array, we must define a new hash 
function to go with it, possibly computing new parameters. We then reinsert every 
entry from the ?ld array into the new array using this new hash function. In our im
plementation of a hash table with linear probing given in Code Fragments 9.3-9.5, 
rehashing is used to keep the load factor less than or equal to 0.5. 

Even with periodic rehashing, a hash table is an efficient means of implement
ing a map. Indeed, if we always double the size of the table with each rehashing 
operation, then we can amortize the cost of rehashing all the entries in the table 
against the time used to insert them in the first place. (See Section 6.1.4.) Each 
rehashing will generally scatter the entries throughout the new bucket array. 



402 Chapter 9. Maps and Dictionaries 

9.2.8 Application: Counting Word Frequencies 

As a miniature case study of using a hash table, consider the problem of counting 
the number of occurrences of different words in a document, which arises, for 
example, when pundits study political speeches looking for themes. A hash table 
is an ideal data structure to use here, for we can use words as keys and word counts 
as values. We show such an application in Code Fragment 9.6. 

· .. * Import Java.lo. ; 

import java.utiI.Scanner; 

import net.datastructures. *; 

/** A program that counts words in a document, printing the most frequent. * / 

public class WordCount { 


public static void main(String[] args) throws IOException { 
Scanner doc = new Scanner(System.in); 
doc.useDelimiter(" [~a-zA-Z] "); / / ignore non-letters 
HashTableMap<String,lnteger> h new HashTableMap<String,lnteger>O; 
String word; 
Integer count; 
while (doc. hasNextO) { 

word = doc. nextO; 

if (word.equals(III1)) continue; / / ignore null strings .between delimiters 

word word.toLowerCaseO; / / ignore case . 

count h.get(word); / / get the previous count for this word 

if (count == nUll) . 


h.put(word, 1); / / autoboxing allows this 

else 


h.put(word, ++count); / / autoboxing/unboxing allows this 
} 
int maxCount 0; 
String maxWord = "no word"; 
for (Entry<String,lnteger> ent : h.entriesO) { / / find max-count word 

if (ent.getValueO > maxCount) { 

maxWord = ent.getKeyO; 

maxCount ent.getValueO; 


} 
} 
System.out.printC1The most frequent word is \"11 + maxWord); 
System.out.println(", \" with word-count = II + maxCount + II. "); 

.} 
} 


Code Fragnient9.6: A program for counting word frequencies in a document, print

ing the most frequent word. The document is parsed using the Scanner class, for 

which we change the delimiter for separating tokens from whitespace to any non

letter. We also convert words to lowercase. 


http:Scanner(System.in


403 9.3. Ordered Maps 

9.3 Ordered Maps 

In some applications, simply looking up values based on associated keys is not 
enough. We often also want to keep the entries in a map sorted according to some 
total order and be able to look up keys and values based on this ordering. That is, in 
an ordered map, we want to perform the usual map operations, but also maintain an 
order relation for the keys in our map and use this order in some of the map meth
ods. We can use a comparator to provide the order relation among keys, allowing 
us to define an ordered map relative to this comparator, which can be provided to 
the ordered map as an argument to its constructor. 

When the entries of a map are stored in order, we can provide efficient imple
mentations for additional methods in the map ADT. In particular, as an ADT, the 
ordered map includes all the methods of the standard map ADT plus the following: 

firstEntry(k): 	 Returns the entry with smallest key value; if the map is 
empty, then it returns null. 

lastEntry(k): 	Returns the entry with largest key value; if the map is 
empty, then it returns null. 

ceilingEntry(k): 	Returns the entry with the least key value greater than or 
equal to k; if there is no such entry, then it returns null. 

floorEntry( k): 	 Returns the entry with the greatest key value less than or 
equal to k; if there is no such entry, then it returns null. 

i 

lowerEntry(k): 	 Returns the entry with the greatest key value strictly less 
than k; if there is no such entry, then it returns null. 

higherEntry(k): Returns the entry with the least key value strictly greater 
than k; if there is no such entry, then it returns null. 

Incidentally, each of these methods is included in the java.util.NavigableMap 
interface; hence, Java provides a superset of the ordered map ADT. 

Implementing an Ordered Map 

The ordered nature of the operations given above for the ordered map ADT makes 
the use of an unordered list or a hash table inappropriate, because neither of these 
data structures maintains any ordering information for the keys in the map. Indeed, 
hash tables achieve their best search speeds when their keys are distributed almost 
at random. Thus, we should consider an alternative implementation when dealing 
with ordered maps. We discuss one such implementation next, and we discuss other 
implementations in Section 9.4 and Chapter 10. 



404 Chapter 9. Maps and Dictionaries 

9.3.1 Ordered Search Tables and Binary Search 

Ifthe keys in a map come from a total order, we can store the map's entries in an 
array list S in increasing order of the keys. (See Figure 9.6.) We specify that S is an 
array list, rather than a node list, because the ordering of the keys in the array list 
S allows for faster searching than would be possible had S been, say, implemented 
with a linked list. Admittedly, a hash table has good expected running time for 
searching. But its worst-case time for searching is no better than a linked list, 
and in some applications, such as in real-time processing, we need to guarantee a 
worst-case searching bound. The fast algorithm for searching in an ordered array 
list, which we discuss in this subsection, has a good worst-case guarantee on its 
running time. So it might be preferred over a hash table in certain applications. We 
refer to this ordered array list implementation of a map as an ordered search table. 

o 1 2 3 4 5 6 7 8 9 10 

\ 4 I 6 \ 9 \12 \15 \16 \18 I 28 I 34 \ I I 
Figure 9.6: Realization of a map by means of an ordered search table. We show 
only the keys for this map, so as to highlight their ordering. 

The space requirement of an ordered search table is O(n), which is similar to 
the list-based map implementation (Section 9.1.2), assuming we grow and shrink 
the array supporting the array list S to keep the size of this array proportional to the 
number of entries in S. Unlike an unordered list, however, performing updates in 
a search table takes a considerable amount of time. In particular, performing the 
put(k, v) operation in a search table req~ires O(n) time in the worst case, since we 
need to shift up all the entries in the array list with key greater than k to make room 
for the new entry (k, v). A similar observation applies to the operation remove(k), 
since it takes O(n) time in the worst case to shift all the entries in the array list with 
key greater than k to close the "hole" left by the removed entry (or entries). The 
search table implementation is therefore inferior to the linked list implementation in 
terms of the worst-case running times of the map update operations. Nevertheless, 
we can perform the get method much faster in a search table. 

Binary Search 

A significant advantage of using an ordered array list S to implement a map with n 
entries .is that accessing an element of S by its index takes O(1) time. We recall, 
from Section 6;1, that the index of an element in an array list is the number of 
elements preceding it. Thus, the first element in S has index 0, and the last element 
has index n 1. In this subsection, we give a classic algorithm, binary search, 
to locate an entry in an ordered search table. We show how this method can be 



405 9.3. Ordered Maps 

used to quickly perform the getO method of the map ADT, but a similar method 
can be used for each of the ordered map methods, ceilingEntryO, floorEntry(), 
lowerEntry(), and higherEntryO. 

The elements stored in S are the entries of a map, and since S is ordered, the en
try at index i has a key no smaller than the keys of the entries at indices 0, ... ,i - 1, 
and no larger than the keys of the entries at indices i+1, ... ,n 1. This observation 
allows us to quickly "home in" on a search key k using a variant of the children's 
game "high-low." We call an entry of our map a candidate if, at the current stage 
of the search, we cannot rule out that this entry has key equal to k. The algorithm 
maintains two parameters, low and high, such that all the candidate entries have 
index at least low and at most high in S. Initially, low = °and high = n - 1. We 
then compare k to the key of the median candidate e, that is, the entry e with index 

mid = l(low high)/2J. 

We consider three cases: 
• 	Ifk e.getKey(), then we have found the entry we were looking for, and the 

search terminates successfully returning e. 

• If k <e.getKeyO, then we recur on the first half of the array list, that is, on 
the range of indices from low to mid-1. 

• If k > e.getKey(), we recur on the range of indices from mid +1to high. 
This search method is called binary search, and}s given in pseudo-code in Code 
Fragment 9.7. Operation get(k) on an n-entry map implemented with an ordered 
array list S consists of calling BinarySearch(S,k, O,n -1). 

Algorithm BinarySearch(S,k, low, high): 
Input: An ordered array list S storing n entries and integers low and high 
Output: An entry of S with key equal to k and index between low and high, if 

such an entry exists, and otherwise null 


if low> high then 

return null 


else 

mid +-l(low high)/2J 

e +- S.get(mid) 

if k = e.getKey() then 


return e 

else if k < e.getKeyO then 
returnBinarySearch(S,k, low, mid 1) 

. else . . .. 

return BinarySearch(S, k, mid I, high) 

Code Fragment 9.7: Binary search in an ordered array list. 



406 Chapter 9. Maps and Dictionaries 

We illustrate the binary search algorithm in Figure 9,7. 

lli 5 17 \8\9112114117119122\2SI27\28.\331!71 
t J
low ~+d h~ 

lli 5 1 7 1 8 \ 9 \ 12 114 117 \19 \221 25\ 27\ 28 \33\37\ 
+ + •
low mid high 

\2 141 5 17 \ 8 1 9 112114117119\22125127128133137 I 
+ fd +low ml high 

\2 I 4 \ 5 1 7 \ 8 \ 9 112114117119122125127\28 133 137 \ 

low=m~=hi9h 

Figure 9.7: Example of a binary search to perform operation get(22) , in a map with 
integer keys, implemented with an ordered array list. For simplicity, we show the 
keys, not the whole entries. 

Considering the running time of binary search, we observe that a constant num
ber of primitive operations are executed at each recursive call of method Binary
Search, Hence, the running time is proportional to the number of recursive calls 
performed, A crucial fact is that with each recursive call the number of candidate 
entries still to be searched in the array list S is given by the value 

high ~ low I, 

Moreover, the number of remaining candidates is reduced by at least one half with 
each recursive call. Specifically, from the definition of mid, the number of remain
ing candidates is either 

'd 1) I 1 llOW highj I high -low 1(ml - OW+ = - OW< ----
2 2 

or 
h' h ( 'd 1) 1 h' h llOW + highj high low + 1 Ig - ml + + = Ig - 2 < - 2 . 

Initially, the number of candidate entries is n; after the first call to BinarySearch, it 
is at most n/2; after the second call, it is at most n/4; and so on. In general, after the 
ith call to BinarySearch, the number of candidate entries remaining is at most n/i. 
In the worst case (unsuccessful search), the recursive calls stop when there are no 
more candidate entries. Hence, the maximum number of recursive calls performed, 
is the smallest integer m such that 

n/2m < L 



407 9.3. Ordered Maps 

In other words (recalling that we omit a logarithm's base when it is 2), In > logn. 
Thus, we have 

m = llognJ+1, 

which implies that binary search runs in O(logn) time. 

Thus, we can use an ordered search table to perform fast searches in an ordered 
map, but using such a table for lots of map updates would take a considerable 
amount of time. For this reason, the primary applications for search tables are in 
situations where we expect few updates but many searches. Such a situation could 
arise, for example, in an ordered list of English words we use to order entries in an 
encyclopedia or help file. 

Comparing Map Implementations 

Note that we can use an ordered search table to implement the map ADT even if we 
don't want to use the additional methods of the ordered map ADT. Table 9.2 com
pares the running times of the methods of a (standard) map realized by either an 
unordered list, a hash table, or an ordered search table. Note that an unordered list 
allows for fast insertions but slow searches and removals, whereas a search table 
allows for fast searches but slow insertions and removals. Incidentally, although 
we don't explicitly discuss it, we note that a sorted list implemented with a doubly 
linked list would be slow in performing almost all the map operations. (See Exer
cise R-9.4.) Nevertheless, the list-like data structure we discuss in the next section 
can perform the methods of the ordered map ADT quite efficiently. i 

; 

Method List Hash Table Search Table I 

size, isEmpty 0(1) 0(1) 0(1) 
entrySet O(n) O(n) O(n) 

get O(n) 0(1) exp., O(n) worst-case O(logn) 
put 0(1) 0(1) O(n) 

remove O(n) O(1) exp., O(n) worst-case O(n) 

Table 9.2: Comparison of the running times of the methods of a map realized by 
means of an unordered list, a hash table, or an ordered search table. We let n 
denote the number of entries in the map and we let N denote the capacity of the 
bucket array in the hash table implementation. The space requirement of all the 
implementations ·is O(n), assuming that the arrays supporting the hash table and 
search table implementations are maintained such that their capacity is proportional 
to the number of entries in the map. 

I 



408 Chapter 9. Maps and Dictionaries 

9.3.2 Two Applications of Ordered Maps 

As we have mentioned in the preceding sections, unordered and ordered maps have 
many applications. 

In this section, we explore some specific applications of ordered maps. 

Flight Databases 

There are several web sites on the Internet that allow users to perform queries on 
flight databases to find flights between various cities, typically with the intent to 
buy a ticket. To make a query, a user specifies origin and destination cities, a depar
ture date, and a departure time. To support such queries, we can model the flight 
database as a map, where keys are Flight objects that contain fields corresponding 
to these four parameters. That is, a key is a tuple 

k = (origin, destination, date, time). 

Additional information about a flight, such as the flight number, the number of seats 
still available in first (F) and coach (Y) class, the flight duration, and the fare, can 
be stored in the value object. 

Finding a requested flight is not simply a matter of finding a key in the map 
matching the requested query, however. The main difficulty is that, although a user 
typically wants to exactly match the origin and destination cities, as well as the•departure date, he or she will probably be content with any departure time that is 
close to his or her requested departure time. We can handle su'ch a query, of course, 
by ordering our keys lexicographically. Thus, given a user query key k, we could, 
for instance, call ceilingEntry(k) to return the flight between the desired cities on 
the desired date, with departure time at the desired time or after. A similar use of 
floorEntry(k) would give us the flight with departure time at the desired time or 
before. Given these entries, we could then use the higherEntryO or 10werEntryO 
methods to find flights with the next close-by departure times that are respectively 
higher or lower than the desired time, k. Therefore, an efficient implementation for 
an ordered map would be a good way to satisfy such queries. For example, calling 
ceilingEntry(k) on a query key k = (ORO, PVO, 05May, 09:30), followed by the 
respective calls to higherEntryO, might result in the following sequence of entries: 

. ((OR01 PVO,05May, 09:53), (AA 1840, F5, Y15, 02:05, $251) ) 
((ORO, PVO, 05May, 13:29), (AA 600, F2, YO, 02:16, $713) ) 
((ORO, PVO, 05May, 17:39), (AA 416, F3, Y9, 02:09, $365) ) 
((ORO, PVO, 05May, 19:50), (AA 1828, F9, Y25, 02:13, $186) ) 



409 9.3. 	 Ordered Maps 

Maxima Sets 

Life is full of trade-offs. We often have to trade off a desired performance measure 
against a corresponding cost. Suppose, for the sake of an example, we are interested 
in maintaining a database rating automobiles by their maximum speeds and their 
cost. We would like to allow someone with a certain amount to spend to query our 
database to find the fastest car they can possibly afford. 

We can model such a trade-off problem as this by using a key-value pair to 
model the two parameters that we are trading off, which in this case would be the 
pair (cost, speed) for each car. Notice that some cars are strictly better than other 
cars using this measure. For example, a car with cost-speed pair (20,000,100) is 
strictly better than a car with cost-speed pair (30,000,90). At the same time, there 
are some cars that are not strictly dominated by another car. For example, a car with 
cost-speed pair (20000,100) may be better or worse than a car with cost-speed pair 
(30000,120), depending on how much money we have to spend. (See Figure 9.8.) 

Q) 
() 
C 
("(j 

E 
o 
~ 

"I 
~ 

Q) 

a.. 

_ -h 
g 

p.. __ -f 
I -e-
I_ -d 

_ I C 
_ bl 
a 	 I 


I 


Cost 

Figure 9.8: Illustrating the cost-performance trade-off with key-value pairs repre
sented by points in the plane. Notice that point p is strictly better than points c, d, 
and e, but may be better or worse than points.a, b, j, g, and h, depending on the 
price we are willing to pay. Thus, if we were to add p to our set, we could remove 
the points c, d, and e, but not the others. 

Formally, we say a price-performance pair (a, b) dominates a pair (c, d) ifa < c 
and b >d. A pair (a,b) is called amaximum pair if it is not dominated by any other 
pairs., We are interestedin maintaining the set of maxima of a collection C of price
performance pairs. That is, we would like to add new pairs to this collection (for 
example, when a new car is introduced), and we would like to query this collection 
for a given rupee amount, d, to find the fastest car that costs no more than d rupees. 



410 Chapter 9. Maps and Dictionaries 

Maintaining a Maxima Set with an Ordered Map 

We can store the set of maxima pairs in an ordered map, M, ordered by cost, so that 
the cost is the key field and performance (speed) is the value field. We can then 
implement operations add(c,p), which adds a new cost-performance pair (c,p), 
and best(c), which returns the best pair with cost at most c, as shown in Code 
Fragments 9.8. and 9.9. 

Algorithm best ( c ): 
Input: A cost c 
Output: The cost-performance pair in M with largest cost less than or equal to 

c or or null if there is no such pair 

return M.floorEntry(c) 

Code Fragment 9.8: The bestO method, used in a class maintaining a set of maxima 
implemented with an ordered map M. 

Algorithm add(c,p): 
Input: A cost-performance pair (c, p) 
Olitput: None (but M will have (c,p) added to the set of cost-performance 

pairs) 

e f- M.floorEntry(c) {the greatest pair with cost at most c} 
if e i= null then 

i 

if e.getValue() > p then 
return {(c) p) is dominated, so don't insert if in M} 

e f- M.ceilingEntry(c) {next pair with cost at least c} 
{Remove all the pairs that are dominated by (c, p) } 
while e i= null and e.getValueO < p do {assume conditional and as in Java} 

M.remove(e.getKeyO) {this pair is dominated by (c,p)} 
e f- M.higherEntry(e.getKeyO) {the next pair after e} 

M.put(c,p) {Add the pair (c,p), which is not dominated} 

Code Fragment 9.9: The add(c,p) method used in a class for maintaining a set of 
maxima implemented with an ordered map M. 

Unfortunately, if we implement M using any ofthe data structures described 
above, it will result in a poor running time for the above algorithm. If, on the 
other hand, we implement M using a skip list, which we describe next, then we 
can perform best(c) queries in O(logn) expected time and add(c,p) updates in 
O( (1 +r) log n) expected time, where r is the number of points removed. 



411 9.4. Skip Lists 

9.4 Skip lists 

An interesting data structure for efficiently realizing the ordered map ADT is the 
skip list. This data structure makes random choices in arranging the entries in such 
a way that search and update times are O(logn) on average, where n is the number 
of entries in the dictionary. Interestingly, the notion of average time complexity 
used here does not depend on the probability distribution of the keys in the input. 
Instead, it depends on the use of a random-number generator in the implementation 
of the insertions to help decide where to place the new entry. The running time is 
averaged over all possible outcomes of the random numbers used when inserting 
entries. Interestingly, Java includes an implementation of the ordered map ADT 
using a skip list, in the ConcLirrentSkipListMap class, which guarantees O(logn) 
expected time performance for the get, put, and remove methods and their variants. 

Because they are used extensively in computer games, cryptography, and com
puter simulations, methods that generate numbers that can be viewed as random 
numbers are built into most modem computers. Some methods, called pseudo
random number generators (Section 3.1.3), generate random-like numbers, start
ing with an initial seed. Other methods use hardware devices to extract "true" 
random numbers from nature. In any case, we will assume that our computer has 
access to numbers that are sufficiently random for our analysis. 

The main advantage of using randomizatiol! in data structure and algorithm 
design is that the structures and methods that result are usually simple and efficient. 
We can devise a simple randomized data structure, called the skip list, which has the 
same logarithmic time bounds for searching as is achieved by the binary searching 
algorithm. Nevertheless, the bounds are expected for the skip list, while they are 
worst-case bounds for binary searching in a look-up .table. On the other hand, skip 
lists are much faster than look-up tables for map updates. 

A skip list S for a map M consists of a series of lists {SO,Sl,'" ,Sk}' Each list 
Si stores a subset of the entries of M sorted by increasing keys plus entries with 
two special keys, denoted -00 and +00, where -00 is smaller than every possible 
key that can be inserted in M and +00 is larger than every possible key that can be 
inserted in M. In addition, the lists in S satisfy the following: 

• List So contains every entry of the map M (plus the special entries with keys 
-00 and +(0). 

• For i = 1, ... ,h 1, list Si contains (in addition to -00 and +(0) a randomly 
generated subset of the entries in list Si-l. 


'. ListSh contamsonly '-00 and +00. 
.. '. .". 

An example of a skip list is shown in Figure 9.9. It is customary to visualize a skip 
list S with list So at the bottom and lists S1, ... ,Sk above it. Also, we refer to h as 
the height of skip list S. 



412 Chapter 9. Maps and Dictionaries 

S5 

S4 

S3 

S2 

SI 

So 

Figure 9.9: Example of a skip list storing 10 entries. For simplicity, we show only 
the keys of the entries. 

Intuitively, the lists are set up so that Si+l contains more or less every other 
entry in Sj. As we shall see in the details of the insertion method, the entries in Si+l 
are chosen at random from the entries in Sj by picking each entry from Si to also 
be in Si+l with probability 1/2. That is, in essence, we "flip a coin" for each entry 
in Si and place that entry in SH I if the coin comes up "heads." Thus, we expect Sl 
to have about n/2 entries, S2 to have about n/4 entries, and, in general, Si to have 
about n/2! entries. In other words, we expect the height h of S to be about logn. 
The halving of the number of entries from one list to the next is not enforced as an 
explicit property of skip lists, however. Instead, randomization is used. 

Using the position abstraction used for lists and trees, we view a skip list as a 
two-dimensional collection of positions arranged horizontally into levels and ver
tically into towers. Each level is a list Siand each tower contains positions~toring 
the same entry across consecutive lists. The positions in a skip list can be traversed 
using the following operations: 

next(p): Return the position following p on the same level. 

prev(p): Return the position preceding p on the same level. 

below(p): Return the position below p in the same tower. 

above(p): Return the position above p in the same tower. 

We conventionally assume that the above operations return a null position if the 
position requested does not exist. Without going into the details, we note that we 
can easily implement a skip list by means of a linked structure such that the above 
traversal methods each take O(1) time, given a skip-list position p. Such a linked 
structure is essentially a collection of h doubly linked lists aligned at towers, which 
are also doubly linked lists. 



413 9.4. Skip Lists 

9.4.1 Search and Update Operations in a Skip List 


The skip list structure allows for simple map search and update algorithms. In fact, 
all of the skip list search and update algorithms are based on an elegant SkipSearch 
method that takes a key k and finds the position p of the entry e in list So such that 
e has the largest key (which is possibly -(0) less than or equal to k . 

Searching in a Skip List 

Suppose we are given a search key k. We begin the SkipSearch method by setting 
a position variable p to the top-most, left position in the skip list S, called the start 
position of S. That is, the start position is the position of Sh storing the special 
entry with key -00. We then perform the following steps (see Figure 9.10), where 
key(p) denotes the key of the entry at position p: 

1. 	 If S.below(p) is nUll, then the search terminates-we are at the bottom and 
have located the largest entry in S with key less than or equal to the search 
key k. Otherwise, we drop down to the next lower level in the present tower 
by setting p ~ S.below(p). 

2. 	 Starting at position p, we move p forward until it is at the right-most position 
on the present level such that key(p) ::; k. We call this the scan forward step. 
Note that such a position always exists, since each level contains the keys 
+00 and -00. In fact, after we perform the scan forward for this level, p 
may remain where it started. In any case, we then repeat the previous step. 

S5 

S4 

S3 

S2 

S, 

So 

Figure 9.10: Example of a search in a skip list. The positions visited when searching 
for key 50 are highlighted in blue. 

.We give a pseudo-code description of the skip-list search algonthm, SkipSearch, 
in Code Fragment 9.10. Given this method, it is now easy to implement the op
eration get(k)-we simply perform p~ SkipSearch(k) and test whether or not 
key(p) = k. If these two keys are equal, we return p; otherwise, we return null. 



414 Chapter 9. Maps and Dictionaries 

Algorithm SkipSearch(k): 
Input: A search key k 
Output: Position p in the bottom list So such that the entry at p has the largest 

key less than or equal to k 

pf-S 

while below(p) =f null do 

p f- below(p) {drop down} 

while k > key(next(p)) do 


p f- next(p) {scan forward} 

return p. 


Code Fragment 9.10: Search in a skip list S. Variable S holds the start position of S. 

As it turns out, the expected running time of algorithm SkipSearch on a skip 
list with n entries is O(logn). We postpone the justification of this fact, however, 
until after we discuss the implementation of the update methods for skip lists. 

Insertion in a Skip List 

The insertion algorithm for skip lists uses randomization to decide the height of the 
tower for the new entry. We begin the insertion of a new entry (k, v) by performing 
a SkipSearch(k) operation. This gives us the position p of the bottom-level entry 
with the largest key less than or equal to k (note that p may hold the special entry 
with key -00). We then insert (k, v) immediately after position p. After irfserting 
the new entry at the bottom level, we "flip" a coin. If the flip:comes up tails, then 
we stop here. Else (the flip comes up heads), we backtrack to the previous (next 
higher) level and insert (k, v) in this level at the appropriate position. We again 
flip a coin; if it comes up heads, we go to the next higher level and repeat. Thus, 
we continue to insert the new entry (k, v) in lists until we finally get a flip that. 
comes up tails. We link together all the references to the new entry (k, v) created 
in this process to create the tower for the new entry. A coin flip can be simulated 
with Java's built-in pseudo-random number generator java.util.Random by calling 
nextlnt(2), which returns 0 of 1, each with probability 1/2. 

We give the insertion algorithm for a skip list S in Code Fragment 9.11 and we 
illustrate it in Figure 9.11. The algorithm uses method insertAfterAbove(p,q, (k, v)) 
that inserts a position storing the entry (k, v) after position p (on the same level as 
p}andabove.positionq, returning the position r of the new entry (and setting in
ternal references so that next, prev, above, and below methods will work correctly 
for p, q, and r). The expected running time of the insertion algorithm on a skip list 
with n entries is O(logn), which we show in Section 9.4.2. 



415 9.4. Skip Lists 

Ss 

S4 

S3 

S2 

Sl 

So 

Algorithm Skiplnsert(k, v): 
Input: Key k and value v 
Output: Topmost position of the entry inserted in the skip list 

p ~ SkipSearch(k) 
q ~ null 
e ~ (k, v) 
i~ -1 
repeat 

i ~ i+1 
if i > h then 

h ~ h+1 {add a new level to the skip list} 
t ~ next(s) 
s ~ insertAfterAbove(null, s, (-00, nUll)) 
insertAfterAbove(s,t, (+00, null)) 

while above(p) = null do 
p ~ prev(p) {scan backward} 

p ~ above(p) {jump up to higher level} 
q ~ insertAfterAbove(p, q, e) {add a position to the tower of the new entry} 

until coinFlipO = tails 
n~n+1 

return q 

Code Fragment 9.11: Insertion in a skip list. Method coinFlipO returns "heads" or 
"tails", each with probability 1 /2. Variables n, h, and s hold the number of entries, 
the height, and the start node of the skip list. i 

Figure 9.11: Insertion of an entry with key 42 into the skip list of Figure 9.9. We 
assume that the random "coin flips" for the new entry came up heads three times 
in a row, followed by tails. The positions visited are highlighted in blue. The 
positions inserted to hold the new entry are drawn with thick lines, and the positions 
preceding them are flagged. 



416 Chapter 9. Maps and Dictionaries 

Removal in a Skip List 

Like the search and insertion algorithms, the removal algorithm for a skip list is 
quite simple. In fact, it is even easier than the insertion algorithm. That is, to 
perform a remove(k) operation, we begin by executing method SkipSearch(k). If 
the position p stores an entry with key different from k, we return null. Otherwise, 
we remove p and all the positions above p, which are easily accessed by using 
above operations to climb up the tower of this entry in S starting at position p. The 
removal algorithm is illustrated in Figure 9.12 and a detailed description of it is left 
as an exercise (R-9.l7). As we show in the next subsection, operation remove in a 
skip list with n entries has O(logn) expected running time. 

Before we give this analysis, however, there are some minor improvements to 
the skip list data structure we would like to discuss. First, we don't actually need 
to store references to entries at the levels of the skip list above the bottom level, 
because all that is needed at these levels are references to keys. Second, we don't 
actually need the above method. In fact, we don't need the prev method either. 
We can perform entry insertion and removal in strictly a top-down, scan-forward 
fashion, thus saving space for "up" and "prev" references. We explore the details 
of this optimization in Exercise C-9.10. Neither of these optimizations improve 
the asymptotic performance of skip lists by more than a-constant factor, but these 
improvements can, nevertheless, be meaningful in practice. In fact, experimental 
evidence suggests that optimized skip lists are faster in practice than AVL trees and 
other balanced search trees, which are discussed in Chapter 10. 

The expected running time of the removal algorithm is O(logn), which we 
show in Section 9.4.2. 

S5 

S4 

S3 

S2 

Sl 

So 

Figure 9.12: Removal of the entry with key 25 from the skip list of Figure 9.11. 
The positions visited after the search for ttie position of So holding the entry are 
highlighted in blue. The positions removed are drawn with dashed lines. 



417 9.4. Skip Lists 

Maintaining the Top-most Level 

A skip-list S must maintain a reference to the start position (the top-most, left po
sition in S) as an instance variable, and must have a policy for any insertion that 
wishes to continue inserting a new entry past the top level of S. There are two 
possible courses of action we can take, both of which have their merits. 

One possibility is to restrict the top level, h, to be kept at some fixed value that 
is a function of n, the number of entries currently in the map (from the analysis we 
will see that h= max{I0, 2ilog n1 } is a reasonable choice, and picking h= 3ilogn1 
is even safer). Implementing this choice means that we must modify the insertion 
algorithm to stop inserting a new position once we reach the top-most level (unless 
ilog n1< ilog(n +1)1, in which case we can now go at least one more level, since 
the bound on the height is increasing). 

The other possibility is to let an insertion continue inserting a new position as 
long as heads keeps getting returned from the random number generator. This is 
the approach taken in Algorithm Skiplnsert of Code Fragment 9.11. As we show 
in the analysis of skip lists, the probability that an insertion will go to a level that is 
more than O(logn) is very low, so this design choice should also work. 

Either choice will still result in the expected O(logn) time to perform search, 
insertion, and removal, however, which we show in the next section. 

9.4.2 A Probabilistic Analysis of Skip Lists * 
As we have shown above, skip lists provide a simple implementation of an ordered 
map. In terms of worst-case performance, however, skip lists ate not a superior 
data structure. In fact, if we don't officially prevent an insertion from continuing 
significantly past the current highest level, then the insertion algorithm can go into 
what is almost an infinite loop (it is not actually an infinite loop, however, since 
the probability of having a fair coin repeatedly come up heads forever is 0). More
over, we cannot infinitely add positions to a list without eventually running out of 
memory. In any case, if we terminate position insertion at the highest level h, then 
the worst-case running time for performing the get, put,.·and remove operations in 
a skip list S with n entries and height h is O(n +h). This worst-case performance 
occurs when the tower of every entry reaches level h-1, where h is the height of S. 
However, this event has very low probability. Judging from this worst case, we 
might conclude that the skip list structure is strictly inferior to the other map imple

·.mentations discussed earlier in this chapter. But this would not be a fair analysis, 
for this worst-case behaVIor is a gross overestimate. 

*We use a star (*) to indicate sections containing material more advanced than the material in the 
rest of the chapter; this material can be considered optional in a first reading. 



418 Chapter 9. Maps and Dictionaries 

Bounding the Height of a Skip List 

Because the insertion step involves randomization, a more accurate analysis of skip 
lists involves a bit of probability. At first, this might seem like a major undertaking, 
for a complete and thorough probabilistic analysis could require deep mathemat
ics (and, indeed, there are several such deep analyses that have appearedin data 
structures research literature). Fortunately, such an analysis is not necessary to un
derstand the expected asymptotic behavior of skip lists. The informal and intuitive 
probabilistic analysis we give below uses only basic concepts of probability theory. 

Let us begin by determining the expected value of the height h of a skip list S 
with n entries (assuming that we do not terminate insertions early). The probability 
that a given entry has a tower of height i;:: I is equal to the probability of getting i 
consecutive heads when flipping a coin, that is, this probability is Iii. Hence, the 
probability Pi that level i has at least one position is at most 

PiS n 

for the probability that anyone of n different events occurs is at most the sum of 
the probabilities that each occurs. 

The probability that the height h of S is larger than i is equal to the probability 
that level i has at least one position, that is, it is no more ~han Pi. This means that h 
is larger than, say, 310gn with probability at most 

n 
P310gn < 2310gn 

n 1 
n3 2'n 

For example, if n = IOoo, this probability is a one-in-a-million long shot. More 
generally, given a constant c > I, h is larger than clog 11 with probability at most 

1IInC
- . That is, the probability that h is smaller than clogn is at least I IInc- 1• 

Thus, with high probability, the height h of Sis O(logn). 

Analyzing Search Time in a Skip List 

Next, consider the running time of a search in skip list S, and recall that such a 
. search involvesJw()nested while loops. The inner loop performs a scan forward on 
a level of S as long as the next key is no greater than the search key k, and the outer 
loop drops down to the next level and repeats the scan forward iteration. Since the 
height h of S is O(logn) with high probability, the number of drop-down steps is 
O(logn) with high probability. 



419 9.4. Skip Lists 

So we have yet to bound the number of scan-forward steps we make. Let ni be 
the number of keys examined while scanning forward at level i. Observe that, after 
the key at the starting position, each additional key examined in a scan-forward at 
level i cannot also belong to level i 1. If any of these keys were on the previous 
level, we would have encountered them in the previous scan-forward step. Thus, 
the probability that any key is counted in ni is 1/2. Therefore, the expected value of 
nj is exactly equal to the expected number of times we must flip a fair coin before 
it comes up heads. This expected value is 2. Hence, the expected amount of time 
spent scanning forward at any level i is 0(1). Since S has O(logn) levels with high 
probability, a search in S takes expected time O(logn). By a similar analysis, we 
can show that the expected running time of an insertion or a removal is Q(logn). 

Space Usage in a Skip List 

Finally, let us tum to the space requirement of a skip list S with n entries. As we 
observed above, the expected number of positions at level i is n/2i, which means 
that the expected total number of positions in S is 

h n h 1 
L2i = nL 2i ' 
i=O i=O 

Using Proposition 4.5 on geometric summations: we have 

h .( 1) h+ 
1 1 ( 1)

" ~ = 2 - = 2. 1 - - <2 for all h > O.
'-' 2i ! _ 1 2h+ 1 
i=O 2. 

Hence, the expected space requirement of S isO(n).: 
Table 9.3 summarizes the perfOlmance of an ordered map realized by a skip 

list. 

Operation Time 
size, isEmpty 0(1) 

firstEntry, lastEntry 0(1) 
keySet, values, entrySet O(n) 

get, put, remove O(logn) (expected) 
ceilingEntry, floorEntry, lowerEntry, higherEntry O(log n) (expected) 

Table 9.3:Perfonnance of an ordered map implemented with a skip list, as in the 
class,java.util.concurent.ConcurrentSkipListMap. We use n to denote the number 
of entries in the dictionary at the time the operation is performed. The expected 
space requirement is O(n). 



420 Chapter 9. Maps and Dictionaries 

9.5 Dictionaries 

Like a map, a dictionary stores key-value pairs (k, v), which we call entries, where 
k is the key and v is the value. Similarly, a dictionary allows for keys and values 
to be of any object type. But, whereas a map insists that entries have unique keys, 
a dictionary allows for multiple entries to have the same key, much like an English 
dictionary, which allows for mUltiple definitions for the same word. 

The ability to store multiple entries with the same key has several applications. 
For example, we might want to store records for computer science authors indexed 
by their first and last names. Since there are a few cases of different authors with 
the same first and last name, there will naturally be some instances where we have 
to deal with different entries having equal keys. Likewise, a multi-user computer 
game involving players visiting various rooms in a large castle might need a map
ping from rooms to players. It is natural in this application to allow users to be 
in the same room simultaneously, however, to engage in battles. Thus, this game 
would naturally be another application where it would be useful to allow for multi
ple entries with equal keys. 

9.5.1 The Dictionary ADT 

As an ADT, an (unordered) dictionary D supports the following methods: 

size(): Return the number of entries in D. 

isEmpty(): Test whether D is empty. 
5 

get(k): If D contains an entry with key equal to k, then return 
such an entry, else return null. . 

getAII(k): Return an iterable collection containing all entries with 
key equal to k. 

put(k, v): Insert an entry with key k and value v into D, returning 
the entry created. 

remove(e): Remove from D an entry e, returning the removed entry; 
an error occurs if e is not in D. 

entrySet(): Return an iterable collection of the key-value entries in D. 

Notice that our dictionary operations use entries, as in the map ADT, which are 
the key-value pairs stored in the dictionary. As mentioned above, we allow for 
multiple entries with equal· keys. For this reason, we define the put method to 
return a reference to the newly created entry, as this gives us a way to directly 
reference entries in addition to the entrySetO method. Such references are required, 
for example, by the dictionary method, rernove(e). 



421 9.5. Dictionaries 

Additional Details 

When the method get(k) is unsuccessful (that is, there is no entry with key equal to 
k), we use the convention of returning a sentinel null. Another choice, of course, 
would be to throw an exception for an unsuccessful get(k), but that would not be a 
good use of an exception, since it is normal to ask for a key that might not be in our 
dictionary, and throwing and catching an exception is slower than testing against a 
sentinel. 

Note that, as we have defined it, a dictionary D can contain different entries 
with equal keys. In this case, operation get(k) returns an arbitrary entry (k, v), 
whose key is equal to k. We also mention, in passing, that this dictionary ADT 
should not be confused with the abstract class java.utiI.Dictionary, which actually 
corresponds to the map ADT given above and is now considered obsolete. Indeed, 
as of this writing, there is no data structure in the Java Collections Framework that 
allows for multiple entries with equal keys, as in the dictionary ADT. 

As with the entries used with the map ADT, we assume each entry in a dictio
nary comes equipped with getKeyO and getValueO methods to access its key and 
value components respectively. Incidentally, if we wish to store an element e in 
a dictionary so that the element is itself its own key, then we would insert e with 
the method call put(e,e). In this case, the getKeyO and getValueO methods would 
return the same thing. 

Example 9.2: In the following, we show a series of operations on an initially 
empty dictionary storing entries with integer keys and character values. 

Operation Output Dictionary 
I put(5,A) (5,A) {(5,A)} 

put(7,B) (7,B) 
i 

{(5,A), (7,B)} 
put(2,C) (2,C) {(5,A), (7,B), (2,C)} 
put(8,D) (8,D) {(5,A), (7,B), (2,C), (8,D)} 
put(2,E) (2,E) {(5,A), (7,B), (2,C), (8,D), (2,E)} 
get(7) .(7,B) {(5,A), (7,B), (2,C), (8,D), (2,E)} 
get(4) null {(5,A), (7,B), (2,C), (8,D), (2,E)} 
get(2) . (2, C) {(5,A), (7 ,B), (2,C), (8,D), (2,E)} 

getAII(Z). " {(2,C),{2,E)} ,{(5,A), (7,B),(2,C), (8,D), (2,E)} 
'sizeO 5 {(5,A), (7,B), (2,C), (8,D), (2,E)} 

remove(get(5)) (5,A) {(7 ,B), (2, C), (8,D), (2,E)} 
get(5) null {(7,B), (2,C), (8,D), (2,E)} 



422 Chapter 9. Maps and Dictionaries 

9.5.2 Implementations with Location-Aware Entries 

As with the map ADT, there are several possible ways we can implement the dictio
nary ADT, including with an unordered list, a hash table, an ordered search table, 
or a skip list. As we did for adaptable priority queues (Section 8.4.2), we can also 
use location-aware entries to speed up the running time for some operations in a 
dictionary. In removing a location-aware entry e, for instance, we could simply 
go directly to the place in our data structure where we are storing e and remove 
it. We could implement a location-aware entry, for example, by augmenting our 
entry class with a private location variable and protected methods, locationO and 
setLocation(p), which return and set this variable respectively. We would then re
quire that the location variable for an entry e would always refer to e's position or 
index in the data structure. We would, of course, have to update this variable any 
time we moved an entry, as follows. 

• 	Unordered list: In an unordered list, L, implementing a dictionary, we can 
maintain the location variable of each entry e to point to e's position in the 
underlying linked list for L. This choice allows us to perform remove(e) as 
L.remove(e.locationO), which would run in 0(1) time. 

• 	Hash table with separate chaining: Consider a hash table, with bucket array 
A and hash function h, that uses separate chaining for handling collisions. We 
use the location variable of each entry e to point ~o e's position in the list L 
implementing the listA[h(k)]. This choice allows us to perform a remove(e) 
as L.remove(e.location()), which would run in constant expected time. 

• 	Ordered search. table: In an ordered table, T, implementing a dictionary, 
we should maintain the location variable of each entry e to be e's index in T. 
This choice would allow us to perform remove(e) as T.remove(e.location()). 
(Recall that location () now returns an integer.) This approach would run fast 
if entry e was stored near the end of T. 

• 	Skip list: In a skip list, S, implementing a dictionary, we should maintain the 
location variable of each entry e to point to e's position in the bottom level 
of S. This choice would allow us to skip the search step in our algorithm for 
performing remove(e) in a skip list. 

We summarize the performance of entry removal in a dictionary with location
aware entries in Table 9.4. 

. List 
! 0(1) 

Hash Table 
0(1) (expected) 

Search Table 
·O(n) . 

Skip List 
O(logn) (expected) 

Table 9.4: Performance of the remove method in dictionaries implemented with 
location-aware entries. We use n to denote the number of entries in the dictionary. 



423 9.5. Dictionaries 

9.5.3 An Implementation Using the java.util Package 

Since, as of this writing, Java provides no equivalent to the dictionary ADT in the 
Java Collections Framework, we provide, in this section, a complete Java imple
mentation of the dictionary ADT using only classes and interfaces from the java. util 
package. Key features of this implementation include the following: 

• 	The dictionary ADT is specified in an interface, MultiMap, given in Code 
Fragment 9.12. This interface defines the dictionary entries to be instances 
of classes that implement the interface, java.utiI.Map.Entry<K,V>. In ad
dition, it specifies that the getAIl and entrySet methods return objects that 
implement the java.utiLlterable interface over these types of entries. Finally, 
it specifies that the methods that take arguments may throw an exception in 
java.lang, namely, IliegalArgumentException. 

• 	The class, HashTableMultiMap, which implements the MultiMap interface, 
is specified in Code Fragments 9.13 and 9.14. It implements the dictionary 
ADT using ajava.util.HashMap object, m. Rather than store each key-value 
pair entry directly in this hash table, it stores a java.util.Lin ked List object 
for each key in m. Each such linked list stores all the key-value pair entries 
having the same key. This design choice is, in fact, the main idea that allows 
us to store multiple entries with equal keys. 

• 	Since the size of the underlying hash table.is the number of linked lists that it 
stores, the HashTableMultiMap class explicitly keeps track of its own size, 
rather than using the value, m.sizeO. Specifically, the HashTableMultiMap 
class uses its own size instance variable, nSize, to implement its sizeO and 
isEmptyO methods. 

• 	When adding a new key-value pair entry, \yith the put(k, v) method, we 
first check if there is already a linked list existing for this key, and, if not, 
then we create one. Once we have a linked list established for this key, k, 
we add a new entry for this pair, (k, v), to the list, using an object of type 
java.util.AbstractMap.5impleEntry. 

• 	When performing a get(k) or getAII(k), we consult the linked list for the key 
k. In the former case, we simply return the first entry in this list and, in the 
latter case, we return the entire list. 

• 	To perform a remove(e) operation, we delegate the removal action to the 
linked list for the key e.getKeyO. 

• 	Performing the entrySetO method is more interesting. In this case, we ask 
for each of the values in the underlying HashMap, m, storing our entries. 
Since each value in this map is a linked list of entries, we perform an addAIl 
call to add all the entries from each such list to our output list, which we 
return after we have added all the lists from m into this list. 

http:table.is


424 Chapter 9. Maps and Dictionaries 

import java.util.*; 
public interface MultiMap<K,V> { 

public int sizeO; 
public boolean isEmptyO; 
public Map.Entry<K,V> get(K k) throws IliegalArgumentException; 
public Iterable<Map.Entry<K,V> > getAII(K k) throws IIlegalArgumentException; 
public Map.Entry<K,V> put(K k, V v) throws IliegalArgumentException; 
public Map.Entry<K.V> remove(Map.Entry<K.V> e) 

throws IllegalArgumentException; 

public Iterable<Map.Entry<K,V> > entrySetO; 


} 


Code Fragment 9.12: The MultiMap interface, which is defined to use only classes 
and interfaces in java.util. 

import java.util.*; 
public class HashTableMultiMap<K,V> implements MultiMap<K.V> { 

Map<K,LinkedList<Map.Entry<K.V> > > m; / / a map of keys to lists of entries 
int nSize; / / the size of this MapDictionary 
/** Default constructor, which uses a HashMap. * / 
public HashTableMultiMapO { 

m = new HashMap<K,LinkedList<Map.Entry<K,V»>O; / / default map 
nSize 0; 

} 
/** Returns the number of entries in the dictionary. * / 
public int sizeO { return nSize; } 
/** Returns whether the dictionary is empty. * / 
public boolean isEmptyO { return nSize == 0; } 
/** Inserts an item into the dictionary. Returns the newly created 
* entry. * / ' 

public Map.Entry<K.V> put(K key, V value) 
throws IliegalArgumentException { 

LinkedList<Map.Entry<K,V> > II; 
if (key nUll) throw new IIlegalArgumentExceptionO; 
if ((II = m.get(key)) nUll) { / / nothing there yet 

II = new LinkedList<Map.Entry<K,V> >0; 
m.put(key,II); 

} 
Map.Entry<K,V> e - new AbstractMap.SimpleEntry<K,V>(key,value); 
Il.add(e); / / add the new entry to the list for this key 
nSize++; 
return e; 

} 

Code Fragment 9.13: The HashTableMultiMap class, which is defined to use only 
classes and interfaces injava.util. (Continues in Code Fragment 9.14.) 



425 9.5. Dictionaries 

/** Returns an entry containing the given key, or <tt>nulk/tt> if 
* no such entry exists. *1 

public Map.Entry<K.V> get(K key) 
throws IllegalArgumentException { 


LinkedList<Map.Entry<K,V> > II; 

if (key == null) throw new IIlegaIArgumentException(); 

if ((II = m.get(key)) == nUll) return null; I I nothing there yet 

return Il,peekFirstO; I I the first element is as good as any 


} 

/** Returns an iterator containing all the entries containing the 
* given key, or an empty iterator if no such entries exist. *1 

public Iterable<Map.Entry<K,V> > getAII(K key) 
throws IIlegalArgumentException { 


LinkedList<Map.Entry<K,V> > II; 

if (key == null) throw new IliegalArgumentExceptionO; 

if ((II = m.get(key)) == nUll) return null; I I nothing there yet 

return II; 


} 

/** Removes and returns the given entry from the dictionary. *1 
public Map.Entry<K,V> remove(Map.Entry<K,V> e) 

throws IliegalArgumentException { 
LinkedList<Map.Entry<K,V> > II; 
if (e == nUll) throw new IIlegaIArgumentEx~eptionO; 
K key = e.getKeyO; 
II m.get(key); 
if (II nUll) throw new IliegalArgumentExceptionO; I I no such key in m 
if (lI.remove(e)) { 

nSize--; 
if (1I,isEmptyO) m.remove(key); II remove the.'empty list in this case 
return e; I I e was in II, so return the removed entry 

} 
else 

throw new IliegalArgumentExceptionO; I I e was not in II 
} 

1** Returns an iterator containing all the entries in the dictionary. *1 
public Iterable<Map.Entry<K,V» entrySetO { 

LinkedList<Map.Entry<K,V> > II = new LinkedList<Map.Entry<K,V> >0; 
for (LinkedList<Map.Entry<K,V> > sub: m.valuesO) 

Il.addAII(sub); I I add all the entries in this list to II 

return II;
;} .. ,.::... 

} 


Code Fragment 9.14: The HashTableMultiMap class, which is defined to use only 
classes and interfaces injava.util. (Continued from Code Fragment 9.13.) 



426 Chapter 9. Maps and Dictionaries 

9.6 Exercises 

For help with exercises, please visit the web site, www.wiley.com/go/global/goodrich. 

Reinforcement 

R-9.1 	 What is the worst-case running time for inserting n key-value entries into 
an initially empty map M that is implemented with a list? 

R -9.2 	What is the worst-case asymptotic running time for performing n (correct) 
removeO operations on a map, implemented with an ordered search table, 
that initially contains 2n entries? 

. R-9.3 Describe how to use a skip-list map to implement the dictionary ADT, 
allowing for the user to insert different entries with equal keys. 

R-9.4 Describe how an ordered list implemented as a doubly linked list could be 
used to implement the map ADT. 

R-9.5 	 What would be a good hash code for a vehicle identification number, that 
is a string of numbers and letters of the fonn "9X9XX99X9XX999999," 
where a "9" represents a digit and an "X" represents a letter? 

R-9.6 	Draw the ll-entry hash table that results from using the hash function, 
h(i) = (3i +5) mod 11, to hash the keys 12,44, 13,88,23,94, 11,39,20, 
16, and 5, assuming collisions are handled by chaining. 

R-9.7 What is the result of the previous exercise, assuming collisions are han
dled by linear probing? $ 

R-9.8 Show the result of Exercise R-9.6, assuming collisions are handled by 
quadratic probing, up to the point where the method fails. 

R-9.9 What is the result of Exercise R-9.6 when collisions are handled by double 
hashing using the secondary hash function h'(k) = 7 (k mod 7)? 

R-9.10 	Give a pseudo-code description of an insertion into a hash table that uses 
quadratic probing to resolve collisions, assuming we also use the trick of 
replacing deleted entries with a special "deactivated entry" object. 

R-9.11 	 Give a Java description of the valuesO and entrySetO methods that could 
be included in the hash table implementation of Code Fragments 9.3
9.5. 

R-9.l2 Explain how to modify class HashTableMap given in Code Fragments 9.3
9.5, so that it implements the dictionary ADT instead of the map ADT. 

R-9.13 Show the result of rehashing the hash table shown in Figure 9.4 into a 
table of size 19 using the new hash function h(k) 3k mod 17. 

R-9.l4 Argue why a hash table is not suited to implement an ordered dictionary. 

www.wiley.com/go/global/goodrich


427 

(~ 
,~i' 
: ~}. 

9.6. Exercises 

R-9.IS 	What is the worst-case time for putting n entries in an initially empty hash 
table, with collisions resolved by chaining? What is the best case? 

R-9.16 	Draw an example skip list that results from performing the following 
series of operations on the skip list shown in Figure 9.12: remove(38), 
put(48,x), put(24,y), remove(SS). Record your coin flips, as well. 

R-9.17 Give a pseudo-code description of the remove operation in a skip list. 

R-9.18 What is the expected running time of the methods for maintaining a max
ima set if we insert n pairs such that each pair has lower cost and perfor
mance than one before it? What is contained in the ordered dictionary at 
the end of this series of operations? What if each pair had a lower cost 
and higher performance than the one before it? 

R-9.19 Argue why location-aware entries are not really needed for a dictionary 
implemented with a good hash table. 

Creativity 

C-9.1 	 Describe how to use a skip list to implement the array list ADT, so that 
index-based insertions and removals both run in O(logn) expected time. 

C-9.2 	Suppose we are given two ordered search tables Sand T, each with n en
tries (with Sand T being implemented with arrays). Describe an O(log2 n)
time algorithm for finding the kth smallest key in the union of the keys 
from Sand T (assuming no duplicates). 

C-9.3 Give an O(logn)-time solution for the previous problem. 

C-9.4 Design a variation of binary search for performing operatipn getAl1 (k) in a 
dictionary implemented with an orde~ed se~ch table, and show that it runs 
in time O(1ogn +s), where n is the number of elements in the dictionary 
and s is the size of the iterator returned. 

C-9.S Describe the changes that must be made in the pseudo-code descriptions 
of the (unordered) map methods when we implement the map with a hash 
table such that collisions are handled via separate chaining, but we add 
the space optimization that if a bucket stores just a single entry, then we 
simply have the bucket reference that entry directly. 

C-9.6 The hash table dictionary implementation requires that we find a prime 
number between a number M and a number 2M. Implement a method for 
finding such a prime by using the sieve algorithm. In this algorithm, we 
allocate a 2M cell Boolean array A, such that cell i is associated with the 
integer i. We then initialize the array cells to all be "true" and we "mark 
off" all the cells that are mUltiples of 2, 3, S, 7, and so on. This process 
can stop after it reaches a number larger than J2M. (Hint: Consider a 
bootstrapping method for finding the primes up to JiM.) 



428 Chapter 9. Maps and Dictionaries 

C-9.7 	Describe how to perform a removal from a hash table that uses linear 
probing to resolve collisions where we do not use a special marker to 
represent deleted elements. That is, we must rearrange the contents so that 
it appears that the removed entry was never inserted in the first place. 

C-9.8 	Given a collection C of n cost-performance pairs (e,p), describe an algo
rithm for finding the maxima pairs of C in O(nlogn) time. 

C-9.9 	The quadratic probing strategy has a clustering problem related to the way 
it looks for open slots. Namely, when a collision occurs at bucket h(k), it 
checks buckets A[(h(k) +i) mod N], for j 1,2, ... ,N - 1. 

a. 	 Show that j2 mod N will assume at most (N + 1) /2 distinct values, 
for N prime, as j ranges from 1 to N - 1. As a part of this justifica
tion, note that j2 mod N = (N j)2 mod N for all j. 

b. 	 A better strategy is to choose a prime N such that N mod 4 3 and 
then to check the buckets A[(h(k) i) mod N] as j ranges from 1 
to (N -1)/2, alternating between plus and minus. Show that this 
alternate version is guaranteed to check every bucket in A. 

C-9.1O 	Show that the methods above(p) and prev(p) are not actually needed to 
efficiently implement a dictionary using a skip list. That is, we can imple
ment entry insertion and removal in a skip list using a strictly top-down, 
scan-forward approach, without ever using the above or prey methods. 
(Hint: In the insertion algorithm, first repeatedly flip the coin to deter
mine the level where you should start inserting the new entry.) 

C-9.11 	 Describe how to implement method successors(k) in an ordered map re
alized using an ordered search t~ble. This method returns an iterable col
lection of all the entries in the map that have keys greater than or equal to 
k. What is the running time of your scheme? 

C-9.12Repeat the previous exercise using a skip list. What is the expected run
ning time in this case? 

C-9.13 Suppose that each row of an n x n array A consists of 1 's and O's such that, 
in any row of A, all the 1's come before any O's in that row. Assuming A 
is already in memory, describe a method running in O(nlogn) time (not 
O(n2) time!) for counting the number of 1's in A. 

C-9.14 Describe an efficient dictionary structure for storing n entries that have an 
associated set of r < n keys that come from a total order. That is, the set of 
keys is smaller than the number of entries. Your structure should perform 
operationge~AII illO(logr+s) ~pected time, where s is the number of 
entries returned,'opetation ent~SetO in O(n) time, and the remaining 
operations of the dictionary ADT in O(log r) expected time. 

.C-9.15 Describe an efficient dictionary structure for storing n entries whose r < n 
keys have distinct hash codes. Your structure should perform operation 



429 9.6. Exercises 

getAl1 in O( 1+s) expected time, where s is the number of entries returned, 
operation entrySetO in O(n) time, and the remaining operations of the 
dictionary ADT in O( 1) expected time. 

C-9.16 	Describe an efficient data structure for implementing the bag ADT, which 
supports a method add(e), for adding an element e to the bag, and a 
method removeO, which removes an arbitrary element in the bag, allow
ing for mUltiple copies of duplicate elements, if they were added sepa
rately. Show that both ofthese methods can be done in 0(1) time. 

C-9.17 	Describe how to modify the skip list data structure to support the method 
medianO, which returns the position of the element in the "bottom" list 
So at index lnl2J, Show that your implementation of this method runs in 
O(1og n) expected time. 

Projects 

P-9.1 	 Write an implementation of the map ADT using an array list. 

P-9.2 	Implement a class that implements a version of an ordered dictionary ADT 
using a skip list. Be sure to carefully define and implement dictionary 
versions of corresponding methods of the ordered map ADT. 

P-9.3 	 Implement the map ADT with a hash table with separate chaining colli
sion handling (do not adapt any java.util classes). 

P-9.4 	Implement the ordered mapADT using a skip list. 

P-9.5 	Extend the previous project by providing a graphical animation of the 
skip list operations. Visualize how entries move up thei skip list during 
insertions and are linked out of the skip li~t during removals. Also, in a 
search operation, visualize the scan-forward and drop-down actions. 

P-9.6 	Implement a dictionary that supports location-aware entries by means of 
an ordered list. 

P-9.7 	Perform a comparative analysis that studies the collision rates for various 
hash codes for character strings, such as various polynomial hash codes 
for different values of the parameter a. Use a hash table to determine 
collis.ions, but only count collisions where different strings map to the 
same hash code (not if they map to the same location in this hash table). 
Test these hash codes on text files found on the Internet. 

P-9.8 	Perform a comparative analysis as in the previous exercise but for lO-digit 
telephone numbers instead of character strings. 

P-9.9 	Design a Java class that implements the skip list data structure. Use this 
class to create implementations of both the map and dictionary ADTs, 
including location-aware methods for the dictionary. 



430 Chapter 9. Maps and Dictionaries 

Chapter Notes 

Hashing is a well-studied technique. The reader interested in further study is encouraged to 
explore the book by Knuth [63], as well as the book by Vitter and Chen [96]. Interestingly, 
binary search was first published in 1946, but was not published in a fully con-ect form 
until. 1962. For further discussions on lessons learned, please see papers by Bentley [12] 
and Levisse [67]. Skip lists were introduced by Pugh [83]. Our analysis of skip lists is a 
simplification of a presentation given by Motwani and Raghavan [79]. For a more in-depth 
analysis of skip lists, please see the various research papers on skip lists that have appeared 
in the data structures literature [58, 80, 81]. Exercise C-9.9 was contributed by James Lee. 

i 



Chapter 

10 	 Search Tree Structures 

Contents 

10.1 	 Binary Search Trees . . . . . . .. . . . . . . . . . . .. 432 


10.1.1 Searching ....................... 433 


10.1.2 Update Operations .................. 435 


10.1.3 Java Implementation ................. 439

•

10.2 	AVl Trees ........................ 443 


10.2.1 Update Operations ...... ' ............ 445 


10.2.2 Java Implementation ................. 451 


10.3 	Splay Trees . . . . . . . . . . . . . . . . . . . . . . .. 454 


10.3.1 Splaying ........................ 454 


10.3.2 When to Splay. . . . . . . . . . . . . . . . . . . : . 458 


10.3.3 Amortized Analysis of Splaying * .......... 460 


10.4 (2,4) Trees . . . . . . . . . . . . . . . . . . . . . . .. 465 


10.4.1 Multi-Way Search Trees ................ 465 


10.4.2 Update Operations for (2,4) Trees .......... 471 


10.5 	Red-~Iack Trees . '.' . . . . . . . . . . . . . . . . .. 477 

10.5;1 Update Operations .................. 479 


10.5.2 Java Implementation ................. 492 


10.6 	Exercises . . . . . . . . . . . . . . . . . . . . . . . .. 495 




432 Chapter 10. Search Tree Structures 

10.1 	 Binary Search Trees 

All of the structures we discuss in this chapter are search trees, that is, tree data 
structures that can be used to implement a map. Let us, therefore, begin by briefly 
reviewing the fundamental methods of the map ADT (Section 9.1): 

get(k): 	Return the value vfor the entry, (k, v), with key equal to 
k, if it exists. 

put(k, v): Enter the entry (k, v) as the mapping of k to v. 

remove(k): 	 Remove the entry with key equal to k, and return its 
value. 

The ordered map ADT also includes some additional methods for finding pre
decessor and successor entries with respect to a given key or entry, but their per
formance is similar to that of getO. So we will be focusing on getO as the primary 
search operation in this chapter. 

Binary trees are an excellent data structure for storing the entries of a map, 
assuming we have an order relation defined on the keys. As mentioned previously 
(Section 7.3.6), a binary search tree is a binary tree T sucQ that each internal node 
v of T stores an entry (k,x) such that: 

• Keys stored at nodes in the left subtree of v are less than or equal to k. 

• Keys stored at nodes in the right subtree of v are greater than or equal ito k. 

As we show below, the keys stored at the nodes of T provide a way of performing 
a search by making comparisons at a series of internal nodes. The search can stop 
at the current node v or continue at v's left or right child. Thus, we take the view 
here that binary search trees are nonempty proper binary trees. That is, we store 
entries only at the internal nodes of a binary search tree, and the external nodes 
serve as "placeholders." This approach simplifies several of our search and update 
algorithms. Incidentally, we could have allowed for improper binary search trees, 
which have better space usage, but at the expense of more complicated search and 
update methods. 

Independent of whether we view binary search trees as proper or not, the im
portant property of a binary search tree is the realization of an ordered map (or 
dictionary). That is, a binary search tree should hierarchically represent an order
ing of its keys, using relationships between parent and children. Specifically, an 
inorder traversal (Section 7.3 .6) of the nodes of a binary search tree T should visit 
the keys in nondecreasing order. 



433 ~;.;\ 
!\~) 

.. ~:'~ 

.. ~~.:;~ 
;.:: 

'<'! 
...,:: 

10.1. Binary Search Trees 

10.1.1 Searching 

To perform operation get(k) in a map M that is represented with a binary search 
tree T, we view the tree T as a decision tree (recall Figure 7.10). In this case, the 
question asked at each internal node v of T is whether the search key k is less than, 
equal to, or greater than the key stored at node v, denoted with key(v). If the answer 
is "smaller," then the search continues in the left subtree. If the answer is "equal," 
then the search terminates successfully. If the answer is "greater," then the search 
continues in the right subtree. Finally, if we reach an external node, then the search 
terminates unsuccessfully. (See Figure 10.1.) 

Figure 10.1: (a) A binary search tree T representing a map with integer keys; (b) 
nodes of T visited when executing operations get(76) (successful) and get(25) 
(unsuccessful) on M. For simplicity, we show only the keys of the entries. 

We describe this approach in detail in Code Fragment 10.1. Given a search key 
k and a node v of T, this method, TreeSearch, returns a node (position) w of the 
subtree T (v) of T rooted at v, such that one of the following occur~: 

• w is an internal node and w's entry has key eqlJ.al to k . 
• w is an external node representing k's proper place in an inorder traversal of 

T (v), but k is not a key contained in T (v) . 

Thus, method get(k) can be performed by calling TreeSearch(k, T.rootO). Let w 
be the node ofT returned by this call. If w is an internal node, then we return w's 
entry; otherwise, we return null. 

Algorithm TreeSearch(k, v): 
if T.isExternal(v) then 

return v 

if k < key(v) then 
return TreeSearch(k.,T.left(v)) 

else ifk > key (v) then 
return TreeSearch(k,T.right(v)) 

return v {we know k = key (v)} 
Code Fragment 10.1: Recursive search in a binary search tree. 



434 Chapter 10. Search Tree Structures 

Analysis of Binary Tree Searching 

The analysis of the worst-case running time of searching in a binary search tree T 

is simple. Algorithm TreeSearch is recursive and executes a constant number of 
primitive operations for each recursive calL Each recursive call of TreeSearch is 
made on a child ofthe previous node. That is, TreeSearch is called on the nodes 
of a path of T that starts at the root and goes down one level at a time. Thus, the 
number of such nodes is bounded by h +1, where h is the height of T. In other 
words, since we spend O( 1) time per node encountered in the search, method get 
on map M runs in O(h) time, where h is the height of the binary search tree T used 
to implement M. (See Figure 10.2.) 

Time per 
Height level 

Tree T: 

h 
." .. ,".:~ ; 

:.: 
-.''.: 

-- 0(1) 

---- 00) 

------ 0(1) 

• 
• 
• 

___ i 

Total time: O(h) 

Figure 10.2: Illustrating the running time of searching in a binary search tree. The 
figure uses standard visualization shortcuts of viewing a binary search tree as a big 
triangle and a path from the root as a zig-zag line. 

We can also show that a variation of the above algorithm performs operation 
getAII(k) of the dictionary ADT in time O(h s), where s is the number of entries 
returned. However, this method is slightly more complicated, and the details are 
left as an exercise (C-I0.l). 

Admittedly, the height h of T can be as large as the number of entries, n, but 
we expect that it is usually much smaller. Indeed, we will show how to maintain an 
upper bound of O(logn) on the height of a search tree T in Section 10.2. Before we 
describe such a scheme, however, let us describe implementations for map update 
methods. 



435 

10.1.2 Update Operations 
;~ 
:\F 	 Binary search trees allow implementations of the put and remove operations using
:}j4Z1 ,. 

10.1. Binary Search Trees 

algorithms that are fairly straightforward, but not triviaL 

Insertion 

Let us assume a proper binary tree T supports the following update operation: 
insertAtExternal(v, e): 	 Insert the element e at the external node v, and expand 

v to be internal, having new (empty) external node chil
dren; an error occurs if v is an internal node. 

Given this method, we perform put(k,x) for a map implemented with a binary 
search tree T by calling Treelnsert(k,x,T.rootO), which is given in Code Frag
ment 10.2. 

Algorithm Treelnsert(k,x, v): 
Input: A search key k, an associated value, x, and a node vof T 
Output: A new node win the subtree T(v) that stores the entry (k,x) 

w +--- TreeSearch(k, v) 

if T.islnternal(w) then 


return Treelnsert(k,x,T.left(w)) {going to the right would be correct too} 
T.insertAtExternal(w, (k,x)) {this is an appropriate place to put (k,x)} 
return w 

Code Fragment 10.2: Recursive algorithm for insertion in a binary search tree. 

This algorithm traces a path from T's root to an external nqde, which is ex
panded into a new internal node accommodating t~e new entry. An example of 
insertion into a binary search tree is shown in Figure 10.3. 

(a) 

Figure 10.3: Insertion of an entry with key 78 into the search tree of Figure 10.1. 

Finding the position to insert is shown in (a), and the resulting tree is shown in (b). 




436 Chapter 10. Search Tree Structures 

Removal 

The implementation of the remove(k) operation on a map M implemented with a 
binary search tree T is a bit more complex, since we do not wish to create any 
"holes" in the tree T. We assume, in this case, that a proper binary tree supports 
the following additional update operation: 

removeExternal(v): 	Remove an external node v and its parent, replacing v's 
parent with v's sibling; an error occurs if v is not externaL 

Given this operation, we begin our implementation of operation remove(k) of the· 
map ADT by calling TreeSearch(k,T.rootO) on T to find a node of T storing an 
entry with key equal to k. If TreeSearch returns an external node, then there is no 
entry with key k in map M, and we return null (and we are done). If TreeSearch 
returns an internal node w instead, then w stores an entry we wish to remove, and 
we distinguish two cases (of increasing difficulty): 

• If one of the children of node w is an external node, say node z, we simply 
remove wand zfrom T by means of operation removeExternal(z) on T. This 
operation restructures T by replacing w with the sibling of z, removing both 
wand z from T. (See Figure 1004.) 

• If both children of node w are internal nodes, we cannot simply remove the 
node wfrom T, since this would create a "hole" in T. Instead, we proceed as 
follows (see Figure 10.5): 

o 	We find the first internal node y that follows w in an inorder trayersal 
of T. Node y is the left-most internal node in the,right subtree of w, 
and is found by going first to the right child of wand then down T from 
there, following left children. Also, the left child x of y is the external 
node that immediately follows node win the inorder traversal of T. 

o 	We save the entry stored at w in a temporary variable t, and move the 
entry of y into w. This action has the effect of removing the former 
entry stored at w. 

o 	We remove nodes x and y from T by calling removeExternaI(x) on T. 

This action replaces y with x's sibling, and removes both x and y from T. 

o 	 We return the entry previously stored at w, which we had saved in the 
temporary variable t. 

As with searching and insertion, this removal algorithm traverses a path from 
the root to an external node, possibly moving an entry between two nodes of this· 
path, and then performs a removeExternal operation at that external node. 



437 10.1. Binary Search Trees 

(b) 

Figure 10.4: Removal from the binary search tree of Figure lO.3b, where the entry 
to remove (with key 32) is stored at a node (w) with an external child: (a) before 
the removal; (b) after the removaL 

(b) 

Figure 10.5: Removal from the binary search tree of Figure lO.3b, where the entry 
to remove (with key 65) is stored at a node (w) whose children are both internal: 
(a) before the removal; (b) after the removal. 



438 Chapter 10. Search Tree Structures 

Performance of a Binary Search Tree 

The analysis of the search, insertion, and removal algorithms are similar. We spend 
O( 1) time at each node visited, and, in the worst case, the number of nodes visited 
is proportional to the height h of T. Thus, in a map M implemented with a binary 
search tree T, the get, put, and remove methods run in O(h) time, where h is the 
height of T. Thus, a binary search tree T is an efficient implementation of a map 
with n entries only if the height of T is small. In the best case, T has height h = 

pog(n+1)1, which yields logarithmic-time performance for all the map operations. 
In the worst case, however, T has height n, in which case it would look and feel like 
an ordered list implementation of a map. Such a worst-case configuration arises, 
for example, if we insert a series of entries with keys in increasing or decreasing 
order. (See Figure 10.6.) 

Figure 10.6: Example of a binary search tree with linear height, obtained by insert
ing entries with keys in increasing order. 

i 

The performance of a map implemented with a binary search tree is summa
rized in the following proposition and in Table 10.1. 

Proposition 10.1: A binary search tree T with height h for n key-value entries 
uses O(n) space and executes the map ADT operations with the following running 
times. Operations size and isEmpty each take O( 1) time. Operations get, put, and 
remove each take O(h) time. 

Method Time I 
size, isEmpty O( 1) ! 

get, put, remove O(h) I 

Table 10.1: Running times of the main methods of a map realized by a binary search 
tree. We denote the current height of the tree with h. The space usage is O(n), 
where n is the number of entries stored in the map. 



439 10.1. Binary Search Trees 

Note that the running time of search and update operations in a binary search 
tree varies dramatically depending on the tree's height. We can nevertheless take 
comfort that, on average, a binary search tree with n keys generated from a ran
dom series of insertions and removals of keys has expected height O(logn). Such a 
statement requires careful mathematicallanguage to precisely define what we mean 
by a random series of insertions and removals, and sophisticated probability theory 
to prove; hence, its justification is beyond the scope of this book. Nevertheless, 
keep in mind the poor worst-case performance and take care in using standard bi
nary search trees in applications where updates are not random. There are, after 
all, applications where it is essential to have a map with fast worst-case search and 
update times. The data structures presented in the next sections address this need. 

10.1.3 Java Implementation 

In Code Fragments 10.3 through 10.5, we describe a binary search tree class, Bi
narySearchTree, which stores objects of class BSTEntry (implementing the Entry 
interface) at its nodes. Class BinarySearchTre~ extends class LinkedBinaryTree 
from Code Fragments 7.16 through 7.18, thus taking advantage of code reuse. For 
space reasons, however, we omit showing the keySet, values, and entrySet meth
ods. 

i 
This class makes use of several auxiliary methods to do much of the heavy 

lifting. The auxiliary method treeSearch, based on the TreeSearch algorithm (Code 
Fragment 10.1), is invoked by the get and put methods. We use two additional 
update methods, insertAtExternal, which inserts a new entry at an external node, 
and removeExternal, which removes an external node and its parent. 

Class BinarySearchTree uses location-aware entries (see Section 8.4.2). Thus, 
its update methods inform any moved BSTEntry objects of their new positions. 
We also use several simple auxiliary methods for accessing and testing data, such 
as checkKey, which checks if a key is valid (albeit using a fairly simple rule in this 
case). We also use an instance variable, actionPos, which stores the position where 
the most recent search, insertion, or removal ended. This instance variable is not 
necessary to the implementation of a binary search tree, but is useful to classes that 
will extend BinarySearchTree (see Code Fragments 10.7, 10.8, 10.10, and 10.11) 
to identify the position where the previous search, insertion, or removal has taken 
place. Position action Pos has the intended meaning provided it is used right after 
executing the method get, put, or remove. 



440 Chapter 10. Search Tree Structures 

/ / Realization of a map by means of a binary search tree 
public class BinarySearchTreeMap<K,V> 

extends LinkedBinaryTree<Entry<K,v» implements Map<K,V> { 
protected Comparator<K> C; / / comparator 
protected Position< Entry< K,v> > 

actionPos; / / insert node or removed node's parent 

protected int numEntries = 0; / / number of entries 

/** Creates a BinarySearchTree with a default comparator. * / 

public BinarySearchTreeMapO { 


C new DefaultComparator<K>O; 

addRoot(null); 


} 
public BinarySearchTreeMap(Comparator<K> c) { 

C c; 
addRoot(null); 


} 

/** Nested class for location-aware binary search tree entries * / 

protected static class BSTEntry<K,V> implements Entry<K,V> { 


protected K key; 

protected V value; 

protected Position<Entry<K,V> > pos; 

BSTEntryO { /* default constructor * / } 

BSTEntry(K k, V v, Position<Entry<K,V» p) { 


key := k; value v; pos· = p; 

} 

public K getKeyO { return key; } 

public V getValueO { return value; } . 

public Position<Entry<K,V> > positionO { return pos; }" 


} 

/** Extracts the key of the entry at a given node of the tree. * / 

protected K key(Position<Entry<K,V» position) { 


return position.elementO.getKeyO; 
} 

/** Extracts the value of the entry at a given node of the tree. * / 

protected V value(Position<Entry<K,V> > position) { 


return position.elementO.getVa1ueO; 

} 

/** Extracts the entry at a given node of the tree. * / 

protected Entry<K,v> entry(Position<Entry<K,V» position) { 


returl'! position.elementO;
} . 

