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ABSTRACT 

The newly proposed k-Modified Generalized Uniform Distribution was considered. Some fundamental 

properties of the generalized distribution were derived. The theoretical and simulation results from the k-

Modified Generalized Uniform Distribution indicated reasonable degree of concordance. This implies that 

the k-Modified Generalized Uniform Distribution can be successfully used to model observations with 

limited support. 
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INTRODUCTION 

The Uniform Distribution (U(0,1)) is often used in distribution theory because its probability density 

function (pdf) and cumulative distribution function (cdf) are defined as f(x) =1 and F(x) = x. These 

probability functions are simple and very flexible and these make the distribution to be appealing to many 

researchers in the development of generalized distributions from parent baseline distributions. This 

implies that the Uniform Distribution U (0, 1) allows complex characterizations of properties of given 

density functions and their corresponding distribution functions. The Uniform Distribution U (0, 1) has 

also found extensive applications in the simulation of random variables based on the quantile function and 

this makes it attractive in the formulation of generalized distributions. The literature search shows the 

existence of the following generalized distributions: Beta-generated distributions by Eugene et.  al. (2002) 

and Jones (2004); Kumaraswamy generalized (Kum-G) distribution by Cordeiro and de Castro (2011); 

McDonald generalized (Mc-G)   distribution by Alexander et.  al. (2012);    Gamma-generated   type-1   

distributions   by Zografos and  Balakrishnan  (2009)  and  Amini    et.  al.   (2014), Gamma-generated 

type-2 distributions by Ristic and Balakrishnan (2012) and Amini et. al.  (2014), Exponentiated 

generalized (exp- G) distribution by Cordeiro et.  al.  (2013); Odd Weibull-generated distribution by 

Bourguignon et.  al. (2014); Length-Biased Weighted Maxwell distribution by Modi (2015); Transmuted 

additive Weibull distribution by Elbatal and Aryal (2016); Exponentiated Weibull generated distribution 

by Hassan and Elgarchy (2016); Exponentiated Kumaraswamy power function distribution by Bursa and 

Kadilar (2017); Size-Biased Lindley distribution by Ayesha (2017); Quasi-Transmuted distribution by 

Osowole and Ayoola (2019); Generalized Length Biased Exponential distribution by Maxwell et. al. 

(2019); Kumaraswamy Generalized Kappa distribution by Nawaz et. al. (2020); Generalized family of 

exponentiated and transmuted distributions by Anmad (2020) and Length Biased Quasi-Transmuted 

Uniform distribution by Osowole and Onyeze (2020). 
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This study is therefore an additional attempt to expand the body of existing knowledge on generalized 

distributions by proposing the k-Modified Generalized Uniform Distribution (kMGUD). 

The k-Modified Generalized Uniform Distribution 

 

The Generalized Uniform (GU) probability density function (pdf) according to Lee (2000) is defined as  
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where a and b are the shape and scale parameters respectively. Lee (2000) gave the mean and variance of 

the GU distribution as  
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We note that (1.0) yields the conventional uniform distribution, U (0, 1) when a and b are chosen such 

that a = 0 and b = 1. The k-Modified Generalized Uniform Distribution (kMGUD) using Ali et. al. (2007) 

and Ramires et. al. (2019) approaches has pdf and cdf defined as 
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where k is an additional shape parameter  
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We note that (5.0) was obtained from the relationship below 
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( 1)( 1)a k
d x

dx b
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We note that (5.0) yields the conventional uniform distribution, U (0, 1) when a = 0, b = 1 and  

k = 0. Also, (5.0) yields the GU distribution when a = 0 and b = 1. The plots of the pdf and cdf of the k-

Modified Generalized Uniform Distribution are given below in Figures (1.0) and (2.0). 

