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Abstract: High blood pressure (or hypertension) is a causative disorder to a plethora of other ailments 

– as it succinctly masks other ailments, making them difficult to diagnose and manage with a targeted 

treatment plan effectively. While some patients living with elevated high blood pressure can effectively 

manage their condition via adjusted lifestyle and monitoring with follow-up treatments, Others in self-

denial leads to unreported instances, mishandled cases, and in now rampant cases – result in death. 

Even with the usage of machine learning schemes in medicine, two (2) significant issues abound, 

namely: (a) utilization of dataset in the construction of the model, which often yields non-perfect 

scores, and (b) the exploration of complex deep learning models have yielded improved accuracy, 

which often requires large dataset. To curb these issues, our study explores the tree-based stacking 

ensemble with Decision tree, Adaptive Boosting, and Random Forest (base learners) while we explore 

the XGBoost as a meta-learner. With the Kaggle dataset as retrieved, our stacking ensemble yields a 

prediction accuracy of 1.00 and an F1-score of 1.00 that effectively correctly classified all instances of 

the test dataset. 

Keywords: Cardiovascular disease; Hypertension; Meta-Learner; Stacked Ensemble; Stroke; 

XGBoost. 

 

1. Introduction 

There is today, the inherent rise in the trend of sudden collapse that morphs onto death 
in Nigeria [1]. Attributed to this anomaly is the uncontrolled rise in patients' blood pressure 
(HBP) causing hypertension for which signs abound. Globally, hypertension has contributed 
to the increased morbidity and mortality rate [2], [3] – and has become a global health menace. 
The World Health Organization has since acknowledged HBP as the leading, health risk 
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predictor for cardiovascular disease and premature death [4], [5]. Its asymptomatic nature 
makes it a vicious-silent killer, as it masks another ailment in over 40 age years of patients 
with a rise in cases of delayed diagnosis and improper management. This calls for continued 
monitoring of patients' vitals, with reported HBP-associated deaths in Nigeria to over 323,400 
cases in 2023 [6], [7]. The early detection of HBP its accurate classification vis-à-vis the con-
sequent effective monitoring thereof – has become imperative to help mitigate the continuous 
rise in cardiovascular diseases, stroke, and death. Ailments such as diabetes and HBP – are 
non-communicable and quite easy to diagnose. While some patients manage theirs via lifestyle 
adjustments, others self-deny their state, And such cases are unreported/unmonitored with 
treatment plans [8]. Legacy identification of HBP relies on cuffed-intermittent readings at 
clinical visits that yield observations, which does not provide a comprehensive patient health-
state layout [9], [10]. Thus, continued monitoring is advised to aid in effective management 
and avoid ripple effects across other underlying ailment(s). 

Proactive patients harness sensor-unit observed readings to gain valued insights into 
their status and with anomaly detection for an early prompt to quick medical intervention. 
Healthcare experts also glean valued predictive knowledge tailored towards targeted treatment 
for hypertensive patients [11]. Various classification schemes have been utilized to improve 
performance generalization accuracy. Widely used hypertension dataset includes Kaggle [12], 
[13], Data. world [14], DASH [15], [16], NCD Risk Factor[17], and PIMA Indian [18], [19]. 
Each classification heuristic yielded varying performance ranging from 0.67-to-0.89 accuracy 
with each of the datasets adopted. Thus, the input dataset can effectively impact the general-
ization of the classification method adopted. However, a related study [20] adapted fusion 
learning with XGBoost meta-learner using SMOTE-Tomek (synthetic minority over-sample 
technique) data balancing, yielding a perfect prediction accuracy. This also implies that using 
an increasingly sophisticated identification scheme can yield improved generalization perfor-
mance. Thus, it has become imperative and crucial to develop a classification heuristic that 
proffers a more sensitive, adaptive and robustness to intrinsic dataset variations to yield im-
proved/perfect performance accuracy. 

