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ABSTRACT 

The paper is concerned with optimal forecasts performance for Benin monthly rainfall (BMRF) pattern in 
Edo State, Nigeria using adjusted SARIMA (ASARIMA) model. It employed Amaefula forecast criterion 
(AFC) to compare the models selected by different information criteria such as 
Akaike information criterion (AIC), Schwarz Bayesian information criterion (SBIC), Hannan and 
Quinn(HQ), and forecast prediction error(FPE) to identify the optimal model. . The BMRF data span 
from 1981M1 to 2016M12. The order of integration test (OIT) adopted shows that BMRF data is 
integrated order zero (I(0)) in its regular series. The evidence of significant seasonal oscillation in 
the ACF and PACF reveal the need for seasonal differencing of MRF data. Using an iterative algorithm 
for calculating least squares estimates of the model parameters, 19 possible ASARIMA (P, D, 
Q)12 models were compared; AIC, SBIC and HQ preferred ASARIMA(1, 1, 2)12, ASARIMA(0, 1, 
1)12  and ASARIMA(1, 1, 5)12,  respectively. FPE supports the choice of SBIC. The three selected models 
were subjected to forecast optimality test using the AFC and ASARIMA (1, 1, 2)12 is found most 
appropriate. The diagnostic test indicates adequacy of the fitted model. Hence, ASARIMA (1, 1, 
2)12 model is recommended for forecasting BMRF pattern and creating inter-mediate warning against 
erosion and flood in Benin. 
Keywords: AFC, AIC , ASARIMA model, BMRF, optimality forecast production, SBIC.  
MSC: 62-XX, 62-1XX, 62-02 

 

