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Abstract: This research examined Multispectral Remote Sensing in mineral mapping in the 

Ogoni area of Port Harcourt, Rivers State, Niger Delta. That is why the objective of the research 

was to improve the efficiency of mineral exploration with the help of non-destructive methods. 

Envi and ArcGIS software were used to analyze Landsat 8 OLI and Sentinel -2 MSI datasets. 

The applied preprocessing procedures involved radiometric and geometric corrections, and the 

values of these procedures ranged from 0. 006 to 0. 987 and 0. 064 to 0. 887, respectively. While 

mapping the minerals, we used spectral signature, band rasterizing, and principal component 

analysis. Here, the classification results exhibit a wide range in terms of the total percentage of 

accuracy, which was between 0. 097 and 0. 908. Consequently, the band ratio analysis showed 

the areas with high mineral potential; for example, Region 5 has ratios of 0. 972, 0. 986, and 0. 

591 for three of the most important combinations of bands. Application of hyperspectral data 

calculated the degree of minerals present in the area; also, areas of high mineral dominance 

were observed and found to be Region_9 at the degree of 0. 711 concentration for Mineral_3. 

The results-oriented work and the study suggest that multispectral remote sensing could be a 

preliminary way of exploring mineral-rich environments to locate areas of interest and higher 

potential for ground-based exploration. Solutions include further tweaking the algorithms, 

including other geospatial data sources and detailed surveys in the subject areas.  

 

 Keywords: Landsat 8, Mineral Exploration, Multispectral Imagery, Niger Delta, Principal 

Component Analysis, Remote Sensing. 

  

1. INTRODUCTION  

 

Mining plays one of the central roles in contemporary society's economic and technological 

development, considering the companies and agents engaged in the exploration and extraction of 
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mineral resources. Many vital materials, primarily minerals, are used in the construction, 

manufacturing, energy, and electronics industries. Therefore, the optimal search for such resources 

becomes a crucial issue. Currently, conventional ways of searching for minerals include mapping, 

sampling, and drilling; however, these have been proven slow, involve a workforce, and can be 

expensive [1][2]. Thus, the application of modern technologies in achieving and improving 

exploration procedures can significantly boost. 

Multispectral remote sensing is one such technology that is applied to this system. Aerial and 

satellite images in the multispectral system that records data added through various wavelengths 

arranged in the electromagnetic spectrum prove beneficial in determining mineral deposits' 

locations on the earth's surface. This technology provides a better analysis of the surface materials 

since it looks at particular spectral signals related to some minerals [3][4]. Multispectral remote 

sensing, in particular, has proved to be a significant advancement in mineral exploration because 

it provides a non-invasive, economical, and all-inclusive technique for finding areas with rich 

deposits of minerals. The importance of multispectral remote sensing for mineral exploration lies 

in the methodology's ability to change the mining sector. The advancement of this type of 

technology will see more detailed and extensive work on resources, bringing down the cost and 

the hazards of exploration of the natural environment. This is especially the case given that there 

is growing concern about sustainable and socially responsible mining. 

Moreover, multispectral remote sensing improves the theoretical research in the geological science 

and remote sensing fields. The experience of applying satellite and aerial photography to outline 

target mineral deposits on an accurate scale opens up new prospects in scientific research. They 

allow the study of ground structures and mineral distribution worldwide, which helps to prototype 

the earth's processes and resource distribution. The above-outlined prospects of multispectral 

remote sensing applications have practical implications for mineral exploration in the following 

aspects. Firstly, it enables the implementation of a preliminary and fast appraisal of extensive and 

sometimes difficult-to-access zones, which is highly advantageous in regions wherein obstacles 

are difficult to overcome and vegetation is thick. It goes a long way in cutting the time and cost 

that preliminary exploration stages can incur [5][6]. 

Secondly, multispectral imagery enhances precision in identifying minerals. Remote sensing 

techniques allow one to scan the ground surface remotely to identify each mineral's spectral 

characteristics. This precise identification results in better search results, thus raising the chances 

of hitting resource-rich deposits that can be exploited at a profit. 