The classification task is often accomplished via voting, stacking, and boosting. On 
these, detection tasks in a more general term can be grouped into three (3) categories: Deep 
learning (DL) [21], Ensemble Learning (EL)[22], and machine learning (ML)[23], [24]. ML 
offers a heuristic range that can be successfully trained to recognize evidence that supports 
ground truth in high-dimension tasks, even with complex datasets [25]. Their adaptive learn-
ing and flexibility ensure they effectively decipher intrinsic crucial parameters to be selected 
for model construction to ease outlier detection from behavioral norms of data labels [26]–
[28]. Various ML models include Logistic Regression [29], [30], Naïve Bayes [31], Support 
Vector [32], [33], K-Nearest Neighbor [34]. DL heuristics leans on recurrent networks to 
capture high-dimension feats in time-series data sequences. It is common in many complex, 
chaotic, and non-linear spatiotemporal and medical datasets [35]. By default – RNN heuristics 
are best suited for medical datasets. Its demerit is that they often yield poor generalization in 
vanishing gradient tasks. To resolve this, some studies explore its variant, Long-Short-Term 
Memory (LSTM), via gates that control data flow so that the model can learn and easily adapt 
to minor changes experienced as long-term dependencies [36]. A demerit of the LSTM is that 
their efficiency requires longer training time and large datasets. To curb the challenges with 
DL, the EL mode can effectively combine both ML and DL [36] into a single classifier as its 
meta-learner to yield an optimal solution with lesser training time, irrespective of the volume 
and veracity of the dataset. It achieves this feat via a variety of schemes like stack [22], [37], 
bagging [38], [39], boosting [40], [41], and voting [42], [43] – to yield a richer insight into the 
targeted task domain with optimality for ground-truth [44]. 

2. Preliminaries 

2.1. Tree-Based Classifiers and Algorithms 

A common scheme in ML is the tree method, which descends from single decision trees. 
Each tree generates a set of if-else rules used in the majority voting scheme, allowing it to 
predict observed classes [45]. Each tree is a recursive top-down model in which a binary tree 
is used to partition its predictor space with variables grouped into subsets for which the dis-
tribution of dependent variable 𝑦 is successively homogeneous [46]. A tree is easily 
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understood, but its use alone leads to model overfit as it seeks to identify feats of interest 
during training [47]. Thus, it yields degraded performance in classifying of unknown labels. 
Tree-based models learn by constructing many individually trained decision trees and com-
bining/aggregating their results into a single and more robust model whose output outper-
forms the results of any single tree [48]. It achieves this via either bagging [49], [50], and 
boosting [51], [52] modes. 

With boosting – the tree(s) achieves its accuracy beyond random with enhanced predic-
tive capability by sequentially training each weak learner to correct the weakness in its prede-
cessor [53], [54]. Each tree yields feedback from previous weaker trees [55]. Popular boost 
models include gradient boost [56], LogitBoost [57], stochastic gradient [58], and adaptive 
boost [59]. As expressed in Equation (1) – prediction is achieved by combining the outcome 
of its weak learners with its weighted sum to yield a higher weight for incorrectly classified 
cases. 

𝐿𝑡 = ∑ 𝑙

𝑛

𝑖 = 1

(𝑌𝑖
𝑡,  𝑌̂𝑖

𝑡−1 +  𝑓𝑘(𝑥𝑖) )  (1) 

Conversely, bagging grows successive trees independently from earlier trees – such that 
each tree is constructed using a bootstrap aggregation mode to sample the data using a ma-
jority vote during its prediction [60]. The Random Forest adds an extra layer of randomness 
to the bagging scheme, which changes how the trees are constructed. While standard decision 
trees have each node (best) split among all predictor variables – Random forest nodes are 
split using the best from a subset of predictors randomly chosen at the node. Its recursive 
structure captures interaction effects between variables. Thus, tree-based models have proven 
successful for various tasks ranging from churn prediction[61] to user purchase intent predic-
tion [62]. They are best suited to reduce bias and variance within learning schemes. While 
individual models may be stuck in local minima [63], its weighted combination of varied local 
minima will yield an ensemble method capable of minimizing the risk of choosing the wrong 
local minimum with such tree-based models/heuristics [64]. 

