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Abstract 

Fresh vegetables serve as major sources of micronutrients yielding critical vitamins, 

phytochemicals and essential minerals that improve wellness and supportive in staving-off 

non-communicable diseases, NCDs. Vegetables are generally cultivated in soils that also 

contain resident microorganisms that may contaminate them directly or shed from human and 

animal activities. The current study intended to evaluate fresh raw vegetables on retail in the 

open market in Owo Township, Ondo State, Nigeria for the presence of the Gram-negative 

bacterial flora. Twelve samples of six different types of vegetables collected and examined, 

applying bacteriological techniques for microbial count and assortments of Gram-negative 

bacteria. The mean bacterial load ranged from 3.66-111.0 x 106 CFU/g and seven genera of 

Gram-negative bacteria recovered. Klebsiella spp, 22 representing 25% of the isolates was the 

most dominant microorganism. Escherichia coli 20(22.7%) was the next in frequency from 

which an isolate serotyped 0157:H7 strain. Other isolates were Enterobacter spp 17(19.3%) 

Proteus spp 15(17.0%), Pseudomonas aeruginosa 10(11.4%) and two, 2(2.3%) isolates each 

of Serratia marcescens and Salmonella enterica. The isolates were most susceptible to 

ciprofloxacin and levofloxacin, and least to amoxicillin-clavulanate. All the isolates were 

resistant to amoxicillin and tetracycline. Extended-spectrum beta-lactamases were detectable 

in five of the seven genera (2.3-4.5%) excluding Serratia marcescens and Samlonella enterica 

isolates. This study exposed evidence of vegetables pollution with microorganisms associated 

with foodborne outbreaks of illnesses, compelling an urgency for education in handling 

practices compatible with the safety of fresh vegetables and related farm produce. 
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Introduction 

Vegetables represent a vital source of vitamins, minerals including phytochemicals necessary 

for the modulation of anti-oxidative activity and dietary fiber when consumed in adequate 

quantities and regularity. They in addition, help to reduce the incidence of non-communicable 

diseases, NCDs as obesity, cardiovascular diseases, CVDs and neoplasms [1-7]. Leafy 

vegetables consist of a wide variety of nutrients that aid digestion and prevent oxidative stress 

[8-10]. The World Health Organization, in recognition of the pivotal role vegetables play in 

humans’ wellbeing recommends 400 grams in five daily servings of vegetables and fruits and 

early introduction during childhood [11,12]. Leafy vegetables like many other plants possess 

adhering particles, APs that aid the contamination with particulate matter that can include 

bacteria and parasites amongst others, even after washing [13,14]. Microorganisms are 

constantly present in most human environments and abundant in the sites for the production of 

vegetables where the get access and become potential vehicles for the transmission of food-

borne diseases [15-17]. There are reports that microorganisms can be shed into vegetables and 

fruits during processing and handling stages [18]. Vegetables laden with microorganisms 

especially Salmonella species, (Salmonella spp) Shigella species (Shigella spp) and 

enterotoxigenic strains of Escherichia coli (E. coli) pose remarkable health hazards to 

consumers [19,20]. Consumption of raw or partially cooked vegetables yields greater 

nutritional benefits, however, when this happens under unsanitary conditions, food-related 

illness may result [21]. The presence of antimicrobial resistant, AMR Gram-negative bacteria 

have been reported in vegetables to have grave repercussions for the health of consumers in 

terms of elevated costs of treatment, reduced chances of treatment success and the 

consequential increase in  mortality rates [22-25]. Infections emanating from microorganisms 

contaminating food commonly manifest as diarrheagenic illnesses with greater severity and 

often top-ranking cause of higher mortality rates in children under 5 years 26-28]. This study 

aimed to examine fresh raw vegetables on retail in the open market in Owo Township for the 

presence of Gram- 

Materials and Methods 

Study Design: 

A cross-sectional study to determine the prevalence Gram-negative bacteria flora of fresh raw 

vegetables on retail in the open market in Owo Township, Ondo State, Nigeria in June 2024. 