 
 

Figure 1.0: The pdf plot of the k-Modified Generalized Uniform Distribution at different 

values of x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.0: The cdf plot of the k-Modified Generalized Uniform Distribution at different 

values of x 

 

The pdf and cdf plots above were plotted for predefined values of the additional shape parameter, k at a = 

0 and b = 5 for different values of x.  
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Some Characterizations of the k-Modified Generalized Uniform Distribution 

Moments 

 

The r
th
 raw moment for the k-Modified Generalized Uniform Distribution is  
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Specifically,
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Using the fact that 
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Coefficients of Variation and Dispersion 

 

The coefficients of variation and dispersion for the k-Modified Generalized Uniform Distribution are 
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Moment Generating Function 
 

The moment generating function for the k-Modified Generalized Uniform Distribution is defined as  
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Characteristic Function 

 

The characteristic function for the k-Modified Generalized Uniform Distribution is defined as  

0

0

( ) ( )

( )

( )

( )
( 1)( 1) ; 0,  ( , ) -1

! ( 1) 1

x X

itX

b
itX

kMGUD

j j

J

t M it

e

e g x dx

it b
a k b a k

j a k j k









 



 
     

    




 

 

 

Cumulant Generating Function 

 

The cumulant generating function of a random variable X from the k-Modified Generalized Uniform 

Distribution is defined as  
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Hazard Function 

 

The hazard function for the k-Modified Generalized Uniform Distribution is defined as  
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The plot of the hazard function is given below for some selected values of the parameters. The hazard 

function shows a decreasing, an increasing and a reversed bathtub pattern for varying values of the 

parameters. 

 

 Figure 3.0: The plot of the hazard function of the k-Modified Generalized Uniform 

Distribution at different values of x 

 

The plot of the hazard function was obtained for varying values of the additional shape parameter, k at a = 

0 and b = 5 for different values of x.  

 

Reverse Hazard Function 

 

The reserve hazard function for the k-Modified Generalized Uniform Distribution is defined as  

 

 

 

 

 

 

 

 

 

The plot of the reverse hazard function is given below in Figure (4.0) 
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Figure 4.0: The plot of the reverse hazard function of the k-Modified Generalized Uniform 

Distribution at different values of x 

 

The plot of the reserve hazard function was obtained for varying values of the additional shape parameter, 

k at a = 0 and b = 5 for different values of x. The function is indeed decreasing for all the values 

considered for the plotting. 

 

 

Survival Function 

 

The survival function for the k-Modified Generalized Uniform Distribution is defined as  
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The plot of the survival function is shown below in Figure (5.0) .The plot shows the survival function of 

the k-Modified Generalized Uniform Distribution at a = 0 and b = 5 for varying values of the additional 

shape parameter.  
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Figure 5.0: The plot of the survival function of the k-Modified Generalized Uniform 

Distribution at different values of x 

 

Mills Ratio 

 

The Mills Ratio of the k-Modified Generalized Uniform Distribution is defined as   
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The plot of the Mills Ratio is shown below in Figure (6.0) 

 

 
 

Figure 6.0: The plot of the mills ratio of the k-Modified Generalized Uniform 

Distribution for 0 < x < 5 
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The plot of the Mills Ratio is shown above in Figure (6.0) .The plot shows that the Mills Ratio is a linear 

function, the function increases as x increases for the k-Modified Generalized Uniform Distribution at 0 < 

x < 5 and 2 < k < 5.  

 

Odd Function 

 

The odd function of the k-Modified Generalized Uniform Distribution is  
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The plot of the odd function is shown below in Figure (7.0) 

 

 
 

Figure 7.0: The plot of the odd function of the k-Modified Generalized Uniform 

Distribution for 0 < x < 5 

 

 

The plot of the odd function is shown above in Figure (7.0) .The plot shows that the function is J-shaped 

and it increases as x increases for 0 < x < 5 and 2 < k < 5.  

 

Cumulative Hazard Function 

 

The cumulative hazard function for the k-Modified Generalized Uniform distribution is  
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The plot of the cumulative hazard function is shown below in Figure (8.0) 

 

 
 

 

Figure 8.0: The plot of the cumulative hazard function of the k-Modified Generalized 

Uniform Distribution for 0 < x < 5 

 

 

The plot of the cumulative hazard function is shown above in Figure (8.0) .The plot shows that the 

function is J-shaped and it increases as x increases for 0 < x < 5 and 2 < k < 5. This is similar to the plot 

of the odd function above. 