2.2. Stacked-Learning Ensembles 

For stacking – it trains a meta/higher learner to effectively combine the predictive out-
come of several learners, allowing its meta-learner to improve as it learns from the errors of 
its base classifiers. This flexibility ensures stacking yields better outcomes with more iterations 
[65]. In voting, the learners are applied independently to achieve a more stable performance 
with reduced overfit via predictive aggregation in its quest for ground truth [66]. Since it seeks 
to combine only the final output of all learners without recourse to their predictive relations 
– in some cases, it yields degraded performance due to its dataset complexity and diversity 
[42]. Bagging trains similar learners with equal voting weight. To promote variance, each 
learner is trained using a randomly drawn subset of the train data [67], [68]. It achieves higher 
accuracy by averaging all learners' predictions. It can be configured to use various learners on 
different datasets to reduce each learner's variance error(s) [69]. Lastly, boosting sequentially 
trains its learners so that each new model corrects the errors of its previous model. It yields a 
series of learners that focus on difficult tasks that their predecessors failed to predict [70], [71] 
correctly, resulting in higher generalization with improved accuracy. A typical boost is an 
adaptive boost. However, to improve this scheme, an ensemble can be based on a gradient 
scale such as the eXtreme Gradient Boost [72]. 

2.3. Study Motivation 

Inherent gaps from existing studies include: 

1. Lack of Datasets: Finding the right-format dataset – is crucial to machine learning tasks. 
Access to high-quality datasets is needed in training and performance evaluation – as 
there is limited data, which often yields significant false positives [73], [74]. 

2. Imbalanced Datasets: A critical issue with the dataset's imbalanced nature is that many 
HBP cases go unreported. In addition, medical records often yield large datasets where 
HBP cases lag in class distribution as it is often an indicator of ailments such as diabetes 
[75], [76], mental disorders [77], etc. New studies must explore intricate sampling 
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techniques or harness the robust power of ensemble methods tailored explicitly to miti-
gate the challenges with imbalanced datasets. 

3. Data Acquisition: The rise in volume and integrity of datasets generated across multiple 
channels [78] using various methods [79] implies that new heuristics must become more 
adaptive, sensitive, and robust as analytic modes to glean insightful knowledge from such 
huge datasets. New models must account for minor shocks as heuristics that utilize and 
integrate means to harness these data generation points and enhance overall model ac-
curacy and performance, as multi-channel detection has become a critical area for re-
search purposes and with business monetization focus [80] in mind. 
 
Thus, we construct known tree-based models using bagging and boosting capabilities 

with data normalization techniques on the dataset as retrieved from Kaggle. This aims at a 
comparative predictive analytic(s) and ascertain which model best fits the data balancing tech-
nique for future studies. Our study hopes to achieve: (a) model construction as a decision 
support model via the utilization of ML scheme that will help effectively capture predictor 
features as factors that makes classification of HBP, more successful, (b) data balancing effect 
on the reliability and predictive power of tree-based models; while, analyzing its impact cum 
implication to predict HBP [81], [82]accurately, and (c) comparative benchmarking will yield 
the evaluation of diverse machine learning schemes within the constructed prediction model, 
aimed at comparing the performance, accuracy, and robustness of various algorithms to iden-
tify sophisticated, dynamic cases vis-à-vis underlying health factors. 