1. INTRODUCTION 

Autoregressive integrated moving average (ARIMA) and seasonal ARIMA models have been used by 
many researchers over decades in the modeling and forecasting time series data such as macroeconomic 
and financial time series data. ARIMA and seasonal ARIMA have been extended to predicting climatic 
factors like rainfall, temperature and humidity across time and space. And since the introduction of 
ARIMA framework by Box and Jenkins in 1970, many researchers have used the model in forecasting 
precipitation pattern in different countries, including Nigeria. However, additional dimension to the 
existing SARIMA model was the study of Amaefula(2021) who introduced the adjusted seasonal ARIMA 
(ASARIMA) model basically on condition where a univariate time series data exhibits some seasonal 
non-stationary features and at the same exhibits zero unit root in the regular series. The major advantage 
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of ASARIMA is to avoid redundancy in the non-seasonal parameters, and empirical findings showed 
better out-put performance than SARIMA models. 
 Practically, contradictory results abound in literature, different identified models for the same univariate 
time series have raised questions like; what is the optimal model when different information criteria are 
used for identification? What is the best information criteria to be used in model selection for maximum 
forecasts output? Attempt to answer these questions empirically in this paper is the missing link in 
previous researches and it is the essence of this study.  
 Benin is an ancient historical city in the Benin Empire, and was the capital of the defunct Bendel State, 
now the present capital of Edo State. It has a tropical climate with more rainfall in the summer than in the 
winter. The winter season is fairly cold, reaching about 27.5 0C. The month of January is mostly the driest 
month with about 9 mm of rainfall. The summer is hot reaching about 34 0C by day and 25 0C at night. 
The month of March is the hottest weather with an average of about 29 0C. The weight season begins in 
July and ends in October with a pick in August with about 25 0C average. The coldest period occurs in 
August with temperature attaining 34 0C by day and 25 0C at night. The warmest month of the year is 
April, with an average temperature of 27.5 °C. In July, the average temperature is 24.5 °C. 
The problem of getting good drinking water in many urban and rural dwellers in the south-southern 
region of Nigeria has increasingly become a challenging task because vast oil spillage which have 
polluted the creeks, streams and rivers that serve as good sources of drinking water to many homes. 
However, studying monthly rainfall pattern in Benin City and generating forecasts values of the 
precipitation can be relevant to erosion and flood control, agriculture and plant growth, adequate 
environmental and water resource management and developing an adequate time series model for Benin 
monthly rainfall (BMRF) pattern cannot be over emphasized.  
Since the introduction of ARIMA and SARIMA models over four decades by Box and Jenkins(1976), 
many researchers across the globe have modeled yearly rainfall pattern using ARIMA(p, d, q) framework 
and monthly rainfall pattern using SARIMA (p, d, q) × (P, D, Q)s  According to Yusuf  and Kane(2012), 
rainfall is natural climatic occurrences and its prediction remains a difficult challenge as a result of 
climatic variability. In Tamilnadu India, SARIMA(0, 1, 1)x(0, 1, 1)12 was found most preferable model fit 
for monthly rainfall (Nirmala et. al., 2010).  
In Malaaca and Kuantan of Malaysia, SARIMA (1, 1, 2) x (1, 1, 1)12 and (4, 0, 2) x (1, 0, 1)12 models 
were fitted respectively for their monthly rainfall (Yusuf and Kane, 2012). The ARIMA method was also 
used by Muhammet (2012) to predict the temperature and precipitation in Afyonkarahisar Province, 
Turkey, until the year 2025, and found an increase in temperature according to the quadratic and linear 
trend models. 
A periodical rainfall data was modeled for Port Harcourt city, South-Southern Nigeria using SARIMA(0, 
0, 0)x(2, 1, 0)4 model by (Osarumwense, 2013). Modeling seasonal rainfall data was also investigated in 
Port Harcourt and SARIMA (5,1,0)(0,1,1)12 was identified and established to be adequate for modeling 
and forecasting the amount of rainfall in the area (Etuk et al., 2013). Rainfall data pattern was examined 
in the Ashanti region of Ghana and SARIMA (0, 0, 0)x(2, 1, 0)12 was fitted (Abdul-Aziz et al., 2013). 
SARIMA model was adopted in studying monthly rainfall data for Gadaref rainfall station, Sudan. The 
autocorrelation structure suggests three multiplicative SARIMA models, namely: (0, 0, 0)x(0, 1, 1)12, (0, 
0, 1)x(0, 1, 1)12 and (0, 0, 1)x(2, 1, 1)12. The first model was deemed most appropriate for forecasting 
rainfall in the region (Etuk and Mohamed, 2014). Seasonal autoregressive integrated moving average 
(SARIMA) model was adopted by Anitha et al.,(2014) to forecast the monthly mean of the maximum 
surface air temperature of India. Their results showed that there is a trend in the monthly mean of 
maximum surface air temperature in India. 
The seasonal ARIMA modeling and forecasting of rainfall in Warri Town, Nigeria for the period 2003-
2012 was examined and the Seasonal ARIMA (1, 1, 1) (0, 1, 1)12 fitted was found to meet the criterion of 
model parsimony and model adequacy check showed that the model was appropriate, (Eni and Adeyeye, 
2015). Again, using monthly data spanning from 1996 to 2011 obtained from National Root Crops 
Research Institute Umudike in Nigeria, SARIMA (0, 0, 0) (0, 1, 1)12 model was considered the best fitted 
model for forecasting monthly rainfall in Umuahia, Aba state (Akpanta et al., 2015). 
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Time series analysis of monthly rainfall for Oshogbo Osun State, Nigeria was studied using data from 
2004 to 2015. The time plot reveals that rainfall data showed a high level of volatility characterized by 
seasonal and irregular variations. The logistic model applied was preferred and then used to forecast 
rainfall for the next 2 years (Alawaye and Alao 2017). 
Yearly rainfall pattern was studied in Port Harcourt, South-Southern Nigeria by Amaefula (2018) and 
ARMA(1, 2) model was found most appropriate. Nyatuame and Agodzo (2018) in their 
study fitted ARIMA (3, 0, 3) and (3, 1, 3) models for annual rainfall pattern in Kpetoe 
and Tordzie regions in Ghana. 
In Imo state, Nigeria, nine different SARIMA models were identified for monthly rainfall and compared 
based on AIC, SARIMA(0,0,0)x(1,1,1)12 was preferred for predicting monthly rainfall in the state 
(Amaefula, 2019). ASARIMA(P,D,Q)s was introduced by (Amaefula, 2021) and compared with 
SARIMA(p, d, q)×(P, D, Q)s models, using Enugu monthly rainfall (EMR) as a case study, AIC showed 
that ASARIMA(2, 1, 1)12 was  preferred to all SARIMA(p, d, q)x(P, D, Q)12 models that were identified. 
As the population in Benin city grows due to mass movement of rural youths to urban areas, in search of 
livelihood, the demand for water becomes increasingly necessary and challenging not only for domestic 
and agricultural use but also for industrial use. Hence, the need for proactive research in modeling and 
forecasting of monthly rainfall pattern in Benin City, south-southern Nigeria. 
The remaining part of the paper is organized as follows; section 2 deals with the material and methods, 
section 3 presents the data analysis and discussion of results and secction4 presents the conclusion 
 