Collection of Samples 

Ninety-six (96) samples of six common varieties of vegetables in retail bunches in the open 

market in Owo Township were randomly procured from retailers; namely fluted pumpkin 

(Telfairia occidentalis), water leaf (Talinum triangulare), bitter leaf (Vernonia amygdalina), 

African spinach (Amaranthus cruentus), spring onions (Allum fistulosum) and cabbage 

(Brassica oleracae) into sterile autoclavable polythene bags and stored in a cold chamber. The 

samples were thereafter, transported to the laboratory for examination within 2 h of collection. 

Examination of Samples 

Ten gram (10 g) of each vegetable sample was weighed aseptically into 90 mL of Buffered 

Peptone Water, BPW (Oxoid CM 1049), and placed on mechanical shaker for 5 min from 

which 0.1 mL each was inoculated onto MacConkey agar, MCC (Oxoid CM 0007) and 

Salmonella-Shigella agar, SSA (Oxoid CM 0099). Further ten-fold serial dilutions from the 
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stock (102) to yield 103. 104, 105…1010 was done and 0.1 mL of each dilution was inoculated 

onto well-dried plates of Trypicase soya agar, TSA (Oxoid PO 0163A) in replicates. One set 

of plates incubated at 37oC and the other at room temperature, RT. The cultures were examined 

after 24 h. Cultures with insufficient growth were re-incubated for examination at 48 h and 72 

h. The colony forming units, CFU appearing on the TSA plates were enumerated and mean 

count determined. Colonies appearing on MCC and SSA plates picked for characterization and 

identification tests following the scheme described by Cowan [29]. Isolates susceptibility to 

tetracycline (TE, 10 µg), amoxicillin (A, 10 µg), amoxicillin-clavulanate (AMC, 30 µg), 

gentamycin (CN, 10 µg), ciprofloxacin (CIP, 10 µg), levofloxacin (LVX, 10 µg), ceftazidime 

(CAZ, 30 µg), cefotaxime (CAZ, 30 µg) and azithromycin (AZM, 15 µg) determined using the 

Kirby-Bauer disc diffusion method applying the guidelines of the Clinical Laboratory 

Standards Institute [30]. 

Results 

The microbial load of sampled vegetables ranges from 3.7-111.0 x 106 CFU/g (Table 1). The 

highest mean count occurred in samples of fluted pumpkin, 111.0 x 106 CFU/g, followed by 

waterleaf with a mean count of 79.5 x 106 cfu/g and the least count of 3.60 x 106 CFU/g 

recorded from cabbage. The distribution of Gram-negative bacteria isolated presented in Table 

2 showed that Klebsiella species (Klebsiella spp), 22(25%) of the total 88 isolates was the most 

predominant Gram-negative bacterium, of these 22 isolates, Klebsiella pneumoniae were 

11(12.5%), Klebsiella aerogenes 9(10.2%) and Klebsiella oxytoca 2(2.3%). E. coli 20(22.7%) 

was the next frequently encountered microorganism of which one isolate serotyped E. coli 

0157:H7. Other Gram-negative bacteria isolated were Enterobacter species (Enterobacter 

spp.) 17(19.3%) consisting of Enerobacter cloacae 11(12.5%) and Enterobacter aerogenes 

6(6.8%); Proteus species (Proteus spp.) 15(17.0%) were made up of Proteus mirabilis 

12(13.6%) and Proteus vulgaris 5(5,7%); Pseudomonas aeruginosa 10(11.4%).  The least 

frequently isolated microorganisms were Serratia marcescens and Salmonella enterica with 

2(2.3%) isolates each. 