3. Proposed Method 

The development of ML in the identification of HBP leans on these steps: (a) extensive 
study via the body of knowledge to identify HBP as a problem, (b) dataset collection consist-
ing of observed relevant physiological, lifestyle, and demographic variables as predictor fac-
tors, (c) preprocessing handles missing data, duplicates, and normalizes data to ensure con-
sistency, and feature selection to aid practical model construction, (d) model construction and 
training to yield a qualitative and reliable predictive heuristic classifier, and (e) utilization of 
proposed scheme. Thus, the adopted methodology yields Figure 1 – explained thus: 

 

Figure 1. Proposed Stacking Ensemble with XGBoost meta-learner 
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3.1. Data Collection, Cleaning and Encoding: 

This is achieved thus: 

• Collection: Data is retrieved from Kaggle HBP and is available [web]: 
www.kaggle.com/datasets/jayaprakashpondy/blood-pressure. Figure 2 shows the de-
tailed class distribution for Normal, Pre-HBP, Stage-1, and Stage-2 hypertension cases. 

     

Figure 2. Dataset Distribution by Class 

• Data Encoding: Rather than utilize the principal component analysis [83] to encode 
our dataset – we utilize the one-hot encoding technique, which converts categorical var-
iables into a format that ML algorithms can understand [84]– because many ML schemes 
cannot handle category labels directly. One-hot encoding creates a binary numeric equiv-
alence of the dataset by converting categorical variables into their binary forms. 

• Clean removes duplicates to avoid redundancy and missing values to ensure data quality. 

3.2. Feature Selection and Extraction  

This stage selects and extracts the input data and determines what label will yield ensem-
ble output (Y). It removes all docile cum irrelevant features with no relative importance to 
our quest for ground truth (i.e., target class). And in turn, reduces the dimensionality of the 
chosen dataset [85] vis-a-vis and fastens the ensemble's construction for enhanced/improved 
performance [86], [87], especially in cases where cost is a critical factor [88]. The efficiency of 
a selected feature is evaluated on how well the model fits [89] to ground truth (i.e., target 
class) [90]. Thus, we use the recursive feat elimination (RFE) [91] wrapper approach since our 
feats are engineered to unveil how relevant a selected feature supports our target class and 
test via frequency distribution to ascertain how its occurrence fits with the target class [92], 
[93]. With a computed RFE threshold value of 0.8991 – 11 features were selected from the 
original dataset instead of ground truth or target class 1, as in Table 1. These were examined 
instead of their contribution to the classification process [94]. 

3.3. Split and Balancing 

To track each feature towards our target class, the dataset is split into train (75%) and 
test (25%) subsets for this study. There is no rule on how they can be grouped – so we adopt 
this rule of thumb. Data balancing seeks to nearly (and evenly) redistribute data points in the 
training dataset to ensure an almost equal distribution between major and minor classes. While 
there are a variety of modes, We adopt SMOTE-Tomek thus [20]: (a) identifies major class, 
(b) interpolates to create synthetic data via the Tomek-link under-sample mode for the ma-
jority class, (c) adjusts data points to those of its closest neighbors so that new data-points 
overlaps, and (c) adds the generated synthetic data to the original dataset to yield a balanced 
dataset [95] as in Figure 3. 
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Table 1. Wrapper RFE Feature Selection for Kaggle Hypertension Dataset 

Features Data Type Sample 
RFE 
Score 

Selected 

patient_number Int Yes -1 /No – 0 0.2805 No 

blood_pressure_abnormality Binary Yes -1 /No – 0  0.9318 Yes 

hemoglobin_level Float  11.28 0.9016 Yes 

genetic_pedigree_coefficient Float  0.9 0.8743 Yes  

age Int 34 0.9291 Yes  

body_mass_indexi Int 23 0.8659 Yes  

sex Binary Male -1, Female – 0 0.5391 No 

pregnancy Binary  Yes -1 /No – 0 0.3528 No 

smoking Binary Yes/No 0.5241 No 

physical_activity Int 9995 0.9805 Yes 

salt_content_in_diet Int 9607 0.9318 Yes 

daily_alcohol_consumed Int 205 0.9016 Yes 

stress_level Int 3 0.9732 Yes 

chronic_kidney_disease Binary Yes -1 /No – 0  0.9291 Yes 

adrenal_thyroid_disorder Binary Yes -1 /No – 0 0.9956 Yes 

 