2. MATERIALS AND METHODS 

The section deals with the materials and methods used in the study, such as sources of data collection, 
variable measurement, model specification framework, model identification, test for order of integration, 
model selection criteria and method of estimation. 
2.1 Method and Sources of Data Collection 
The rainfall data is obtained from published statistical bulletin by central bank of Nigeria (CBN, 2020) 
and in collaboration with Nigeria Metrological Agency(NMA). The monthly rainfall data covered the 
period of 1981M1-2016MM12 consisting of 432 observations. 
2.2 Variable Measurement 
The instrument for measuring rainfall is known as a rain gauge. It is a special kind of drum used to record 
the depth of rainfall collected and it is measured in millimeter. 
2.3 SARIMA model Specification 
Condition where univariate time series {Xt} exhibits non-stationary characteristics as a result of either 
outliers, random walk, drift, trend, or changing variance, it is conservative to take first or second 
difference (d) to achieve stationarity. Hence, {Xt} follows an autoregressive integrated moving 
average ARIMA(p, d, q) model of orders p, d and q of the form. 

 tLBtX
d

LA )()( 
        (1)

 

where {Xt}exhibits seasonal pattern that is non-stationary, which may likely be observable via 
correlogram. Box and Jenkins(1976) suggested that 

SQDPqdpSARIMA ),,(),,(   is given as  

     t
s

LLBtX
D
s

ds
LLA  )()(

     (2) 

where  s
L  denotes lagged  seasonal AR  operator of order P and  s

L  denotes lagged  

seasonal MA operators of order Q. The L
d  1  is a regular differencing operator with 2d  

and sD

s L 1 is seasonal differencing operator and s is the seasonal order.  
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2.4  Adjusted SARIMA (ASARIMA) Model 
According to Amaefula (2021), conditions where a regular time series data is integrated order zero I(0), 
but exhibits  seasonal non-stationary behaviors, ASARIMA (P, D, Q)s can be more appropriate. And the 
model is of the form;  

 tsLtXs )()s(L 
       (3) 

Note that )( sL
 

represents the seasonal autoregressive (SAR) operator and it is given as 

PsPss LLL    111)(  and )( sL  represents the seasonal moving average (SMA) operator, 

and it’s given as 
QsQss LLL    111)(  .  

Generally, ASARIMA(P,D,Q)s model with the inbuilt constant term is of the form; 

 )()1(1)()1(1 QstQstPst
XsPst

XstXs     (4) 

where   is the constant parameter and s  is the seasonality index.  
 

2.5 Model Identification  
The autocorrelation function (ACF) and partial autocorrelation function (PACF) are useful in identifying 
both ARIMA and SARIMA models. For an AR(p) model, the ACF tails off slowly while for MA(q) 
model, the ACF cuts off after lag q. But the PACF of an MA(q) model tails off slowly whereas that of 
AR(p) model cuts off after lag p. The AR and MA models are known to show some duality relationships. 
In model building, it is prudence to prefer the use of mixed ARMA fit to either the pure AR or the pure 
MA fit.  
2.6 Test for order of integration 
The order of integration test (OIT) is another way of carrying out a unit root test and the reliability and 
aptness of OIT developed by Amaefula (2021) gives it leverage over conventional methods of unit root 
test. And it is of the form 

ttttt ezzzTz   3322110 
      

  (5) 

where  is the coefficient of the trend parameter T , 0  is the constant term  and it is optional to include 

it. The te is the random error term.  
321

 and  ,   are the autoregression coefficients. The parametric 

boundary conditions for integrated order one I(1) are;  1 , 1 ,1 321    and 1 
2

1 
  and for I(2) 

it is expected that  1,1 , 1
2

1

21
 

 and 1
3

2 


. For I(1), test the null 

hypothesis 1:   versus1:
111101
  HH  

and for I(2) the null hypothesis 1:   versus1:
212202
  HH .  
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2.7  Criterion for Model Comparison  
In model building, there are different information criteria for choosing the best fitted model. 
Conventionally, the Akaike information criterion (AIC) , Schwarz Bayesian information criterion(SBIC) 
and Hannan and Quinn (HQ) information criterion were introduced by Akaike (1974), Schwarz (1978), 
and Hannan and Quinn (1979) respectively, are most common. Another information criterion is that of 
final prediction error (FPE) which is attributed to Akaike (1969).  If n is the sample size and RSS is the 
residual sum of squares, then, AIC, SBIC and HQ are given as follows. 