 

Order Statistics 

 

Let X(1), X(2),…, X(n) be order statistics from the random sample X1, X2, …., Xn from the k-Modified 

Generalized Uniform Distribution with  and , the r
th
 order statistic where 1  r  

n is given as  

   
1

( )

!
( ) ( ) ( ) 1 ( )

( 1)!( )!

r n r

r kMGUD kMGUD kMGUD

n
h x g x G x G x

r n r

 
 

 
 

Osowole & Nwaka….. Int. J.  Innovative Info. Systems & Tech. Res. 8 (2):85-99, 2020  



96 
 

By setting r = n and r =1 in the function (h(r)(x)) above, we have  the distributions for the largest and 

lowest order statistics. For the largest order statistic, we have that 

 

For the lowest order statistic, we have that 
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Random Number Generation 

 

Random numbers can be generated for the k-Modified Generalized Uniform Distribution using the 

quantile function as follows:  
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RESULTS 

Table 1.0: Theoretical Results from the kMGUD 

Summary Statistics Estimate 

mean 0.66670 (0.7) 

median 0.70710 (0.7) 

variance 0.05560 (0.6) 

standard 

deviation 

0.23570 (0.2) 

skewness -0.56570 (-0.6) 

coefficient of 

variation 

0.35353 (0.4) 

coefficient of 

dispersion 

0.08340 (0.1) 

Figures in bracket represent approximation to 1 decimal place 

 

Table (1.0) above gives the estimates of some summary statistics from the k-Modified Generalized 

Uniform Distribution (kMGUD). The approximated estimates to 1 decimal place are also shown in 

brackets. These theoretical estimates were obtained for a = 0, b =1 and k = 1. 
Table 2.0: Simulation Results from the kMGUD 

Simulated Results Simulated Results 

Sample 

Size 

Summary 

Statistics 

 

Estimate 

Sample 

Size 

Summary 

Statistics 

 

Estimate 

200 mean 0.69728 

(0.7) 

1000 mean 0.67373 

(0.7) 

median 0.73969 

(0.7) 

median 0.71547 

(0.7) 

variance 0.04679 

(0.1) 

variance 0.05418 

(0.1) 

standard 

deviation 

0.21631 

(0.2) 

standard 

deviation 

0.23276 

(0.2) 

skewness -0.70521 

(-0.7) 

skewness -0.58402 

(-0.6) 

coefficient of 

variation 

0.31022 

(0.3) 

coefficient of 

variation 

0.34548 

(0.4) 

 

coefficient of 

dispersion 

0.06710 

(0.1) 

coefficient of 

dispersion 

0.08042 

(0.1) 

500 mean 0.67756 

(0.7) 

2000 mean 0.66449 

(0.7) 

median 0.69846 

(0.7) 

median 0.70390 

(0.7) 

variance 0.05213 

(0.1) 

variance 0.05424 

(0.1) 

standard 

deviation 

0.22832 

(0.2) 

standard 

deviation 

0.23286 

(0.2) 

skewness -0.62309 

(-0.6) 

skewness -0.57806 

(-0.6) 

coefficient of 

variation 

0.33697 

(0.3) 

 

coefficient of 

variation 

0.35043 

(0.4) 

 

coefficient of 

dispersion 

0.07694 

(0.1) 

coefficient of 

dispersion 

0.08161 

(0.1) 

Figures in bracket represent approximation to 1 decimal place 
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The simulation results in Table (2.0) are the simulated results obtained when a = 0, b =1 and k = 1 

respectively for sample sizes 200, 500, 1000 and 2000. There is a concordance between the theoretical 

and simulated results as shown in Tables (1.0) and (2.0) for the selected summary statistics. This implies 

that the theoretical characterizations of the k-Modified Generalized Uniform Distribution presented 

earlier in this study are valid for the proposed distribution. The results of the study are in tandem with Lee 

(2000) and Ramires et. al. (2019). 

 

CONCLUSION 

This study proposed the k-Modified Generalized Uniform Distribution and derived some of its essential 

properties. It further considered the theoretical and simulated results from the new distribution. The two 

results were seen to be in tandem with each other. The variances from the two results were consistently 

lower than the variance from the parent distribution. This indicates that the k-Modified Generalized 

Uniform Distribution is superior to the baseline Generalized Uniform Distribution. The k-Modified 

Generalized Uniform Distribution, as an exponentiated distribution, is therefore expected to provide a 

better fit for observations having restricted support. 
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