(a) 

 

(b) 

Figure 3. Applied Balancing on training dataset using (a) SMOTE only; (b) SMOTE-Tomek Links. 
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3.4. Normalization  

Used for variable transformation to normalize skewed datasets. This seeks to ensure a 
nearness in the class distribution and may change our data distribution. Features are normal-
ized via a standard scaler, which seeks to revert data features to yield a distribution with a 
mean value of 0 and a standard deviation of 1. We achieve this via Equation (2)– where 𝑥 is 

the original value, 𝜇 is the mean, 𝜎 is the standard deviation, and 𝑧 is our normalization 
process. 

𝑧 =  
(𝑥 −  𝜇)

𝜎
  (2) 

3.5. Stacked Ensemble Construction 

Stacked learning combines the predictive outcome of several base learners to acquire or 
achieve a more accurate prediction. It often involves 2-levels for which the first level consists 
of base learners (in this case, Adaptive Boosting, Decision trees, and Random Forest), and 
the second level aggregates the predictions of the first-level learners, usually called a meta-
heuristic/learner (in this case, the XGBoost). Its major merits include (a) the diversification 
of models via the use of several algorithms [96], (b) enhanced generalization for the model, 
and (c) reduced risk in the overfitting of the ensemble [97]. Selecting a meta-learner is critical 
and crucial as they must optimize aggregated outputs and efficiently minimize prediction er-
rors. The right meta-learner (especially for one) trained using the out-of-fold prediction from 
the base classifiers can significantly improve the ensemble accuracy, flexibility, and robustness 
– effectively harnessing the processing prowess of multiple good-fit base classifiers [98]. Thus, 
the utilized tree-based algorithms/classifiers include: 

• XGBoost Meta-Learner is a tree-based leaner that scales the gradient boosting to classify 
data points. It yields a more robust classifier by aggregating its weaker (base) learner tree 
via majority voting schemes over a series of iterations on data points to yield an optimal 
fit solution. It expands its goal function by minimizing its loss function as Equation (3) 
to yield an improved model [99] to manage tree complexity effectively. For optimality, 
the XGBoost leverages the predictive power of weak base learners to yield a better de-
cision tree with each iteration and account for weak performance, contributing to its 
knowledge of the task. Thus, with each tree trained on the candidate data, it expands the 

objective function via a regularization term Ω(𝑓𝑡)  and loss function 𝑙 ( 𝑌𝑖
𝑡,  𝑌̂𝑖

𝑡−1
)to en-

sure an appropriate fit of the ensemble to yield improved generalization. This, ensures 
that both training dataset fits as re-calibrated solutions to remain within their solution's 
set boundaries and tunes its loss function for higher accuracy [100] configuration design 
as in Table 2. 

𝐿𝑡 = ∑ 𝑙

𝑛

𝑖 = 1

(𝑌𝑖
𝑡,  𝑌̂𝑖

𝑡−1 +  𝑓𝑘(𝑥𝑖) ) +  Ω(𝑓𝑡)  (3) 

Table 2. The Extreme Gradient Boosting Ensemble Design Configuration 

Configuration Values Description 

n_estimators 250 Number of trees constructed 

learning_rate 0.25 Step size learning to update the ensemble 

max_depth 5 Max depth of each tree 

random_state 25 The seeds for reproduction 

eval_metric ["error', 'logloss'] Performance evaluation metrics 

eval_set (x,val, y_val) Train dataset to evaluate performance 

verbose True Determines if ensemble evaluation metric is printed at training 

 