p





 2  

n

 RSS
lnn    AIC        (6)  

    
















n

nln 
p   

n

 RSS
ln    SBIC       (7) 

     
 

 














n

n)(ln ln 
p2   

n

 RSS
ln n   HQ      (8) 

 






 








p-n

pn
  

n

 RSS
lnn  FPE       (9) 

In (6) - (9), n denotes the sample size, p represents the number of parameters estimated in the model, and 
RSS represents residual sum of squares. AIC tends to penalize models with larger number of variables. 
The difference between AIC and SBIC is in the severity of penalty for p. The penalty is far more severe in 
SBIC when n > 8. This tends to control the over-fitting tendency of AIC. 
We will adopt the Amaefula forecast criteria (AFC) attributed to the work of Amaefula (2022)  to identify 
the optimal model among the ones chosen by AIC, SBIC, HQ and FPE. The AFC is an extraction from 
the sum of squares deviation forecast criterion (SSDFC) introduced by Amaefula (2011, 2020). It is used 
as the optimal forecast performance identification test and it is of the form; 

  2
1

KGGAFC
T  

       (10)
 

where ),(),( iltilt XXG


 ,  l =  lead time, K = number of forecast values and should be reasonably large 

),( iltX  = actual values of the variable corresponding to the th
i position of the forecast values,  ),(, iltX


= 

generated forecasts corresponding to the ith position of the actual values. The model with the lowest value 

of AFC  is the optimal model.  
 

2.8 Estimation Method 
The identified ASARIMA model is estimated via iterative algorithm that calculates least squares 
estimates. The back forecasts at each iteration is computed and sum of squares error is calculated. For 
more details, see Box and Jenkins (1979). 

3.  RESULTS AND DISCUSSION 
The results of the data analysis, graphical analysis, order of integration test, ACF and PACF for model 
identification, model comparison using information criteria, model estimation and diagnostic test 
summarily presented under this section.  
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3.1 Graph of Benin monthly rainfall (EMRF) 

The time plot of Benin monthly rainfall (EMRF) is presented in Figure 1 below; 
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Figure1. Time plot of BMRF 

The plot of BMRF monthly rainfall in Figure1 shows signs of seasonal non-stationary behaviours. 
The plot also exhibits non-trending pattern with the highest precipitation of 722.50 Millimetres in August,    
1987 and lowest precipitation of 0.2 Millimeters in February,1992. 

3.2 Order of Integration Test: Unit Root test 

The unit root test result for the BMRF using AAR(3) OIT are presented in (11) and (12) below;  

(0.0000)                 (0.2262)             (0.0000)         (0.0958)       (0.0000)          prob.

BMRF2086.0RF0665.0BMRF5557.00.07993974.89BMRF    321t tttt eBMt  

   (11)

 

The result in (11) implies that BMRF is I(0) since ,15557.0
1

 ,10665.0 
2

  

12086.0
3


 
and 13564.8 0665.0

5557.0

2

1 
  This result reveals that there is no unit root 

present in the variable BMRF. Therefore, it is sufficient to conclude that BMRF is stationary or I(0). 
Since the time plot in Figure1 has no evidence of trend, AA(3) OIT is estimated excluding the trend 
parameter as follows; 

(0.0000)              (0.2072)                 (0.0000)       (0.0000)          prob.  

BMRF2018.0RF0695.0BMRF5612.09141.103BMRF    321t tttt eBM     (12) 

The AAR(3) OIT result in (11) yields the same conclusion as that of (12) since 

,15612.0
1

 ,10695.0 
2

 12018.0
3


 
and 0695.0

5612.0

2

1 


10748.8   This result 

reveals that there is no unit root present in the variable BMRF. Therefore, it is sufficient to conclude that 
BMRF is stationary or I(0) in its regular series. 
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3.3 The Plot of ACF and PACF 
The plots of autocorrelation function (ACF) and the partial autocorrelation function (PACF) for model 
identification are as presented in Figure2 and Figure3 below; 
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Figure2 Plot of ACF and PACF for BMRF  