Code Fragment 10.3: Class BinarySearchTree. (Continues in Code Fragment 10.4.) 



441 10.1. Binary Search Trees 

/** Replaces an entry with a new entry (and reset the entry's location) * / 
protected V replaceEntry(Position <Entry<K,V» pos, Entry<K,V> ent) { 

((BSTEntry<K,V» ent).pos = pos; 
return replace(pos, ent).getValueO; 

}
/** Checks whether a given key is valid. * / 
protected void checkKey(K key) throws InvalidKeyException { 

if(key == null) // just a simple test for now 
throw new InvalidKeyException("null key"); 

}
/** Checks whether a given entry is valid. * / 
protected void checkEntry(Entry<K,V> ent) throws InvalidEntryException { 

if(ent null II !(ent instanceof BSTEntry)) 
throw new InvalidEntryException("invalid entry"); 

}
/** Auxiliary method for inserting an entry at an external node * / 
protected Entry<K,V> insertAtExternal(Position<Entry<K,V» v, Entry<K,v> e) { 

expandExternal(v,null,null); 

replace(v. e); 

numEntries++; 

return e; 


}

/** Auxiliary method for removing an external node and its parent * / 

protected void removeExternal(Position<Entry<K,V> > v) { 


removeAbove Extern a I (v); 
numEntries--; 

}
/** Auxiliary m'ethod used by find, insert, and. remove, * / 
protected Position<Entry<K,V» treeSearch(K key, Position<Entry<K,V» pos) { 

if (isExternal(pos)) return pos; // key not found; return external node 
else { 


K curKey key(pos); 

int comp = C.compare(key, curKey); 

if (comp < 0) 


return treeSearch(key, left(pos)); // search left subtree 

else if (comp > 0) 


return- treeSearch(key, right(pos)); // search right subtree 

return pos; // return internal node where key is found 


} 

} 

. Code Fragment 10.4: Class BinarySearchTree. (Continues in Code Fragment 10.5.) 



442 Chapter 10. Search Tree Structures 

/ / methods of the map ADT 

public int sizeO { return numEntries; } 

public boolean isEmptyO { return sizeO == 0; } 

public V get(K key) throws InvalidKeyException { 


checkKey(key); / / may throw an InvalidKeyException 

Position<Entry<K,V» curPos treeSearch(key, rootO); 

actionPos = curPos; / / node where the search ended 

if (islnternal(curPos)) return value(curPos); 

return null; 


} 
public V put(K k, V x) throws InvalidKeyException { 


checkKey(k); / / may throw an InvalidKeyException 

Position<Entry<K,v» insPos = treeSearch(k, rootO); 

BSTEntry<K,V> e new BSTEntry<K,V>(k, x, insPos); 

actionPos insPos; / / node where the entry is being inserted 

if (isExternal(insPos)) { / / we need a new node, key is new 


return insertAtExternal(insPos, e).getValueO; 

} 

return replaceEntry(insPos, e); / / key already exists 


} 
public V remove(K k) throws InvalidKeyException { 

checkKey(k); / / may throw an InvalidKeyException 
Position<Entry<K,V» remPos = treeSearch(k, rootO); 
if (isExternal(remPos)) return null; /1 key not found 
Entry<K,V> toReturn = entry(remPos); / / old entry 
if (isExternal(left(remPos))) remPos = left(remPos); -!/ left easy case 
else if (isExternal(right(remPos))) re-mPos = right(remPos); /1 right ea~y case 
else { / / entry is at a node wjth internal children 

Position<Entry<K,V» swapPos remPos; / / find no-de for moving entry 
remPos right(swapPos); 
do 

remPos = left(remPos); 

while (islnternal(remPos)); 

replaceEntry(swapPos, (Entry<K,V> )parent(remPos).elementO); 


} 
actionPos sibling(remPos); / / sibling of the leaf to be removed 

removeExterna I(rem Pos); 

return toReturn.getValueO; 


} 
} 

Code Fragment 10.5: Class BinarySearchTree. (Continued from Code Frag
ment lOA.) 



443 10.2. AVL Trees 

10.2 AVL Trees 

In the previous section, we discussed what should be an efficient map data struc
ture, but the worst-case performance it achieves for the various operations is linear 
time, which is no better than the performance of list- and array-based map imple
mentations (such as unordered lists and search tables discussed in Chapter 9). In 
this section, we describe a simple way of correcting this problem so as to achieve 
logarithmic time for all the fundamental map operations. 

Definition of an AVL Tree 

The simple correction is to add a rule to the binary search tree definition that will 
maintain a logarithmic height for the tree. The rule we consider in this section is the 
following height~balance property, which characterizes the structure of a binary 
search tree T in terms of the heights of its internal nodes (recall from Section 7.2.1 
that the height of a node v in a tree is the length of a longest path from v to an 
external node): 

Height-Balance Property: For every internal node v of T, the heights of the chil
dren of v differ by at most 1. 

Any binary search tree T that satisfies the height-balance property is said to be an 
AVL tree, named after the initials of its inventors: Adel'son-Vel'skii and Landis. 
An example of an AVL tree is shown in Figure 10.7. 

Figure 10.7: An example of an AVL tree. The keys of the entries are shown inside 
the nodes, and the heights of the nodes are shown next to the nodes. 

An immediate consequence of the height-balance property is that a subtree ofan 
AVL tree is itself an AVL tree. The height-balance property has also the important 
consequence of keeping the height small, as shown in the following proposition. 



444 Chapter 10. Search Tree Structures 

Proposition 10.2: The height of an AVL tree storing n entries is O(logn). 

Justification: Instead of trying to find an upper bound on the height of an AVL 
tree directly, it turns out to be easier to work on the "inverse problem" of finding a 
lower bound on the minimum number of internal nodes n(h) of an AVL tree with 
height h. We will show that n(h) grows at least exponentially. From this, it will be 
an easy step to derive that the height of an AVL tree storing n entries is O(1ogn). 

To start with, notice that n(1) = 1and n(2) =2, because an AVL tree of height 
1 must have at least one internal node and an AVL tree of height 2 must have at least 
two internal nodes. Now, for h ?:: 3, an AVL tree with height h and the minimum 
number of nodes is such that both its subtrees are AVL trees with the minimum 
number of nodes: one with height h 1and the other with height h - 2. Taking the 
root into account, we obtain the following formula that relates n(h) to n(h- 1) and 
n(h 2), for h ?:: 3: 

n(h)=l n(h-1)+n(h-2). 	 (10.1) 

At this point, the reader familiar with the properties of Fibonacci progressions (Sec
tion 2.2.3 and Exercise C-4.lS) will already see that n(h) is a function exponential 
in h. For the rest of the readers, we will proceed with our reasoning. 

Formula 10.1 implies that n(h) is a strictly increasing function of h. Thus, we 
know that n(h - 1) > n(h - 2). Replacing n(h - 1) withn(h - 2) in Formula 10.1 
and dropping the 1, we get, for h > 3, 

n(h) > 2·n(h-2). 	 .(10.2) 

i 

Formula 10.2 indicates that n(h) at least doubles each time h increases by 2, which 
intuitively means that n(h) grows exponentially. To show this fact in a formal way, 
we apply Formula 10.2 repeatedly, yielding the following series of inequalities: 

n(h) 	 > 2·n(h-2) 

> 4·n(h-4) 

> g·n(h 6) 

> 2i .n(h-2i). 	 (10.3) 

That is, n(h) > i· n(h 2i), for any integ~r i, such that h 2i 1. Since we already 
know the values of n(l) and n(2), we pick i so that h 2i is equal to either 1 or 2. 
That is, we pick 

l-.- r~1-1.2 



445 10.2. AVL l'rees 

By substituting the above value of i in formula 10.3, we obtain, for h 2: 3, 

n(h) > 2m~ 1 
•+2[~1 2 ) 

2: 2r~1-1 n( 1 ) 

> 2~-1. (10.4) 

By taking logarithms of both sides of formula 10.4, we obtain 

logn(h) > 2:
h 

1, 

from which we get 
h < 210gn(h) +2, (10.5) 

which implies that an AVL tree storing n entries has height at most 2log n+2. • 

By Proposition 10.2 and the analysis of binary search trees given in Section 10.1, 
the operation get, in a map implemented with an AVL tree, runs in time O(logn), 
where n is the number of entries in the map. Of course, we still have to show how 
to maintain the height-balance property after an insertion or removaL 

10.2.1 Update Operations 

The insertion and ren:oval operations for AVL trees are similar to those for binary 
search trees, but with AVL trees we must perform additional computations. 

Insertion 

An insertion in an AVL tree T begins as in a pu"t operation described in Sec
tion 10.1.2 for a (simple) binary search tree. Recall that this operation always 
inserts the new entry at a node w in T that was previously an external node, and 
it makes w become an internal node with operation insertAtExternal. That is, it 
adds two external node children to w. This action may violate the height-balance 
property, however, for some nodes increase their heights by one. In particular, node 
w, and possibly some of its ancestors, increase their heights by one. Therefore, let 
us describe how to restructure T to restore its height balance. 

Given a binary search tree T, we say that an internal node v of T is baktnced 
if the absolute value of the difference between the heights of the children of v is 
at most 1,.andwe say.thatitisunbaktncedotherwise. Thus, the height-balance 
propertycharacterizirig AVL trees is equivalent to saying that every internal node 
is balanced. 

Suppose that T satisfies the height-balance property, and hence is an AVL tree, 
prior to our inserting the new entry. As we have mentioned, after performing the 



446 Chapter 10. Search Tree Structures 

operation insertAtExternal on T, the heights of some nodes of T, including w, 
increase. All such nodes are on the path of T from w to the root of T, and these 
are the only nodes of T that may have just become unbalanced. (See Figure 10.8a.) 
Of course, if this happens, then T is no longer an AVL tree; hence, we need a 
mechanism to fix the "unbalance" that we have just caused. 

......_---" 
To Tj T3 

(a) (b) 

Figure 10.8: An example insertion of an entry with key 54 in the AVL tree of 
Figure lO.7: (a) after adding a new node for key 54, the nodes storing keys 78 
and 44 become unbalanced; (b) a trinode restructuring restores the height-balance 
property. We show the heights of nodes next to them, and we identify the nodes x, 
y, and zparticipating in the trinode restructuring. 

We restore the balance of the nodes in the binary search tree T by a simple 
"search-and-repair" strategy. In particular, let zbe the first node we encounter in 
going up from w toward the root of T such that zis unbalanced. (See Figure 10.8a.) 
Also, let y denote the child of zwith higher height (and note that node y fnust be 
an ancestor of w). Finally, let x be the child of y withhighe! height (there cannot 
be a tie and node x must be an ancestor of w). Also, node x is a grandchild of z 
and could be equal to w. Since zbecame unbalanced because of an insertion in the 
subtree rooted at its child y, the height of y is 2 greater than its sibling. 

We now rebalance the subtree rooted at z by calling the trinode restructuring 
method, restructure(x), given in Code Fragment 10.6 and illustrated in Figures 10.8 
and lO.9. A trinode restructuring temporarily renames the nodes x, y, and zas a, b, 
and c, so that a precedes band b precedes c in an inorder traversal of T. There are 
four possible ways of mapping x, y, and z toa,b, and c, as shown in Figure lO.9, 
which are· unified into one case by our relabeling. The trinode restructuring then 
replaces zwith the node called b, makes the children of this node be a and c, and 
makes the children of a and c be the four previous children of x, y,and z(other than 
x and y) while maintaining the inorder relationships of all the nodes in T. 



447 10.2. AVL Trees 

Algorithm restructure(x): 
Input: A node x of a binary search tree T that has both a parent y and a grand

parent z 
Output: Tree T after a trinode restructuring (which corresponds to a single or 

double rotation) involving nodes x, y, and z 
1: 	 Let (a,b,c) be a left-to-right (inorder) listing of the nodes x, y, and Z, and let 

(TOl Tl, T2) T3) be a left-to-right (inorder) listing of the four subtrees of x, y, and 
znot rooted at x, y, or z. 

2: 	 Replace the subtree rooted at zwith a new subtree rooted at b. 
3: 	 Let a be the left child of b and let To and Tl be the left and right subtrees of a, 

respectively. 
4: 	 Let c be the right child of b and let T2 and T3 be the left and right subtrees of c, 

respectively. 

Code Fragment 10.6: The trinode restructuring operation in a binary search tree. 

The modification of a tree T caused by a trinode restructuring operation is often 
called arotation, because of the geometric way we can visualize the way it changes 
T. Ifb = y, the trinode restructuring method is called a single rotation, for it can be 
visualized as "rotating" y over Z. (See Figure 1O.9a and b.) Otherwise, if b x, the 
trinode restructuring operation is called adouble rotation, for it can be visualized as 
first "rotating" x over y and then over z. (See Fig!}re 1O.9c and d, and Figure 10.8.) 
Some computer researchers treat these two kinds of rotations as separate methods, 
each with two symmetric types. We have chosen, however, to unify these four types 
of rotations into a single trinode restructuring operation. No matter how we view 
it, though, the trinode restructufing method modifies parent-chil&relationships of 
O( 1) nodes in T, while preserving the inorder traversal ordering of all the nodes 
in T. 

In addition to its order-preserving property, a trinode restructuring changes the 
heights of several nodes in T, so as to restore balance. Recall that we ~xecute the 
method restructure(x) because z, the grandparent of x, is unbalanced. Moreover, 
this unbalance is due to one of the children of x now having too large a height 
relative to the height of z's other child. As a result of a rotation, we move up the 
"tall" child of x while pushing down the "short" child of z. Thus, after performing 
restructure(x), all the nodes in the subtree now rooted at the node we called bare 
balanced. (See Figure 10.9.) Thus, we restore the height-balance property locally 
at the nodes x, y, and z. In addition, since after performing the new entry insertion 
the subtree rooted at b replaces the one formerly rooted at z, which was taller by one 
unit, all the ancestors oJ z that were formerly unbalanced become balanced. (See 
Figure 10.8.) (The justification of this fact is left as Exercise C-1O.13.) Therefore, 
this one restructuring also restores the height-balance property globally. 

l:,-'. 



448 Chapter 10. Search Tree Structures 

T2 

TO 


single rotation .... 

Tl T2 

(a) 

Tl 


single rotation ... 

Tl T2 T3 

(b) 

To 

Tl 


double rotation ... 

Tl T3 

(c) 

double rotation ... 

T3 
T2 T3 

(d) 

To 

To 
T2 


Figure 10.9: Schematic illustration of a trinode restructuring operation (Code Frag
ment 10.6): (a) and (b) a single rotation; (c) and (d) a double rotation. 



449 10.2. AVL Trees 

Removal 

As was the case for the put map operation, we begin the implementation of the 
remove map operation on an AVL tree T by using the algorithm for performing 
this operation on a regular binary search tree. The added difficulty in using this 
approach with an AVL tree is that it may violate the height-balance property. In 
particular, after removing an internal node with operation removeExternal and el
evating one of its children into its place, there may be an unbalanced node in T 
on the path from the parent w of the previously removed node to the root of T. 
(See Figure 1O.l0a.) In fact, there can be one such unbalanced node at most. (The 
justification of this fact is left as Exercise C-IO.l2.) 

z 

'- 

To f 
(2) 



rD-l Tl T3 Tl 
....~-' ..._ .••3 

(a) (b) 

Figure 10.10: Removal of the entry with key 32.from the AVL tree of Figure 10.7: 
(a) after removing the node storing key 32, the root becomes unbalanced; (b) a 
(single) rotation restores the height-balance property. 

As with insertion, we use trinode restructuring to restore balance in the tree T. 
In particular, let zbe the first unbalanced node, encoll;ntered going up from w toward 
the root of T. Also, let y be the child of zwith larger height (note that node y is the 
child of zthat is not an ancestor of w), and let x be the child of y defined as follows: 
if one of the children of y is taller than the other, let x be the taller child of y; else 
(both children of y have the same height), let x be the child of yon the same side as 
y (that is, if y is a left child, let x be the left child of y, else let x be the right child 
of y). In any case, we then perform a restructure(x) operation, which restores the 
height-balance property locally, at the subtree that was formerly rooted at z and is 
now rooted at the node we temporarily called b. (See Figure 10. lOb.) 

Unfortunately, this trinode restructuring may reduce the height of the subtree 
rooted at b by 1, which may cause an ancestor of b to become unbalanced. So, 
after rebalancing z,w,econtil1u~ walking up T looking for unbalanced nodes. If we 
find another, we perform a restructure operation to restore its balance, and continue 
marching up T looking for more, all the way to the root. Still, since the height of T 
is O(1ogn), where n is the number of entries, by Proposition 10.2, O(logn) trinode 
restructurings are sufficient to restore the height-balance property. 



• • • • 

450 Chapter 10. Search Tree Structures 

Performance of AVL Trees 

We summarize the analysis of the performance of an AVL tree T as follows. Op
erations get, put, and remove visit the nodes along a root-to-leaf path of T, plus, 
possibly, their siblings, and spend 0(1) time per node. Thus, since the height of T 
is O(logn) by Proposition 10.2, each of the above operations takes O(1ogn) time. 
In Table 10.2, we summarize the performance of a map implemented with an AVL 
tree. We illustrate this performance in Figure 10.11. 

Operation Time 
size, isEmpty 0(1) 

• get, put, remove O(logn) 

Table 10.2: Performance of an n-entry map realized by an AVL tree. The space 
usage is O(n). 

Time per 
Height level 

------------ 00) 

AVLTree T: 

0(1) 

O(log n) 

0(1) 

• 

• 

Worst·case time: O(log n) 

Figure 10.11: Illustrating the running time of searches and updates in an AVL tree. 
The time performance is O( 1) per level, broken into a down phase, which typi
cally involves searching, and an up phase, which typically involves updating height 
value~and performing local trinode restructurings (rotations); 



451 10.2. AVL Trees 

10.2.2 Java Implementation 

Let us now turn to the implementation details and analysis of using an AVL tree T 
with n internal nodes to implement an ordered map of n entries. The insertion and 
removal algorithms for T require that we are able to perform trinode restructurings 
and determine the difference between the heights of two sibling nodes. Regard
ing restructurings, we now need to make sure our underlying implementation of 
a binary search tree includes the method restructure(x), which performs a trinode 
restructuring operation (Code Fragment 10.6). It is easy to see that a restructure 
operation can be performed in O(1) time if T is implemented with a linked structure 
(Section 7.3.4). In our case, we assume that the BinarySearchTree class includes 
this method. 

Regarding height information, we can explicitly store the height of each internal 
node, v, in the node itself. Alternatively, we can store the balance factor of vat v, 
which is defined as the height of the left child of v minus the height of the right child 
of v. Thus, the balance factor of v is always equal to 1,0, or 1, except during an 
insertion or removal, when it may become temporarily equal to - 2 or +2. During 
the execution of an insertion or removal, the heights and balance factors of o(logn) 
nodes are affected and can be maintained in O(log n) time. 

In Code Fragments 10.7 and 10.8, we show a complete Java class, AVLTree, 
implementing a map using an AVL tree (assuming the parent class includes an 
implementation of the restructure method). Thi~ class extends BinarySearchTree 
(Code Fragments 10.3-10.5) and includes a nested class, AVLNode, which extends 
the BTNode class used to represent the nodes of a binary tree. The AVLNode class 
defines an additional instance variable height, representing the height of the node. 
We get our binary tree to use this node class instead of the BTNode class simply 
by overriding the createNode method, which is used exclusively to create new 
binary tree nodes. Class AVLTree inherits methods size, isEmpty, and get from its 
superclass, BinarySearchTree, but overrides methods put and remove to keep the 
search tree balanced. 

Method put (Code Fragment 10.8) starts by calling the superclass's put method, 
which inserts the new entry and assigns the insertion position (for example, the 
node storing key 54 in Figure 10.8) to the instance variable actionPos. The auxil
iary method rebalance is then used to traverse the path from the insertion position to 
the root. This traversal updates the heights of all the nodes visited, and performs a 
trinode restructuring if necessary. Similarly, method remove (Code Fragment 10.8) 
begins by calling the superclass's remove method, which performs the removal of 
the entry and assigns the position replacing the deleted one to instance variable ac
tionPos. The auxiliary method rebalance is then used to traverse the path from the 
removed position to the root, performing any needed restructurings. 



452 Chapter 10. Search Tree Structures 

/** Implementation of an AVL tree. * / 
public class AVLTreeMap<K,V> 

extends BinarySearchTreeMap<K,V> implements Map<K,V> { 
public AVLTreeMap(Comparator<K> c) { super(c); } 
public AVLTreeMapO { superO; } 
/** I\lested class for the nodes of an AVL tree. * / 
protected static class AVLNode<K,V> extends BTNode<Entry<K.V» { 

protected int height; / / we add a height field to a BTNode 

AVLNodeO U* default constructor */}

/** Preferred constructor * / 

AVLNode(Entry<K,V> element, BTPosition<Entry<K,V» parent, 


BTPosition<Entry<K,V> > left, BTPosition<Entry<K,V> > right) { 
super(element, parent, left, right); 
height 0; 
if (left != nUll) 

height Math.max(height, 1 + ((AVLNode<K,v» left).getHeightO); 
if (right nUll) 

height = Math.max(height, 1 + ((AVLNode<K,V» right).getHeightO); 
} / / we assume that the parent will revise its height if needed 
public void setHeight(int h) { height = h; } 
public int getHeightO { return height; } 

} 
/** Creates a new binary search tree node (overrides super's version). */ 

protected BTPosition<Entry<K,v> > createf\lode(Entry<K,V> element, 


BTPosition<Entry<K,V» parent, BTPosition<Entry<K,V» left, 

BTPosition<Entry<K,V» right) { 


return new AVLNode< K,V>{elemenl, parent,left,right); / / now use AVIJ. nodes 
} . 
/** Returns the height of a node (call back to an AVLNode). * / 
protected int height(Position<Entry<K,V> > p) { 


return ((AVLNode<K,V» p).getHeight();

} . 

/** Sets the height of an internal node (call back to an AVLNode). * / 

protected void setHeight(Position<Entry<K,V» p) { 


((AVLNode<K,V» p ).setHeight(l +Math.max(height(left(p)), height( right{p)))); 
} 
/** Returns whether a node has balance factor between and l. * / 
protected boolean isBalanced(Position<Entry<K,V» p) { 

int bf = height(left(p)) - height(right(p)); 

return ((-1 <= bf) && (bf <= 1)); 


} 

Code Fragment 10.7: Constructor and auxiliary methods of class AVLTree. 



453 10.2. AVL Trees 

/** Returns a child of p with height no smaller than that of the other child * / 
protected Position<Entry<K,V> > tallerChild(Position<Entry<K,V> > p) { 

if (height(left(p)) > height(right(p))) return left(p); 
else if (height(left(p)) < height(right(p))) return right(p); 
/ / equal height children - break tie using parent's type 
if (isRoot(p)) return left(p); 
if (p == left(parent(p))) return left(p); 
else return right(p); 

} 
/**

* Rebalance method called by insert and remove. Traverses the path from 
* zPos to the root. For each node encountered, we recompute its height 
* and perform a trinode restructuring if it's unbalanced. 
*/ 

protected void rebalance(Position<Entry<K,v> > zPos) { 
if(islnternal(zPos) ) 

setHeight(zPos); 
while (!isRoot(zpos)) { / / traverse up the tree towards the root 
.zPos = parent(zpos); 
setHeight(zPos); 
if (!isBalanced(zpos)) { 

/ / perform a trinode restructuring at zPos's tallest grandchild 
Position<Entry<K,v> > xPos = talierChild(talierChild(zPos)); 
zPos = restructure(xPos); / / tri-node restructure (from parent class) 
setHeight(left(zPos)); / / recompute heights 
setHeight(right(zPos)); 

setHeight(zPos); 


} 

} 

} 
/ / overridden methods of the dictionary ADT 
public V put(K k, V v) throws InvalidKeyException { 

V toReturn = super.put(k, v); / / calls our createNode method if k is new 
rebalance(actionPos); / / rebalance up from the insertion position 
return toReturn; 

} 
public V remove(K k) throws InvalidKeyException { 

V toReturn = super.remove(k); 
if (toReturn != null) / / we actually removed something 

rebalance(actionPos); / / rebalance up the tree 
return toReturn; 

} •••• o·

J / / end of AVLTree class 

Code Fragment 10.8: Auxiliary methods talierChild and rebalance and map meth
ods put and remove of class AVLTree. 



454 Chapter 10. Search Tree Structures 

10.3 Splay Trees 

Another way we can implement the fundamental map operations is to use a bal
anced search tree data structure known as a splay tree. This structure is conceptu
ally quite different from the other balanced search trees we discuss in this chapter, 
for a splay tree does not use any explicit rules to enforce its balance. Instead, it ap
plies a certain move-to-root operation, called splaying, after every access, in order 
to keep the search tree balanced in an amortized sense. The splaying operation is 
performed at the bottom-most node x reached during an insertion, deletion, or even 
a search. The surprising thing about splaying is that it allows us to guarantee an 
amortized running time, for insertions, deletions, and searches, that is logarithmic. 
The structure of a splay tree is simply a binary search tree T. In fact, there are no 
additional height, balance, or color labels that we associate with the nodes of this 
tree. 

10.3.1 Splaying 

Given an internal node x of a binary search tree T, we splay x by moving x to 
the root of T through a sequence of restructurings. The particular restructurings 
we perform are important, for it is not sufficient to move x to the root of T by 
just any sequence of restructurings. The specific operation we perform to move 
x up depends upon the relative positions of x, its parent y, and (if it exists) x's 
grandparent z. There are three cases that we consider. 

zig-zig: The node x and its parent y are both left children or both right-children. 
(See Figure 10.12.) We replace zby x, making,y a child of xand za child of 
y, while maintaining the inorder relationships ofthe nodes in T. 

(a) (b) 

Figure 10.12: Zig-zig: (a) before; (b) after. There is another symmetric configura
tion where x and yare left children. 



455 10.3. Splay Trees 

zig-zag: One of x and y is a left child and the other is a right child. (See Fig
ure 10.13.) In this case, we replace z by x and make x have y and z as its 
children, while maintaining the inorder relationships of the nodes in T. 

x 

~ "" 

(a) (b) 

Figure 10.13: Zig-zag: (a) before; (b) after. There is another symmetric configura
tion where x is a right child and y is a left child. 

zig: x does not have a grandparent (or we are not considering x's grandparent for 
some reason). (See Figure 10.14.) In this case, we rotate x over y, making 
x's children be the node y and one of x's former children w, so as to maintain 
the relative inorder relationships of the nodes in T. 

(a) (b) 

Figure 10.14: Zig: (a) before; (b) after. There is another symmetric configuration 
where x and w are left children. 

":"" We perform a zig-zig or a zig-zag when x has a grandparent, and we perform a 
. ,zig when xhas a parent but not a grandparent. Asplaying step consists of repeating 

these restructurings at x until x becomes the root of T. Note that this is not the 
same as a sequence of simple rotations that brings x to the root An example of the 
splaying of a node is shown in Figures 10.15 and 10.16. 



456 Chapter 10. Search Tree Structures 

(a) 

:~::.l 

(b) 

(c) 

Figure '10.15: .Example of splaying anode: (a) splaying the node storing 14 starts 
with a zig-zag; (b) after the zig-zag; (c) the next step is a zig-zig. (Continues in 
Figure 10.16.) 



457 10.3. Splay Trees 

(d) 

(e) 

(f) 

.. 	 FigllreJO.16:E;x.ru;n,ple of splaying a node:(d) after the zig-zig; (e) the next step is 
.again a'iig-zig; (f) after thezig-zig (Continued from Figure 10.16.) 



458 	 Chapter 10. Search Tree Structures 

10.3.2 When to Splay 

The rules that dictate when splaying is performed are as follows: 

• 	When searching for key k, if k is found at a node X, we splay X, else we splay 
the parent of the external node at which the search terminates unsuccessfully. 
For example, the splaying in Figures 10.15 and 10.16 would be performed 
after searching successfully for key 14 or unsuccessfully for key 14.5. 

• 	When inserting key k, we splay the newly created internal node where k 
gets inserted. For example, the splaying in Figures lO.15 and lO.16 would 
be performed if 14 were the newly inserted key. We show a sequence of 
insertions in a splay tree in Figure 10.17. 

!o ~ 

(a) (b) 	 (c) 

(d) (e) 	 (f) 

(g) 

Figure 10.17: A sequence ofinsertions in a splay tree: (a) initial tree; (b) after 
inserting 2; (c) aftersplaying; (d) after inserting 3; (e) after splaying; (f) after 
inserting 4; (g) after splaying. 



459 10.3. Splay Trees 

• 	When deleting a key k, we splay the parent of the node w that gets removed, 
that is, w is either the node storing k or one of its descendents. (Recall the re
moval algorithm for binary search trees.) An example of splaying following 
a deletion is shown in Figure 10.18. 

I 

(a) 

//"' ... ..". S 
I 

(b) 

(c) (d) 

. , (e) 

Fig~re 10.18: 'Del~tion from a splay tree: (a) the deletion of 8 from node r is per
formed by moving to r the key of the right-most internal node v, in the left subtree 
of r, deleting v, and splaying the parent u of v; (b) splaying u starts with a zig-zig; 
(c) after the zig-zig; (d) the next step is a zig; (e) after the zig. 



460 Chapter 10. Search Tree Structures 

10.3.3 Amortized Analysis of Splaying * 
After a zig-zig or zig-zag, the depth of x decreases by two, and after a zig the depth 
of x decreases by one. Thus, if x has depth d, splaying x consists of a sequence of 
ld/2J zig-zigs andlor zig-zags, plus one final zig if d is odd. Since a single zig-zig, 
zig-zag, or zig affects a constant number of nodes, it can be done in O( 1) time. 
Thus, splaying a node x in a binary search tree T takes time O(d), where d is the 
depth of x in T. In other words, the time for performing a splaying step for a node x 
is asymptotically the same as the time needed just to reach that node in a top-down 
search from the root of T. 

Worst Case Time 

In the worst case, the overall running time of a search, insertion, or deletion in a 
splay tree of height his O(h), since the node we splay might be the deepest node in 
the tree. Moreover, it is possible for h to be as large as n, as shown in Figure 10.17. 
Thus, from a worst-case point of view, a splay tree is not an attractive data structure. 

In spite of its poor worst-case performance, a splay tree performs well in an 
amortized sense. That is, in a sequence of intermixed searches, insertions, and 
deletions, each operation takes on average logarithmic time. We perform the amor
tized analysis of splay trees using the accounting method. 

Amortized Performance of Splay Trees 

For our analysis, we note that the time for performing a search, insertion, or deletion 
is proportional to the time for the associated splaying. So let us consider only 
splaying time. 

Let T be a splay tree with n keys, and let v be a node of T. We define the size 
n(v) of vas the number of nodes in the subtree rooted at v. Note that this definition 
implies that the size of an internal node is one more than the sum of the sizes of 
its two children. We define the rank r(v) of a node v as the logarithm in base 2 of 
the size of v, that is, r(v) = log(n(v ) ). Clearly, the root of T has the maximum size. 
(2n +1) and the maximum rank, log(2n 1), while each external node has size 1 
and rank O. 

We use cyber-rupees to pay for the work we perform in splaying a node x in 
T, and we assume that one cyber-rupee pays for a zig, while two cyber-rupees pay 
for a zig.:.zig or a zig-zag. Hence, the cost of splaying a node at depth d is d cyber
rupees. We keep a virtual account storing cyber-rupees at each internal node of T. 
Note that this account exists only for the purpose of our amortized analysis, and 
does not need to be included in a data structure implementing the splay tree T. 



461 .ZO.3. Splay Trees 

An Accounting Analysis of Splaying 

When we perform a splaying, we pay a certain number of cyber-rupees (the exact 
value of the payment will be determined at the end of our analysis). We distinguish 
three cases: 

• If the payment is equal to the splaying work, then we use it all to pay for the 
splaying. 

• 	If the payment is greater than the splaying work, we deposit the excess in the 
accounts of several nodes. 

• 	If the payment is less than the splaying work, we make withdrawals from the 
accounts of several nodes to cover the deficiency. 

We show below that a payment of O(logn) cyber-rupees per operation is sufficient 
to keep the system working, that is, to ensure that each node keeps a nonnegative 
account balance. 

An Accounting Invariant for Splaying 

We use a scheme in which transfers are made between the accounts of the nodes 
to ensure that there will always be enough cyber-rupees to withdraw for paying for 
splaying work when needed. 

In order to use the accounting method to perform our analysis of splaying, we 
maintain the following invariant: 

Before and after a splaying, each node v of T has r(v) cyber-rupees 
in its account. 

Note that the invariant is "financially sound," since it does not require us to make a 
preliminary deposit to endow a tree with zero keys. 

Let r(T) be the sum of the ranks of all the nodes of T. To preserve the invariant 
after a splaying, we must make a payment equal to the splaying work plus the total 
change in r(T). We refer to a single zig, zig-zig, or 'zig-zag operation in a splaying 
as a splaying substep. Also, we denote the rank of a node v of T before and after a 
splaying substep with r(v) and r' (v), respectively. The following proposition gives 
an upper bound on the change of r(T) caused by a single splaying substep. We will 
repeatedly use this lemma in our analysis of a full splaying of a node to the root. 



462 Chapter 10. Search Tree Structures 

Proposition 10.3: Let 0 be the variation ofr(T) caused by a single splaying sub
step (a zig, zig-zig, or zig-zag) for anode x in T. We have the following: 

• 0:::; 3(1(x) r(x)) 2 if the substep is azig-zig or zig-zag. 
• 0:::; 3(I(x) r(x)) if the substep is a zig. 

Justification: We use the fact (see Proposition A.l, Appendix A) that, if a> 0, 
b > 0, and c > a+b, 

loga 10gb < 21ogc-2. (10.6) 

Let us consider the change in r(T) caused by each type of splaying substep. 

zig-zig: (Recall Figure 10.12.) Since the size of each node is one more than the 
size of its two children, note that only the ranks of x, y, and z change in a 
zig-zig operation, where y is the parent of x and z is the parent of y. Also, 
1(x) r(z), r'(y) I(x), and r(y) > r(x) . Thus 

0= r'(x)+r'(y)+r'(z)-r(x)-r(y)-r(z) 

:::; r'(y) +r'(z) -r(x) -r(y) 

:::; 1(x) r'(z) 2r(x). (10.7) 

Note that n(x) +n'(z) :::; n'(x). Thus, by 10.6, r(x) I(z):::; 21(x) - 2, that 
IS, , 

r (z) :::; 2r'(x) - r(x) - 2. 

This inequality and 10.7 imply 

o :::; r' (x) +(2r' (x) - r(x) 2) 2r(x) 

:::; 3(r'(x)-r(x))-2. 

zig-zag: (Recall Figure 10.13.) Again, by the definition of size and rank, only the 
ranks of x, y, and z change, where ydenotes the parent of x and z den0tes the 
parent of y. Also, r'(x) r(z) and r(x) :::; r(y). Thus .' 

o = r' (x) +r'(y) +r' (z) r(x) r(y) r(Z ) 

:::; r'(y) I(z) r(x) r(y) 

< r'(y)+r'(Z)-2r(x). (l0.8) 

Note that n'(y) +n'(z) :::; n'(x); hence, by 10.6, I(y) +I(z) < 21(x) 2. 
Thus, 

o :::; 21(x)-2 2r(x) 

:::; 3(r'(x) r(x)) 2. 

zig: (Recall Figure 10.14.) In this case, only the ranks of x and y change, where y 
denotes the parent of x. Also, I(y) r(y) and r'(x) 2: r(x). Thus 

0= r'(y) +r'(x) - r(y) - r(x) 

< r' (x) - r(x) 

< 3(I(x) r(x)). .. 




463 10.3. Splay lrees 

Proposition 10.4: LetT be asplay tree with matt, and let Abe the total variation 
ofr(T) caused by splaying anode x at depth d. We have 

A~3(r(t)-r(x)) d+2. 
Justification: Splaying node x consists of p - rdj2l splaying substeps, each 
of which is a zig-zig or a zig-zag, except possibly the last one, which is a zig if d 
is odd. Let ro(x) - r(x) be the initial rank of x, and for i = 1, ... ,p, let ri(x) be 
the rank of x after the ith substep and Oi be the variation of r(T) caused by the ith 
substep. By Lemma 10.3, the total variation A of r(T) caused by splaying x is 

p 

A = [Oi 
i=1 
p 

< [(3(ri(x) l(X)) 2) +2 
i=1 

3(rp(x) - ro(x)) 2p 2 

< 3(r(t) - r(x)) d 2. • 
By Proposition 1004, if we make a payment of 3(r(t) r(x)) +2 cyber-rupees 

towards the splaying of node x, we have enough cyber-rupees to maintain the in
variant, keeping r(v) cyber-rupees at each node v in T, and pay for the entire splay
ing work, which costs d rupees. Since the size of the root t is 2n +1, its rank 
r(t) = log(2n +1). In addition, we have r(x) < r(t). Thus, the payment to be 
made for splaying is O(logn) cyber-rupees. To complete our analysis, we have to 
compute the cost for maintaining the invariant when a node is inserted or deleted. 

When inserting a new node v into a splay tree with n keys, the ranks of all the 
ancestors of v are increased. Namely, let va, Vi, ... , vd be the ancestors of v, where 
Vo - v, Vi is the parent of Vi-I, "and Vd is the root. For i· 1, ... ,71, letn'(vi) and 
n(vi) be the size of Vi before and after the insertion, respectively, and let r(vi) and 
r(Vi) be the rank of Vi before and after the insertion, respectively. We have 

n'(Vi) = n(vi) +1. 

Also, since n(Vi) +1 < n(Vi+I), for i = 0,1, ... ,d 1, we have the following for 
each i in this range: 

r'(vi) = log(n'(vi)) log(n(vi) +1) ~ log(n(vi+')) r(vi+l)' 

Thus, the total variation of r(T) caused by the insertion is 
d d-I 

[(r'(vi)-r(vi)) < r'(Vd) + [(r(vi+l) r(vi)) 
i=1 i=1 

r' (Vd) - r(vo) 

< 10g(2n+l). 

Therefore, a payment of O(log n) cyber-rupees is sufficient to maintain the invariant 
when a new node is inserted. 



464 Chapter 10. Search Tree Structures 

When deleting a node v from a splay tree with n keys, the ranks of all the 
ancestors of vare decreased. Thus, the total variation of r(T) caused by the deletion 
is negative, and we do not need to make any payment to maintain the invariant 
when a node is deleted. Therefore, we may summarize our amortized analysis in 
the following proposition (which is sometimes called the "balance proposition" for 
splay trees): 

Proposition 10.5: Consider a sequence ofm operations on a splay tree, each one 
a search, insertion, or deletion, starting from a splay tree with zero keys. Also, let 
ni be the number of keys in the tree after operation i, and n be the total number of 
insertions. The total running time for performing the sequence ofoperations is 

o(m ~lOgn} 

which is O(mlogn). 

In other words, the amortized running time of performing a search, insertion, or 
deletion in a splay tree is O(log 11), where n is the size of the splay tree at the time. 
Thus, a splay tree can achieve logarithmic-time amortized performance for imple
menting an ordered map ADT. This amortized perfOlmance matches the worst-case 
performance of AVL trees, (2,4) trees, and red-black trees, but it does so using a 
simple binary tree that does not need any extra balance information stored at each 
of its nodes. In addition, splay trees have a number of other interesting properties 
that are not shared by these other balanced search trees. We explore one slich addi
tional property in the following proposition (which is sometimes called the "Static 
Optimality" proposition for splay trees): 

Proposition 10.6: Consider a sequence ofm operations on a splay tree, each one 
asearch, insertion, or deletion, starting from asplay tree T with zero keys. Also, let 
f(i) denote the number of times the entry i is accessed in the splay tree, that is, its 
frequency, and let n denote the total number ofentries. Assuming that each entry is 
accessed at least once, then the total running time for performing the sequence of 
operations is 

o (m ~f(i)lOg(m/f(i))). 

We omit the proof of this proposition, but it is not as hard to justify as one might 
imagine. The remarkable thing is that this proposition states that the amortized 
running time of accessing an entry i is O(Iog(m/f(i))). 



465 lOA. (2,4) Trees 

10.4 (2,4) Trees 

Some data structures we discuss in this chapter, including (2,4) trees, are multi
way search trees, that is, trees with internal nodes that have two or more children. 
Thus, before we define (2,4) trees, let us discuss multi-way search trees. 

10.4.1 Multi-Way Search Trees 

Recall that multi-way trees are defined so that each internal node can have many 
children. In this section, we discuss how multi-way trees can be used as search 
trees. Recall that the entries that we store in a search tree are pairs of the form 
(k,x), where k is the key and x is the value associated with the key. However, we 
do not discuss how to perform updates in multi-way search trees now, since the 
details for update methods depend on additional properties we wish to maintain for 
multi-way trees, which we discuss in Section 14.3.1. 

Definition of a Multi-way Search Tree 

Let v be a node of an ordered tree. We say that v is a d-node if v has d children. 
We define a multi-way search tree to be an ordered tree T that has the following 
properties, which are illustrated in Figure 10.l9a.: 

. • 	Each internal node of T has at least two children. That is, each internal node 
is a d-node such that d > 2 . 

• 	Each internal d-node v of T with children Vi, .•. , Vd stores an ordered set of 
d -1 key-value entries (ki,xd,· .. , (kd-i,Xd-t), where ki ~ ... ~ kd- i. 

• 	Let us conventionally define ko = -00 and kef = +00. For each entry (k,x) 
stored at a node in the subtree of v rooted at Vi, i 1, ... ,d, we have that 
ki-i <k~h 

That is, if we think of the set of keys stored at v as including the special fictitious 
keys ko = -00 and kd = +00, then a key k stored in the subtree of T rooted at a 
child node Vi must be "in between" two keys stored at v. This simple viewpoint 
gives rise to the rule that a d-node stores d - 1 regular keys, and it also forms the 
basis of the algorithm for searching in a multi-way search tree. 

By the above definition, the external nodes of a multi-way search do not store 
any entries and serve only as "placeholders," as has been our convention with binary 
search trees (Section 10.1); hence, a binary search tree can be viewed as a special 
case of a multi-way search tree, where each internal node stores one entry and has 
twO children. In addition, while the external nodes could be null, we make the 
simplifying assumption here that they are actual nodes that don't store anything. 



466 Chapter 10. Search Tree Structures 

(a) 

(b) 

(c) 

Figure 10.19: (a) A multi-way search tree T; (b) search path in T for key 12 (un
successful search); (c) search path in T for key 24 (successful search). 



467 10.4. (2,4) Trees 

Whether internal nodes of a multi-way tree have two children or many, however, 
there is an interesting relationship between the number of entries and the number 

.of external nodes. 

Proposition 10.7: An 11-entry multi-way search tree has 11 +1 external nodes. 

We leave the justification of this proposition as an exercise (C-1 0.16). 

Searching in a Multi-Way Tree 

. Given a multi-way search tree T, we note that searching for an entry with key k is 
simple. We perform such a search by tracing a path in T starting at the root. (See 
Figure lO.19b and c.) When we are at a d-node v during this search, we compare 
the key k with the keys k1 , ... , kd-1 stored at v. If k = ki for some i, the search is 
successfully completed. Otherwise, we continue the search in the child Vi of v such 
that ki-1 < k < ki. (Recall that we conventionally define ko = -00 and kd = +00.) 
If we reach an external node, then we know that there is no entry with key k in T, 
and the search terminates unsuccessfully. 

Data Structures for Representing Multi-way Search Trees 

In Section 7.1.3, we discuss a linked data structure for representing a general tree. 
This representation can also be used for a multi-way search tree. In fact, in using a 
general tree to implement a multi-way search tree, the only additiqnal information 
that we need to store at each node is the set of entries (including keys) associated

". , 

with that node. That is, we need to store with v a reference to some collection that 
stores the entries for v. 

Recall that when we use a binary search tree to represent an ordered map M, 
we simply store a reference to a single entry at each internal node. In using a multi
way search tree T to represent M, we must store a reference to the ordered set of 
entries associated with v at each internal node v of T. This reasoning may at first 
seem like a circular argument, since we need a representation of an ordered map to 
represent an ordered map. We can avoid any circular arguments, however, by using 
the bootstrapping technique, where we use a previous (less advanced) solution to 
a problem to create a new (more advanced) solution. In this case, bootstrapping 
consists of representing" the ordered set associated' with each internal node using 
a map data structure that we have previously constructed (for example, a search 
table based on a sorted array, as shown in Section 9.3.1). In particular, assuming 
we already have a way of implementing ordered maps, we can realize a multi-way 
search tree by taking a tree T and storing such a map at each node of T. 



468 Chapter 10. Search Tree Structures 

The map we store at each node v is known as a secondary data structure, for 
we are using it to support the bigger, primary data structure. We denote the map 
stored at a node v of T as M(v). The entries we store in M(v) will allow us to find 
which child node to move to next during a search operation. Specifically, for each 
node vof T, with children VI, ... , Vd and entries (kl,xI), ... , (kd-I ,xd-d, we store 
in the map M( v) the entries 

(kl) (Xl) vd), (k2, (X2' V2)), .. . ,(kd-l, (Xd-l, Vd-I)), (+00, (0, Vd)). 

That is, an entry (ki' (Xi, Vi)) of map M(v) has key ki and value (Xi, Vi)' Note that the 
last entry stores the special key +00. 

With the realization of the multi-way search tree T above, processing ad-node 
v while searching for an entry of T with key k can be done by performing a search 
operation to find the entry (ki' (Xi, Vi)) in M(v) with smallest key greater than or 
equal to k. We distinguish two cases: 

• 	If k < ki, then we continue the search by processing child Vi. (Note that if 
the special key kd = +00 is returned, then k is greater than all the keys stored 
at node v, and we continue the search processing child Vd). 

• 	Otherwise (k =kj), then the search terminates successfully. 

Consider the space requirement for the above realization of a multi-way search 
tree T storing n entries. By Proposition 10.7, using any of the common realizations 
of ordered map (Chapter 9) for the secondary structures of the nodes.of T, the 
overall space requirement for T is 0(11). 

Consider next the time spent answering a search in T.- The time spent at a d
node V of T during a search depends on how we realize the secondary data structure 
M(v). If M(v) is realized with a sorted array (that is, an ordered search table), then 
we can process V in 0 (logd) time. If instead M(v) is realized using an unsorted list 
instead, then processing v takes O(d) time. Let dmax denote the maximum number 
of children of any node of T, and let h denote the height of T. The search time in a 
multi-way search tree is either O(hdmax ) or O(hlogdmax ), depending on the specific 
implementation of the secondary structures at the nodes of T (the map M(v)). If 
dmax is a constant, the running time for performing a search is O(h), irrespective of 
the implementation of the secondary structures. 

Thus, the. primary efficiency goal for· a multi-:-way search tree is to keep the 
height as small as:possible, that is, we want h to be a logarithmic function of n, the 
total number of entries stored in the map. A search tree with logarithmic height, 
such as this, is called a balanced search tree. We discuss a balanced search tree 
that caps dmax at 4 next. 

http:nodes.of


469 10.4. (2,4) Trees 

Definition of a (2,4) Tree 


Amulti-way search tree that keeps the secondary data structures stored at each node 
small and also keeps the primary multi-way tree balanced is the (2,4) tree, which 
is sometimes called 2-4 tree or 2-3-4 tree. This data structure achieves these goals 
by maintaining two simple properties (see Figure 10.20): 

Size Property: Every internal node has at most four children. 

Depth Property: All the external nodes have the same depth. 

Figure 10.20: A (2,4) tree. 

Again, we assume that external nodes are empty and, for the sake of simplicity, 
we describe our search and update methods assuming that external nodes are real 
nodes, although this latter requirement is not strictly needed. 

Enforcing the size property for (2,4) trees keeps the nodes in the multi-way 
search tree simple. It also gives rise to the alternative name "2-3-4 tree," since it 
implies that each internal node in the tree has 2, 3, or 4 children. Another implica
tionof this rule is that we can represent the map M(v) stored at each internal node 
v using an unordered list or an ordered array, and still achieve O(l)-time perfor
mance for all operations (since dmax = 4). The depth property, on the other hand, 
enforces an important bound on the height of a (2,4) tree. 



470 Chapter 10. Search Tree Structures 

Proposition 10.8: The height of a (2,4) tree storing n entries is O(log n). 

Justification: Let h be the height of a (2,4) tree T storing n entries. We justify 
the proposition by showing that the claims 

1 
210g(n+ 1) < h (10.9) 

and 

h S log(n+ 1) (10.10) 

are true. 

To justify these claims note first that, by the size property, we can have at most 
4 nodes at depth 1, at most 42 nodes at depth 2, and so on. Thus, the number of 
external nodes in T is at most 4h. Likewise, by the depth property and the definition 
of a (2,4) tree, we must have at least 2 nodes at depth 1, at least 22 nodes at depth 
2, and so on. Thus, the number of external nodes in T is at least 2h. In addition, by 
Proposition 10.7, the number of external nodes in T is n 1. Therefore, we obtain 

2h S n+ 1 

and 

n+ 1 < 4h 

Taking the logarithm in base 2 of each of the above terms, w~ get that 

h S log(n+ 1) 

and 

log(n 1) S 2h, 

which justifies our claims (10.9 and 10.10). • 
Proposition 10.8 states that the size and depth properties are sufficient for keep

ing a multi-way tree balanced (Section 10.4.1). Moreover, this proposition implies 
that performing a search in a (2,4) tree takes O(1ogn) time and that the specific 
realization of the secondary structures at the nodes is not a crucial design choice, 
since the maximum number of children dmax is a constant (4). We can, for exam
ple, use a simple ordered map implementation, such as an array-list search table, 
for each secondary structure. 



471 lOA. (2,4) Trees 

10.4.2 Update Operations for (2,4) Trees 

Maintaining the size and depth properties requires some effort after performing 
insertions and removals in a (2,4) tree, however. We discuss these operations next. 

Insertion 

To insert a new entry (k,x), with key k, into a (2,4) tree T, we first perform a 
search for k. Assuming that T has no entry with key k, this search terminates 
unsuccessfully at an external node z. Let vbe the parent of z. We insert the new 
entry into node v and add a new child w (an external node) to von the left of z. That 
is, we add entry (k,x, w) to the map M(v). 

Our insertion method preserves the depth property, since we add a new external 
node at the same level as existing external nodes. Nevertheless, it may violate the 
size property. Indeed, if a node v was previously a 4-node, then it may become a 
5-node after the insertion, which causes the tree T to no longer be a (2,4) tree. This 
type of violation of the size property is called an overflow at node v, and it must 
be resolved in order to restore the properties of a (2,4) tree. Let VI, ... ,vs be the 
children of v, and let kl, ... ,k4 be the keys stored at v. To remedy the overflow at 
node v, we perform a split operation on v as follows (see Figure 10.21): 

• 	Replace v with two nodes v' and v", where 

o 	v'is a 3-node with children VI, V2, V3 storing keys ki and k2 

o 	v" is a 2-node with children V4, Vs storing key k4. 

• If v was the root of T, create a new roornode u; else, let u be the parent of v. 

• 	Insert key k3 into Lt and make v' and v" children of Lt, so that if v was child i 
of Lt, then v' and v" become children i and i+1 of u, respectively. 

We show a sequence of insertions in a (2,4) tree in Figure 10.22. 

U U 	 U 

UI 


. VI·· .. V2 V3 V4·· V5 Vl .V2 Vg V4 v5 vl V2 V3 V4 Vs 

(a) 	 (b) (c) 

Figure 10.21: A node split: (a) overflow at a 5-node v; (b) the third key of v inserted 
into the parent u of v; (c) node v replaced with a 3-node v' and a 2-node v". 



472 Chapter 10. Search Tree Structures 

~ CJR ~ c;?jt~ 

(a) (b) (c) (d) 

Q 
I 

\12 
I 

I 


(e) (t) 

(g) (h) 

(i) (j) 

(k) (1) 

Figure 10.22: A sequence of insertions into a (2,4) tree: (a) initial tree with one 
entry; (b) insertion of 6; (c) insertion of 12; (d) insertion of 15, which causes an 
overflow; (e) split, which causes the creation of a new root node; (t) after the split; 
(g) insertion of 3; (h) insertion of 5, which causes an overflow; (i) split; (j) after the 
split; (k) insertion of 10; (1) insertion of 8. 



473 10.4. (2,4) Trees 

Analysis of Insertion in a (2,4) Tree 

A split operation affects a constant number of nodes of the tree and 0(1) entries 
stored at such nodes. Thus, it can be implemented to run in 0(1) time. 

As a consequence of a split operation on node v, a new overflow may occur at 
the parent u of v. If such an overflow occurs, it triggers in turn a split at node u. (See 
Figure 10.23.) A split operation either eliminates the overflow or propagates it into 
the parent of the current node. Hence, the number of split operations is bounded by 
the height of the tree, which is O(logn) by Proposition 10.8. Therefore, the total 
time to perform an insertion in a (2,4) tree is O(1ogn). 

(a) (b) 

(c) (d) 

G), 
\12 

(e) (f) 

Figure 10.23: An insertion in a (2,4) tree that causes a cascading split: (a) before 
th~insertion; (b) insertion of 17, causing an overflow; (c) a split;· (d) after the split 

. a new overflow occurs; (e) another split, creating a new root node; (f) final tree. 



474 	 Chapter 10. Search Tree Structures 

Removal 

Let us now consider the removal of an entry with key k from a (2,4) tree T. We 
begin such an operation by performing a search in T for an entry with key k. Re
moving such an entry from a (2,4) tree can always be reduced to the case where 1 
the entry to be removed is stored at a node v whose children are external nodes. 
Suppose, for instance, that the entry with key k that we wish to remove is stored in 
the ith entry (ki,Xi) at a node z that has only internal-node children. In this case, 
we swap the entry (ki,xd with an appropriate entry that is stored at a node v with 
external-node children as follows (see Figure 10.24d): 

1. 	 We find the right-most internal node v in the subtree rooted at the ith child of 
z, noting that the children of node v are all external nodes. 

2. 	 We swap the entry (ki,Xi) at z with the last entry of v. 

I 
I 

Once we ensure that the entry to remove is stored at a node v with only external
i 

node children (because either it was already at v or we swapped it into v), we simply 1 ,; 
remove the entry from v (that is, from the map M(v)) and remove the tth external 1, 

l 

node ofv. 

Removing an entry (and a child) from a node v as described above preserves 
the depth property, for we always remove an external node child from a node v 
with only external-node children. However, in removing such an external node we 
may violate the size property at v. Indeed, if v was previously a 2-node, then it 

4 

becomes a I-node with no entries after the removal (Figure 1O.24d and e), which 
is not allowed in a (2,4) tree. This type of violation Of the-'size property is called 
an underflow at node v. To remedy an underflow, we check whether an immediate 
sibling of v is a 3-node or a 4-node. If we find such a sibling w, then we perform a 
transfer operation, in which we move a child of w to v, a key of w to the parent u 
of v and w, and a key of u to v. (See Figure 10.24b and c.) If v has only one sibling, 
or if both immediate siblings of v are 2-nodes, then we perform afusioll operation, 
in which we merge v with a sibling, creating a new node Vi, and move a key from 
the parent u of v to Vi. (See Figure 1O.25e and f.) 

Afusion operation at node v may cause a new underflow to occur at the parent u 
of v, which in turn triggers a transfer or fusion at u. (See Figure 10.25.) Hence, the 
number of fusion operations is bounded by the height of the tree, which is O(logn) 
byPiopositic)n 10.8. Ifan underflow propagates all the way up to the root, then the 
root is simply deleted. (See Figure 10.25c and d.) We show a sequence of removals 
from a (2,4) tree in Figures 10.24 and 10.25. 



475 10.4. (2,4) Trees 

4", , 

(a) (b) 

/,1212 

(c) (d) 

II 

u 

(e) (f) 

13 
" , 

(g) (h) 

Figure 10.24: A sequence of removals from a (2,4) tree: (a) removal of 4, causing 
an underflow; (b) a transfer operation; (c) after the transfer operation; (d) removal 
of 12, causing an underflow; (e) a fusion operation; (f) after the fusion operation; 
(g) removal of 13; (h) after removing 13. 



476 Chapter 10. Search Tree Structures 

u 

(a) (b) 

"'",,~1 

\u 

6 

(c) (d) 

Figure 10.25: A propagating sequence of fusions in a (2,4) tree: (a) removal of 14, 
which causes an underflow; (b) fusion, which causes another underflow; (c) second 
fusion operation, which causes the root to be removed; (d) final tree. 

Performance of (2,4) Trees 

Table 10.3 summarizes the running times of the main operations of a map realized 
with a (2,4) tree. The time complexity analysis is based on the following: 

• The height of a (2,4) tree storing n entries is O(logn), by Proposition 10.S. 
• A split, transfer, or fusion operation takes O( 1) time. 
• A search, insertion, or removal of an entry visits O(logn) nodes. 

Operation Time 
size, isEmpty 0(1) 

get, put, remove O(logn) 

Table 10.3: Performance of an n-entry map realized by a (2,4) tree. The space 
usage is O(n). 

Thus, (2,4) trees provide for fast map search and update operations. (2,4) trees 
also have an interesting relationship to the data structure we discuss next. 



477 10.5. Red-Black Trees 

10.5 Red-Black Trees 

Although AVL trees and (2,4) trees have a number of nice properties, there are 
some map applications for which they are not well suited. For instance, AVL trees 
may require many restructure operations (rotations) to be performed after a re
moval, and (2,4) trees may require many fusing or split operations to be performed 
after either an insertion or removal. The data structure we discuss in this section, 
the red-black tree, does not have these drawbacks, however, as it requires that only 
O( 1) structural changes be made after an update in order to stay balanced. 

A red-black tree is a binary search tree (see Section 10.1) with nodes colored 
red and black in a way that satisfies the following properties: 

Root Property: The root is black. 

External Property: Every external node is black. 

Internal Property: The children of a red node are black. 

Depth Property: All the external nodes have the same black depth, defined as the 
number of black ancestors minus one. (Recall that a node is an ancestor of 
itself.) 

An example of a red-black tree is shown in Figure 10.26. 

Figure 10.26: Red-black tree associated with the (2,4) tree of Figure 10.20. Each 
external node of this red-black tree has 4 black ancestors (including itself); hence, it 
has black depth 3. We use the color blue instead of red. Also, we use the convention 
of giving an edge of the tree the same color as the child node. 

.As for previous types of search trees, we assume that entries are stored at the 
internal nodes of a red-black tree, with the external nodes being empty placehold
ers. Also, we assume that the external nodes are actual nodes, but we note that, at 
the expense of slightly more complicated methods, external nodes could be null. 



478 Chapter 10. Search Tree Structures 

We can make the red-black tree definition more intuitive by noting an interest
ing correspondence between red-black trees and (2,4) trees, as illustrated in Fig
ure 10.27. Namely, given a red-black tree, we can constmct a corresponding (2,4) 
tree by merging every red node v into its parent and storing the entry from v at its 
parent. Conversely, we can transform any (2,4) tree into a corresponding red-black 
tree by coloring each node black and performing the following transformation for 
each internal node v: 

• 	If v is a 2-node, then keep the (black) children of v as is. 

• If v is a 3-node, then create a new red node w, give v's first two (black) 
children to w, and make wand v's third child be the two children of v. 

• 	If v is a 4-node, then create two new red nodes wand z; give v's first two 
(black) children to w, give v's last two (black) children to z, and make wand 
Z be the two children of v. 

-t 

(a) 

or 

(b) 

-t 

(c) 

Figure 10.27: Correspondence between a (2,4) tree and a red-black tree: (a) 2-node; 
(b) 3-node; (c) 4-node. 

The correspondencebetween (2,4 ) trees and red-black trees provides important 
intuition that we will use in our discussion of how to perform updates in red-black 
trees. In fact, the update algorithms for red-black trees are mysteriously complex 
without this intuition. 



479 10.5. Red-Black Trees 

Proposition 10.9: The height ofared-black tree storing n entries is O(logn). 

Justification: Let T be a red-black tree storing n entries, and let h be the height 
of T. We justify this proposition by establishing the following fact: 

log(n 1)<h<210g(n 1). 

Let d be the common black depth of all the external nodes of T. Let T' be the 
(2,4) tree associated with T, and let h' be the height of T'. Because of the corre
spondence between red-black trees and (2,4) trees, we know that h' = d. Hence, 
by Proposition 10.8, d = h' < log(n +1). By the internal node property, h ::; 2d. 
Thus, we obtain h ::; 210g(n+ 1). The other inequality, log(n +1) ::; h, follows 
from Proposition 7.10 and the fact that T has n internal nodes. • 

We assume that a red-black tree is realized with a linked structure for binary 
trees (Section 7.3.4), in which we store a map entry and a color indicator at each 
node. Thus the space requirement for storing n keys is O(n). The algorithm for 
searching in a red-black tree T is the same as that for a standard binary search tree 
(Section 10.1). Thus, searching in a red-black tree takes O(logn) time. 

10.5.1 Update Operations 

Performing the update operations in a red-black tree is similar to that of a binary 
search tree, except that we must additionally restore the color properties. 

Insertion 

Now consider the insertion of an entry with key k into a red-black tree T, keeping 
in mind the correspondence between T and its associated (2,4) tree T' and the 
insertion algorithm for T'. The algorithm initially proceeds as in a binary search 
tree (Section 10.1.2). Namely, we search for kin T until we reach an external node 
ofT, and we replace this node with an internal node z, storing (k,x) and having two 
external-node children. If z is the root of T, we color zblack, else we color z red. 
We also color the children of zblack. This action corresponds to inserting (k,x) into 
a node of the (2,4) tree T' with external children. In addition, this action preserves 
the root, external, and depth properties of T, but it may violate the internal property. 
Indeed, if zis not the root of T and the parent vof zis red, then we have a parent and 
a child (namely, v and z) th~t are both red. Note that by the root property, v cannot 
be the root of T, and by the internal property (which was previously satisfied), the 
parent u of v must be black. Since zand its parent are red, but z's grandparent u is 
black, we call this violation of the internal property a double red at node z. 

To remedy a double red, we consider two cases. 



480 Chapter 10. Search Tree Structures 

Case 1: The Sibling W ofv is Black. (See Figure 10.28.) In this case, the double 
red denotes the fact that we have created in our red-black tree T a malformed 
replacement for a corresponding 4-node of the (2,4) tree T', which has as its 
children the four black children of u, v, and z. Our malformed replacement 
has one red node (v) that is the parent of another red node (z), while we want 
it to have the two red nodes as siblings instead. To fix this problem, we 
perform a trinode restructuring of T. The trinode restructuring is done by 
the operation restructure(z), which consists of the following steps (see again 
Figure 10.28; this operation is also discussed in Section 10.2): 

• 	Take node z, its parent v, and grandparent u, and temporarily relabel 
them as a, b, and c, in left-to-right order, so that a, b, and c will be 
visited in this order by an inorder tree traversal. 

• 	Replace the grandparent u with the node labeled b, and make nodes a 
and c the children of b, keeping inorder relationships unchanged. 

After performing the restructure(z) operation, we color b black and we color 
a and c red. Thus, the restructuring eliminates the double red problem. 

,,',"'--- 

,,,,,, 

ww 

-......... 

¥ 

ww 

-_ .... - .... , , , 
, 

, , , , 

(a) 

" ., 

(b) 

Figure 10.28: Restructuring a red-black tree to remedy a double red: (a) the four 
configurations for u, v, and z before restructuring; (b) after restructuring. 



481 

// 

, , 

10.5. Red-Black Trees 

Case 2: The Sibling W oiv is Red. (See Figure 10.29.) In this case, the double red 
denotes an overflow in the corresponding (2,4) tree T. To fix the problem, 
we perform the equivalent of a split operation. Namely, we do a recoloring: 
we color v and w black and their parent u red (unless u is the root, in which 
case, it is colored black). It is possible that, after such a recoloring, the 
double red problem reappears, albeit higher up in the tree T, since u may 
have a red parent. If the double red problem reappears at u, then we repeat 
the consideration of the two cases at u. Thus, a recoloring either eliminates 
the double red problem at node z, or propagates it to the grandparent u of z. 
We continue going up T performing recolorings until we finally resolve the 
double red problem (with either a final recoloring or a trinode restructuring). 
Thus, the number of recolorings caused by an insertion is no more than half 
the height of tree T, that is, no more than log(n+1) by Proposition 10.9. 

u'// , 

10 20 30 40 

(a) 

u' 
, , 

;/ 

(b) 

Figure 10.29: Recoloring to remedy the double red problem: (a) before recoloring 
and the corresponding 5-node in the associated (2,4) tree before the split; (b) after 
the recoloring (and corresponding nodes in the associated (2,4) tree after the split). 

.. .Eigures .10JOand 10.31 show a sequence of insertion operations in a red-black 
tree. 



482 Chapter 10. Search Tree Structures 

R 

(a) (b) (c) (d) 

(e) (0 (g) (h) 

(i) G) 

7 

(k) (1) 

Figure 10.30: A sequence of insertions in a red-black tree: (a) initial tree; (b) in
sertion of 7; (c) insertion of 12, which causes a double red; (d) after restructuring; 
(e) insertion of 15, which causes a double red; (0 after recoloring (the root remains 

. black); (g) insertion of 3; (li) insertion of 5; (i) insertion of 14, which causes a 
double red; (j) after restructuring; (k) insertion of 18, which causes a double red; 
(1) after recoloring. (Continues in Figure 10.31.) 

iIi 



I 

I 
14 

f.··i 10.5. Red-Black Trees 483 

7 

(m) (n) 

(0) (p) 

s 

(q) 

Figure 10.31: A sequence of insertions in a red-black tree: (m) insertion of 16, 
which causes a double red; (n) after restructuring; (0) insertion of 17, which causes 
a oouble r~d; (p) after recoloring there is again a double red, to be handled by a 
restructuring; (q) after restructuring. (Continued from Figure 10.30.) 



484 Chapter 10. Search Tree Structures 

The cases for insertion imply an interesting property for red-black trees. Namely, 
since the Case I action eliminates the double-red problem with a single trinode re
structuring and the Case 2 action performs no restructuring operations, at most one 
restructuring is needed in a red-black tree insertion. By the above analysis and the 
fact that a restructuring or recoloring takes O( 1) time, we have the following: 

Proposition 10.10: The insertion of a key-value entry in a red-black tree storing 
n entries can be done in O(log n) time and requires O(log n) recolorings and one 
trinode restructuring (a restructure operation). 

Removal 

Suppose now that we are asked to remove an entry with key k from a red-black 
. tree T. Removing such an entry initially proceeds as for a binary search tree (Sec
tion 10.1.2). First, we search for a node u storing such an entry. If node u does 
not have an external child, we find the internal node v following u in the inorder 
traversal of T, move the entry at v to u, and perform the removal at v. Thus, we may 
consider only the removal of an entry with key k stored at a node v with an external 
child w. Also, as we did for insertions, we keep in mind the correspondence be
tween red-black tree T and its associated (2,4) tree T' (and the removal algorithm 
for T'). 

To remove the entry with key k from a node v of T with an external child wwe 
proceed as follows. Let r be the sibling of wand x be the parent of v. We remove 
nodes v and w, and make r a child of x. If v was red (hence r is black) or 16 is red 
(hence v was black), we color r black and we are done. If, ins~ead, r is black and v 
was black, then, to preserve the depth property, we give r a fictitious double black 
color. We now have a color violation, called the double black problem. A double 
black in T denotes an underflow in the corresponding (2,4) tree T'. Recall that x 
is the parent of the double black node r. To remedy the double-black problem at r, 
we consider three cases. 

Case 1: The Sibling y of r is Black and has a Red Child z. (See Figure 10.32.) 
Resolving this case corresponds to a transfer operation in the (2,4) tree T'. 
We perform a trinode restructuring by means of operation restructure(z). 
Recall that the operation restructure(z) takes the node z, its parent y, and 
grandparent x, labels them temporarily left to right as a, b, and c, and replaces 
x with the node labeled b, making it the parent of the other two. (See also the 
description ofn~structure in Section 10.2.) We color a and c black, give b 
the former color of x, and color r black. This trinode restructuring eliminates 
the double black problem. Hence, at most one restructuring is performed in 
a removal operation in this case. 



485 

,]ii" 

10.5. Red-Black Trees 

(a) 

",,~- ...... 

x 

(b) 

s 

(c) 

Figure 10.32: Restructuring of a red-black tree to remedy the double black problem: 
(a) and (b) configurations before the restructuring, where r is a right child and 
the associated nodes in the corresponding (2,4) tree before the transfer (two other 
symmetric configurations where r is a left child are possible); (c) configuration after 
;the restructuring aildthe associated nodes in the corresponding (2,4) tree after the 
transfer. The grey color for node x in parts (a) and (b) and for node b in part (c) 
denotes the fact that this node may be colored either red or black. 



486 Chapter 10. Search Tree Structures 

Case 2: The Sibling y of r is Black and Both Children of yare Black. (See Fig
ures 10.33 and 10.34.) Resolving this case corresponds to a fusion operation 
in the corresponding (2,4) tree T'. We do a recoloring; we color r black, we 
color y red, and, if x is red, we color it black (Figure 10.33); otherwise, we 
color x double black (Figure 10.34). Hence, after this recoloring, the double 
black problem may reappear at the parent x of r. (See Figure 10.34.) That 
is, this recoloring either eliminates the double black problem or propagates 
it into the parent of the current node. We then repeat a consideration of these 
three cases at the parent. Thus, since Case 1performs a trinode restructuring 
operation and stops (and, as we will soon see, Case 3 is similar), the number 
of recolorings caused by a removal is no more than log(n 1). 

x 

(a) 

(b) 

Figure 10.33: Recoloring of a red-black tree that fixes the double black problem: (a) 
before the recoloring and .correspondingnodes in the associated (2,4) tree before 
the fusion (other similar configurations are possible); (b) after the recoloring and 
corresponding nodes in the associated (2,4) tree after the fusion. 



487 10.5. Red-Black Trees 

(a) 

• 


(b) 

Figure 10.34: Recoloring of a red-black tree that propagates the double black prob
lem: (a) configuration before the recoloring and corresponding nodes in the asso
ciated (2,4) tree before the fusion (other similar configurations are possible); (b) 
configuration after the recoloring and corresponding nodes in the associated (2,4) 
tree after the fusion. 



488 Chapter 10. Search Tree Structures 

Case 3: The Sibling y of r is Red. (See Figure 10.35.) In this case, we perform an 
adjustment operation, as follows. If y is the right child of x, let z be the right 
child of y; otherwise, let zbe the left child of y. Execute the trinode restruc
turing operation restructure(z), which makes y the parent of x. Color y black 
and x red. An adjustment corresponds to choosing a different representation 
of a 3-node in the (2,4) tree T'. After the adjustment operation, the sibling 
of r is black, and either Case 1 or Case 2 applies, with a different meaning 
of x and y. Note that if Case 2 applies, the double-black problem cannot 
reappear. Thus, to complete Case 3 we make one more application of either 
Case 1 or Case 2 above and we are done. Therefore, at most one adjustment 
is performed in a removal operation. 

(a) 

( 
/ 

// 

/ 
/ 

/ 
/ 

/ 
/ 

i 

f 
! 
! 

(b) 

Figure 10.35: Adjustment of a red-black tree in the presence of a double black 
problem: (a) configuration before the adjustment and corresponding nodes in the 
associated (2,4) tree (asymriletric configuration is possible); (b) configuration after 
the adjustment with the same corresponding nodes in the associated (2,4) tree. 



489 10.5. Red-Black Trees 

From the above algorithm description, we see that the tree updating needed 
after a removal involves an upward march in the tree T, while perfonning at most 
a constant amount of work (in a restructuring, recoloring, or adjustment) per node. 
Thus, since any changes we make at a node in T during this upward march takes 
O(1) time (because it affects a constant number of nodes), we have the following: 

Proposition 10.11: The algorithm for removing an entry from a red-black tree 
with n entries takes O(logn) time and performs O(logn) recolorings and at most 
one adjustment plus one additional trinode restructuring. Thus, it performs at most 
two restructure operations. 

In Figures 10.36 and 10.37, we show a sequence of removal operations on a 
red-black tree. We illustrate Case 1 restructurings in Figure 1O.36c and d. We 
illustrate Case 2 recolorings at several places in Figures 10.36 and 10.37. Finally, 
in Figure 1O.37i and j, we show an example of a Case 3 adjustment. 

14 

!I :'. 

i 

(b)(a) 

I 
I 

I 
I 

I 

I 

I 
I 

I 

",- "', 
I 

14 

(c) (d) 

Figu~el0.30: Sequence of removals from a red-black tree: (a) initial tree; (b) re
moval of 3; (c) removal of 12, causing a.double black (handled by restructuring); 
(d) after restructuring. (Continues in Figure 10.37.) 

.i, 

http:Figu~el0.30


490 Chapter 10. Search Tree Structures 

(e) (f) 

14 14 

(g) (h) 

...... - ... , 
I 

I 
I 

(i) G) i 

(k) 

Figure 10.37: Sequence of removals in a red-black tree (continued): (e) removal 
of 17; (f) removal of 18, causing a double black (handled by recoloring); (g) after 
recoloring; (h) removal of 15; (i) removal of 16, causing a double black (handled 
by an adjustment);G) after the adjustment the double black needs to be handled by 
a recoloring; (k) after the recoloring. (Continued from Figure 10.36.) 



491 10.5. Red~Black Trees 

Performance of Red-Black Trees 

Table 10.4 summarizes the running times of the main operations of a map realized 
by means of a red-black tree. We illustrate the justification for these bounds in 
Figure 10.38. 