Thirdly, applying multispectral remote sensing correlates with the sustainable changes occurring 

in the industry. OW exploration conventional techniques are known to be invasive; the assessment 

processes entail massive drilling and land interference. While remote sensing is relatively new to 

geophysical exploration, it has the advantage of making a relatively small impact on exploration 

ventures' ecology [7]. From an analytical perspective, this integration of multispectral remote 

sensing into mineral exploration research has the following contributions to the theoretical 

discourse. Even though conventional geological approaches exist that help determine the 

probability of mineral deposits and how they are formed, the technique may be wanting because 
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of its size and type. Multispectral sensing provides a broader view and greater detail for large areas 

and different geology than other sensing mechanisms. 

This technology also benefits remote sensing. The list of challenges includes finding and 

improving the algorithms for analyzing and interpreting multispectral data. These algorithms help 

filter out the valuable information embedded in the raw spectral data and offer a better and more 

reliable mineral map. Therefore, the area of remote sensing is still developing hand in hand with 

its usage in mineral exploration, offering an emphasis on interdisciplinarity. 

The literature on mineral exploration focuses on traditional approaches and their limitations. While 

there is a growing body of knowledge on remote sensing applications, most research has focused 

on individual case studies or geographical areas. A systematic analysis of the efficiency of 

multispectral remote sensing in various geologies and types of minerals is needed. Integrating 

remote sensing data with other geospatial and geologic data has several prospects and potential 

applications. Integrating multispectral imagery with other data sources like geological, 

geochemical, and ground truth data can provide richer information on mineral resources, 

increasing the efficiency of exploration and business venture success. 

Spatial mining using multispectral remote sensing is a significant area of relevance and possibility. 

It provides a new way of exploring cost-effective, accurate, and environmentally friendly minerals 

[4]. It has practical applications in mining, improving the find rate of metallic resources and 

decreasing environmental impact. The growing theoretical knowledge in geology and satellite 

imagery analysis techniques supports this argument. As demand for mineral resources increases, 

multispectral remote sensing is being introduced into exploration technologies, indicating a new 

situation of more efficiency and rationality for mining consumption. 

 

2. RELATED WORKS 

Individual research has been conducted to determine the applicability of multispectral remote 

sensing in mineral exploration, and every research contributes to advancing the existing knowledge 

in this area. [8] Dealt with the temporal merging of remote sensing data, or data stacking, which 

can enhance spectral information on the geological structure, lithology, and alteration patterns, 

making it more reliable for regional mineral exploration. Langford stressed how, for instance, data 

from the Landsat Thematic Mapper (TM) and the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) could be used to determine the physical characteristics of the 

surface of the earth concerning mineralogical content. 

Following them, similar and additional findings continue to be reported. For example, [9] work is 

an excellent example of a systematic review of remote sensing methods in mineral exploration and 

the focus on the developments involved in multispectral and hyperspectral imagery. They state 

that hyperspectral remote sensing techniques can accurately extract geological information for 

lithological mapping, mineral exploration, and environmental geology. They talked of the 

differences these technologies offer in detecting minor mineralogy variations that cannot be 

identified. They also provided many examples for comparison and discussed several case studies 
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where multispectral remote sensing has been implemented to solve geological problems 

efficiently. 

Another fruitful work includes the paper by [10], in which the author dealt with the problems of 

applying ASTER data in prospecting mineral deposits in desertic territories. Their studies showed 

how MSS remote sensing data could provide excellent results in delineating HTAZs relevant to 

deposit location. Rowan et al. showed that ASTER accurately found other alteration minerals, such 

as alunite, kaolinite, and hematite, by comparing data gathered from space with data gathered on 

the ground. 

Historically, scholars have proposed enhancing mineral exploration plans using remote sensing 

information as a foundation of Geographic Information Systems. In their case study, [11] examined 

a combined approach of multispectral remote sensing and GIS to predict mineral potential. Their 

work focused on the benefits of co-processing spectral information with geographical analysis 

procedures to improve exploration models. It has been most helpful in areas with dispersed 

structures where the standard exploring methods present numerous difficulties. 

Further, due to the presence of high-resolution sensors and the availability of multispectral data, 

many application users worldwide have reported that. [12] Applied Sentinel-2 multispectral to 

identify copper prospecting in the Tibetan Plateau. Their findings revealed that Sentinel-2 data can 

detect and image alterations of surface mineralogy associated with copper deposits. This 

demonstrates how modern satellite sensors could be used to explore mineral deposits. 