There is evidence of a varying seasonal pattern over time in the BMRF data as shown in the correlogram 
of Figure2 above. The seasonal non-stationary nature of BMRF requires seasonal differencing such as 

12
1212 )1(  tttt BMRFBMRFBMRFLBMRF  to make it seasonally stationary. The evidence of significant 

seasonal oscillation in the PACF up to the 15th lag is an indication of seasonal non-stationary nature of the 
BMRF data.  Hence, seasonally differencing is key to achieving stationarity as aforementioned. 
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The time plot of 12 months seasonal difference for BMRF in Figure3 indicates that BMRF data points are 
concentrated around zero, depicting stationary condition. 
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Figure4.  Plot of ACF and PACF for 
tBMRF

12  (1981M1 – 2016M12) 

The ACF for 
tBMRF

12  as shown in Figure4 reveals a significant spike at the 12th lag. And the PACF also 

shows significant spikes at the 12th, 24th 36th and the 60th lags respectively. However, there is no evidence 
of sinusoidal dying off slowly, and no evidence of either a pure AR process or MA process. Amaefula 
(2021) proposed 

12),,( QDPASARIMA to be fitted to such time series with such characteristics. He 

suggested that fitting SARIMA(p, d, q)  (P,D,Q)12 to such data generating process is not parsimonious 
and tantamount to estimating redundant parameters. Hence, fitting 

12
),,( QDPASARIMA is more 

appropriate. 

Table 1. Model Selection using Model Information Criteria 

S/No. Model AIC SBIC HQ FPE RSS 
1 ASARIMA(1, 1, 0)12

 
4037.78 4045.92 4016.79 4071.38 4906402 

2 ASARIMA(2, 1, 0)12
 

3978.80 3991.01 3947.34 4028.50 4261049 
3 ASARIMA(3, 1, 0)12

 
3953.49 3969.77 3938.81 4019.43 4000570 

4 ASARIMA(4, 1, 0)12
 

3952.97 3973.31 3900.55 4035.55 3977670 
5 ASARIMA(5, 1, 0)12

 
3926.40 3950.81 3863.52 4024.98 3723750 

6 ASARIMA(0, 1, 1)12
 

3879.52 3887.66* 3858.57 3911.68* 3401715 
7 ASARIMA(0, 1, 2)12 3879.27 3891.48 3847.85 3927.61 3384520 
8 ASARIMA(0, 1, 3)12

 
3883.66 3899.93 3841.76 3948.33 3403679 

9 ASARIMA(0, 1, 4)12
 

3885.85 3906.19 3833.47 3966.90 3405612 
10 ASARIMA(0, 1, 5)12

 
3888.43 3912.84 3825.58 3985.97 3410641 

11 ASARIMA(1, 1, 1)12
 

3880.67 3892.87 3849.24 3929.02 3395431 
12 ASARIMA(1, 1, 2)12

 
3875.17* 3891.44 3833.27 3939.68 3337485 

13 ASARIMA(1, 1, 3)12
 

3882.79 3903.13 3830.41 3963.77 3381602 
14 ASARIMA(1, 1, 4)12

 
3884.21 3908.62 3821.88 3981.63 3377494 

15 ASARIMA(1, 1, 5)12
 

3884.74 3913.22 3813.35* 3998.65 3366459 
16 ASARIMA(2, 1, 1)12 3879.59 3895.87 3837.69 3944.18 3371794 

17 ASARIMA(3, 1, 1)12 3884.98 3905.32 3832.60 3966.01 3398771 
18 ASARIMA(4, 1, 1)12 3956.05 3980.46 3893.14 4055.43 3988039 
19 ASARIMA(5, 1, 1)12 3952.57 3981.05 3879.19 4068.65 3938276 

The symbols(*) indicates the chosen model specification by AIC,  SBIC,  HQ and FPE respectively. 
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The result of model selection in Table 1 indicates that ASARIMA (1, 1, 2)12, ASARIMA (0, 1, 1)12 and 
ASARIMA (1, 1, 5)12 are chosen by AIC, SBIC and HQ respectively to other ASARIMA specifications. 
The FPE choice agrees with that of SBIC. The smallest value of RSS aligned with AIC choice, however, 
the two selected models are then subjected to forecast performance test as presented in Table2 below; 

Table 2. Optimal forecast performance identification test using AFC 

S/No. Information 
Criteria 

Model AFC 

1 AIC  ASARIMA(1, 1, 2)12
 96.7239* 

2 SBIC and FBE ASARIMA(0, 1, 1)12
 99.1639 

3 HQ ASARIMA(1, 1, 5)12 101.245 
     The symbols(*)indicates the best model.  

The result in Table2 above shows that optimality identification aligns with the choice of AIC and HQ, 
which indicates that ASARIMA (1, 1, 2)12 yields the optimal forecast values and it’s considered the best 
model. Therefore, the estimate of the model is presented in Table3 below. 