Operation Time 
. size, isEmpty O( 1) 
I get, put, remove O(logn) 

Table 10.4: Performance of an n-entry map realized by a red-black tree. The space 
usage is O(n). 

Time per 
Height level 

--- - 0(1) 

Red-black 

Tree T: 


-- -- 0(1) 

O(log n) 
.' \' :' 

- OO} 

• 

" • 

Worst-case time: O(log /1) 

Figure 10.38: Illustrating the running time of searches and updates in a red-black 
tree. The time performance is 0(1) per level, broken into a down phase, which 
typically involves searching, and an up phase, which typically involves recolorings 
and performing local trinode restructurings (rotations). 

... . 111us, ared7black .tree achieves logarithmic worst-case running times for both 
. seaxchillgandupdatirtgin a ~ap.' The red-black tree data structure is slightly more 
complicated than its corresponding (2,4) tree. Even so, a red-black tree has a 
conceptual advantage that only a constant number of trinode restructurings are ever 
needed to restore the balance in a red-black tree after an update. 



492 Chapter 10. Search Tree Structures 

10.5.2 Java Implementation 

Java provides an implementation of the java.util. Map and java.util.NavigablelVlap 
interfaces using a red-black tree, in aclass, java. uti I.TreeMa p. It guarantees 0 (log n) 
time worst-case performance for the get, put, and remove methods and related op
erations. 

In Code Fragments 10.9 through 10.11, we show the major portions of a Java 
implementation of a map realized by means of a red-black tree. The main class 
includes a nested class, RBNode, shown in Code Fragment 10.9, which extends 
the BTNode class used to represent a key-value entry of a binary search tree. It 
defines an additional instance variable isRed, representing the color of the node, 
and methods to set and return it. 

/** Realization of a dictionary by means of a red-black tree. * / 
public class RBTreeMap<K,V> 

extends BinarySearchTreeMap<K,V> implements Map<K,v> { 
public RBTreeMapO { super(); } 
public RBTreeMap(Comparator<K> C) { super(C); } 
/** Nested class for the nodes of a red-black tree * / 
protected static class RBNode<K.V> extends BTNode<Entry<K.V> > { 

protected boolean isRed; / / we add a color field to a BTNode 

RBNodeO {/* default constructor * /} 

/** Preferred constructor * / 

RBNode(Entry<K,V> element, BTPosition<Entry<K,V> > parent, 


BTPosition<Entry<K,V» left,BTPosition<Entry<K,V» right) { 
super(element, parent, left, right); 
isRed false; •} 


public boolean isRedO {return isRed;} 

public void makeRedO {isRed = true;} 

public void makeBlackO {isRed = false;} 

public void setColor(boolean color) {isRed = color;} 


} 
Code Fragment 10.9: Instance variables, nested class, and constructor for RBTree. 

Class RBTree (Code Fragments 10.9 through 10.11) extends BinarySearchTree 
(Code Fragments 10.3 through 10.5). We assume the parent class supports the 
method restructure for performing trinode restructurings (rotations); its implemen
tation is left as an exercise (P-lOJ). Class RBTree inherits methods size, isEmpty, 
and get from BinarySearchTree but overrides methods put and remove. It imple

.mel1ts these two operations by first calling the corresponding·method of the parent 

.	Class· and then· remedying any color violations that this update may have caused. 
Several auxiliary methods of class RBTree are not shown, but their names suggest 
their meanings and their implementations are straightforward. 



493 10.5. Red-Black Trees 

/** Creates a new tree node. * / 
protected BTPosition<Entry<K,V> > createf\lode(Entry<K,V> element, 


BTPosition<Entry<K,V> > parent, BTPosition<Entry<K,V> > left, 

BTPosition<Entry<K,V» right) { 


return new RBNode<K,V>(element,parent,left,right); / / a red-black node 
} 
public V put(K k, V x) throws InvalidKeyException { 

V toReturn - super.put(k, x); 
Position<Entry<K,V> > posZ = actionPos; / / start at the insertion position 
setRed(posZ); 
if (isRoot(posZ)) 

setBlack(posZ) ; 

else 


remedyDoubleRed(posZ); / / fix a double-red color violation 

return toReturn; 


} 
protected void remedyDoubleRed(Position<Entry<K,v> > posZ) { 


Position<Entry<K,v> > posV = parent(posZ); 

if (isRoot( posV)) 


return; 

if (!isPosRed(posV)) 


return; 

/ / we have a double red: posZ and posV 

if (!isPosRed(sibling(posV))) {// Case 1: trinode restructuring 


posV = restructure(posZ); 

setBlack(posV); 

setRed (left(posV)); 

setRed (right(posV)); 


} •
else {// Case 2: recoloring 


setBlack(posV); 

setBlack(sibling(posV)); 

Position<Entry<K,V> > posU parent(posV); 

if (isRoot(posU)) 


return; 

setRed(posU); 

remedyDoubleRed(posU); 


} 

} 


Code Fragment 10.10: The map ADT method putand auxiliary methods createN
ode and remedyDoubleRed of class RBTree.. 

Methods put (Code Fragment 10.10) and remove (Code Fragment 10.11) call 
the corresponding methods of the superclass first and then rebalance the tree by 
calling auxiliary methods to perform rotations along the path from the update posi
tion (given by the actionPos variable inherited from the superclass) to the root. 



494 Chapter 10. Search Tree Structures 

public V remove(K k) throws InvalidKeyException { 

V toReturn = super.remove(k); 

Position<Entry<K,V> > posR actionPos; 

if (toReturn 1= nUll) { 


if (wasParentRed(posR) II isRoot(posR) II isPosRed(posR)) 
setBlack(posR); 

else 
remedyDoubleBlack(posR); 

} 
return toReturn; 

} 
protected void remedyDoubleBlack(Position<Entry<K,V> > posR) { 

Position<Entry<K,V» posX, posY, posZ; 
boolean old Color; 
posX = parent(posR); 
posY = sibling(posR); 
if (lisPosRed(posY)) { 

posZ redChild(posY); 
if (hasRedChild(posY)) { II Case 1: trinode restructuring 

oldColor isPosRed(posX); 
posZ = restructure(posZ); 
setColor(posZ, oldColor); 
setBlack(posR); 
setBlack(left(posZ)); 
setBlack(right( posZ)); 
return; 

} 
setBlack(posR); 

•setRed(posY); 
if (lisPosRed(posX)) { II Case 2: recoloring 

if (I isRoot(posX)) 
remedyDou bleBlack(posX); 

return; 
} 
setBlack(posX); 
return; 

} II Case 3: adjustment 

if (posY == right(posX)) posZ = right(posY); 

else posZ left(posY); 

restructure(posZ); 

setBlack(posY); 

setRed(posX); 

r~me~y[)oubleBlack(posR);
} . .. ... . 

Code Fragment 10.11: Method remove and auxiliary method remedyDoubleBlack 
of class RBTree. 



495 10.6. Exercises 

10.6 Exercises 

For help with exercises, please visit the web site, www.wiley.com/go/globallgoodrich. 

Reinforcement 

R-lO.1 	 We defined a binary search tree so that keys equal to a node's key can 
be in either the left or right subtree of that node. Suppose we change the 
definition so that we restrict equal keys to the right subtree. What must a 
subtree of a binary search tree containing only equal keys look like in this 
case? 

R-lO.2 Insert, into an empty binary search tree, entries with keys 30,40, 24, 58, 
48,26, 11, 13 (in this order). Draw the tree after each insertion. 

R-10.3 How many different binary search trees can store the keys {I, 2, 3) 4} ? 
R-lOA 	Suppose that the methods of BinarySearchTree (Code Fragments 10.3

10.5) are used to perform the updates shown in Figures 10.3, lOA, and 10.5. 
What is the node referenced by actionPos after each update? 

R-lO.5 	 Dr. Amongus claims that the order in which a fixed set ofentries is inserted 
into a binary search tree does not matter-the same tree results every time. 
Give a small example that proves he is wrong. 

R-1O.6 	Dr. Amongus claims that the order in whIch a fixed set ofentries is inserted 
into an AVL tree does not matter-the same AVL tree results every time. 
Give a small example that proves he is wrong. 

R-1O.7 Are the rotations in Figures 10.8 and 10.10 single or double rotations? 

R-1O.8 Draw the AVL tree resulting from the insertion of an entry with key 52 
into the AVL tree of Figure 10.1Ob. 

R-1O.9 Draw the AVL tree resulting from the removal of theentry with key 62 
from the AVL tree of Figure 10.10b. 

R-lO.lO Explain why performing a rotation in an n-node binary tree represented 
using an array list takes Q(n) time. 

R-lO.l1 	 Is the search tree of Figure 10.l9a a (2,4) tree? Why or why not? 
R-1O.12 	An alternative way of performing a split at a node v in a (2,4) tree is to 

partition v into v' and v", with v' being a 2-node and v" a 3-node. Which 
of the keys kl' k2, k3, or k4 do we store at v's parent in this case? Why? 

R:lOJ3 	Dr. Amongus claims that a (2,4) tree storing a set of entries will always 
have the same structure; regardless of the order in which the entries are 
inserted. Show that he is wrong. 

R-10.14 Draw four different red-black trees that correspond to the same (2,4) tree. 

R-1O.15 Consider the set of keys K = {1,2,3,4,5,6, 7,8,9,10,11,12,13,14, IS}. 

www.wiley.com/go/globallgoodrich


496 Chapter 10. Search Tree Structures 

a. 	 Draw a (2,4) tree storing K as its keys using the fewest number of 
nodes. 

b. 	 Draw a (2,4) tree storing K as its keys using the maximum number 
of nodes. 

R-lO.l6 	Consider the sequence of keys (5,16,22,45,2,10,18,30,50,12,1). Draw 
the result of inserting entries with these keys (in the given order) into 

a. 	 An initially empty (2,4) tree. 
b. 	 An initially empty red-black tree. 

R-10.17 	For the following statements about red-black trees, provide a justification 
for each true statement and a counterexample for each false one. 

a. A subtree of a red-black tree is itself a red-black tree. 
b. 	 The sibling of an external node is either external or it is red. 
c. 	 There is a unique (2,4) tree associated with a given red-black tree. 
d. There is a unique red-black tree associated with a given (2,4) tree. 

R-10.18 Draw an example red-black tree that is not an AVL tree. 

R-1 0.19 Consider a tree T storing 100,000 entries. What is the worst-case height 
of T in the following cases? 

a. 	 T is an AVL tree. 
b. 	 T is a (2,4) tree. 
c. 	 T is a red-black tree. 
d. 	 T is a splay tree. 
e. 	 T is a binary search tree. 

R-10.20 Perform the following sequence of operations in an il,'litially empty splay 
tree and draw the tree after each set of operations. 

a. Insert keys 0, 2, 4, 6,8, 10, 12, 14, 16, 18, in this order. 
b. Search for keys 1,3,5, 7, 9, 11, 13, 15, 17, 19, in this order. 
c. Delete keys 0, 2, 4,6,8, 10, 12, 14, 16, 18, in this order. 

R-1O.21 	 What does a splay tree look like if its entries are accessed in increasing 
order by their keys? 

R-1O.22 	Explain how to use an AVL tree or a red-black tree to sort n comparable 
elements in O(n log n) time in the worst case. 

R-1O.23 	 Can we use a splay tree to sort ncomparable elements in O(nlogn) time 
in the worstcase? Why or why not? 

R-1O.24 	Explain why you would get the same output in an inorder listing of the 
entries in a binary search tree, T, independent of whether T is maintained 
to be an AVL tree, splay tree, or red-black tree. 



497 10.6. Exercises 

Creativity 

C-IO.l 	Design a variation of algorithm TreeSearch for performing the operation 
getAII(k) in an ordered dictionary implemented with a binary search tree 
T, and show that it runs in time O(h+s), where h is the height of T and s 
is the size of the collection returned. 

C-1O.2 	Describe how to perform an operation removeAII(k), which removes all 
the entries whose keys equal k in an ordered dictionary implemented with 
a binary search tree T, and show that this method runs in time O(h+s), 
where h is the height of T and s is the size of the iterator returned. 

C-IOJ 	Draw a schematic of an AVL tree such that a single remove operation 
could require .Q(log n) trinode restructurings (or rotations) from a leaf to 
the root in order to restore the height-balance property. 

C-lO.4 	Show how to perform an operation, removeAII(k), which removes all en
tries with keys equal to K, in an ordered dictionary implemented with an 
AVL tree in time O(slogn), where n is the number of entries in the map 
and s is the size of the iterator returned. 

C-lO.5 	Describe the changes that would need to be made to the binary search 
tree implementation given in the book to allow it to be used to support an 
ordered dictionary, where we allow for different entries with equal keys. 

C-IO.6 	Ifwe maintain a reference to the position of the left-most internal node of 
an AVL tree, then operation firstEntry (Section 9J) can be performed in 
O( 1) time. Describe how the implementation of the other map methods 
needs to be modified to maintain a reference to the left-l11ost position. 

C-1O.7 	 Show that any n-node binary tree can be converted to any other n-node 
binary tree using O(n) rotations. . 

C-IO.8 	Let M be an ordered map with n entries implemented by means of an 
AVL tree. Show how to implement the following operation on M in time 
O(logn+s), where s is the size of the iterator returned: 

findAlllnRange(k1,k2): 	Return an iterator of all the entries in M with 
key k such that kl ~ k ~ k2. 

C-1O.9 	Let M be an ordered map with n entries. Show how to modify the AVL 
tree to implement the following method for M in time O(logn): 

countAlllnRange(kt, k2): Compute and return the number of entries in M 
'with key k such that kt ~ k ~ k2. 

C-l 0.10 Draw a splay tree, Tt, together with the sequence of updates that produced 
it, and a red-black tree, T2, on the same set of ten entries, such that a 
preorder traversal of Tt would be the same as a preorder traversal of T2. 



498 Chapter 10. Search Tree Structures 

C-1O.11 	 Show that the nodes that become unbalanced in an AVL tree during a 
put operation may be nonconsecutive on the path from the newly inserted 
node to the root. 

C-1O.12 	 Show that at most one node in an AVL tree becomes unbalanced after 
operation removeExternal is performed within the execution of a remove 
map operation. 

C-10.13 	 Show that at most one trinode restructuring operation is needed to restore 
balance after any insertion in an AVL tree. 

C-1O.14 	Let T and U be (2,4) trees storing nand m entries, respectively, such 
that all the entries in T have keys less than the keys of all the entries in 
U. Describe an O(logn +logm) time method forjoining T and U into a 
single tree that stores all the entries in T and U. 

C-10.15 Repeat the previous problem for red-black trees T and U. 

C-10.16 	Justify Proposition 10.7. 

C-10.17 	The Boolean indicator used to mark nodes in a red-black tree as being 
"red" or "black" is not strictly needed when we have distinct keys. De
scribe a scheme for implementing a red-black tree without adding any 
extra space to standard binary search tree nodes. 

C-10.18 	Let T be a red-black tree storing n entries, and let k he the key of an entry 
in T. Show how to construct from T, in O(log n) time, two red-black trees 
T' and Til, such that T' contains all the keys of T less than k, and Til 

contains all the keys of T greater than k. This operation destroys T. 

C-1O.19 	Show that the nodes of any AVL-tree T can be colored "red" and "~lack" 
so that T becomes a red-black tree. 

C-1O.20 	Themergeable heap ADTconsists of operations insert(k,x), removeMinO, 
unionWith(h), and minO, where the unionWith(h) operation performs a 
union of the mergeable heap h with the present one, destroying the old 
versions of both. Describe a concrete implementation of the mergeable 

_heap ADT that achieves O(logn) performance for all its operations. 

C-1O.21 	 Consider a variation of splay trees, called half~splay trees, where splaying 
a node at depth d stops as soon as the node reaches depth ld/2J. Perform 
an amortized analysis of half-splay trees. 

C-10.22 	The standard splaying step requires two passes, one downward pass to 
find the node xto splay, followed by an upward pass to splay the node 
x. Describe a l11ethod for splaying and searching for x in one downward 
pass. Each substep now requires that you consider the next two nodes 
in the path down to x, with a possible zig substep performed at the end. 
Describe how to perform the zig-zig, zig-zag, and zig steps. 



499 10.6. Exercises 

C-1O.23 	Describe a sequence of accesses to an n-node splay tree T, where n is odd, 
that results in T consisting of a single chain of internal nodes with external 
node children, such that the internal-node path down T alternates between 
left children and right children. 

C-1O.24 	Explain how to implement an array list of n elements so that the methods 
add and get take O(log11) time in the worst case. 

Projects 

P-lO.l 	Write a program thatperforms a simple n-body simulation, called "Jump
ing Leprechauns." This simulation involves n leprechauns, numbered 1 to 
n. It maintains a gold value gi for each leprechaun i, which begins with 
each leprechaun starting out with a million rupees worth of gold, that is, 
gi = 1000000 for each i = 1,2, ... ,n. In addition, the simulation also 
maintains, for each leprechaun, i, a place on the horizon, which is repre
sented as a double-precision floating point number, Xi. In each iteration 
of the simulation, the simulation processes the leprechauns in order. Pro
cessing a leprechaun i during this iteration begins by computing a new 
place on the horizon for i, which is determined by the assignment 

Xi f- Xi 	 rgil 

where r is a random floating-point number between -1 and 1. The lep
rechaun i then steals half the gold from the nearest leprechauns on either 
side of him and adds -this gold to his gold value, gi. Write a program that 
can perform a series of iterations in this simulation for agiven number, n, 
of leprechauns. You must maintain'the set of horizon positions using an 
ordered map data structure described in this chapter. 

P-1O.2 	Extend class BinarySearchTree (Code Fragments 10.3-10.5) to support 
the methods of the ordered map ADT (see Section 9.3). 

P-lO.3 	 Implement a class RestructurableNodeBinaryTree that supports the meth
ods of the binary tree ADT, plus a method restructure for performing a 
rotation operation. This class is a component of the implementation of an 
AVL tree given in SeCtion 10.2.2. 

P-lOA Write a Java class that implements all the methods of the ordered map 
ADT (see Section 9.3) using an AVL tree. 

. . P-lO.5·. Write ~a Javadass that implements all the methods of the ordered map 
ADT (see Section 9.3) using a (2,4) tree. 

P-10.6 Write a Java class that implements all the methods of the ordered map 
ADT (see Section 9.3) using a red-black tree. 



500 Chapter 10. Search Tree Structures 

P-1O.7 	 Fonn a three-programmer team and have each member implement a map 
using a different search tree data structure. Perform a cooperative experi
mental study to compare the speed of these three implementations. 

P-1O.8 	 Write a Java class that can take any red-black tree and convert it into its 
corresponding (2,4) tree and can take any (2,4) tree and convert it into its 
corresponding red-black tree. 

P-1O.9 	 Implement the java.uti!. Map interface using a splay tree, and compare its 
performance experimentally with the class, java.utiI.TreeMap, which uses 
a red-black tree, andjava.util.concurrent.ConcurrentSkipListMap, which 
uses a skip list. 

P-lO.lO 	Prepare an implementation of splay trees that uses bottom-up splaying 
as described in this chapter and another that uses top-down splaying as 
described in Exercise C-I0.22. Perform extensive experimental studies to 
see which implementation is better in practice, if any. 

P-lO.ll 	Implement a binary search tree data structure so that it can support the 
dictionary ADT, where different entries can have equal keys. In addi
tion, support methods entrySetPreorderO, entrySetlnorderO, and entry
SetPostorderO, which produce an iterable collection of the entries in the 
binary search tree in the same order they would respectively be visited in 
a preorder, inorder, and postorder traversal of the tree. 

Chapter Notes 

Some of the data structures discussed in this chapter are extensively covered b>y Knuth 
in his Sorting and Searching book [63], and by Mehlhorn in [74}. AVL trees are due to 
Adel'son-Vel'skii and Landis [1], who invented this class of balanced search trees in 1962. 
Binary search trees, AVL trees, and hashing are described in Knuth's Sorting and Search
ing [63] book. Average-height analyses for binary search trees can be found in the books 
by Aho, Hopcroft, and Ullman [5] and Cormen, Leiserson, and Rivest [25]. The hand
book by Gonnet and Baeza-Yates [39] contains a number of theoretical and experimental 
comparisons among map implementations. Aho, Hopcroft, and Ullman (4] discuss (2,3) 
trees, which are similar to (2,4) trees. Red-black trees were defined by Bayer [10]. Vari
ations and interesting properties of red-black trees are presented in a paper by Guibas and 
Sedgewick (44]. The reader interested in learning more about different balanced tree data 
structures is referred to the books by Mehlhorn [74] and Tarjan (91], and the book chapter 
by Mehlhorn and Tsakalidis [76]. Knuth [63] is excellent additional reading that includes 
early approaches to balancing. trees. Splay trees were invented by Sleator and Tarjan [86] 
(see also [91]). 



Chapter 

11 Sorti ng and Selection 


0 0 00 0000 0 
00000..... 0 ••••• a 

o ••• ~~.o ••••••• 0 
o ':9R2l~.: go 0

0 

••,QOOCh~•• 0 

g~\~...o 0:·~4 ~'8•• 0 
o ..•...'-~~~o 0, .\o~CPo •• 
00 '" 0 0 '0 or;:.'" •• 000 •• 0 
0'000 0'0 oO"~Q •••••• 0 
010 09.,'0 00.',"0 06 ••• 0 
0.0 0'00 0"0 00 0 
0.0 9J',000 0'/00 000 a 

0.0 00"_0 0"0 
0,,,0"0 
0·.··.0 

0 ••••••• 00"••~••o 
o.·~o••o• 10..0 
~" o~.. o0·.•.•.·.0

0 •••••0 ° Contents 0000 a 

11.1 Merge-Sort ............ . · . . . .. 502 


11.1.1 Divide-and-Conquer ..... . 502 

11.1.2 Merging Arrays and Lists .. . 507 

11.1.3 The Running Time of Merge-Sort 510 

11.1.4 Java Implementations of Merge-Sort 511 

11.1.5 Merge-Sort and Recurrence Equations * . 514 

11.2 Quick-Sort . . . . . . . . . . . . . . . . .. ..... 515 

11.2.1 Randomized Quick-Sort . . . . . 522 

11.2.2 Java Implementations and Optimizations. 524 

11.3 Studying Sorting through an Algorithmic Lens 527 

11.3.1 A Lower Bound for Sorting ........ . 527 


11.3.2 Linear-Time Sorting; Bucket-Sort and Radix-Sort 529 

11.3.3 Comparing Sorting Algorithms · ...... 532 

11.4 Sets and Union/Find Structures .. · ..... 534 
11.4.1 The Set ADT ......... . 534 


11.4.2 Mergeable Sets and the Template Method Pattern 535 

11.4.3 Partitions with Union-Find Operations · ...... 539 

11.5 Selection ............ . · . . . .. 543 

11.5.1 Prune-and-Search .... . 543 

11.5.2 Randomized Quick-Select. 544 

11.5.3 Analyzing Randomized Quick-Select .. 545 

11.6 Exercises . . . . . . . . . . . . . . . . . . · . . . .. 546 



502 Chapter 11. Sorting and Selection 

11.1 Merge-Sort 

In this section, we present a sorting technique, called merge-sort, which can be 
described in a simple and compact way using recursion. 

11.1.1 Divide-and-Conquer 

Merge-sort is based on an algorithmic design pattern called divide-and-conquer. 
The divide-and-conquer pattern consists of the following three steps: 

1. 	Divide: If the input size is smaller than a certain threshold (say, one or two 
elements), solve the problem directly using a straightforward method and 
return the solution so obtained. Otherwise, divide the input data into two or 
more disjoint subsets. 

2. 	 Recur: Recursively solve the subproblems associated with the subsets. 

3. 	 Conquer: Take the solutions to the subproblems and "merge" them into a 
solution to the original problem. 

Using Divide-and-Conquer for Sorting 

Recall that in a sorting problem we are given·a sequence of n objects, stored in a 
linked list or an array, together with some comparator defining a total order on these 
objects, and we are asked to produce an ordered representation of these objects. To 
allow for sorting of either representation, we will describe our sorting algorithm at 
a high level for sequences and explain the details needed to implement it for linked 
lists and arrays. To sort a sequence S with n elements using the three divide-and
conquer steps, the merge-sort algorithm proceeds as follows: 

1. 	Divide: If S has zero or one element, return S immediately; it is already 
sorted. Otherwise (S has at least two elements), remove all the elements 
from S and put them into two sequences, S1 and S2, each containing about 
half of the elements of S; that is, SI contains the first rn/21 elements of S, 
and S2 contains the remaining ln/2Jelements. 

2. 	 Recur: Recursively sort sequences S1 and S2. 

3. 	 Conquer: Put back the elements into Sby merging the sorted sequences S1 
and S2 into a sorted sequence.. 

In reference to the divide step, we recall that the notation rx11.ndicates the ceiling 
of x, that is, the smallest integer m, such that x ~ m. Similarly, the notation lxJ 
indicates the floor of x, that is, the largest integer k, such that k ~ x. 



503 11.1. Merge-Sort 

We can visualize an execution of the merge-sort algorithm by means of a binary 
tree T, called the merge-sort tree. Each node of T represents a recursive invocation 
(or call) of the merge-sort algorithm. We associate with each node v of T the 
sequence S that is processed by the invocation associated with v. The children of 
node v are associated with the recursive calls that process the subsequences Sl and 
S2 of S. The external nodes of T are associated with individual elements of S, 
corresponding to instances of the algorithm that make no recursive calls. 

Figure 11.1 summarizes an execution of the merge-sort algorithm by showing 
the input and output sequences processed at each node of the merge-sort tree. The 
step-by-step evolution of the merge-sort tree is shown in Figures 11.2 through 11.4. 

This algorithm visualization in terms of the merge-sort tree helps us analyze 
the running time of the merge-sort algorithm. In particular, since the size of the 
input sequence roughly halves at each recursive call of merge-sort, the height of 
the merge-sort tree is about logn (recall that the base of log is 2 if omitted). 

85 24 63 45 17 31 96 50 


(a) 

96 


24 45 63 85 17 31 50 96 


(b) 

Figure 1l~1: '.' Merge-sort tree'T for an execution of the merge-sort algorithm on 
a sequence with 8 elements: (a) input sequences processed at each node of T; 
(b) output sequences generated at each node of T. 



504 Chapter 11. Sorting and Selection 

24 63 45 17 31 96[85 5~) 
~" 

,/,//7 

------~--.~---------, ,\ 
I 

\_-------~~---~-------_/ '---------r---~--------~ , , 
j/ " 

, 
,, ,:' \. 

, , ---------r---~--------" 

//' \,\ ,,"._ ... __~:oi'__... ... __: ~'- ___ _ ,,""-- ... _.... -.. -.. ,""---_..... _---
I ""----"---- .. ... ----~:"---. ".--~'~'---- ... , , I 

I I I 
'\ I '\ I , I 

---7--~--~ ---~--~--~ I \"'--,--,---' I .. --i--,--- .... "'--,--,---'" ,--------_ .... ---j--\---"" --------_I , .... 

I , I , 

I \ I \ I \ I , I \ I \ I , I \ 

(\ " 
I \ I \ I , I \ I \ I \ 

I \ I \ I , I \ I \ I \ 
I \ , \ I , I \ I \ I \ I \ I \ 

,<, ,<. ."- ,<- ."., .h, .". ,<., ,",, .<, 
, ... "'- ... ""- ,". , , ,". , 

, .. 
,I \ I \ I \ I I I \ I I I I \. J '\ I I I 

I I I I I I , , , , , I I , I 
, , , I I I I , I , I ,, , , , , , , I , 

I 
I I 

I 
,I I I I I I ! I I I I I I I I 

I ,--, I \ \ I \ I \ I , I , I , \ I ' __ ",' ' __ ".1 ... _ .,.1 ...... -... '-_ ... '--- --. I--' 
(a) (b) 

............. 
............ 

,----------------------', 
( 63 45) I 

, f 
I 

\ I 

---------r---~--------~ ,---------r---~--------/,, \ ,, ,
,I"" '" , \, , / \ 

"" ---_.... -_...... , .. --- -'- --- ..., I ~----~---- , ~----~---~ ,, , , , I 
, I , 
, I I

---,"'-\---'" "'--,--\,--"" "'--,--,--'" "--,"-,---"- ~--i--\--~ --~i--\---

I \ I , I \ I \ I \ ,\ ,\ 

I \ I , I , I , I , I \ I \ 


I , I , I \ I \ I \ ,\ I \ 

I \ I I \ I \ I \ I \ I \
.<. .", ,..... \ _, ,.......... ,"., ,<. ,<. ,". , .., ,". , .. ,". ...
-"- I , I I ,"- , I , I , I , \ I I , I , , , , , , I I I I , I I I I I I I I I 

, I I, , ,, I , I I I I I I I I I I I I I I I I,--. I \ --. I ,--, I --.,.' , -_ ... ' \~ _... ' , , -,. I ' ... _... I ,--. I--- I --' I --- I ,---, ,--- I 

(c) (d) 

, 

"""'" " 
... ----------~----------, :~:---------~----------~I \ 

I(63 45) 
I I I 

, ,, --------~r---~--------/ ,---------~---~--------~, ,, , ,, , , ,, I ,\ , ,/ \ , , , ,, , ,, , , 
, , I ,.. ---------"', ~----~---~ ... ---~---"".------_ ....., I ... ----~---~ , ;--------- ,, , I I I I I I I, I I I I , f I I I, , , ,I I , ... --- _____ ~I------_ .. _... ' ---i--\--~ ~--i-~\--~ ---I--\--~ ---i-~\--'"I \ I \ f'I \ ,\ I \ I \ t \ 

I \ I \ I \ I \ I \ I \ 
I \ I, I \I \ " ,\

, , I \ I \ f \ I \ 
,~- ," ~~~ ~~- ... ~~ ~~-

I ,'" \.3._, ,". ,<-
I 
,"-,i"'~-' I , I , I ". , I , , I , I , , '\ I , 

I , I I I , 
I I , I , I I I I , I I I I " I

I , , I I I I I I I I, I I I I II I I I
'-_ ... ' ' ... _... ' , ,--- I ,--, I '-_ ... I ' __ ",,' ' __ ",,' '-_ ... ' '~- ... ' ' __ ",,'--' I I 

(e) (f) 

Figure 11.2: Visualization of an execution of merge-sort. Each node of the tree 
represents a recursive call of merge-sort. The nodes drawn with dashed lines repre
sent calls that have not been made yet. The node drawn with thick lines represents 
the current c~ll.theempty nodes drawn with thin lines represent completed calls. 
The remaining nodes (drawn with thin lines and not empty) represent calls that are 
waiting for a child invocation to return. (Continues in Figure 11.3.) 



505 11.1. Merge-Sort 

,,, 
" ,,'--_ ....... _-- ... 

'- ________ ~J 

I , 
I \ 

I \ 
I \ 

I \

,"'" ""-., /""""-, 
I I I I 
I I I I
' ... _.... ' '-_ ... ' 

" 
" 

","'''' ---------'-- -- ... --- ---', 
I I 

I 

'---------~---~--------, 
I

' ... --------r---~--------, 
I 

I \,/ ", 
I , ~/ \ .. 

I , / ,
/ , / ,

I , 

;----~---- ... ---~---- I ...----~---- '\ I ".---~---- '\ 
t I J I 

1 I I I I 
... _-- _____ ,..1 ---- _____ .,.1 ,----,----_ ... ' ' ... _------_ ... ' 

I \ I \ I \ I \ 
I \ / \ I \ I '\ 

I \ I \ I '\ J '\ 
I \ / \ I \ I '\ 

I \ I \ I \ I \_.,,", .,. ...... , ,". ,", ,., -~, ,., ,",
I I , I \ I , I , \ I , I , 

I I I I I I I I I I I I I I I 
I I I I I I I I I I I I I 

I'--- ' ... _.... ' ' ......... ' "-_ ... ' "-_ ... ' "- _... ' 
, 

"-_ ... ' 
I 


(g) (h) 

" 

" 
' ......... 


,"" ----- -----, _.... -- ------- -"', 
I I 

I 
I 

I I 

'---------r---~--------/'--------;r---~--------' I , 
/ ,

/ , ,./ '\,
I , 


I , 
 I , 
I , I , 

~-_--v---~ ~-_--~ ___ _,..----~---, , I ~---~----- , I , 
I I I I I 
I I I ,,--_ .... _---_ ... ' ,--_ ...... _--_ ... '

I 

... _-------_ ... ' --------_ ... ' I , , \ 
I '\ I \ 

/ \ I \ 

I \ I \ 

I' '\ 
'\ J"\ 

I \ I \ I \ I \ 
I \ I ... I , I \_., ....... - ....... - _.... - ....... ..... - ......... ... ... - .... 
\1'/'1' I \ ""1"\1" 

I I I I I I I I I I I I 'I til 
I I J I I I I I I I I I I l I I I 
I .... _ ....... ' , __ .,., ' __ ... ' , I '\ I , ___ I .... _ ... ' , ... _ .. 1 

(i) G) 
4 

' ....... 
 " ..... , ..... ", 
............


" 
I~------------~--------, ---------------------- ... \
I . ~ I 
I , I, 

... _-------1'" --------~r--~~--------// 
/ , 

,I \ ,I 

I 
 I \ 

I I , " 
/ ... ---_.... _--- \ / ~----~---- ... ----~----
I I I I 
, I ~ I 
'\ I ... I , I ,I 

-..... -,--\--_ ... ---,--\,------,'--\---'" ---,--,---"" 
I \ I '\ I \ I \ 

I \ I \ / \ I \ 
I '\ I '\ I \ I \ 

I \ I '\ I \ I \ 
..... _ ... .a._ ........... ....a. ...
...... - ...... - .....,... ... ...... 

t \ I ... I ... I \ , " 1 , I ' 1 " 
I I t I I I I I 

I I I I l I I 
t I I I f I I I 

I , I I I I 
' ... _ ... ' '\ __ ... ' I I I I'-_ ... ' 

(1) 

Figure 11.3: Visualizqtion .of an execution of merge-sort (Continues in Fig
ure 11.4.) 



506 Chapter 11. Sorting and Selection 

, ,, ,, ,,,, " ,.. ---_.... _-- ... , I ,...----,----- , 
I I I 
I I I 

---- _____ ~I 

I , 
 "'--,--\---"" I 

I \ I \ 

I \ I \ 


I \ I \ 

I \ I \ 


.......... , ,_ ....... , I ... I~ .... ~' 


I I I I I I I 
I 1 1 I I J I'-_... ' ... _... ... ... _... ' 

(m) (n) 

(0) 0(P) 

Figure 11.4: Visualization of an execution of merge-sort. Several invocations are 
omitted between (1) and (m) and between (m) and (n). Note the conquer s$ep per
formed in step (p). (Continued from Figure 11.3.) 

Proposition 11.1: The merge-sort tree associated with an execution of merge
sort on a sequence ofsize n has height flog n1. 

We leave the justification of Proposition 11.1 as a simple exercise (R-ll.3). We 
will use this proposition to analyze the running time of the merge-sort algorithm. 

Having given an overview of merge-sort and an illustration of how it works, 
let us consider each of the steps of this divide-and-conquer algorithm in more de
tail. The divide and recur steps of the merge-sort algorithm are simple; dividing a 
sequence of size ninvolves separating it at the element with index rn/21 , and the 
recursive calls simply involve passing these smaller sequences as parameters. The 
difficult step is the conquer step, which merges two sorted sequences into a single 
sorted sequence,·· Thtis, before we present our analysis of merge-sort,· we need to 
say more about how this is done. 



507 11.1. Merge-Sort 

11.1.2 Merging Arrays and Lists 

To merge two sorted sequences, it is helpful to know if they are implemented as 
arrays or lists. We begin with the array implementation, which we show in Code 
Fragment 11.1. We illustrate a step in the merge of two sorted arrays in Figure 11.5. 

Algorithm merge(Sl,S2,S): 
Input: Sorted sequences Sl and S2 and an empty sequence S, all of which are 

implemented as arrays 
Output: Sorted sequence S containing the elements from Sl and S2 

if- j 0 
while i < Sl.sizeO and j < S2.sizeO do 

if Sl.get(i) ~ S2.get(j) then 
S.add Last(Sl.get(i)) { copy ith element of Sl to end of S } 
if-i+l 

else 
S.addLast(S2.get(j)) {copy jthelementofS2 toendofS} 
j f- j+ 1 

while i < Sl.sizeO do {copy the remaining elements of Sl to S} 
S.addLast(Sl.get(i) ) 
if-i+l 

while j S2.sizeO do {copy the remaining elements of S2 to S} 
S.add Last(S2.get(j) ) 
j f- j+ 1 

Code Fragment 11.1: Algorithm for merging two sorted array-ba~d sequences. 

0123456 0123456 

slI2IsI811111ij14[i5J Sf 121 51 81111121141151 
l 

o 0123456 
. I I I 1 j I 

~\ ] ........... 
2 ',-( 4 )5o 1 2 3 4 5 6 7 8 9 10 11 12 o 6 7 8 9 10 11 12 

s1213151819[ I I I I 1 I I I S 


(a) (b) 

,Figure 11;5: A ;~tt!pjn thep:l(~rge of two sorted arrays. We show the arrays before 
the copy step in (a) and after it in (b). 



508 Chapter 11. Sorting and Selection 

Merging Two Sorted Lists 

In Code Fragment 11.2, we give a list-based version of algorithm merge, for merg
ing two sorted sequences, Sl and S2, implemented as linked lists. The main idea is 
to iteratively remove the smallest element from the front of one of the two lists and 
add it to the end of the output sequence, S, until one of the two input lists is empty, 
at which point we copy the remainder of the other list to S. We show an example 
execution of this version of algorithm merge in Figure 11.6. 

Algorithm merge(SI,S2,S): 
Input: Sorted sequences S I and S2 and an empty sequence S, implemented as 

linked lists 
Output: Sorted sequence S containing the elements from S I and S2 

while S1 is not empty and S2 is not empty do 
if St.first() .element() ~ S2.firstO.elementO then 

{ move the first element of Slat the end of S } 
S.addLast(SI. rernove(SI.first())) 

else 
{ move the first element of S2 at the end of S } 
S.addLast(S2.remove(S2.first()) ) 


{ move the remaining elements of S1 to S } 

while S1 is not empty do 


S.addLast(Sl.remove(Sl.firstO) ) 

{ move the remaining elements of S2 to S } 

while S2 is not empty do 


S.addLast(S2.remove(S2.firstO)) 

Code Fragment 11.2: Algorithm merge for merging two sorted sequences imple
mented as linked lists. 

The Running Time for Merging 

We analyze the running time of the merge algorithm by making some simple ob
servations. Let nl and n2 be the number of elements of SI and S2, respectively. 
Algorithm merge has three while loops. Independent of whether we are analyzing 
the array-based version or the list-based version, the operations performed inside 
each loop take O( 1) time each. The key observation is that during each iteration 
of one of the loops, one element is copied or moved from either S1 or S2 into S 
(and thatelement is considered no further). Since no insertions are performed into 
SI or S2, this observation implies that the overall number of iterations of the three 
loops is nl +n2. Thus, the running time of algorithm merge is O(nl +n2). 



509 11.1. Merge-Sort 

SI SI SI@-@-@0-0-@--@ 0-0-@--@ 
0-0-@--@ S2 @---@--@ S2 @---@--@ 

S S G S @-§ 

S2 

(a) (b) (c) 

Sl@-@-@ SI@-@) SI@-@) 

S2@-@ S2@---0 S2@ 

S S SG---0--0 0-B--0--@ 
(d) (e) (£) 

SI 
SI@ 

'S2@ $S2@ 
S 

S 63 

(g) (h) 

SI 

S2 

S 

(i) 

Figure 11.6: Exampl{! ofanexecutionofthe algorithm merge shown in Code Frag
ment 11.2. 



510 Chapter 11. Sorting and Selection 

11.1.3 The Running Time of Merge-Sort 

Now that we have given the details of the merge-sort algorithm, in both its array
based and list-based versions, and we have analyzed the running time of the crucial 
merge algorithm used in the conquer step, let us analyze the running time of the 
entire merge-sort algorithm, assuming it is given an input sequence of n elements. 
For simplicity, we restrict our attention to the case where n is a power of 2. We 
leave it to an exercise (R-l1.6) to show that the result of our analysis also holds 
when n is not a power of 2. 

As we did in the analysis of the merge algorithm, we assume that the input 
sequence S and the auxiliary sequences Sl and S2, created by each recursive call of 
merge-sort, are implemented by either arrays or linked lists (the same as S), so that 
merging two sorted sequences can be done in linear time. 

As we mentioned earlier, we analyze the merge-sort algorithm by referring to 
the merge-sort tree T. (Recall Figures 11.2 through 11.4.) We call the time spent 
at a node v of T the running time of the recursive call associated with v, excluding 
the time taken waiting for the recursive calls associated with the children of v to 
terminate. In other words, the time spent at node v includes the running times of the 
divide and conquer steps, but excludes the running time of the recur step. We have 
already observed that the details of the divide step are st~aightforward; this step 
runs in time proportional to the size of the sequence for v. In addition, as discussed 
above, the conquer step, which consists of merging two sorted subsequences, also 
takes linear time, independent of whether we are dealing with arrays or linked lists. 
That is, letting i denote the depth of node v, the time spent at node v is O(ifl/2i), 
since the size of the sequence handled by the recursive call associated with v is 
equal to n/2i. . 

Looking at the tree T more globally, as shown in Figure 11.7, we see that, given 
our definition of "time spent at a node," the running time of merge-sort is equal to 
the sum of the times spent at the nodes of T. Observe that T has exactly 2i nodes at 
depth i. This simple observation has an important consequence, for it implies that 
the overall time spent at all the nodes of T at depth i is O(2i. n/zi) , which is O(n). 
By Proposition 11.1, the height of Tis pogn1. Thus, since the time spent at each 
of the rlogn1 1 levels of Tis O(n), we have the following result: 

Proposition 11.2: Algorithm merge-sort sorts a sequence S ofsize nin O(nlog n) 
time; iissufuingtwo elements ofScan be compared in0 (1) time. 

ill other words, the merge-sort algorithm asymptotically matches the fast run
ning time of the heap-sort algorithm. 



511 

n 

------

• 
•· 

11.1. Merge-Sort 

Time per
Height 

level 
-- O(n) 

O(n) 

0(1i) 

• 
• 

,. 

Total time: O(n log 11) 

Figure 11.7: A visual time analysis of the merge-sort tree T. Each node is shown 
labeled with the size of its subproblem. 

11.1.4 Java Implementations of Merge-Sort 

The merge-sort algorithm is, in fact, the algorithm that is used in the method, 
java.utiI.Collections.sort(L), for sorting a list L that implements the java.util.List 
interface. Thus, this method guarantees O(nlogn) worst-case peiformance and 
it applies equally well whether L is, for instance, of type java.util.ArrayList or 
java.utiI.LinkedList. The merge-sort algorithm is also the algorithm used in the 
method, java. uti I. Arrays.sort(A), for sorting an array, A, in the case when A is not 
an array of base types. In this subsection, we present two Java implementations of 
the merge-sort algorithm, one for lists and one for arrays. 

In Code Fragment 11.3, we show a complete Java implementation of the list
based merge-sort algorithm as a static recursive method, mergeSort. A comparator 
(see Section 8.1.2) is used to decide the relative order of two elements. 

In this implementation, the input is a list, L, and auxiliary lists, L1 and L2, are 
processed by the recursive calls. Each list is modified by insertions and deletions 
only at the head and tail; hence, each list update takes O(1) time, assuming the 
lists are implemented with doubly linked lists (see Table 6.4). In our code, we 
use class· r\lodeList (Code Fragments 6.9-6.11) for the auxiliary lists. Thus, for a 
list L of size n, method mergeSort(L,c) runs in time O(nlogn) provided the list 
L is implemented with a doubly linked list and the comparator c can compare two 
elements of L in O( 1) time. 

http:6.9-6.11


512 Chapter 11. Sorting and Selection 

/**
* Sorts the elements of list in in nondecreasing order according
* to comparator c, using the merge-sort algorithm. 

**/ 


public static <E> void mergeSort (PositionList<E> in, Cornparator<E> c) { 
int n in .sizeO; 
if (n < 2) 

return; // the in list is already sorted in this case 

// divide 

PositionList<E> inl = new NodePositionList<E>0; 

PositionList<E> in2 new NodePositionList<E>O; 

int i 0; 

while (i < n/2) { 


in1.addLast(in.remove(in.firstO)); // move the first n/2 elements to inl 
i++; 

} 

while (!in.isEmptyO) 


in2.addLast{in.remove(in.firstO)); // move the rest to in2 

// recur 

mergeSort(inl,c); 

mergeSort(in2,c); 

//conquer 

merge(inl,in2,c,in); 


} 

/**
* Merges two sorted lists, inl and in2, into a sorted list in. 


**/ 

public static < void merge(PositionList< inl, PositionList<E> in2, 

Comparator<E> c, PositionList<E> in) { 
while (!inl.isEmptyO && !in2.isEmptyO) 

if (c.compare(in1.firstO.elementO, in2.firstO.elementO) <= 0) 
in.add Last(in1.remove(inl. firstO)); 

else 
in .addLast(in2. remove{in2.fi rstO)); 

while(!inl.isEmptyO) // move the remaining elements of inl 
in.addLast{in1.remove(i n1.firstO)); 

while(!in2.isEmptyO) // move the remaining elements of in2 
in .addLast(in2. remove(in2.firstO)); 

} 

Code Fragment 11.3: Methods mergeSort and merge implementing the recursive 
merge-sort algorithm. 

http:remove{in2.fi


513 11.1. Merge-Sort 

A Nonrecursive Array-Based Implementation of Merge-Sort 

There is a nonrecursive version of array-based merge-sort, which runs in O(nlogn) 
time. It is a bit faster than recursive list-based merge-sort in practice, as it avoids the 
extra overheads of recursive calls and node creation. The main idea is to perform 
merge-sort bottom-up, performing the merges level-by-level going up the merge
sort tree. Given an input array of elements, we begin by merging every odd-even 
pair of elements into sorted runs of length two. We merge these runs into runs of 
length four, merge these new runs into runs of length eight, and so on, until the 
array is sorted. To keep the space usage reasonable, we deploy an output array 
that stores the merged runs (swapping input and output arrays after each iteration). 
We give a Java implementation in Code Fragment 11.4, where we use the built-in 
method System.arraycopy to copy a range of cells between two arrays. 

/** Sorts an array with a comparator using nonrecursive merge sort. * / 
public static void mergeSort(EU orig, (omparator<E> c) { 


E[] in (E[]) new Object[orig.length]; / / make a new temporary array 

System.arraycopy(orig,O,in,O,in.length); / / copy the input 

E[] out (E[]) new Object[in.length]; / / output array 

E[] temp; / / temp array reference used for swapping 

int n = in.length; 

for (int i=1; i < n; i*=2) { / / each iteration sorts all length-2*i runs 


for (int j=O; j < n; j+=2*i) / / each iteration merges two length-i pairs 
merge(in,out,c,j,i); / / merge from in to ouf two length-i runs at j 

temp in; in = out; out temp; / / swap arrays for next iteration 
} 
/ / the "in" array contains thE; sorted array, so re-copy it 

System.arraycopy(in,O,orig,O, in.length); 


} . 
/** Merges two subarrays, specified by a start and increment. * / 

protected static <E> void merge{E[] in, E[] out, (omparator<E> c, int start, 


int inc) { / / merge in[start. .start+inc-1] and in[start+inc..start+2*inc-1] 
int x start; / / index into run #1 
int end1 Math.min(start+inc, in.length); / / boundary for run #1 
int end2 Math.min(start+2*inc, in.length); / / boundary for run #2 
int y = start+inc; / / index into run #2 (could be beyond array boundary) 
int z - start; / / index into the out array 
while ((x < end1) && (y < end2)) 

if (c.compare(in[x],in[y]) <= 0) out[z++l = in[x++l; 

else out[z++l = in[y++]; 


if (x < end1) / / first run. didn't finish 

System.arraycopy(in, x, out, z,endl - x); 


else if (y < end2) / / second run didn't finish 

System.arraycopy(in, y, out, z, end2 - y); 


} 
Code Fragment 11.4: An implementation of the nonrecursive merge-sort algorithm. 



514 Chapter 11. Sorting and Selection 

11.1.5 	 Merge-Sort and Recurrence Equations * 
There is another way to justify that the running time of the merge-sort algorithm is 
O(nlogn) (Proposition 11.2). Namely, we can deal more directly with the recursive 
nature of the merge-sort algorithm. In this section, we present such an analysis of 
the running time of merge-sort, and in so doing introduce the mathematical concept 
of a recurrence equation (also known as recurrence relation). 

Let the function t(n) denote the worst-case running time of merge-sort on an 
input sequence of size n. Since merge-sort is recursive, we can characterize func
tion t(n) by means of an equation where the function t(n) is recursively expressed 
in terms of itself. In order to simplify our characterization of t(n), let us restrict 
our attention to the case when n is a power of 2. (We leave the problem of showing 
that our asymptotic charactellzation still holds in the general case as an exercise.) 
In this case, we can specify the definition of t (n) as 

b if n < 1 
t(n) - { 2t(n/2) +en othe~wise. 

An expression such as the one above is called a recurrence equation, since the 
function appears on both the left- and right-hand sides of the equal sign. Although 
such a characterization is correct and accurate, what we really desire is a big-Oh 
type of characterization of t(n) that does not involve the function t(n) itself. That 
is, we want a closed-form characterization of t(n). 

We can obtain a closed-form solution by applying the definition of a recurrence 
equation, assuming n is relatively large. For example, after one more application 
of the equation above, we can write a new recurrence for t(n) as 

t(n) = 	 2(2t(n/22) (en/2)) +en 

22t(n/22) 2(en/2) +en = 22t(n/22) 2en. 

If we apply the equation again, we get t(n) = 23t(n/23) 3en. At this point, we 
should see a pattern emerging, so that after applying this equation i times we get 

t(n) = 	 it(n/i) +ien. 

The issue that remains, then, is to determine when to stop this process. To see when 
to stop, recall that we switch to the closed form t(n) b when n :; 1, which will 
occur when 2i n. In other words, this will occur when i = log n. Making this 
substitution, then, yields 

t(n) = 	 iognt(n/21ogn) (logn)en 

nt(l) +enlogn 

nb +enlogn. 

That is, we get an alternative justification of the fact thatt(n) is O(nlogn). 



- -

515 11.2. Quick-Sort 

11.2 Quick-Sort 

The next sorting algorithm we discuss is called quick-sort. Like merge-sort, this 
algorithm is also based on the divide-and-conquer paradigm, but it uses this tech
nique in a somewhat opposite manner, as all the hard work is done before the 

recursive calls. 

High-Level Description of Quick-Sort 

The quick-sort algorithm sorts a sequence S using a simple recursive approach. 
The main idea is to apply the divide-and-conquer technique, whereby we divide 
S into subsequences, recur to sort each subsequence, and then combine the sorted 
subsequences by a simple concatenation. In particular, the quick-sort algorithm 
consists of the following three steps (see Figure 11.8): 

1. 	Divide: If S has at least two elements (nothing needs to be done if S has 
zero or one element), select a specific element x from S, which is called the 
pivot. As is common practice, choose the pivot x to be the last element in S. 
Remove all the elements from S and put them into three sequences: 

• 	L, storing the elements in S less than x 

• 	E, storing the elements in S equal to x' 

• G, storing the elements in S greater than x. 
Of course, if the elements of Sare all distinct, then E holds just one element

the pivot itself. 

2. 	Recur: Recursively sort sequences Land-G. 
3. 	Conquer: Put back the elements into S in order by first inserting the elements 

of L, then those of E, and finally those of G. 

-~-.-':::..::...~ 

I 
I 
I 
I 
I 
I 
I 
I 

1. Split using pivot x. 

2. Recur. 

\ -.0.- /"- /' 

3. Concatenate. 

Figure 11.8: A visual schematic of the quick-sort algorithm. 



516 Chapter 11. Sorting and Selection 

Like merge-sort, the execution of quick-sort can be visualized by means of a bi
nary recursion tree, called the quick-sort tree. Figure 11.9 summarizes an execution 
of the quick-sort algorithm by showing the input and output sequences processed at 
each node of the quick-sort tree. The step-by-step evolution of the quick-sort tree 
is shown in Figures 11.10, 11.11, and 11.12. 

Unlike merge-sort, however, the height of the quick-sort tree associated with 
an execution of quick-sort is linear in the worst case. This happens, for example, 
if the sequence consists of n distinct elements and is already sorted. Indeed, in this 
case, the standard choice of the pivot as the largest element yields a subsequence 
L of size n ~ 1, while subsequence E has size 1 and subsequence G has size O. At 
each invocation of quick-sort on subsequence L, the size decreases by 1. Hence, 
the height of the quick-sort tree is n - 1. 

85 24 63 45 17 31 96 50 


(a) s 

17 24 31 45 50 63 85 96 


17 24 31 45 


(b) 

Figure 11.9: Quick-sort tree T for an execution of the quick-sort algorithm on a se
quence with 8elements: (a) input sequences processed at each node of T; (b) output 
sequences generated at each node of T. The pivot used at each level of the recursion 
is shown in bold. 



517 11.2. Quick-Sort 

24 63 45 17 31 96 45 17 31) (50) (85 63~85 5~ ((24 9~ 
",..........~ ~""'''''''''' ,-' " 


-' ......... , -' """" 

-' ,.. ---------_.#::_-------,,----------------------\ I ,---~----------- ...I , I ~---------------,, 

I II I 

\ I \ 
~-----r---~----_/ ' ---------~---~--------,/ , 

I 

\------r---~-----,/ , 
I 

---------r---r--------/I , 

I 
\ 

I \ 
I , I , 

, I '" / , I 
I \ 

\ 
I \ I \ ,/ I " 

I" , I \ I \ 
/ " "... , I , \I,.... ---_ .... _-- ... , ,_ ...... '\ 

I -----~---~"I"-""- 1 ~----~----\, ~.- \ ,;----~----'I".... 
I I I I I If. I I I I I 1 f I 
, I I I I I I I I • I f I f ( I 
.. I.. I"'--j--\---" ... _ ... " ---i--\--'"I" ~- ... I ,

"'--i--\---~
',I--,.. \ ... _------_ ... ' \-_ ... ' 

I \ 
I \ I \ I \ I \ 


I \ I \ I \ I \ 

I \ I \ I \ I \ 


f \ I \ I \ I \ 
...... _ "",l,_ , ... ", ... \ ,......... , , ...... -, 1 ...... -, 1...... -\ , .... -,
t ... I \. 
I j I I 1 I I I I t I I I 'I I 
I I t I I I I t I J t I I I I I 

\ I , ___I , ___ , \ __ ... 1 
\-_ ... ' \ ... _",,' '---' ' ... _",'

(a) (b) 

(50) ® 
....... " 

"""'" 
"""'" ,.. --------------- ... I ~---------------, •I I I I(24 17) ®@I I 

\_-----~---~-----)I , , 
I 

,~-----r---~-----/ 
I 

I \ I \ 
, \I , I I I \ 

I , I \ I \ I \ 
I 

, I , I \ t , 
I \ I , I 

I I \, / 
\ , ,/,/ '\. 

... ---_ ... _--- , /"" --, ""---- ---~ -... ~ , ... ---_.. _--- , ,.... _, ,----_... _-- ..., ,_._,....f I \ I \. I \ 
I I I I , '( I I I • f I I 
I I I I , I I I I I 1 I I f I I 
, I \. I '\ I \ I
"'--j--\---'" ' ... _... ' ~--j--\--... --- ---1--\---"" \--",,' " ---i--\--'"",--~ 

I \ I \ I \ I \ 

I \ I \ I \ I \ 


f \ I \ I \ I \ 

I \ I \ f \ I \ 


,~- ,~- ,.L_ 
f \ I \ I \ ,"',)" -, ,- ..... \ ,"--, I 

,.-
\ f 

~.-
\ 

, I 
I I I I I I I 1 I I I f I I I 
I I I I I I I I I I I I I I 

___I ,__ ,.., '\ __ ,1' ... _... ' \ ... --' \-_ ... ' '-- ... ' "--~' 
(c) (d) 

"63(SO) ® (85 9~ 

............ 
 '" 
" '" 

'" '" 
I --------~-------,•I ----------------,I ,I I 

I J 
\ ' \------r---~-----,I \ ------r---~-----/\,\ , 

I ,I , \\ 
I , \ I \ 

\ I , 
\ 

\ , \ 
\ I , 


\ I \ 

\ , ,/,/ '\ 
~.~,o- ... ---_ _--....... ....~ f \ ----_.. _--- ...... f \ I \. I \. , "" I I I I I • 

I I I I I I 
I I I I I f 

1 I I I I I 

'-_ ... " I \. I \_--- _____ ~I \ __ ~, 
---i--\--~ --~ '---' I \ 

I \ 
I \ 
I \ 

, I \ 
\I \ 


I \ 
 _..r- \ 
,.L_ ,6_ ,. ,_.1._,

f \ \ ,""";"-, I \I I \ i"'~-" ~~-
I \ 

I I 1 I I I I 1 I I I I I I I 1 
I I I I I I I I I 1 I I I I I 1\ ___1\ __~I\ f'-_ ... ' ... _... ' \_ ...... ' '-_ ... ' "--",,' 

~ 00 
Figure 11.10: Visualization of quick-sort. Each node of the tree represents a re
cursive call. The nodes drawn with dashed lines represent calls that have not been 
made yet. The node drawn with thick lines represents the running invocation. The 
empty nodes drawn with thin lines represent tenninated calls. The remaining nodes 
represent suspended calls· (that is, active invocations that are waiting for a child in
vocation to return). Note the divide steps perfonned in (b), (d), and (t). (Continues 
in Figure 11.11.) 

, 



--------
--

---

---
---

518 Chapter 11. Sorting and Selection 

® ® 
............
............. 


-~.I , 
I I 
I I 

, 
I 
I 

I 

... ......... 
~--------------- ... 

............ 

""'------~-------- .... \ 

I 
I \ 

I®® _____ ,'~ ____ ~~_N_~ I , I 

, , , ------r---~-----'I I 

" , 
I , I , 

I I 
I ,, ," " , I ,, I ,... ____4.____ "",_ ... 

-~-, ~----~---~ , f :""'~ I 
I I I 

f , 

I 1 1 
I I 1I I 

' ... _-------"" ---------~ '-_ ... ' I , 
I \ 
f \ 

I , 
I \ I \ 

I \ I \ 
I \ I \ ... ,.. .....~- -""- ..........
, I , I ... I ... 

I I I I I I I 
I I I j I I I 
I ' ... _.,.' I ' .... _ ... ' 

(g) (h) 

® ® 
............... 


I~---------------'" I -------~-------- .... \I \ 
I I I I 

I I® @) , ~w ____ ~ ___~ _____ , I 
\------r---~-----,, ,,, I 

I , 
, 

I ,
, I , 
I 

I I 
I 

I
,, I , I I 
I , I I " ,I , I 

I ...\ .. -, I ... ----~---... ... I" -- ... I 
-'...... ... -----_ ......... ... .... -,


I 
, I I I I I I I I 

, I , I I , I I I 

---,--\--"'" 
I I 

--~ 

I I I 

---,--\---'" '-_ ... ' 
I 

I \ f \ 
I \ f \ 

I \ I \ 

,I -".
I , 

I 
I 

\ I \ ......... ... ... -~- I ... I .. 
I • I I I 

I I I I I I , 
.. I ' ...... .;1--- I 

(i) (j) 

® (85 63 9~ ® (85 63 9~ 
--- ............ 

~ ___~...::~w_______ ... 
... ---------------,I . \I \ 

I 
I® ® 

, ------~---~-----' ,, I 
I 

,,, I , 

I I 


I I , 


I ...' .... -, 
... --- ...... I _--- _ , 

.... 
I ", , 
I 'I 

I I I I 
, "'--7--,----" I 

""--1--'----
I \ I \ 

I , I \ 
I \ f \ 

I , 

-", 
f \ 

I , 
-~,,I -". , I -~- , 

I I I I I I I 
I I I I 

I I 
I 

' .........'
I 


(k) (1) 

-~., 
I 
I 

... __ I 

Figure 11.11:. Visualization ofan execution'ofquick-sort. Note the conquer step 
perfortnedin (k). (Continues in Figure 11.12.) 



519 11.2. Quick-Sort 

® (85 63 9~ ® 

(q) (r) 

Figure 11.12: Visualization of an execution of quick-sort. Several invocations be
. tween(p) and (q) have been omitted. Note the conquer steps performed in (0) 
and (r). (Continued from Figure 11.11.) 

" 
"''''''''''' 

1~---------------,\ 
I , 
t I 

\_-----~---~-----,, ,, ,, ,, \ , \ , \ 

~----~----\ ,~~-\ 
, I I 
I I I 

1 ,I 
---I--\--~ --~ 

1 \ 
1 \ 


1 \ 

1 \
....- ....... 

I ... I \. 
I l I f 
I I J I 

\.-_ ... ' '-_ ... ' 
(m) 

® 

" 

" " 
" 
-~ ..... --- ...... -- ... \ 

I' r 

.... _-,--,---"" 1 

1 \ 

I \ 


1 \-""... 
1 

_ 
\ 

... I ... I ... 
I I I I 
I I I I 
\ ... _... ' \-.._ ... ' 

(0) 

• 
\------r---~-----), \, ,, ,, ,, \ 

... ---_!._--... ...'.... 
1 \ I 
I I I 
I I I 
\~--- _____ ,I ' __ ... ' 

1 \ 

I \ 


1 \ 

I \ 


1 \ 

I -~- , 1 
I I I 

I I I 

\ ... _ ... ' ' __ .,.1 

(n) 

(17 24 31 451 
/ 

"""" 

1 ... ------~-------- ... 
• 
I • 
\ ______ r ___~-----J 

, \, \, ,, ,, , 
\,""---_.... 

,_-- ... , _... 
• I 
I I 
\ "'--i--,---" 1 

I \ 
I \ 

I \ 
I \ 

... "'_ .... .t._
I ... , \ 
1 I, I 

'I
' ... _... ', 

(p) 

(17 24 31 45 50 63 85 96) 



520 Chapter 11. Sorting and Selection 

Performing Quick-Sort on Arrays and Lists 

In Code Fragment 11.5, we give a pseudo-code description of the quick-sort algo
rithm that is efficient for sequences implemented as arrays or linked lists. The algo
rithm follows the template for quick-sort given above, adding the detail of scanning 
the input sequence S backwards to divide it into the lists L, E, and G of elements 
that are respectively less than, equal to, and greater than the pivot. We perform this 
scan backwards, since removing the last element in a sequence is a constant-time 
operation independent of whether the sequence is implemented as an array or a 
linked list. We then recur on the Land G lists, and copy the sorted lists L, E, and 
G back to S. We perform this latter set of copies in the forward direction, since in
serting elements at the end of a sequence is a constant-time operation independent 
of whether the sequence is implemented as an array or a linked list. 

Algorithm QuickSort(S): 
Input: A sequence S implemented as an array or linked list 
Output: The sequence S in sorted order 

if S.sizeO 1 then 
return {S is already sorted in this case} 

p t- S.lastO.elementO {the pivot} 
Let L, E, and G be empty list-based sequences 
while !S.isEmpty() do {scan S backwards, dividing it into L, E, and G} 

if S.lastO.element() < p then 

L.addLast(S.remove(S.getLast()) ) 


else if S.lastO.element() = p then 

s

E.addLast(S. remove(S.getLast())) 
else {the last element in S is greater than p} 

G.addLast(S.remove(S.getLastO)) ) 
QuickSort(L) {Recur on the elements less than p} 
QuickSort(G) {Recur on the elements greater than p} 
while !L.isEmpty() do {copy back to S the sorted elements less than p} 

S.addLast(L.remove(L.getFirstO) ) 
while lE.isEmpty() do {copy back to S the elements equal to p} 

S.addLast(E.remove(E.getFirstO) ) 
while !G.isEmpty() do {copy back to S the sorted elements greater than p} 

S.addLast(G.remove(G.getFirst())) 
return {S is now in sorted order} 

Code Fragment 11.S: Quick-sort for an input sequence S implemented with a linked 
list or an array. 



521 11.2. Quick-Sort 

Running Time of Quick-Sort 

We can analyze the running time of quick-sort with the same technique used for 
merge-sort in Section 11.1.3. Namely, we can identify the time spent at each node 
of the quick-sort tree T and sum up the running times for all the nodes. 

Examining Code Fragment 11.5, we see that the divide step and the conquer 
step of quick-sort can be implemented in linear time. Thus, the time spent at a node 
vof T is proportional to the input size s(v) of v, defined as the size of the sequence 
handled by the invocation of quick-sort associated with node v. Since subsequence 
E has at least one element (the pivot), the sum of the input sizes of the children of 
vis at most s(v) 1. 

Given a quick-sort tree T, let Si denote the sum of the input sizes of the nodes 
at depth i in T. Clearly, So n, since the root r of T is associated with the entire 
sequence. Also, Sl ::; n 1, since the pivot is not propagated to the children of r. 
Consider next S2. If both children of r have nonzero input size, then S2 = n - 3. 
Otherwise (one child of the root has zero size, the other has size n - 1), S2 = n - 2. 
Thus, S2 ::; n 2. Continuing this line of reasoning, we obtain that Si ::; n - i. 
As observed in Section 11.2, the height of T is n - 1 in the worst case. Thus, the 
worst-case running time of quick-sort is 0 (E7::01

Si), which is 0 (E7::01(n - i)), that 
is, o(E7=1 i) . By Proposition 4.3, E~l i is 0(n2 

). Thus, quick-sort runs in 0(n2
) 

worst-case time. 
Given its name, we would expect quick-sort to run quickly. However, the 

quadratic bound above indicates that quick-sort is slow in the worst case. Paradox
ically, this worst-casebehavior occurs for problem instances when sorting should 
be easy-if the sequence is already sorted. 

Going back to our analysis, note that the best case for quick-sott on a sequence 
of distinct elements occurs when subsequencesL and:G happen to have roughly the 
same size. That is, in the best case, we have 

So - n 
Sl - n-1 
S2 = n- (1 +2) - n 3 

Si = n-(1+2+22 + ... +i-1) n (2i 1). 

Thus, in the best case, T has height O(logn) and quick-sort runs in O(nlogn) time; 
we leave the justification of this fact as an exercise (R-11.11). 

.The:informal intuition behind the expected behavior of quick-sort is that at 
·eachinybcation the pivot will probably divide the input sequence about equally. 
Thus, we expect the average running time quick-sort to be similar to the best-case 
running time, that is, O(nlogn). We will see in the next section that introducing 
randomization makes quick-sort behave exactly in this way. 



522 Chapter 11. Sorting and Selection 

11.2.1 Randomized Quick-Sort 

One common method for analyzing quick-sort is to assume that the pivot will al
ways divide the sequence almost equally. We feel such an assumption would pre
suppose knowledge about the input distribution that is typically not available, how
ever. For example, we would have to assume that we will rarely be given "almost" 
sorted sequences to sort, which are actually common in many applications. For
tunately, this assumption is not needed in order for us to match our intuition to 
quick-sort's behavior. 

In general, we desire some way of getting close to the best-case running time 
for quick-sort. The way to get close to the best-case running time, of course, is for 
the pivot to divide the input sequence S almost equally. If this outcome were to 
occur, then it would result in a running time that is asymptotically the same as the 
best-case running time. That is, having pivots close to the "middle" of the set of 
elements leads to an O(nlogn) running time for quick-sort. 

Picking Pivots at Random 

Since the goal of the partition step of the quick-sort method is to divide the sequence 
S almost equally, let us introduce randomization into the algorithm and pick as the 
pivot a random element of the input sequence. That is, instead of picking the 
pivot as the last element of S, we pick an element of S at random as the pivot, 
keeping the rest of the algorithm unchanged. ·This variation of quick-sort is called 
randomized quick-sort. The following proposition shows that the expected running 
time of randomized quick-sort on a sequence with n elements is.O(nloglf)' This 
expectation is taken over all the possible random choices the algorithm makes, 
and is independent of any assumptions about the distribution of the possible input 
sequences the algorithm is likely to be given. 

Proposition 11.3: The expected running time ofrandomized quick-sort on a se
quence S of size 11 is 0(11 log 11). 

Justification: We assume two elements of S can be compared in O( 1) time. 
Consider a single recursive call of randomized quick-sort, and let n denote the size 
of the input for this call. Say that this call is "good" if the pivot chosen is such that 
subsequences Land G have size at least n/4 and at most 3n/4 each; otherwise, a 
call is "bad." 

Now, consider the implications of our choosing a pivot uniformly at random. 
Note that there are n/2 possible good choices for the pivot for any given call of 
siie'rt of the randomized quick-sort algorithm. Thus, the probability that any call is 
good is 1/2. Note further that a good call will at least partition a list of size n into 
two lists of size 3n/4 and n/4, and a bad call could be as bad as producing a single 
call of size n 1. 



•••••• 

523 11.2. Quick-Sort 

Now consider a recursion trace for randomized quick-sort. This trace defines a 
binary tree, T, such that each node in T corresponds to a different recursive call on 
a subproblem of sorting a portion of the original list. 

Say that a node v in T is in size group i if the size of v's subproblem is greater 
than (3/4)i+ln and at most (3/4)in. Let us analyze the expected time spent working 
on all the subproblems for nodes in size group i. By the linearity of expectation 
(Proposition A.19), the expected time for working on all these subproblems is the 
sum of the expected times for each one. Some of these nodes correspond to good 
calls and some correspond to bad calls. But note that, since a good call occurs with 
probability 1/2, the expected number of consecutive calls we have to make before 
getting a good call is 2. Moreover, notice that as soon as we have a good call for 
a node in size group i, its children will be in size groups higher than i. Thus, for 
any element x from in the input list, the expected number of nodes in size group i 
containing x in their subproblems is 2. In other words, the expected total size of all 
the subproblems in size group i is 2n. Since the nonrecursive work we perform for 
any subproblem is proportional to its size, this implies that the total expected time 
spent processing subproblems for nodes in size group i is O(n). 

The number of size groups is log4/3 n, since repeatedly mUltiplying by 3/4 is 
the same as repeatedly dividing by 4/3. That is, the number of size groups is 
O(logn). Therefore, the total expected running time of randomized quick-sort is 
O(nlogn). (See Figure 11.13.) • 

Number ofsize Expected time per 
groups . size group 

£:>(log 11) 

SIze group 0 ..••.........• 
l' ~. ~ ~ -I 

size group 1 
y~."--.-----/\ ••••••----

siz~.~!~~~.~. £:>(11)~.. 

~ ....••. £:>(11) 
• 

£:>(11) 

• 
• 
• 

Total expected time: £:>(11 log 11) 

Figure 11.13: A visual time analysis of the quick-sort tree T. Each node is shown 
labeled with the size of its subproblem. 

Actually, we can show that the running time of randomized quick-sort is O(nlog n) 
with high probability. (See Exercise C-11.10.) 



524 Chapter 11. Sorting and Selection 

11.2.2 Java Implementations and Optimizations 

Recall from Section 8.3.5 that a sorting algorithm is in-place if it uses only a small 
amount of memory in addition to that needed for the objects being sorted them
selves. The merge-sort algorithm, as described above, does not use this optimiza
tion technique, and making it be in-place seems to be quite difficult. In-place sort
ing is not inherently difficult, however. For, as with heap-sort, quick-sort can be 
adapted to be in-place, and this is the version of quick-sort that is used in most 
deployed implementations. 

Performing the quick-sort algorithm in-place requires a bit of ingenuity, how
ever, for we must use the input sequence itself to store the subsequences for all 
the recursive calls. We show algorithm inPlaceQuickSort, which performs in-place 
quick-sort, in Code Fragment 11.6. Algorithm inPlaceQuickSort assumes that the 
input sequence, S, is given as an array of distinct elements. The reason for this 
restriction is explored in Exercise R-11.14. The extensionto the general case is 
discussed in Exercise C-l1.8. 

Algorithm inPlaceQuickSort(S,a,b): 
Input: An array S of distinct elements; integers a and b 

Output: Array S with elements originally from indices from a to b, inclusive, 
sorted in nondecreasing order from indices a to b 

if a 2:: b then return {at most one element in ·subrange} 
p +- S[b] {the pivot} 
l +- a {will scan rightward} 
r +- b - 1 {will scan leftward} 
while l ~ r do 

{find an element larger than the pivot} 
while l rand S[l] ~ p do 

l +-l 1 
{find an element smaller than the pivot} 
while r 2:: I and S[r] > p do 

r +- r 1 
if 1< r then 

swap the elements at S[I] and S[r] 
{put the pivot into its final place} 
swap the elements at S[l] and S[b] 
{recursive calls} 
in PlaceQuickSbrt(S,il, 1-" 1) 
inPlaceQuickSort(S,I +1,b) 
{we are done at this point, since the sorted subarrays are already consecutive} 

Code Fragment 11.6: In-place quick-sort for an input array S. 



525 11.2. Quick-Sort 

In-place quick-sOlt modifies the input sequence using element swapping and 
does not explicitly create subsequences. Indeed, a subsequence of the input se
quence is implicitly represented by a range of positions specified by a left-most 
index l and a right-most index r. The divide step is performed by scanning the 
array simultaneously from l forward and from r backward, swapping pairs of ele
ments that are in reverse order, as shown in Figure 11.14. When these two indices 
"meet," subarrays Land G are on opposite sides of the meeting point. The algo
rithm completes by recurring on these two subarrays. 

In-place quick-sort reduces the running time caused by the creation of new 
sequences and the movement of elements between them by a constant factor. We 
show a Java version of in-place quick-sort in Code Fragment 11.7. 