• A Decision Tree is a single-classifier that explores intricate sampling, tailored to mitigate 
the decision-making issues. To predict a target class, it starts from its root node to com-
pare the root values with the records attribute. With this compared, it branches off to 
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the next node as (a) begins at a tree with root node S that consists of a complete dataset, 
(b) finds the best attribute in the dataset via attribute selection measure, (c) divides S into 
train/test sub-datasets that contains possible values for the best attributes, (d) generate 
decision tree node, which contains best attributes, and (e) recursively make new decision 
trees using the subset of the dataset created [101]. Then, continue this process until the 
criterion for optimal solution is reached so that the tree can no longer classify the nodes. 
The leaf node reaches such through error pruning and/or cost-complex pruning. Its 
demerits are: (i) it is complex due to its many layers, (ii) it may result in overfit, resolved 
via a Random Forest ensemble, and (c) computational complexity increases for large 
datasets. Furthermore, its merits are numerous, and the feats used in our DT construc-
tion are shown in Table 3. 

Table 3. The Decision Tree Classifier Design Configuration 

Configuration Values Description 

info_gain 120 Number of trees constructed 

learning_rate 0.25 Step size learning to update the ensemble 

min_sample_split 10 Minimal number of samples needed 

min_sample_leaf auto 
Number of features to be considered in place of 

ground-truth 

eval_set (x,val, y_val) 
Dataset used for evaluating ensemble performance 

at training 

min_weight_fraction_leaf 0.1 
Determines tree's structure based on the weight as-

signed to samples 

max_depth 5 Max depth of each tree 

random_state 25 The seeds for reproduction 

 

• Adaptive Boosting combines multiple weak classifiers to build a strong one. Weak learn-
ers are called decision stumps, as they are DTs with a single split. The ensemble places 
more weight on hard-to-classify instances and less on data operating well. Stumps are 
produced for each feature iteratively and stored in a list until a lower error is received. 
The weight (s) assigned to each example determines its significance in the training da-
taset. Weights are updated with each iteration to yield stumps' performance. Ensemble 
sequentially trains its predictors so that each predictor tries to correct its predecessor 
[102]. Thus, they are more robust against overfitting and yield a more stable and im-
proved performance. Table 4 shows the configuration therein. 

Table 4. Adaptive Boosting Ensemble Design Configuration 

Configuration Values Description 

n_estimators 140 Number of trees constructed 

learning_rate 0.25 Step size learning to update the ensemble 

max_depth 5 Max depth of each tree 

random_state 25 The seeds for reproduction 

eval_metric ["error', 'logloss'] Evaluation metrics for ensemble performance 

eval_set (x,val, y_val) Dataset used for evaluating ensemble performance at training 

verbose True Determines if ensemble evaluation metric is printed at training 

 

• Random Forest ensemble utilizes the bagging mode to grow successive trees inde-
pendently. It uses bootstrap aggregation to construct each tree and to sample its train 
data using a majority vote at its prediction [103]. RF extends randomness via an extra 
layer that changes how it constructs trees. Each node is split using a binary-tree predic-
tor, as RF splits its nodes and randomly selects the best predictor node from its learner 
subset. Its recursive structure helps it to capture interactions between various predictors. 
Its drawback is in their flexibility [104] with data diversity and complexity [105], as its 
outcome can yield lesser performance [106] for ground truth. To curb this, we adopt 
hyper-parameter tuning to significantly reduce model overfit, address imbalanced 
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datasets, and enhance accuracy in its quest for ground truth [107]. Table 5 shows the RF 
configuration. 