Antimicrobial susceptibility of the isolates displayed in Table 3 indicates that no isolates was 

susceptible to tetracycline. E coli, Klebsiella spp. and Proteus spp were most susceptible to 

gentamycin, ciprofloxacin and levofloxacin (54.5-95.0%) and least to amoxicillin and 

amoxicillin-clavulanate. Pseudomonas aeruginosa was most susceptible to gentamycin. 

Serratia marcescens susceptibility was highest with levofloxacin, ceftazidime and cefotaxime 

while Salmonella enterica was resistant to only amoxicillin. All isolates were resistant to 

tetracycline and amoxicillin. 

Extended-spectrum beta-lactamases, ESBLs detection was highest in isolates of E. coli at 4.5%, 

Klebsiella spp (3.4%), Enterobacter spp 3.4%, Proteus spp 2.3%; and Serratia marcescens 

2.3%. and Salmonella. enterica isolates tested negative for ESBLs. 
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Table 1: Microbial load of fresh vegetables 

Vegetables    Mean CFU/g x 106) 

Fluted pumpkin    111.0 

Water leaf       79.3 

Bitter leaf       72.1 

African spinach      65.5 

Spring onions       34.0 

Cabbage       13.6      
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Tables 2: Distribution of isolates in different types of vegetables 

                       Frequency of isolates 

Isolate        

 

       

E. coli (n=20)   3 5 4

 3      4        1 

Klebsiella spp (n=22)  4 5 3 6       2         2 

Enterobacter spp (n=17) 2 5 3 1        3        3 

Proteus spp (n=15)  3 2 3          2 1       4 

Pseudomonas spp (n=10) 2 0 2 1 3        2 

Serratia spp (n=2)  1 0 0 0 0        1 

Salmonella spp (n=2)  0 0 0 0 1        0   
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Table 3: Susceptibility of isolates to antimicrobial agents  

 

Isolate   TE A AMC CN CIP LVX  CAZ CTX AZM   

E. coli   0.0 15.0 25.0 70 90.0 95.0 60.0 65.0 55.0 

Klebsiella spp  0.0 0.0 13.6 54.5 77.3 90.9 45.5 50.0 45.5 

Enterobacter spp 0.0 0.0 5.6 66.1 83.3 88.9 50.0 55.6 50.0 

Proteus spp  0.0 0,0 12.5 62.5 77.8 83.3 44.4 43.8 37.5 

Pseudomonas spp 0.0 0.0 80.0 50.0 50.0 40.0 50.0 50.0 10.0  

Serratia spp  0.0 0.0 0.0 50.0 50.0 100 100 100 50.0 

Salmonella enterica 0.0 0.0 100 100 100 100 100 100 100 

    

Discussion 

Examination of fresh vegetables procured from the open market in Owo Township revealed 

bacterial loads of 3.0-111.0 x 106 CFU/g. These values are in gross excess of the upper limit of 

102 CFU/g [31]. Prior studies in Nigeria and elsewhere reported similarly high values 

[19,23,24]. Vegetables by nature like other leafy plants possess adhering surfaces that make 

colonization and pollution easier, which necessitates greater adherence and compliance with 

strict standardized operational procedures, SOPs from the field to harvesting, packaging, 

transportation, and distribution and retail stages to minimize high bacteria counts in vegetables. 

Three genera of the isolated microorganisms - Klebsiella spp Pseudomonas aeruginosa and 

Enterobacter spp belong to the group of bacteria that pose major challenges in the treatment of 

their infections and as well as belonging to the ESKAPE bacteria group (Enterococcus faecalis, 

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 

aeruginosa and Enterobacter spp) recognized worldwide for high resistance to antimicrobial 

agents. The absence of effective treatment options in several of the infections with these 

microorganisms makes it a major source of health peril [32,33]. This has in consequence made 

the call for newer and more effective antimicrobial agents more urgent and strident for 

mitigation in such infections as they are often accompanied with greater treatment budgets and 

elevated mortality rates [34-37]. Other key isolates - E. coli and Salmonella enterica are 

important in food-related outbreaks of illnesses [38-41]. While Proteus spp. and Serratia 

marcescens have the reputation for contaminating vegetables and fruits, in addition to 

possessing the tendency for resistance to many antimicrobial agents [17,42-48]. Klebsiella spp 

was the most predominant 22(25.0%) of 88 isolates with a proportionately higher numbers of 