( 85 24 63 45 17 31 96 50) 
r(a) 

( 85 24 63 45 17 31 96 50 ) 

(b) r 

( 31 24 63 45 17 85 96 50) 

r(c) 

~ 
( 31 24 63 45 17 85 96 50 ) 

. l r 
(d) 

( 31 24 17 45 63 85 96 50) 

I r 
(e) 

~ 
( 31 24 17 45 63 85 96 50) 

r 
(f) 

( 31 24 17 45 50 85 96 63 ) 
r 

(g) 

Figure 11.14: Divide step of in-place quick-sort. Index I scans the sequ~nce from 
left to right, :and iIH.lex·r sdms the sequence from right to left. A swap is performed 
.' '> , •• ' 

when l is at an element larger than the pivot and r is at an element smaller than the 
pivot. A final swap with the pivot completes the divide step. 



526 Chapter 11. Sorting and Selection 

public static <E> void quickSort (E[] s, Comparator<E> c) { 

if (s.length < 2) return; / / the array i~ already sorted in this case 

quickSortStep(s, c, 0, s.length-l); / / recursive sort method 


} 

private static <E> void quickSortStep (E[] s, Comparator<E> c, 


int leftBound, int rightBound ) { 
if (leftBound >= rightBound) return; / / the indices have crossed 
E temp; / / temp object used for swapping 
E pivot = s[rightBound]; 
int leftlnd leftBound; / / will scan rightward 
int rightlnd = rightBound-l; / / will scan leftward 
while (Ieftlnd <= rightlnd) { / / scan right until larger than the pivot 

while ( (Ieftlnd <= rightlnd) && (c.compare(s[leftlnd], pivot)<=O) ) 
leftlnd++; 

while ( (rightlnd >= leftlnd) && (c.compare(s[rightlnd], pivot»=O)) 
rightlnd--; 

if (Ieftlnd < rightlnd) { / / both elements were found, so swap 
temp = s[rightlnd]; s[rightlnd] s[leftlnd]; s[leftlnd] temp; 

} 

} / / the loop continues until the indices cross 

temp = s[rightBound]; / / swap pivot with element at leftlnd 

s[rightBound] s[leftl nd]; 

s[leftlnd] = temp; / / the pivot is now at leftlnd 

quickSortStep(s, c, leftBound, leftlnd-l); / / left recursive call 

quickSortStep(s, c, leftlnd+l, rightBound); / / right recursive call 


} 
Code Fragment 11.7: A coding of in-place quick-sort, assuming distinct elements. 

Interestingly, a version of quick-sort is used in the Java Collections FrameWork, 
in the method, java.utiI.Arrays.sort(A), for sorting an array, A, in the case when A 
is an array of base types. It is a recursive, in-place implementation of quick-sort, 
which includes several additional optimizations. 

One optimization limits recursive steps to subarrays of A that are reasonably 
large, say, having at least eight elements. When the subarray to sort is below this 
threshold, the algorithm simply uses the insertion-sort algorithm (Section 8.2.2) 
to sort the subarray. This optimization is based on the fact that the insertion-sort 
algorithm has a low overhead and is relatively fast for sorting small arrays. 

Another optimization is in how pivots are chosen. If the subarray is moderately 
sized, then the pivot is chosen as the median of three values, taken respectively from 
the front, middle, and tail of the array. This median-oj-three heuristic performs 
like a random pivot on subarrays of moderate size. When the sUQarray is relatively 

. large,the algbrithmapplie~ the"rriedi~n-of-threeheuristic separately to the front, 
middle, and tail of the subarray, to select three candidate pivots, and then it selects 
the median of these three. This approach still has lower overhead than selecting a 
random pivot and it performs well in practice. 



527 11.3. Studying Sorting through an Algorithmic Lens 

11.3 Studying Sorting through an Algorithmic Lens 

Recapping our discussions on sorting to this point, we have described several meth
ods with either a worst-case or expected running time of O(nlogn) on an input se
quence of size n. These methods include merge-sort and quick-sOft, described in 
this chapter, as well as heap-sort (Section 8.3.5). In this section, we study sorting 
as an algorithmic problem, addressing general issues about sorting algorithms. 

11.3.1 A Lower Bound for Sorting 

A natural first question to ask is whether we can sort any faster than O(nlogn) 
time. Interestingly, if the computational primitive used by asorting algorithm is the 
comparison of two elements, then this is in fact the best we can do--comparison
based sorting has an Q(nlogn) worst-case lower bound on its running time. (Recall 
the notation QO from Section 4.2.3.) To focus on the main cost of comparison
based sorting, let us only count comparisons, for the sake of a lower bound. 

Suppose we are given a sequence S - (XO,XI, ... , d that we wish to sort, 
and assume that all the elements of S are distinct (this is not really a restriction 
since we are deriving a lower bound). We do not care if S is implemented as an 
array or a linked list, for the sake of our lower bound, since we are only counting 
comparisons. Each time a sorting algorithm compares two elements Xi and Xj (that 
is, it asks, "is Xi <Xj ?"), there are two outcomes: "yes" or "no." Based on the result 
of this comparison, the sorting algorithm may perform some internal calculations 
(which we are not counting here) and will eventually pe~form anbther comparison 
between two other elements of S, which again will have two outcomes. Therefore, 
we can represent a comparison-based sorting algorithm with a decision tree T (re
call Example 7.8). That is, each internal node v in T corresponds to a comparison 
and the edges from node Vi to its children con'espond to the computations reSUlting 
from either a "yes" or "no" answer. It is important to note that the hypothetical 
sorting algorithm in question probably has no explicit knowledge of the tree T. T 
simply represents all the possible sequences of comparisons that a sorting algo
rithm might make, starting from the first comparison (associated with the root) and 
ending with the last comparison (associated with the parent of an external node). 

Each possible initial ordering, or permutation, of the elements in S will cause 
our hypothetical sorting algorithm to execute a series of comparisons, traversing a 
path in TJroll1 the root to sOme external node. Let us associate with each external 
node v in T, then, the set of permutations of S that cause our sorting algorithm to 
end up in v. The most important observation in our lower-bound argument is that 
each external node v in T can represent the sequence of comparisons for at most 
one permutation of S. The justification for this claim is simple: if two different 



528 Chapter 11. Sorting and Selection 

permutations Pl and P2 of S are associated with the same external node, then there 
are at least two objects Xi and Xj, such that Xi is before Xj in Pl but Xi is after Xj 

in P2. At the same time, the output associated with v must be a specific reordering 
of S, with either Xi or Xj appearing before the other. But if PI and P2 both cause the 
sorting algorithm to output the elements of S in this order, then that implies there is 
a way to trick the algorithm into outputting Xi and Xj in the wrong order. Since this 
cannot be allowed by a correct sorting algorithm, each external node of T must be 
associated with exactly one permutation of S. We use this property of the decision 
tree associated with a sorting algorithm to prove the following result: 

Proposition 11.4: The running time ofany comparison-based algorithm for sort
ing an n-element sequence is Q(nlogn) in the worst case. 

Justification: The running time of a comparison-based sorting algorithm must 
be greater than or equal to the height of the decision tree T assoCiated with this 
algorithm, as described above. (See Figure 11.15.) By the argument above, each 
external node in T must be associated with one permutation of S. Moreover, each 
permutation of S must result in a different external node of T. The number of 
permutations of n objects is n! =n(n 1) (n - 2) .. ·2· 1. Thus, T must have at least 
n! external nodes. By Proposition 7.10, the height of T is at least log(n!). This 
immediately justifies the proposition, because there are at least nl2 terms that are 
greater than or equal to nl2 in the product n!; hence 

n n 
log(n!) > log (i) 2 

n 

2: log 2:' 

which is Q(nlogn). • 
Minimum 

Height (Time) 

log (II!) 

nl 

Figure 11.15: Visualizing the lower bound for comparison-based sorting. 



529 11.3. Studying Sorting through an Algorithmic Lens 

11.3.2 Linear-Time Sorting: Bucket-Sort and Radix-Sort 

In the previous section, we showed that Q(nlog n) time is necessary, in the worst 
case, to sort an n-element sequence with a comparison-based sorting algorithm. A 
natural question to ask, then, is whether there are other kinds of sorting algorithms 
that can be designed to run asymptotically faster than O(nlogn) time. Interest
ingly, such algorithms exist, but they require special assumptions about the input 
sequence to be sorted. Even so, such scenarios often arise in practice, so discussing 
them is worthwhile. In this section, we consider the problem of sorting a sequence 
of entries, each a key-value pair, where the keys have a restricted type. 

Bucket-Sort 

Consider a sequence S of n entries whose keys are integers in the range [O,N 1], 
for some integer N > 2, and suppose that S should be sorted according to the keys 
of the entries. In this case, it is possible to sort S in O(n N) time. It might seem 
surprising, but this implies, for example, that if N is O(n), then we can sort S in 
O(n) time. Of course, the crucial point is that, because of the restrictive assumption 
about the format of the elements, we can avoid using comparisons. 

The main idea is to use an algorithm called bucket-sort, which is not based on 
comparisons, but on using keys as indices into a bucket array B that has cells in
dexed from 0 to N 1. An entry with key k is placed in the "bucket" B[k], which 
itself is a sequence (of entries with key k). After inserting each entry of the input• sequence S into its bucket, we can put the entries back into S in sorted order by enu
merating the contents of the buckets B[O] ,B[I], ... , B{N 1] in order. We describe 
the bucket-sort algorithm in Code Fragment 11.8. 

Algorithm bucketSort(S): 

Input: Sequence Sof entries with integer keys in the range [O,N -1] 

Output: Sequence Ssorted in nondecreasing order of the keys 


let B be an array of N sequences, each of which is initially empty 
for each entry e in S do 

k t- e.getKeyO 
remove e from Sand insert it at the end bucket (sequence) B[k] 

for it-O to N - 1 do 

. for each entrY ein sequence E[i] do 


.remove e from B[i] and insert it at the end of S 


Code Fragment 11.8: Bucket-sort. 



530 Chapter 11. Sorting and Selection 

It is easy to see that bucket-sort runs in O(n +N) time and uses O(n N) 
space. Hence, bucket-sort is efficient when the range N of values for the keys is 
small compared to the sequence size n, say N - O(n) or N O(nlogn). Still, its 
performance deteriorates as N grows compared to n. 

An important property of the bucket-sort algorithm is that it works correctly 
even if there are many different elements with the same key. Indeed, we described 
it in a way that anticipates such occurrences. 

Stable Sorting 

When sorting key-value pairs, an important issue is how equal keys are handled. Let 
S = ((ko, xo) , ... , (kn-l ,Xn-l )) be a sequence of such entries. We say that a sorting 
algorithm is stable if, for any two entries (ki,Xi) and (kj,xj) of S, such that ki kj 
and (ki,Xi) precedes (kj,xj) in S before sorting (that is, i < j), entry (ki,Xi) also 
precedes entry (kj,xj) after sorting. Stability is important for a sorting algorithm 
because applications may want to preserve the initial ordering of elements with the 
same key. 

Our informal description of bucket-sort in Code Fragment 11.8 does not guar
antee stability. This is not inherent in the bucket-sort method itself, however, for we 
can easily modify our description to make bucket-sort stable, while still preserving 
its O(n +N) running time. Indeed, we can obtain a stable bucket-sort algorithm 
by always removing the first element from sequence S and from the sequences B[i] 
during the execution of the algorithm. 

Radix-Sort 

One of the reasons that stable sorting is so important is that it allows the bucket-sort 
approach to be applied to more general contexts than to sort integers. Suppose, for 
example, that we want to sort entries with keys that are pairs (k,l), where k and 
l are integers in the range [O,N - 1], for some integer N ~ 2. In a context such 
as this, it is natural to define an ordering on these keys using the lexicographical 
(dictionary) convention, where (kl,ll) < (k2,l2) if kl < k2 or if kl k2 and II < 
12 (Section 8.1.2). This is a pair-wise version of the lexicographic comparison 
function, usually applied to equal-length character strings (and it easily generalizes 
to tuples of d numbers for d > 2). 

The radix-sort algorithm sorts a sequence S of entrieswith keys that are pairs, 
by applying a stable bucket-sort on the sequence twice; first using one component 
of the pair as the ordering key and then using the second component. But which 
order is correct? Should we first sort on the k's (the first component) and then on 
the l's (the second component), or should it be the other way around? 



531 11.3. Studying Sorting through an Algorithmic Lens 

Before we answer this question, we consider the following example. 

Example 11.5: Consider the following sequence S (we show only the keys): 

S ((3,3),(1,5),(2,5),(1,2),(2,3),(1,7),(3,2),(2,2)). 

If we sort S stably on the first component, then we get the sequence 

SI = ((1,5), (1,2), (1,7), (2,5), (2,3), (2,2), (3,3), (3,2)). 

If we then stably sort this sequence S1 using the second component, then we get the 
sequence 

SI,2 = ((1,2), (2,2), (3,2), (2,3), (3,3), (1,5), (2,5), (1, 7)), 

which is not exactly a sorted sequence. On the other hand, if we first stably sort S 
using the second component, then we get the sequence 

S2 = ((1,2), (3,2), (2,2), (3,3), (2,3), (1,5), (2,5), (1, 7)). 

If we then stably sort sequence S2 using the first component, then we get the se
quence 

S2,1 = (( 1,2), (1,5), (1,7), (2,2), (2; 3), (2,5), (3,2), (3,3)), 

which is indeed sequence S lexicographically ordered. 

So, from this example, we are led to believe that we should first sort using 
the second component and then again using the first component. This intuition is 

i 

exactly right. By first stably sorting by the second component and then again by 
the first component, we guarantee that if two entries are equal in the second sort 
(by the first component), then their relative order in the starting sequence (which 
is sorted by the second component) is preserved. Thus, the resulting sequence is 
guaranteed to be sorted lexicographically every time. We leave to a simple exercise 
(R-11.19) the determination of how this approach can be extended to triples and 
other d-tuples of numbers. We can summarize this section as follows: 

Proposition 11.6: Let S be a sequence ofn key-value pairs, each of which has a 
key (kl, k2, .. " kd ), where ki is an integer in the range [O,N - 1] for some integer 
N ~ 2. We can sort S lexicographically in time O(d(n +N)) using radix-sort. 

As important as it is, sorting is not the only interesting problem dealing with 
a total order relation on a set ,of elements. There are some applications, for ex
ample, thatdo not require an ordered listing of an entire set, but nevertheless call 
for some amount of ordering information about the set. Before we study such a 
problem (called "selection"), let us step back and briefly compare all of the sorting 
algorithms we have studied so far. 



532 Chapter 11. Sorting and Selection 

11.3.3 Comparing Sorting Algorithms 

At this point, it might be useful for us to take a breath and consider all the algo
rithms we have studied in this book to sort an n-element array list, node list, or 
general sequence. 

Considering Running Time and Other Factors 

We have studied several methods, such as insertion-sort, and selection-sort, that 
have O(n2)-time behavior in the average and worst case. We have also studied sev
eral methods with O(n log n)-time behavior, including heap-sort, merge-sort, and 
quick-sort. Finally, we have studied a special class of sorting algorithms, namely, 
the bucket-sort and radix-sort methods, that run in linear time for certain types of 
keys. Certainly, the selection-sort algorithm is a poor choice in any application, 
since it runs in O(n2) time even in the best case. But, of the remaining sorting 
algorithms, which is the best? 

As with many things in life, there is no clear "best" sorting algorithm from the 
remaining candidates. The sorting algorithm best suited for a particular application 
depends on several properties of that application. We can offer some guidance 
and observations, therefore, based on the known properties of the "good" sorting 
algorithms. 

Insertion-Sort 

If implemented well, the running time of insertion-sort is O(n+m), where¥m is 
the number of inversions (that is, the number of pairs of elem~nts out of order). 
Thus, insertion-sort is an excellent algorithm for sorting small sequences (say, less 
than 50 elements), because insertion-sort is simple to program, and small sequences 
necessarily have few inversions. Also, insertion-sort is quite effective for sorting 
sequences that are already "almost" sorted. By "almost," we mean that the number 
of inversions is small. But the O(n2)-time performance of insertion-sort makes it a 
poor choice outside of these special contexts. 

Merge-Sort 

Merge-sort, on the other hand, runs in O(nlog n) time in the worst case, which is 
optimal for· comparison-based sorting methods. Still, experimental studies have 
shown that, since it is difficult to make merge-sort run in-place, the overheads 
needed to implement merge-sort make it less attractive than the in-place implemen
tations of heap-sort and quick-sort for sequences that can fit entirely in a computer's 
main memory area. Even so, merge-sort is an excellent algorithm for situations 



533 11.3. Studying Sorting through an Algorithmic Lens 

where the input cannot all fit into main memory, but must be stored in blocks on an 
external memory device, such as a disk. In these contexts, the way that merge-sort 
processes runs of data in long merge streams makes the best use of all the data 
brought into main memory in a block from disk. Thus, for external memory sort
ing, the merge-sort algorithm tends to minimize the total number of disk reads and 
writes needed, which makes the merge-sort algorithm superior in such contexts. 

Quick-Sort 

Experimental studies have shown that if an input sequence can fit entirely in main 
memory, then the in-place versions of quick-sort and heap-sort run faster than 
merge-sort. The extra overhead needed for copying nodes or entries puts merge
sort at a disadvantage to quick-sort and heap-sort in these applications. In fa9t, 
quick-sort tends, on average, to beat heap-sort in these tests. 

So, quick-sort is an excellent choice as a general-purpose, in-memory sorting 
algorithm. Indeed, it is included in the qsort sorting utility provided in C language 
libraries. Still, its O(n2) time worst-case performance makes quick-sort a poor 
choice in real-time applications where we must make guarantees on the time needed 
to complete a sorting operation. 

Heap-Sort 

In real-time scenarios where we have a fixed amouI)t of time to perform a sorting 
operation and the input data can fit into main memory, the heap-sort algorithm is 
probably the best choice. It runs in O(nlogn) worst-case time and can easily be 
made to execute in-place. 

Bucket-Sort and Radix-Sort 

Finally, if our application involves sorting entries with small integer keys or d
tuples of small integer keys, then bucket-sort or radix-sort is an excellent choice, 
foritruns.h'\ O(d(n:+N)) time, where [O,N ~ 1] is the range ofintegerkeys (andd 
1 forbuckefs·ort). Thus, if d(n +N) is significantly "below" the nlogn function, 
then this sorting method should run faster than even quick-sort or heap-sort. 

. Thus, our study of all these different sorting algorithms provides us with a 
versatile collection of sorting methods in our algorithm engineering "toolbox." 



534 Chapter 11. Sorting and Selection 

11.4 Sets and Union/Find Structures 

In this section, we study sets, including operations that define them and operations 
that can be applied to entire sets. 

11.4.1 	 The Set ADT 

Aset is a collection of distinct objects. That is, there are no duplicate elements in a 
set, and there is no explicit notion of keys or even an order. Even so, if the elements 
in a set are comparable, then we can maintain sets to be ordered. The fundamental 
methods of the set ADT for a set S are the following: 

add(e): Adds the element e to S. 

remove(e): Removes the element e from S. 

contains(e): Returns whether e is in S. 

iteratorO: Returns an iterator of the elements in S. 

The Java Collections Framework includes all of these methods as a part of the 
java.util.Set interface, and this interface has the following implementation: 

• java.utiI.HashSet: an implementation of the set ADT with a hash table. 

If we wish to extend the set ADT to an ordered set ADT, then we could also 
include the following methods: 

pollFirstO: Returns and removes the smallest element in S. 

pollLastO: Returns and removes the largest element in S. 
. . 

ceiling(e): Returns the element that is the smallest element greater 
than or equal to e. 

floor(e): Returns the element that is the largest element less than 
or equal to e. 

lower(e): Returns the element that is the greatest element strictly 
less than e. 

higher(e): Returns the element that is the smallest element strictly 
greater than k. 

Incidentally, each of these methods is included in the java.util.NavigableSet 
interface; hence, Java provides a superset of the ordered set ADT. This interface is 
implemented in the following classes in the Java Collections Framework: 

• java.util.concurrent.ConcurrentSkipListSet: 	 a skip-list implementation of 
the ordered set ADT 

• java.utiI.TreeSet: a red-black tree implementation of the ordered set ADT. 



535 11.4. Sets and UnionIFind Structures 

11.4.2 Mergeable Sets and the Template Method Pattern 

Let us explore a further extension of the ordered set ADT that allows for operations 
between pairs of sets. This will also serve to motivate a software engineering design 
pattern known as the template method. 

First, we recall the mathematical definitions of the unioll, intersection, and 
subtraction of two sets A and B: 

AUB {x: x is in A or x is in B}, 

AnB {x: x is in A and x is in B}, 

A - B {x: x is in A and x is not in B} . 

Example 11.7: Most Internet search engines store, for each word x in their dic
tionary database, a set, W(x), of Web pages that contain x, where each Web page 
is identified by a unique Internet address. When presented with a query for a word 
x, such a search engine need only return the Web pages in the set W(x), sorted 
according to some proprietary priority ranking of page "importance." But when 
presented with a two-word query for words x and y, such a search engine must first 
compute the intersection W(x) nW(y), and then return the Web pages in the result
ing set sorted by priority. Several search engines use the set intersection algorithm 
described in this section for this computation. 

Fundamental Methods of the Mergeable Set ADT 

The fundamental methods of the mergeable set ADT, acting on. a set A, are as 
follows: 

union(B): Replace A with the union of A and B, that is, execute 
A+-AUB. 

intersect(B): Replace A with the intersection of A and B, that is, exe
cute A +- A nB. 

subtract(B): Replace A with the difference of A and B, that is, execute 
A+-A B. 

A Simple Mergeable Set Implementation 

One of the simplest ways of implementing a set is to store its elements in an or
.deredsequence. This implementation is included in several software libraries for 
.	generic· data structures, for example. Therefore, let us consider implementing the 
set ADT with an ordered sequence (we consider other implementations in several 
exercises). Any consistent total order relation among the elements of the set can be 
used, provided the same order is used for all the sets. 



536 Chapter 11. Sorting and Selection 

We implement each of the three fundamental set operations using a generic ver
sion of the merge algorithm that takes, as input, two sorted sequences representing 
the input sets, and constructs a sequence representing the output set, be it the union, 
intersection, or subtraction of the input sets. Incidentally, we have defined these op
erations so that they modify the contents of the set A involved. Alternatively, we 
could have defined these methods so that they do not modify A but return a new set 
instead. 

The generic merge algorithm iteratively examines and compares the CUlTent el
ements a and b of the input sequence A and B, respectively, and finds out whether 
a < b, a b, or a > b. Then, based on the outcome of this comparison, it deter
mines whether it should copy one of the elements a and b to the end of the output 
sequence C. This determination is made based on the particular operation we are 
performing, be it a union, intersection, or subtraction. For example, in a union 
operation, we proceed as follows: 

• If a < b, we copy a to the end of C and advance to the next element of A. 
• If a b, we copy a to the end of C and advance to the next elements of A 

andB. 
• If a> b, we copy b to the end of C and advance to the next element of B. 

Performance of Generic Merging 

Let us analyze the running time of generic merging. At each iteration, we compare 
two elements of the input sequences A and B, possibly copy one element to the 
output sequence, and advance the CUlTent element of A, B, or both. AssUJ.1ling 
that comparing and copying elements takes O( 1) time, the total running tithe is 
O(nA nB), where nA is the size of A and nB is the size of !J; that is, generic 
merging takes time proportional to the number of elements. Thus, we have the 
following: 

Proposition 11.8: The set ADT can be implemented with an ordered sequence 
and ageneric merge scheme that supports operations union, intersect, and subtract 
in O(n) time, where n denotes the sum ofsizes of the sets involved. 

Generic Merging as a Template Method Pattern 

The generic merge algorithm is based on the template method pattern (see Sec
tion 7.3.7). The template method pattern is a software engineering design pattern 
describing a genericcoIIlPutation mechmrismthatcan be specialized by redefining 

. certain steps. 'In this case, We describe a method that merges two sequences into 
one and can be specialized by the behavior of three abstract methods. 

Code Fragment 11.9 shows the class Merge providing a Java implementation 
of the generic merge algorithm. 



537 11.4. Sets and UnionIFind Structures 

/** Generic merge for sorted sequences. * / 
public abstract class Merge<E> { 

private E a, b; / / current elements in A and B 
private Iterator<E> iterA, iterB; / / iterators for A and B 
/** Template method * / 
public void merge(PositionList<E> A, PositionList<E> B, 

Comparator<E> comp, PositionList<E> C) { 
iterA = A.iteratorO; 
iterB = B.iteratorO; 
boolean aExists advanceAO; / / Boolean test if there is a current a 
boolean bExists = advanceBO; / / Boolean test if there is a current b 
while (aExists && bExists) { / / Main loop for merging a and b 

int x = comp.compare(a, b); 

if (x < 0) { alsLess(a, C); aExists = advanceAO; } 

else if (x == 0) { 


bothAreEqual(a, b, C); aExists advanceAO; bExists = advanceBO; } 
else { blsLess(b, C); bExists = advanceBO; } 

} 
while (aExists) { alsLess(a, C); aExists = adv.anceAO; } 
while (bExists) { blsLess(b, C); bExists = advanceBO; } 


} 

/ / auxiliary methods to be specialized by subclasses 

protected void alsLess(E a, PositionList<E> C) { } 

protected void bothAreEqual(E a, E b, PositionList<E> C) { } 

protected void blsLess(E b, PositionList<E>" C) {.} 

/ / helper methods 

private boolean advanceAO { 


if (iterA.hasNextO) {a iterA.nextO; return true; } 

return false; 


} 
private boolean advanceBO { 


if (iterB.hasNextO) {b iterB.nextO; return true; } 

return false; 


} 
} 

Code Fragment 11.9: Class Merge for generic merging. 



538 Chapter 11. Sorting and Selection 

To convert the generic Merge class into useful classes, we must extend it with 
classes that redefine the three auxiliary methods, alsLess, bothAreEqual, and bls
Less. We show how union, intersection, and subtraction can be easily described 
in terms of these methods in Code Fragment 11.10. The auxiliary methods are 
redefined so that the template method merge performs as follows: 

• 	In class UnionMerge, merge copies every element from A and B into C, but 
does not duplicate any element. 

• 	In class IntersectMerge, merge copies every element that is in both A and B 
into C, but "throws away" elements in one set but not in the other. 

• 	In class SubtractMerge, merge copies every element that is in A and not in B 
into C. 

/** Class specializing the generic merge template to union two sets * / 
public class UnionMerge<E> extends Merge<E> { 

protected void alsLess(E a, PositionList<E> C) { 
CaddLast(a); / / add a 

} 
protected void bothAreEqual(E a, E b, PositionList<E> C) { 

CaddLast(a); / / add a (but not its duplicate b) 
} 
protected void blsLess(E -b, PositionList<E> C) { 

CaddLast(b); / / add b 
} 

} 
/** Class specializing the generic merge template to intersect two sets * / 
public class IntersectMerge<E> extends Merge<E> { . 

protected void alsLess(E a, PositionList<E> C) { } 
protected void bothAreEqual(E a, E b, PositionList<E> C) { 

CaddLast(a); / / add a (but not its duplicate b) 
} 
protected void blsLess(E b, PositionList<E> C) { } 

} 

/** Class specializing the generic merge template to subtract two sets * / 
public class SubtractMerge<E> extends Merge<E> { 

protected void alsLess(E a, PositionList<E> C) { 
CaddLast(a); / / add a 

} 
protected void bothAreEqual(E a, E b, PositionList<E> C) { } 
protected void blsLess(E h, PositionList<E>C) { } 

} 
Code Fragment 11.10: Classes extending the Merge class by specializing the auxil
iary methods to perform set union, intersection, and subtraction, respectively. 



539 11.4. Sets and UnionIFind Structures 

11.4.3 Partitions with Union-Find Operations 

Apartition is a collection of disjoint sets. We define the methods of the partition 
ADT using position objects (Section 6.2.2), each of which stores an element x. The 
partition ADT supports the following methods. 

makeSet(x): 	Create a singleton set containing the element x and return 
the position storing x in this set. 

union(A,B): 	Return the setA UB, destroying the old A and B. 

find(p): Return the set containing the element in position p. 

A simple implementation of a partition with a total of n elements is with a 
collection of sequences, one for each set, where the sequence for a set A stores set 
positions as its elements. Each position object stores a variable, element, which ref
erences its associated element x and allows the execution of the elementO method 
in O( 1) time. In addition, we also store a variable, set, in each position, which 
references the sequence storing p, since this sequence is representing the set con
taining p's element. (See Figure 11.16.) Thus, we can perform operation find(p) 
in 0(1) time, by following the set reference for p. Likewise, makeSet also takes 
0(1) time. Operation union(A,B) requires that we join two sequences into one and 
update the set references of the positions in one of the two. We choose to imple
ment this operation by removing all the positions from the sequence with smaller 
size, and inserting them in the sequence with larger size. Each time we take a 
position p from the smaller set s and insert it into the larger set t, we update the 
set reference for p to now point to t. Hence, the operation unio~(A,B) takes time 
O(min(IA!, !Bi)), which is O(n), because, in the worst case, IAI = IBI n12. Nev
ertheless, as shown below, an amortized analysis shows this implementation to be 
much better than appears from this worst-case analysis. 

Figure 11.16: Sequence-based implementation of a partition consisting ofthree sets: 
A ~ {I,4,7}, B = {2, 3,6, 9}, and C = {5, 8,10,11, I2}. 



540 Chapter 11. Sorting and Selection 

Performance of the Sequence Implementation 

The sequence implementation above is simple, but it is also efficient, as the follow
ing theorem shows. 

Proposition 11.9: Performing a series ofn makeSet, union, and find operations, 
using the sequence-based implementation above, starting from an initially empty 
partition takes O(nlogn) time. 

Justification: We use the accounting method and assume that one cyber-rupee 
can pay for the time to perform a find operation, a makeSet operation, or the move
ment of a position object from one sequence to another in a union operation. In the 
case of a find or makeSet operation, we charge the operation itself 1 cyber-rupee. 
In the case of a union operation, however, we charge 1cyber-rupee to each position· 
that we move from one set to another. Note that we charge nothing to the union 
operations themselves. Clearly, the total charges to find and makeSet operations 
sum to be O(n). 

Consider, then, the number of charges made to positions on behalf of union op
erations. The important observation is that each time we move a position from one 
set to another, the size of the new set at least doubles. Thus, each position is moved 
from one set to another at most logn times; hence, each position can be charged at 
most O(logn) times. Since we assume that the partition is imtially empty, there are 
O(n) different elements referenced in the given series of operations, which implies 
that the total time for all the union operations is O(nlogn). • 

s 
The amortized running time of an operation in a series of makeSet, union, and 

find operations, is the total time taken for the series divided by the number of oper
ations. We conclude from the proposition above that, for a partition implemented 
using sequences, the amortized running time of each operation is O(logn). Thus, 
we can summarize the performance of our simple sequence-based partition imple
mentation as follows. 

Proposition 11.10: Using a sequence-based implementation of a partition, in a 
series of n makeSet, union, and find operations starting from an initially empty 
partition, the amortized running time ofeach operation is O(logn). 

Note that in this sequence-based implementation of a partition, each find oper
ation takes worst-case 0(1) time. It is the running time of the union operations that 
is the computational bottleneck. . 

In the next section, we describe a tree-based implementation of a partition that 
does not guarantee constant-time find operations, but has amortized time much 
better than O(logn) per union operation. 



541 11.4. Sets and UnionIFind Structures 

A Tree-Based Partition Implementation * 
An alternative data structure uses a collection of trees to store the n elements in sets, 
where each. tree is associated with a different set. (See Figure 11.17.) In particular, 
we implement each tree with a linked data structure whose nodes are themselves 
the set position objects. We still view each position p as being a node having a 
variable, element, referring to its element x, and a variable, set, referring to a set 
containing x, as before. But now we also view each position p as being of the 
"set" data type. Thus, the set reference of each position p can point to a position, 
which could even be p itself. Moreover, we implement this approach so that all the 
positions and their respective set references together define a collection of trees. 

We associate each tree with a set. For any position p, if p's set reference points 
back to p, then p is the root of its tree, and the name of the set containing p is "p" 
(that is, we will be using position names as set names in this case). Otherwise, the 
set reference for p points to p's parent in its tree. In either case, the set containing 
p is the one associated with the root of the tree containing p. 

Figure 11.17: Tree-based implementation of a parti,tion consisting of three disjoint 
sets: A = {I ,4, 7}, B = {2, 3, 6,9}, and C = {5, 8,10,11, 12}. 

With this partition data structure, operation union(A,B) is called with position 
arguments p and q that respectively represent the sets A and B (that is, A = p and 
B = q). We perform this operation by making one of the trees a subtree of the 
other (Figure Il.I8b), which can be done in 0(1) time by setting the set reference 
of the root of one tree to point to the root of the other tree. Operation find for a 
position p is performed by walking up to the root of the tree containing the position 
p (Figure Il.I8a), which takes O(n) time in the worst case. 

At first, this implementation may seem to be no better than the sequence-based 
data structure, but we add the following two simple heuristics to make it run faster. 

Union·by~Size: Store, with eagh position node p, the size of the subtree rooted 
at p. In a union operation, make the tree of the smaller set become a subtree 
of the other tree, and update the size field of the root of the resulting tree. 



542 Chapter 11. Sorting and Selection 

12 

(a) 

Figure 11.18: Tree-based implementation of a partition: (a) operation union(A,B); 
(b) operation fi nd (p), where p denotes the position object for element 12. 

Path Compression: In a find operation, for each node v that the find visits, reset 
the parent pointer from v to point to the root. (See Figure 11.19.) 

i 

(a) (b) 

Figure 11.19: Path-compression heuristic: (a) path traversed by operation find on 
element 12; (b) restructured tree. 

A surprising property of this data structure, when implemented using the union
by-size and path-compression heuristics, is that performing a series of n union and 
find operations takes O(nlog* n) time, where log* n is the log-star function, which 
is the inverse of the tower-oJ-twos function. Intuitively, log* n is the number of 
times that one can iteratively take the logarithm (base 2) of a number before getting 
a number smaller than 2. Table 11.1 shows a few sample values. 

·2 222 
22 22 \

minimumn 2 2 4 16 22 = 65 536 222 = 265,536 ., 
log* n 1 2 3 4 5 i 

Table 11.1: Some values of log* n and critical values for its inverse. 



543 11.5. Selection 

11.5 Selection 

There are a number of applications in which we are interested in identifying a sin
gle element in terms of its rank relative to an ordering of the entire set. Examples 
include identifying the minimum and maximum elements, but we may also be in
terested in, say, identifying the median element, that is, the element such that half 
of the other elements are smaller and the remaining half are larger. In general, 
queries that ask for an element with a given rank are called order statistics. 

Defining the Selection Problem 

In this section, we discuss the general order-statistic problem of selecting the kth 
smallest element from an unsorted collection of 12 comparable elements. This is 
known as the selection problem. Of course, we can solve this problem by sorting 
the collection and then indexing into the sorted sequence at index k - 1. Using 
the best comparison-based sorting algorithms, this approach would take O(nlogn) 
time, which is obviously an overkill for the cases where k = 1 or k n (or even 
k = 2, k 3, k = n 1, or k = n - 5), because we can easily solve the selection 
problem for these values of k in O(n) time. Th!ls, a natural question to ask is 
whether we can achieve an O(n) running time for all values of k (including the 
interesting case of finding the median, where k = ln/2J). 

11.5.1 Prune-and-Search 

This may come as a small surprise, but we can indeed solve the selection problem in 
O(n) time for any value of k. Moreover, the technique we use to achieve this result 
involves an interesting algorithmic design pattern. This design pattern is known 
as prune-and-search or decrease-and-conquer. In applying this design pattern, 
we solve a given problem that is defined on a collection of n objects by pruning 
away a fraction of the n objects and recursively solving the smaller problem. When 
we have finally reduced the problem to one defined on a constant-sized collection 
of objects, then we solve the problem using some brute-force method. Returning 
back from all the recursive calls completes the construction. In some cases, we 
can avoid using recursion, in which case we simply iterate the prune-and-search 
reduction step until we can apply a brute-force method and stop. Incidentally, the 
binary search method described in Section 9.3.1 is an example of the prune-and
search design pattern. 



544 Chapter 11. Sorting and Selection 

11.5.2 Randomized Quick-Select 

In applying the prune-and-search pattern to the selection problem, we can design 
a simple and practical method, called randomized quick-select, for finding the kth 
smallest element in an unordered sequence of n elements on which a total order 
relation is defined. Randomized quick-select runs in O(n) expected time, taken 
over all possible random choices made by the algorithm, and this expectation does 
not depend whatsoever on any randomness assumptions about the input distribu
tion. We note though that randomized quick-select runs in O(n2) time in the worst 
case, the justification of which is left as an exercise (R-11.25). We also provide 
an exercise (C-11.31) for modifying randomized quick-select to get a deterministic 
selection algorithm that runs in O(n) worst-case time.. The existence of this de
terministic algorithm is mostly of theoretical interest, however, since the constant 
factor hidden by the big-Oh notation is relatively large in this case. 

Suppose we are given an unsorted sequence S of n comparable elements to
gether with an integer k E [l,n]. At a high level, the quick-select algorithm for 
finding the kth smallest element in Sis similar in structure to the randomized quick
sort algorithm described in Section 11.2.1. We pick an element x from S at random 
and use this as a "pivot" to subdivide Sinto three subsequences L, E, and G, storing 
the elements of S less than x, equal to x, and greater than x, respectively. This is the 
prune step. Then, based on the value of k, we then determine which of these sets to 
recur on. Randomized quick-select is described in Code Fragment 11.11. i 

Algorithm quickSelect(S,k): 
Input: Sequence S of n comparable elements, and an integer k E [l,n] 
Output: The kth smallest element of S 

if n 1 then 
return the (first) element of S. 

pick a random (pivot) element x of S and divide S into three sequences: 
• L, storing the elements in S less than x 
• E, storing the elements in S equal to x 
• G, storing the elements in S greater than x. 


if k < ILl then 

quickSelect(L,k) 


else if k:::; ILl +lEI then 

return x {each element in E is equal to x} 


else 

quickSelect(G, k ILl-lEI) {note the new selection parameter} 

Code Fragment 11.11: Randomized quick-select algorithm. 



545 11.5. Selection 

11.5.3 Analyzing Randomized Quick-Select 

Showing that randomized quick-select runs in O(n) time requires a simple prob
abilistic argument. The argument is based on the linearity of expectation, which 
states that if X and Yare random variables and c is a number, then 

E(X Y) E(X) +E(Y) and E(cX) = cE(X), 

where we use E(Z) to denote the expected value of the expression Z. 
Let t (n) be the running time of randomized quick-select on a sequence of size n. 

Since this algorithm depends on random events, its running time, t(n), is a random 
variable. We want to bound E(t(n)), the expected value of t(n). Say that a recursive 
invocation of our algorithm is "good" if it partitions S so that the size of L and G 
is at most 3n/4. Clearly, a recursive call is good with probability 1/2. Let g(n) 
denote the number of consecutive recursive calls we make, including the present 
one, before we get a good one. Then we can characterize t(n) using the following 
recurrence equation: 

t(n) ::; bn· g(n) t(3n/4), 

where b 2:: 1 is a constant. Applying the linearity of expectation for n > 1, we get 

E(t(n)) ::; E(bn· g(n) +t(3n/4)) bn· E(g(n)) +E(t(3n/4)). 

Since a recursive call is good with probability 1 /2, and whether a recursive call is 
good or not is independent of its parent call being good, the expected value of g(n) 
is the same as the expected number of times we must flip a fair coin before it comes 
up "heads." That is, E(g(n)) = 2. Thus, if we let T(n) be shorthand for E(t(n)), 
then we can write the case for n > 1 as 

T(n) ::; T(3n/4) 2bn. 

To convert this relation into a closed form, let us iteratively apply this inequality 
assuming n is large. So, for example, after two applications, 

T(n)::; T((3/4)2n) 2b(3/4)n +2bn. 

At this point, we should see that the general case is 

r1og4/3n1 
T(n) < 2bn· .E (3/4t 

i=O 

In other words, the expected running time is at most 2bn times a geometric sum 

. whos~base is a positive number lessthan 1. Thus, by Proposition 4.5, T(n) is O(n). 


Proposition 11.11: The expected running time ofrandomized quick-select on a 

sequence S ofsize n is O(n), assuming two elements ofS can be compared in O(1 ) 
time. 



546 Chapter 11. Sorting and Selection 

11.6· Exercises 

For help with exercises, please visit the web site, www.wiley.com/go/globallgoodrich. 

Rei nforcement 

R-11.1 Suppose S is a list of n bits, that is, nO's and 1'So How long will it take to 
sort S with the merge-sort algorithm? What about quick-sort? 

R-11.2 Suppose S is a list of n bits, that is, nO's and 1'So How long will it take to 
sort S stably with the bucket-sort algorithm? 

R-11.3 Give a complete justification of Proposition 11.1. 

R-11.4 	In the merge-sort tree shown in Figures 11.2 through 11.4, some edges are 
drawn as arrows. What is the meaning of a downward arrow? How about 
an upward arrow? 

R-l1.5 Give a complete pseudo-code description of the recursive merge-sort al
gorithm that takes an array as its input and output. 

R-11.6 Show that the running time of the merge-sort algorithm on an n-element 
sequence is O(nlogn), even when n is not a power of 2. 

R-11.7 	Suppose we are given two n-element sorted sequences A 
-

and B that should 
not be viewed as sets (that is, A and B may contain duplicate entries). 
Describe an O(n)-time method for computing a sequence representing the 
set AUB (with no duplicates).· 

R-l1.8 Show that (X - A) U(X - B) =X- (A nB), for any ~ee sets X, A, and B. 

R-l1.9 Suppose we modify the deterministic version of the quick-sort algorithm 
so that, instead of selecting the last element in an n-element sequence as 
the pivot, we choose the element at index lnl2J. What is the running time 
of this version of quick-sort on a sequence that is already sorted? 

R-11.10 Consider a modification of the deterministic version of the quick-sort al
gorithm where we choose the element at index lnl2J as our pivot. De
scribe the kind of sequence that would cause this version of quick-sort to 
run in Q(n2) time. 

R-11.11 Show that the best-case running time of quick-sort on a sequence of size 
n with distinct elements is O(nlog n). 

R" 11.12 Describe a randomized version of in-place quick-sort in pseudo-code. 

R-11.13 Show that the probability that any given input element x belongs to more 
than 210gn subproblems in size group i, for randomized quick-sort, is at 
most 11n2. 

www.wiley.com/go/globallgoodrich


547 11.6. Exercises 

R-ll.l4 	Suppose algorithm inPlaceQuickSort (Code Fragment 11.6) is executed 
on a sequence with duplicate elements. Show that the algorithm still cor
rectly sorts the input sequence, but the result of the divide step may differ 
from the high-level description given in Section 11.2 and may result in 
inefficiencies. In particular, what happens in the partition step when there 
are elements equal to the pivot? Is the sequence E (storing the elements 
equal to the pivot) actually computed? Does the algorithm recur on the 
subsequences Land G, or on some other subsequences? What is the run
ning time of the algorithm if all the input elements are equal? 

R-11.15 	Of the n! possible inputs to a given comparison-based sorting algorithm, 
what is the absolute maximum number of inputs that could be sorted with 
just n compmlsons? 

R-l1.16 	Jonathan has a comparison-based sorting algorithm that sorts the first k el
ements in sequence of size n in O(n) time. Give a big-Oh characterization 
of the biggest that k can be? 

R-11.17 	Is the merge-sort algorithm in Section 11.1 stable? Why or why not? 

R-ll.lS 	An algorithm that sorts key-value entries by key is said to be straggling 
if, any time two entries ej and ejhave equal keys, but ej appears before ej 
in the input, then the algorithm places ej after ej in the output. Describe a 
change to the merge-sort algorithm in Section 11.1 to make it straggling. 

R-l1.19 	Describe a radix-sort method for lexicographically sorting a sequence S of 
triplets (k,l,m), where k, l, and mare integers in the range [O,N -1], for 
some N > 2. How could this scheme be extended to sequences of d-tuples 
(kl,k2,'" ,kd), where-each ki is an integer in the range [@,N 1)? 

R-l1.20 Is the bucket-sort algorithm in-place? Why or why not? 

R-11.21 Give an example input list that requires merge-sort and heap-sort to take 
O(nlogn) time to sort, but insertion-sort runs in O(n) time. What if you 
reverse this list? 

R-11.22 Describe, in pseudo-code, how to perform path compression on a path of 
length h in O(h) time in a tree-based partition union/find structure. 

R-11.23 George claims he has a fast way to do path compression in a partition 
structure, starting at a node v. He puts v into a list L, and starts following 
parent pointers. Each time he encounters a new node, u, he adds u to L 
and updates the parent pointer of each node in L to point to u's parent. 
Shbwthat George's algorithm runs in Q(h2) time on a path of length h. 

R-l1.24 Describe an in-place version of the quick-select algorithm in pseudo-code. 

R-l1.25 	Show that the worst-case running time of quick-select on an n-element 
sequence is Q(n2). 



548 Chapter 11. Sorting and Selection 

Creativity 

C-11.1 	 Linda claims to have an algorithm that takes an input sequence Sand 
produces an output sequence T that is a sorting of the n elements in S. 

a. 	 Give an algorithm, isSorted, for testing in O(n) time if T is sorted. 
b. 	 Explain why the algorithm isSorted is not sufficient to prove a par

ticular output T to Linda's algorithm is a sorting of S. 
c. 	 Describe what additional information Linda's algorithm could out

put so that her algorithm's COlTectness could be established on any 
given Sand T in O(n) time. 

C-11.2 	Given two sets A and B represented as sorted sequences, describe an effi
cient algorithm for computing A EB B, which is the set of elements that are 
in A or B, but not in both. 

C-l1.3 	Suppose that we represent sets with balanced search trees. Describe and 
analyze algorithms for each of the methods in the set ADT, assuming that 
one of the two sets is much smaller than the other. 

C-Il.4 	Describe and analyze an efficient method for removing all duplicates from 
a collection A of n elements. 

C-l1.5 	Consider sets whose elements are integers in the range [0, N 1]. A pop
ular scheme for representing a set A of this type is by means of a Boolean 
array, B, where we say that x is in A if and only if B[x] = true. Since each 
cell of B can be represented with Ii single bit, B is sometimes refelTed to 
as a bit vector. Describe and analyze efficient algorithms for performing 
the methods of the set ADT assuming this representation.. 

C-11.6 	Consider a version of deterministic quick-sort where we pick as our pivot 
the median of the d last elements in the input sequence of n elements, for 
a fixed, constant odd number d ~ 3. What is the asymptotic worst-case 
running time of quick-sort in this case? 

C-ll.7 	Another way to analyze randomized quick-sort is to use a recurrence 
equation. In this case, we let T(n) denote the expected running time 
of randomized quick-sort, and we observe that, because of the worst-case 
partitions for good and bad splits, we can write 

1 	 1 
T(n) ~ 	2 (T(3n/4) T(n/4)) + 2 (T(n 1)) +bn, 

.	where bn is thetime needed, top~tition a listfor a given pivot and concate
riate 'the'r~sult sublists aft~r'the n~cursive calls return. Show, by induction, 
that T(n) is O(nlogn). 

C-1 L8 	ModifyinPlaceQuickSort (Code Fragment 11.6) to handle the general 
case efficiently when the input sequence, S, may have duplicate keys. 



549 11.6. 	 Exercises 

C-11.9 	Describe a nonrecursive, in-place version of the quick-sort algorithm. The 
algorithm should still be based on the same divide-and-conquer approach, 
but use an explicit stack to process subproblems. 

C-I1.10 	Show that randomized quick-sort runs in O(nlog n) time with probability 
at least 1 - 1/n, that is, with high probability, by answering the following: 

a. 	 For each input element x, define q,j(x) to be a 0/1 random variable 
that is 1 if and only if element x is in j +I subproblems that belong 
to size group i. Argue why we need not define q,j for j > n. 

b. 	 Let Xi,j be a 0/1 random variable that is I with probability 1/2j , 

independent of any other events, and let L = fiog4/3 n1. Argue why 

Ef:Ol Ej=OCi,j(X) ::; Ef:Ol Ej=oXi,j. 
c. 	 Show that the expected value of Etol Ej=OXi,j is (2 -1/2n)L 

d. 	 Show that the probability that E7=oEJ=oXi ,j > 4L is at most l/n2
, 

using the Chernoff bound that states that if X is the sum of a finite 
number of independent 011 random variables with expected value 
f1 > 0, then Pr(X > 2/1) < (4/etfl , where e = 2.71828128 .... 

e. 	 Argue why the previous claim proves randomized quick-sort runs in 
O(nlogn) time with probability at least 1- lin. 

C-ll.ll Given an array A of n entries with keys equal to 0 or 1, describe an in-place 
method for ordering A so that all the O's are before every l. 

C-ll.12 	Suppose we are given- an n-element sequence S such that each element 
in S represents a different vote for president, where each vote is given 
as an integer representing a particular candidate. Design an O(nlogn)
time algorithm to see ·who wins the election S represents, assuming the 
candidate with the most votes wins (eyen ifthere are O(n) candidates). 

C-ll.13 	Consider the voting problem from Exercise C-ll.12, but now suppose that 
we know the number k <n of candidates running. Describe an O(nlogk)
time algorithm for determining who wins the election. 

C-ll.14 	Consider the voting problem from Exercise C-Il.12, but now suppose a 
candidate wins only if he or she gets a majority of the votes cast. Design 
and analyze a fast algorithm for determining the winner if there is one. 

C-ll.lS 	Show that any comparison-based sorting algorithm can be made to be 
stable without affecting its asymptotic running time. 

C-ll.16 	Suppose we are given two sequences A and B of n elements, possibly 
containing duplicates, on which a total order relation is defined. Describe 
an efficient algorithm for determining if A and B contain the same set of 
elements. What is the running time of this method? 

C-ll.17 	Given an array A of n integers in the range [0, n2 - 1], describe a simple 
. method for sorting A in O(n) time. 



550 Chapter 11. Sorting and Selection 

C-ll.18 	Let Sl,S2,. ",Sk be k different sequences whose elements have integer 
keys in the range [O,N -1], for some parameter N > 2. Describe an al
gorithm running in O(n N) time for sorting all the sequences (not as a 
union), where n denotes the total size of all the sequences. 

C-1l.19 	Given a sequence S of n elements, on which a total order relation is de
fined, describe an efficient method for determining whether there are two 
equal elements in S. What is the running time of your method? 

C-11.20 	Let S be a sequence of n elements on which a total order relation is de
fined. Recall that an inversion in S is a pair of elements x and y such 
that x appears before yin S but x> y. Describe an algorithm running in 
O(nlogn) time for determining the number of inversions in-So 

C-1l.21 	Let S be a random permutation of n distinct integers. Argue that the ex
pected running time of insertion-sort on S is .Q.(n2). (Hint: Note that half 
of the elements ranked in the top half of a sorted version of Sare expected 
to be in the first half of S.) 

C-l1.22 Let A and B be two sequences of n integers each. Given an integer m, 
describe an O(nlog n) -time algorithm for determining if there is an integer 
a in A and an integer b in B such that m a +b. 

C-11.23 	Given a set of n integers, describe and analyze a fast method for finding 
the rlogn l integers closest to the median. 

C-11.24 	Bob has a set A of n nuts and a set B of n bolts,' such that each nut in A 
has a unique matching bolt in B. Unfortunately, the nuts in A all look the 
same, and the bolts in B all look the same as welL The only kind of a 
comparison that Bob can make is to take a nut-bolt pair (a, b), such that a 
is in Aand b is in B, and test it to see if the thre~ds of.a are larger, smaller, 
or a perfect match with the threads of b. Describe and analyze an efficient 
algorithm for Bob to match up all of his nuts and bolts. 

C-11.25 	Show how to use a deterministic O(n)-time selection algorithm to sort a 
sequence of n elements in O(nlogn) worst-case time. 

C-l1.26 	Given an unsorted sequence S of n comparable elements, and an integer k, 
give an O(nlogk) expected-time algorithm for finding the O(k) elements 
that have rank rn/kl, 2rn/kl, 3 r n/kl, and so on. 

C-11.27 	Let S be a sequence of n insert and removeMin operations, where all the 
keys involved are integers in the range [0, n - 1]. Describe an algorithm 
running in O(nlog* n) for determining the answer to each rernoveMin. 

C-11.28 	Space aliens have given us a program, a I iehSpl it, that can take a sequence 
S of fL integers and partition Sin O(n) time into sequences Sl ,S2, ... ,Sk of 
size at most rn/kl each, such that the elements in Si are less than or equal 
to every element in Si+1, for i = 1,2, ... ,k - 1, for a fixed number, k <n. 
Show how to use alienSplit to sort Sin O(nlogn/logk) time. 



551 11.6. Exercises 

C-l1.29 	Karen has a new way to do path compression in a tree-based union/find 
partition data structure starting at a node v. She puts all the nodes that are 
on the path from v to the root in a set S. Then she scans through S and sets 
the parent pointer of each node in S to its parent's parent pointer (recall 
that the parent pointer of the root points to itself). If this pass changed the 
value of any node's parent pointer, then she repeats this process, and goes 
on repeating this process until she makes a scan through S that does not 
change any node's parent value. Show that Karen's algorithm is correct 
and analyze its running time for a path of length h. 

C-Il.30 	Let S be a sequence of n integers. Describe a method for printing out all 
the pairs of inversions in Sin O(n+k) time, where k is the number of such 
mverSIOns. 

C-Il.31 	This problem deals with modification of the quick-select algorithm to 
make it deterministic yet still run in O(n) time on an n-element sequence. 
The idea is to modify the way we choose the pivot so that it is chosen 
deterministically, not randomly, as follows: 

Partition the set S into rn/5l groups of size 5 each (except pos
sibly for one group). Sort each little set and identify the median 
element in this set. From this set of rn/5l "baby" medians, ap
ply the selection algorithm recursiYely to find the median of the 
baby medians. Use this element as the pivot and proceed as in 
the quick-select algorithm. 

Show that this deterministic method runs in O(n) time 9Y answering the 
following questions (please ignore floor an,d ceiling functions if that sim
plifies the mathematics, for the asymptotics are the same either way): 

a. 	 How many baby medians are less than or equal to the chosen pivot? 
How many are greater than or equal to the pivot? 

b. 	 For each baby median less than or equal to the pivot, how many 
other elements are less than or equal to the pivot? Is the same true 
for those greater than or equal to the pivot? 

c. 	 Argue why the method for finding the deterministic pivot and using 
it to partition Stakes O(n) time. 

d. 	 Based on these estimates, write a recurrence equation to bound the 
worst~case running time t (n) for this selection algorithm (note that in 
the worst case there are two recursive calls-one to find the median 
of the baby medians and one to recur on the larger of L and G). 

e. 	 Using this recurrence equation, show by induction thatt(n) is O(n). 



552 Chapter 11. Sorting and Selection 

Projects 

P-ll.1 	Experimentally compare the performance of in-place quick-sort and a ver
sion of quick-sort that is not in-place. 

P-Il.2 	Design and implement a version of the bucket-sort algorithm for sorting 
a linked list of n entries (for instance, a list of type java.util.LinkedList) 
with integer keys taken from the range [O,N 1], for N > 2. The algorithm 
should run in O(n N) time. 

P-ll.3 	Implement merge-sort and deterministic quick-sort and perform a series 
of benchmarking tests to see which one is faster. Your tests should include 
sequences that are "random" as well as "almost" sorted. 

P-l1.4 	Implement deterministic and randomized versions of the quick-sort al
gorithm and perform a series of benchmarking tests to see which one is 
faster. Your tests should include sequences that are very "random" looking 
as well as ones that are "almost" sorted. 

P-Il.5 	Implement an in-place version of insertion-sort and an in-place version of 
quick-sort. Perform benchmarking tests to determine the range of values 
of 11 where quick-sort is on average better than insertion-sort. 

P-ll.6 	Design and implement an animation for one of the sorting algorithms de
scribed in this chapter. Your animation should illustrate the key properties 
of this algorithm in an intuitive manner. 

P-I1.7 	Implement the randomized quick-sort and quick-select algorithms, and 
design a series of experiments to test their relative speeds. 

P-I1.8 	Implement an extended set ADT that includes the methods union(B), 
intersect(B), subtract(B), sizeO, isEmpty(), plus the methods eq{Jals(B), 
contains(e), insert(e), and remove(e) with obvious meaning. 

P-I1.9 	Implement the tree-based union/find partition data structure with both the 
union-by-size and path-compression heuristics. 

Chapter Notes 

Knuth [63] describes the history of the sorting problem. Huang and Langston [52] show 
how to merge two sorted lists in-place. Our set ADT is derived from [5]. Quick-sort al
gorithm is due to Hoare [47]. More information about randomization can be found in the 
appendix and the book by Motwani and Raghavan [79]. Our quick-sort analysis is a com
bina~ion of a previous analysis and thean~lysis of [59]. The quick-sort analysis of Exer
cise C-l1.7 is due to Littman. Gonnet and Baeza-Yates [39] provide comparisons of sorting 
algorithms. The term "prune-and-search" comes from the computational geometry litera
ture (such as in Clarkson [22] and Megiddo [72,73]). The term "decrease-and-conquer" is 
from Levitin [68]. The java.utiI.Arrays.sort method has optimizations from [14]. 



Chapter 

12 Text Processing 

00000 ••• 
° •••••0 ° .000 000 0000~' '. 00{) 0 0 00 '. °°0 ° 0°.···· Jl(J'" 00 OO~ ooo·o·o·,l••0.'0000 ~o00' 'i,00 00 ° 0 

00 00 " ••00 000.' ... Jlo 0° O' 
0'/,0 00 •••• 000000 00 00 

0 0 0o 0 0 o· 
•••• 0 0000000 00 

0 • 00 • •••••••• ~ 0
0000 0 ••• 0000000 0 0 o.0.00 00 0°.·000

0 ••••• 0
0 00 0 

Contents 

12.1 String Operations ........... . · ..... , 554 

12.1.1 The Java String Class ... -. · 555 

12.1.2 The Java StringBuffer Class · 556 

12.2 Dynamic Programming . . . . . · .... .. 557 
12.2.1 Matrix Ch-ain-Product .... .60 .•• 557 

12.2.2 DNA and Text Sequence Alignment 560 

12.3 Pattern Matching Algorithms . ... . . ..... .. 564 

12.3.1 Brute Force ........ . 564 


12.3.2 The Boyer-Moore Algorithm 566 

12.3.3 The Knuth-Morris-Pratt Algorithm . 570 

12.4 Text Compression and the Greedy Method ...... 575 

12.4.1 The Huffman Coding Algorithm · 576 

12.4.2 The Greedy Method . . . . . . . · 577 

12.5 Tries . ................. . · ...... 578 

12.5.1 Standard Tries . . 578 

12.5.2 Compressed Tries 582 

12.5.3 Suffix Tries .. 584 
12.5.4 Search Engines 586 

12.6 Exercises . . . . . . ........ 587 




554 Chapter 12. Text Processing 

12.1 String Operations 

Document processing is rapidly becoming one of the dominant functions of com
puters. Computers are used to edit documents, to search documents, to transport 
documents over the Internet, and to display documents on printers and computer 
screens. For example, the Internet document formats HTML and XML are pri
marily text formats, with added tags for multimedia content. Making sense of the 
many terabytes of information on the Internet requires a considerable amount of 
text processing. 

In addition to having interesting applications, text processing algorithms also 
highlight some important algorithmic design patterns. In particular, the pattern 
matching problem gives rise to the brute-force method, which is often inefficient 
but has wide applicability. For text compression, we can apply the greedy method, 
which often allows us to approximate solutions to hard problems, and for some 
problems (such as in text compression) actually gives rise to optimal algorithms. 
Finally, in discussing text similarity, we introduce the dynamic programming de
sign pattern, which can be applied in some special instances to solve a problem in 
polynomial time that appears at first to require exponential time to solve. 

Text Processing 

At the heart of algorithms for processing text are methods for dealing with charac
ter strings. Character strings can come from a wide variety of sources, iqcluding 
scientific, linguistic, and Internet applications. Indeed, the fO,llowing are examples 
of such strings: 

P "CGTAAACTGCTTTAATCAAACGC" 

S "http://www.wiley.com". 

The first string, P, comes from DNA applications, and the second string, S, is the 
Internet address (URL) for the publisher of this book. 

Several of the typical string processing operations involve breaking large strings 
into smaller strings. In order to be able to speak about the pieces that result from 
such operations, we use the term substring of an m-character string P to refer to a 
string of the form P[i]P[i + I]P[i +2] ... P[j], for some 0 S; is; j S; m -1, that is, the 
string formed bythe characters in P from index i to index j, inclusive. Technically, 
this means that a string is actually a substring of itself (taking i = 0 and j m 1), 
so if we want to rule this out as a possibility, we must restrict the definition to 
proper substrings, which require that either i 0 or j < m- 1. 

http:http://www.wiley.com


555 12.1. String Operations 

To simplify the notation for referring to substrings, let us use P[i.. j] to denote 
the substring of P from index i to index j, inclusive. That is, 

P[i .. jJ P[i]P[i+ 1]·· ·PU]· 

We use the convention that if i > j, then P[i .. j] is equal to the null string, which 
has length O. In addition, in order to distinguish some special kinds of substrings, 
let us refer to any substring of the form P[O .. i], for 0:::; i:::; m 1, as aprefix of P, 
and any substring of the form P[i..m 1], for a:::; i :::; m - 1, as a suffix of P. For 
example, if we again take P to be the string of DNA given above, then "CGTAA" 
is a prefix of P, "CGC" is a suffix of P, and "TTAATC" is a (proper) substring of P. 
Note that the null string is a prefix and a suffix of any other string. 

To allow for fairly general notions of a character string, we typically do not re
strict the characters in T and P to explicitly come from a well-known character set, 
like the Unicode character set. Instead, we typically use the symbol E to denote the 
character set, or alphabet, from which characters can come. Since most document 
processing algorithms are used in applications where the underlying character set 
is finite, we usually assume that the size of the alphabet E, denoted with lEl, is a 
fixed constant. 

String operations come in two flavors: those that modify the string they act on 
and those that simply return information about the string without actually modify
ing it. Java makes this distinction precise by defining the String class to represent 
immutable strings, which cannot be modified, and the StringBuffer class to repre
sent mutable strings, which can be modified. 

i 

12.1.1 	 The Java String Class 

The main operations of the Java String class are listed below: 

length(): Return the length, n, of S. 

charAt(i): Return the character at index i in S. 

startsWith(Q): Determine if Q is a prefix of S. 

endsWith(Q): Determine if Q is a suffix of S. 

substring(i,j): Return the substring S[i,j]. 

concat(Q): Return the concatenation of Sand Q, that is, S Q. 

equals(Q): Determine if Qis equal to S.. 

indexOf(Q): If Q is a substring of S, return the index of the beginning 
of the first occurrence of Q in S, else return -1. 


This collection forms the typical operations for immutable strings. 




556 Chapter 12. Text Processing 

Example 12.1: Consider the following set ofoperations, which are performed on 
the stringS = "abedetghijklmnop": 

Operation Output 
lengthO 16 

charAt(5) 't' 
concat("qrs ") "abedetghijklmnopqrs" 

endsWith(Iljavapop ") false 
indexOf(lIghi ") 6 

startsWith("abed") true 
substring(4,9) "etghij" 

With the exception of the indexOf(Q) method, which we discuss in Section 12.3, 
all the methods above are easily implemented simply by representing the string as 
an array of characters, which is the standard String implementation in Java. 

12.1.2 	 The Java StringBuffer Class 

The main methods of the Java StringBuffer class are listed below: 

append(Q): Return S Q, replacing S with S+Q. 

insert(i, Q): Return and update S to be the stri.t~g obtained by inserting 
Q inside S starting at index i. 

reverseO: Reverse and return the string S. 

setCharAt(i,ch): Set the character at index i in S to be ch. 

charAt(i): Return the character at index i in S . .' 

Error conditions occur when the index i is out of the bounds of the indices 
of the string. With the exception of the charAt method, most of the methods of 
the String class are not immediately available to a StringBuffer object S in Java. 
Fortunately, the Java StringBuffer class provides a toStringO method that returns a 
String version of S, which can be used to access String methods. 

Example 12.2: Consider the following sequence of operations, which are per
formed on the mutable string that is initially S "abedetghijklmnop": 

Operation 
append("qrs ") , 
insert(3, "xyz") 

reverse0 
setCharAt(7, 'W') 

S 

"abed~tghijklmnopqrs " 

"abexyzdetghijklmnopqrs" 
"srqponmlkjihgtedzyxeba" 
"srqponmWkjihgtedzyxeba /I 



557 · 12.2. Dynamic Programming 

12.2 Dynamic Programming 

In this section, we discuss the dynamic programming algorithm-design technique. 
This technique is similar to the divide-and-conquer technique (Section 11.1.1), in 
that it can be applied to a wide variety of different problems. There are few al
gorithmic techniques that can take problems that seem to require exponential time 
and produce polynomial-time algorithms to solve them. Dynamic programming 
is one such technique. In addition, the algorithms that result from applications of 
the dynamic programming technique are usually quite simple-often needing little 
more than a few lines of code to describe some nested loops for filling in a table. 

12.2.1 Matrix Chain-Product 

Rather than starting out with an explanation of the general components of the dy
namic programming technique, we begin by giving a classic, concrete example. 
Suppose we are given acollection of n two-dimensional arrays (matrices) for which 
we wish to compute the product 

A =Ao ·A i ·A2·· ·AIl-I, 

where Ai is a di x di+ I matrix, for i 0, 1,2" " . ) n - 1. In the standard matrix 
multiplication algorithm (which is the one we will use), to multiply a d x e-matnx B 
times an e x f-matrix C, we compute the product, A, as 

" e-I 

A[i] U] = EB[i] [k]· C[k] [j]. 
k=O 

This definition implies that matrix multiplication is associative, that is, it implies 
that B, (C· D) (B· C) .D. Thus, we can parenthesize the expression for A any 
way we wish and we will end up with the same answer. We will not necessar
ily perform the same number of primitive (that is, scalar) multiplications in each 
parenthesization, however, as is illustrated in the following example. 

Example 12.3: Let B be a2 x 10-matrix, letC be a 10 x 50-matrix, and let D be 
a 50 x 20-matrix. Computing B . (C .D) requires 2 . 10 . 20 10 . 50 .20 = 10400 
multiplications, whereas computing (B· C) .D requires 2· 10· 50 2·50·20 = 3000 
multiplications. 

The matrix chain-product problem is. to determine the parenthesization of the 
expression defining the product A that minimizes the total number of scalar mul
tiplications performed. As the example above illustrates, the differences between 
different solutions can be dramatic, so finding a good solution can result in signifi
cant speedups. 



558 Chapter 12. Text Processing 

Defining Subproblems 

Of course, one way to solve the matrix chain-product problem is to simply enu
merate all the possible ways of parenthesizing the expression for A and determine 
the number of multiplications performed by each one. Unfortunately, the set of all 
different parenthesizations of the expression for A is equal in number to the set of 
all different binary trees that have n external nodes. This number is exponential in 
n. Thus, this straightforward ("brute force") algorithm runs in exponential time, for 
there are an exponential number of ways to parenthesize an associative arithmetic 
expressIOn. 

We can improve the performance achieved by the brute force algorithm signifi
cantly, however, by making a few observations about the nature of the matrix chain
product problem. The first observation is that the problem can be split into subprob
lems. In this case, we can define a number of different subproblems, each of which 
is to compute the best parenthesization for some subexpression Ai .Ai+1••• A j. As 
a concise notation, we use M,j to denote the minimum number of multiplications 
needed to compute this subexpression. Thus, the original matrix chain-product 
problem can be characterized as that of computing the value of NO,n-l. This obser
vation is important, but we need one more in order to apply the dynamic program
ming technique. 

Characterizing Optimal Solutions 

The other important observation we can make about the matrix chain-product"prob
lem is that it is possible to characterize an optimal solution to a.particular subprob
lem in terms of optimal solutions to its subproblems. We call this property the 
subproblem optimality condition. 

In the case of the matrix chain-product problem, we observe that, no mat
ter how we parenthesize a subexpression, there has to be some final matrix mul
tiplication that we perform. That is, a full parenthesization of a subexpression 
Ai ·Ai+l' ,·Aj has to be of the form (Ai" ·Ak)· (Ak+l" ·Aj), for some k E {i,i + 
I, ... ,j - I}. Moreover, for whichever k is the correct one, the products (Ai' ..Ak) 
and (Ak+ I ...Aj) must also be solved optimally. If this were not so, then there would 
be a global optimal that had one of these subproblems solved suboptimally. But this 
is impossible, since we could then reduce the total number of multiplications by re
placingthe current subproblem solution by.an optimal solution for the subproblem. 
This observation implies a way of explicitly defining the optimization problem for 
M,j in terms of other optimal subproblem solutions. Namely, we can compute M,j 
by considering each place k where we could put the final multiplication and taking 
the minimum over all such choices. 



559 12.2. Dynamic Programming 

Designing a Dynamic Programming Algorithm 

We can therefore characterize the optimal subproblem solution, M,j, as 

Ni,j min {Nik+Nk+lj' didk+ldj+l},
i5:k<j' , 

where Ni,i - 0, since no work is needed for a single matrix. That is, M,j is the 
minimum, taken over all possible places to perform the final mUltiplication, of the 
number of multiplications needed to compute each subexpression plus the number 
of multiplications needed to perform the final matrix multiplication. 

Notice that there is a sharing of subproblems going on that prevents us from 
dividing the problem into completely independent subproblems (as we would need 
to do to apply the divide-and-conquer technique). We can, nevertheless, use the 
equation for M,j to derive an efficient algorithm by computing Ni,j values in a 
bottom-up fashion, and storing intermediate solutions in a table of Ni,j values. We 
can begin simply enough by assigning Ni,i = °for i 0,1, ... ,n - 1. We can then 
apply the general equation for Ni,j to compute M,i+ 1 values, since they depend only 
on M,i and Ni+l,i+l values that are available. Given the M,i+l values, we can then 
compute the M,i+2 values, and so on. Therefore, we can build Ni,j values up from 
previously computed values until we can finally compute the value of NO,n-l, which 
is the number that we are searching for. The details of this dynamic programming 
solution are given in Code Fragment 12.1. 

Algorithm MatrixChain(do, ... ,dn): . 

Input: Sequence do, ... ,dn of integers 
Output: For i, j 0, ... ,n ~ 1, the minimum number of mUltiplications Ni,j 

needed to compute the product Ai·Ai+l ',' ·Aj, whereAk is a dk x dk+l matrix 

for i f- °to n - 1 do 
N'f-O1,1 

for b f- 1 to n 1 do 
for i f-°to n b - 1 do 


j f- i+b 

N·I,j f- +00 

for k f- ito j - 1do 


M,j f- min{M,j, Ni,k +Nk+l,j +didk+ldj+l}. 

Code Fragment 12.1: Dynamic programming algorithm for the matrix chain
product problem. 

Thus,w~ ca~ compute'No,n-l with an algorithm that consists primarily of three 
nested for-loops. The outside loop is executed n times. The loop inside is exe
cuted at most n times. And the inner-most loop is also executed at most n times. 
Therefore, the total running time of this algorithm is O(n3). 



560 Chapter 12. Text Processing 

12.2.2 DNA and Text Sequence Alignment 

A common text processing problem, which arises in genetics and software engi
neering, is to test the similarity between two text strings. In a genetics application, 
the two strings could conespond to two strands of DNA, for which we want to com
pute similarities. Likewise, in a software engineering application, the two strings 
could come from two versions of source code for the same program, for which we 
want to determine changes made from one version to the next. Indeed, determining 
the similarity between two strings is so common that the Unix and Linux operating 
systems have a built-in program, diff, for comparing text files. 

Given a string X XOXI X2 ... Xn-l, a subsequence of X is any string that is of 
the form Xi[Xi2 .. 'Xik' where ij < ij+l; that is, it is a sequence of characters that are 
not necessarily contiguous but are nevertheless taken in order fromX. For example, 
the string AAAG is a subsequence of the string CGATAATTGAGA. 

The DNA and text similarity problem we address here is the longest common 
subsequence (LCS) problem. In this problem, we are given two character strings, 
X =XOXIX2" 'Xn-l and Y =YOYIY2" 'Ym-l, over some alphabet (such as the alpha
bet {A, C, G, T} common in computational genetics) and are asked to find a longest 
string S that is a subsequence of both X and Y. One way to solve the longest 
common subsequence problem is to enumerate all subsequences of X and take the 
largest one that is also a subsequence of Y. Since each character of X is either in 
or not in a subsequence, there are potentially.2n different subsequences of X, each 
of which requires O(m) time to determine whether it is a subsequence of Y. Thus, 
this brute-force approach yields an exponential-time algorithm that runs in O(2nm) 
time, which is very inefficient. Fortunately, the LCS problem is efficiently ~olvable 
using dynamic programming. 

The Components of a Dynamic Programming Solution 

As mentioned above, the dynamic programming technique is used primarily for 
optimization problems, where we wish to find the "best" way of doing something. 
We can apply the dynamic programming technique in such situations if the problem 
has certain properties: 

Simple Subproblems: There has to be some way of repeatedly breaking the global 
optimization problem into subproblems. Moreover, there should be a simple 
way of defining subproblems with just a few indices, like i, j, k, and so on. 

Subproblem Optimization: An optimal solution to the global problem must be a 
composition of optimal subproblem solutions. 

Subproblem Overlap: Optimal solutions to unrelated subproblems can contain 
subproblems in common. 