Table 5. Random Forest Ensemble Design Configuration 

Configuration Values Description 

n_estimators 150 Number of trees constructed 

learning_rate 0.25 Step size learning for update 

max_depth 5 Max depth of each tree 

max_features 5 
Maximum number of features to construct the RF 

tree ensemble 

min_sample_leaf auto Number of feats to be considered 

min_sample_split 10 Minimal samples needed 

min_weight_fraction_leaf 0.1 
Tree's structure based on weight assigned to each 

sample 

random_state 25 The seeds for reproduction 

eval_metric error, logloss Performance evaluation metrics 

eval_set x,val, y_val Train data for evaluation 

verbose True 
Determines if ensemble evaluation metric is 

printed at training 

bootstrap True Ensures bootstrap aggregation use 

warm_start False Ensure the tree does not restart 

3.6 Training and Validation 

Our stack ensemble learns from scratch, and trees are iteratively constructed in each 
model for bootstrap training to yield the required enhancement using prediction probabilities 
from our normalized dataset. This enhances each tree's collective knowledge and helps the 
ensemble quickly identify intricate patterns present in each dataset since training blends nor-
malized and original samples in its dataset, guaranteeing base-learner comprehensive learning. 
Hyperparameter tuning controls how a tree's complexity and weights are adjusted to gradient 
loss. The lower the value, the slower we travel on a downward slope to ensure how quickly a 
tree abandons old beliefs for new ones at training. As the tree learns – it identifies crucial, 
intrinsic feats. Our meta-learner yields a higher learning rate because the ensemble changes 
quickly as it learns newer feats. This flexibility yields ease of adaptability. The XGBoost meta-
learner utilizes the regularization terms to change during learning quickly and ensures it ade-
quately adjusts its learning to be devoid of poor generalization. Then, we carefully tuned these 
parameters: max_depth, n_estimator, learning_rate, and booster to ensure optimal perfor-
mance [108]. 

Cross-validation is applied with 10 percent of the training dataset to estimate how well-
learned skills by the ensemble perform on unseen data. It also evaluates the performance of 
the ensemble's accuracy and how well it has learned the feats of interest via resampled and 
balanced dataset technique. We use the stratified k-fold to rearrange the data so that each fold 
is a good representation of the dataset [109] and ensure our proposed stacking ensemble is 
devoid of overfit with improved generalization. We tested our resultant ensemble as an em-
bedded system deployed via Flask API and Streamlit to help port the application onto various 
platforms as an embedded system. 

4. Results and Discussion 

4.1. Result Findings and Discussion 

Table 6 shows the performance evaluation metrics for all base learners (Decision Tree, 
Random Forest, and AdaBoost) with the meta-learner (i.e., XGBoost Regressor). Note that 
tree-based ensemble learning aims to reduce the outcome relations conflict caused by the 
diversity and computational complexities of the dataset used. And in turn, ensure the ensem-
ble is devoid of overfit considering the 3-base-learners. However, since the stacking ensemble 
can combine the performance of all 3-predictor classifiers – we decided to ensure simple and 
non-complex constructs for the tree-based base-learners used. 
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Table 6. Performance Evaluation of Stacked Ensemble 'Prior/After' RFE Feature Selection Mode 
and SMOTE-Tomek Links Data Balancing 

Models 
Prior RFE and SMOTE-Tomek After RFE and SMOTE-Tomek 

Accuracy Precision Recall F1 Accuracy Precision Recall F1 

DT 0.6913 0.6846 0.6909 0.7100 0.9815 0.9805 0.9745 0.9805 

AdaBoost 0.7134 0.7189 0.7208 0.7290 0.9968 0.9318 0.9848 0.9881 

Random Forest 0.7323 0.7362 0.7409 0.7501 0.9981 0.9541 0.9881 0.9925 

Proposed 0.8799 0.8223 0.8192 0.8874 1.0000 1.0000 0.9999 1.0000 

 
Table 6 shows that prior to applying the RFE feature selection mode and SMOTE-

Tomek links data balance approach. The base-leaners (i.e., DT, RF, and Adaboost) yield ac-
curacy of 0.6913, 0.7134, and 0.7323, respectively - with recall of 0.6909, 0.7208 and 0.7409 
respectively, And precision of 0.6846, 0.7189, and 0.7362 respectively – with F1 of 0.71, 
0.7290, and 0.7501 respectively. Conversely, the meta-learner yields an Accuracy of 0.8799, 
recall of 0.8192, precision of 8223, and F1-score of 0.8874, respectively, which leverages the 
transfer learning flexibility via the stacking mode to yield improved metrics. The poor gener-
alization before recursive feature elimination and data balancing agrees with [110]. It has also 
been attributed to the fact that sophisticated models also yield improved performance gener-
alization. 