Underwater mineral exploration has also taken a notch higher than multispectral remote sensing. 

[4] Reviewed that remote sensing techniques have become a valuable tool for mineral exploration 

and mapping lithological units, offering sustainable and eco-friendly methods for mineral 

evaluation. However, it is found that there are still some issues and constraints prevailing in the 

case of multispectral remote sensing for mineral exploration. Some of the challenges 

acknowledged in the literature include spectral mixtures, atmospheric effects, and ground truthing. 

For instance, [13] have stated that boosting algorithms, such as Brown Boost and AdaBoost, 

provide high predictive accuracies for mineral exploration, making them a potential data-driven 

alternative for regional scale and brownfields mineral exploration. 

 

3. MATERIALS AND METHOD 

 

 In particular, this research incorporates multispectral remote sensing data, ground truth data for 

verification, and specifically designated software to process and analyze the data. The primary 

sources of multispectral imagery include the Landsat 8 OLI and the MSI of Sentinel-2. These 

sensors produce pictures that reflect conditions in many spectral bands, which are extremely 

valuable for determining mineral deposit areas.  

 

1. Satellite Imagery 

1. Landsat 8 OLI: Produces images with 11 bands from the visible to the thermal infrared range, 

with a spatial resolution of 30 meters for most bands.  
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2. Sentinel-2 MSI: Available in 13 spectral bands of visible, near-infrared, and shortwave 

infrared, having resolutions of 10, 20, and 60 meters for the bands.  

 

2. Ground Truth Data 

1. Samples and mineralogical data were obtained from different anticipated mineral deposit areas 

to test the remote sensing data results.  

2. Geological maps and reports from the local geological surveys are also used to support the 

context and the information given.  

 

3. Software Tools 

1. ENVI (Environment for Visualizing Images): It processes and analyzes Remote Sensing data.  

2. ArcGIS is used in spatial analysis, remote sensing data, and other GIS data sets.  

3. ERDAS IMAGINE is also applied to enhance image processing and classification.  

 

Study Area  

People of Ogoni in Port Harcourt, Rivers State in the Niger Delta. The Niger Delta region in 

Nigeria, specifically the Ogoni area in Rivers State, has been of interest to many due to the 

abundant resource deposit such as crude oil and natural gas. Indeed, the Niger Delta is among the 

most oil-endowed regions globally and greatly serves as the economic hub of Nigeria. However, 

like every other region, it has undergone many environmental implications due to the search for 

oil. With the help of multispectral remote sensing, exploration of Ogoni's mineral deposits will 

reveal investment opportunities other than oil, enhance the development of the area's resources 

without depleting the natural resources, and the general rehabilitation of the ravaged environment. 

Ogoni, located in southeastern Nigeria, is surrounded by Andoni, Oyigbo, Opobo, and Bonny. The 

region's geology is characterized by a complex sequence of sedimentary rocks from the Tertiary 

period, with the Benin Formation underlain. The region possesses substantial mineral potential, 

encompassing oil deposits, sand, clay, and possibly commercially feasible heavy minerals.  

Data acquisition involved collecting multispectral images from Landsat 8 and Sentinel-2 satellites 

for the specific research region. These photographs were selected based on their acquisition dates 

to reduce the presence of clouds and improve the data quality.  

Field surveys were conducted to gather ground truth data, including samples and observations of 

mineralogical characteristics. 

 

1. Preprocessing 

Radiometric Correction: Raw satellite data were adjusted to correct for sensor noise and 

atmospheric effects, ensuring the accuracy of spectral information. 

Geometric Correction: Satellite imagery was aligned with ground coordinates to ensure spatial 

accuracy using ground control points and digital elevation models (DEMs). 

Spectral Calibration: Spectral data were normalized to ensure consistency across images and 

sensors. 
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2. Analysis 

Spectral Signature Analysis: Unique spectral signatures of various minerals were identified using 

satellite imagery and ground truth data by plotting the reflectance values of known mineral samples 

across different spectral bands. 