561 12.2. Dynamic Programming 

Applying Dynamic Programming to the LCS Problem 

Recall that in the LCS problem, we are given two character strings, X and f, of 
length nand m, respectively, and are asked to find a longest string S that is a sub
sequence of both X and f. Since X and f are character strings, we have a natural 
set of indices with which to define subproblems-indices into the strings X and f. 
Let us define a subproblem, therefore, as that of computing the value L[i, j], which 
we will use to denote the length of a longest string that is a subsequence of both 
X[O.. i] =X(JXIX2 .. ,Xi and f[O.. j] YOYIY2 .. .Yj. This definition allows us to rewrite 
L[i, j] in terms of optimal subproblem solutions. This definition depends on which 
of two cases we are in. (See Figure 12.1.) 

o 1 2 3 4 5 6 7 8 9 1011 o 1 2 3 4 5 6 7 8 9 10 

Y=CGATAATTGAGA Y=CGATAATTGAG L[9,9]=6 
L[8,10]=5 ~\ / L[8,10]=5~\\ 

X=GTTCCTAATA X=GTTCCTAATA 
o 1 234 5 6 7 8 9 	 o 1 234 5 6 7 8 9 

(a) 	 (b) 

Figure 12.1: The two cases in the longest common subsequence algorithm: (a) 
Xi = Yj; (b) Xi Yj. Note that the algorithm stores only the L[i,j] values, not the 
matches. 

• 	Xi = Yj- In this case, we have. a match between the last character of X[O ..i] 
and the last character of f[O.. j]. We claim that this character belongs to a 
longest common subsequence of X [O .. i] and f[O.. j]. To justify this claim, let 
us suppose it is not true. There has to be some longest corrnhon subsequence 
XitXh" .Xik =YhYh" 'Yjk' If Xik = Xi or YA Yj, then we get the same se
quence by setting ik i and jk = j. Alternately, if xA i- Xi, then we can get 
an even longer common subsequence by adding Xi to the end. Thus, a longest 
common subsequence of X [O ..i] and f[O .. j] ends with Xi. Therefore, we set 

L[i,j]=L[i-I,j-I] 1 ifxi=Yj. 

• 	Xi Yj. In this case, we cannot have a common subsequence that includes 
both Xi and Yj. That is, we can have a common subsequence end with Xi or 
one that ends with Yj (or possibly neither), but certainly not both. Therefore, 
we set 

L[i,j] max{L[i -I,j], L[i,jI]} if Xii: Yj. 

In order to make both of these equations make ~ense in the boundary cases when 
i - °or j = 0, we assignL[i, -1] = °for i = 1,0,1, ... ,n-I andL[-I,j] =0 for 
j= I,O,I,,,.,m-1. 



562 Chapter 12. Text Processing 

The LCS Algorithm 

The definition of L[i, j] satisfies subproblem optimization, for we cannot have a 
longest common subsequence without also having longest common subsequences 
for the subproblems. Also, it uses subproblem overlap, because a subproblem solu
tion L[i, j] can be used in several other problems (namely, the problems L[i +1, j], 
L[i, j +1], and L[i +1, j 1D. Turning this definition of L[i, j] into an algorithm 
is actually quite straightforward. We initialize an (n +1) x (m +1) array, L, for 
the boundary cases when i =°or j = 0. Namely, we initialize L[i, 1] = °for 
i 1,0,1, ... ,n 1 and L[-I,j] = 0 for j = -1,O,I, ... ,m -1. Then, we iter
atively build up values in L until we have L[n - 1, m 1], the length of a longest 
common subsequence of X and Y. We give a pseudo-code description of this algo
rithm in Code Fragment 12.2. 

Algorithm LCS(X,Y): 
Input: Strings X and Y with nand m elements, respectively 
Output: For i 0, ... ,n - 1, j - 0, ... ,m 1, the length L[i,i] of a longest 

string that is a subsequence of both the string X[O..i] XOXIX2 .•• Xi and the 
string Y[O.. j] = YOYIY2" 'Yj 

for i t- 1 to n - 1do 

L[i, 1] t- ° 

for j t-°to m 1do 


L[-I,j] 0 

for it-O to n - 1 do 


for j t- °to m 1 do 

if Xi =Yj then 


L[i,i] L[i-1,i-1]+1 

else 

L[i,i] t- max{L[i -1,j], L[i,j -I]} 

return array L 


Code Fragment 12.2: Dynamic programming algorithm for the LCS problem. 

The running time of the algorithm of Code Fragment 12.2 is easy to analyze, 
for it is dominated by two nested for loops, with the outer one iterating n times 
and. the inner qne iterating m times. Since the if-statement and assignment inside 
the loop each requires 0(1) primitiveoperations, this algorithm runs in O(nm) 

. time. Thus,· the dynamic programming technique can be applied to the longest 
common subsequence problem to improve significantly over the exponential-time 
brute-force solution to the LCS problem. 



12.2. Dynamic Programming 563 

Algorithm LCS (Code Fragment 12.2) computes the length ofthe longest com
mon subsequence (stored in L[n - I,m - 1]), but not the subsequence itself. As 
shown in the following proposition, a simple postprocessing step can extract the 
longest common subsequence from the array L returned by algorithm. 

Proposition 12.4: Given a string X ofn characters and a string Y ofm characters, 
we can find the longest common subsequence ofX and Y in O(nm) time. 

Justification: Algorithm LCS computes L[n I,m -1], the length of a longest 
common subsequence, in O(nm) time. Given the table of L[i, j] values, construct
ing a longest common subsequence is straightforward. One method is to start from 
L[n, m] and work back through the table, reconstructing a longest common sub
sequence from back to front. At any position L[i,j), we can determine whether 
Xi = Yj- If this is true, then we can take Xi as the next character of the subse
quence (noting that Xi is before the previous character we found, if any), moving 
next to L[i 1, j - 1]. If Xi -I Yb then we can move to the larger of L[i, j - 1] and 
L[i -1,j]. (See Figure 12.2.) We stop when we reach a boundary cell (with i - -1 
or j - -1). This method constructs a longest common subsequence in O(n+m) 
additional time. • 

L -1 0 1 2 3 4 

-1 0 0 0 0 0 0 

0 0 0 1 1 1 1 

1 0 0 1 1 2 2 

2 0 0 1 1 2 2 

3 0 1 1 1 2 2 

4 0 1 I 1 2 2 

5 0 1 -1 1 2 2 

6 0 1 1 2 2 3 

7 0 1 1 2 2 3 

8 0 1 1 2 3 3 

9 0 1 1 2 3 4 

5 6 7 8 9 

0 0 0 0 0 

1 1 1 1 1 

2 2 2 2i2 

2 3 3 3 3 

2 3 3 3 3 

2 3 3 3 3 

2 3 4 4 4 

3 3 4 4 5 

4 4 4 4 5 

4 5 5 5 5 

4 5 5 5 6 

10 

0 

1 

2 

3 

3 

3 

4 

5 

5 

5 

6 

11 

0 

1 

'2 

3 

3 

3 

4 

5 

6 

6 

6 

01234567891011 
Y=CGATAATTGAGA 

~~\/

X=GTTCCTAATA 

0123456789 

Figure 12.2: Illustration of the algorithm for constructing a longest common subse
quence from the array L. 



564 Chapter 12. Text Processing 

12.3 Pattern Matching Algorithms 

In the classic pattern matching problem on strings, we are given a text string T of 
length n and apattern string P of length m, and want to find whether P is a substring 
of T. The notion of a "match" is that there is a substring of T starting at some 
index i that matches P, character by character, so that T[i]- prO]' T[i +1]- P[1]' 
... , T[i +m 1] = P[m 1]. That is, P = T[i .. i+m 1]. Thus, the output from 
a pattern matching algorithm could either be some indication that the pattern P 
does not exist in T or an integer indicating the starting index in T of a substring 
matching P. This is exactly the computation performed by the indexOf method of 
the Java String interface. Alternatively, one may want to find all the indices where 
a substring of T matching P begins. 

In this section, we present three pattern matching algorithms (with increasing 
levels of difficulty). 

12.3.1 Brute Force 

The brute force algorithmic design pattern is a powerful technique for algorithm 
design when we have something we wish to search for or when we wish to opti
mize some function: In applying this technique in a general situation we typically 
enumerate all possible configurations of the inputs involved and pick the best of all 
these enumerated configurations. 

In applying this technique to design the brute-force pattern matching algo
rithm, we derive what is probably the first algorithm that we might thinkiof for 
solving the pattern matching problem-we simply test all the.'possible placements 
of P relative to T. This algorithm, shown in Code Fragment 12.3, is quite simple. 

Algorithm BruteForceMatch(T,P): 
Input: Strings T (text) with n characters and P (pattern) with m characters 
Output: Starting index of the first substring of T matching P, or an indication 

that P is not a substring of T 

for it-O to n m {for each candidate index in T} do 

jt-O 

while (j < m and T[i +j] P[j]) do 


jt-j+1 
if j m then 

return i 
return "There is no substring of T matching P." 

Code Fragment 12.3: Brute-force pattern matching. 



565 12.3. Pattern Matching Algorithms 

Performance 

The brute-force pattern matching algorithm could not be simpler. It consists of two 
nested loops, with the outer loop indexing through all possible starting indices of 
the pattern in the text, and the inner loop indexing through each character of the 
pattem, comparing it to its potentially corresponding character in the text. Thus, 
the correctness of the brute-force pattern matching algorithm follows immediately 
from this exhaustive search approach. 

The running time of brute-force pattern matching in the worst case is not good, 
however, because, for each candidate index in T, we can perform up to m character 
comparisons to discover that P does not match T at the current index. Referring to 
Code Fragment 12.3, we see that the outer for loop is executed at most n - m +1 
times, and the inner loop is executed at most m times. Thus, the running time of the 
brute-force method is O((n-m l)m), which is simplified as O(nm). Note that 
when m= n/2, this algorithm has quadratic running time O(n2). 

Example 12.5: Suppose we are given the text string 

T Itabacaabaccabacabaabb" 

and the pattern string 

P = lIabacab". 

In Figure 12.3 we illustrate the execution of the brute-force pattern matching 
algorithm on T and P. 

123456 

laTh, I~ Ie I~JbI 
7 

I.a Ib Ia I c I a Ib I 
8 9 

lalli:1 a Ic Ia Ib I 
10 

l,a:1 b laIc Ia I b I 

11 comparisons 

Figure 12.3: Example run of the brute-force pattern matching algorithm. The algo
rithm performs 27 character comparisons, indicated above with numerical labels. 



566 Chapter 12. Text Processing 

12.3.2 The Boyer-Moore Algorithm 

At first, we might feel that it is always necessary to examine every character in T 
in order to locate a pattern P as a sUbstring. But this is not always the case, for the 
Boyer-Moore (BM) pattern matching algorithm, which we study in this section, can 
sometimes avoid comparisons between P and a sizable fraction of the characters 
in T. The only caveat is that, whereas the brute-force algorithm can work even 
with a potentially unbounded alphabet, the BM algorithm assumes the alphabet is 
of fixed, finite size. It works the fastest when the alphabet is moderately sized 
and the pattern is relatively long. Thus, the BM algorithm is ideal for searching 
words in documents. In this section, we describe a simplified version of the original 
algorithm by Boyer and Moore. 

The main idea of the BM algorithm is to improve the running time of the brute
force algorithm by adding two potentially time-saving heuristics. Roughly stated, 
these heuristics are as follows: 
Looking-Glass Heuristic: When testing a possible placement of Pagainst T, begin 

the comparisons from the end of P and move backward to the front of P. 

Character-Jump Heuristic: During the testing of a possible placement of P against 
T, a mismatch of text character T[i] = c with the corresponding pattern char
acter prj] is handled as follows. If c is not containedanywhere in P, then shift 
P completely past T[i] (for it cannot match any ch~racter in P). Otherwise, 
shift P until an occurrence of character c in P gets aligned with T [i]. 

We will formalize these heuristics shortly, but at an intuitive level, they work as an 
integrated team. The looking-glass heuristic sets up the other heuristic to allow us 
to avoid comparisons between P and whole groups of characters in T. In thi&' case at 
least, we can get to the destination faster by going backwards,:for if we encounter a 
mismatch during the consideration of P at a certain location in T, then we are likely 
to avoid lots of needless comparisons by significantly shifting P relative to Tusing 
the character-jump heuristic. The character-jump heuristic pays off big if it can be 
applied early in the testing of a potential placement of P against T. 

Let us therefore get -down to the business of defining how the character-jump 
heuristics can be integrated into a string pattern matching algorithm. To implement 
this heuristic, we define a function last(c) that takes a character c from the alphabet 
and characterizes how far we may shift the pattern P if a character equal to c is 
found in the text that does not match the pattern. In particular, we define last(c) as 

• If c is in P, last(c) is the index of the last (right-most) occurrence of c in P. 
Otherwise, we. cQl1venti()nally define last(c) = 1. 

If characters can be used as indices in arrays, then the last function can be easily 
implemented as a look-up table. We leave the method for computing this table in 
O(m+ ILl) time, given P, as a simple exercise (R-12.6). This last function will give 
us all the information we need to perform the character-jump heuristic. 



567 12.3. Pattern Matching Algorithms 

In Code Fragment 12.4, we show the BM pattern matching algorithm. 

Algorithm BMMatch(T,P): 
Input: Strings T (text) with n characters and P (pattern) with m characters 
Output: Starting index of the first substring of T matching P, or an indication 

that P is not a substring of T 


compute function last 

i m-1 

jf-m-1 

repeat 


if prj] = T[i] then 

if j = 0 then 


return i {a matchl} 

else 


if-i-1 
jf-j-l 

else 

if-i+m min(j,l last(T[i])) {jump step} 

j f-m 1 


until i > n-1 
return "There is no substring of T matching P." 

Code Fragment 12.4: The Boyer-Moore pattern matching algorithm. 

The jump step is illustrated in Figure 12.4. 

I 

I . I a 1. I . 1 b 

I 

I· I 
. I 
J I 

(a) I III - (I + I) 

I . 1 a I
I. 

. I . I b 1. 
~ 

II 
+---+I 

I +1 I 

1.1. I---r-·I-'·I·-, ~ ·I=r·!~.I.I.I.I.I.I.Il·il·il·rl·I.I·1al1II~ 

I . I . I . I . I b I 
I 

a I lI 
} : 1 I 

(b) I III _j I 
I~ 

I . I . I . I ·1 b I a I 
-t. ~ 

r 

Figure 12.4: Illustration of the jump step in the algorithm of Code Fragment 12.4, 
where we let I = last(T[i]). We distinguish two cases: (a) 1+I ~ j, where we shift 
the pattern by j I units; (b) j < 1+I, where we shift the pattern by one unit. 



568 Chapter 12. Text Processing 

In Figure 12.5, we illustrate the execution of the Boyer-Moore pattern matching 
algorithm on an input string similar to Example 12.5. 

I a I b I a I c l'a'l'a'lrra'Tdll cla Ib;I'~Jtta>l,l:'1 aIa Ibib I 

Ialb I a I c I a I ,b'l 
4 3 2 

I a I b I a Icla [hi 
5 7 

I~aI~b I~a I'---'cI~aI~bl I a I b I aI c I a Ibl 

I a Ib I a I c I a If
6 

I 
The last(c) function: 
c ja bed 

last(c) I 4 5 3 1 

Figure 12.5: An illustration of the BM pattern matching algorithm. The algorithm 
performs 13 character comparisons, which are indicated with numerical labels. 

The correctness of the BM pattern matching algorithm follows from the fact 
that each time the method makes a shift, it is guaranteed not to "skip" over any 
possible matches. For last(c) is the location of the last o~currence of c in P. 

The worst-case running time of the BM algorithm is O(nm+ ILl). Namely, the 
computation of the last function takes time O(m +ILl) and the actual search for the 
pattern takes O(nm) time in the worst case, the same as the brute-force algorithm. 
An example of a text-pattern pair that achieves the worst case is 

n 
~ T aaaaaa···a 

m-l 
~ P baa···a. 

The worst-case performance, however, is unlikely to be achieved for English text, 
for, in this case, the BM algorithm is often able to skip large portions of text. (See 
Figure 12.6.) Experimental evidence on English text shows that the average number 
of comparisons done per character is 0.24 for a five-character pattern string. 

3 5 

Irliltlhl~;1 I r I i I.I I h I~LI I r I i I t Ih I:wd 
2 4 6

r-Ir r--Ii I'---'tI'---'h1r::"-.{#!]1 I r I i I t I h l,iliJ Irliltlhlnll 
Figure 12.6: An example of a Boyer-Moore execution on English text. 



569 12.3. Pattern Matching Algorithms 

AJava implementation of the BM pattern matching algorithm is shown in Code 
Fragment 12.5. 

/** Simplified version of the Boyer-Moore (BM) algorithm, which uses 
* only the looking-glass and character-jump heuristics. 
* @return Index of the beginning of the leftmost substring of the text 
* matching the pattern, or -1 if there is no match. * / 

public static int 	BMmatch (String text, String pattern) { 
int[] last = buildLastFunction(pattern); 
int n text.lengthO; 
int m pattern.lengthO; 
int i m -1; 
if 	(i > n - 1) 

return -1; / / no match if pattern is longer than text 
int j m - 1; 
do { 

if (pattern.charAt(j) == text.charAt(i)) 
if (j == 0) 

return i; / / match 
else { / / looking-glass heuristic: proceed right-to-Ieft 

} 
else { / / character jump heuristic 

i = i + m Math.min(j, 1 + last[text.cnarAt(i)]); 
j m 1; 

} 
} while (i <= n 1); 

sreturn 1; / / no match 

} 	 . 

public static int[] buildLastFunction (String pattern) { 
int[} last new int[128]; / / assume ASCII character set 
for (int i - 0; i < 128; i++) { 

last[i] - -1; / / initialize array 
} 
for (int i = 0; i < pattern.lengthO; i++) { 

last[pattern.charAt(i)] i; / / implicit cast to integer ASCII code 
} 
'eturn last; 

} 

Code Fragment 12.5: Java implementation of the BM pattern matching algorithm. 
The algorithm isexpressed by two static methods: Method BMmatch performs 
the matching and calls the auxiliary method buildLastFunction to compute the last 
function, expressed by an array indexed by the ASCII code of the character. Method 
B M match indicates the absence of a match by returning the conventional value 1. 



570 	 Chapter 12. Text Processing 

We have actually presented a simplified version of the Boyer-Moore (BM) al
.	gorithm. The original BM algorithm achieves running time O(n+m JEI) by using 
an alternative shift heuristic to the partially matched text string, whenever it shifts 
the pattern more than the character-jump heuristic. This alternative shift heuristic 
is based on applying the main idea from the Knuth-Marris-Pratt pattern matching 
algorithm, which we discuss next. 

12.3.3 The Knuth-Morris-Pratt Algorithm 

In studying the worst-case performance of the brute-force and BM pattern matching 
algorithms on specific instances of the problem, such as that given in Example 12.5, 
we should notice a major inefficiency. Specifically, we may perform many compar
isons while testing a potential placement of the pattern against the text, yet if we 
discover a pattern character that does not match in the text, then we throwaway all 
the information gained by these comparisons and start over again from scratch with 
the next incremental placement of the pattern. The Knuth-Morris-Pratt (or "KMP") 
algOlithm, discussed in this section, avoids this waste of information and, in so do
ing, it achieves a running time of O(n m), which is optimal in the worst case. 
That is, in the worst case any pattern matching algorithm will have to examine all 
the characters of the text and all the characters of the pattern at least once. 

The Failure Function 

The main idea of the KMP algorithm is to preprocess the pattern string P so as to 
compute a failure function, I, that indicates the proper shift of P so that, to the 
largest extent possible, we can reuse previously performed comparisons. Specif
ically, the failure function IU) is defined as the length of the longest prefix of P 
that is a suffix of P[l..j] (note that we did not put P[O.. j] here). We also use the 
convention that 1(0) O. Later, we will discuss how to compute the failure func
tion efficiently. The importance of this failure function is that it "encodes" repeated 

, 	substrings inside the pattern itself. 

Example 12.6: Consider the pattern string P = "abacab" from Example 12.5. 
The Knuth-Marris-Pratt (KMP) failure function, IU), for the string P is as shown 
in the following table: 

j 0 1 2 3 4 5 
P(j] a b a cab 
IU) 0 0 1 0 1 2 



571 12.3. Pattern Matching Algorithms 

The KMP pattern matching algorithm, shown in Code Fragment 12.6, incre
mentally processes the text string T comparing it to the pattern string P. Each time 
there is a match, we increment the current indices. On the other hand, if there is a 
mismatch and we have previously made progress in P, then we consult the failure 
function to determine the new index in P where we need to continue checking P 
against T. Otherwise (there was a mismatch and we are at the beginning of P), we 
simply increment the index for T (and keep the index variable for P at its begin
ning). We repeat this process until we find a match of P in T or the index for T 
reaches n, the length of T (indicating that we did not find the pattern P in T). 

Algorithm KMPMatch(T,P): 
Input: Strings T (text) with n characters and P (pattern) with m characters 
Output: Starting index of the first substring of T matching P, or an indication 

that P is not a substring of T 

f f- KMPFailureFunction(P) {construct the failure function f for P} 
i 0 
jf-O 
while i < n do 


if prj] = T[i] then 

if j = m 1 then 


return i- m 1 {a match!} 

i i 1 
j f- j 1 

else if j > 0 {no match, but we have advanced in P} then 
j f- f(j - 1) {j indexes just after prefix of P that must match}

5 

else 
if- i 1 

return "There is no substring of T matching P." 

Code Fragment 12.6: The KMP pattern matching algorithm. 

The main part of the KMP algorithm is the while loop, which performs a com
parison between a character in T and a character in P each iteration. Depending 
upon the outcome of this comparison, the algorithm either moves on to the next 
characters in T and P, consults the failure function for a new candidate character in 
P, or starts over with the next index in T. The correctness of this algorithm follows 
from the definition of the failure function. Any comparisons that are skipped are ac
tually unnec~ssary, for the failure function guarantees that all the ignored compar

.. iS011s areredund~rit-·. they would involve comparing the same matching characters 
over agam. 



572 Chapter 12. Text Processing 

1 2 3 4 5 6 

lal blal c lalbl 
7 

/ I a Ib I a I c I a I b I 
( 

no comparison 

8 9 10 11 12 

I"a Ibl ,al cia I b I 
needed here 13 

I'a Ib I a I c I a IbI 
14 15 16 17 18 19 

Ialb I a:1 clalbl 
Figure 12.7: An illustration of the KMP pattern matching algorithm. The failure 
function f for this pattern is given in Example 12.6. The algorithm performs 19 
character comparisons, which are indicated with numerical labels. 

In Figure 12.7, we illustrate the execution of the KMP pattern matching algo
rithm on the same input strings as in Example 12.5. Note the use of the failure 
function to avoid redoing one of the comparisons between a character of the pat
tern and a character of the text. Also note that the algorithm performs fewer overall 
comparisons than the brute-force algorithm run on the same strings (Figure 12.3). 

Performance 

Excluding the computation of the failure function, the running time of the KMP 
algorithm is clearly proportional to the number of iterations of the while lobp. For 
the sake of the analysis, let us define k i - j. Intuitively, k is the total amount by 
which the pattern Phas been shifted with respect to the text T. Note that throughout 
the execution of the algorithm, we have k < n. One of the following three cases 
occurs at each iteration of the loop. 

• 	If T[i] = P[j], then i increases by 1, and k does not change, since j also 
increases by 1. 

• If T[i] =I=- prj] and j > 0, then i does not change and k increases by at least 1, 
since in this case k changes from i j to i f(j -1), which is an addition of 
j - f(j -1), which is positive because f(j 1) < j. 

• If T[i] =I- prj] and j = 0, then i increases by 1 and k increases by 1, since j 
does not change. 

Thus, ,at each it~ratio~ of the 'loop, either i or k increases by at least 1 (possibly 
both); hence, the total number of iterations of the while loop in the KMP pattern 
matching algorithm is at most 2n. Achieving this bound, of course, assumes that 
we have already computed the failure function for P. 



573 12.3. Pattern Matching Algorithms 

Constructing the KM P Failure Function 

To construct the failure function, we use the method shown in Code Fragment 12.7, 
which is a "bootstrapping" process quite similar to the KMPMatch algorithm. We 
compare the pattern to itself as in the KMP algorithm. Each time we have two 
characters that match, we set f(i) j +1. Note that since we have i > j throughout 
the execution of the algorithm, f(j 1) is always defined when we need to use it. 

Algorithm KMPFailureFunction(P): 
Input: String P (pattern) with m characters 
Output: The failure function f for P, which maps j to the length of the longest 

prefix of P that is a suffix of P[I .. j] 

if-I 

jf-O 

f(O) f- 0 

while i < m do 


if prj] = P[i] then 

{we have matched j +1 characters} 

f(i) f- j+ 1 

if-i+l 

jf- j+l 


else if j >0 then 
{j indexes just after a prefix of P that must match} 
j f- f(j -1) 

else 

{we have no match here} 

f(i) f- 0 

if- i 1 


Code Fragment 12.7: Computation of the failure function used in the KMP pattern 
matching algorithm. Note how the algorithm uses the previous values of the failure 
function to efficiently compute new values. 

Algorithm KMPFailureFunction runs in O(m) time. Its analysis is analogous 
to that of algorithm KMPMatch. Thus, we have: 

Proposition 12.7: The Knuth-Morris-Pratt algorithm performs pattern matching 
on atext string oflength nana apattern string oflength min O(n m) time. 

A Java implementation of the KMP pattern matching algorithm is shown in 
Code Fragment 12.8. 



574 Chapter 12. Text Processing 

public static int KM Pmatch(String text, String pattern) { 
int n texUengthO; 
int m = pattern.lengthO; 
int[] fail computeFaiIFunction{pattern); 
int j = 0; 
int j' 0; 
while (i < n) { 

if (pattern.charAt(j) == text.charAt(i)) { 

if (j m - 1) 


return i - m + 1; / / match 

i++;

j++; 


} 

else if (j > 0) 


j = faiIU·.- 1]; 

else 


} 
return -1; / / no match 

} 
public static int[ J computeFailFunction(String pattern) { 

int[J fail = new int[pattern.lengthO]; 

fail[O] 0; 

int m = pattern.lengthO; 

int j = 0; 

int i = 1; 

while (i < m) { 


if (pattern.charAt(j) pattern.charAt(i)) { / / j + 1 characters match· 
sfail[i] j + 1; 


i++; 

j++; 

} 
else if (j > 0) / / j follows a matching prefix 

j - fail[j - 1]; 

else { / / no match 


fail[i] 0; 

i++; 


} 

} 

return fail; 


} 

Code Fragment 12.8: Java implementation of the KMP pattern matching algorithm. 
The. algorithm is expressed py t~o static· methods:Ill~thod KMPmatch performs 
the matching ami calls theauxiliary method computeFailFunction to compute the 
failure function, expressed by an array. Method KM Pmatch indicates the absence 
of a match by returning the conventional value 1. 



575 12.4. Text Compression and the Greedy Nlethod 

12.4 Text Compression and the Greedy Method 

In this section, we consider an important text processing task, text compression. 
In this problem, we are given a string X defined over some alphabet, such as the 
ASCII or Unicode character sets, and we want to efficiently encode X into a small 
binary string Y (using only the characters 0 and 1). Text compression is useful in 
any situation where we are communicating over a low-bandwidth channel, such as 
a modem line or infrared connection, and we wish to minimize the time needed to 
transmit our text. Likewise, text compression is also useful for storing collections 
of large documents more efficiently, so as to allow for a fixed-capacity storage 
device to contain as many documents as possible. 

The method for text compression explored in this section is the Huffman code. 
Standard encoding schemes, such as the ASCII and Unicode systems, use fixed
length binary strings to encode characters (with 7 bits in the ASCII system and 
16 in the Unicode system). A Huffman code, on the other hand, uses a variable
length encoding optimized for the string X. The optimization is based on the use 
of characterfrequencies, where we have, for each character c, a count f(c) of the 
number of times c appears in the string X. The Huffman code saves space over a 
fixed-length encoding by using short code-word strings to encode high-frequency 
characters and long code-word strings to encode low-frequency characters. 

To encode the string X, we convert each character in X from its fixed-length 
code-word to its variable-length code-word, and we concatenate all these code 
words in order to produce the encoding Y for X. In order to mroid ambiguities, 
we insist that no code-word in our encoding is a prefix of another code-word in our 
encoding. Such a code is called a prefix code, and it simplifies the decoding of Y 
in order to get back X. (See Figure 12.8.) Even with this restriction, the savings 
produced by a variable-length prefix code can be significant, particularly if there is 
a wide variance in character frequencies (as is the case for natural language text in 
almost every spoken language). 

Huffman's algorithm for producing an optimal variable-length prefix code for 
X is based on the construction of a binary tree T that represents the code. Each 
node in T, except the root, represents a bit in a code-word, with each left child 
representing a "0" and each right child representing a "1." Each external node v is 
associated with a specific character, and the code word for that character is defined 
bythesequence of bits associated with the nodes in the path from the root of T to v . 

... (See Figru:e 12.8.) Each external node v has afrequency, f(v), which is simply the 
frequency in X of the character associated with v. In addition, we give each internal 
node v in T a frequency, f(v), that is the sum of the frequencies of all the external 
nodes in the subtree rooted at v. 



576 Chapter 12. Text Processing 

Character a b d e f ih i k n 0 r s t u v ! 

(a) 
Freqllency 9 5 1 3 7 3 1 1 1 4 1 5 1 2 1 1 

(b) 

1 1 1 1 1 1 

Figure 12.8: An illustration of an example Huffman code for the input string 
X = "a fast runner need never be afraid of the dark": (a) frequency 
of each character of X; (b) Huffman tree T for string X. The code for a character 
c is obtained by tracing the path from the root of T to the external node where c is 
stored, and associating a left child with 0 and a right child with 1. For example, the 
code for "a" is 010, and the code for "f' is 1100. 

12.4.1 The Huffman Coding Algorithm 

The Huffman coding algorithm begins with each of the d distinct characters50f the 
string X to encode being the root node of a single-node binarytree. The algorithm 
proceeds in a series of rounds. In each round, the algorithm takes the two binary 
trees with the smallest frequencies and merges them into a single binary tree. It 
repeats this process until only one tree is left. (See Code Fragment 12.9.) 

Each iteration of the while loop in Huffman's algorithm can be implemented 
in O(logd) time using a priority queue represented with a heap. In addition, each 
iteration takes two nodes out of Qand adds one in, a process that will be repeated 
d 1 times before exactly one node is left in Q. Thus, this algorithm runs in 
O(n +d log d) time. Although a full justification of this algorithm's correctness is 
beyond our scope here, we note that its intuition comes from a simple idea-any 
optimal code can be converted into an optimal code in which the code words for the 
two lowest-frequency charl:).cters, aaIld b, differ only in their last bit. Repeating the 
argumentfor astring with aand b replaced by a char~cte~ c, gives the following: 

Proposition 12.8: Huffman's algorithm constructs an optimal prefix code for a 
string oflength n with d distinct characters in 0 (n +dlog d) time. 



577 12.4. Text Compression and the Greedy Method 

Algorithm Huffman(X): 

Input: String X of length n with d distinct characters 

Output: Coding tree for X 


. Compute the frequency f( c) of each character c of X. , 
Initialize a priority queue Q. 
for each character c in X do 


Create a single-node binary tree T storing c. 

Insert T into Q with key f(c). 


while Q.size() > 1do 
fl t- Q.minO·keyO 
Tl t- Q.removeMinO 
h t- Q.minO·keyO 
T2 t- Q.removeMinO 
Create a new binary tree T with left subtree Tl and right subtree T2. 
Insert T into Q with key It +h. 

return tree Q.removeMinO 

Code Fragment 12.9: Huffman coding algorithm. 

12.4.2 The Greedy Method 

Huffman's algorithm for building an optimal encoding is an example application 
of an algorithmic design pattern called the greedy method. This design pattern is 
applied to optimization problems, where we are trying to construct some structure 
while minimizing or maximizing some property of that structure. i 

The general fonnula for the greedy method pattern is almost as simple as that 
for the brute-force method. In order to solve a given optimization problem using 
the greedy method, we proceed by a sequence of choices. The sequence starts 
from some well-understood starting condition, and computes the cost for that ini
tial condition. The pattern then asks that we iteratively make additional choices 
by identifying the decision that achieves the best cost improvement from all of 
the choices that are currently possible. This approach does not always lead to an 
optimal solution. 

But there are several problems that it does work for, and such problems are said 
to possess the greedy-choice property. This is the property that a global optimal 
condition ClUl be reached by a series of locally optimal choices (that is, choices 
that are each· the current best from among the possibilities available at the time), 
starting from a well-defined starting condition. The problem of computing an opti
mal variable-length prefix code is just one example of a problem that possesses the 
greedy-choice property. 



578 Chapter 12. Text Processing 

12.5 Tries 

The pattern matching algorithms presented in the previous section speed up the 
search in a text by preprocessing the pattern (to compute the failure function in 
the KMP algorithm or the last function in the BM algorithm). In this section, we 
take a complementary approach, namely, we present string searching algorithms 
that preprocess the text. This approach is suitable for applications where a series of 
queries is performed on a fixed text, so that the initial cost of preprocessing the text 
is compensated by a speedup in each subsequent query (for example, a Web site 
that offers pattern matching in Shakespeare's Hamlet or a search engine that offers 
Web pages on the Hamlet topic). 

A trie (pronounced "try") is a tree-based data structure for storing strings in 
order to support fast pattern matching. The main application for tries is in infor
mation retrieval. Indeed, the name "trie" comes from the word "retrieval." In an 
information retrieval application, such as a search for a certain DNA sequence in a 
genomic database, we are given a collection S of strings, all defined using the same 
alphabet. The primary query operations that tries support are pattern matching and 
prefix matching. The latter operation involves being given a string X, and looking 
for all the strings in S that contain X as a prefix. 

12.5.1 Standard Tries 

Let S be a set of s strings from alphabet L such that no string in S is a prefix 
of another string. A standard trie for S"is an ordered tree T with the following 
properties (see Figure 12.9); 

• 	Each node of T, except the root, is labeled with a character of L. 
• 	The ordering of the children of an internal node of T is determined by a 

canonical ordering of the alphabet L. 
• T has s external nodes, each associated with a string of S, such that the con

catenation of the labels of the nodes on the path from the root to an external 
node v of T yields the string of S associated with v. 

Thus, a trie T represents the strings of S with paths from the root to the external 
nodes of T. Note the importance of assuming that no string in S is a prefix of 
another string. This ensures that each string of S is uniquely associated with an 
external node of T. We can always satisfy this assumption by adding a special 
character.that is not in the original alphabetLat the end of each string. 

An interiml nbde in a standardtrie T can have anywhere between 1 and d chil
dren, where d is the size of the alphabet. There is an edge going from the root r to 
one of its children for each character that is first in some string in the collection S. 
In addition, a path from the root of T to an internal node vat depth i corresponds to 



12.5. Tries 579 


Figure 12.9: Standard trie for the strings {bear, bell, bid, bull, buy, sell, stock, stop}. 

an i-character prefix X[O..i - 1] of a string X of S. In fact, for each character c that 
can follow the prefix X[O .. i - 1] in a string of the set S, there is a child of v labeled 
with character c. In this way, a trie concisely stores the common prefixes that exist 
among a set of strings. 

If there are only two characters in the alphabet, then the trie is essentially a 
binary tree, with some internal nodes possibly having only one child (that is, it may 
be an improper binary tree). In general, if there are d characters in the alphabet, 
then the trie will be a multi-way tree where each internal node has between 1 and 
d children. In addition, there are likely to be several internal n6des in a standard 
trie that have fewer than d children.· For exampl~, the trie shown in Figure 12.9 
has several internal nodes with only one child. We can implement a trie with a tree 
storing characters at its nodes. 

The following proposition provides some important structural properties of a 
standard trie: 

Proposition 12.9: A standard trie storing a collection S of s strings of total length 
n from an alphabet of size d has the following properties: 

e Every internal node ofT has at mostd children. 

eT'hasSexternal nodes. 
. . 

.. eTheheight ofT is equal to the length of the longest string in S. 


e The number ofnodes ofT is O(n). 




580 Chapter 12. Text Processing 

The worst case for the number of nodes of a trie occurs when no two strings 
share a common nonempty prefix; that is, except for the root, all internal nodes 
have one child. 

A trie T for a set S of strings can be used to implement a di:ctionary whose keys 
are the strings of S. Namely, we perform a search in T for a string X by tracing 
down from the root the path indicated by the characters in X. If this path can be 
traced and terminates at an external node, then we know X is in the dictionary. For 
example, in the trie in Figure 12.9, tracing the path for "bull" ends up at an external 
node. If the path cannot be traced or the path can be traced but terminates at an 
internal node, then X is not in the dictionary. In the example in Figure 12.9, the path 
for "bet" cannot be traced and the path for "be" ends at an internal node. Neither 
such word is in the dictionary. Note that in this implementation of a dictionary, 
single characters are compared instead of the entire string (key). It is easy to see 
that the running time of the search for a string of size m is O(dm), where d is the 
size of the alphabet. Indeed, we visit at most m+1 nodes of T and we spend O(d) 
time at each node. For some alphabets, we may be able to improve the time spent 
at a node to be 0(1) or O(logd) by using a dictionary of characters implemented 
in a hash table or search table. However, since d is a constant in most applications, 
we can stick with the simple approach that takes O(d) time per node visited. 

From the discussion above, it follows that we can use .a trie to perform a spe
cial type of pattern matching, called word matching, where we want to determine 
whether a given pattern matches one of the words of the text exactly. (See Fig
ure 12.10.) Word matching differs from standard pattern matching since the pattern 
cannot match an arbitrary substring of the text, but only one of its words. Uf)ing a 
trie, word matching for a pattern of length m takes O(dm) time, where d is the size 
of the alphabet, independent of the size of the text. If the alphabet has constant size 
(as is the case for text in natural languages and DNA strings), a query takes O(m) 
time, proportional to the size of the pattern. A simple extension of this scheme 
supports prefix matching queries. However, arbitrary occurrences of the pattern in 
the text (for example, the pattern is a proper suffix of a word or spans two words) 
cannot be efficiently performed. 

To construct a standard trie for a set S of strings, we can use an incremental 
algorithm that inserts the strings one at a time. Recall the assumption that no string 
of S is a prefix of another string. To insert a string X into the current trie T, we first 
try to trace the path associated with X in T. Since X is not already in T and no string 
in S is a prefix of another string, we will stop tracing the path at an internal node v 
of T before reaching the end of X. We then create a new chain of node descendents 
of v to store the remaining characters of X. The time to insert X is O(dm), where 
m is the length of X and d is the size of the alphabet. Thus, constructing the entire 
trie for set Stakes O(dn) time, where n is the total length of the strings of S. 



30 69 12 

12.5. Tries 581 


46 

47 48 53 54 55 56 57 58 59 60 61 62 64 65 66 67 68 

Ihlelalrl Itlhlel [blellll[?[ Islt[o[p[!1 
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 

(a) 

6 78 

i 

(b) 

Figure 12.10: Word matching and prefix matching with a standard trie: (a) text to 
be searched; (b) standard trie for the words in the text (articles and prepositions, 
which are also known as stop words, excluded), with external nodes augmented 
with indications of the word positions. 

There is a potential space inefficiency in the standard trie that has prompted the 
development of the compressed trie, which is also known (for historical reasons) 
as the Patricia trie. Namely, there are potentially a lot of nodes in the standard trie 
that have only one child, and the existence of such nodes is a waste. We discuss the 
compressed trie next. 

17,40, 
51,62 



582 Chapter 12. Text Processing 

12.5.2 Compressed Tries 

Acompressed trie is similar to a standard trie but it ensures that each internal node 
in the trie has at least two children. It enforces this rule bY,compressing chains of 
single-child nodes into individual edges. (See Figure 12.11.) Let T be a standard 
trie. We say that an internal node v of T is redundant if v has one child and is not 
the root. For example, the trie of Figure 12.9 has eight redundant nodes. Let us 
also say that a chain of k ~ 2 edges, 

(vo, vI)(Vl, V2)'" (Vk-I, Vk), 

is redundant if: 

• Vi is redundant for i 1, ... ,k - 1. 

• Vo and Vk are not redundant. 

We can transform T into a compressed trie by replacing each redundant chain 
(vo, VI) ... (Vk-l, Vk) of k > 2 edges into a single edge (vo, Vk), relabeling Vk with 
the concatenation of the labels of nodes VI,· .. , Vk. 

5 

Figure 12.11: Compressed trie for the strings {bear, bell, bid, bull, buy, sell, stock, 
stop}. Compare this with the standard trie shown in Figure 12.9. 

Thus, nodes in a compressed trie are labeled with strings, which are substrings 
of strings in the collection, rather than with individual characters. The advantage of 
acompressed trie over a standard trie is that the number of nodes of the compressed 
trie is proportional to the number of strings and not to their total length, as shown 
in the following proposition (compare with Proposition 12.9). 

Proposition 12.10: A compressed trie storing a collection S of s strings from an 
alphabet ofsize d has the foll()wing properties:

. . . ; . -, .: 

• .Every internal node ofT has at least two children and most d children. 

• T has s external nodes. 

• The number ofnodes ofT is O(s). 



12.5. Tries 583 

The attentive reader may wonder whether the compression of paths provides 
any significant advantage, since it is offset by a corresponding expansion of the 
node labels. Indeed, a compressed trie is truly advantageous only when it is used as 
an auxiliary index structure over a collection of strings already stored in a primary 
structure, and is not required to actually store all the characters of the strings in the 
collection. 

Suppose, for example, that the collection S of strings is an array of strings S[O], 
S[1], .. " S[s 1]. Instead of storing the label X of a node explicitly, we represent 
it implicitly by a triplet of integers (i, j, k), such that X Sri] [j ..k]; that is, X is the 
substring of Sri] consisting of the characters from the jth to the kth included. (See 
the example in Figure 12.12. Also compare with the standard trie of Figure 12.10.) 

o 1 234 o 1 2 3 o 1 2 3 

S[O] I s I e I e I S[4] = I b I u 11 11 I S[7] = I hie I a I r I 

S[l] = I b I e I a I r I S[5] = I b I u I y I S[8] = I b I e 11 11 I 

S[2] = I s Iell I 1 I S[6] = I b I i I d I S[9] = I s I t I 0 I p I 

S[3] = ,! • ! ! 

(a) 

(b) 

Figure 12.12: (a) Collection S of strings stored in an array. (b) Compact represen
tation of the compressed trie for S. 

This additional compression scheme allows us to reduce the total space for the 
trie itself from O(n) for the standard trie to O(s) for the compressed trie, where n 
is the total length of the strings in Sand s is the number of strings in S. We must 
still store the different strings in S, of course, but we nevertheless reduce the space 
for the trie. 



584 Chapter 12. Text Processing 

12.5.3 Suffix Tries 

One of the primary applications for tries is for the case when the strings in the 
collection Sare all the suffixes of a string X. Such a trie is called the suffix trie (also 
known as a suffix tree or position tree) of string X. For example, Figure 12.13a 
shows the suffix trie for the eight suffixes of string "minimize." For a suffix trie, the 
compact representation presented in the previous section can be further simplified. 
Namely, the label of each vertex is a pair (i, j) indicating the string X[i .. j]. (See 
Figure 12.13b.) To satisfy the rule that no suffix of X is a prefix of another suffix, 
we can add a special character, denoted with $, that is not in the original alphabet E
at the end of X (and thus to every suffix). That is, if string X has length n, we build 
a trie for the set of n strings X[i ..n- 1]$, for i = 0, ... ,n 1. 

Saving Space 

Using a suffix trie allows us to save space over a standard trie by using several space 
compression techniques, including those used for the compressed trie. 

The advantage of the compact representation of tries now becomes apparent for 
suffix tries. Since the total length of the suffixes of a string X of length n is 

1 2 ... +n = n(n +1) 
2 ' 

storing all the suffixes of X explicitly would take O(n2) s·pace. Even so, the suf
fix trie represents these strings implicitly in O(n) space, as formally stated in the 
following proposition. 

Proposition 12.11: The compact representation of a suffix trie T for a string X 
oflength n uses O(n) space. 

Construction 

We can construct the suffix trie for a stling of length n with an incremental algo
rithm like the one given in Section 12.5.1. This construction takes O(dn2) time 
because the total length of the suffixes is quadratic in n. However, the (compact) 
suffix trie for a string of length ncan be constructed in O(n) time with a specialized 
algorithm, different from the one for general tries. This linear-time construction 
algorithm is fairly complex, however, and is not reported here. Still, we can take 
advantage of the existence of this fast construction algorithm when we want to use 
a suffix trie to solve other problems. 

Using aSuffix Trie 

The suffix trie T for a string X can be used to efficiently perform pattern matching 
queries on text X. Namely, we can determine whether a pattern P is a substring 



12.5. Tries 585 

(a) 

Iml i Inl i Iml i Izlel 
o 1 2 3 4 5 6 7 

(b) • 
Figure 12.13: (a) Suffix trie T for the string X .' 'minimize' '. (b) Compact 
representation of T, where pair (i, j) denotes X[io. j]. 

of X by trying to trace a path associated with P in T. P is a substring of X if and 
only if such a path can be traced. The search down the trie T assumes that nodes in 
T store some additional information, with respect to the compact representation of 
the suffixtrie: 

If node vhas label (i, j) and Y is the string of length y associated with 
the path from the root to v (included), then X[j y Lj] = Y. 

This property ensures that we can easily compute the start index of the pattern in 
the text when a match occurs. 



586 Chapter 12. Text Processing 

12.5.4 Search Engines 

The World Wide Web contains a huge collection of text documents (Web pages). 
Information about these pages are gathered by a program called a Web crawler, 
which then stores this information in a special dictionary database. A Web search 
engine allows users to retrieve relevant information from this database, thereby 
identifying relevant pages on the Web containing given keywords. In this section, 
we present a simplified model of a search engine. 

Inverted Files 

The core information stored by a search engine is a dictionary, called an inverted 
index or inverted file, storing key-value pairs (w,L), where w is a word and L is 
a collection of pages containing word w. The keys (words) in this dictionary are 
called index terms and should be a set of vocabulary entries and proper nouns as 
large as possible. The elements in this dictionary are called occurrence lists and 
should cover as many Web pages as possible. 

We can efficiently implement an inverted index with a data structure c~nsisting 
of: 

1. An array storing the occurrence lists of the terms (in no particular order). 
2. A compressed trie for the set of index terms, where each external node stores 

the index of the occurrence list of the associated term. 
The reason for storing the occurrence lists outside the trie is to keep the size of the 
trie data structure sufficiently small to fit in internal memory. Instead, because of 
their large total size, the occurrence lists have to be stored on disk. . 

•With our data structure, a query for a single keyword is similar to a word match
ing query (Section 12.5.1). Namely, we find the keyword in the trie and we return 
the associated occurrence list. 

When multiple keywords are given and the desired output are the pages con
taining all the given keywords, we retrieve the occurrence list of each keyword 
using the trie and return their intersection. To facilitate the intersection computa
tion, each occurrence list should be implemented with a sequence sorted by address 
or with a dictionary (see, for example, the generic merge computation discussed in 
Section 11.4). 

In addition to the basic task of returning a list of pages containing given key
words, search engines provide an important additional service by ranking the pages 
returned by relevance. Devising fast and accurate ranking algorithms for search 
engines is a major challenge for computer researchers and electronic commerce 
companies. 



587 12.6. Exercises 

12.6 Exercises 

For help with exercises, please visit the web site, www.wiley.com/go/globallgoodrich. 

Rei nforcement 

R-12.1 	 List the prefixes of the string P ="aaabbaaa" that are also suffixes ofP. 

R-12.2 	Draw a figure illustrating the comparisons done by brute-force pattern 
matching for the text II aaabaadaabaaa II and pattern II aabaaa II • 

R-12.3 	Repeat the previous problem for the BM pattern matching algorithm, not 
counting the comparisons made to compute the last(c) function. 

R-12.4 	Repeat the previous problem for the KMP pattern matching algorithm, not 
counting the comparisons made to compute the failure function. 

R-12.5 	Compute a table representing the last function used in the BM pattern 
matching algorithm for the pattern string 

"the quick brown fox jumped over a lazy cat" 

assuming the following alphabet (which starts with the space character): 

I = { ,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w~,y,z}. 

R-12.6 	Assuming that the characters in alphabet 1: can be enumerated and can be 
used to index arrays, give an O(m +J1:D-time method for constructing the 
last function from an m-Iength pattern string P. 

R-12.7 	Compute a tabIe representing the KMP failure function for the pattern 
string "cgtacgttcgtac". 

R-12.8 	Draw a standard trie for the following set of strings: 

. {abab, baba, ccccc, bbaaaa, caa, bbaacc, cbcc, cbca}. 

R-12.9 Draw a compressed trie for the set of strings given in Exercise R-12.8. 

www.wiley.com/go/globallgoodrich


588 Chapter 12. Text Processing 

R-12,10 Draw the compact representation of the suffix trie for the string 

II minimize minime", 

R-12,11 What is the longest prefix of the string II cgtacgttcgtacg" that is also a 
suffix of this string? 

R-12.l2 Draw the frequency array and Huffman tree for the following string: 

"dogs do not spot hot pots or cats ", 

R-12,13 Show the longest common subsequence array L for the two strings 

X "skullandbones ll 

Y "lullabybabies". 

What is a longest common subsequence between these strings? 

Creativity 

C-12.1 	 Give an example set of denominations of coins so that a greedy change 
making algorithm will not use the minimum number of coins. 

C-12,2 	In the art gallery guarding problem we are given a line L that repre
sents a long hallway in an art gallery. We are also given a set. X = 
{XO,Xl, .. . ,Xn- d of real numbers that specify the positions of paiptings 
in this hallway. Suppose that a single guard can protect all the paintings 
within distance at most 1 of his or her position (on both sides). Design 
an algorithm for finding a placement of guards that uses the minimum 
number of guards to guard all the paintings with positions in X. 

C-12,3 	Give an example of a text T of length n and a pattern P of length m that 
force the brute-force pattern matching algorithm to have a running time 
that is Q(nm). 

C-12.4 	Give ajustification of why the KMPFailureFunction method (Code Frag
ment 12.7) runs in O(m) time on a pattern oflength m. 

C-12.5 	Show how to modify the KMP string pattern matching algorithm so as to 
find every occurrence of a pattern string P that appears as a substring in T, 
while still running in O(n m) time, (Be sure to catch even those matches 
tllatovetlap.) . . 

C-12.6 	Let T be a text of length n, and let P be a pattern of length m. Describe an 
O(n+m)-time method for finding the longest prefix of P that is a substring 
ofT. 



589 12.6. Exercises 

C-12.7 	Say that a pattern P of length m is a circular substring of a text T of 
length n if there is an index 0 i < m, such that P T [n - m+i..n 1] + 
T[O..i - 1], that is, if P is a (normal) substring of T or P is equal to the 
concatenation of a suffix of T and a prefix of T. Give an O(n m)-time 
algorithm for determining whether P is a clrcular substring of T. 

C-12.8 	The KMP pattern matching algorithm can be modified to run faster on 
binary strings by redefining the failure function as 

f(j) = 	the largest k < } such that P[O ..k - 21Pi is a suffix of P[l ..}], 

where Pi denotes the complement of the kth bit of P. Describe how to 
modify the KMP algorithm to be able to take advantage of this new failure 
function and also give a method for computing this failure function. Show 
that this method makes at most n comparisons between the text and the 
pattern (as opposed to the 2n comparisons needed by the standard KMP 
algorithm given in Section 12.3.3). 

C-12.9 Modify the simplified BM algorithm presented in this chapter using ideas 
from the KMP algorithm so that it runs in O(n m) time. 

C-12.10 Given a string X of length n and a string Y of length m, describe an O(n 
m)-time algorithm for finding the longest prefix of X that is a suffix of Y. 

C-12.11 Give an efficient algorithm for deleting a string from a standard trie and 
analyze its running time. 

C-12.12 Give an efficient algorithm for deleting a string from a compressed trie 
and analyze its running time. 

C-12.13 	Describe an algorithm for constructing the compact representation of a 
suffix trie, given its noncompact representation, and analyze its running 
time. 

C-12.l4 	Let T be a text string of length n. Describe an O(n)-time method for 
finding the longest prefix of T that is a substring of the reversal of T. 

C-12.15 	Describe an efficient algorithm to find the longest palindrome that is a 
suffix of a string T of length n. Recall that apalindrome is a string that is 
equal to its reversal. What is the running time of your method? 

C-12.l6 	Given a sequence S= (XO,XI, X2 , ... ,Xn-l) of numbers, describe an O(n2)

time algorithm for finding a longest subsequence T (Xio 1 Xii ,Xi2"" ,Xik_J) 

of numbers, such that ij < iJ+l and Xij > Xij+l' That is, T is a longest de
creasing subsequence of S. 

C-12.17 	Define the edit distance between two strings X and Y of length n and m, 
respectively, to be the number of edits that it takes to change X into Y. An 

·editcbnsists of a character insertion, a character deletion, or a character 
replacement. For example, the strings lIalgoritbm ll and IIrhytbm ll have 
edit distance 6. Design an O(nm)-time algorithm for computing the edit 
distance between X and y, 



590 	 Chapter 12. Text Processing 

C-12.18 	Design a greedy algorithm for making change after someone buys some 
candy costing x cents and the customer gives the clerk $1. Your algorithm 
should try to minimize the number of coins returned. 

a. 	 Show that your greedy algorithm returns the rpinimum number of 
coins ifthe coins have denominations $0.25, $0.1 0, $0.05, and $0.01. 

b. 	 Give a set of denominations for which your algorithm may not re
turn the minimum number of coins. Include an example where your 
algorithm fails. 

C-12.19 	Give an efficient algorithm for determining if a pattern P is a subsequence 
(not substring) of a text T. What is the running time of your algorithm? 

C-12.20 	Let x and y be strings of length nand m respectively. Define B(i,j) to 
be the length of the longest common substring of the suffix of length i 
in x and the suffix of length j in y. Design an O(nm)-time algorithm for 
computing all the values of BU, j) for i = 1, ... ,n and j = I, ... ,m. 

C-12.21 	 Anna has just won a contest that allows her to take n pieces of candy out 
of a candy store for free. Anna is old enough to realize that some candy is 
expensive, while other candy is relatively cheap, costing much less. The 
jars of candy are numbered 0, I, ... , m-I, so that jar j has nj pieces in 
it, with a price of Cj per piece. Design an O(n +m)-time algorithm that 
allows Anna to maximize the value of the pieces. of candy she takes for 
her winnings. Show that your algorithm produces the maximum value for 
Anna. 

C-12.22 	Let three integer arrays, A, B, and C, be given, each of size n. Given an 
arbitrary integer x, design an O(n210gn)-time algorithm to deterrrline if 
there exist numbers, a in A, bin B, and c in C, such th.at x a+b c. 

C-12.23 	Give an O(n2)-time algorithm for the previous problem. 

Projects 

P-12.1 	 Perform an experimental analysis, using documents found on the Inter
net, of the efficiency (number of character comparisons performed) of the 
brute-force and KMP pattern matching algorithms for varying-length pat
terns. 

P-12.2 	Perform an experimental analysis, using documents found on the Inter
net, of the efficienc.y(number ofcharacter comparisons performed) of the 
brute-force and BM pattern matchil1g algorithms for varying-length pat
terns. 

P-12.3 	Perform an experimental comparison of the relative speeds of the brute
force, KMP, and BM pattern matching algorithms. Document the time 



591 Chapter Notes 

taken for coding up each of these algorithms as well as their relative run
ning times on dpcuments found on the Internet that are then searched using 
varying-length patterns. 

P-12.4 Implement a compression and decompression scheme that is based on. 
Huffman coding. 

P-12.5 Create a class that implements a standard trie for a set of ASCII strings. 
The class should have a constructor that takes as argument a list of strings, 
and the class should have a method that tests whether a given string is 
stored in the trie. 

P-12.6 Create a class that implements a compressed trie for a set of ASCII strings. 
The class should have a constructor that takes as argument a list of strings, 
and the class should have a method that tests whether a given string is 
stored in the trie. 

P-12.7 Create a class that implements a prefix trie for an ASCII string. The class 
should have a constructor that takes as argument a string and a method for 
pattern matching on the string. 

P-12.8 Implement the simplified search engine described in Section 12.5.4 for 
the pages of a small Web site. Use all the words in the pages of the site 
as index terms, excluding stop words such as articles, prepositions, and 
pronouns. 

P-12.9 Implement a search engine for the pages of a small Web site by adding 
a page-ranking. feature to the simplified search engine described in Sec
tion 12.5.4. Your page-ranking feature should return the most relevant 
pages first. Use all the words in the pages of the site aSiindex terms, ex
cluding stop words, such as articles, ,prepositions, and pronouns. 

P-12.l0 Write a program that takes two character strings (which could be, for ex
ample, representations of DNA strands) and computes their edit distance, 
showing the corresponding pieces. (See Exercise C-12.17.) 

Chapter Notes 

The KMP algorithm is described by Knuth, Morris, and Pratt in their journal article [64], 
and Boyer and Moore describe their algorithm in a journal article published the same 
year [16]. In their article, however, Knuth et al. [64] also prove that the BM algorithm 
runs in linear time. More rec~ntly, Cole [23] shows that the BM algorithm makes at most 
3n character comparisons in the worst case, and this bound is tight. All of the algorithms 
discussed above are also discussed in the book chapter by Abo [3], albeit in a more theoret
ical framework, including the methods for regular-expression pattern matching. The reader 
interested in further study of string pattern matching algorithms is referred to the book by 
Stephen [87] and the book chapters by Abo [3] and Crochemore and Lecroq [26]. 



592 Chapter 12. Text Processing 

The trie was invented by Morrison [78] and is discussed extensively in the classic 
Sorting and Searching book by Knuth [63]. The name "Patricia" is short for "Practical 
Algorithm to Retrieve Information Coded in Alphanumeric" [78]. McCreight [70] shows 
how to construct suffix tries in linear time. An introduction to the field of information 
retrieval, which includes a discussion of search engines for the Web is provided in the book 
by Baeza-Yates and Ribeiro-Neto [8]. 



• • • • • • • • • • 

• • • 

Chapter 

13 Graphs 


'" ....." .. '" ...... 
• •~o I:. ,••• •.'. •';f{XJfb..••::\\~~••~....•::~~<t.~ •••• ::Q..~~8..:
••~co • • .oePp ••• • .,~ " 
••••~.:. '" oofY," ,,' ••••...... .:~~:.' ....

• 

..:::::. ~ .::!. •.••..~~.. . •...••!....~Qo...
" O':uo" • 1e;icf{J)8'. .:rP9DOI •••PfJttJEr.••• •, ,,.••• ••••••o~o:· •••••••••g'~.Q••• '~oo. • • " 9000, • •• ro'"Oo(j,":.:::.' • •••••:.. ••• r.•••.. .,:' :..... 

..:.......' .: ,,
:·rff!,Po·...• :,".o~~. · '" · ..~~ " .......,'
.. .', ....,',', •••• •••• ••••••• ·'o~~..• ••••••••• •'" ··Q~06':.·.··.....~r..:.. 

Contents ••••• 

13.1 Graphs 594 
13.1.1 The Graph ADT ..... 599 

13.2 Data Structures for Graphs . 600 

13.2.1 The Edge List Structure. 600 

13.2.2 The Adjacency List Structure 603 

13.2.3 The Adjacency Matrix Structure 605 

13.3 Graph Traversals .... .. 607 

13.3.1 Depth-First Search 607 

13.3.2 Implementing Depth-First" Search 611 

13.3.3 Breadth-First Search 619 
13.4 Directed Graphs . . . . . 622 

13.4.1 Traversing a Digraph 624 

13.4.2 Transitive Closure .. 626 

13.4.3 Directed Acyclic Graphs. 629 
13.5 Shortest Paths . . . . 633 

13.5.1 Weighted Graphs 633 

13.5.2 Dijkstra's Algorithm 635 

13.5.3 Implementations of Dijkstra's Algorithm 641 

13.6 Minimum Spanning Trees .. . 644 
13.6.1 Krusk<3l's Algorithm ... . 646 

13.6.2 The Prim-Jarnik Algorithm 650 

13.7 Exercises . . . . . . . . . . . . 653 



594 Cllapter 13. Graplls 

13.1 Graphs 

A graph is a way of representing relationships that exist between pairs of objects. 
That is, a graph is a set of objects, called vertices, together with a collection of 
pairwise connections between them. By the way, this notion of a "graph" should 
not be confused with bar charts and function plots, as these kinds of "graphs" are 
unrelated to the topic of this chapter. Graphs have applications in a host of different 
domains, including mapping, transportation, electrical engineering, and computer 
networks. 

Viewed abstractly, a graph G is simply a set V of vertices and a collection E 
of pairs of vertices from V, called edges. Thus, a graph is a way of representing 
connections or relationships between pairs of objects from some set V. Incidentally, 
some books use different terminology for graphs and refer to what we call vertices 
as nodes and what we call edges as arcs. We use the terms "vertices" and "edges." 

Edges in a graph are either directed or undirected. An edge (u, v) is said to 
be directed from u to v if the pair (u, v) is ordered, with u preceding v. An edge 
(u, v) is said to be undirected if the pair (Lt, v) is not ordered. Undirected edges are 
sometimes denoted with set notation, as {u, v}, but for simplicity we use the pair 
notation (u, v), noting that in the undirected case (u, v) is the same as (v,u). Graphs 
are typically visualized by drawing the vertices as ovals or rectangles and the edges 
as segments or curves connecting pairs of ovals and rectangles. The following are 
some examples of directed and undirected graphs. 

Example 13.1: We can visualize collaborations among the researchers of a cer
tain discipline by constructing a graph whose vertices are associated with the re
searchers themselves, and whose edges connect pairs of ve,rtices associated with 
researchers who have coauthored a paper or book. (See Figure 13.1.) Such edges 
are undirected because coauthorship is asymmetric relation; that is, ifA has coau
thored something with B, then B necessarily has coauthored something with A. 

Figure 13.1: Graph of coauthorship among some authors. 



13.1. Graphs 595 

Example 13.2: We can associate with an object-oriented program a graph whose 
vertices represent the classes defined in the program, and whose edges indicate 
inheritance between classes. There is an edge from a vertex v to a vertex u if the 
class for v extends the class for u. Such edges are directed because the inheritance 
relation only goes in one direction (that is, it is asymmetric). 

If all the edges in agraph are undirected, then we say the graph is an undirected 
graph. Likewise, a directed graph, also called a digraph, is a graph whose edges 
are all directed. Agraph that has both directed and undirected edges is often called 
a mixed graph. Note that an undirected or mixed graph can be converted into a 
directed graph by replacing every undirected edge (u, v) by the pair of directed 
edges (u, v) and (v, u). It is often useful, however, to keep undirected and mixed 
graphs represented as they are, for such graphs have several applications, such as 
that of the following example. 

Example 13.3: A city map can be modeled by a graph whose vertices are inter
sections or dead-ends, and whose edges are stretches of streets without intersec
tions. This graph has both undirected edges, which correspond to stretches of two
way streets, and directed edges, which correspond to stretches of one-way streets. 
Thus, in this way, a graph modeling a city map is a mixed graph. 

Example 13.4: Physical examples of graphs are present in the electrical wiring 
and plumbing networks of a building. Such networks can be modeled as graphs, 
where each connector, fixture, .or outlet is viewed as a vertex, aJld each uninter
rupted stretch of wire or pipe is viewed as an edge. Such graphs are actually com
ponents ofmuch larger graphs, namely the local power and water distribution net
works. Depending on the specific aspects of these graphs that we are interested in, 
we may consider their edges as undirected or directed, for, in principle, water can 
flow in a pipe and current can flow in a wire in either direction. 

The two vertices joined by an edge are called the end vertices (or endpoints) 
of the edge. If an edge is directed, its first endpoint is its origin and the other is the 
destination of the edge. Two vertices u and v are said to be adjacent if there is an 
edge whose end vertices are u and v. An edge is said to be incident on a vertex if 
the vertex is one of the edge's endpoints. The outgoing edges of a vertex are the 
directed edges whoseorigiri is that vertex. The incoming edges of a vertex are the 
directed edges whose destination is that vertex. The degree of a vertex v, denoted 
deg(v), is the number of incident edges of v. The in-degree and out-degree of a 
vertex v are the number of the incoming and outgoing edges of v, and are denoted 
indeg(v) and outdeg(v), respectively. 



596 Chapter 13. Graphs 

Example 13.5: We can study air transportation by constructing a graph G, called 
a flight network, whose vertices are associated with airports, and whose edges 
are associated with flights. (See Figure 13.2.) In graph G, the edges are directed 
because a given flight has a specific travel direction (from ~he origin airport to the 
destination airport). The endpoints ofan edge e in G correspond respectively to the 
origin and destination for the flight corresponding to e. Two airports are adjacent 
in G if there is a flight that flies between them, and an edge e is incident upon a 
vertex v in G if the flight for e flies to or from the airport for v. The outgoing edges 
ofa vertex v correspond to the outbound flights from v's airport, and the incoming 
edges correspond to the inbound flights to v's airport. Finally, the in-degree of a 
vertex v of G corresponds to the number of inbound flights to v's airport, and the 
out-degree ofa vertex v in G corresponds to the number of outbound flights. 

The definition of a graph refers to the group of edges asa collection, not a set, 
thus allowing for two undirected edges to have the same end vertices, and for two 
directed edges to have the same origin and the same destination. Such edges are 
called parallel edges or multiple edges. Parallel edges can be in a flight network 
(Example 13.5), in which case multiple edges between the same pair of vertices 
could indicate different flights operating on the same route at different times of the 
day. Another special type of edge is one that connects a vertex to itself. Namely, we 
say that an edge (undirected or directed) is aself-loop if ~ts two endpoints coincide._ 
A self-loop may occur in a graph associated with a city map (Example 13.3), where 
it would correspond to a "circle" (a curving street that returns to its starting point). 

With few exceptions, graphs do not have parallel edges or self-loops. Such 
graphs are said to be simple. Thus, we can usually say that the edges oPa simple 
graph are a set of vertex pairs (and not just a collection). Tt-rroughout this chapter, 
we assume that a graph is simple unless otherwise specified. 

Figure 13.2: Example of a directed graph representing a flight network. The end
points of edge UA 120 are LAX and ORD; hence, LAX and ORD are adjacent. 
The in-degree of DFW is 3, and the out-degree of DFW is 2. 



I
13.1. Graphs 597 

In the propositions that follow, we explore a few important properties of graphs. 

"l.' Proposition 13.6: IfG is a graph with m edges, then 
" 

, 
'. E deg(v) = 2m., 


.t~ v in G 


Justification: An edge (u, v) is counted twice in the summation above; once by 
its endpoint u and once by its endpoint v. Thus, the total contribution of the edges 
to the degrees of the vertices is twice the number of edges. • 

Proposition 13.7: IfG is a directed graph with m edges, then 

E indeg(v) = E outdeg(v) = m. 
vinG vinG 

Justification: In a directed graph, an edge (u, v) contributes one unit to the 
out-degree of its origin u and one unit to the in-degree of its destination v. Thus, 
the total contribution of the edges to the out-degrees of the vertices is equal to the 
number of edges, and similarly for the out-degrees. • 

We next show that a simple graph with n vertices has 0(n2) edges. 

Proposition 13.8: Let G be a simple graph with n vertices and m edges. If Gis 
undirected, then m :::; n(n- 1) /2,. and ifGis directed, then m :::; n(n - 1). 

JustiFication: Suppose that G is undirected. Since no two edges can have the 
same endpoints and there are no self-loops, the maximum degree of a vertex in G 
is n -1 in this case. Thus, by Proposition 13.6, 2m.:::; n(n -1). Now suppose that 
G is directed. Since no two edges can have the same origin and destination, and 
there are no self-loops, the maximum in-degree of a vertex in Gis n- 1in this case. 
Thus, by Proposition 13.7, m :::; n(n -1). • 

Apath is a sequence of alternating vertices and edges that starts at a vertex and 
ends at a vertex such that each edge is incident to its predecessor and successor 
vertex. A cycle is a path with at least one edge that has its start and end vertices 
the same. We say that a path is simple if each vertex in the path is distinct, and 
we say that a cycle is simple if each vertex in the cycle is distinct, except for the 
first and last one. A directed path is a path such that all edges are directed and are 
traversed along their direction. A directed cycle is similarly defined. For example, 
in Figure 13.2, (BaS, NW 35, JFK, AA 1387, DFW) is in a directed simple path, 

iJ " 

!I.,·. and (LAX, UA 120, ORD, UA 877, DFW, AA 49, LAX) is a directed simple cycle. 
If a path P or cycle C is a simple graph, we may omit the edges in P or C, as these 
are well defined, in which case P is a list of adjacent vertices and C is a cycle of 
adjacent vertices. 



598 Chapter 13. Graphs 

Example 13.9: Given agraph G representing a city map (see Example 13.3), we ~. 
can model a couple driving to dinner at a recommended restaurant as traversing a ~Ifpath though G. If they know the way, and don't accidentally go through the same 
intersection twice, then they traverse a simple path in G. Li~ewise, we can model 
the entire trip the couple takes, from their home to the restaurant and back, as a tcycle. If they go home from the restaurant in a completely different way than how ~ 


they went, not even going through the same intersection twice, then their entire 

round trip is a simple cycle. Finally, if they travel along one-way streets for their 

entire trip, we can model their night out as a directed cycle. ·1' 


f:' 

A subgraph of a graph G is a graph H whose vertices and edges are subsets 
of the vertices and edges of G, respectively. For example, in the flight network of 
Figure 13.2, vertices BOS, JFK, and MIA, and edges AA 903 and DL 247 form 
a subgraph. A spanning subgraph of G is a subgraph of G that contains all the 
vertices of the graph G. A graph is connected if, for any two vertices, there is a 
path between them. Ifa graph G is not connected, its maximal connected subgraphs 
are called the connected components of G. Aforest is a graph without cycles. A 
tree is a connected forest, that is, a connected graph without cycles. Note that this 
definition of a tree is somewhat different from the one given in Chapter 7. Namely, 
in the context of graphs, a tree has no root. Whenever there is ambiguity, the trees 
of Chapter 7 should be referred to as rooted trees, while the trees of this chapter 
should be referred to asfree trees. The connected components of a forest are (free) 
trees. A spanning tree of a graph is a spanning subgraph that is a (free) tree. 

Example 13.10: Perhaps the most talked about graph today is the Internet, which 
can be viewed as a graph whose vertices are computers and whose (undirected) 
edges are communication connections between pairs of computers on the Inter
net. The computers and the connections between them in a single domain, like 
wiley.com, form asubgraph of the Internet. If this subgraph is connected, then two 
users on computers in this domain can send e-mail to one another without having 
their information packets ever leave their domain. Suppose the edges of this sub
graph form a spanning tree. This implies that, if even a single connection goes 
down (for example, because someone pulls a communication cable out of the back 
ofa computer in this domain), then this subgraph will no longer be connected. 

There are a number of simple properties of trees, forests, and connected graphs. 

Proposition 13.11: Let G be an undirected graph with n vertices and m edges. 

• IfG is connected, then m > n 1. 

• IfG is a tree, then m = n 1. 
• IfG is a forest, then m < n 1. 

We leave the justification of this proposition as an exercise (C-13.2). 

http:wiley.com


13.1. Graphs 	 599 

13.1.1 	 The Graph ADT 

As an abstract data type, a graph is a collection of elements that are stored at the 
graph's positions-its vertices and edges. Hence, we can store elements in a graph 
at either its edges or its vertices (or both). In Java, this means we can define Vertex 
and Edge interfaces that each extend the Position interface. Let us then introduce 
the following simplified graph ADT, which is suitable for vertex and edge positions 
in undirected graphs, that is, graphs whose edges are all undirected. Additional 
methods for dealing with directed edges are discussed in Section 13.4. 

verticesO: 	Return an iterable collection of all the vertices of the
graph. 

edgesO: Return an iterable collection of all the edges of the graph. 

incidentEdges(v): 	 Return an iterable collection of the edges incident upon 
vertex v. 

opposite(v, e): 	 Return the endvertex of edge e distinct from vertex v; an 
error occurs if e is not incident on v. 

endVertices(e): Return an array storing the end vertices of edge e. 

areAdjacent(v, w): 	 Test whether vertices v and ware adjacent. 
i 

replace(v,x): Replace the element ston~d at vertex v with x. 

replace(e, x): Replace the element stored at edge e with x. 

insertVertex(x): Insert and return a new vertex storing element x. 

insertEdge(v, w,x): 	 Insert and return a new undirected edge with end vertices 
v and wand storing element x. 

removeVertex(v): 	 Remove vertex v and all its incident edges and return the 
element stored at v. 

removeEdge(e): Remove edge e and return the element stored at e. 

There are several ways to realize the graph ADT. We explore three such ways 
in the next section. 



600 Chapter 13. Graphs 

13.2 Data Structures for Graphs 

In this section, we discuss three popular ways of representing graphs, which are 
usually referred to as the edge list structure, the adjacency list structure, and the 
adjacency matrix. In all three representations, we use a collection to store the ver
tices of the graph. Regarding the edges, there is a fundamental difference between 
the first two structures and the latter. The edge list structure and the adjacency list 
structure only store the edges actually present in the graph, while the adjacency 
matrix stores a placeholder for every pair of vertices (whether there is an edge be
tween them or not). As we will explain in this section, this difference implies that, 
for a graph G with n vertices and m edges, an edge list or adjacency list representa
tion uses O(n +m) space, whereas an adjacency matrix representation uses O(n2) 

space. 

13.2.1 The Edge List Structure 

The edge list structure is possibly the simplest, though not the most efficient, rep
resentation of a graph G. In this representation, a vertex v of G storing an element 
o is explicitly represented by a vertex object. All such vertex objects are stored in 
a collection V, such as an array list or node list. If V is an array list, for example, 
then we naturally think of the vertices as being numbered. 

Vertex Objects 

The vertex object for a vertex v storing element 0 has instance variables for: 

• A reference to o. 
• A reference to the position (or entry) of the vertex-object in collection V. 

The distinguishing feature of the edge list structure is not how it represents vertices, 
however, but the way in which it represents edges. In this structure, an edge e of G 
storing an element 0 is explicitly represented by an edge object. The edge objects 
are stored in a collection E, which would typicatly be an array list or node list. 