Klebsiella pnuemoniae (12.5%) and Klebsiella aerogenes (10.2%) than Klebsiella oxytoca 

(2.3%) regularly contaminate vegetables. Contamination of fresh vegetables by Klebsiella 

pneumoniae have been reported as common due to the possession of enhanced ability by this 

microorganism to colonize bodies of natural water, sewage, organic effluents, vegetation, in 

addition to being a commensal in the gut of humans and animals [49,50]. Each of these isolates 

belong to important group of Enterobacteriaceae involved in causing a multiplicity of human 

infections, ranging from urinary tract infections, UTIs, pulmonary infections to hospital 

acquired infections, HAIs, chiefly in patients with preexisting disorders [51,52]. E. coli 

(22.7%) was the next most frequently encountered microorganism. The classical habitat of E. 
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coli is the gut of humans, animals and birds. This microorganism is a major etiological agent 

in uncomplicated UTIs and numerous other human infections. The detection of E. coli in food 

is an index of fecal pollution [53-56] and the probable presence and transmission of other 

dangerous bacteria, parasites and viruses from such vegetables. The detection of E. coli 

O157:H7 or Enteropathogenic, EPEC strain from a sample of cabbage is an indication of 

significant threat to the health of consumers of such vegetables. E. coli O157:H7 is an agent of 

diarrheagenic illness that induces abdominal cramps, watery and bloody stools and linked to 

several foodborne outbreaks of illnesses in many countries [31,38.41]. The infection in children 

results in more intensive disease process with high mortality rates under the age of 5 years 

[57,58], and especially in Africa, Asia and Latin America where hygiene levels are lower and 

health development systems are poorer or inadequate [26]. The entry route of E. coli O157:H7 

into the food chain is traceable to fecal contamination from the cattle reservoir [39,59-61]. 

Studies have shown that pathogenic microorganisms including E. coli O157:H7 can 

contaminate vegetables at several stages before getting to the dining table [40,62,63]. This is 

more likely to happen in the study community due to unsanitary handling practices and the 

absence of ready source of potable water to vegetable farmers and handlers. Isolates of 

Enterobacter spp represented 19.3% consisting of Enterobacter cloacae and Enterobacter 

aerogenes as a major contaminant of these vegetables. Enterobacter spp colonize fresh water, 

soil, sewage and organic effluents and its presence in fresh vegetables is therefore not 

surprising. As a member of the ESKAPE group of bacteria known for resistance to a wide 

variety of antimicrobial agents and associated with serious hospital-related infections 

galvanized the World Health Organization into listing the microorganism into the group of 

priority bacteria requiring the sourcing for new treatment options are careful control strategies 

[56-65]. The presence of Enterobacter spp in vegetables is thus a worrisome finding as it 

denotes a source of health hazard to consumers [25,58]. Proteus mirabilis and Proteus vulgaris 

as well as other Enterobacteria have been observed as prevalent in fresh raw vegetables as they 

share common habitats [66], posing similar health challenges as the ESKAPE group of bacteria 