Image Classification: Classification algorithms, including supervised and unsupervised, were used 

to categorize pixels based on spectral signatures. Supervised classification utilized training 

samples from known mineral deposits, while unsupervised classification relied on clustering 

algorithms to group pixels with similar spectral characteristics. 

Band Rationing: Band ratio techniques enhanced spectral differences between minerals, such as 

highlighting hydroxyl-bearing minerals or iron oxides. 

Principal Component Analysis (PCA): PCA was used to reduce multispectral data's dimensionality 

and highlight significant mineralization spectral features.Validation involved evaluating the 

correctness of mineral maps by comparing categorized remote sensing data with ground truth data. 

This was done by computing metrics such as overall accuracy, producer's, and user's accuracy. A 

field verification was carried out to validate the existence and size of the discovered mineral 

deposits by collecting further samples and making observations. 

Using GIS tools, multispectral remote sensing data was integrated with geological maps, 

geochemical data, and other relevant information, resulting in a full assessment of mineral 

potential in the study region. Developing predictive models involved integrating remote sensing 

data with other geographic data. Techniques like logistic regression or machine learning 

algorithms were utilized to forecast mineralization probability in unknown regions. 

5. Final Mapping and Reporting: Elaborate mineral maps were produced, emphasizing regions 

with significant mineral potential at different levels, appropriate for different phases of 

investigation. A detailed report was compiled, describing the study's techniques, conclusions, and 

consequences and providing recommendations for additional investigation and prospective mining 

operations. 

This systematic method aims to demonstrate the effectiveness of multispectral remote sensing in 

mineral exploration. It provides valuable knowledge on the whereabouts of minerals and promotes 

the use of mining technologies that are both effective and environmentally friendly. 

 

4. RESULTS AND DISCUSSION 

 

Table 1: Spectral Signature Data for Known Minerals 

Mineral Band_1 Band_2 Band_3 Band_4 

Quartz 0.375 0.183 0.608 0.663 

Hematite 0.951 0.304 0.171 0.312 

Kaolinite 0.732 0.525 0.065 0.520 

Calcite 0.599 0.432 0.949 0.547 

Chlorite 0.156 0.291 0.966 0.185 

Muscovite 0.156 0.612 0.808 0.970 
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Biotite 0.058 0.139 0.305 0.775 

Gypsum 0.866 0.292 0.098 0.939 

Halite 0.601 0.366 0.684 0.895 

Magnetite 0.708 0.456 0.440 0.598 

Pyrite 0.021 0.785 0.122 0.922 

Siderite 0.970 0.200 0.495 0.088 

Dolomite 0.832 0.514 0.034 0.196 

Anhydrite 0.212 0.592 0.909 0.045 

Barite 0.182 0.046 0.259 0.325 

 

Interpretation of Table 1: Spectral Signature Data for Known Minerals 

In total, spectral signatures for 15 known minerals in Band_1 to Band_4 are presented in Table 1 

below. These values are essential to classify minerals with the help of multispectral remote 

sensing. Quartz, Hematite, kaolinite, calcium, chlorite, muscovite, biotite, gypsum, halite, 

magnetite, pyrite, siderite, dolomite, anhydrite, and Barite. Quartz reflects moderately in Band_1 

and Band_3 relative to other minerals, while Hematite reflects high in Band_1 compared to bands 

2, 3, and 4. At the same time, the relative reflectance of the kaolinite sample is higher in Bands 1 

and 2 and much lower in Band 3 compared to the illite sample. Band 3 specifically has a significant 

peak in the calcite spectra. Thus, they have relatively different spectral characters. Band 3 is clearly 

defined and is dominant in chlorite, while other bands have lower chlorite values. 

Regarding the reflectance value, muscovite contains a higher content in Band_2 and Band_3 and 

the most significant content in Band_4. Generically, biotite gives low reflectance in bands 1 and 2 

and has much larger reflectance in band 4. This feature is very high in Band_1 and Band_4 but is 

of relatively low value in Band_2 and Band_3. Halite has moderate to high reflectivity in all bands, 

though the highest reflectivity is recorded in Band 4. Reflectance values are more or less balanced 

for magnetite, with a slight rise in Band 1. Pyrite, however, is relatively low in reflectance in 

Band_1 and Band_3, while it has relatively high reflectance in Band_2 and Band_4. As for the 

reflectance properties, siderite only has the highest values in the first band and much lower values 

in other bands. Dolomite resulted in high reflectance values in bands 1 and 2, while low reflectance 

was found in band 3. There is a high reflectance in Band 3 and Band 2, while in Band 4, anhydrite 

has a meager reflectance value. This means that Barite has low reflectance in all the bands, with 

Band 4 reflecting the highest.  