Edge Objects 

The edge object for an edge e storing element 0 has instance variables for: 

• A reference to o. 
• References to the vertex objects associated with the endpoint vertices of e. 

• A reference to the position (or entry) of the edge-object in collection E. 



601 13.2. Data Structures for Graphs 

Visualizing the Edge List Structure 

.~, We illustrate an example of the edge list structure for a graph G in Figure 13.3. 

d lZ 

(a) 

V C~-----------@----------@-----------@"\ 
, I 

E( 
\\. ~ - """-'" """""-"' '-"" I 
,------------------------------------------------~/ 

(b) 

Figure 13.3: (a) A graph G; (b) schematic representation of the edge list structure 
for G. We visualize the elements stored in the vertex and edge objects with the 
element names, instead of with actual references to the element objects. 

The reason this structure is called the edge list structure is that the simplest and 
most common implementation of the edge collection E is with a list. Even so, in 
order to be able to conveniently search for specific objects associated with edges, 
we may wish to implement E with a dictionary (whose entries store the element as 
the key and the edge as the value) in spite of our calling this the "edge list." We 
may also wish to implement the collection V as a dictionary for the same reason. 
Still, in keeping with tradition, we call this structure the edge list structure. 


The main feature of the edge list structure is that it provides direct access from 

edges to the vertices they are incident upon. This allows us to define simple algo
rithms for methods endVertices(e) and opposite(v, e). 



'." . 

" 

··1"···········'· 
.;. 	 .602 	 Chapter 13. Graphs '·'·,Performance of the Edge List Structure 	 , 

".> 

,I
One method that is inefficient for the edge list structure, however, is that of ac ~ 
cessing the edges that are incident upon a vertex. Determining this set of vertices ~ 
requires an exhaustive inspection of all the edge objects in the collection E. That is, ~ 
in order to determine which edges are incident to a vertex v, we must examine all ~ 
the edges in the edge list and check, for each one, if it happens to be incident to v. ~i 
Thus, method incidentEdges(v) runs in time proportional to the number of edges in 
the graph, not in time proportional to the degree of vertex v. In fact, even to check 
if two vertices v and ware adjacent by the areAdjacent(v, w) method, requires that 
we search the entire edge collection looking for an edge with end vertices v and w. 
Moreover, since removing a vertex involves removing all of its incident edges, 
method removeVertex also requires a complete search of the edge collection E. 

Table 13.1 summarizes the performance of the edge list structure implemen
tation of a graph under the assumption that collections V and E are realized with 
doubly linked lists (Section 3.3). 

. Operation 
vertices 
edges 
endVertices, opposite 
incidentEdges, areAdjacent 

Time 
O(n) 
O(m) 
0(1) 
0(111) 

replace 0(1) 
insertVertex, insertEdge, removeEdge, 
removeVertex 

0(1) 
O(m) 

Table 13.1: Running times of the methods of a graph implemented with the edge 
list structure. The space used is O(n m), where n is the number of vertices and m 
is the number of edges. 

Details for selected methods of the graph ADT are as follows: 

• 	Methods verticesO and edgesO are implemented by calling V.iteratorO and 
E.iteratorO, respectively. 

• 	Methods incidentEdges and areAdjacent all take O(m) time, since to deter
mine which edges are incident upon a vertex v we must inspect all edges. 

• 	Since the collections V and E are lists implemented with adoubly linked list, 
we can insert vertices, and insert and remove edges, in O( I) time. 

• 	The update method removeVertex(v) takes O(m) time, since it requires that 
we inspect all the edges to find and remove those incident upon v. 

Thus, the edge list representation is simple but has significant limitations. 



::j. '"." 

.; . 


'1",", 
13.2. Data Structures for Graphs 603 

1(:. 
13.2.2 The Adjacency List Structure 

The adjacency list structure for a graph G adds extra information to the edge list 
structure that supports direct access to the incident edges (and thus to the adjacent 
vertices) of each vertex. This approach allows us to use the adjacency list structure 
to implement several methods of the graph ADT much faster than what is possible 
with the edge list structure, even though both of these two representations use an 
amount of space proportional to the number of vertices and edges in the graph. 
The adjacency list structure includes all the structural components of the edge list 
structure plus the following: 

• A vertex object v holds a reference to a collection I(v), called the incidence 
collection of v, whose elements store references to the edges incident on v. 

• 	The edge object for an edge e with end vertices v and w holds references to 
the positions (or entries) associated with edge e in the incidence collections; I (v) and I (w). 

Traditionally, the incidence collection I(v) for a vertex v is a list, which is why 
we call this way of representing a graph the adjacency list structure. The adjacency 
list structure provides direct access both from the edges to the vertices and from the 
vertices to their incident edges. We illustrate the adjacency list structure of a graph 
in Figure 13.4. 

(0 
a 

0 
-b 

G) 
(a) 

I 

{~LlL

:,.0', 
\ 

(b) 

Figure 13.4: (a) A graph G; (b) schematic representation of the adjacency list struc
ture of G. As in Figure 13.3, we visualize the elements of collections with names. 



'-~o~.. , 

·'1' 

,604 	 Chapter 13. Graphs 
.~ 

i 
~ Performance of the Adjacency List Structure 

i 
~ 

All of the methods of the graph ADT that can be implemented with the edge list 

structure in 0(1) time can also be implemented in 0(1) time with the adjacency ~ 
.~ 

list structure, using essentially the same algorithms. In addition, being able to ~ 
-!l 

provide access between vertices and edges in both directions allows us to speed ..~~~ up the performance of a number of the graph methods by using an adjacency list 
; .' 

structure instead of an edge list structure. Table 13.2 summarizes the performance 1; 	 

of the adjacency list structure implementation of a graph, assuming that collections 	 .~ii 
]$V 	and E and the incidence collections of the vertices are all implemented with 

doubly linked lists. For a vertex v, the space used by the incidence collection of v is 
proportional to the degree of v, that is, it is O(deg(v)). Thus, by Proposition 13.6, 
the space requirement of the adjacency list structure is O(n +m). 

~1 
Operation Time 
vertices O(n) 

I edges O(m) 
endVertices, opposite 0(1) 
incidentEdges(v) O(deg(v)) 

j areAdjacent(v,w) O(min(deg(v), deg(w)) 
replace 0(1) _ 
insertVertex, insertEdge, removeEdge, 0(1) 
removeVertex O(deg(v)) 

Table 13.2: Running times of the methods of a graph implemented with the adja
cency list structure. The space used is O(n+m), where n is the number of vertices 
and m is the number of edges. 

In 	contrast to the edge-list way of doing things, the adjacency list structure 
provides improved running times for the following methods: 

• 	Method incidentEdges(v) takes time proportional to the number of incident 

vertices of v, that is, 0 ( deg ( v )) time. 


• 	Method areAdjacent(u, v) can be performed by inspecting either the inci

dence collection of u or that of v. By choosing the smaller of the two, we get 

O(min(deg(u),deg(v))) running time. 


• 	Method removeVertex(v) takes O(deg(v)) time. 

1 



605 13.2. Data Structures for Graphs 

13.2.3 The Adjacency Matrix Structure 

Like toe adjacency list structure, the adjacency matrix structure of a graph also ex
tends the edge list structure with an additional component. In this case, we augment 
the edge list with a matrix (a two-dimensional an-ay) A that allows us to determine 
adjacencies between pairs of vertices in constant time. In the adjacency matrix rep
resentation, we think of the vertices as being the integers in the set {O, I, ... ,n - 1 } 
and the edges as being pairs of such integers. This allows us to store references to 
edges in the cells of a two-dimensional n x n may A. Specifically, the adjacency 
matrix representation extends the edge list structure as follows (see Figure 13.5): 

• A vertex object v stores a distinct integer i in the range 0, 1) ... ) n - 1, called 
the index of v . 

• 	We keep a two-dimensional n x n an-ay A such that the cell A[i,j] holds a 
reference to the edge (v, w), if it exists, where v is the vertex with index i and 
w is the vertex with index j. If there is no such edge, then A[i, j] = null. 

C0 
a 

0 
b 

(0 
(a) 

v 

i 

/ \ 
A 

0 1 2 

0 

1 

. 2 I I • 

(b) 

Figure 13.5: (a) A graph G without parallel edges; (b) schematic representation of 
the simplified adjacency matrix structure for G. 



606 

.,,~::4 

CIJapter 13. Graphs 

Performance of the Adjacency Matrix Structure 

For graphs with parallel edges, the adjacency matrix representation must be ex

tended so that, instead ofhavingA[i,jj storing a pointer to an associated edge (v, w), 

it must store a pointer to an incidence collection I(v, w), which stores all the edges 

from v to w. Since most of the graphs we consider are simple, will not consider this f 

complication here. 


The (simple) adjacency matrix A allows us to pelform method areAdjacent(v, w) 
in 0(1) time. We achieve this running time by accessing vertices v and w to de
termine their respective indices i and j, and then testing if A[i, j] is null or not. 
The optimal performance of method areAdjacent is counteracted by an increase 
in space usage, however, which is now 0(n2), and in the running time of other 
methods. For example, method incidentEdges(v) now requires that we examine an 
entire row or column of array A and thus runs in O(n) time. Moreover, any ver ~ 

)
tex insertions or deletions now require creating a whole new array A, of larger or 
smaller size, respectively, which takes 0(n2 ) time. 

Table 133 summarizes the performance of the adjacency matrix structure im
plementation of a graph. From this table, we observe that the adjacency list struc
ture is superior to the adjacency matrix in space, and is superior in time for all 
methods except for the areAdjacent method. 

Operation Time 

vertices O(n) 
edges O(m) 
endVertices, opposite, areAdjacent 0(1) 

sincidentEdges(v) O(n +deg(v)) 
replace, insertEdge, removeEdge, 0(1) 

O(n:l)insertVertex, removeVertex 

Table 13.3: Running times for a graph implemented with an adjacency matrix. 

Historically, Boolean adjacency matrices were the first representations used 
for graphs (so that A[i,)] = true if and only if (i,j) is an edge). We should not 
find this fact surprising, however, for the adjacency matrix has a natural appeal 
as a mathematical structure (for example, an undirected graph has a symmetric 
adjacency matrix). The adjacency list structure came later, with its natural appeal 
in computing due to its faster methods for most algorithms (many algorithms do 
not use method areAdjacent) and its space efficiency. 

Most of the graph algorithms we examine will run efficiently when acting upon 
a graph stored using the adjacency list representation. In some cases, however, a 
trade-:-off occurs, where graphs with few edges are most efficiently processed with 
an adjacency list structure and graphs with many edges are most efficiently pro
cessed with an adjacency matrix structure. 



13.3. Graph Traversals 607 

13.3 Graph Traversals 

Greek mythology tells of an elaborate labyrinth that was built to house the mon
strous Minotaur, which was part bull and part man. This labyrinth was so complex 

1 
'; that neither beast nor human could escape it. No human, that is, until the Greek 
i.l 

hero, Theseus, with the help of the king's daughter, Ariadne, decided to implement 
a graph traversal algorithm. Theseus fastened a ball of thread to the door of the 
labyrinth and unwound it as he traversed the twisting passages in search of the 
monster. Theseus obviously knew about good algorithm design, for, after finding 
and defeating the beast, Theseus easily followed the string back out of the labyrinth 
to the loving arms of Ariadne. Formally, a traversal is a systematic procedure for 
exploring a graph by examining all of its vertices and edges. 

13.3.1 Depth-First Search 

The first traversal algorithm we consider in this section is depth-first search (DFS) 
in an undirected graph. Depth-first search is useful for testing a number of prop
erties of graphs, including whether there is a path from one vCltex to another and 
whether or not a graph is connected. 

Depth-first search in an undirected graph G is analogous to wandering in a 
labyrinth with a string and a can of paint without getting lost. We begin at a specific 
starting vertex s in G, which we initialize by fixing one end of our string to sand 
painting s as "visited." The veltex s is now our "current".vertex-pall our current 
vertex u. We then traverse G by considering an (arbitrary) edge (u, v) incident 
to the current vertex u. If the edge (u, v) leads us to an already visited (that is, 
painted) vertex v, we immediately return to vertex u. If, on the other hand, (u, v) 
leads to an unvisited vertex v, then we unroll our string, and go to v. We then paint 
v as "visited," and make it the current vertex, repeating the computation above. 
Eventually, we will get to a "dead-end," that is, a current vertex u such that all 
the edges incident on u lead to vertices already visited. Thus, taking any edge 
incident on u will cause us to return to u. To get out of this impasse, we roll 
our string back up, backtracking along the edge that brought us to u, going back 
to a previously visited vertex v. We then make v our current vertex and repeat the 
computation above for any edges incident upon vthat we have not looked at before. 
If all of v's incident edges lead to visited vertices, then we again roll up our string 
and backtrack to the vertex we came from to get to v, and repeat the procedure at 
that vertex. Thus, we continue to backtrack along the path that we have traced so 
far until we find a vertex that has yet unexplored edges, take one such edge, and 
continue the traversaL The process terminates when our backtracking leads us back 
to the start vertex s, and there are no more unexplored edges incident on s. 



608 Chapter 13. Graphs 

This simple process traverses all the edges of G. (See Figure 13.6.) 

~ 

r~ 
M 

I.: 
m 
.~ 
.~ 

(a) (b) 

! 

(c) (d) 

(e) (t) 

Figure 13.6: Example of depth-first search traversal on a graph starting at vertex A. 
Discovery edges are .shown with solid lines and back edges are shown with dashed 
lines: (a) input graph; (b) path of discovery edges traced from A until back edge 
(B,A) is hit; (c) reaching F, which is a dead end; (d) after backtracking to C, resum
ing with edge (C,G), and hitting another dead end, J; (e) after backtracking to G; 
(f) after backtracking to N. 



609 13.3. Graph Traversals 

Discovery Edges and Back Edges 

We can visualize a DFS traversal by orienting the edges along the direction in 
which they are explored during the traversal, distinguishing the edges used to dis
cover new vertices, called discovery edges, or tree edges, from those that lead to 
already visited vertices, called back edges. (See Figure 13.6f.) In the analogy 
above, discovery edges are the edges where we unroll our string when we traverse 
them, and back edges are the edges where we immediately return without unrolling 
any string. As we will see, the discovery edges form a spanning tree of the con
nected component of the starting vertex s. We call the edges not in this tree "back 
edges" because, assuming that the tree is rooted at the start vertex, each such edge 
leads back from a vertex in this tree to one of its ancestors in the tree. 

The pseudo-code for a DFS traversal starting at a vertex v follows our analogy 
with string and paint. We use recursion to implement the string analogy, and we 
assume that we have a mechanism (the paint analogy) to determine if a vertex or 
edge has been explored or not, and to label the edges as discovery edges or back 
edges. This mechanism will require additional space and may affect the running 
time of the algorithm. A pseudo-code description of the recursive DFS algorithm 
is given in Code Fragment 13.1. 

Algorithm DFS(G, v): 
Input: A graph G and a vertex v of G 
Output: A labeling of the edges in the connected component of v as discovery 

edges and back edges 
s 

label v as visited 
for all edge e in G.incidentEdges(v) do 

if edge e is unvisited then 

W f- G.opposite(v, e) 

if vertex w is unexplored then 


label e as a discovery edge 
recursively call DFS (G, w) 

else 
label e as a back edge 

Code Fragment 13.1: The DFS algorithm. 

There are a number of observations that we can make about the depth-first 
search algorithm, many of which derive from the way the DFS algorithm paltitions 
the edges of the undirected graph G into two groups, the discovery edges and the 
back edges. For example, since back edges always connect a vertex v to a pre
viously visited vertex u, each back edge implies a cycle in G, consisting of the 
discovery edges from u to v plus the back edge (u, v). 



610 	 Chapter 13. GraplJs 

Proposition 13.12: Let G be an undirected graph on which aDFS traversal start
ing at a vertex s has been performed. Then the traversal visits all vertices in the 
connected component of s, and the discovery edges form a spanning tree of the 
connected component ofs. 

Justification: Suppose there is at least one vertex v in s's connected component 
not visited, and let w be the first unvisited vertex on some path from s to v (we may 
have v w). Since w is the first unvisited vertex on this path, it has a neighbor u 
that was visited. But when we visited u, we must have considered the edge (u, w); 
hence, it cannot be correct that w is unvisited. Therefore, there are no unvisited 
vertices in s's connected component. 

Since we only mark edges when we go to unvisited vertices, we will never form 
a cycle with discovery edges, that is, discovery edges form a tree. Moreover, this 
is a spanning tree because, as we have just seen, the depth-first search visits each 
vertex in the connected component of s. II 

In terms of its running time, depth-first search is an efficient method for travers
ing a graph. Note that DFS is called exactly once on each vertex, and that every 
edge is examined exactly twice, once from each of its end vertices. Thus, if ns 
vertices and ms edges are in the connected component of vertex s, a DFS starting at 
s runs in O(ns +ms) time, provided the following conditions are satisfied: 

• 	The graph is represented by a data structure such that creating and iterating 
through the incidentEdges(v) iterable collection takes O(degree(v)) time, 
and the opposite(v, e) method takes 0(1) time. The adjacency list structure 
is one such structure, but the adjacency matrix structure is not. 

• 	We have a way to "mark" a vertex or edge as explored? and to test if a vertex 
or edge has been explored in O( 1) time. We discuss ways of implementing 
DFS to achieve this goal in the next section. 

Given the assumptions above, we can solve a number of interesting problems. 

Proposition 13.13: Let G be a graph with n vertices and m edges represented 
with an adjacency list. A DFS traversal ofG can be performed in O(n+m) time, 
and can be used to solve the following problems in O(n m) time: 

• 	Testing whether G is connected. 

• 	Computing a spanning tree of G, ifG is connected. 

• 	Computing the connected components ofG. 

• 	Computing apath between two given vertices of G, ifit exists. 

• 	Computing a cycle in G, or reporting that G has no cycles. 

The justification of Proposition 13.13 is based on algorithms that use slightly 
modified versions of the DFS algorithm as subroutines. 



611 13.3. Graph Traversals 

13.3.2 Irnplementing Depth-First Search 

As we have mentioned above, the data structure we use to represent agraph impacts 
the performance of the DFS algorithm. For example, an adjacency list can be used 
to 	yield a running time of O(n +m) for traversing a graph with n vertices and m 
edges. Using an adjacency matrix, on the other hand, would result in a running time 
of O(n2 ), since each of the n calls to the incidentEdges method would take O(n) 
time. If the graph is dense, that is, it has close to O(n2

) edges, then the difference 
between these two choices is minor, as they both would run in O(n2) time. But if 
the graph is sparse, that is, it has close to O(n) edges, then the adjacency matrix 
approach would be much slower than the adjacency list approach. 

Another important implementation detail deals with the way vertices and edges 
are represented. In particular, we need to have a way of marking vertices and edges 
as visited or not. There are two simple solutions, but each has drawbacks: 

• 	We can build our vertex and edge objects to contain an explored field, which 
can be used by the DFS algorithm for marking. This approach is quite simple, 
and supports constant-time marking and unmarking, but it assumes that we 
are designing our graph with DFS in mind, which will not always be valid. 
Furthermore, this approach needlessly restricts DFS to graphs with vertices 
having an explored field. Thus, if we want.a generic DFS algorithm that can 
take any graph as input, this approach has limitations. 

• 	We can use an auxiliary hash table to store all the explored vertices and edges 
during the DFS algorithm. This scheme is general, in that it does not re
quire any special fields in.the positions of the graph. But this approach does 

ft 

not achieve worst-case constant time for marking and unmarking of vertices 
edges. Instead, such a hash table only'suppoits the mark (insert) and test 
(find) operations in constant expected time (see Section 9.2). 

Fortunately, there is a middle ground between these two extremes. 

The Decorator Pattern 

Marking the explored vertices in a DFS traversal is an example of the decorator 
software engineering design pattern. This pattern is used to add decorations (also 
called attributes) to existing objects. Each decoration is identified by a key iden
tifying this decoration and by a value associated with the key. The use of decora
tions is motivated by the need of some algorithms and data structures to add extra 
variables, or temporary scratch data, to objects that do not normally have such vari
ables. Hence, a decoration is a key-value pair that can be dynamically attached to 
an object. In our DFS example, we would like to have "decorable" vertices and 
edges with an explored decoration and a Boolean value. 



1 
612 	 Chapter 13. Graphs 

Making Graph Vertices Decorable I 
We can realize the decorator pattern for any position by allowing it to be decorated. IThis allows us to add labels to vertices and edges, for example, without requiring 
that we know in advance the kinds of labels that we will need. We can simply I 
require that our vertices and edges implement a decorable position ADT, which 
inherits from both the position ADT and the map ADT (Section 9.1). Namely, the i 
methods of the decorable position ADT are the union of the methods of the position I 
ADT and of the map ADT, that is, in addition to the sizeO and isEmptyO methods, 
a decorable position would support the following: 

elementO: 	 Return the element stored at this position. 

put(k,x): 	Map the decoration value x to the key k, returning the old 
value for k, or null if this is a new value for k. 

get(k): 	 Get the decoration value x assigned to k, or null if there 
is no mapping for k. 

remove(k): 	 Remove the decoration mapping for k, returning the old 
value, or null if there is none. 

entrySetO: 	Return all the key-decoration pairs for this position. 

The map methods of a decorable position p provide a simple mechanism for ac
cessing and setting the decorations of p. For example, we use p.get(k) to obtain 
the value of the decoration with key k-and we use p.put(k,x) t6 set the -value of 
the decoration with key k to x. Moreover, the key k can be any object, including a 
special explored object our DFS algorithm might create. We show a Java interface 
defining such an ADT in Code Fragment 13.2. 

We can implement a decorable position with an object that stores an element 
~and a map. 	In principle, the running times of the methods of a decorable position ~ 

depend on the implementation of the underlying map. However, most algorithms 	
.~ 

i 
use a small constant number of decorations. Thus, the decorable position methods 
will run in 0(1) worst-case time no matter how we implement the embedded map. 

public interface DecorablePosition< 
extends Position<E>, Map<Object,Object> { 

} / / no new methods needed this is a mixture of Position and Map. 

Code Fragment 13.2: An interface defining an ADT for decorable positions. Note 
that we don't use generic parameterized types for the inherited Map methods, since 
we don't know in advance the types of the decorations and we want to allow for 
objects of many different types as decorations. 



613 13.3. Graph Traversals 

Using decorable positions, the complete DFS traversal algorithm can be de
scribed in more detail, as shown in Code Fragment 13.3. 

Algorithm DFS(G, v,k): 
Input: A graph G with decorable vertices and edges, a vertex v of G, and a 

decoration key k 
Output: A decoration of the vertices of in the connected component of v with 

key k and value VISITED and of the edges in the connected component of 
v with key k and values DISCOVERY and BACK, according to a depth-first 
search traversal of G 

v.put(k, VISITED) 

for all edge e in G.incidentEdges(v) do 


if e.get(k) = null then 

w +- G.opposite(v, e) 

if w.get(k) = null then 


e.put(k, DISCOVERY) 
DFS(G,w,k) 

else 
e.put(k, BACK) 

Code Fragment 13.3: DFS on a graph with decm'able edges and vertices. 

A Generic DFS Implementation in Java 

In Code Fragments 13.4 and 13.5, we show a Java implementation of a generic 
depth-first search traversal using a general class, DFS, which hat a method, exe
cute, which takes as input the graph, a start vertex, and any auxiliary information 
needed, and then initializes the graph and calls the recursive method, dfsTraversal, 
which activates the DFS traversal. Our implementation assumes that the vertices 
and edges are decorable positions, and it uses decorations to tell if vertices and 
edges have been visited or not. The DFS class contains the following methods to 
allow it to do special tasks during a DFS traversal: 

• 	setupO: called prior to doing the DFS traversal call to dfsTraversalO. 
• 	initResultO: called at the beginning of the execution of dfsTraversalO. 
• 	startVisit(v): called at the start of the visit of v. 
• 	traverse Discovery(eI v): called when a discovery edge e out of vis traversed. 
• 	traverseBack(e,v): called when a back edge e out of vis traversed. 
• 	isDone(): called to determine whether to end the traversal early. 
• 	finishVisit(v): called when we are finished exploring from v. 
• 	result(): called to return the output of dfsTraversal. 
• 	finaIResult(r): called to return the output of the execute method, given the 

output, r, from dfsTraversal. 



614 Chapter 13. Graphs 

/** Generic DFS traversal of a graph using the template method pattern. 
* Parameterized types: 
* V, the type for the elements stored at vertices 
* E, the type for the elements stored at edges 
* I, the type for the information object passed to the execute method 
* R, the type for the result object returned by the DFS 

*/ 


public class DFS<V, E, I, R> { 
protected Graph<V, E> graph; // The graph being traversed 
protected Vertex<V> start; // The start vertex for the DFS 
protected I info; // Information object passed to DFS 
protected R visitResult; // The result of a recursive traversal call 
protected static Object STATUS new ObjectO; // The status attribute 
protected static Object VISITED new ObjectO; // Visited value 
protected static Object UNVISITED new ObjectO; // Unvisited value 
/** Mark a position (vertex or edge) as visited. * / 
protected void visit(DecorablePosition<?> p) { p.put(STATUS, VISITED); } 
/** Mark a position (vertex or edge) as unvisited. */ 
protected void unVisit(DecorablePosition<?> p) { p.put(STATUS, UNVISITED); } 
/** Test if a position (vertex or edge) has been visited. * / 
protected boolean isVisited(DecorablePosition<?> p) { 

return (p.get(STATUS) == VISITED); 

} 

/** Setup method that is called prior to the DFS execution. * / 

protected void setupO {} 

/** Initializes result (called first, once per vertex visited). * / 

protected void initResultO {} 

/** Called when we encounter a vertex (v). * / 

protected void startVisit(Vertex<V> ~) {} 

/** Called after we finish the visit for a vertex (v). *1 

protected void finishVisit(Vertex<V> v) {} 

/** Called when we traverse a discovery edge (e) from a vertex (from). * / 

protected void traverseDiscovery(Edge<E> e, Vertex<V> from) {} 

/** Called when we traverse a back edge (e) from a vertex (from). */ 

protected void traverseBack(Edge<E> e, Vertex<V> from) {} 

/** Determines whether the traversal is done early. * / 

protected boolean isDoneO { return false; /* default value * / } 

/** Returns a result of a visit (if needed). * / 

protected R resultO { return null; /* default value * / } 

/** Returns the final result of the DFS execute method. * / 

protected R finalResult(R r) { return r; /* default value * / } 


Code Fragment 13.4: Instance variables and support methods of class DFS, which 
performs a generic DFS traversal. The methods visit, unVisit, and isVisited are 
implemented using decorable positions that are parameterized using the wildcard 
symbol, "7", which can match either the V or the E parameter used for decorable 
positions. (Continues in Code Fragment 13.5.) 



615 13.3. Graph Traversals 

/** Execute a depth first search traversal on graph g, starting 
* from a start vertex s, passing in an information object (in) *1 

public R execute(Graph<V, E> g, Vertex<V> s, I in) { 

graph = g; 

start s; 

info = in; 

for(Vertex<V> v: graph.verticesO) unVisit(v); II mark vertices as unvisited 

for(Edge<E> e: graph.edgesO) unVisit(e); II mark edges as unvisited 

setupO; II perform any necessary setup prior to DFS traversal 

return finalResult(dfsTraversal(start)); 


}

1** Recursive template method for a generic DFS traversal. *1 

protected R dfsTraversal(Vertex<V> v) { 


initResultO; 

if (!isDoneO) 


startVisit( v ); 

if (!isDoneO) { 


visit(v); 

for (Edge<E> e: graph.incidentEdges(v)) { 


if (!isVisited(e)) { 

II found an unexplored edge, explore it 

visit(e); 

Vertex<V> w = graph.opposite(v, e); 

if (!isVisited(w)) { . 


II w is unexplored, this is a discovery edge 

traverseDiscovery(ei v); 

if (isDone()) break; 

visitResult = dfsTraversal(w); II get result from DFS-tr~e child 

if (isDone()) break; 


} 

else { 


II w is explored, this is a back edge 

traverseBack(e, v); 

if (isDoneO) break; 


} 
} 

} 

} 

if(! isDoneO) 


finish Visit(v); 

return resultO; 


} 

} II end of DFS class 


Code Fragment 13.5: The main template method dfsTraversal of class DFS, which 

performs a generic DFS traversal of a graph. (Continued from Code Frag

ment 13.4.) 




616 Chapter 13. Graphs 

Using the Template Method Pattern for DFS 

The DFS class is based on the template method pattern (see Section 7.3.7), which 
describes a generic computation mechanism that can be specialized by redefining 
certain steps. The way we identify vertices and edges that have already been visited \: 

~during the traversal is in calls to methods isVisited, visit, and unVisit. For us to do Jf 
1 

anything interesting, we must extend DFS and redefine some of its auxiliary meth
ods. This approach conforms to the template method pattern. In Code Fragments 
13.6 through 13.9, we illustrate some applications of DFS traversal. 

Class ConnectivityDFS (Code Fragment 13.6) tests whether the graph is con
nected. It counts the vertices reachable by a DFS traversal starting at a vertex and 
compares this number with the total number of vertices of the graph. 

/** This class specializes DFS to determine whether the graph is connected. * / 
public class ConnectivityDFS<V, extends DFS <V, E, Object, Boolean> { ~ protected int reached; 


protected void setupO { reached = 0; } 

protected void startVisit(Vertex<V> v) { reached++; } 

protected Boolean finalResult(Boolean dfsResult) { 


return new Boolean(reached graph.numVertices()); 
} 


} 

Code Fragment 13.6: Specialization of class. DFS to test if a graph is connected. 

Class ComponentsDFS (Code Fragment 13.7) finds the connected components 
of a graph. It labels each vertex with its connected component number, using the 
decorator pattern, and returns the number of connected components found. 

/** This class extends DFS to compute the connected components of a graph. * / 
public class ComponentsDFS<V, extends DFS<V, E, Object, Integer> { 

protected Integer compNumber; / / Connected component number 
protected Object COMPONENT = new ObjectO; / / Connected compo selector 
protected void setupO { compNumber' I;} 
protected void startVisit(Vertex<V> v) { v.put(COMPONENT, compNumber);} 
protected Integer finalResult(lnteger dfsResult) { 

for (Vertex<V> v : graph. verticesO) / / check for any unvisited vertices 
if (v.get(STATUS) == UNVISITED) { 

compNumber 1; / / we have found another connected component 
dfsTraversal(v); / / visit all the vertices of this component 

} 

return compNumber; 


} 

} 

Code Fragment 13.7: Specialization of DFS to compute connected components. 



617 13.3. Graph Traversals 

Class FindPathDFS (Code Fragment 13.8) finds a path between a pair of given 
start and target vertices. It performs a depth-first search traversal beginning at the 
start vertex. We maintain the path of discovery edges from the start vertex to the 
CUlTent vertex. When we encounter an unexplored vertex, we add it to the end 
of the path, and when we finish processing a vertex, we remove it from the path. 
The traversal is terminated when the target vertex is encountered, and the path is 
returned as an iterable collection of vertices and edges (both kinds of positions in a 
graph). Note that the path found by this class consists of discovery edges. 

/** Class specializing DFS to find a path between a start vertex and a target 
* vertex. It assumes the target vertex is passed as the info object to the 
* execute method. It returns an iterable list of the vertices and edges
* comprising the path from start to info. The returned path is empty if 
* info is unreachable from start. * / 


public class FindPathDFS<V, E> 

extends DFS<V, E, Vertex<V>, Iterable<Position> > { 

protected PositionList<Position> path; 
protected boolean done; 
/** Setup method to initialize the path. * / 
public void setup() { 

path new NodePositionList<Position>O; 
done - false; 


} 

protected void startVisit(Vertex<V> v) { 


path.addLast(v); / / add vertex v to path 

if (v -- info) 


done = true; 

} i 

protected void finishVisit(Vertex<V> v) { 
path.remove(path.lastO); / / remove v from path 
if(!path.isEmptyO) / / if v is not the start vertex 

path.remove(path.lastO); / / remove discovery edge into v from path 
} 
protected void traverseDiscovery(Edge<E> e, Vertex<V> from) { 

path.addLast(e); / / add edge e to the path 
} 
protected boolean isDoneO { 

return done; 
} 
public Iterable<Position> finaIResult(lterable<Position> r) { 

return path; 
} 

} 

Code Fragment 13.8: Specialization of class DFS to find a path between start and 
target vertices. 



618 	 Chapter 13. Graphs 
-If 

I
~Class FindCycleDFS (Code Fragment 13.9) finds a cycle in the connected com ;

ponent of a given vertex v, by performing a depth-first search traversal from v that 	 '~.".'.. 
"terminates when a back edge is found. It returns a (possibly empty) iterable collec .' 

tion of the vertices and edges in the cycle formed by the found back edge. 	 I 
I 
'>~/** This class specializes DFS to find a cycle. * / .~ 
1:'public class FindCycleDFS<V, E> 


extends DFS<V, E, Object, Iterable<Position> > { 

protected PositionList<Position> cycle; / / sequence of edges of the cycle 

protected boolean done; 

protected Vertex<V> cycieStart; 

public void setupO { 


cycle new NodePositionList<Position>O; 

done = false; 


} 

protected void startVisit(Vertex<V> v) { cycle.addLast(v); } I'., 

protected void finishVisit(Vertex<V> v) { 
~1cycle. remove(cycle.last()); / / remove v from cycle l;i 

if (!cycle.isEmpty()) cycle. remove(cycle.lastO); / / remove edge into v from cycle 
} 
protected void traverseDiscovery(Edge<E> e, Vertex<V> from) { 

cycle.addLast(e); 

} 

protected void traverseBack(Edge<E> e, Vertex<V> .from) { 


cycle.addLast(e); / / back edge e creates a cycle 

cycieStart graph.opposite(from, e); 

cycle.addLast(cycieStart); / / first vertex completes the cycle 

done true; 


} 
protected boolean isDoneO { return done; } 
public Iterable<Position> finaIResult(lterable<Position> r) { 


/ / remove the vertices and edges from start to cycieStart 

if (!cycle.isEmptyO) { 


for (Position<Position> p: cycle.positionsO) { 
if (p.element() == cycieStart) 

break; 
cycle.remove(p); / / remove vertex from cycle 

} 
} . 

return cycle; / / list of the vertices and edges of the cycle 

} 


} 


Code Fragment 13.9: Specialization of class DFS to find a cycle in the connected 
component of the start vertex. 



619 13.3. Graph Traversals 

13.3.3 Breadth-First Search 

In this section, we consider the breadth-first search (BPS) traversal algorithm. Like 
DPS, BPS traverses a connected component of a graph, and in so doing defines 
a useful spanning tree. BPS is less "adventurous" than DPS, however. Instead 
of wandering the graph, BPS proceeds in rounds and subdivides the vertices into 
levels. BPS can also be thought of as a traversal using a string and paint, with BPS 
unrolling the string in a more conservative manner. 

BPS starts at vertex s, which is at level 0 and defines the "anchor" for our string. 
In the first round, we let out the string the length of one edge and we visit all the 
vertices we can reach without unrolling the string any farther. In this case, we visit, 
and paint as "visited," the vertices adjacent to the start vertex s-these vertices are 
placed into level 1. In the second round, we unroll the string the length of two 
edges and we visit all the new vertices we can reach without unrolling our string 
any farther. These new vertices, which are adjacent to level 1 vertices and not 
previously assigned to a level, are placed into level 2, and so on. The BPS traversal 
terminates when every vertex has been visited. 

Pseudo-code for a BPS starting at a vertex s is shown in Code Pragment 13.10. 
We use auxiliary space to label edges, mark visited vertices, and store collections 
associated with levels. That is, the collections La, L1, L2, and so on, store the 
vertices that are in level 0, level 1, level 2, and so on. These collections could, for 
example, be implemented as queues. They also allow BPS to be nonrecursive. 

Algorithm BFS(s): 


initialize collection La to contain vertex s 

if- 0 
while Li is not empty do 


create collection Li+1 to initially be empty 

for all vertex v in Li do 


for all edge e in G.incidentEdges(v) do 
if edge e is unexplored then 


W f- G.opposite(v, e) 

if vertex wis unexplored then 


label e as a discovery edge 

insert winto Li+ 1 


else 

label e as a cross edge 


if-i+1 

Code Fragment 13.10: The BFS algorithm. 

We illustrate a BPS traversal in Pigure 13.7. 



1 620 

0 

®--® 
(a) 

0 1 2 

(c) 

o 1 2 3 

\..J "-J 

4 

(e) 

Chapter 13. Graphs " 
~ 

~ 
0 1 


~ ®-® 

(b) 


0 1 2 3 


(d) 

o 1 2 3 

. // • '" . 4 

5 
'--" '-'" '-' '-" 

(f) 

Figure 13.7: Example of breadth-first search traversal, where the edges incident 
on a vertex are explored by the alphabetical order of the adjacent vertices. The 
discovery edges are shown with solid lines and the cross edges are shown with 
dashed lines: (a) graph before the traversal; (b) discovery oflevel1; (c) discovery 
of level 2; (d) discovery of level 3; (e) discovery of level 4; (f) discovery of level 5. 

!~ 


? 
'" 
~~I
J 

~ 

I 
~ 
;~ 

" 
~ 

~ 

j1

I 
I 
i 

I~ 

I 

~ 


,
j 
., ~ 

I

t't 
! 
1 



621 13.3. Graph Traversals 

One of the nice properties of the BFS approach is that, in performing the BFS 
traversal, we can label each vertex by the length of a shortest path (in terms of the 
number of edges) from the start vertex s. In particular, if vertex v is placed into 
level i by a BFS starting at vertex s, then the length of a shortest path from s to v 
IS l. 

As with DFS, we can visualize the BFS traversal by orienting the edges along 
the direction in which they are explored during the traversal, and by distinguishing 
the edges used to discover new vertices, called discovery edges, from those that 
lead to already visited vertices, called cross edges. (See Figure 13.7f.) As with the 
DFS, the discovery edges form a spanning tree, which in this case we call the BFS 
tree. We do not call the nontree edges "back edges" in this case, however, for none 
of them connects a vertex to one of its ancestors. Every nontree edge connects a 
vertex v to another vertex that is neither v's ancestor nor its descendent. 

The BFS traversal algorithm has a number of interesting properties, some of 
which we explore in the proposition that follows. 

Proposition 13.14: Let G be an undirected graph on which a BPS traversal start
ing at vertex s has been performed. Then 

• 	The traversal visits all vertices in the connected component ofs. 

• 	The discovery-edges form a spanning tree T, which we call the BPS tree, of 
the connected component ofs. 

• For each vertex vat level i, ,the path of the BFS tree T between s and v has i 
edges, and any other path ofG between s and v has at least i edges. 

• 	If (u, v) is an edge that is not in the BFS tree, then the level numbers of u and 
v differ by at most 1. . s 

We leave the justification of this proposition as an exercise (C-13.l4). The 
analysis of the running time of BFS is similar to the one of DFS, which implies the 

:J: 
following. 

f~ 

Proposition 13.15: Let G be a graph with n vertices and m edges represented 
with the adjacency list structure. A BPS traversal of G takes O(n +m) time. Also, 
there exist O(n+ m)-time algorithms based on BFS for the following problems: 

• 	Testing whether G is connected. 

• 	Computing a spanning tree ofG, ifG is connected. 

• 	Computing the connected components ofG. 

• 	Given a start vertex s of G, computing, for every vertex v of G, a path with
;.11? 

\<i:~ the minimum number of edges between s and v, or reporting that no such 
path exists. 

• 	Computing a cycle in G, or reporting that Ghas no cycles. 



1 
!~ 
J;"~'. 

622 Chapter 13. Graphs ~ 
'.'.~. 

13.4 Directed Graphs 
, 

.', 'jZ 

I 
~ 
m 

In this section, we consider issues that are specific to directed graphs. Recall that a 
directed graph (digraph), is a graph whose edges are all directed. 

~ ;,.Methods Dealing with Directed Edges 

When we allow for some or all the edges in a graph to be directed, we should add 
the following two methods to the graph ADT in order to deal with edge directions. 

isDi rected (e): Test whether edge eis directed. 

insertDi rected Edge(v, HI,O): Insert and return anew directed edge with origin vand 
destination wand storing element o. 

Also, if an edge e is directed, the method endVertices(e) should return an array A 
such that A[0] is the origin of e and A[l] is the destination of e. The running time 
for the method isDirected(e) should be 0(1), and the running time of the method 
insertDi rected Edge(v, w, 0) should match that of undirected edge insertion. 

Reachability 

One of the most fundamental issues with directed graphs is the notion of r~acha
bility, which deals with determining where we can geno in 11 directed graph. A 
traversal in a directed graph always goes along directed paths, that is, paths where 
all the edges are traversed according to their respective directions. Given vertices u 

~ ~ 

and v of a digraph G, we say that u reaches v (and v is reachable from u) if G has 
a directed path from u to v. We also say that a vertex v reaches an edge (w,z) if v 
reaches the origin vertex w of the edge. 

~ ~ 

Adigraph Gis strongly connected if for any two vertices uand v of G, ureaches 
vand vreaches u. Adirected cycle of Gis a cycle where all the edges are traversed 
according to their respective directions. (Note that Gmay have a cycle consisting 
of two edges with opposite direction between the same pair of vertices.) A digraph 
Gis acyclic if it has no directed cycles. (See Figure 13.8 for some examples.) 

The transitive closure of a digraph Gis the digraph G* such that the vertices of 
G* are the same as the vertices of G, and G* has an edge (u, v), whenever Ghas a 
directed path from u to v. That is, we define G* by starting with the digraph Gand 
adding in an extra edge (u, v) for each u and v such that v is reachable from u (and 
there isn't already an edge (u, v) in G). 



623 J3.4. Directed Graphs 

(a) 	 (b) 

I, 
(c) 	 (d) 

Figure 13.8: Examples of reachability in a digraph: (a) a directed path from BOS 
to LAX is drawn in blue; (b) a"directed cycle (ORD, MIA, DFW~ LAX, ORD) is 
shown in blue; its vertices induce a strongly c9nnect~d subgraph; (c) the subgraph 
of the vertices and edges reachable from ORD is shown in blue; (d) removing the 
dashed blue edges gives an acyclic digraph. 

11 
Interesting problems that deal with reachability in a digraph Ginclude the fol

lowing: 

.' Given vertices u and v, determine whether u reaches v. 

• Find all the vertices of Gthat are reachable from a given vertex s. 

• Determine whether Gis strongly connected. 

• 	Determine whether Gis acyclic. 
.... .... 

• Compute the transitive closure G* of G. 

In the remainder of this section, we explore some efficient algorithms for solv
ing these problems. 



1 
624 	 Chapter 13. Graphs 

.~ 

~ }1 
·:~i 

;1"13.4.1 Traversing a Digraph 
',.'~ 
i~ 
ij 

As with undirected graphs, we can explore adigraph in a systematic way with meth ~ 
ods akin to the depth-first search (DFS) and breadth-first search (BFS) algorithms 	 ~ 

"1 
defined previously for undirected graphs (Sections 13.3.l and 13.3.3). Such explo	 :",''i 

~.~ 
~jrations can be used, for example, to answer reachability questions. The directed 	 ~1 
,~ 

depth-first search and breadth-first search methods we develop in this section for 	 ~ 
~performing such explorations are very similar to their undirected counterparts. In '.H 

I 
~fact, the only real difference is that the directed depth-first search and breadth-first 

search methods only traverse edges according to their respective directions. 

The directed version of DFS starting at a vertex v can be described by the re
cursive algorithm in Code Fragment 13.11. (See Figure 13.9.) 

.~Algorithm DirectedDFS(v): 	
'J 
'~ 

Mark vertex v as visited. 
.,

for each outgoing edge (v, w) of v do I
if vertex w has not been visited then 

Recursively call DirectedDFS(w). ~l:l 
Code Fragment 13.11: The DirectedDFS algorithm. 	

" 

I
~ 

~ 
l~ 

(a) (b) 
Figure 13.9: An example of a DFS in a digraph: (a) intermediate step, where, for the 
first time, an already visited vertex (DFW) is reached; (b) the completed DFS. The 
tree edges are shown with solid blue lines, the back edges are shown with dashed 
blue lines, and the forward and cross edges are shown with dashed black lines. The 
order in which the vertices are visited is indicated by a label next to each vertex. 
The edge (ORD,DFW) is a back edge, but (DFW,ORD) is a forward edge. Edge 
(BOS,SFO) is a forward edge, and (SFO,LAX) is a cross edge. 

~-:~~~~:::~--------
,,'" ,"" 

,,; ,,' 
/ ' I / 

/ /
I I 

I I 
I 

--- --_ ... 

IT] 



625 13.4. Directed Graphs 

A DFS on a digraph Gpartitions the edges of Greachable from the starting 
vertex into tree edges or discovery edges, which lead us to discover a new vertex, 
and nontree edges, which take us to a previously visited vertex. The tree edges 
fonn a tree rooted at the starting vertex, called the depth-jirst search tree, and there 
are three kinds of nontree edges: 

• 	back edges, which connect a vertex to an ancestor in the DFS tree 

• 	forward edges, which connect a vertex to a descendent in the DFS tree 

• 	cross edges, which connect a vertex to a vertex that is neither its ancestor nor 
its descendent. 

Refer back to Figure 13.9b to see an example of each type of nontree edge. 

Proposition 13.16: Let Gbe a digraph. Depth-first search on Gstarting at a 
vertex s visits all the vertices of Gthat are reachable from s. Also, the DFS tree 
contains directed paths from s to every vertex reachable from s. 

Justification: Let Vs be the subset of vertices of Gvisited by DFS starting at 
vertex s. We want to show that Vs contains s and every vertex reachable from s 
belongs to V\,, Suppose now, for the sake of a contradiction, that there is a vertex w 
reachable from s ~hat is not in Vs. Consider a direGted path from s to w, and let (u, v) 
be the first edge on such a path taking us out of Vs, that is, u is in Vs but v is not 

. in Vs. When DFS reaches u, it explores all the outgoing edges of u, and thus must 
reach also vertex v via edge (u, v). Hence, v should be in Vs, and we have obtained 
a contradiction. Therefore, Vs must contain every vertex reachable.ffrom s. • 

Analyzing the running time of the directed DFS method is analogous to that 
for its undirected counterpart. In particular, a recursive call is made for each vertex 
exactly once, and each edge is traversed exactly once (from its origin). Hence, if 
ns vertices and ms edges are reachable from vertex s, a directed DFS starting at s 
runs in O(ns ms) time, provided the digraph is represented with a data structure 
that supports constant-time vertex and edge methods. The adjacency list structure 
satisfies this requirement, for example. 

By Proposition 13.16, we can use DFS to find all the vertices reachable from a 
given vertex, and hence to find the transitive closure of G. That is, we can perform 
a DFS, starting from each vertex v of G, to see which vertices w are reachable from 
v, adding an edge (v, w) to the transitive closure for each such w. Likewise, by 
repeatedly traversing digraph Gwith a DFS, starting in tum at each vertex, we can 

~ 	 ~ 

easily test whether G is strongly connected. Namely, G is strongly connected if 
each DFS visits all the vertices of G. 

Thus, we may immediately derive the proposition that follows. 



626 Chapter 13. Graphs 

Proposition 13.17: Let Gbe a digraph with n vertices and m edges. The follow
ing problems can be solved by an algorithm that traverses Gn times using DFS, 
runs in O(n(n m)) time, and uses O(n) auxiliary space: 

• Computing, for each vertex v ofG, the subgraph reachable from v 

• Testing whether Gis strongly connected 
• Computing the transitive closure G* ofG. 

Testing for Strong Connectivity 

Actually, we can determine if a directed graph Gis strongly connected much faster 
than this, just using two depth-first searches. We begin by performing a DFS of our 
directed graph G starting at an arbitrary vertex s." If there is any vertex of G that is 
not visited by this DFS, and is not reachable from s, then the graph is not strongly 
connected. So, if this first DFS visits each vertex of G, then we reverse all the edges 
of G(using the reverseDirection method) and pelform another DFS starting at sin 
this "reverse" graph. If every vertex of G is visited by this second DFS, then the 
graph is strongly connected, for each of the vertices visited in this DFS can reach s. 
Since this algorithm makes just two DFS traversals of G,'it runs in O(n +m) time. 

Directed Breadth-First Search 

As with DFS, we can extend breadth-first search (BFS) to work for directed graphs. 
The algorithm still visits vertices level by level and partitions the set of edges into 
tree edges (or discovery edges), which together form a directed breadth-first search 

I 

tree rooted at the start vertex, and nontree edges. Unlike the directed DFS method, 
however, the directed BFS method only leaves two kinds of nontree edges: back 
edges, which connect a vertex to one of its ancestors, and cross edges, which con
nect a vertex to another vertex that is neither its ancestor nor its descendent. There 
are no forward edges, which is a fact we explore in an exercise (C-13.l0). 

13.4.2 Transitive Closure 

In this section, we explore an alternative technique for computing the transitive 
closure of a digraph. Let G be a digraph with n vertices and m edges. We compute 
the transitive closure of Gin a series of rounds. We initialize Go = G. We also 
arbitrarily number the vertices of G as VI, V2, ... )Vn. We then begin the computation 
of the rounds, beginning with round 1. In a generic round k, we construct digraph 
Gk starting with Gk = Gk-I and adding to Gk the directed edge (Vi) Vj) if digraph 
Gk-I contains both the edges (Vi, Vk) and (Vk' Vj). In this way, we will enforce a 
simple rule embodied in the proposition that follows. 

'·1·

'I
..·.·." 

~ 
~ 
~ 

~ 
,~
& 
~.t~ 

~ 
~ 
WI 

~1!. 
r 
, ~
 
J. 



1 13.4. Directed Graphs 627" . 

@ Proposition 13.18: For i = 1, ... , n, digraph fh has an edge (Vi, Vj) ifand only if 
digraph Ghas a directed path from Vi to Vj, whose intermediate vertices (if any) are~I~

-~ in the set {VI, ... ,Vk}. In particular, Gn is equal to G*, the transitive closure ofG. 
~, 

Proposition 13.18 suggests a simple algorithm for computing the transitive clo" 
~, 

.~ 
sure of Gthat is based on the series of rounds we descIibed above. This algorithml is known as the Floyd-Warshall algorithm, and its pseudo-code is given in Code~ 

~ Fragment 13.12. From this pseudo-code, we can easily analyze the running time of 

the Floyd-Warshall algorithm assuming that the data structure representing G sup


1... ports methods areAdjacent and insertDirectedEdge in 0(1) time. The main loop 

, is executed n times and the inner loop considers each of 0(n2) pairs of vertices, 


1 performing a constant-time computation for each one. Thus, the total running time
I 

of the Floyd-Warshall algorithm is 0(n3). 

Algorithm FloydWarshall(G): 
Input: A digraph Gwith n vertices 
Output: The transitive closure G* of G 
let VI, V2,"" Vn be an arbitrary numbedng of the vertices of G 
Go <-G 
for k f-- 1 to n do 

Gk <- Gk-l . 
for all i, j in {I, ... , n} with i # j and i, j # k do 

if both edges (Vi, Vk) and (Vk' Vj) are in Gk-l then 
add edge (Vi, Vj) to Gk (if it is not already present) 
.... 

return Gn 

Code Fragment 13.12: Pseudo-code for the Floyd-Warshall algorithm. This algo
rithm computes the transitive closure G* of G by incrementally computing a series 
of digraphs Go, Gl,"" Gn, where for k 1, ... , n. 

This description is actually an example of an algorithmic design pattern known 
as dynamic programming, which is discussed in more detail in Section 12.2. From 
the description and analysis above we may immediately derive the following propo
sition. 

Proposition 13.19: Let Gbe a digraph with n vertices, and let Gbe represented 
by a data structure that supports lookup and update of adjacency information in 
O( 1) time. Then the Floyd-Warsha1l algorithm computes the transitive closure G* 
ofG in 0(n3) time. 

We illustrate an example run of the Floyd-Warshall algorithm in Figure 13.10. 



'~ ,.628 Chapter 13. Graphs '1'" 	
< 

iJ 
~ 

(a) 

(c) 

(e) 

~ 
~ 
~~ 
:H 
'~ 
z~
'!l
\'I 

l 
~ 

,~ 

~ 
I 

~ 
~~--	 ~ ~ " 

-- '~~~~ - -- - -------~ ! 
.';i 

(b) 

I 

I 
I 

I 

~ 

(d) 

(f) 

Figure 13.10: Sequence of digraphs computed by the Floyd-Warshall algorithm: (a) 
~ ~ 	 ~ ~ 

initial digraph G = Go and numbering of the vertices; (b) digraph GI; (c) G2; (d) 
-+ -+ -+ -+ -+ -+ -+ 

03; (e) G4; (f) Gs- Note that Gs = 06 = 07- If digraph Gk-l has the edges (Vi, Vk) 
and (Vb Vj), but not the edge (Vi, Vj), in the drawing of digraph Gk, we show edges 
(Vi, Vk) and (Vb Vj) with dashed blue lines, and edge (Vi, Vj) with a thick blue line_ 

i 



.-."' ;1
~ 
}i 13.4. Directed Graphs 629 
,~ 

-':1 
@ Performance of the Floyd-Warshall Algorithm 
~:l 
" 

] The running time of the Floyd-Warshall algorithm might appear to be slower than 
'~ performing a DFS of a directed graph from each of its vertices, but this depends 
, upon the representation of the graph. If a graph is represented using an adjacency;I~····j
~. 

r~ 
matrix, then running the DFS method once on a directed graph Gtakes O(n2) time 

;~
frl (we explore the reason for this in Exercise R-13.10). Thus, running DFS n times 
:.~ takes O(n3) time, which is no better than a single execution of the Floyd-Warshall 
~ 

algorithm, but the Floyd-Warshall algorithm would be much simpler to implement..f.~ 
." 

Nevertheless, if the graph is represented using an adjacency list structure, then1:1 
~J 

running the DFS algorithm n times would take O(n(n+m)) time to compute the
:~ 
I. transitive closure. Even so, if the graph is dense, that is, if it has Q(n2) edges,1 
'i then this approach still runs in O(n3) time and is more complicated than a single 

instance of the Floyd-Warshall algorithm. The only case where repeatedly callingI: 
:j 

F. 

the DFS method is better is when the graph is not dense and is represented using 

j 
~ an adjacency list structure. 

13.4.3 Directed Acyclic Graphs 

Directed graphs without directed cycles are encountered in many applications. 
Such a digraph is often referred to as a directed -acyclic graph, or DAG, for short. 
Applications of such graphs include the following: 

• Inheritance between classes of a Java program. 

• Prerequisites between courses of a degree program. I 

• Scheduling constraints between the tasKs of a'-project. 

I Example 13.20: In order to manage alarge project, it is convenient to break it up 

I 
~ into a collection of smaller tasks. The tasks, however, are rarely independent, be

cause scheduling constraints exist between them. (For example, in a house building 
project, the task of ordering nails obviously precedes the task of nailing shingles 
to the roofdeck.) Clearly, scheduling constraints cannot have circularities, because 
they would make the project impossible. (For example, in order to get ajob you 
need to have work experience, but in order to get work experience you need to have 
a job.)' The scheduling constraints impose restrictions on the order in which the 
tasks can be executed. Namely, ifa constraint says that task a must be completed 
before task b is started, then a must precede b in the order ofexecution of the tasks. 
Thus, if we model a feasible set of tasks as vertices of a directed graph, and we 
place a directed edge from v to w whenever the task for v must be executed before 

. the task for w, then we define a directed acyclic graph. 



630 Chapter 13. Graphs 

The example above motivates the following definition. Let Gbe a digraph with 
n vertices. A topological ordering of Gis an ordering VI) ... 1Vn of the vertices of 
Gsuch that for every edge (Vi) Vj) of G, i < j. That is, a topological ordering is an 
ordering such that any directed path in Gtraverses vertices in increasing order. (See 
Figure 13.11.) Note that a digraph may have more than one topological ordering. 

o 
(a) 

o 
(b) 

Figure 13.11: Two topological orderings of the same acyclic digraph. 

Proposition 13.21: Ghas a topological ordering ifand only ifit is acyclic. 

Justification: The necessity (the "only if" part of the statement) is easy to 
demonstrate. Suppose Gis topologically ordered. Assume, for the sake of a con
tradiction, that Ghas a cycle consisting of edges (ViO) Vil)) (Vii) Vi2)" •. ,(VLl , Via)' 

Because of the topological ordering, we must have io < il <."" < ik-I < io, which 
is clearly impossible. Thus, Gmust be acyclic. 

We now argue the sufficiency of the condition (the "if" part). Suppose G 
-; 

is 
acyclic. We will give an algorithmic description of how to build a topological 
ordering for G. Since Gis acyclic, Gmust have a vertex with no incoming edges 
(that is, with in-degree 0). Let VI be such a vertex. Indeed, if VI did not exist, then in 
tracing a directed path from an arbitrary start vertex we would eventually encounter 

-; 

a previously visited vertex, thus contradicting the acyclicity of G. If we remove 
-; 

VI from G, together with its outgoing edges, the resulting digraph is still acyclic. 
Hence, the resulting digraph also has a vertex with no incoming edges, and we let 
V2 be such a vertex. By repeating this process until the digraph becomes empty, 

-; 

we obtain an ordering VI, •.. ,Vn of the vertices of G. Because of the construction 
above, if (Vi, Vj) is an edge of G, then Vi must be deleted before Vj can be deleted, 
and thus i < j. Thus, VI, .•• , Vn is a topological ordering. • 

Proposition 13.21 's justification suggests an algorithm (Code Fragment 13.13), 
called topological sorting, for computing a topological ordering of a digraph. 



1 13.4. Directed Graphs 631 
;['.' 
):~ Algorithm T opologica ISort(G):
:3 

Input: A digraph Gwith n vertices.

~,.,:!, Output: A topological ordering VI)." ,vn of G.;: 

S +- an initially empty stack.
i 
"l
i) for all u in G.verticesO do 
~ Let incounter(u) be the in-degree of u. 

if incounter(u) 0 then 
S.push(u) 

i +-1 
while !S.isEmpty() do 

u +- S.popO 
Let u be vertex number i in the topological ordering. 
i+-i+1 
for all outgoing edge (u ,w) of u do 

incounter(w) +- incounter(w ) 1 
if incounter(w) - 0 then 

S.push(w) 

Code Fragment 13.13: Pseudo-code for the topological sorting algorithm. (We show 
an example application of this algorithm in Figure 13.12.) 

Proposition 13.22: Let Gbe adigraph with n vertices and m edges. The topolog
ical sorting algorithm runs in O(n m) time usiiig O(n) auxiliary space, and either 
computes a topological ordering ofGor fails to number some vertices, which indi
cates that Ghas adirected cycle. 

Justification: The initial computation of in-degrees and setupiof the incounter 
variables can be done with a simple traversal-of tht;? graph, which takes O(n +m) 
time. We use the decorator pattern to associate counter attributes with the vertices. 
Say that a vertex u is visited by the topological sorting algorithm when u is removed 
from the stack S. A vertex ucan be visited only when incounter(u) = 0, which im
plies that all its predecessors (vertices with outgoing edges into u) were previously 
visited. As a consequence, any vertex that is on a directed cycle <Will never be vis
ited, and any other vertex will be visited exactly once. The algorithm traverses all 
the outgoing edges of each visited vertex once, so its running time is proportional 
to the number of outgoing edges of the visited vertices. Therefore, the algorithm 
runs in O(n m) time. Regarding the space usage, observe that the stack S and the 
incounter variables attached to the vertices use O(n) space. • 

As a side effect, the topological sorting algorithm of Code Fragment 13.13 also 
tests whether the input digraph Gis acyclic. Indeed, if the algorithm tenninates 
without ordering all the vertices, then the subgraph of the vertices that have not 
been ordered must contain a directed cycle. 



1 
~ 
~~Chapter 13. Graphs ,~i632 	 ~: 
:~ 
.)j 

~1 
>;1
';:i 

[ill]: , /~ 	 ~1
;,1~/ ' 

0}j, ~ 
; "\............. .. 

I' ...... . , 	 ~ 

..'.~~1;;:1 

;;1 
0;1 

~ 
~;'~ 
~ 

~I
III 

~ 
~. 

(a) 	 (b) 

,®4i ()liCillJ,@ Cill!:@ 

1210f // / . @IT]: " " 

." 