[32,36.42]. Pseudomonas aeruginosa is an underrated pathogen causing food spoilage even in 

low temperatures (psychrotrophic) [67]. The microorganism is environmentally common, often 

contaminating vegetables with most strains being MDR, can become channels for the spread 

of MDR infectious bacteria [68]. This further emphasizes the all-important task for the 

protection of food sources from pollution by dangerous microorganisms [16,32]. The recovery 

of Serratia marcescens, being a common microorganism found in the soil and in decaying 

vegetation, with the absence of appropriate standard safety measures, ultimately leads to easy 

contamination of vegetables and fresh farm produce [44-46,69]. The microorganism is 

frequently associated with opportunistic infections [48] as well as contributing to food 

deterioration and spoilage [47]. Many isolates of Serratia marcescens are MDR strains that 

makes their presence in food a source of concern. Salmonella enterica (2.3%) ware recovered 

from cabbage and spring onions, fascinatingly, one the least isolates encountered and a classical 

initiator of food-related outbreaks of diseases. Salmonella enterica can gain access to fresh 

produce like vegetables in the farm from the application of organic manure, polluted irrigation 

water, animal feces and introduction during processing and handling stages [70-72]. The 

association of several Gram-negative bacteria including Salmonella enterica did not come as a 

shock, but rather, it reflects the abysmally low level of hygiene from the farm to the retail point. 

Enteric illnesses are common during the rainy seasons and poorly reported too, in most parts 

of Nigeria, thus making it difficult to have the precise data. This study brings to fore the wide 

gap in the knowledge for sanitary processing and handling of fresh vegetables and the essence 

for urgent education before vegetables get to the dining table. The susceptibility of the four 

most common isolates ranged from 54.5-95.0% for gentamycin, ciprofloxaxin and levofloxacin 

and least to amoxicillin and amoxicillin-clavulanate. These microorganisms belong to the class 
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of microorganisms in WHO priority list due resistance to multiple groups of antimicrobial 

agents and antecedent elevated risk of treatment failure and associated higher fatality rates [73-

75]. The higher rates of susceptibility comparatively to those obtainable in clinical samples 

reflect their origin as environmental microorganisms with limited exposure to antimicrobial 

agents arising from several strata of hurdles between humans, animals and the natural 

environment [76]. Pseudomonas aeruginosa was most susceptible to gentamycin (80%). 

Serratia marcescens had higher susceptibility to levofloxacin, ceftazidime and cefotaxime at 

100%. The susceptibility of these isolates were also higher than those reported from clinical 

specimens, and in spite this, they are still largely regarded as a source of peril to public health 

due the MDR signature of members of these genera [21,25,77-81]. Expectedly, no isolate was 

susceptible to tetracycline as earlier studies have shown that environmental acquired ESKAPE 

and other Enterobacteriaceae are regularly resistant to the agents [82,83]. The detection of 

ESBLs in the isolates ranged from 2.3% to 4.5% in E. coli isolates. This may indicate that some 

of the isolates may have originated from human sources [84], thus further amplifying the 

anxiety on the probable treatment failure in the use of antimicrobial agents. Prior observations 

indicate that ESBLs producing Enterobacteriaceae also exists in the environment and can 

contaminate vegetables [24,85]. The detection of ESBLs among Klebsiella pneumoniae and 

Klebsiella aerogeges isolates is an inference that MDR strains are commoner within these two 

species, as each species has linkage to hyper-virulence, MDR-hv and outbreaks of carbapenem 

resistant Enterobacteriaceae, CRE [86-88] with similar scenarios in isolates of Proteus 

mirabilis and Proteus vulgaris. The presence of antimicrobial resistant, AMR Gram-negative 

bacteria in food sources creates palpable anxiety to the consuming public [89]. This contributes 

to the growth in the cumulative number of AMR bacterial strains and to the probability of 

mortality rates reaching 10 million deaths annually by the year 2050 [82,90], with most of the 

burden expected to be borne in poor income countries [91]. 

 Conclusion. 

Fresh raw vegetables on retail in the open market in Owo Township, Ondo State yielded 

bacterial counts much above the recommended upper limits, including microorganisms 

globally recognized in food-related outbreaks of illnesses, thus representing a source of health 

hazard to the consumer. It is therefore, expedient for the Public Health Departments to re-

double efforts in providing appropriate education and guidelines for safe processing, handling, 

transportation and retail stages for vegetables and similar farm produce in Ondo State, Nigeria. 
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