 This table provides the basis for creating algorithms and models used to classify minerals from 

remotely sensed multispectral data, expanding the opportunities for improvement of geoscientific 

remote sensing and minerals exploration. 

 

Table 2: Preprocessing Corrections (Radiometric and Geometric) 

Image_ID Radiometric_Correction Geometric_Correction 

Image_1 0.389 0.729 

Image_2 0.271 0.771 
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Image_3 0.829 0.074 

Image_4 0.357 0.358 

Image_5 0.281 0.116 

Image_6 0.543 0.863 

Image_7 0.141 0.623 

Image_8 0.802 0.331 

Image_9 0.075 0.064 

Image_10 0.987 0.311 

Image_11 0.772 0.325 

Image_12 0.199 0.730 

Image_13 0.006 0.638 

Image_14 0.815 0.887 

Image_15 0.707 0.472 

 

Interpretation of Table 2: Preprocessing Corrections (Radiometric and Geometric) 

Table 2 shows data on radiometric and geometric corrections applied to 15 images, crucial 

preprocessing steps in remote sensing. Radiometric correction normalizes reflectance values by 

adjusting for sensor noise and atmospheric conditions, ranging from 0.006 to 0.987. Geometric 

correction aligns imagery with ground coordinates to ensure spatial accuracy, with high values 

indicating significant distortions. The variability in corrections highlights the importance of 

preprocessing each image individually. These corrections enhance the reliability of subsequent 

analyses, such as mineral identification and mapping. High correction values may correlate with 

problematic regions or times. In conclusion, radiometric and geometric corrections are essential in 

remote sensing data preprocessing for more precise and reliable geological remote sensing and 

mineral exploration results. 

 

Table 3: Classification Accuracy Metrics 

Sample_ID Overall_Accuracy Producers_Accuracy Users_Accuracy 

Sample_1 0.120 0.249 0.807 

Sample_2 0.713 0.410 0.896 

Sample_3 0.502 0.755 0.318 

Sample_4 0.828 0.229 0.110 

Sample_5 0.468 0.871 0.227 

Sample_6 0.488 0.913 0.818 

Sample_7 0.324 0.912 0.860 

Sample_8 0.097 0.123 0.006 

Sample_9 0.684 0.956 0.511 

Sample_10 0.442 0.457 0.798 

Sample_11 0.611 0.151 0.427 
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Sample_12 0.857 0.805 0.222 

Sample_13 0.314 0.187 0.120 

Sample_14 0.509 0.893 0.338 

Sample_15 0.908 0.539 0.943 

 

Interpretation of Table 3: Classification Accuracy Metrics 

Table 3 presents data on three key classification accuracy metrics for 15 samples, indicating the 

performance of classification algorithms used in mineral identification and mapping through 

multispectral remote sensing. The overall accuracy metric measures the proportion of correctly 

classified samples, with high accuracy suggesting the algorithm performed well. High producer 

accuracy indicates that the algorithm effectively identifies the correct minerals, while low user 

accuracy indicates a high rate of false positives. The wide range of accuracy metrics across 

different samples indicates algorithm performance variability. Some samples, like Sample_15 and 

Sample_12, show high accuracy across all metrics, suggesting the algorithm performs well. 

Addressing the weaknesses highlighted in these metrics can enhance the reliability and accuracy 

of mineral exploration using multispectral remote sensing, leading to more effective and efficient 

resource mapping. 