, . 

~~~-- ,",.' 

"

, '
"
' ~

'J
,I "\\

@f--_
"" ----,~

: \~ ® [ill],
: ~
: [ill}\ 	 ~\

(d) (e) 	 (f)

IT@]:@ '4fQli Illol! 8:@]! 111ol@ . [ill]
A ®~I~J 	 A fB\ , B ,,@ fB\ " ~ '>;J

In't;;l' " ' '>;J [ill] ", ~ / 'liloji ,/. " Mi,." ... " ",1'""",/~,/ \ / ! 	 ,~", " /' " 0.. ,.;,," I

, ':------ ~'/" :' Y;---'",~ ; ;,/ --- Y><, ~ /
I

I \...
\

.......
D I

I

:
I
I \.

",

\~.

"_~.

rsroI"",
.... fT\(

j
r
I

fGlOl.
,I \ , ~-_®'"

i \9 moj!----_~161<iT : \!v. L'TJ ,,,®L'TJ' i \9 15IOI>"'~[@]
. f3lO1'\ ,,", 	 f3Tijl.', ,,' "

~', ~ 1

:.. @E] \,~"""',/ '. ~ \~," ,:' 	 'r2f'
\ ,. G ../ \ 0,' 	 o

. . f7101. " :' 	 [2]iJ ';" , []Jj} ,: 	 L:..l::.J. '· · ',
" '

, 	 · ' · ' ... " ~,'""""'~/ "'ii9 	 """'i~/
[[II [iTol 	 [ill]'

(g) (h) 	 (i)

Figure 13.12: Example of a run of algorithm TopologicalSort (Code Frag
ment 13.13): (a) initial configuration; (b-i) after each while-loop iteration. The
vertex labels show the vertex number and the current incounter value. The edges
traversed are shown with dashed blue arrows. Thick lines denote the vertex and
edges examined in the current iteration.

1.

I 13.5. Shortest Paths 633

J
'f 13.5 Shortest Paths

I
~~l As we saw in Section 13.3.3, the breadth-first search strategy can be used to find a

shortest path from some starting vertex to every other vertex in a connected graph.
This approach makes sense in cases where each edge is as good as any other, but~

]
t~ there are many situations where this approach is not appropriate. For example, we
,:~.;
M might be using a graph to represent a computer network (such as the Intemet), and
:~~
JJ

we might be interested in finding the fastest way to route a data packet between two

I
~

I
~

computers. In this case, it is probably not appropriate for all the edges to be equal to
each other, for some connections in a computer network are typically much faster
than others (for example, some edges might represent slow phone-line connections
while others might represent high-speed, fiber-optic connections). Likewise, we
might want to use a graph to represent the roads between cities, and we might be
interested in finding the fastest way to travel cross-country. In this case, it is again
probably not appropriate for all the edges to be equal to each other, for some inter
city distances will likely be much larger than others. Thus, it is natural to consider
graphs whose edges are not weighted equally.

13.5.1 Weighted Graphs

A weighted graph is a graph that has a numeric"(for example, integer) label w(e)
associated with each edge e, called the weight of edge e. We show an example of a
weighted graph in Figure 13.13.

~

Figure 13.13: A weighted graph whose vertices represent major U.S. airports and
whose edge weights represent distances in miles. This graph has a path from JFK
toLAX of total weight 2,777 (going through ORD and DFW). This is the minimum
weight path in the graph from JFK to LAX.

634

1
Chapter 13. Graphs

Defining Shortest Paths in a Weighted Graph

Let G be a weighted graph. The length (or weight) of a path is the sum of the
weights of the edges of P. That is, if P ((Vo, VI), (VI) V2), ... , (Vk-ll Vk)), then the
length of P, denoted w(P), is defined as

k-I

w(P) = LW((Vil vi+d)·
i=O

The distance from a vertex V to a vertex u in G, denoted d(v, u), is the length of a
minimum length path (also called shortest path) from V to u, if such a path exists.

People often use the convention that d(v, u) = +00 if there is no path at all from
V to u in G. Even if there is a path from v to u in G, the distance from v to u may
not be defined, however, if there is a cycle in G whose total weight is negative.
For example, suppose vertices in G represent cities, and the weights of edges in
G represent how much money it costs to go from one city to another. If someone
were willing to actually pay us to go from say JFK to ORD, then the "cost" of the
edge (JFK,ORD) would be negative. If someone else were willing to pay us to go
from ORD to JFK, then there would be a negative-weight cycle in G and distances
would no longer be defined. That is, anyone could now build a path (with cycles)
in G from any city A to another city B that first goes to JFK and then cycles as
many times as he or she likes from JFK to ORD and back, before going on to B.

The existence of such paths would allow us to build arbitrarily low negative-cost
paths (and, in this case, make a fortune in the process). But distances cannot be
arbitrarily low negative numbers. Thus, any time we use edge weights to tepresent
distances, we must be careful not to introduce any negative-.weight cycles.

Suppose we are given a weighted graph G, and we are asked to find a shortest
path from some vertex v to each other vertex in G, viewing the weights on the edges
as distances. In this section, we explore efficient ways of finding all such shortest
paths, if they exist. The first algorithm we discuss is for the simple, yet common,
case when all the edge weights in Gare nonnegative (that is, w(e) ~ 0 for each edge
e of G); hence, we know in advance that there are no negative-weight cycles in G.
Recall that the special case of computing a shortest path when all weights are equal
to one was solved with the BFS traversal algorithm presented in Section 13.3.3.

There is an interesting approach for solving this single-source problem based
on the greedy method design pattern (Section 12.4.2). Recall that in this pattern we
solve the problem at hand by repeatedly selecting the best choice from among those
available in each iteration. This paradigm can often be used in situations where we
are trying to optimize some cost function over a collection of objects. We can add
objects to our collection, one at a time, always picking the next one that optimizes
the function from among those yet to be chosen.

;~

:1
'-1 ..J
j

"~j
:1
;;1
j

~~
;~
7:

~l
;~

J,lt

;i
"4

'~
'j

ii
':j

l~

~

~

,

635
1

,:~;·'.
I

I

'J
~

13.5. Shortest Paths

13.5.2 Dijkstra!s Algorithm

The main idea in applying the greedy method pattern to the single-source shortest
path problem is to perform a "weighted" breadth-first search starting at v. In partic
ular, we can use the greedy method to develop an algorithm that iteratively grows
a "cloud" of vertices out of v, with the vertices entering the cloud in order of their
distances from v. Thus, in each iteration, the next vertex chosen is the vertex out
side the cloud that is closest to v. The algorithm terminates when no more vertices
are outside the cloud, at which point we have a shortest path from v to every other
vertex of G. This approach is a simple, but nevertheless powerful, example of the
greedy method design pattern.

A Greedy Method for Finding Shortest Paths

Applying the greedy method to the single-source, shortest-path problem, results in
an algorithm known as Dijkstra's algorithm. When applied to other graph prob
lems, however, the greedy method may not necessarily find the best solution (such
as in the so-called traveling salesman problem, in which we wish to find the short
est path that visits all the vertices in a graph exactly once). Nevertheless, there are
a number of situations in which the greedy method allows us to compute the best
solution. In this chapter, we discuss two such situations: computing shortest paths
and constructing a minimum spanning tree.

In order to simplify the description of Dijkstra's algorithm, we assume, in the
following, that the input graph G is undirected (that is, all its edges are undirected)
and simple (that is, it has no self-loops and no parallel edges). lience, we denote
the edges of G as unordered vertex pairs (u,z).

In Dijkstra's algorithm for finding shortest paths, the cost function we are trying
to optimize in our application of the greedy method is also the function that we are
trying to compute-the shortest path distance. This may at first seem like circular
reasoning until we realize that we can actually implement this approach by using a
"bootstrapping" trick, consisting of using an approximation to the distance function
we are trying to compute, which in the end will be equal to the true distance.

Edge Relaxation

Let us define a label D[u] for each vertex u in V, which we use to approximate the
distance in G from v to u. The meaning of these labels is that D[u] will always store
the length of the best path we have found so far from v to u. Initially, D[v] = 0
and D[u] = +00 for each u f. v, and we define the set C, which is our "cloud" of
vertices, to initially be the empty set 0. At each iteration of the algorithm, we select
a vertex u not in C with smallest D[u] label, and we pull u into C. In the very first

1
'I~.:.·636 Chapter 13. Graphs
~

i
.,'

",

iteration we will, of course, pull v into C. Once a new vertex u is pulled into C, ~j

we then update the label D[z] of each vertex z that is adjacent to uand is outside of ~
C, to reflect the fact that there may be a new and better way to get to z via u. This l~

update operation is known as a relaxation procedure, for it takes an old estimate i
and checks if it can be improved to get closer to its true value. (A metaphor for II

~

why we call this a relaxation comes from a spring that is stretched out and then '4
~\"relaxed" back to its true resting shape.) In the case of Dijkstra's algorithm, the

I
~
'" relaxation is performed for an edge (u,z) such that we have computed a new value 1

of D[u] and wish to see if there is a better value for D[z] using the edge (u,z). The
specific edge relaxation operation is as follows:

~

Edge Relaxation:

if D[u] +w((u,z)) < D[z] then
D[z] t- D[u] w((u,z))

We give the pseudo-code for Dijkstra's algorithm in Code Fragment 13.14.
Note that we use a priority queue Qto store the vertices outside of the cloud C.

Algorithm ShortestPath(G, v):
Input: A simple undirected weighted graph G with nonnegative edge weights,

and a distinguished vertex v of G.
Output: A label D[u], for each vertex uof G, such that D[u] is the length of a

shortest path from v to u in G
i

Initialize D[v] t- 0 and D[u] t- +00 for each vertex u y.

Let a priority queue Qcontain all the vertices of G using the D labels as keys.

while Qis not empty do

{pull a new vertex u into the cloud}

u t- Q.removeMin()

for each vertex zadjacent to usuch that z is in Q do

{perform the relaxation procedure on edge (u,z)}
if D[u] +w((u,z)) < D[z] then

D[z] t-D[ul+w((u,z))

Change to D[z] the key of vertex z in Q.
 I

return the label D[u] of each vertex u

Code Fragment 13.14: Dijkstra's algorithm for the single~source shortest path prob
lem.

We illustrate several iterations of Dijkstra's algorithm in Figures 13.14 and
13.15.

I

637 13.5. Shortest Paths

"

,

t

I·;'"

(a) (b)

2342
1946[:

,i (c) (d)
M

2704

t -,,

I
I

I
I

I

.,..,. ... ~-

,
I,
,

/,
'/

I

/, __ "2704

I

I t
t

t ,
t ,, ,

I ' / /

I '

(e) (0
Figure 13.14: An execution of Dijkstra's algorithm on a weighted graph. The start
vertex is BWI. A box next to each vertex v stores the label D[v]. The symbol. is
used instead of +00. The edges of the shortest-path tree are drawn as thick blue
arrows, and for each vertex u outside the "cloud" we show the current best edge for
pulling in u with a solid blue line. (Continues in Figure 13.15.)

638 Chapter 13. Graplls

I

13711

///"2704

/
/

/

I

I

I

I

I

I

I I

I I

I I

/
I
 ,

12658 1:"""
2342 19461 --- ,-' 19461

(g) (h)

1371h 137111
//"';';;" ,,-- ----- ,/--27~;
/

/

/

I /

I /

I I

/ I

I I

I I

I

I

I I

I

I

I

I

I

I

\

" 1121

"12658 1"""

'" 2342
 , 19461

(i) G)

Figure 13.15: An example execution of Dijkstra's algorithm. (Continued trom Fig
ure 13.14.)

Why It Works

The interesting, and possibly even a little surprising, aspect of the Dijkstra algo
rithm is that, at the moment a vertex u is pulled into C, its label D[u] stores the
correct length of a shortest path from v to u. Thus, when the algorithm terminates,
it will have computed the shortest-path distance from v to every vertex of G. That
is, it will have solved the single-source shortest path problem.

It is probably not immediately clear why Dijkstra's algorithm correctly finds
the shortest path from the start vertex v to each other vertex u in the graph. Why
is it that the distance from v to u is equal to the value of the label D[u] at the time
vertex u is pulled into the cloud C (which is also the time u is removed from the
priority queue Q)? The answer to this question depends on there being no negative
weight edges in the graph, for it allows the greedy method to work correctly, as we
show in the proposition that follows.

~

13.5. Shortest Paths 	 639

I
~

Proposition 13.23: In Dijkstra's algorithm, whenever a vertex u is pulled into
the cloud, the label D[u] is equal to d(v,u), the length of a shortest path from v to u.

~
~ 	 Justification: Suppose that D[t] > d(v,t) for some vertex t in V, and let u be
~ 	 the first vertex the algorithm pulled into the cloud C (that is, removed from Q)

such that D[u] > d(v,u). There is a shortest path P from v to u (for otherwise~
d(v,u) = +00 = D[u]). Let us therefore consider the moment when u is pulled into
C, and let z be the first vertex of P (when going from v to u) that is not in C at this
moment. Let y be the predecessor of z in path P (note that we could have y v).
(See Figure 13.16.) We know, by our choice of z, that y is already in C at this point.
Moreover, D[y] = d(v,y), since u is the first incorrect vertex. When y was pulled
into C, we tested (and possibly updated) D[z] so that we had at that point

D[z] ::; D[y] w((y,z)) d(v,y) w((y,z)).

But since z is the next vertex on the shortest path from v to u, this implies that

D[zl =d(v,z).

But we are now at the moment when we are picking u, not z, to join C; hence,

D[u] < D[z].

It should be clear that a subpath of a shortest path is itself a shortest path. Hence,
since z is on the shortest path from v to u,

d(v,z)+d(z,u) d(v,u).
5

Moreover, d(z,u) > 0 because there are no negative-weight edges. Therefore,

D[u] ::; D[z] = d(v,z) ::; d(v,z) d(z,u) = d(v,u).

But this contradicts the definition of u; hence, there can be no such vertex u. •

the first "wrong" vertex

C 	 \ u picked next
/ so D[u] .:;: D[z]

u

D[u] > d(v,u)

z

Y D[z] = d(v,z)

Figure 13.16: A schematic illustration for the justification of Proposition 13.23.

640 Chapter 13. Graphs

The Running Time of Dijkstra's Algorithm

In this section, we analyze the time complexity of Dijkstra's algorithm. We denote
with n and Tn, the number of vertices and edges of the input graph G, respectively.
We assume that the edge weights can be added and compared in constant time.
Because of the high level of the description we gave for Dijkstra's algorithm in
Code Fragment 13.14, analyzing its running time requires that we give more details
on its implementation. Specifically, we should indicate the data structures used and
how they are implemented.

Let us first assume that we are representing the graph G using an adjacency
list structure. This data structure allows us to step through the vertices adjacent to
u during the relaxation step in time proportional to their number. It still does not
settle all the details for the algorithm, however, for we must say more about how to
implement the other principle data structure in the algorithm-the priority queue Q.

An efficient implementation of the priority queue Quses a heap (Section 8.3).
This allows us to extract the vertex u with smallest D label (call to the rernoveMin
method) in O(logn) time. As noted in the pseudo-code, each time we update a
D[z] label we need to update the key of z in the priority queue. Thus, we actually
need a heap implementation of an adaptable priority queue (Section 8.4). If Q is
an adaptable priority queue implemented as a heap, then this key update can, for
example, be done using the replaceKey(e,k), where e is the entry storing the key for
the vertex z. If e is location-aware, then we can easily implement such key updates
in O(logn) time, since a location-aware entry for vertex zwould allow Q to have
immediate access to the entry e storing zin the heap (see Section 8.4.2). Assuming
this implementation of Q, Dijkstra's algorithm runs in O((n +m) logn) tiVle.

Referring back to Code Fragment 13.14, the details of the running-time analysis
are as follows:

• 	Inserting all the vertices in Q with their initial key value can be done in
O(nlogn) time by repeated insertions, or in O(n) time using bottom-up heap
construction (see Section 8.3.6).

• 	At each iteration of the while loop, we spend O(logn) time to remove vertex
u from Q, and O(degree(v)logn) time to perform the relaxation procedure
on the edges incident on u.

• 	The overall running time of the while loop is

L (1 +degree(v)) logn,
vin G

which is O((n m) logn) by Proposition 13.6.

Note that if we wish to express the running time as a function of n only, then it is
O(n2 log n) in the worst case.

t
'I
T.

, 13.5. Shortest Paths 	 641
1::I
1
~
~ 	 13.5.3 Implementations of Dijkstra!s Algorithm
,~

~ 	 Let us now consider an alternative implementation for the adaptable priority queue Q

(

q

~ 	 using an unsorted sequence. This, of course, requires that we spend O(n) time to
extract the minimum element, but it allows for very fast key updates, provided Q
supports location-aware entries (Section 8.4.2). Specifically, we can implement
each key update done in a relaxation step in O(1) time-we simply change the key
value once we locate the entry in Qto update. Hence, this implementation results

~ 	 in a running time that is O(n2 m), which can be simplified to O(n2) since G is,:J

~ 	 simple.
.~

I;1 	 Comparing the Two Implementations

We have two choices for implementing the adaptable priority queue with locationi;
I

aware entries in Dijkstra's algorithm: a heap implementation, which yields a run
ning time of O((n +m) logn), and an unsorted sequence implementation, which
yields a running time of O(n2). Since both implementations would be fairly sim
ple to code up, they are about equal in terms of the programming sophistication
needed. These two implementations are also about equal in terms of the constant
factors in their worst-case running times. Looking only at these worst-case times,
we prefer the heap implementation when the number of edges in the graph is small
(that is, when m<n2/logn), and we prefer the sequence implementation when the
number of edges is large (that is, when m > n2 /logn).

Proposition 13.24: Given a simple undirected weighted graph (J with n vertices
and m edges, such that the weight of each edge is ~onnegative, and a vertex v of
G, Dijkstra's algorithm computes the distance from v to all other vertices of Gin
O((n +m) logn) worst-case time, or, alternatively, in O(n2) worst-case time.

In Exercise R-13.17, we explore how to modify Dijkstra's algorithm to output
a tree T rooted at v, such that the path in T from v to a vertex u is a shortest path in
G from v to u.

Programming Dijkstra's Algorithm in Java

Having given a pseudo-code description of Dijkstra's algorithm, let us now present
Java code for performing Dijkstra's algorithm, assuming we are given an undirected
graph with positive integer weights. We express the algorithm by means of class
Dijkstra (Code Fragments 13.15 and 13.16), which uses a weight decoration for
each edge e to extract e's weight. Class Dijkstra assumes that each edge has a
weight decoration.

1
~

642 	 Chapter 13. Graphs i
.~

/* Dijkstra's algorithm for the single-source shortest path problem
* in an undirected graph whose edges have non-negative integer weights. * / ~

public class Dijkstra<V, { R
~

/** Infinity value. * / ~

protected static final Integer II\IFINITE Integer.MAX_VALUE; ,~
;/** Input graph. * / ql

protected Graph<V, E> graph; ~

/** Decoration key for edge weights * / I

protected Object WEIGHT;

~

/** Decoration key for vertex distances * /

protected Object DIST = new ObjectO;

/** Decoration key for entries in the priority queue * /

protected Object ENTRY = new Object();

/** Auxiliary priority queue. * /

protected AdaptablePriorityQueue<lnteger, Vertex<V> > Q;

/** Executes Dijkstra's algorithm.

* @param g Input graph
* @param s Source vertex 	 ~
* @param w Weight decoration object * /

public 	void execute(Graph <V, E> g, Vertex<V> s, Object w) {

graph = g;

WEIGHT = w;

DefaultComparator dc = new DefaultComparatorO;

Q = new HeapAdaptablePriorityQueue<lnteger, Vertex<V»(dc);

dijkstraVisit(s); .

}

/** Get the distance of a vertex from the source vertex.

* @param u Start vertex for the shortest path tree * /

public int getDist(Vertex <V> u) {

return (Integer) u.get(DIST);

}

Code Fragment 13.15: Class Dijkstra implementing Dijkstra's algorithm. (Contin
ues in Code Fragment 13.16.)

The main computation of Dijkstra's algorithm is performed by method dijk I
straVisit. An adaptable priority queue Q supporting location-aware entries (Sec
tion 8.4.2) is used. We insert a vertex u into Qwith method insert, which returns
the location-aware entry of u in Q. We "attach" to u its entry in Q by means of
method setEntry, and we retrieve the entry of u by means of method getEntry.
Note that associating entries to the vertices is an instance of the decorator design
pattern (Section 13.3.2). Instead of using an additional data structure for the labels
D[u], we exploit the fact that D[u] is the key of vertex u in Q, and thus D[u] can
be retrieved given the entry for u in Q. Changing the label of a vertex z to d in
the relaxation procedure corresponds to calling method replaceKey(e,d), where e
is the location-aware entry for z in Q.

643 13.5. Shortest Paths

/** The actual execution of Dijkstra's algorithm.
* @param v source vertex.

I
, *1

protected void dijkstraVisit (Vertex<V> v) {
I I store all the vertices in priority queue Qi for (Vertex<V> u: graph.verticesO) {

int u_dist;

if (u==v)

~ u_dist = 0;
[' else

I
~
j1 u_dist = INFINITE;

Entry<lnteger, Vertex<V> > u_entry =
u.put(ENTRY, u_entry);

}
I I grow the cloud, one vertex at a time

~ while (!Q.isEmptyO) { ""
Q.insert(u_dist, u); I I autoboxing

f
,!! I I remove from Q and insert into cloud a vertex with minimum distance
, Entry<lnteger, Vertex<V» u_entry = Q.minO;,

Vertex<V> u = u_entry.getValueO;
"I
! int u_dist u_entry.getKeyO;

Q.remove(u_entry); I I remove u from the priority queue

~~

u.put(DIST,u_dist); I I the distance of u is final
~ u.remove(ENTRY); I I remove the entry decoration of u

if (u_dist INFINITE);
continue; I I unreachable vertices are not processed

I I examine all the neighbors of u and update their distances
for (Edge<E> e: graph.incidentEdges(u)) {

Vertex<V> z = graph.opposite(u,e);
Entry<lnteger, Vertex<V> > Lentry

= (Entry<lnteger, Vertex<V> » z.get(ENTRY);

~ if (Lentry null) { I I check that z is in Q, i.e., not in the cloud

int e_weight = (Integer) e.get(WEIGHT);

int Ldist = Lentry.getKeyO;

if (u_dist + e_weight < Ldist) II relaxation of edge e (u,z)

Q.replaceKeY(Lentry, u_dist + e_weight);
}

}
}

}

Code Fragment 13.16: Method dijkstraVisit of class Dijkstra. (Continued from
Code Fragment 13.15.)

644 Chapter 13. Graphs 	 1:1
':J

j

13.6 Minimum Spanning Trees 	 .~
j

iij
~

Suppose we wish to connect all the computers in a new office building using the ~
least amount of cable. We can model this problem using a weighted graph G whose ~ vertices represent the computers, and whose edges represent all the possible pairs

~
~(u, v) of computers, where the weight w((v, u)) of edge (v, u) is equal to the amount ;~

)4of cable needed to connect computer v to computer u. Rather than computing a ,~

shortest path tree from some particular vertex v, we are interested instead in finding :r

a (free) tree T that contains all the vertices of G and has the minimum total weight

over all such trees. Methods for finding such a tree are the focus of this section.

$

Problem Definition

~
Given a weighted undirected graph G, we are interested in finding a tree T that
contains all the vertices in G and minimizes the sum

w(T) L w((v,u)).
(v,u) in T

A tree, such as this, that contains every vertex of a connected graph Gis said to
be a spanning tree, and the problem of computing a spanning tree T with smallest
total weight is known as the minimum-spanning tree (or MST) problem..i

The development of efficient algorithms for the minimllm spanning tree prob
lem predates the modern notion of computer science itself. In this section, we.
discuss two classic algorithms for solving the MST problem. These algorithms
are both applications of the greedy method, which, as was discussed briefly in the
previous section, is based on choosing objects to join a growing collection by itera
tively picking an object that minimizes some cost function. The first algorithm we
discuss is Kruskal's algorithm, which "grows" the MST in clusters by considering
edges in order of their weights. The second algorithm we discuss is the Prim-Jarnik
algorithm, which grows the MST from a single root vertex, much in the same way
as Dijkstra's shortest-path algorithm.

As in Section 13.5.2, in order to simplify the description of the algorithms, we
assume, in the following, that the input graph G is undirected (that is, all its edges
are undirected) and simple (that is, it has no self-loops and no parallel edges).
Hence, we denote the edges of G as unordered vertex pairs (u,z).

Before we discuss the details of these algorithms, however, let us give a crucial
fact about minimum spanning trees that forms the basis of the algorithms.

645 13.6. Minimum Spanning Trees

A Crucial Fact about Minimum Spanning Trees

The two MST algorithms we discuss are based on the greedy method, which in this

-:'>':'.

e

\
min-weight

"bridge" edge

case depends crucially on the following fact. (See Figure 13.17.)

I e Belongs to a Minimum Spanning Tree

~
~

~
i
~

Figure 13.17: An illustration of the crucial factabout minimum spanning trees.

Proposition 13.25: Let G be a weighted connected graph, and let VI and V2 be a
partition of the vertices ofG into two disjoint nonempty sets. Furthermore, let e be
an edge in G with minimum weight from among those with one el1dpoint in VI and
the other in V2. There is aminimum spanning tree T that has e as one of its edges.

Justification: Let T be a minimum spanning tree of G. If T does not contain
edge e, the addition of e to T must create a cycle. Therefore, there is some edge
f of this cycle that has one endpoint in VI and the other in V2. Moreover, by the
choice of e, w(e) ~ w(j). If we remove f from T U{e}, we obtain a spanning tree
whose total weight is no more than before. Since T was a minimum spanning tree,
this new tree must also be a minimum spanning tree. •

In fact, if the weights in G are distinct, then the minimum spanning tree is
l;mique; we leave the justification of this less crucial fact as an exercise (C-13.18).
In addition, note that Proposition 13.25 remains valid even if the graph G con
tains negative-weight edges or negative-weight cycles, unlike the algorithms we
presented for shortest paths.

I
:~

646 Chapter 13. Graphs

13.6.1 Kruskal's Algorithm

~ The reason Proposition 13.25 is so important is that it can be used as the basis for
building a minimum spanning tree. In Kruskal's algorithm, it is used to build the ~
minimum spanning tree in clusters. Initially, each vertex is in its own cluster all t1

~
by itself. The algorithm then considers each edge in tum, ordered by increasing 1
weight. If an edge e connects two different clusters, then e is added to the set ~
of edges of the minimum spanning tree, and the two clusters connected by e are ~
merged into a single cluster. If, on the other hand, e connects two vertices that
are already in the same cluster, then e is discarded. Once the algorithm has added
enough edges to form a spanning tree, it terminates and outputs this tree as the
minimum spanning tree.

We give pseudo-code for Kruskal's MST algorithm in Code Fragment 13.17
and we show the working of this algorithm in Figures 13.18, 13.19, and 13.20.

Algorithm Kruska\(G):
Input: A simple connected weighted graph G with n vertices and In edges
Output: A minimum spanning tree T for G

for each vertex v in G do
Define an elementary cluster C(v) <- {v}.

Initialize a priority queue Q to contain all edges in G, using the weights as keys.
T <- 0 {T will ultimately contain the edges of the MST}
while T has fewer than n 1edges do

•(u, v) <- Q.removeMinO
Let C(v) be the cluster containing v, and let C(u) 'be the' cluster containing u.
ifC(v) C(u) then

Add edge (v,u) to T.
Merge C(v) and C(u) into one cluster, that is, union C(v) and C(u).

return tree T

Code Fragment 13.17: Kruskal's algorithm for the MST problem.

As mentioned before, the correctness of Kruskal's algorithm follows from the
crucial fact about minimum spanning trees, Proposition 13.25. Each time Kruskal's
algorithm adds an edge (v, u) to the minimum spanning tree T, we can define a
partitioning of the set of vertices V (as in the proposition) by letting VI be the
cluster containing v and letting V2 contain the rest of the vertices in V. This clearly
defines a disjoint partitioning of the vertices of V and, more importantly, since we
are extracting edges from Qin order by their weights, e must be a minimum-weight
edge with one vertex in VI and the other in V2. Thus, Kruskal's algorithm always
adds a valid minimum spanning tree edge.

647 13.6. Minimum Spanning Trees

(a) (b)

(c) (d) ~

(e) (t)

Figure 13.18: Example of an execution of Kruskal's MSTalgorithm on a graph with

integer weights. We show the clusters as shaded regions and we highlight the edge

being considered in each iteration. (Continues in Figure 13.l9.)

648 Chapter 13. Graphs

(g) (h)

(i) G)

(k) (1)

Figure 13.19: An example of an execution of Kruskal's MST algorithm. Rejected
edges are shown dashed. (Continues in Figure 13.20.)

(m)

13.6. 	Minimum Spanning Trees 649

_...... -----
//-27~4

," ,,,
J

J
J

I 	 ,
''''''

"'" 2342I, :...... _----_ ... -
(n)

Figure 13.20: Example of an execution of Kruskal's MST algorithm (continued).
The edge considered in (n) merges the'last two clusters, which concludes this exe
cution of Kruskal's algorithm. (Continued from Figure 13.19.)

The Running Time of Kruskal's Algorithm

We denote the number of vertices and edges of the input graph G with nand m,.~
respectively. Because of the high level of the description we gave for Kruskal's
algorithm in Code Fragment 13.17, analyzing its running time requires that we
give more details on its implementation. Specifically, we should indicate the data
structures used and how they are implemented.

We can implement the priority queue Qusing a heap. Thus, we can initialize Q
in O(mlogm) time by repeated insertions, or in O(m) time using bbttom-up heap
construction (see Section 8.3.6). In addition, at each iteration of the while loop, we
can remove a minimum-weight edge in O(logm) time, which actually is O(logn),
since G is simple. Thus, the total time spent performing priority queue operations
is no more than O(mlogn).~

We can represent each cluster C using one of the union-find partition data struc
tures discussed in Section 11.4.3. Recall that the sequence-based union-find struc
ture allows us to perform a series ofN union and find operations in O(NlogN) time,
and the tree-based version can implement such a series of operations in O(N log* N)
time. Thus, since we perform n - 1 calls to method union and at most m calls to
find, the total time spent on merging clusters and determining the clusters that ver
tices belong to is no more than O(m10gn) using the sequence-based approach or
O(mlog* n) using the tree-based approach.

Therefore, using arguments similar to those used for Dijkstra's algorithm, we
conclude that the running time of Kruskal's algorithm is O((n +m) logn), which
can be simplified as O(mlogn), since G is simple and connected.

1
650 Chapter 13. Graphs I

13.6.2 The Prim-Jarnik Algorithm I
~

In the Prim-Jarnik algorithm, we grow a minimum spanning tree from a single "
~

1
cluster starting from some "root" vertex v. The main idea is similar to that of ~

Dijkstra's algorithm. We begin with some vertex v, defining the initial "cloud" of ~

vertices C. Then, in each iteration, we choose a minimum-weight edge e = (v,u),

connecting a vertex v in the cloud C to a vertex u outside of C. The vertex u is then
 I
brought into the cloud C and the process is repeated until a spanning tree is formed. u

I
M

~
~Again, the crucial fact about minimum spanning trees comes to play, for by always ~

choosing the smallest-weight edge joining a vertex inside C to one outside C, we

are assured of always adding a valid edge to the MST.

To efficiently implement this approach, we can take another cue from Dijkstra's
algorithm. We maintain a label D[u] for each vertex u outside the cloud C, so 9

il
that D[u] stores the weight of the best current edge for joining u to the cloud C.
These labels allow us to reduce the number of edges that we must consider in
deciding which vertex is next to join the cloud. We give the pseudo-code in Code
Fragment 13.18.

Algorithm PrimJarnik(G):

Input: A weighted connected graph G with n vertices and m edges

Output: A minimum spanning tree T for G .

Pick any vertex v of G
D[v] {- a

for each vertex u t- vdo

D[u] {- +00
Initialize T {- 0.
Initialize a priority queue Q with an entry ((u,null),D[u]) for each vertex u,
where (u,null) is the element and D[u]) is the key.
while Q is not empty do

(u,e) {- Q.removeMinO

Add vertex u and edge e to T.

for each vertex z adjacent to usuch that z is in Q do

{perform the relaxation procedure on edge (u,z)}

ifw((u,z)) < D[zl then
 ~

D[zl {- w((u,z))

Change to (z, (u,z)) the element of vertex zin Q.

Change to D[zl the key of vertex zin Q.

return the tree T

Code ,Fragment 13.18: The Prim-Jamlk algorithm for the MST problem.

1
'J
~

13.6. Minimum Spanning Trees 651
~
il Analyzing the Prim-Jarnfk Algorithm
il

~
~ Let nand m denote the number of vertices and edges of the input graph G, respec
~ tively. The implementation issues for the Prim-Jarnlk algorithm are similar to those

for Dijkstra's algorithm. If we implement the adaptable priority queue Qas a heap
·,;,,1li ,1 that supports location-aware entries (Section 8.4.2), then we can extract the vertex
J u in each iteration in O(logn) time. In addition, we can update each D[zl value in
}l

O(logn) time, as well, which is a computation considered at most once for eachr~
edge (u,z). The other steps in each iteration can be implemented in constant time.
Thus, the total running time is O((n +m) logn), which is O(mlogn).

Illustrating the Prim-Jarnfk Algorithm

We illustrate the Prim-Jarnik algorithm in Figures 13.21 through 13.22.

i'
,i, ,

(a) (b)

(c) (d)

Figure 13.21: An illustration of the Prim-Jarnlk MST algorithm. (Continues in
Figure 13.22.)

I

/,/27~4

" ,

2342

I ' I I

, "",'

\ ,

I
I

2','

652 ~ Chapter 13. Graphs '1l
':.1
:~

S
",iJ

;j
----_._-

~, " ~

(e) (f)

-'-
':,;
i'

~~- ~
"
,iI

\
\ ,

\
\

I
I

I

I
I

I

1/,/1/~2704
I

I

2342

\

1258:

/
I

I
I

I ,I
I I

/ ... ".,'

\,, \
I I

I \ ~',~1258: ~~
r

r
I

r
I ,~
I

I I
I /

I

I

I

'-,

(g) (h)

I\
~\

\ i1
\

I
'~

\
\ ill

I
I,
B
ill

,-~---

... "" ... ---------

I
I

I
I

1/~'--2704

" I

I

I " / ,/1846
/ ,-
//

\

'--
2342 ,

\

1258:

......... _------ ...
 I
(i) G)

~

Figure 13.22: An illustration of the Prim-Jarnik MST algorithm. (Continued from
Figure 13.21.)

2704

----.; MIA
2342

,
\,

1258:

I
I

I

I
I

I

I
I

I

1",/~2704

2342

\

r
r

1258:

:ii
" "~
;;J

\1
lj

'1

j
r~
!1

~
foj

I
~
"

1

I
I

/,_/27~~--

/

/'~i8~;'

2342

\
I
I

1258:

1 13.7. Exercises 	 653
~
J
~j
~ 13.7 Exercises

I 	 For help with exercises, please visit the web site, www.wiley.com/go/global/goodlich.

I
A

:.',1,. Rei nforcement

R-13.1 	 Draw a simple undirected graph G that has 12 vertices, 18 edges, and 3
connected components. Why would it be impossible to draw G with 3
connected components if G had 66 edges?

.

R-13.2 Let G be a simple connected graph with n vertices and m edges. Explain
why O(logm) is O(logn).

R-13.3 Draw an adjacency list and adjacency matrix representation of the undi
~,, rected graph shown in Figure 13.1.Il

R-13.4 	Draw a simple connected directed graph with 8 vertices and 16 edges such
that the in-degree and out-degree of each vertex is 2. Show that there is
a single (nonsimple) cycle that includes all the edges of your graph, that
is, you can trace all the edges in their respective directions without ever
lifting your pencil. (Such a cycle is called an Euler tour.)

R-13.5 	Repeat the previous problem and then remove one edge from the graph.
Show that now there is a single (nonsimple) path that includes all the edges
of your graph. (Such a path is called an Euler path.)

R-I3.6 	Bob loves foreign languages and wants to plan his course schedule for the
following years. He is interested in the following nine language courses:

6
LAI5, LAI6, LA22, LA31, LA32, LA126, LA127, LA141, and LA169.
The course prerequisites are:

• LAI5: (none)
• LAI6: LA15
• LA22: (none)
• LA31: LA15
• LA32: LA16, LA31
• LAI26:LA22, LA32
• LA127: LAI6.
• LA141: LA22, LA16
• LA169: LA32.

Find the sequence of courses that allows Bob to satisfy all the prerequi
sites.

R-13.7 	Suppose we represent a graph G having n vertices and m edges with the
edge list structure. Why, in this case, does the insertVertex method run in
0(1) time while the removeVertex method runs in O(m) time?

www.wiley.com/go/global/goodlich

654

..~

.~

Chapter 13. Graphs 	 ~l
.~j

'.~
,jR-13.8 	Let G be a graph whose vertices are the integers 1 through 8, and let the
.~

adjacent vertices of each vertex be given by the table below: 	 ?1

~1
:~vertex 	 adjacent vertices
.;

2
3
4
5
6
7
8

.1 ,(2, 3,4)
(1,3,4) ~
(1,2,4) j

(1,2,3,6) 	 fJ
~~

(6, 7, 8) 	
,/1

(4,5, 7) '1

I
~~ ,(5,6,8)

(5,7)

Assume that, in a traversal of G, the adjacent vertices of a given vertex are
returned in the same order as they are listed in the table above.

1\a. 	 DrawG. "

n
b. 	 Give the sequence of vertices of G visited using a DFS traversal jj,.

starting at vertex 1.
~
~

c. 	 Give the sequence of vertices visited using a BFS traversal starting
at vertex 1.

R-13.9 	Would you use the adjacency list structure or the adjacency matrix struc

ture in each of the following cases? Justify your choice.

a. 	The graph has 10,000 vertices and 20,000 edges, and it is important
to use as little space as possible.

b. 	 The graph has 10,000 vertices and 20,000,000 edges, and it is im ~
portant to use as little space as possible. ,I:1

c. 	 You need to answer the query areAdjacent as fast as possible, no 1
~

matter how much space you use. . I
R-13.l0 	Explain why the DFS traversal runs in O(n2) time on an n-vertex simple ~

~graph that is represented with the adjacency matrix structure. 	 ~<'
.~

R-13.11 	 Draw the transitive closure of the directed graph shown in Figure 13.2. ~
,
""

R-13.12 	Compute a topological ordering for the directed graph drawn with solid
I'

I
~edges in Figure 13.8d.

R-13.13 	Can we use a queue instead of a stack as an auxiliary data structure in the
topological sorting algorithm shown in Code Fragment 13.13? Why or ~l

~~

why not? 	 ~
~

R-13.14 Draw a simple, connected, weighted graph with 8 vertices and 16 edges,
'~

each with unique edge weights. Identify one vertex as a "start" vertex and
illustrate a running of Dijkstra's algorithm on this graph.

R-13.15 	Show how to modify the pseudo-code for Dijkstra's algorithm for the case
when the graph may contain parallel edges and self-loops.

13.7. Exercises 	 655

~

I
R-13.16 Show how to modify the pseudo-code for Dijkstra's algorithm for the case

'I',·,;·, when the graph is directed and we we want to compute shortest directed
\

paths from the source vertex to all the other vertices.
'"

ij
ii

R-13.17 Show how to modify Dijkstra's algorithm to not only output the distance

I
;'t from vto each vertex in G, but also to output a tree T rooted at vsuch that

i
.~
 the path in T from v to a vertex u is a shortest path in G from v to u.

R-13,18 There are eight small islands in a lake, and the state wants to build seven~
11 	 bridges to connect them so that each island can be reached from any other
11

one via one or more bridges. The cost of constructing a bridge is propor
; tional to its length. The distances between pairs of islands are given in the

following table.~·'.···f,,
;. 1 2 3 4 5 678
~:i
f
.'1 	 1 - 240 210 340 280 200 345 120

2 - 265 175 215 180 185 155
3 - 260 115 350 435 195
4 160 330 295 230

iJ 	 5 - 360 400 170
6 175 205
7 305I

i 8
~ Find which bridges to build to minimize the total construction cost.

i
;i

~ R-13.l9 Draw a simple, connected, undirected, weighted graph with 8 vertices
and 16 edges, each with unique edge weights. Illustrate the execution of
Kruskal's algorithm on "this graph. (Note that there is only one minimum
spanning tree for this graph.)

I R-13.20 Repeat the previous problem for the Prim-Jamlk algoritlim.

R-13.21 Consider the unsorted sequence impleme~tation of the priority queue Q

I used in Dijkstra's algorithm. In this case, why is this the best-case running
time of Dijkstra's algorithm O(n2) on an n-vertex graph?

A
;1 R-13.22 	Describe the meaning of the graphical conventions used in Figure 13.6

illustrating a DFS traversal. What do the colors blue and black refer to?

I
~

What do the anows signify? How about thick lines and dashed lines?

l.! R-13.23 Repeat Exercise R-l3.22 for Figure 13.7 illustrating a BFS traversal.
~ R-13.24 Repeat Exercise R-13.22 for Figure l3.9 illustrating a directed DFS traver
~
{~ 	 sal.

R-l3.25 Repeat Exercise R-l3.22 for Figure 13.10 illustrating the Floyd-Warshall
algorithm.

R-13.26 Repeat Exercise R-l3.22 for Figure l3.12 illustrating the topological sort
ing algorithm.

R-13.27 Repeat Exercise R-13.22 for Figures 13.14 and 13.15 illustrating Dijkstra's
algorithm.

656 	 Chapter 13. Graphs

R-13.28 	 Repeat Exercise R-13.22 for Figures 13.18 and 13.20 illustrating Kruskal's
algorithm.

R-I3.29 	Repeat Exercise R-13.22 for Figures 13.21 and 13.22 illustrating the Prim
Jamik algorithm.

R-13.30 	How many edges are in the transitive closure of a graph that consists of a
simple directed path of n vertices?

R-13.31 	 Given a complete binary tree T with n nodes, consider a directed graph
->

G having the nodes of T as its vertices. For each parent-child pair in T,
create a directed edge in Gfrom the parent to the' child. Show that the

->

transitive closure of G has O(nlogn) edges.

R-13.32 Asimple undirected graph is complete if it contains an edge between every
pair of distinct vertices. What does a depth-first search tree of a complete
graph look like?

R-13.33 Recalling the definition of a complete graph from Exercise R-13.32, what
does a breadth-first search tree of a complete graph look like?

R-13.34 Say that a maze is constructed correctly if there is one path from the start
to the finish, the entire maze is reachable from the start, and there are no
loops around any portions of the maze. Given a maze drawn in an n x n
grid, how can we determine if it is constructed correctly? What is the
running time of this algorithm?

Creativity

C-13.1 Say that an n-vertex directed acyclic graph Gis compact if there is some
~ 	 ~

way of numbering the vertices of G with the integers from °to n 1such
that Gcontains the edge (i,j) if and only if i < j~ for all i,j in [O,n-l].
Give an O(n2)-time algorithm for detecting if Gis compact.

C-13.2 	Justify Proposition 13.11.

C-13.3 	Describe, in pseudo-code, an O(n m)-time algorithm for computing all
the connected components of an undirected graph G with n vertices and m
edges.

C-13.4 	Let T be the spanning tree rooted at the start vertex produced by the depth
first search of a connected, undirected graph G. Argue why every edge of
G not in T goes from a vertex in T to one of its ancestors, that is, it is a
back edge.

ii.

i
l::
·,;1 C-13.5 Suppose we wish to represent an n-vertex graph G using the edge list
1i':j structure, 	assuming that we identify the vertices with the integers in thei~.'. i
Iii 	 set {O, 1, ... ,n - I}. Describe how to implement the collection E to sup
1:.1
:'1, port O(logn)-time performance for the areAdjacent method. How are you

I
I
.'
i

,
implementing the method in this case?

····'

657 13.7. Exercises

C-13.6 	Tamarindo University and many other schools worldwide are doing a joint ~
~ project 	on multimedia. A computer network is built to connect these

I
~

schools 	using communication links that form a free tree. The schools
decide to install a file server at one of the schools to share data among all

I 	 the schools. Since the transmission time on a link is dominated by the link
~ setup and synchronization, the cost of a data transfer is proportional to the
~ number of links used. Hence, it is desirable to choose a "central" location

I for the file server. Given a free tree T and a node v of T, the eccentricity
~i
~: 	 of v is the length of a longest path from v to,any other node of T. A node

of T with minimum eccentricity is called a center of T.

a. 	 Design an efficient algorithm that, given an n-node free tree T, com
putes a center of T.

b. 	 Is the center unique? If not, how many distinct centers can a free
tree have?

I
C-13.7 Show that, if T is a BFS tree produced for a connected graph G, then, for

each vertex v at level i, the path of T between s and v has i edges, and any
other path of G between s and v has at least i edges.

C-13.8 	The time delay of a long-distance call can be detennined by multiplying
a small fixed constant by the number of communication links on the tele

~I phone network between the caller and callee. Suppose the telephone net
work of a company named RT&T is a free tree. The engineers of RT&T
want to compute the maximum possible time delay that may be experi
enced in a long-distance call. Given a free tree T, the diameter of T is
the length of a longest path between two nodes of T. Give an efficient
algorithm for computing the diameter of T.

i

C-13.9 	A company named RT&T has a net~ork o~n switching stations connected
by m high-speed communication links. Each customer's phone is directly
connected to one station in his or her area. The engineers of RT&T have
developed a prototype video-phone system that allows two customers to

I
~
,I 	 see each other during a phone call. In order to have acceptable image

quality, however, the number of links used to transmit video signals be
tween the two parties cannot exceed 4. Suppose that RT&T's network is
represented by a graph. Design an efficient algorithm that computes, for
each station, the set of stations it can reach using no more than 4 links.

C-13.10 	Explain why there are no forward nontree edges with respect to a BFS tree
constructed for a directed graph.

C-13.11 	 An Euler tour of a directed graph Gwith n vertices and m edges is a
cycle that traverses each edge of Gexactly once according to its direction.
Such a tour always exists if Gis connected and the in-degree equals the
out-degree of each vertex in G. Describe an O(n+m)-time algorithm for
finding an Euler tour of such a digraph G.

I!

II
IJII
Ii
II

658 Chapter 13. Graphs

C-13.12 An independent set of an undirected graph G = (V,E) is a subset I of V
such that no two vertices in I are adjacent. That is, if u and v are in I, then
(u, v) is not in E. A maximal independent set M is an independent set

I such that, if we were to add any additional vertex to M, then it would not
be independent any more. Every graph has a maximal independent set.
(Can you see this? This question is not part of the exercise, but it is worth!
thinking about.) Give an efficient algorithm that computes a maximal~

! independent set for a graph G. What is this method's running time?
I

C-13.13 Let G be an undirected graph G with n vertices and In edges. Describe ~ an O(n +In)-time algorithm for traversing each edge of Gexactly once in
;
I .

j" . each direction.
C-13.14 Justify Proposition 13.14.

~JI C-13.15 Give an example of an n-vertex simple graph G that causes Dijkstra's
i'i
II algorithm to run in Q(n210gn) time when its implemented with a heap.r C-13.16 Give an example of a weighted directed graph Gwith negative-weight
~.

edges, but no negative-weight cycle, such that Dijkstra's algorithm incor~

~
t,. rectly computes the shortest-path distances from some start vertex v.
t C-13.17 Consider the following greedy strategy for finding a shortest path fromr r vertex start to vertex goal in a given connected graph.•t .
I 1: Initialize path to start.
~

t
I"

2: Initialize VisitedVertices to {start}. .
r
~ , 3: If start=goal, return path and exit. Otherwise, continue.

4: Find the edge (start, v) of minimum weight such that v is adjacent to•t
r ~ start and v is not in VisitedVertices.
f '
~ 5: Add v to path.
l 6: Add v to VisitedVertices.f~.', 7: Set start equal to vand go to step 3.
~r .
J Does this greedy strategy always find a shortest path from start to goal?
~ , Either explain intuitively why it works, or give a counter example.

C-13.18 Show that if all the weights in a connected weighted graph G are distinct,

~I then there is exactly one minimum spanning tree for G.
/;
!i; C-13.19 Design an efficient algorithm for finding a longest directed path from a
~~ .. vertex s to a veitex t of an acyclic weighted digraph G. Specify the graphl representation used and any auxiliary data structures used. Also, analyze

the time complexity of your algorithm.
C-13.20 Consider a diagram of a telephone network, which is a graph Gwhose ver

tices represent switching centers, and whose edges represent communica
tionlines joining pairs of centers. Edges are marked by their bandwidth,
and the bandwidth of a path is the bandwidth of its lowest bandwidth edge.
Give an algorithm that, given a diagram and two switching centers a and
b, outputs the maximum bandwidth of a path between a and b.

1
~ 13.7. Exercises 	 659~
';

:a
~

C-13.21 	 Computer networks should avoid single points of failure, that is, network
'lj
it 	 nodes that can disconnect the network if they faiL We say a connected
~ graph G is biconnected if it contains no vertex whose removal would di

i
~ 	

vide G into two or more connected components. Give an O(n +m)-time
algorithm for adding at most 11 edges to a connected graph G, with 11 > 3~. ~

~ 	 vertices and m ?': n - 1 edges, to guarantee that G is biconnected.
l..J· .~ C-13.22 NASA wants to link n stations spread over the country using communica
~ tion channels. Each pair of stations has a different bandwidth available,
" 1 	 which is known a priori. NASA wants to select 11 - 1channels (the mini
b

mum possible) in such a way that all the stations are linked by the channels

I
~

and the total bandwidth (defined as the sum of the individual bandwidths
of the channels) is maximum. Give an efficient algorithm for this prob
lem and determine its worst-case time complexity. Consider the weighted

I
u

graph G (V,E), where V is the set of stations and E is the set of chan
nels between the stations. Define the weight w(e) of an edge e in E as the~
bandwidth of the corresponding channel.

C-13.23 Suppose you are given a timetable, which consists of:
• A set A of 11 airports, and for each airport a in A, a minimum con

necting time c(a) .
• A set:F of m flights, and the following, for each flight fin :F:

o Origin airport a1(f) in A_ .
o Destination airport a2(f) in A
o Departure time t1 (f)
o Arrival time t2(f).

Describe an efficient algorithm for the flight scheduling .problem. In this
problem, we are given airports a and.b, and. a time t, and we wish to com
pute a sequence of flights that allows one to arrive at the earliest possible
time in b when departing from a at or after time t. Minimum connecting
times at intermediate airports should be observed. What is the running
time of your algorithm as a function of nand m?

C-13.24 	Inside the Castle of Asymptopia there is a maze, and along each corridor
of the maze there is a bag of gold coins. The amount of gold in each
bag varies. A noble knight, named Sir Paul, will be given the opportunity
to walk through the maze, picking up bags of gold. He may enter the
maze only through a door marked "ENTER" and exit through another
door marked "EXIT." While in the maze he may not retrace his steps.
Each corridor of the maze has an arrow painted on the walL Sir Paul may

11(:· 	 only go down the corridor in the direction of the arrow. There is no way
to traverse a "loop" in the maze. Given a map of the maze, including the
amount of gold in and the direction of each corridor, describe an algorithm
to help Sir Paul pick up the most gold.

1
::~
"

'1
J660 	 Chapter 13. Graphs :{

C-13.25 	Let Gbe a weighted digraph with n vertices. Design a variation of Floyd
Warshall's algorithm for computing the lengths of the shortest paths from
each vertex to every other vertex in O(n3) time.

C-13.26 Suppose we are given a directed graph Gwith n vertices, and let M be the
n x n adjacency matrix corresponding to G.

a. 	 Let the product of M with itself (M2) be defined, for 1 ::; i, j < n, as
.~;

~jlj
follows: 	

'/

M2(i,j) = M(i, 1) 8M(1,j) E!) ... E!)M(i,n) 8M(n,j), 	 !
<

~

where "E!)" is the Boolean or operator and "8" is Boolean and. il
"I

Given this definition, what does M2(i,j) = 1 imply about the ver Itices i and)? What if M2(i,)) = O?
b. 	 Suppose M4 is the product of M2 with itself. What do the entries of

M4 signify? How about the entries of M5 (M4)(M)? In general, I
:11what information is contained in the matrix MP? 	
~

c. 	 Now suppose that Gis weighted and assume the following:
"

1: 	 for 1 < i::; n, M(i, i) - O. III

2: 	 for 1 ::; i,j::; n, M(i,)) = weight(i,)) if (ij) is in E. •
~.~,~.3: 	 for 1 ::; i,j ::; n, MU,)) 00 if (i,)) is not in E. .~

Also, let M2 be defined, for 1 ::; i,) ::; n, as follows: 	 1~
~.

~
M2(i,j) 	=min{M(i, 1) +M(I,)), ... ,M(i,n) +M(n,j)}. ~

If M2(i,)) - k, what may we conclude about the relationship be I
tween vertices i and)?

C-13.27 A graph G is bipartite if its vertices can be partitioned into two sets X and IY such that every edge in G has one end vertex il:1 X and the other in Y.
Design and analyze an efficient algorithm for determining if an undirected
graph G is bipartite (without knowing the sets X and Y in advance). I

C-13.28 An old MST method, called Baruvka's algorithm, works as follows on a
graph Ghaving n vertices and medges with distinct weights:

Let T be a subgraph of G initially containing just the vertices in V. I
while T has fewer than n - 1 edges do

for each connected component Ci of T do
Find the lowest-weight edge (v,u) in E with v in C and u not in i

fi
~Ci· fJ

Add (v,u) to T (unless it is already in T).
~

return T

Argue why this algorithm is correct and why it runs in O(mlogn) time.
C-13.29 	Let Gbe a graph with n vertices and m edges such that all the edge weights

in G are integers in the range [1, n]. Give an algorithm for finding a mini
mum spanning tree for G in O(mlog* n) time.

1
'"
)~
~ 13.7. Exercises 	 661
q
;21

:{

:3
,j 	

Projects:,j

J
i1 P-13.1 Write a class implementing a simplified graph ADT that has only methods~
~~ relevant to undirected graphs and does not include update methods, using
:~ the adjacency matrix structure. Your class should include a constructor
~1 ,., 	 method that takes two collections (for example, sequences)-a collection
:1
:'1 	 V of vertex elements and a collection E of pairs of vertex elements-and
~~

produces the graph G that these two collections represent.~l
P-13.2 Implement the simplified graph ADT described in Project P-13.l, using

~ the adjacency list structure. ~
~ P-13.3 Implement the simplified graph ADT described in Project P-13.I, using
~ 	 the edge list structure.
W

~ 	 P-13.4 Extend the class of Project P-13.2 to support update methods.
P-13.5 Extend the class of Project P-13.2 to support all the methods ofthe graph~

Ii ADT (including methods for directed edges).
P-13.6 Implement a generic BFS traversal using the template method pattern.
P-13.7 Implement the topological sorting algorithm.I~.I...•:
P-13.8 Implement the Floyd-Warshall transitive closure algorithm.

~'
P-13.9 Design an experimental comparison of repeated DFS traversals versus

fi
the Floyd-Warshall algorithm for computing the transitive closure of a

~ digraph.
fJ
~ P-13.lO 	Implement Kruskal's algorithm assuming that the edge weights are inte

I
~
,~

gers.
P-13.11 Implement the Prim-Jarnik algorithm assuming that the edge weights are

I
~ integers. I

P-13.l2 Perform an experimental comparison of .two of the minimum spanning
tree algorithms discussed in this chapter (Kruskal and Prim-Jamlk). De

M velop an extensive set of experiments to test the running times of these
~~

:1
1 algorithms using randomly generated graphs.
1j P-13.13 One way to construct a maze starts with an n x n grid such that each grid

cell is bounded by four unit-length walls. We then remove-two boundary

I
I.~ unit-length walls, to represent the start and finish. For each remaining

unit-length wall not on the boundary, we assign a random value and cre.';.
;1
.., 	 ate a graph G, called the dual, such that each grid cell is a vertex in G

;J
fl 	 and there is an edge joining the vertices for two cells if and only if the

cells share a common wall. The weight of each edge is the weight of the
corresponding walL We construct the maze by finding a minimum span
ning tree T for G and removing all the walls corresponding to edges in
T. Write a program that uses this algorithm to generate mazes and then
solves them. Minimally, your program should draw the maze and, ideally,
it should visualize the solution as well.

662

'~
;j
~i
~;

Chapter 13. Graphs

P-13.14 	Write a program that builds the routing tables for the nodes in a computer ~
network, based on shortest-path routing, where path distance is measured :1

'I

;jby hop count, that is, the number of edges in a path. The input for this
problem is the connectivity information for all the nodes in the network,
as in the following example:

~241.12.31.14: 241.12.31.15 241.12.31.18 241.12.31.19
.~

~l
~j

~which indicates three network nodes that are connec;ted to 241.12.31.14,
fu

that is, three nodes that are one hop away. The routing table for the node at 	 ;1
~address A is a set of pairs (B, C), which indicates that, to route a message ~l

from A to B, the next node to send to (on the shortest path from A to B)
;:~

is C. Your program should output the routing table for each node in the
network, given an input list of node connectivity lists, each of which is
input in the syntax as shown above, one per line.

Chapter Notes

The depth-first search method is a part of the "folklore" of computer science, but Hopcroft
and Tarjan [48, 90] are the ones who showed how useful this algorithm is for solving
several different graph problems. Knuth [62] discusses the topological sorting problem.
The simple linear-time algorithm that we describe for determining if a directed graph is
strongly connected is due to Kosaraju. The Floyd-Warshall algorithm appears in a paper
by Floyd [33] and is based upon a theorem of Warshall [98]. The mark-sweep garbage
collection method we describe is one of many different algorithms for performing garbage
collection. We encourage the reader interested in further study of garbage conection to
examine the book by Jones [55]. To learn about different'algori~hms for drawing graphs,
please see the book chapter by Tamassia and Liotta [88] and the book by Di Battista, Eades,
Tamassia and Tollis [28]. The first known minimum spanning tree algorithm is due to
Baruvka [9], and was published in 1926. The Prim-Jamlk algorithm was first published ~
in Czech by Jarnlk [54] in 1930 and in English in 1957 by Prim [82]. Kruskal published 	 1

..1his minimum spanning tree-algorithm in 1956 [65]. The reader interested in further study 	 .~
IIof the history of the minimum spanning tree problem is referred to the paper by Graham

I
~
o.and Hell [43]. The current asymptotically fastest minimum spanning tree algorithm is a I!

randomized method of Karger, Klein, and Tarjan [56] that runs in 0(/11) expected time.
Dijkstra [29] published his single-source, shortest path algorithm in 1959. The reader

~interested in further study of graph algorithms is referred to the books by Ahuja, Magnanti,

and Orlin [6], Cormen, Leiserson, and Rivest [25], Even [31], Gibbons [37], Mehlhorn [75], ~

~ and Tarjan [91], and the book chapter by van Leeuwen [94]. Incidentally, the running time
for the Prim-Jarnlk algorithm, and also that of Dijkstra's algorithm, can actually be im
proved to be O(nlog n+m) by implementing the queue Qwith either of two more sophis
ticated data structures, the "Fibonacci Heap" [35] or the "Relaxed Heap" [30].

http:241.12.31.14
http:241.12.31.19
http:241.12.31.18
http:241.12.31.15
http:241.12.31.14

'I
:j
$j

~~
:,;j
:]

li
H Chapter;j

~~
,~

1
~
q Memory14
:~
~i
'i:!

:j 0000000
;j 0 0•••••••••00

o • .~·o~·o·c,. ... · 0•; 	 •• 0.00.000800 •• 0
0 • 0 o ••8··~ 	 o••~ooooooooo •• 0

•••••• ~o.o...... 0oJ., 0 ••••••••••• 0j o~.OOoo4!o. oo"ioo
00. 0 0.0. 0 0 •• 000~ 	 0 0 0

0000 00•• 00 0.0. 00 •• 000&....."0 0:0 o~~o ° ° 0 ~•• 00 00° 000 00
0 ••000 00 00 • 0.0 oo~.o• •••••••••• 0

0.0 • 00 	 0 • 0
I 	 O:"o'b~~g~~·.·. 00000000 0.0 0 000"IiJ 0".••:::••••00

000

3:3
o. 0

0,'0 0 "~~o~~·,·~ :\0
~ 	 0 ... oo~~••••o 0.0

00 o·.·...ooo~~o••• o
0\: ~.~~wg~~•• 0 00000.00 ~ 	 o \ •• o~g~oo<Coo•• o 0 M ••••••• O
o .. :~••••• :.·o 0~·o·o~~•• ~.ooi 00

~
;1

;j
~1

Contents
~

••••• 00 0:: 8.0000~00.·
00000 0 •• 008;8rtoo~0.:0

0 o.:•• ~.o~.o••••• 0
00	••••• ••• 00

00000 00

'!,oooo 	 0000.·00000 0:::: •• ·0
0 ••·:::···.00 00000 0

o ••·o°'(o°·o·,!o····o
0"· ?,.g.~o.ooo~ • 0
0 o•• •• 0?,8oooog~0:.0
0 ••• :e. i ••• :'·

00 ••••••00 0

00000

14.1 Memory Management

14.1.1 Stacks in the Java Virtual Machine.

14.1.2 Allocating Space in the Memory Heap

14.1.3 Garbage Collection

14.2 External Memory and Caching

14.2.1 The Memory Hierarchy

14.2.2 Caching Strategies

14.3 External Searching and 8-Trees

14.3.1 (a,b) Trees

14.3.2 B-Trees

14.4 External-Memory Sorting

14.4.1 Multi-way Merging

14.5 Exercises

664

664

668

670

672

. f

672

673

678

679

681

682

683

684

http:00000.00

J
~ ;j

664 	 Chapter 14. Memory ~l
1

14.1 Memory Management

In order to implement any data structure on an actual computer, we need to use
computer memory. Computer memory is simply a sequence of memory words, ::.":

each of which usually consists of 4, 8, or 16 bytes (depending on the computer).
i

[j
These memory words are numbered from 0 to N 1, where N is the number of

;1
memory words available to the computer. The number associated with each mem ~ ory word is known as its address. Thus, the memory in a computer can be viewed ~
as basically one giant array of memory words. Using this memory to construct data 11

,1

structures (and run programs) requires that we manage the computer's memory to "
~I

I
.~

provide the space needed for data-including variables, nodes, pointers, arrays, and
:'

character strings-and the programs the computer is to run. We discuss the basics

of memory management in this section. ~

<1
~1

~~. ~
.~

!
~14.1.1 Stacks in the Java Virtual Machine
~ gA Java program is typically compiled into a sequence of byte codes that are de 11

fined as "machine" instructions for a well-defined model-the Java Virtual Ma ~
!lchine (JVM). The definition of the JVM is at the he~lt of the definition of the ~
11

Java language itself. By compiling Java code into the JVM byte codes, rather than 	 ~
jj

~the machine language of a specific CPU, a Java program can be run on any com

puter, such as a personal computer or a server, that has a program that can emulate ~

the JVM. Interestingly, the stack data structure plays a central role in the definition I

I
~

of the JVM.

I
I

The java Method Stack 	 j
~

Stacks have an important application to the run-time environment of Java programs. 	 1.,

I
aA running Java program (more precisely, a running Java thread) has a private stack,

called the Java method stack or just Java stack for short, which is used to keep
track of local variables and other important information on methods as they are

~invoked during execution. (See Figure 14.1.) ~
i

More specifically, during the execution of a Java program, the Java Virtual 	 J

I
jMachine (JVM) maintains a stack whose elements are descriptors of the currently

active (that is, nonterminated) invocations of methods. These descriptors are called
frames. A frame for some invocation of method "fool" stores the current values of
the local variables and parameters of method fool, as well as information on method I
"cool" that called fool and on what needs to be returned to method "cool".

• • •

• •

• • •

I
665

~j
1j

U

~
~,i
;~

~1
.1
,~
}j
·1

:~
t1

i
H
'.'{
"

:j

~

':1

~
.~

fl.'

I
~
ij

~
~
II
1'~

~I
,

:.,'

~
..

~
l~
~

I
~

h
:1
~

.~

~

~

14.1. Memory Management

fool:

PC == 320
m 7

cool:
PC = 216
j 5
k 7

main:
PC", 14
i =5

Java Stack

ma~n(~ { "1Int 1=5,

14 cool(i);

cool(int j) {

int k"7; 1
216 fO~I(k);

•

320 fool(int m) {

Java Program

Figure 14.1: An example of a Java method stack: method fool has just been called
by method cool, which itself was previously called by method main. Note the
values of the program counter, parameters, and local variables stored in the stack
frames. When the invocation of method fool terminates, the invocation of method
cool will resume its execution at instruction 217, which is obtained by incrementing

s
the value of the program counter stored in the stack frame.

Keeping Track of the Program Counter

The JVM keeps a special variable, called the program counter, to maintain the
address of the statement the JVM is currently executing in the program. When a
method "cool" invokes another method "fool", the current value of the program
counter is recorded in the frame of the current invocation of cool (so the JVM
will know where to return to when method fool is done). At the top of the Java
stack is the frame of the running method, that is, the method that currently has
control of the execution. The remaining elements of the stack are frames of the
suspended methods, that is, methods that have invoked another method and are
currently waiting for it to return control to them upon its termination. The order of
the elements in the stack corresponds to the chain of invocations of the currently
active methods. When a new method is invoked, a frame for this method is pushed
onto the stack. When it terminates, its frame is popped from the stack and the JVM
resumes the processing of the previously suspended method.

666 Chapter 14. Memory

Understanding Call-by-Value Parameter Passing

The JVM uses the Java stack to perform parameter passing to methods. Specifically,
Java uses the call-by-value parameter passing protocoL This means that the CUlTent
value of a variable (or expression) is what is passed as an argument to a called
method.

In the case of a variable x of a primitive type, such as an int or float, the CUlTent
value of x is simply the number that is associated with x. When such a value is
passed to the called method, it is assigned to a local variable ip the called method's
frame. (This simple assignment is also illustrated in Figure 14.1.) Note that if the
called method changes the value of this local variable, it will not change the value i"
of the variable in the calling method.

In the case of a variable x that refers to an object, however, the current value of
x is the memory address of object x. (We will say more about where this address I:actually is in Section 14.1.2.) Thus, when object x is passed as a parameter to some

~ method, the address of x is actually passed. When this address is assigned to some ~
:Jlocal variable y in the called method, y will refer to the same object that x refers to.
,Therefore, if the called method changes the internal state of the object that y ~.~
~refers to, it will simultaneously be changing the internal state of the object that x
!~

refers to (which is the same object). Nevertheless, if the called program changes ?~

y to refer to some other object, x will remain unchanged-it will still refer to the
A

I
.~

same object it was referencing before.
Thus, the Java method stack is used by the JVM to implement method calls

and parameter passing. Incidentally, method stacks are not a specific feature of !Java. They are used in the run-time ~nvironment of most modem programming

languages, including C and c++. r~i\

,
tj
u

The Operand Stack
·c~I.·.

Interestingly, there is actually another place where the JVM uses a stack. Arith ;~
::'1

metic expressions, such as ((a +b) *(c d)) /e, are evaluated by the JVM using an
<j

operand stack. A simple binary operation, such as a+b, is computed by pushing a
.~
~

on the stack, pushing b on the stack, and then calling an instruction that pops the top ill
;1

two items from the stack, performs the binary operation on them, and pushes the re
sult back onto the stack. Likewise, instructions for writing and reading elements to I

~
and from memory involve the use of pop and push methods for the operand stack. !Ii

.~.:.
~Thus, the JVM uses a stack to evaluate arithmetic expressions in Java. t1

In Section 7.3.6 we described how to evaluate an arithmetic expression using a
postorder traversal, which is exactly the algorithm the JVM uses. We described that
algorithm in a recursive way, however, not in a way that explicitly uses an operand
stack. Nevertheless, this recursive description is equivalent to a nonrecursive ver
sion based on using an operand stack. I

I

l
4

i1
j 14.1. Memory Management 667

'1
"
A Implementing Recursion
)
d

One of the benefits of using a stack to implement method invocation is that it allows
programs to use recursion. That is, it allows a method to call itself, as discussed
in Section 3.5. Interestingly, early programming languages, such as Cobol and

rt Fortran, did not originally use run-time stacks to implement method and procedure
J
f~ calls. But because of the elegance and efficiency that recursion allows, all modem
,1
J'. programming languages, including the modem versions of classic languages like
:j
1 Cobol and Fortran, utilize a run-time stack for method and procedure calls.
~,

i! In the execution of a recursive method, each box of the recursion trace corre

II

sponds to a frame of the Java method stack. Also, the content of the Java method~ stack corresponds to the chain of boxes from the initial method invocation to the" ~\
~ current one.
"ij
~ To better illustrate how a run-time stack allows for recursive methods, let us
~
;1 consider a Java implementation of the classic recursive definition of the factorial
;1
"

function,

i~I n!=n(n-1)(n 2) .. ·1,

I
I

as shown in Code Fragment 14.1. ~

~

lj
~,

public static long factorial(long n) {
~ if (n <= 1)~
}l return 1;

~ else

~ return n*factorial(n-1);

~ }

;~

e~

Code Fragment 14.1: Recursive method factorial.
,,

1

~ The first time we call method factorial, its stack frame includes a local variable,'I

~ storing the value n. Method factorial() recursively calls itself to compute (n 1)!,
~
~ which pushes a new frame on the Java run-time stack. In turn, this recursive invo
~ "
~ cation calls itself to compute (n - 2) !, etc. The chain of recursive invocations, and
~

thus the run-time stack, only grows up to size n, because calling factorial(1) re
turns 1 immediately without invoking itself recursively. The run-time stack allows
for method factorialO to exist simultaneously in several active frames (as many
as n at some point). Each frame stores the value of its parameter n as well as the
value to be returned. Eventually, when the first recursive call terminates, it returns
(n 1)!, which is then mUltiplied by n to compute n! for the original call of the
factorial method.

668

~
1'1
'~

Chapter 14. Memory

14.1.2 Allocating Space in the Memory Heap

We have already discussed (in Section 14.1.1) how the Java Virtual Machine allo
cates a method's local variables in that method's frame on the Java run-time stack.
The Java stack is not the only kind of memory available for program data in Java,
however. ~

:~

~~

I
~
;1

Dynamic Memory Allocation

I
~IMemory for an object can a]so be allocated dynamically during a method's execu

tion, by having that method utilize the special new operator built into Java. For

example, the following Java statement creates an array of integers whose size is

given by the value of variable k:

intO items new int[k]; I:iThe size of the array above is known only at runtime. Moreover, the array may
continue to exist even after the method that created it terminates. Thus, the memory ~1

I
.~

for this array cannot be allocated on the Java stack. ,:
~

The Memory Heap ~ ';\
;,;.

Instead of using the Java stack for this object's memory, Java uses memory from

another area of storage-the memory heap (which should not be confused with

the "heap" data structure presented in Chapter 8). We illustrate this memory area,

together with the other memory areas, in a Java Virtual Machine in Figure 14.2. The

storage available in the memory heap js divided into blocks, which are contiguous

array-like "chunks" of memory that may be of variable or fixed sizes.
 i

To simplify the discussion, let us assume that blocks in the memory heap are
of a fixed size, say, 1,024 bytes, and that one block is big enough for any object
we might want to create. (Efficiently handling the more general case is actually an
interesting research problem.) <J

I
Program Code Java Stack ~ Free Memory ~ Memory Heap

\. --v- ./ '--v----J '--v---J
fixed size doesn't grow grows into higher memory grows into lower memory

Figure 14.2: A schematic view of the layout of memory addresses in the Java Virtual
Machine.

"1
"1
;1
~l 14.1. Memory Management 	 669
~ ,1
:!,
:1 Memory Allocation Algorithms
i
~
1
3 	 The Java Virtual Machine definition requires that the memory heap be able to
~

:'1
(,j 	

quickly allocate memory for new objects, but it does not specify the data structure
"
~

that we should use to do this. One popular method is to keep contiguous "holes" of

i available free memory in a doubly linked list, called the free list. The links joining
,j
'1 these holes are stored inside the holes themselves, since their memory is not being
:1

~ 	 used. As memory is allocated and deallocated, the collection of holes in the free
<1

~ 	 lists changes, with the unused memory being separated, into disjoint holes divided

I
~ by blocks of used memory. This separation of unused memory into separate holes~

is known as fragmentation. Of course, we would like to minimize fragmentation
as much as possible.

There are two kinds of fragmentation that can occur. Internal fragmentationI
i.l 	

occurs when a portion of an allocated memory block is not actually used. For ex
ample, a program may request an array of size 1000, but only use the first 100 cells
of this array. There isn't much that a run-time environment can do to reduce in
ternal fragmentation. External fragmentation, on the other hand, occurs when the
there is a significant amount of unused memory between several contiguous blocks
of allocated memory. Since the run-time environment has control over where to
allocate memory when it is requested (for example, when the new keyword is used
in Java), the run-time environment should allocate memory in a way that tries to
reduce external fragmentation as much as reasonably possible.

Several heuristics have been suggested for allocating memory from the heap
so as to minimize external fragmentation. The best-fit algorithm searches the en
tire free list to find the hole whose size is closest to the amount of memory being
requested. The first-jit algorithm searches from the beginning of lhe free list for
the first hole that is large enough. The next-fit. algorithm is similar, in that it also
searches the free list for the first hole that is large enough, but it begins its search
from where it left off previously, viewing the free list as a circularly linked list (Sec
tion 3.4.1). The worst-fit algorithm searches the free list to find the largest hole of
available memory, which might be done faster than a search of the entire free list
if this list were maintained as a priority queue (Chapter 8). In each algorithm, the
requested amount of memory is subtracted from the chosen memory hole and the
leftover part of that hole is returned to the free list.

Although it might sound good at first, the best-fit algorithm tends to produce
the worst external fragmentation, since the leftover parts of the chosen holes tend
to be small. The first-fit algorithm is fast, but it tends to produce a lot of external
fragmentation at the front of the free list, which slows down future searches. The
next-fit algorithm spreads fragmentation more evenly throughout the memory heap,
thus keeping search times low. This spreading also makes it more difficult to allo
cate large blocks, however. The worst-fit algorithm attempts to avoid this problem
by keeping contiguous sections of free memory as large as possible.

670

!i<

:: "

Chapter 14. Memory

14.1.3 Garbage Collection

Tn some languages, like C and C++, the memory space for objects must be explic

itly deallocated by the programmer, which is a duty often overlooked by beginning

programmers and is the source of frustrating programming errors even for experi

enced programmers. Instead, the designers of Java placed the burden of memory'

management entirely on the run-time environment.

~
,":lAs mentioned above, memory for objects is allocated from the memory heap
fl

and the space for the instance variables of a running Java program are placed in its ~
:1

method stacks, one for each running thread (for the simple programs discussed in :':

~

I
~this book there is typically just one running thread). Since instance variables in a

method stack can refer to objects in the memory heap, all the variables and objects
in the method stacks of running threads are called root objects. All those objects
that can be reached by following object references that start from a root object

','
I

are called live objects. The live objects are the active objects currently being used ;1

by the running program; these objects should not be deallocated. For example, a

I,
.~,

running Java program may store, in a variable, a reference to a sequence S that is (

implemented using a doubly linked list. The reference variable to S is a root object, I
while the object for S is a live object, as are all the node objects that are referenced ·;1

~
from this object and all the elements that are referenced from these node objects.

From time to time, the Java virtual machine (JVM). may notice that available

space in the memory heap is becoming scarce. At such times, the JVM can elect to

reclaim the space that is being used for objects that are no longer live, and return the

reclaimed memory to the free list. This reclamation process is known as garbage

collection. There are several different algorithms for garbage collection, bUt one of

the most used is the mark-sweep algorithm.

In the mark-sweep garbage collection algorithm, we associate a "mark" bit with

each object that identifies if that object is live or not. When we determine at some
 I
point that garbage collection is needed, we suspend all other running threads and ~

clear the mark bits of all the objects currently allocated in the memory heap. We I
then trace through the Java stacks of the currently running threads and we mark all

~

the (root) objects in these stacks as "live." We must then determine all the other
live objects-the ones that are reachable from the root objects. To do this effi iciently, we can use the directed-graph version of the depth-first search traversal
(Section 13.3.1). In this case, each object in the memory heap is viewed as a vertex J
in a directed graph, and the reference from one object to another is viewed as a di
rected edge. By performing a directed DFS from each root object, we can correctly
identify and mark each live object. This process is known as the "mark" phase.
Once this process has completed, we then scan through the memory heap and re
claim any space that is being used for an object that has not been marked. At this
time, we can also optionally coalesce all the allocated space in the memory heap

~
.~

M
;"1
'j

(~ 14.1. Memory Management 	 671

into a single block, thereby eliminating external fragmentation for the time being.
,;
"-,
t~ This scanning and reclamation process is known as the "sweep" phase, and when
.j

~
'1 	 it completes, we resume running the suspended threads. Thus, the mark-sweep
,~
,~

~j garbage collection algorithm will reclaim unused space in time proportional to the
~
:~ 	 number of live objects and their references plus the size of the memory heap.
::j
:~J

:1
;1 Performing DFS In-place
]
,) 	 The mark-sweep algorithm correctly reclaims unused,space in the memory heap,!l
"I but there is an important issue we must face during the mark phase. Since we are

reclaiming memory space at a time when available memory is scarce, we must take
i
" 	 care not to use extra space during the garbage collection itself. The trouble is that~I,'

the DFS algorithm, in the recursive way we have described it in Section 13.3.1, can
use space proportional to the number of vertices in the graph. In the case of garbage