Conversely, applying the RFE feature selection approach and SMOTE-Tomek data bal-
ancing positively impacted the stacking ensemble results. Adaboost and DT were observed 
to underperform when compared to Random Forest, which agrees with [41]. However, all 3-
base leaners (i.e., DT, RF, and Adaboost) yield training accuracy of 0.9815, 0.9968, and 
0.9981, respectively. With recall score(s) of 0.9745, 0.9848, and 0.9881, respectively; and pre-
cision of 0.9805, 0.9318, and 0.9541, respectively; and F1 of 0.9805, 0.9881, and 0.9925, re-
spectively. Conversely, the meta-learner yields perfect accuracy, recall, precision, and F1 
scores. Thus, our ensemble classifies hypertension data accurately as detected [104] dataset 
and has proven to efficiently reduce bias and variance as in the confusion matrix of Figure 5 
– yielding a more stable and robust heuristic for new data and/or hidden underlying param-
eters within the training dataset. 

 

 
Figure 5. Confusion Matrix for the Stacking Ensemble 

 
The study supports that the recursive feature elimination approach greatly influences the 

selection of parameters good enough in the quest for ground truth. In turn, impacts the over-
all performance by identifying features of importance that influence model prediction [111]. 
It also enhanced efficiency in differentiating between true-positive and true-negative scores 
and between false-positive and false-negative scores. 

4.2. Comparison 

As we sought to benchmark this proposed model with existing studies – we achieved 
this by exploring the high performance of our stacked ensemble across the domain dataset to 
demonstrate its flexibility, adaptability, robustness, and prediction capability – on previous 
studies that utilized the same dataset. Our limited reviews found no study with the same da-
taset to enable such a comparison. Thus, we benchmarked the proposed ensemble against 
studies that explored similar (stacked learning) design constructs utilized in classification and 
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regression tasks with domain datasets ranging from medical to IoT security, as seen in Table 
8. 

While some domain task datasets have proven much easier to be classified, Others have 
also conversely proven to be more painstaking [89]. Some domain task(s) such as medical and 
image records – require its chosen ensemble design metric to be strongly impacted by the 
consequence of diagnostic errors within the captured dataset. Thus, the measure of both 
specificity and sensitivity becomes two critical feats to be evaluated since they are directly 
related to the patient clinical outcomes. 

Table 8. Performance Evaluation with Feature selection and Data Balancing 

Method F1 Accuracy Precision Recall 

Ref [20] 1.0000 1.0000 0.9999 1.0000 

Ref [112] 0.9981 0.9800 0.9800 0.9800 

Ref [113] 0,9968 0.9318 0.9848 0.9881 

Ref [114] 0.9999 0.9997 0.9991 0.9997 

Our Method 1.0000 1.0000 1.0000 0.9999 

5. Conclusions 

Finding the balance between recall and specificity is also a crucial feat, as too much em-
phasis on one can ripple across the dataset – to yield a significant tradeoff for the other. In 
addition, accuracy can yield the idea of a model's reliability, which may also be less insightful 
for imbalanced datasets that sometimes render distorted perceived model performance [49]. 
However, in truth and practice – F1 has been utilized in assessing a heuristic's performance 
on criteria such as data imbalance – as it has been found to provide an altruist insight into a 
technique's effectiveness in classifying positive cases without the overprediction of false pos-
itives. In tree-based ensembles – bagging mode at its simplest form explores majority voting 
from several independent decision trees to aid its prediction. The boosting approach learns 
from the errors of its base learner such that each successor tree is sequentially based and/or 
linked to account for its predecessor's error. We argue that when making a decision, it is better 
to do it based on experiences from previous mistakes rather than deciding for the first time. 
This study proves that using a stacking ensemble with XGB as a meta-classifier (with its hy-
per-parameter tuning) can help perfect scores for F1, and other score criteria as required for 
many data mining tasks. 
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