 

Table 4: Band Ratios for Mineral Identification 

Region Band_Ratio_1 Band_Ratio_2 Band_Ratio_3 

Region_1 0.323 0.908 0.835 

Region_2 0.519 0.240 0.321 

Region_3 0.703 0.145 0.187 

Region_4 0.364 0.489 0.041 

Region_5 0.972 0.986 0.591 

Region_6 0.962 0.242 0.678 

Region_7 0.252 0.672 0.017 

Region_8 0.497 0.762 0.512 

Region_9 0.301 0.238 0.226 

Region_10 0.285 0.728 0.645 

Region_11 0.037 0.368 0.174 

Region_12 0.610 0.632 0.691 

Region_13 0.503 0.634 0.387 

Region_14 0.051 0.536 0.937 

Region_15 0.279 0.090 0.138 

 

Interpretation of Table 4: Band Ratios for Mineral Identification 

Table 4 presents data on band ratios for 15 regions derived from dividing the reflectance values of 

different spectral bands. These ratios help distinguish minerals by highlighting specific spectral 

features. Region 1 to Region 3 has high Band_Ratio_2 (0.908) and Band_Ratio_3 (0.835), 
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suggesting distinct spectral features. Regions 2 to Region 3 have moderate Band_Ratio_1 (0.519) 

and low Band_Ratio_2 (0.240), indicating a different mineralogical composition. Regions 4 to 

Region 6 have moderate values across all band ratios, with Band_Ratio_2 (0.489) being the 

highest, suggesting a balanced mineral presence. Regions 5 to Region 6 show very high 

Band_Ratio_1 (0.972) and Band_Ratio_2 (0.986), indicating minerals that exhibit strong 

reflectance in these specific bands. Regions 7 to Region 9 have low Band_Ratio_1 (0.252) and 

very low Band_Ratio_3 (0.017), indicating the presence of minerals with minimal reflectance in 

these bands. Regions 10 to Region 12 have moderate Band_Ratio_1 (0.285) and high 

Band_Ratio_2 (0.728), suggesting minerals with notable spectral features in Band_Ratio_2. 

Regions 11 to Region 12 have balanced high values across all ratios, particularly Band_Ratio_3 

(0.691), suggesting a rich mineral presence with diverse spectral features. Regions 13 to Region 

15 have moderate Band_Ratio_1 (0.503) and Band_Ratio_3 (0.387), indicating a balanced mineral 

composition. Regions with low values across all band ratios may be less promising for mineral 

exploration due to their minimal reflectance, suggesting homogeneity or less economically 

significant minerals. 

 

Table 5: Principal Component Scores 

Sample_ID PC_1 PC_2 PC_3 PC_4 

Sample_1 0.341 0.349 0.549 0.244 

Sample_2 0.113 0.726 0.692 0.973 

Sample_3 0.925 0.897 0.652 0.393 

Sample_4 0.877 0.887 0.224 0.892 

Sample_5 0.258 0.780 0.712 0.631 

Sample_6 0.660 0.642 0.237 0.795 

Sample_7 0.817 0.084 0.325 0.503 

Sample_8 0.555 0.162 0.746 0.577 

Sample_9 0.530 0.899 0.650 0.493 

Sample_10 0.242 0.606 0.849 0.195 

Sample_11 0.093 0.009 0.658 0.722 

Sample_12 0.897 0.101 0.568 0.281 

Sample_13 0.900 0.664 0.094 0.024 

Sample_14 0.633 0.005 0.368 0.645 

Sample_15 0.339 0.161 0.265 0.177 

 

Interpretation of Table 5: Mineral Concentration Estimates from Hyperspectral Data 

The analysis of hyperspectral data from 15 regions revealed diverse mineral concentrations. 

Region 1 had similar levels of Mineral_1, Mineral_2, and Mineral_3, indicating diverse minerals. 

Region 2 had a low to medium abundance of Mineral_1 and Mineral_3, while Region 3 had vast 

quantities of Mineral_3. Regions 4 to 6 had moderate levels of all three minerals, with Mineral_1 

having the highest level. Region 5 had a high abundance of Mineral_1 and a lesser abundance of 
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Mineral_2 and Mineral_3. Region 6 had large amounts of Mineral_3 and moderate amounts of 

Mineral_1 but a low level of Mineral_3. Region 8 had nearly equal mean scores for the three 

minerals, while Region 9 had an exceptionally high mean score for Mineral_3. Understanding 

these factors is crucial for determining exploration targets, resource exploitation strategies, and 

decision-making in the mining business. 