11,

"
~ 	 collection, the vertices in our graph are the objects in the memory heap; hence, we

probably don't have this much memory to use. So our only alternative is to find a~
!~t, way to perform DFS in-place rather than recursively, that is, we must perform DFS ,

using only a constant amount of additional storage.

~ The main idea for performing DFS in-place is to simulate the recursion stack
using the edges of the graph (which in the case of garbage collection correspond~ F~

~ 	 to object references). When we traverse an edge from a visited vertex v to a new
vertex w, we change the edge (v, w) stored in v's .adjacency list to point back to v's
parent in the DFS tree. When we return back to v (simulating the return from the
"recursive" call at w), we can now switch the edge we modified to point back to w.i

~ Of course, we need to have some way of identifying which edge we need to change
~. back. One possibility is to number the references going out of v a~ 1, 2, and so on,~

and store, in addition to the mark bit (which we are using for the "visited"tag in~
our DFS), a count identifier that tells us which edges we have modified.i

ij 	 Using a count identifier requires an extra word of storage per object. This
~ 	 extra word can be avoided in some implementations, however. For example, many

implementations of the Java virtual machine represent an object as a composition
of a reference with a type identifier (which indicates if this object is an Integer

or some other type) and as a reference to the other objects or data fields for this
object. Since the type reference is always supposed to be the first element of the
composition in such implementations, we can use this reference to "mark" the edge
we changed when leaving an object vand going to some object w. We simply swap
the reference at v that refers to the type of v with the reference at v that refers to w.
When we return to v, we can quickly identify the edge (v, w) we changed, because it
will be the first reference in the composition for v, and the position of the reference
to v's type will tell us the place where this edge belongs in v's adjacency list. Thus,
whether we use this edge-swapping trick or a count identifier, we can implement
DFS in-place without affecting its asymptotic running time.

672 Chapter 14. Memory

14.2 External Memory and Caching

There are several computer applications that must deal with a large amount of data.
Examples include the analysis of scientific data sets, the processing of financial

.~~transactions, and the organization and maintenance of databases (such as telephone ;j

directories). In fact, the amount of data that must be dealt with is often too large to
.~

~1
fit entirely in the internal memory of a computer. ':1;g

}'~
~~;

~1
g

~
14.2.1 The Memory Hierarchy

I
~

In order to accommodate large data sets, computers have a hierarchy of different
kinds of memories, which vary in terms of their size and distance from the CPU.
Closest to the CPU are the internal registers that the CPU itself uses. Access to such

l.~locations is very fast, but there are relatively few such locations. At the second level ~

8
,~.i

in the hierarchy is the cache memory. This memory is considerably larger than the '1'

I
~

register set of a CPU, but accessing it takes longer (and there may even be multiple

caches with progressively slower access times). At the third level in the hierarchy is

the internal memory, which is also known as main memory or core memory. The
 ;>1

internal memory is considerably larger than the cache memory, but also requires
~

more time to access. Finally, at the highest level in the hierarchy is the external I
~~

I
~ memory, which usually consists of disks, CD drives, DVD drives, and/or tapes.

This memory is very large, but it is also very 'slow. Thus, the memory hierarchy for

computers can be viewed as consisting of four levels, each of which is larger and

slower than the previous level. (See Figure 14.3.)

In most applications, however, only two levels re~lly m~tter-the one that can

hold all data items and the level just below that one. Bringing data items in and out
 I

Iof the higher memory that can hold all items will typically be the computational
bottleneck in this case. 11

~

External Memory Faster ~
I

Internal Memory
~t •Cache• f
~ - I
~

Registers ~
Bigger

8
Figure 14.3: The memory hierarchy.

673

~.,
:: ~

14.2. External Memory and Caching

Caches and Disks

Specifically, the two levels that matter most depend on the size of the problem
we are trying to solve. For a problem that can fit entirely in main memory, the
two most important levels are the cache memory and the internal memory. Access
times for internal memory can be as much as 10 to 100 times longer than those
for cache memory. It is desirable, therefore, to be able to perform most memory
accesses in cache memory. For a problem that does not fit entirely in main memory,
on the other hand, the two most important levels are the internal memory and the
external memory. Here the differences are even more dramatic, for access times for
disks, the usual general-purpose external-memory device, are typically as much as
100000 to 1000000 times longer than those for internal memory.

To put this latter figure into perspective, imagine there is a student in Baltimore
who wants to send a request-for-money message to his parents in Chicago. If the
student sends his parents an e-mail message, it can arrive at their home computer

J in about five seconds. Think of this mode of communication as corresponding to
:·1

,~1 an internal-memory access by a CPU. A mode of communication corresponding to
;1 an external-memory access that is 500000 times slower would be for the student
iA
[1

to walk to Chicago and deliver his message in person, which would take about
~
'~ a month if he can average 30 kilometers per day. Thus, we should make as few

accesses to external memory as possible.

14.2.2 Caching Strategies

Most algorithms are not designed with the memory hierarchy in mind, in spite of
the great variance between access times for the different levels. Indeed, all of the
algorithm analyses described in this book so far have assumed that all memory
accesses are equal. This assumption might seem, at first, to be a great oversight
and one we are only addressing now in the final chapter-but there are good reasons
why it is actually a reasonable assumption to make.

One justification for this assumption is that it is often necessary to assume that
all memory accesses take the same amount of time, since specific device-dependent
information about memory sizes is often hard to come by. In fact, information
about memory size may be impossible to get. For example, a Java program that is
designed to run on many different computer platforms cannot be defined in terms of
a specific computer architecture configuration. We can certainly use architecture
specific information, if we have it (and we will show how to exploit such informa
tion later in this chapter). But once we have optimized our software for a certain
architecture configuration, our software will no longer be device-independent. For
tunately, such optimizations are not always necessary, primarily because of the
second justification for the equal-time memory-access assumption.

674 	 Chapter 14. Memory

Caching and Blocking

Another justification for the memory-access equality assumption is that operating
system designers have developed general mechanisms that allow for most memory
accesses to be fast. These mechanisms are based on two important locality-of
reference properties that most software possesses:

• Temporal locality: 	If a program accesses a certain memory location, then
it is likely to access this location again in the near futur~. For example, it is ~

i1
quite common to use the value of a counter variable in several different ex J

j

pressions, including one to increment the counter's value. In fact, a common
adage among computer architects is that "a program spends ninety percent
of its time in ten percent of its code." ~

~

• Spatial locality: If a program accesses a certain memory location, then it is ~
likely to access other locations that are near this one. For example, a program 	 :1

'i,
using an array is likely to access the locations of this array in a sequential or 	 ~

I
~ near-sequential manner.

Computer scientists and engineers have performed extensive software profiling ex	 ,f.
~periments to justify the claim that most software possesses both of these kinds of 	 :j
.~

locality-of-reference. For example, a for-loop used to scan through an array will 	 ~
~ exhibit both kinds of locality.

I
~

Temporal and spatial localities have, in turn, given rise to two fundamental
design choices for two-level computer memory systems (which are present in the
interface between cache memory and internal memory, and also in the interface
between internal memory and external memory).

The first design choice is called virtual memory. This q)ncept consists of pro
viding an address space as large as the capacity of the secondary-level memory,
and of transferring data located in the secondary level, into the primary level, when
they are addressed. Virtual memory does not limit the programmer to the constraint I

".~of the internal memory size. The concept of bringing data into primary memory is
called caching, and it is motivated by temporal locality. For, by bringing data into

~

J

I
~primary memory, we are hoping that it will be accessed again soon, and we will be

able to respond quickly to all the requests for this data that come in the near future.

The second design choice is motivated by spatial locality. Specifically, if data
stored at a secondary-level memory location I is accessed, then we bring into
primary-level memory, a large block of contiguous locations that include the lo
cation I. (See Figure 14.4.) This concept is known as blocking, and it is motivated
by the expectation that other secondary-level memory locations close to I will soon
be accessed. In the interface between cache memory and internal memory, such
blocks are often called cache lines, and in the interface between internal memory
and external memory, such blocks are often called pages.

~
1
"I

;1

';
1 14.2. External Memory and Caching 675
,!

A block on disk

A block in the external memory address space

"----'-----L.--l) · · .~\....------'
o1 2 3 ". 1024 '" 2048 '"

Figure 14.4: Blocks in external memory.

When implemented with caching and blocking, virtual memory often allows
us to perceive secondary-level memory as being faster than it really is. There is
still a problem, however. Primary-level memory is much smaller than secondary
level memory. Moreover, because memory systems use blocking, any program
of substance will likely reach a point where it requests data from secondary-level
memory, but the primary memory is already full of blocks. In order to fulfill the
request and maintain our use of caching and blocking, we must remove some block
from primary memory to make room for a new block from secondary memory in
this case. Deciding how to do this eviction brings up a number of interesting data
structure and algorithm design issues.

Caching Algorithms

There are several web applications that must deal with revisiting information pre
sented in web pages. These revisits have been shown to exhibit localities of refer
ence, both in time and in space. To exploit these localities of reference, it is often
advantageous to store copies of web pages in a cache memory, so these pages can
be quickly retrieved when requested again. In particular, suppose we have a cache
memory that has m "slots" that can contain web pages. We assume that a web page
can be placed in any slot of the cache. This is known as afully associative cache.

As a browser executes, it requests different web pages. Each time the browser
requests such a web page l, the browser determines (using a quick test) if 1 is
unchanged and currently contained in the cache. If1is contained in the cache, then
the browser satisfies the request using the cached copy. If 1 is not in the cache,
however, the page for 1is requested over the Internet and transferred into the cache.
If one of the m slots in the cache is available, then the browser assigns I to one of
the empty slots. But if all the m cells of the cache are occupied, then the computer
must determine which previously viewed web page to evict before bringing in I
to take its place. There are, of course, many different policies that can be used to
determine the page to evict.

676 Chapter 14. Memory

Page Replacement Algorithms

Some of the better-known page replacement policies include the following (see
Figure 14.5):

• First-in, first-out (FIFO): Evict the page that has been in the cache the
longest, that is, the page that was transferred to the cache furthest in the past.

• Least recently used (LRU): Evict the page whose last request occurred fur
thest in the past.

In addition, we can consider a simple and purely random strategy:

• Random: Choose a page at random to evict from the cache. I
~
~
~
·;1
.'.]

~lRandom

NeW:loc~ ~.
I ~

--
policy:

Cj

~
t1
~,I

~
',1:

1
j

~f~!irl~ ~d~;i)~,~;sent longest)
;..~

FIFO policy: r-'~
.....,-

insert time: 8:00am 7:48am 9:05am 7:10am 7:30am 1O:1Oam 8:45am

'~
f,J

f·
;.

'1,,"
t·

~;J

ill-,
;~

~
~1

mFigure 14.5: The Random, FIFO, and LRU page replacement policies. ~
'M
'iI

I
~
''j

The Random strategy is one of the easiest policies to implement, for it only ~
requires a random or pseudo-random number generator. The overhead involved in
implementing this policy is an O(1) additional amount of work per page replace
ment. Moreover, there is no additional overhead for each page request, other than to
determine whether a page request is in the cache or not. Still, this policy makes no
attempt to take advantage of any temporal or spatial localities that auser's browsing
exhibits. I

I
I
I

Old block (least recently used)

LRU policy:

last used: 7:25am 8: 12am 9:22am 6:50am 8:20am 1O:02am 9:50am

~
~

~
fj
:1 14.2. External Memory and Caching 677
~l

The FIFO strategy is quite simple to implement, as it only requires a queue
Q to store references to the pages in the cache. Pages are enqueued in Q when
they are referenced by a browser, and then are brought into the cache. When a
page needs to be evicted, the computer simply performs a dequeue operation on Q
to determine which page to evict. Thus, this policy also requires O(1) additional
work per page replacement. Also, the FIFO policy incurs no additional overhead
for page requests. Moreover, it tries to take some advantage of temporal locality.

I

The LRU strategy goes a step further than the FIFO strategy, for the LRU strat
egy explicitly takes advantage of temporal locality as rhuch as possible, by always
evicting the page that was least-recently used. From a policy point of view, this is
an excellent approach, but it is costly from an implementation point of view. That
is, its way of optimizing temporal and spatial locality is fairly costly. Implement
ing the LRU strategy requires the use of a priority queue Q that supports searching
for existing pages, for example, using special pointers or "locators." If Qis imple
mented with a sorted sequence based on a linked list, then the overhead for each ~
page request and page replacement is O(1). When we insert a page in Q or update
its key, the page is assigned the highest key in Q and is placed at the end of the list,
which can also be done in 0(1) time. Even though the LRU strategy has constant
time overhead, using the implementation above, the constant factors involved, in
terms of the additional time overhead and the extra space for the priority queue Q,
make this policy less attractive from a practical point of view.

Since these different page replacement poliCies have different trade-offs be
tween implementation difficulty and the degree to which they seem to take advan
tage of localities, it is natural for us to ask for some kind of comp.arative analysis
of these methods to see which one, if any, is the best.

From a worst-case point of view, the FIFO anp LRU strategies have fairly
unattractive competitive behavior. For example, suppose we have a cache con
taining m pages, and consider the FIFO and LRU methods for performing page

l
j replacement for a program that has a loop that repeatedly requests m+1 pages in
1 a cyclic order. Both the FIFO and LRU policies perform badly on such a sequence

I
~

of page requests, because they perform a page replacement on every page request.
i Thus, from a worst-case point of view, these policies are almost the worst we can
!
H

imagine-they require a page replacement on every page request.
1 This worst-case analysis is a little too pessimistic, however, for it focuses on

each protocol's behavior for one bad sequence of page requests. An ideal analy
sis would be to compare these methods over all possible page-request sequences.
Of course, this is impossible to do exhaustively, but there have been a great num
ber of experimental simulations done on page-request sequences derived from real
programs. Based on these experimental comparisons, the LRU strategy has been
shown to be usually superior to the FIFO strategy, which is usually better than the
Random strategy.

678 Chapter 14. Memory

14.3 External Searching and 8-Trees

Consider the problem of implementing the map ADT for a large collection of items
that do not fit in main memory. Since one of the main uses of a large map is in a
database, we refer to the secondary-memory blocks as disk blocks. Likewise, we
refer to the transfer of a block between secondary memory and primary memory
as a disk transfer. Recalling the great time difference that exists between main
memory accesses and disk accesses, the main goal of maintaining a map in external
memory is to minimize the number of disk transfers needed to perform a query or
update. In fact, the difference in speed between disk and internal memory is so great
that we should be willing to perform a considerable number of internal-memory
accesses if they allow us to avoid a few disk transfers. Let us, therefore, analyze
the performance of map implementations by counting the number of disk transfers II

f1each would require to perform the standard map search and update operations. We 	 ~l

.,
Jrefer to this count as the I/O complexity of the algorithms involved.

~
ISome Inefficient External-Memory Dictionaries 	 ,~
'1
:1
~Let us first consider the simple map implementations that use a list to store n en
ij'I
:~

tries. If the list is implemented as an unsorted, doubly linked list, then insert and g

remove operations can be performed with O(1) transfers each, but removals and ~
searches require n transfers in the worst case, since each link hop we perform could 	 ~

.~

access a different block. This search time can be improved to O(n/B) transfers 	 ~
~(see Exercise C-14.1), where B denote~ the number of nodes of the list ithat can

fit into a block, but this is still poor performance. We could .alternately implement I
jj

!
~the sequence using a sorted array. In this case, a search performs O(log2 n) trans	 .~

fers, via binary search, which is a nice improvement. But this solution requires
0(n/B) transfers to implement an insert or remove operation in the worst case, for
we may have to access all blocks to move elements up or down. Thus, list-based r

I
~map implementations are not efficient in external memory. 	 ;<I

Since these simple implementations are I/O inefficient, we should consider the
logarithmic-time internal-memory strategies that use balanced binary trees (for ex

~ample, AVL trees or red-black trees) or other search structures with logarithmic
~ average-case query and update times (for example, skip lists or splay trees). These ~

methods store the map items at the nodes of a binary tree or of a graph. Typically, I
each node accessed for a query or update in one of these structures will be in a
different block. Thus, these methods all require o(1og2 n) transfers in the worst
case to perform a query or update operation. This performance is good, but we
can do better. In particular, we can perform map queries and updates using only
O(1ogBn) = O(logn/logB) transfers.

679

'~
o ~ "
<1
:d
;.:

D 14.3. External Searching and B-Trees

14.3.1 (a j b) Trees

To reduce the importance of the performance difference between internal-memory
accesses and external-memory accesses for searching, we can represent our map
using a multi-way search tree (Section 10.4.1). This approach gives rise to a gen
eralization of the (2,4) tree data structure known as the (a, b) tree.

An (a,b) tree is a multi-way search tree such that each node has between a and
b children and stores between a-I and b - 1entries. The algorithms for searching,
inserting, and removing entries in an (a, b) tree are stniightforward generalizations
of the corresponding ones for (2,4) trees. The advantage of generalizing (2,4) trees
to (a, b) trees is that a generalized class of trees provides a flexible search structure,
where the size of the nodes and the running time of the various map operations

~1 depends on the parameters a and b. By setting the parameters a and bappropriately
~ with respect to the size of disk blocks, we can derive a data structure that achievesfl
fJ good external-memory performance.-0,

~j
~
~ Definition of an (a,b) Tree m
fj
f,

An (a, b) tree, where a and b are integers, such that 2 s: a s: (b 1) /2, is a multi\i
~l way search tree T with the following additional restrictions:
~
:1 Size Property: Each internal node has at least a children, lInless it is the root, and
·rt

o~
j has at most b children.
;j
~
~ Depth Properly: All the external nodes have the same depth.
~

ii
~

lJ Proposition 14.1: The height-ofan (a,b) tree storingnoentries is Q(logn/logb)
~
~ and O(logn/loga).
~
\1 Justification: Let T be an (a,b) tree storing n entries, and let h be the height of ~
~ T. We justify the proposition by establishing the following bounds on h:
l

j
'I 1 1 n+lil -log(n 1) < h < log- +1.
~ 10gb - - loga 2

i
~J

By the size and depth properties, the number n" of external nodes of T is at least
~
oj
;

2ah- I and at most bh. By Proposition 10.7, n" n 1. Thus
i1

i 2ah- I < n+ 1 < biz.

Taking the logarithm in base 2 of each term, we get

(h-l)loga 1 s: log(n+ 1) s: hlogb. •

680 Chapter 14. Memory

Search and Update Operations

We recall that in a multi-way search tree T, each node v of T holds a secondary
structure M(v), which is itself a map (Section 10.4.1). If T is an (a,b) tree, then
M(v) stores at most b entries. Let f(b) denote the time for performing a search
in a map, M(v). The search algorithm in an (a,b) tree is exactly like the one for
multi-way search trees given in Section 10.4.1. Hence, searching in an (a, b) tree

T with n entries takes O('~llogn) time. Note that if b is a constant (and thus a is
~also), then the search time is O(1ogn).

The main application of (a, b) trees is for maps stored in external memory.
:j
~
..'J

Namely, to minimize disk accesses, we select the parameters a and b so that each ii
~i

tree node occupies a single disk block (so that f(b) = 1 if we wish to simply count I
block transfers). Providing the right a and b values in this context gives rise to
a data structure known as the B-tree, which we will describe shortly. Before we I

I
~
:jdescribe this structure, however, let us discuss how insertions and removals are

handled in (a,b) trees.
The insertion algorithm for an (a, b) tree is similar to that for a (2,4) tree.

An overflow occurs when an entry is inserted into a b-node v, which becomes an
illegal (b +1)-node. (Recall that a node in a multi-way tree is a d-node if it has d I

rchildren.) To remedy an overflow, we split node v by moving the median entry of v
~

into the parent of v and replacing v with a r(b +1) /21.:node v' and a l(b +1) /2J

node v". We can now see the reason for requiring a 5: -(b 1)/2 in the definition

of an (a, b) tree. Note that as a consequence of the split, we need to build the

secondary structures M(v') and M(VU).

Removing an entry from an (a, b} tree is similar to what was done lor (2,4)
trees. An underflow occurs when a key is removed from an a-node v, distinct from
the root, which causes v to become an illegal (a-I)-node. To remedy an underflow,
we perform a transfer with a sibling of v that is not an a-node or we perform a fusion
of v with a sibling that is an a-node. The new node w resulting from the fusion is a
(2a I)-node, which is another reason for requiring a 5: (b+l)/2.

Table 14.1 shows the performance of a map realized with an (a, b) tree.

Method Time

get o(f(b) logn)
loga

I
put o (g(b) logn I

loga

I remove o(g(b) logn)
loga

Table 14.1: Time bounds for an n-entry map realized by an (a, b) tree T. We assume
the secondary structure of the nodes of T support search in f(b) time, and split and
fusion operations in g(b) time, for some functions f(b) and g(b), which can be
made to be 0(1) when we are only counting disk transfers.

;
~
.1
Ii
,,1 14.3. External Searching and B-Trees 681
:~
':'j
."~ 14.3.2 B-Trees

A version of the (a, b) tree data structure, which is the best known method for
maintaining a map in external memory, is called the "B-tree." (See Figure 14.6.) A
B-tree oforder d is an (a,b) tree with a = rd/21 and b = d. Since we discussed
the standard map query and update methods for (a, b) trees above, we restrict our
discussion here to the I/O complexity of B-trees.

'j
'ij

I
,!
',1

I
I Figure 14.6: A B-tree of order 6.
!J

An important property of B-trees is that we can choose d so that the d children
references and the d - 1 keys stored at a node can all fit into a single disk block,
implying that d is proportional to B. This choice allows us to assume that a and bare
also proportional to B in the analysis of the search and update operations on (a, b)i trees. Thus, f(b) and g(b) are both O(1), for each.time we access a node to perform
a search or an update operation, we need only perform a single disk transfer.

As we have already observed above, each search or update requires that we
examine at most O(1) nodes for each level of the tree. Therefore, any map search
or update operation on a B-tree requires only O(logrd/21 n), that is,*O(logn/logB),
disk transfers. For example, an insert operation proceeds down the B-tree to locate
the node in which to insert the new entry. If the node would oveiflow (to have d +1
children) because of this addition, then this node is split into two nodes that have
l(d 1)/2J and I(d +1)/21 children, respectively. This process is then repeated
at the next level up, and will continue for at most o(logB n) levels.

Likewise, if a remove operation results in a node underflow (to have Id/21- 1
children), then we move references from a sibling node with at least rd/21 +1
children or we need to perform a fusion operation of this node with its sibling
(and repeat this computation at the parent). As with the insert operation, this will
continue up the B-tree for at most O(logBn) levels. The requirement that each
internal node have at least Id/21 children implies that each disk block used to
support a B-tree is at least ~alf fulL Thus, we have the following:

Proposition 14.2: A B-tree with n entries has I/O complexity o(10gB n) for search'
or update operation, and uses O(n/B) blocks, where B is the size ofa block.

682 Chapter 14. Memory

14.4 External-Memory Sorting

In addition to data structures, such as maps, that need to be implemented in external
memory, there are many algorithms that must also operate on input sets that are too
large to fit entirely into internal memory. In this case, the objective is to solve the
algorithmic problem using as few block transfers as possible. The most classic

~j
domain for such external-memory algorithms is the sorting problem. 	 '.1

~
~1
.'1

~iMulti-way Merge-Sort ~
iJ

An efficient way to sort a set S of n objects in external memory amounts to a sim ~
ple external-memory variation on the familiar merge-sort algorithm. The main idea ~

~
j~behind this variation is to merge many recursively sorted lists at a time, thereby
;j

reducing the number of levels of recursion. Specifically, a high-level description 	 '1

;1
A

of this multi-way merge-sort method is to divide S into d subsets SI, S2, ..., Sd of 	
:~

~
roughly equal size, recursively sort each subset Si, and then simultaneously merge \1'.

';1'.all d sorted lists into a sorted representation of S. If we can perform the merge pro	 (.:.~'
~!

cess using only O(n/B) disk transfers, then, for large enough values of n, the total 	 ':4
~
q

number of transfers performed by this algorithm satisfies the following recurrence: 	 'i1
J1
;(j'l

t(n) = d· t(n/d) +cn/B, I
for some constant c 2:: 1. We can stop the recursion when n < B, since we can I
perform a single block transfer at this point, getting all of the objects into~internal
memory, and then sort the set with an efficient internal-memory algorithm. Thus,
the stopping criterion for t(n) is 	 . It(n) 1 if niB < 1. 	 ~:J

;,
,J
it

This implies a closed-form solution that t(n) is O((n/B) logd(n/B)), which is 	 ~
~
~
~1
mO((n/B) log(n/B)/logd). 	 iii.~

m
~

Thus, if we can choose d to be 0(M/B), then the worst-case number of block 	 eli

~
\fitransfers performed by this multi-way merge-sort algorithm will be quite low. We 	 1\1

choose

d (1/2)M/B. 	 1'1

The only aspect of this algorithm left to specify, then, is how to perform the d-way

merge using only O(n/B) block transfers.
 I

s '"

I

683

fi
~!
iJ
r' ~

14.4. External~Memory Sorting

14.4.1 Multi-way Merging

We perform the d-way merge by running a "tournament." We let T be a complete
binary tree with d external nodes, and we keep T entirely in internal memory. We
associate each external node i of T with a different sorted list Si. We initialize T by
reading into each external node i, the first object in Si. This has the effect of reading
into internal memory the first block of each sorted list Si. For each internal-node
parent v of two external nodes, we then compare the objects stored at v's children

-;.i.,
"

and we associate the smaller of the two with v. We wpeat this comparison test at
'J
/

the next level up in T, and the next, and so on. When we reach the root r of T, we
Ij
.,

will associate the smallest object from among all the lists with r. This completes
the initialization for the d-way merge. (See Figure 14.7.)~

~
11
f~
11

~
\',

'1
7.1
;1

1J

~~1
,~

~j
II
;1
j

~
i,~
\1

~ 	 Figure 14.7: A d-way merge. We show a five-way merge with B - 4.
~

In a general step of the d-way merge, we move the object a as§ociated with the
root r of T into an array we are building for th~ mer~ed list S '. We then trace down
T, following the path to the external node i that a came from. We then read into iI
the next object in the list Si. Ifa was not the last element in its block, then this next~

"
.:'1
:.1 object is already in internal memory. Otherwise, we read in the next block of Si to
,~l
~ 	 access this new object (if Si is now empty, associate the node i with a pseudo-object

with key +(0). We then repeat the minimum computations for each of the internal~ nodes from i to the root of T. This again gives us the complete tree T. We then

I
~ repeat this process of moving the object from the root of T to the merged list S',

and rebuilding T, until T is empty of objects. Each step in the merge takes O(logd)
>1

~1 time; hence, the internal time for the d-way merge is O(nlogd). The number of
f'
~ transfers performed in a merge is O(n/B), since we scan each list Si in order once,

and we write out the merged list Sf once. Thus, we have:

Proposition 14.3: Given an array-based sequence S of n elements stored in ex

ternal memory, we can sort S using O((n/B)log(n/B)/log(M/B)) transfers and

O(nlog n) internal CPU time, where M is the size of the internal memory and B is

the size of a block.

684 Cl1apter 14. Memory

14.5 Exercises

For help with exercises, please visit the web site, www.wiley.com/go/globallgoodrich.

Rei nforcement

R-14.1 Describe, in detail, add and remove algorithms for an (a, b) tree.

R-14.2 Suppose T is a multi-way tree in which each internal rtode has at least five
and at most eight children. For what values of a and b is T a valid (a, b)
tree?

R-14.3 For what values of d is the tree T of the previous exercise an order-d
B-tree?

R-14.4 Show each level of recursion in performing a four-way, external-memory
merge-sort of the sequence given in the previous exercise.

R-14.5 Consider an initially empty memory cache consisting of four pages. How
many page misses does the LRU algorithm incur on the following page
request sequence: (2,3,4,1,2,5,1,3,5,4, 1,2,3)?

R-14.6 Consider an initially empty memory cache consisting of four pages. How
many page misses does the FIFO algorithm incur on the following page
request sequence: (2,3,4,1,2,5,1,3,5,4,1,2,3)?

R-14.7 Consider an initially empty memory cache consisting of four pages. How
many page misses can the random algorithm incur on the following page
request sequence: (2,3,4,1,2,5,1,3,5,4,1,2,3)? Show all of thesrandom
choices your algorithm made in this case.

R-14.8 Draw the result of inserting, into an initially empty order-7 B-tree, entries
with keys (4,40,23,50,1l,34,62,78,66,22,90,59,25,72,64,77,39,12), in this
order.

R-14.9 Show each level of recursion in performing a four-way merge-sort of the
sequence given in the previous exercise.

Creativity

C-14.1 	 Show how to implement a map in external memory, using an unordered se
quence so that insertions require only O(1) transfers and searches require
O(njB) transfers in the worst case, where n is the number of elements and
B is the number of list nodes that can fit into a disk block.

C-14.2 	Change the rules that define red-black trees so that each red-black tree T
has a corresponding (4,8) tree, and vice versa.

'.'

~~
~
i·~

-':l

I
"

I

~1
,.'
"-i

;..,
"
~-:.

i
i\,.
~
tJ,
,~

~

tJ
~~
~l
:.j

'~

~i
fl'::l
h

$'

tl~
~~: . ,.,
'~

~
~
Ij
~J

~
,j

;~l

c,':

t
m
~
n
,;~.
c'
~:
';:1

~

-~rl
:~

~

~

I

I

www.wiley.com/go/globallgoodrich

1cq

".\'

:~I

'.~j 14.5. Exercises 685'~

~ r': C-14.3 	Describe a modified version of the B-tree inseltion algorithm so that each
'i~

!:~
 time we create an overflow because of a split of a node v, we redistribute
~;j keys among all of v's siblings, so that each sibling holds roughly the same:.:1
';:l
;;5 number of keys (possibly cascading the split up to the parent of v). What
14 is the minimum fraction of each block that will always be filled using this;,1
;.J

"~1

':,:~

~ 	 scheme?
~
'! C-14.4 	Another possible external-memory map implementation is to use a skip~l

~'l
·Ii 	

list, but to collect consecutive groups of O(B) nodes, in individual blocks,
~ on any level in the skip list. In particular, we define an order-d B-skip
11 list to be such a representation of a skip-list structure, where each block

contains at least rd12l list nodes and at most d list nodes. Let us alsoI choose d in this case to be the maximum number of list nodes from a level ~
~ of a skip list that can fit into one block. Describe how we should modify

I
~
w 	 the skip-list insertion and removal algorithms for a B-skip list so that the

expected height of the structure is O(log nI logB).

h'i C-14.5 	 Describe an external-memory data structure to implement the queue ADT
l~!,.

so that the total number of disk transfers needed to process a sequence of
W

~ 	 n enqueue and dequeue operations is O(nlB).
!~
~
'~~ C-14.6 Solve the previous problem for the deque ADT.
::1

C-14.7 	Describe how to use a B-tree to implement the partition (union-find) ADT
(from Section 11.4.3) so that the union. and find operations each use at
most O(lognllogB) disktransfers.

C-14.8 	Suppose we are given a sequence S of n elements with integer keys such
that some elements in S are colored "blue" and some elements in S are

i

colored "red." In addition, say that a red element e pairs with a blue
element f if they have the same key value. Describe an efficient external
memory algorithm for finding all the red-blue pairs in S. How many disk

'~I

~~
 transfers does your algorithm perform?
;~
,I
:a C-14.9 	Consider the page caching problem where the memory cache can hold m

I
M

pages, and we are given a sequence P of n requests taken from a pool
of m +1 possible pages. Describe the optimal strategy for the offline
algorithm and show that it causes at most m +nIm page misses in total,
starting from an empty cache.~

:1
~ C-14.10 	Consider the page caching strategy based on the least frequently used

(LFU) rule, where the page in the cache that has been accessed the least
often is the one that is evicted when a new page is requested. If there are

'i.: 	 ties, LFU evicts the least frequently used page that has been in the cache
the longest. Show that there is a sequence P of n requests that causes LFU
to miss Q(n) times for a cache of mpages, whereas the optimal algorithm
will miss only O(m) times.

686 Chapter 14. Memory

C-14.11 	 Suppose that instead of having the node-search function f(d) = 1 in an
order-d B-tree T, we have f(d) logd. What does the asymptotic run
ning time of performing a search in T now become?

C-14.12 	Describe an efficient external-memory algorithm that determines whether
an array of n integers contains a value occurring more than n/2 times.

Projects
:1

I

P-14.l 	Write a Java class that implements all the methods of the ordered map ~
ADT by means of an (a, b) tree, where aand bare integer constants passed B

as parameters to a constructor. I
P-14.2 	 Implement the B-tree data structure, assuming a block size of 1,024 and iinteger keys. Test the number of "disk transfers" needed to process a ~

sequence of map operations. 	
>,

~ .,

P-14.3 	 Implement an external-memory sorting algorithm and compare it experi
;1
'·1mentally to any internal-memory sorting algorithm.
~
i·....
f
t

Chapter Notes 	 ;1
;j

ij

~

Knuth [60] has very nice discussions about external-memory sorting and searching, and

i
~ Ullman [93] discusses external memory structures for database systems. The reader in il

terested in the study of the architecture of hierarchical memory systems is referred to the
book chapter by Burger et at. [19] or the book by Hennessy and Patterson [46]. The hand !l

book by Gonnet and Baeza-Yates [39] compares the performance of a number of different ~
sorting algorithms, many of which are external-memory algorithms. B-trees were invented 	 '"Jf~

by Bayer and McCreight [11] and Comer [24] provides avery nice overview of this data 	 "Ii
,~structure. The books by Mehlhorn [74] and Samet [84] also have nice discussions about \,

B-trees and their variants. Aggarwal and Vitter [2] study the I/O complexity of sorting f~
t~

and related problems, establishing upper and lower bounds, including the lower bound for f1
sorting given in this chapter. Goodrich et al. [42] study the 110 complexity of several ~ computational geometry problems. The reader interested in further study of IIO-efficient :1
algorithms is encouraged to examine the survey paper of Vitter [95]. t~

~

* J
~*

i
~

I
1

I
1!

i

I

1
fi

Appendix

A Useful Mathematical Facts
"

J
~

~
.~~ In this appendix we give several useful mathematical ,facts. We begin with some
tl combinatorial definitions and facts. .'~
~
~
:~ Logarithms and Exponents,1

J The logarithm function is defined as~

~
;,1 10gb a c if . a = bC.
~l
;*s
.;~

The following identities hold for logarithms and exponents:
~ :1 1.10gbac
~ 2. 10gb a/ c

~ 3. logbaC

I 4. logba
5. b10gc a

6. (bay
~ 7. babc .~

8. ba/ bC

10gb a 10gb c
10gb a 10gb c

clogba

(logca)/logcb

I I

In addition, we have the following: .
Proposition A.I: Ifa > 0, b > 0, and c > a+b, then

llj

~

~
,.;'

Justification:

~

a10gc b

bac
ba+c

ba- c

loga +10gb ~ 210gc - 2.

It is enough to show that ab < c2/4. We can write

b2
a2+2ab +b2- a2+2ab
ab =

4
(a+bf- (a-b)2 (a b)2

< < 4 - 4 4' •
The natural logarithm function lnx = loge x, where e 2.71828 .. " is the value

of the following progression:

1 1 1 ,
e=l+-+ +-+ ...

1! 2! 3! '

688

In addition,

eX =

In(1 + x) =

Appendix A. Useful Mathematical Facts

2 3X x x
1+-+-+-+...

I! 2! 3!
x2 x3 x4

x- - + - - - +....
21 3! 41

There are a number of useful inequalities relating to these functions (which
~
gderive from these definitions).
;,

t::

~Proposition A.2: Ifx> -1, ~
i;J

;1x ~ - < In(l +x) <x. l+x -

Proposition A.3: For 0 <x < 1,

1 I
l!l+x<ex <--. - - I-x
9m

~i

Proposition A.4: For any two positive real numbers x and n, ti
x)n (X)H+X/2

~

1+- <ex < 1+- . ~(n -

,~

- n 11
~
·;1
'I

Integer Functions and Relations
'.)

I
~

The "floor" and "ceiling" functions are defined respectively as follows:
~1. lxJ = the largest integer less than or equal to x. '1

2. rxl = the smallest integer greater than or equal to x. ,~

i~ The modulo operator is defined for-integers a ~ 0 and b > 0 as
~l

~amodb=a-l~Jb.
m

~ The factorial function is defined as ~
~t

n! = 1· 2·3· (n - 1)n. ~
.?~

The binomial coefficient is ill
~

I
1

n) n!
f:~

k = -,.-{- ,\.,(

which is equal to the number of different combinations one can define by choosing
k different items from a collection of n items (where the order does not matter). IIl
The name "binomial coefficient" derives from the binomial expansion:

kH(a+b)H = E (n) ibn
- .

k=O k

We also have the following relationships. ~

I
~

Appendix A. Useful Mathematical Facts 689

Proposition A.5: If0 ~ k ~ n, then

G)k < G) <~.
Proposition A.6 (Stirling's Approximation):

n!-J21tnGr (1+ 1~ H(n)) ,

where E(n) is O(I/n2).
;1

;j The Fibonacci progression is a numeric progression such that Fo 0, Fl = 1,~I

~1
01

and Fn - Fn-l +Fn-2 for n :2: 2.,I,
:~
~

U
Proposition A.7: IfFn is defined by the Fibonacci progression, then Fn is 8(gn),

:,~1 where g = (1 +vis) /2 is the so-called golden ratio.
~1

~J
:j
11
~
/1 Summations
~ 11 q
~ There are a number of useful facts about summations.
~ Proposition A.8: Factoring summations:~
~

n n

~ Eaf(i) = aEf(i),
i=l i=lI

i
~

provided a does not depend upon i.

~ PropositionA.9: Reversing the order:

n m m n
~! E E f(i,j) = EEf(i,j)·
I, i=l j=l j=l i=l

i
~~

One special form of summation is a telescoping sum:
~

.~ n

E(f(i) - f(i-l)) = fen) f(O),
.,~ i:;:: I
~i~
·i
.,"
',~

which arises often in the amortized analysis of a data structure or algorithm.
The following are some other facts about summations that arise often in the

analysis of data structures and algorithms.

Proposition A.l0: Ef=l i = n(n+ 1)/2.

Proposition A.ll: Ei=lP = n(n+ 1)(2n 1)/6.

690

l!l
-n

Appendix A. Useful Mathematical Facts

Proposition A.12: Ifk ~ 1 is an integer constant, then

It

[f is 0(nk+l),
i=1

~
Another common summation is the geometric sum, [,1=0 ai, for any fixed real

number 0 < a f I,
Proposition A.13:

for any real number 0 < a
Proposition A.14:

for any real number 0 < a < 1.

It an+l-l
[ai

i=O

1.

00,

[d =
i=O

I
;~

a-I '

!
ii
~,i1 ':
'.I

I-a
'i'

.'j

1:~~
?:

~ There is also a combination of the two common forms, called the linear expo ~1
.:,nential summation, which has the following expansion:

'1

H
~Proposition A.15: ForO < a fl, andn ~ 2,
J

It . a- 1) +na(n+2) ~
[id = -------::---- ~
i=1 ~

i'

The nth Harmonic number Hn is defined as
~ ~

!
~

n 1 ,

Hn=[" ~ i=1 1 ~
'iI
~

Proposition A.16: If Hn is the nth harmonic number, then Hn is Inn +0(1). ~

I
~

Basic Probability

We review some basic facts from probability theory, The most basic is that any
statement about a probability is defined upon a sample space S, which is defined

11
as the set of all possible outcomes from some experiment. We leave the terms
"outcomes" and "experiment" undefined in any formal sense.

Example A.17: Consider an experiment that consists of the outcome from flip
ping a coin five times. This sample space has 25 different outcomes, one for each
different ordering ofpossible flips that can occur.

Sample spaces can also be infinite, as the following example illustrates,

691 Appendix A. Useful Mathematical Facts

Example A.I8: Consider an experiment that consists of flipping a coin until it
comes up heads. This sample space is infinite, with each outcome being asequence
of i tails followed by a single flip that comes up heads, for iI, 2, 3,

A probability space is a sample space S together with a probability function
Pr that maps subsets of S to real numbers in the interval [0,1]. It captures math
ematically the notion of the probability of certain "events" occurring. Formally,
each subset A of S is called an event, and the probability function Pr is assumed to
possess the following basic propelties with respect to events defined from S:

1. Pr(0) = O.
2. Pr(S) = 1.
3. 0 < Pr(A) ::; 1, for any A ~ S.
4. 	 IfA,B ~ SandA nB - 0, then Pr(A UB) = Pr(A) +Pr(B).
Two events A and B are independent if

Pr(AnB) = Pr(A)· Pr(B).

A collection of events {AI ,A2,'" ,An} is mutually independent if

Pr(A il nAi2 n··· nAik) Pr(Ail) Pr(Ai2) ... Pr(AjJ.

for any subset {Ail ,Ai2' ... ,Aik}'
The conditionalprobability that an event A occurs, given an event B, is denoted

as Pr(AIB), and is defined as the ratio

Pr(AnB)
Pr(B))

assuming that Pr(B) > O.
An elegant way for dealing with events is in terms of random variables. Intu

itively, random variables are variables whose values depend upon the outcome of
some experiment. Formally, a random variable is a function X that maps outcomes
from some sample space S to real numbers. An indicator random variable is a
random variable that maps outcomes to the set {O, I}. Often in data structure and
algorithm analysis we use a random variable X to characterize the running time of
a randomized algorithm. In this case, the sample space S is defined by all possible
outcomes of the random sources used in the algorithm.

We are most interested in the typical, average, or "expected" value of such a
random variable. The expected value of a random variable X is defined as

E(X) - [xPr(X = x),
x

where the summation is defined over the range of X (which in this case is assumed
to be discrete).

692 Appendix A. Useful Mathematical Facts

Proposition A.19 (The Linearity of Expectation): Let X and Y be two ran
dom variables and let c be a number. Then

E(X +Y) - E(X) +E(Y) and E(cX) cE(X).

Example A.20: Let X be a random variable that assigns the outcome of the roll
of two fair dice to the sum of the number ofdots showing. Then E(X) 7.

Justification: To justify this claim, let Xl and X2 be random variables corre
sponding to the number of dots on each die. Thus, Xl - X2 tie., they are two
instances of the same function) and E(X) = E(XI X2) = E(XI) E(X2)' Each :;

,I
outcome of the roll ofa fair die occurs with probability 1/6. Thus ~

Y
il

1234567 j
E(Xi) = "6 + "6 + "6 + 6 "6 + "6 = 2' ~

(I
)j

for i 1,2. Therefore, E(X) = 7. •
Two random variables X and Yare independent if

Pr(X - xlY - y) = Pr(X x),

for all real numbers x and y.

Proposition A.21: If two random variables X and Y are independent, then

E(XY) E(X)E(Y).

Example A.22: Let X be a random variable that assigns the,outcome ofa roll of
two fair dice to the product of the number of dots showing. Then E(X) = 49/4 .

. Justification: Let Xl and X2 be random variables denoting the number of dots
on each die. The variables Xl and X2 are clearly independent; hence

E(X) = E(XIX2) = E(XdE(X2) = (7/2)2 49/4. •
The following bound and corollaries that follow from it are known as Chernoff

bounds.

Proposition A.23: Let X be the sum of a finite number of independent 0/1 ran
dom variables and let!1 > 0 be the expected value ofX. Then, for 8 > 0,

Pr(X> (\ +3)1') < [(1 ~;(1+a)r

693 Appendix A. Useful Nlathematical Facts

Useful Mathematical Techniques

To compare the growth rates of different functions, it is sometimes helpful to apply
the following rule.

1 . Proposition A.24 (L'Hopital's Rule): If we have limn-+ooj(n) = +00 and we
have limn-+oog(n) = +00, then limn-+ooj(n)/g(n) -limn-+oof'(n)/g'(n), where
f'(n) and g'(n) respectively denote the derivatives of j(n) and g(n).

In deriving an upper or lower bound for a summation, it is often useful to split
a summation as follows:

n j n

E!(i) Ej(i} E j(i).
i=l i=l i=j+l

Another useful technique is to bound a sum by an integral. If j is a nonde
creasing function, then, assuming the following terms are defined,

l
b 	 lb+1b

a-I j(x)dx ~ ~j(i) < a j(x)dx.

There is a general form of recurrence relation that arises in the analysis of
divide-and-conquer algorithms:

T(n) =aT(n/b) f(n),

for constants a 2 1 and b > 1.

Proposition A.25: Let T(n) be defined as above. Then
1. 	 If j(n) is O(niogba-e), for someconstantE > 0, then T(n) is 8 (niogb a).
2. 	 If j(n) is 8(n10gb alogk n), for a fixed nonnegative integer k 2 0, then T(n) is .

8 (n1ogb alogk+1 n).
3. 	 If j(n) is Q(nlogba+e), for some constantE > 0, and ifaj(n/b) ~ cj(n), then

T(n) is 8(j(n)).

This proposition is known as the master method for characterizing divide-and
conquer recurrence relations asymptotically.

i
~
~

I

11l

11

~
1;:,
;.;
-;

';

~!

I 	 Bibliograph;

[1] 	 G. M. Adel'son-Vel'skii and Y. M. Landis, "An algorithm for the organization of
information," Doklady Akademii Nauk SSSR, vol. 146, pp. 263-266, 1962. English
translation in Soviet Math. Dokl., 3, 1259-1262.

[2] 	 A Aggarwal and 1 S. Vitter, "The input/output complexity of sorting and related
problems," Commun. ACM, vol. 31, pp. 1116--1127, 1988.

[3] 	 A V Aho, ''Algorithms for finding patterns in strings," in Handbook of Theoreti
cal Computer Science (1 van Leeuwen, ed.), vol. A. Algorithms and Complexity,
pp. 255-300, Amsterdam: Elsevier, 1990.

~ [4] A V. Aho, J. E. Hopcroft, and 1 D. Ullman, The Design and Analysis ofComputer! Algorithms. Reading, MA: Addison-Wesley, 1974. ~

~ [5] 	 A V. Aho, J. E. Hopcroft, and 1 D. Ullman, Data Structures and Algorithms. Read
~ ing, MA: Addison-Wesley, 1983.
" ~
II [6] R. K. Ahuja, T. L Magnanti, and 1 B. Orlin, Network Flows: Theory, Algorithms,
~ and Applications. Englewood Cliffs, NJ: Prentice Hall, 1993.
~ [7] K. Arnold, 1 Gosling, and D. Holmes, The Java Programming Language. The Java
" Series, Upper Saddle River, NJ: Prentice Hall, 4th ed., 2006.

[8] 	 R. Baeza-Yates and B. Ribeiro-Neto, Modem Information Retrieval. Reading,
Mass.: Addison-Wesley, 1999. i

[9] 	 O. Baruvka, "0 jistem problemu minimalnim," Praca Moravske Prirodovedecke
Spolecnosti, vol. 3, pp. 37-58, 1926. (in Czech). :

[10] 	 R. Bayer, "Symmetric binary B-trees: Data structure and maintenance," Acta Infor
matica, vol. 1, no. 4, pp. 290-306, 1972.

[fl] R. Bayer and McCreight, "Organization of large ordered indexes," Acta Inform.,

i
:1

vol.l,pp.173-189,1972.
[12] 	 1 L. Bentley, "Programming pearls: Writing correct programs," Communications of

the ACM, vol. 26, pp. 1040-1045, 1983.

I [13] J. L Bentley, "Programming pearls: Thanks, heaps," Communications of the ACM,
?j vol. 28, pp. 245-250, 1985.
~I

~;

[14] 	 J. L Bentley and M. D. McIlroy, "Engineering a sort function," Software-Practice
and Experience, vol. 23, no. 11, pp. 1249-1265, 1993.

[15] 	 G. Booch, Object-Oriented Analysis and Design with Applications. Redwood City,
CA: Benjamin/Cummings, 1994.

[16] 	 R. S. Boyer and J. S. Moore, "A fast string searching algorithm," CommunicaJiol1s
ofthe ACM, vol. 20, no. 10, pp. 762-772, 1977.

[17] 	 G. Brassard, "Crusade for a better notation," SIGACT News, vol. 17, no. 1, pp. 60
64,1985.

696 	 Bibliography

[18] 	 T. Budd, An Introduction to Object-Oriented Programming. Reading, Mass.:
Addison-Wesley, 1991.

[19] 	 D. Burger, 1. R. Goodman, and G. S. Sohi, "Memory systems," in The Computer
Science and Engineering Handbook (A. B. Tucker, Jr., ed.), ch. 18, pp. 447-461,
CRC Press, 1997.

[20] 	 L. Cardelli and P. Wegner, "On understanding types, data abstraction and polymor
phism," ACM Computing Surveys, vol. 17, no. 4, pp. 471-522,1985.

[21] 	 S. Carlsson, "Average case results on heapsort," BIT, vol. 27, pp. 2-17,1987.

[22] 	 K. L. Clarkson, "Linear programming in O(n3d2
) time," Infc?rm. Process. Lett.,

vol. 22, pp. 21-24, 1986.
[23] 	 R. Cole, "Tight bounds on the complexity of the Boyer-Moore pattern matching

~ algorithm," SIAM Journal on Computing, vol. 23, no. 5, pp. 1075-1091, 1994. a
[24] 	 D. Comer, "The ubiquitous B-tree," ACM Comput. Surv., vol. 11, pp. 121-137, 1979. i
[25] 	 T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cam I

-1bridge, MA: MIT Press, 1990. 	 l

[26] 	 M. Crochemore and T. Lecroq, "Pattern matching and text compression algorithms,"
in The Computer Science and Engineering Handbook (A. B. Tucker, Jr., ed.), ch. 8,
pp. 162-202, CRC Press, 1997. ~

;1

[27] 	 S. A. Demurjian, Sr., "Software design," in The Computer Science and Engineering ~
~

Handbook (A. B. Tucker, Jr., ed.), ch. 108, pp. 2323-2351, CRC Press, 1997. 	 ~
,j

[28] 	 G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing. Upper Saddle
,jRiver, NJ: Prentice Hall, 1999.
~

[29] 	 E. W. Dijkstra, "A note on two problems in connexion ~ith graphs," Numerische "

i
~

Mathematik, vol. 1, pp. 269-271, 1959.
[30] 	 1. R. Driscoll, H. N. Gabow, R. Shrairaman, and R. E. Tarjan, "Relaxed heaps: An

alternative to Fibonacci heaps with applications to parallel computation.," Commun. ~
ACM, vol. 31, pp. 1343-1354, 1988.

[31] 	 S. Even, Graph Algorithms. Potomac, Maryland: Computer Science Press, 1979. . . I[32] 	 D. Flanagan, Java in a Nutshell. O'Reilly, 5th ed., 2005.
[33] 	 R. W. Floyd, "Algorithm 97: Shortest path," Communications of the ACM, vol. 5, ~

no. 6, p. 345, 1962. li
~

[34] 	 R. W. Floyd, "Algorithm 245: Treesort 3," Communications of the ACM, vol. 7,)
~

no. 12,p. 701,1964. a
[35] 	 M. L. Fredman and R. E. Tarj<ln, "Fibonacci heaps and their uses in improved net

~

I
~

work optimization algorithms," JACM, vol. 34, pp. 596-615, 1987.
[36] 	 E. Gamma, R. Helm, R. Johnson, and 1. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Reading, Mass.: Addison-Wesley, 1995. " f,i

I
~ [37] 	 A. M. Gibbons, Algorithmic Graph Theory. Cambridge, UK: Cambridge University ,~

Press, 1985.
[38] 	 A. Goldberg and D. Robson, Smalltalk-80: The Language. Reading, Mass.:

Addison-Wesley, 1989.
[39] 	 G. H. Gonnet and R. Baeza-Yates, Handbook ofAlgorithms and Data Structures in

:¢!

Pascal and C. Reading, Mass.: Addison-Wesley, 1991.
[40] 	 G. H. Gonnet and 1. I. Munro, "Heaps on heaps," SIAM Journal on Computing,

vol. 15,no.4,pp.964-971, 1986.

I-'-~

I

1
.!i
~
~
;,-
;j Bibliography 	 697
fl

[41] M. T. Goodrich, M. Handy, B. Hudson, and R. Tamassia, "Accessing the internal~1 organization of data structures in the JDSL library;' in Proc. Workshop on Algo
~,! rithm Engineering and Experimentation (M. T. Goodrich and C. C. McGeoch, eds.),
hl
~~1
il vol. 1619 of Lecture Notes Comput. Sci., pp. 124--139, Springer-Verlag, 1999.
;'~

g [42] M. T. Goodrich, 1.-1. Tsay, D. E. Vengroff, and 1. S. Vitter, "External-memory
[1 computational geometry," in Proc. 34th Annu. IEEE Sympos. Found. Comput. Sci.,

pp. 714--723, 1993.~
11 	 [43] R. L. Graham and P. Hell, "On the history of the minimum spanning tree problem;'
~
~ 	 Annals ofthe History of Computing, vol. 7, no. 1, pp. 43-57,1985.
:J
'~ 	 [44] L. J. Guibas and R. Sedgewick, "A dichromatic framework for balanced trees," in
~ Proc. 	19th Annu. IEEE Sympos. Found. Comput. Sci., Lecture Notes Comput. Sci.,~~
~ pp. 8-21, Springer-Verlag, 1978.

~ [45] Y. Gurevich, "What does O(n) mean?," SIGACT News, vol. 17, no. 4, pp. 61-63,

~
l' 	 1986.
,1

[46] 	 1. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach.I San Francisco: Morgan Kaufmann, 2nd ed., 1996.~

~!

w 	 [47] C. A. R. Hoare, "Quicksort," The Computer Journal, vol. 5, pp. 10-15, 1962.
~ [48] 1. E. Hopcroft and R. E. Tarjan, "Efficient algorithms for graph manipulation," Com
~ munications ofthe ACM, vol. 16, no. 6, pp. 372-378, 19-73.n
~ [49] 	 C. S. Horstmann, Java Concepts for Java 5 and 6. New York: John Wiley & Sons,~

~ 	 2008.
~
;j 	 [50] C. S. Horstmann and G. Cornell, Core Java, vol. I-Fundamentals. Upper Saddle

I
~

River, NJ: Prentice Hall, 8th ed., 2008.

~ [51] C. S. Horstmann and G. Cornell, Core Java,. vol. II-Advanced Features. Upper

i Saddle River, NJ: Prentice Hall, 8th ed., 2008.
[52] 	 B. Huang and M. Langston, "Practical in-place merging," Communications of theI

ACM, vol. 31, no. 3, pp. 348-352, 1988-.
[53] 	 1. J318., An Introduction to Parallel Algorithms. Reading, Mass.) Addison-Wesley,

1992.
[54] 	 V. Jarnik, "0 jistem problemu minimalriim," Praca Moravske Prirodovedecke

Spolecnosti, vol. 6, pp. 57-63, 1930. (in Czech).
[55] 	 R. E. Jones, Garbage Collection: Algorithmsfor Automatic Dynamic Memory Man

agement. John Wiley and Sons, 1996.
Ij" [56] D. R. Karger, P. Klein, and R. E. Tarjan, ''A randomized linear-time algorithm to find
t minimum spanning trees," Journal ofthe ACM, voL 42, pp. 321-328, 1995.

[57] 	 R. M. Karp and V. Ramachandran, "Parallel algorithms for shared memory ma~I
I

chines," in Handbook of Theoretical Computer Science (1. van Leeuwen, ed.),
pp. 869-941, Amsterdam: E1sevierffhe MIT Press, 1990.~

il
,I
1

[58] P. Kirschenhofer and H. Prodinger, ''The path length of random skip lists," Acta
'I Informatica, vol. 31, pp. 775-792, 1994.
~ [59] 	 1. Kleinberg and E. Tardos, Algorithm Design. Reading, MA: Addison-Wesley,

2006.
[60] 	 D. E. Knuth, Sorting and Searching, vol. 3 of The Art of Computer Programming.

Reading, MA: Addison-Wesley, 1973.
[61] 	 D. E. Knuth, "Big omicron and big omega and big theta," in SIGACT News, vol. 8,

pp. 18-24, 1976.

698 	 Bibliography

[62] 	 D. Knuth, Fundamental Algorithms, vol. I of The Art ofComputer Programming.
Reading, MA: Addison-Wesley, 3rd ed., 1997.

[63] 	 D. E. Knuth, Sorting and Searching, vol. 3 of The Art of Computer Programming.
Reading, MA: Addison-Wesley, 2nd ed., 1998.

[64] 	 D. E. Knuth, 1. H. Morris, Jr., and V. R. Pratt, "Fast pattern matching in strings,"
SIAM Journal on Computing, vol. 6, no. 1, pp. 323-350, 1977.

[65] 	 1. B. Kruskal, Jr., "On the shortest spanning subtree of a graph and the traveling
salesman problem," Proc. Amer. Math. Soc., vol. 7, pp. 48~50, 1956.

[66] 	 N. G. Leveson and C. S. Turner, "An investigation of the Therac-25 accidents," IEEE
Computer, vol. 26, no. 7, pp. 18-41,1993. i

[67] 	 R. Levisse, "Some lessons drawn from the history of the binary search algorithm,"
The Computer Journal, vol. 26, pp. 154~163, 1983.

[68] 	 A. Levitin, "Do we teach the right algorithm design techniques?," in 30th ACM
SIGCSE Symp. on Computer Science Education, pp. 179-183,1999.

[69] 	 B. Liskov and 1. Guttag, Abstraction and Specification in Program Development.
Cambridge, Mass.fNew York: The MIT PresslMcGraw-Hill, 1986.

[70] 	 E. M. McCreight, "A space-economical suffix tree construction algorithm," Journal
ofAlgorithms, vol. 23, no. 2, pp. 262-272, 1976. ··1

~~
[71] 	 C.1. H. McDiarmid and B. A. Reed, "Building heaps fast:' Journal ofAlgorithms,

vol. 10, no. 3,pp. 352-365, 1989. ~
~[72] 	 N. Megiddo, "Linear-time algorithms for linear programming in R3 and related prob tJ
·1

lems," SIAM J. Comput., vol. 12, pp. 759-776, 1983. 	 "
\i

[73] 	 N. Megiddo, "Linear programming in linear time when the dimension is fixed," 1. ~
ACM, vol. 31, pp. 114-127, 1984.

I;
i
~

[74] 	 K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, vol. 1
of EATCS Monographs on Theoretical Computer Science. Heidelberg, Germany:
Springer-Verlag, 1984.

[75] 	 K. Mehlhorn, Data Structures ani Algorithms 2: Graph Alg"orithms ltnd NP I

Completeness, vol. 2 of EATCS Monographs on Theoretical Computer Science. Hei ~ delberg, Germany: Springer-Verlag, 1984. 	 .
[76] 	 K. Mehlhorn and A. Tsakalidis, "Data structures," in Handbook ofTheoretical Com ~

puter Science (1. van Leeuwen, ed.), vol. A. Algorithms and Complexity, pp. 301- .~
;j

!l
341, Amsterdam: Elsevier, 1990. 	 ,j

~}
[77] 	 M. H. Morgan, Vitruvius: The Ten Books on Architecture. New York: Dover Publi ,~

cations, Inc., 1960. 1,~
[78] 	 D. R. Morrison, "PATRICIA-practical algorithm to retrieve information coded in ~

alphanumeric," Journal ofthe ACM, vol. 15, no. 4, pp. 514-534,1968. I
[79] 	 R. Motwani and P. Raghavan, Randomized Algorithms. New York, NY: Cambridge ~I

~ University Press, 1995. .~
[80] 	 T. Papadakis, 1. I. Munro, and P. V. Poblete, "Average search and update costs in ~

I
skip lists," BIT, vol. 32, pp. 316-332, 1992.

[81] 	 P. V. Poblete, 1. I. Munro, and T. Papadakis, "The binomial transform and its appli
cation to the analysis of skip lists," in Proceedings of the European Symposium on
Algorithms (ESA), pp. 554-569, 1995.

[82] 	 R. C. Prim, "Shortest connection networks and some generalizations," Bell Syst.
Tech. J., vol. 36, pp. 1389-1401, 1957.

11
~
'11
\';

~:!

Bibliography 	 699

[83] 	 W. Pugh, "Skip lists: a probabilistic alternative to balanced trees," Commun. ACM,
vol. 33, no. 6,pp. 668-676,1990.

[84] 	 H. Samet, The Design and Analysis of Spatial Data Structures. Reading, MA:
Addison-Wesley, 1990.

[85] 	 R. Schaffer and R. Sedgewick, "The analysis of heapsort," Journal ofAlgorithms,
vol. 15,no.l,pp. 76-100,1993.

[86] 	 D. D. Sleator and R. E. Tarjan, "Self-adjusting binary search trees," J. ACM, vol. 32,
no.3,pp. 652-686,1985.

[87] 	 G. A. Stephen, String Searching Algorithms. World Scientific Press, 1994.
[88] 	 R. Tamassia and G. Liotta, "Graph drawing," in Handbook ofDiscrete and Compu

tational Geometry (1. E. Goodman and J. O'Rourke, eds.), ch. 52, pp. 1163-1186,
CRC Press LLC, 2nd ed., 2004.

[89] 	 R. Tarjan and U. Vishkin, ''An efficient parallel biconnectivity algorithm," SIAM 1.
Comput., vol. 14, pp. 862-874, 1985.

[90] 	 R. E. Tarjan, "Depth first search and linear graph algorithms," SIAM Journal on
Computing, vol. 1, no. 2, pp. 146-160, 1972.

[91] 	 R. E. Tarjan, Data Structures and Network Algorithms, vol. 44 of CBMS-NSF Re

i
"~ gional Conference Series in Applied Mathematics. Philadelphia, PA: Society for

Industrial and Applied Mathematics, 1983.
[92] 	 A. B. Tucker, Jr., The Computer Science and Engineering Handbook. CRC Press,

1997.~
d [93] 	 J. D. Ullman, Principles of Database Systems. Potomac, MD: Computer Science
~
, Press, 1983.

, [94] J. van Leeuwen, "Graph algorithms," in Handbook ofTheoretical Computer Science

(1. van Leeuwen, ed.), vol. A. Algorithms and Complexity, pp. 525-632, AmsterI
dam: 	Elsevier, 1990.

[95] 	 J. S. Vitter, "Efficient memory access in large-scale computation," in Proc. 8th SymI
i 	 pos. Theoret. Aspects Comput. Sci., Lecture Notes Comput. Sci., Springer-Verlag,

1991. 	 ~

[96] 	 J. S. Vitter and W. C. Chen, Design and Analysis ofCoalesced Hashing. New York:ij
Oxford University Press, 1987.~ [97] J. S. Vitter and P. Flajolet, "Average-case analysis of algorithms and data structures,"

~
fi 	 in Algorithms and Complexity (J. van Leeuwen, ed.), vol. A of Handbook of Theo

retical Computer Science, pp. 431-524, Amsterdam: Elsevier, 1990.
[98] 	 S. Warshall, "A theorem on boolean matrices," Journal of the ACM, vol. 9, no. 1,

pp. 11-12, 1962.
[99] 	 J. W. J. Williams, "AlgOlithm 232: HeapsOlt," Communications of the ACM, vol. 7,

no.6,pp.347-348,1964.
[100] 	 D. Wood, Data Structures, Algorithms, and Pelformance. Reading, Mass.: Addison

Wesley, 1993.

I Inde~

abstract data type, viii, 60

array list, 234-235

deque,223

dictionary, 420-421

graph, 594-599

list, 244-247

map, 382-385

ordered map, 403

partition, 539-542

priority queue, 334-338

queue, 214-216

sequence, 264

set, 534-542

stack, 199-200

string, 8-9, 554-556

tree, 284-285

abstraction, 60

(a, b) tree, 679-681

depth property, 679

size property, 679

acyclic, 622

adaptability, 58, 59

adaptable priority queue, 368

adapter, 235

Adel'son-Vel'skii, 500

adjacency list, 600, 603

adjacency matrix, 600, 605

adjacent, 595

ADT, see abstract data type

Aggarwal, 686

Aho, 232, 278,500, 591

Ahuja, 662

algorithm, 166

algorithm analysis, 166-184

average case, 169-170

worst case, 170

alphabet, 8, 555

amortization, 241-242, 539-542

ancestor, 282, 621

antisymmetric, 335

API, 80, 2{)0

are, 594

Archimedes, 166, 196

Ariadne, 607

arithmetic,21

Arnold, 56

arra~34-38,96-116

capacity, 35

length,34

array list, 234-242,404

abstract data type, 234-235

implementation, 236-242

associative stores, 382

asymmetric, 595

asymptotic analysis, 174-184

asymptotic notation, 170-=174

big-Oh, 171-173, 176-184

big-Omega, 174

big-Theta, 174

attribute, 611

autoboxing, 26

AVL tree, 443-454

balance factor, 451

height-balance property, 443

back edge, 609, 625, 626, 656

Baeza-Yates, 500, 552, 592, 686

bag, 429

balance factor, 451

balanced search tree, 468

Baruvka, 660, 662

base class, 63

base type, 5, 11, 19

Bayer, 500, 686

Bentley, 379,430

best-fit algorithm, 669

BFS, see breadth-first search

biconnected graph, 659

701

702

big-Oh notation, 171-173, 176-184

big-Omega notation, 174

big-Theta notation, 174

binary recursion, 146

binary search, 315,404-407
binary search tree, 432-439

insertion, 435-436

removal, 436

rotation, 447

trinode restructuring, 447

binary tree, 296-309, 503

array-list representation, 310--312
complete, 347, 349-354

full,296
improper, 296

left child, 296

level,299
linked structure, 301-309

proper, 296

right child, 296

binomial expansion, 688

bipartite graph, 660

bit vector, 548

blocking, 674

Booch, 94, 278

bootstrapping, 467

Boyer, 591

Brassard, 196

breadth-first search, 619-621, 626

brute force, 564

brute-force pattern matching, 564

B-tree, 681

bubble-sort, 277

bucket array, 386

bucket-sort, 529-530

Budd, 94, 278

buffer, 39

buffer overflow attack, 35

Burger, 686

cache, 672

cache line, 674

caching algorithms, 675-677

Caesar cipher, 109

call-by-value, 666

Cardelli, 94, 232

Carlsson, 379

casting, 85-88

implicit, 26

catch, 78

ceiling function, 165

cell, 34

character-jump heuristic, 566

Chernoff bound, 549, 692

child, 281

children, 281

ciphertext, 109

circularly linked list, 130,276

Clarkson, 552

class, 2-13, 58,60

class inheritance diagram, 63

clustering, 396

coding, 47

Cole, 591

collection, 278

collision resolution, 387, 393-397

Comer, 686

comparator, 336, 337

~complete binary tree, 347,349-354 ;1

Complete Binary Tree Prope11y:, 347 ~
~ complete graph, 656
 .~composition pattern, 336
 ~

compound object, 16, 116

compression function, 387, 392

concatenation, 9, 23

conditional probability, 691

coimected 'compQ1lents, 598, 610, 621

constant function, 158

constructor, 17, 68
 i
~
constructor chaining, 67 .~

contradiction, 185 ;1

contrapositive, 185
 ~
control flow, 27-33
 I
core memory, 672

Cormen, 500, 662
 I
Cornell, 56

~ CRC cards, 49 ~1

Crochemore, 591 a

cross edge, 621, 625, 626

cryptography, 109

cubic function, 162

cursor, 130,246,259

cyber-rupee, 241

cycle, 597

Index

i
~

~
"

Index 703

directed, 597

DAG, see directed acyclic graph

data packets, 277

data structure, 166

secondary, 468

debugging, 47

decision tree, 296,433, 527

decorable position, 612

decorator pattern, 611-613

decrease-and-conquer, see prune-and-search

decryption, 109

deep equality, 116

degree, 162,595

delimiters, 41

DeMorgan's Law, 185

Demurjian, 94, 232

depth, 287-289

depth-first search, 607-618,625

deque,223-227

abstract data type, 223

linked-list implementation, 224-227

descendent, 282, 621

design patterns, viii, 49, 62

adapter, 235, 247

amortization, 241-242

brute force, 564

comparator, 337

composition, 336

decorator, 611-613

divide-and-conquer, 502-506, 515

516

dynamic programming, 557-563

greedy method, 577

iterator, 254-259

position, 244

prune-and-search, 543-545

templatemetbod, 319-323, 536, 616

destination, 595

DFS, see deptb-first search

Di Battista, 332, 662

diameter, 329

dictionary, 420-423

abstract data type, 420--421

digraph, 622

Dijkstra, 662

Dijkstra's algorithm, 635-642

directed acyclic graph, 629-631

directed cycle, 622

discovery edge, 609, 621, 625, 626

distance, 634

divide-and-conquer, 502-506, 515-516

division method, 392

d-node,465

dot operator, 10

double black, 484

double hashing, 396

double red, 479

double-:-ended queue, see deque

down-heap bubbling, 356, 366

dynamic binding, 64

dynamic dispatch, 64

dynamic programming, 148,557-563,627

Eades, 332, 662

edge, 283, 594

destination, 595

end vertices, 595

incident, 595

multiple, 596

origin, 595

.outgoing, 595

parallel,596

self-Ioop,.596

edge list, 600

edge list structure, 601 i

edit distance, 589, 591

element; 35

element uniqueness problem, 183

encapsulation, 60

encryption, 109

end vertic~s, 595

endpoints, 595

enhanced for loop, 256

entr~335,336,382

enums,14

Euler path, 653

Euler tour, 653, 657

Euler tour traversal, 317, 332

Even, 662

event, 691

evolvability, ~9

exception, 76-79

expected value, 69L

704

exponent function, see exponential func
tion

exponential function, 163

exponentiation, 180

expression, 20-26

extension, 66

external memory, 672-684, 686

external-memory algorithm, 672-684

external-memory sorting, 682-684

factorial, 136-137,688

fail fast, 277

failure function, 570

favorite list, 267

Fibonacci progression, 73, 689

field, 2, 11, 58

FIFO,214

first-fit algorithm, 669

first-in first-out, 214

Flanagan, 56

floor function, 165

Floyd,379

Floyd-Warshall algorithm, 627, 662

for-each loop, 256

forest, 598

forward edge, 625

fragmentation,· 669

frame, 664

free list, 669

friendly, 4

full binary tree, 296

function, 16

fusion, 474, 680, 681

game tree, 331

Gamma, 94

garbage collection, 670-671

mark-sweep, 670

Gauss, 161

generic merge algorithm, 536

generic type, 89

generic wildcard, 614

generics, 89-90, 200, 209

generics framework, 89

geometric sum, 690

Gibbons, 662

Golberg, 278

Index

golden ratio, 689

Gonnet, 379, 500, 552, 686

Goodrich, 686

Gosling, 56

Graham, 662

graph, 594-662

abstract data type, 594-599

acyclic, 622

breadth-first search, 619-621, 624

626

connected, 598, 621

data structures, 600-606

adjacency list, 603-604

adjacency matrix, 605-606

edge list, 600-602

dense, 611, 629

depth-first search, 607-618, 624-626

digraph, 622

directed, 594, 595, 622-631

acyclic, 629-631

strongly connected, 622

methods, "599 f1

j

mixed,595
~

reachabi~ity, 622-623, 626-629

shortest paths, 626-629 i

~
simple, 596

sparse, 611 ~

traversal,607-621 tl

~

I
 I
undirected, 594, 595

weighted, 63.3-662 I

graph traversal, 607
 J
greedy method, 577, 634, 635
 ~
greedy-choice, 577 ~

Guibas, 500

Guttag, 94, 232, 278 ~

n

I
~

Harmonic number, 182, 195,690
hash code, 387,388

~I,

hash function, 387, 396
 ~
hash table, 386-403
 j

bucket array, 386 j

capacity, 386

chaining, 393

clustering, 396

collision, 387

collision resolution, 393-397

double hashing, 396

Index 705

linear probing, 395

open addressing, 396

quadratic probing, 396

rehashing, 401

header, 123

heap, 346-367

bottom-up construction, 364-367

heap-order property, 346

heap-sort, 362-367

height, 288-289,438

height-balance pr9perty, 443, 445, 447,

449

Hell, 662

Hennessy, 686

heuristic, 270

hierarchy, 61

Hoare, 552

Holmes, 56

Hopcroft, 232,278, 500,662

Horner's method, 194

Horstmann, 56

HTML tags, 211

Huang, 552

Huffman coding, 575-576

110 complexity, 678

identifier, 3

implicit cast, 26

import, 46

improper binary tree, 296

in-degree, 595

in-place, 375, 524, 671

incidence collection, 603

incident, 595

incoming edges, 595

independent, 691, 692

index, 34, 234, 382, 404

induction, 186-187

infix, 327

inheritance, 63-74

inorder traversal, 432, 436, 446, 447

insertion-sort, 1031,135, 345

instance variable, 2, 58

instance variables, 11

integrated develoPIIlent environment, 49

interface, 60, 80-84,87,200

internal memory, 672

internationalization, 56

Internet, 277

inversion, 345,550

inversions, 532

iterator, 254-259

JaTa,332
Jarnik,662
Java, 2-56,58-90

arra~,34-38,96-116

casting, 85-88

control flow, 27-33

exceptions, 76-79

expressions, 20-26

input, 39-42

interfaces, 80-84

method stack, 664-666

methods, 15-19

output, 39-42

packages, 45-46

types, 85-86

Java Collections Framework, 260

Java stack, 664

Java Virtual Machine, 664,668,669

javadoc,50

Jones,662

Josephus problem, 221

Karger, 662 .

Karp, 332

key, 334,382,383,421,465

Klein, 662

Knuth, 155, 195,278,332,379,500,552,

591,592,662,686

Kosaraju, 662

Kruskal, 662

Kruskal's algorithm, 646-649

L'Hopital's Rule, 693

Landis, 500

Langston, 552

last node, 347

last-in first-out, 198

LCS, see longest common subsequence

leaves, 282

Lecroq,59l

left child, 296 .

706

left subtree, 296

Leiserson, 500, 662

level, 299, 619

level numbering, 295, 310

level order traversal, 329

Levisse, 430 .

lexicographic ordering, 337

lexicographical, 530

life-critical applications, 58

LIFO, 198

linear exponential, 690

linear function, 160

linear probing, 395

linearity of expectation, 545, 692

linked list, 117-136,207-209,220

doubly linked, 122-129, 224-227,

247-251,265

singly linked, 117-121

linked structure, 286, 301

linking out, 126

Liotta, 332, 662

Liskov, 94, 232, 278

list, 234, 243-251

abstract data type, 244-251

literal,20

Littman, 552

live objects, 670

load factor, 394

local variable, 19

locality of reference, 270

locality-of-reference, 674

location-aware entry, 370

log-star, 542

logarithm function, 158, 687

natural, 687

longest common subsequence, 560-563

looking-glass heuristic, 566

loop invariant, 188

lowest common ancestor, 329

Magnanti, 662

main memory, 672

map, 382, 383

(2,4) tree, 465-476

abstract data type, 382-385

AVL tree, 443-454

binary search tree, 432-439

Index

hash table, 386-403

ordered,438

red-black tree, 477-493

skip list, 411-419

update operations, 414, 416, 435, 436,

445,449

mark-sweep algorithm, 670

master method, 693

matrix, 112

matrix chain-product, 557-559

maximal independent set, 658

McCreight, 592, 686

McDiarmid, 379

median, 543

median-of-three, 526

Megiddo, 552

Mehlhorn, 500, 662, 686

members, 2

memory allocation, 669

memory heap, 668

memory hierarchy, 672

memory management, 664-671, 675-677

merge-sort, 502-514

multi-~ay, 682-684

tree, 503

mergeab1e heap, 499

method, 15-19,58

body, 15

signature, 15

minimax,'331 .'

minimum spanning tree, 644-651

Kruskal's algorithm, 646-649

Prim-Jarnik algorithm, 650-65]

Minotaur, 607

mixin,83

modularity, 60

modulo, 218, 688

modulus, 110

Moore, 591

Morris, 591

Morrison, 592

Motwani, 430, 552

move-to-front heuristic, 270

MST, see minimum spanning tree

multi-way search tree, 465

multi-way tree, 465-468

multiple inheritance, 83, 264

11

707

)j

~
;':1

Index

multiple recursion, 149

Munro, 379

mutually independent, 691

n-Iog-n function, 160

narrowing conversion, 85

natural join, 277

natural logarithm, 687

natural ordering, 337

nested class, 267, 342,451,492

next-fit algorithm, 669

node, 281,284,594

ancestor, 282

balanced, 445

child,281

descendent, 282

external, 282

internal, 28i

parent, 281

redundant, 582

root, 281

sibling, 282

size, 460

unbalanced, 445

node list, 244

nontree edge, 625, 626

null string, 555

number classes, 8

numeric progression, 68

object, 2-13, 58

object-oriented design, 58-94

open addressing, 395, 396

operand stack, 666

order statistic, 543

orderd map, 403-410

abstract data type, 403

ordered map

search table, 404-407

origin, 595

Orlin, 662

out-degree, 595

outgoing edge, 595

overflow, 471, 681

overloading, 65

override, 65

package, 4, 45-46

palindrome, 154, 589

parameter passing, 17

parent, 281

parenthetic string representation, 291

partition, 539-542

path, 283, 597

directed, 597

length,634

simple, 597

path comp,ression, 542

path length, 329

pattern matching, 564-573

Boyer-Moore algorithm, 566-570

brute force, 564--565

Knuth-Morris-Pratt algorithm, 570

573

Patterson, 686

plaintext, 109

polymorphism, 64-65

polynomial, 162, 194

polynomial hash code, 389

portability, 59

position, 244, 284,412

positional garnes, 112

postfix notation, 229, J27

postorder traversal, 293

power function, 180

Pratt; 591

prefix, 555 •

prefix code, 575

prefix sum, 179

preorder traversal, 290

Prim, 662

Prim-Jarnik algorithm, 650-651

primitive operations, 168-170

primitive type, 5

priority queue, 334-379, 550

ADT,338

heap implementation, 354-358

list implementation, 340-344

priority search tree, 378

proDability, 690-692

probability space, 691

procedure, 16

program counter, 665

proper binary tree, 296

prune-and-search, 5,43-545

708 	 Iudex

pseudo-code, 48 reusability, 58, 59

pseudo-random number generators, 107, Ribeiro-Neto, 592

411 right child, 296

Pugh,430 right subtree, 296

push, 241 Rivest, 500, 662

Robson, 278

quadratic function, 160 robustness, 58

quadratic probing, 396 root, 281

queue, 214-223 root objects, 670

abstract data type, 214-216 rotation, 447
array implementation, 217-219 double, 447

;1

j
linked-list implementation, 220 single, 447 ,j

quick-sort, 515-526 round robin, 221 	 I
~ tree, 516 	 running time, 166-184 ~
~

~

radix-sort, 530-531 Samet, 686 	
,1

:;.,Raghavan,430,552 sample space, 690
I

Ramachandran, 332 scan forward, 413 ~
~random variable, 691 Scanner, 40 ~

randomization, 411, 412 Schaffer, 379 g"
randomized quick-select, 544 scheduling, 379 ~

i
randomized quick-sort, 522 scope, 12
rank, 234 search engine, 535, 586 ~
reachability, 622 	 search table, 104-407 ~ recurrence equation, 514, 545, 548 search trees, 432

I
~ recursion, 136-151,667 Sedgewick, 379, 500

binary, 146-148 seed, 107,411

higher-order, 146-151 selection, 543-545

linear, 142"":145 selection-sort, 344
 ~
multiple, 149-151 self-loop, 596

,.

~

tail,145 sentinel, 123, 383,421
~
~

~ traces, 143 	 separate chaining, 393
,~

recursion trace, 137 sequence, 234,260-266 	
~

:~

red-black tree, 477-493 abstract data type, 264

depth property, 477 set, 534-542

external property, 477 shallow equality, 116

internal property, 477 shortest path, 634-642

recoloring, 481 Dijkstra's algorithm, 635-642

root property, 477 sibling, 282

Reed,379 sieve algorithm, 427
reference, 7, 11, 12, 19,64 signature, 10, 15, 18,65 j
refinement, 66 simple equality, 116
reflexive, 335 singly linked list, 117-121
rehashing, 401 skip list, 411-419
relaxation, 636 analysis, 417-419
replacement, 66 insertion, 414
restructure, 447 levels, 412

I

709

~
Ij
,<j

j
i1
.1

1 Index

;i removal, 416-417

;i searching, 413-414

~1 towers, 412

'1
1, update operations, 414-417
.,

Sleator, 500
~ slicing fioorplan, 330
'~

~ slicing tree, 330

sorting, 103,339,502-531

bucket-sort, 529-530

external-memory, 682-684

1 heap-sort, 362-367

l in-place, 363, 524

!

I insertion-sort, 345

lower bound, 527-528

merge-sort, 502-514

f: priority-queue, 339

~ quick-sort, 515-526
~
.1

i

;~ radix-sort, 530-531

~ selection-sort, 344

stable, 530

space usage, 166

~
spanning subgraph, 598

~ spanning tree, 5'98, 609, 610, 619, 621,

644

sparse array, 277

specialization, 66

splay tree, 454-464

split, 471,681

stable, 530

stack, 198-214

abstract data type, 199-200

array implementation, 202-206
~ linked-list implementation, 207-209
1

statement block, 19
J

~ Stephen, 591

~~

Stirling's Approximation, 689

stop words, 580, 591

straggling, 547

string, 8-9

~
" abstract data type, 8-9, 554-556

~

immutable, 555
1

mutable, 556

null, 555

prefix, 555

suffix, 555

strong typing, 80, 84

strongly connected, 622

subclass, 63

subgraph, 598

subproblem optimality, 558

subproblem optimization, 560

subproblem overlap, 560

subsequence, 560

substring, 554

subtree, 282

suffix, 555

summation, 163,689

geometric, 164

summation puzzles, 149

superclass, 63

symmetric, 594

tags, 50

Tamassia, 332, 662

TaQan, 332, 500, 662

telescoping sum, 689

template method, 535

template method pattern, 319-323, 536,

616

testing, 47

text compression, 575-576

Theseus, 607

three-way set disjointness, 182

throw, 76

Tic-Tac-Toe, 113

tic-tac-toe, 331 •

token, 210

tokens, 41

Tollis, 332, 662

topological ordering, 630-631

total order, 335

tower-of-twos, 542

Towers of Hanoi, 153

trailer, 123

transfer, 474

transitive, 335

transitive closure, 622, 625

traveling salesman problem, 635

tree, 281-332, 598

abstract data type, 284-285

binary, see binary tree

binary tree representation, 327

child node, 281

decision, 296

710

depth, 287-289

edge, 283

external node, 282

height, 288-289

internal node, 282

level, 299

linked structure, 286

multi-way, 465-468

node, 281

ordered,283

parent node, 281

path,283

root node, 281

tree edge, 625, 626

tree reflection, 328

tree traversal, 290-295, 312-323

Euler tour, 317-323

generic, 319-323

inorder, 314-316

level order, 329

postorder, 293-295, 313-314

preorder, 290-292, 313

trie,578-586

compressed, 582

standard, 578

trinode restructuring, 446, 480

try-catch block, 78

Tsakalidis, 500

two-dimensional array, 112

(2,4) tree, 465-476

depth property, 469

size property, 469

type, 2, 11

Ullman, 232, 278, 500, 686

unboxing, 26

underflow, 474, 681

union-by-size, 541

union-find, 539-542

up-heap bubbling, 356

update methods, 42

van Leeuwen, 662

variable modifiers, 12

vector, 234

vertex, 594

degree, 595

Index

in-degree, 595

out-degree, 595

virtual memory, 674

Vishkin, 332

Vitter, 686

Wegner, 94, 232

widening conversion, 85

wildcard symbol, 614

Williams, 379

Wood,278

worst-fit algorithm, 669

wrap around, 109, 110

wrapper class, 8

zig, 455, 462

zig-zag, 455, 462

zig-zig, 454, 462

,