Table3. Final Estimates of ASARIMA(1, 1, 2)12 Parameters 

Type Coef SE Coef T P 

SAR 12 

SMA12 

SMA24 

Constant 

-0.5098 

0.4165 

0.5501 

2.5864 

0.5910 

0.5698 

0.5530 

0.3477 

-
0.86 

0.73 

0.99 

7.44 

0.389 

0.465 

0.320 

0.000 

Differencing: 0 regular, 1 seasonal of order 12 

Number of observations:  Original series 432, 
after differencing 420 

Residuals:    SS =  3337485 (backforecasts 
excluded) 

              MS =  8023  DF = 416 

 
The estimated model in Table3 produces the minimum residual sum of squares, and the model form is 
presented in (13) below. 

 245501.0124165.0
12125098.05864.212 




ttt
XtX     (13)
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Figure5.  ACF and PACF of Residuals for BMRF 

 
The absence of no significant spikes up to 48th lag in the autocorrelation function (ACF) and 

partial autocorrelation function (PACF) of the model residuals as shown in Figure5 strongly indicate that 
the residuals are uncorrelated and the fitted ASARIMA(1, 1, 2)12  model for BMRF is adequate and 
suitable for generating forecasts. 

 

Table4.  Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 

Chi-Square 11.9 20.7 29.3 46.7 

DF 8 20 32 44 

P-Value 0.154 0.415 0.606 0.363 

 

The result of Modified Box-Pierce Chi-Square statistic in Table4 shows that the residuals of the fitted 
model are not correlated up to 48th lag as the p-values are not significant. Therefore, the fitted ASARIMA 
(0, 1, 1)12 model is adequate. 
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Figure 6. Plot of forecast values using fitted ASARIMA(1, 1, 2)12 

model for BMRF model 
 (lead time = 150, origin =283) 

 
The generated values with the fitted ASARIMA (1, 1, 2)12 model are much related to the actual values. 

3.4 DISCUSSION OF RESULTS  

When a time series data is stationary at its regular level but exhibits some non-stationary seasonal 
behaviour, Amaefula(2021) showed that, it is better to model such seasonal data using ASARIMA(P, 1, 
Q)s than seasonal ARIMA models. Again, ASARIMA (P, 1, Q)s model eliminates parameter redundancy 
because it is more economical and parsimonious than SARIMA Models. The BMRF data used in this 
paper is found to be stationary and significant at 1% level. The ACF in Figure2 reveals that BMRF has 
seasonal characteristics and the PACF shows some seasonal fluctuations, indicating the need for seasonal 
differencing in the model.  
Nineteen possible ASARIMA(P, 1, Q)12 models were compared using AIC, SBIC, HQ and FPE, 
respectively. ASARIMA (1, 1, 2)12, ASARIMA (0, 1, 1)12 and ASARIMA (1, 1, 5)12 were selected having 
found to have the smallest values for AIC and SBIC and HQ, respectively. FPE aligns with SBIC. The 
three models were further subjected to optimality identification using AFC and ASARIMA (1, 1, 2)12 is 
found to be the optimal model, yielding the most precise forecasts. The diagnostic test shows that the 
fitted model is adequate. And the generated forecasts are quite close to the actual values. 
 

4. CONCLUSION 

 The findings of the study reveal that model identification using a particular information criterion 
does not guarantee optimal identification and model out-put performance. A comparison of the preferred 
models by different information criteria using AFC is recommendable as empirically demonstrated in this 
study.  However, ASARIMA(1, 1, 2)12 model is found to be optimal and adequate in predicting BMRF. 
Therefore, ASARIMA(1, 1, 2)12  is strongly recommended for predicting monthly rainfall and its effects 
in Benin City South-Southern Nigeria. 
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