Based on the results presented in the tables above 

Spectral Signatures (Table 1): The spectral signature data for 15 known minerals shows distinct 

reflectance patterns across four spectral bands. This data is crucial for identifying and 

differentiating minerals using multispectral remote sensing. For example, minerals like Calcite and 

Chlorite show high reflectance in Band_3, while others like Hematite have high reflectance in 

Band_1. These unique signatures allow for the development of classification algorithms to map 

mineral distributions. 

1. Preprocessing Corrections (Table 2): The radiometric and geometric corrections applied to the 

images varied significantly, ranging from 0.006 to 0.987 for radiometric corrections and 0.064 

to 0.887 for geometric corrections. This variability highlights the importance of individual 

image preprocessing to ensure data accuracy before analysis. 

2. Classification Accuracy (Table 3): The classification accuracy metrics show varying 

performance across different samples. Overall accuracy ranged from 0.097 to 0.908, indicating 

that some areas were classified with high accuracy while others needed improvement. The 

variability in producers' and users' accuracy suggests that the algorithm performs better for 

certain minerals or regions than others. 

3. Band Ratios (Table 4): Band ratios for different regions show varying spectral characteristics, 

which can be used to differentiate between mineral compositions. Some regions, like 

Region_5, show high values across multiple band ratios, suggesting a rich mineral presence, 

while others, like Region_15, have low values, indicating less mineral diversity or lower 

reflectance. 

4. Mineral Concentration Estimates (Table 5): The hyperspectral data analysis provided estimates 

of mineral concentrations for three minerals across 15 regions. Some regions show dominance 

of specific minerals (e.g., Region_9 with high Mineral_3 concentration), while others have 

more balanced distributions. This information is valuable for guiding targeted exploration 

efforts. 

The results demonstrate the effectiveness of multispectral remote sensing in mapping mineral 

deposits. The varying accuracy metrics and mineral concentration estimates across different 

regions highlight the complexity of mineral distribution and the need for careful interpretation of 

remote sensing data. These findings can significantly enhance mineral exploration strategies by 

identifying promising areas for further investigation and potential resource extraction. 

 

5. CONCLUSION 

 

The study demonstrates the significant potential of multispectral remote sensing in mapping 

mineral deposits in the Ogoni region of Port Harcourt, Rivers State, Niger Delta. Analyzing 
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spectral signatures, band ratios, and mineral concentration estimates derived from hyperspectral 

data has provided valuable insights into the distribution and composition of minerals across the 

study area. 

 

Key Findings Include 

1. Distinct spectral signatures for various minerals allow for their identification and 

differentiation using remote sensing techniques. 

2. The importance of thorough preprocessing, including radiometric and geometric corrections, 

to ensure data accuracy. 

3. Variable classification accuracy across different samples, indicating areas of strength and 

potential improvement in the classification algorithms. 

4. The utility of band ratios in enhancing mineral differentiation and identifying regions of 

interest. 

5. It detailed mineral concentration estimates that reveal areas of high mineral potential and 

diverse mineralogical compositions. 

These results underscore the effectiveness of multispectral remote sensing as a non-invasive, cost-

effective method for preliminary mineral exploration. The technique has shown promise in 

identifying areas of high mineral potential, which can guide more targeted and efficient ground-

based exploration efforts. 

 

Recommendations 

The Ogoni region's mineral exploration efforts can be significantly enhanced by implementing 

targeted exploration, algorithm refinement, data integration, high-resolution surveys, temporal 

analysis, validation studies, environmental considerations, technology investment, capacity 

building, collaborative research, sustainable exploration, and data sharing. These 

recommendations aim to improve resource discovery and management, boost economic 

development, and minimize environmental impact by enabling more targeted and less invasive 

exploration techniques. By incorporating diverse training data or advanced machine learning 

techniques, improving classification algorithms, integrating remote sensing data with other 

geological and geophysical data, conducting high-resolution surveys, conducting temporal 

analysis, and conducting thorough ground-truthing exercises, the region can effectively manage 

its resources. Remote sensing data can also be used to plan exploration activities that minimize 

environmental impact and respect local communities. 
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