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Abstract
Electron densities of impurity atoms have been obtained using three embedding functions
based on the three models proposed by Johnson (1989), Idiodi and Obodi (1993) and Oh and
Johnson (1988). The calculations were for the following fcc metals: Ni, Cu, Pd, Pt, Au and Ag.
Experimental values of dilute limit heat of solution of the binary alloys of these metals were
used as input parameters. The purpose was to investigate whether consistent values of the
electron density could be obtained from these functional forms using Johnson's alloy .model.
From the results for each impurity electron density (p) as a function of atomic distance (r), the
three derived models showed similar trend except for pd impurity. However, from the
calculated results, the impurity electron densities did give consistent values.
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Introduction
The non-uniformity in the energies and structure of metals and alloys have been the concern of
physicists. The study of these problems requires techniques that can handle a large number of
atoms, which in turn requires a model that is both accurate and computationally simple (Foiles
et al 1986). Although some of these problems have been addressed with various pair potential
models, there are still some significant problems associated with the application of pair
potentials. For instance, the pair potential of metals do not have environmental dependence and
does not account for the directional nature of the bonding. In other words, the pair potential do
not give adequate description of properties of metals (Vitek, 1996). All these problems led to
the evolution of embedded atom method (EAM).
The EAM is a semi-empirical approach which tackles the many - body problem by determining
a functional form for the cohesive energy (Hergert et al, 2004). This model gives a more
realistic picture of crystal properties than can be obtained by the pair potential model. In the
original EAM, the total energy of the system can be given as

Where Etot is the total energy, F(pi) is the embedding function, Փ(r) is the  pair potential and pi

is the electron density. One of the advantages of the original EAM model is that the embedding
energy can be obtained by fitting experimental data (Daw and Baskes, 1984).
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Embedded Atom Method (EAM)
The embedded atom method (EAM) is a semi-empirical scheme based on the local electron
density theory that has been shown to accurately describe a large number of properties of
materials. Stott and Zaremba (1980) presented a model to estimate the energy of an impurity
in a host electronic system and stated that the energy was a function of the host electron density
in which it was immersed. Also, Norskov and Lang (1980) proposed that the embedding energy
could be considered as a function of the electron density. Based on these works, Daw and
Baskes (1984) developed the EAM. The basic principle of the EAM is that each atom is viewed
as an impurity embedded in a host of other atoms.

Accordingly, the basic equations of the EAM as given by Daw and Baskes (1984) are

Ei is the internal energy associated with atom i, pi is the electron density at atom i, Fi(pi) is the
embedding function and  Փij(rij) is the pair-potential between atoms i and j separated by the
distance rij. The embedding function, Fi(pi) is universal in that it does not depend on the source
of the background electron density. Thus, the same embedding function is used to calculate the
energy of an atom in an alloy as well as in pure metals. This universality makes the EAM
particularly appealing for the studies of alloys (Foiles et al, 1986; Lee and Baskes, 2000).

In the EAM, the energy of each atom is computed from the energy needed to embed the atom
in the local electron density as provided by the other atoms of the metal. The EAM can also be
used to perform large - scale computer simulation of a wide variety of phenomena. Despite the
numerous advantages of EAM over pair-potential, the EAM have shown some weaknesses
such as the atomic density not being analytically obtained. Instead it was fitted from atomic
electron densities as calculated by Clementi and Roetti (1974). Also in the EAM, there are too
many parameters to be determined. EAM has been successfully applied to several problems in
condensed matter physics such as bulk properties of pure metals, alloys, surfaces, grain
boundaries, mechanical properties, vacancy formation energy and di-vacancy binding energy
and covalent materials (Jelinek et al, 2012; Zhou et al, 2021).

Purpose of Study
Electron density derived from different embedding functions are not expected to differ since
they are essentially a material property. The purpose of this work is therefore to find out if this
agreement in electron density values of impurity atoms derived from Johnson's model (1989),
Idiodi and Obodi's model (1993) and Oh and Johnson's model (I9S8) would hold. The derived
electron densities from these models were also compared with calculated values.



171

COOU Journal of Physical Sciences 5 (1), 2022

Website: www.coou.edu.ng

Method
The electron density of the impurity atom was calculated from the experimental values of dilute
- limit heat of solution based on Johnson's alloy model. This was calculated for six face-centred
cubic (fcc) metals - Cu, Ni, Au, Ag, Pd and Pt. Johnson (1989) proposed the assumption that
for fcc metals, only the nearest neighbors contribute to the pair - interaction and electron
density. The embedding function F(pi) is universal, in that it does not depend on the source of
the background electron density. Thus, the same embedding function used to calculate the
energy of an atom in an alloy is used in the pure material.

For an alloy with a host lattice of type - h atoms containing impurity of type - i atoms, two
kinds of embedding function Fh(p) and Fi(p) exist. Similarly, one could specify two kinds of
atomic electron density function, Fh(re

h) and Fi(re
h). For the pair - potential, there are three kinds

often referred to as ɸhh, ɸii  and ɸhi. ɸhh and ɸii are the same as that of their respective
monoatomic models while ɸhi is referred to as cross-potential (Li et al (2008)).
The relevant equation for the dilute - limit heat of solution , ∆Q, of an impurity atom in 
a host metal as given by Johnson (1989) is

From equation (6), Fh(𝜌) is the embedding function of the host atom, Fi(𝜌) is the embedding
function of the impurity atom, ɸhh (r) is the pair functional of the host atom, ɸhi(r) is the pair
functional of the alloy (host + impurity), r is the distance between the atoms, ∆𝜌 is the change
in electron density. Eh is the energy of the host atom and Ei is the energy of the impurity atom.
Equation (6) will be calculated in four steps following Johnson's binary alloy model.

Step I - Remove host:- Fh(𝜌) - 12 (r)

Step II - Add impurity: Fi(𝜌) + 12 hi (r)
Step III - Adjust neighbours: -12 Fh(𝜌) + 12 Fh(∆𝜌)
Step IV - Adjust cohesive energy:- - eh + Ei

Where
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If
equations (6a) to (6e) are substituted back into equation (6), the only unknown in the full
expression is the electron density of the impurity atom (pie (re

h). This quantity is obtained by
iterating the expression using Microsoft Excel (2007) in order to calculate the electron density
for each combination of impurity/host atom.

Calculation of Electron Density using different embedding functions
Three embedding functions were employed in this work to determine impurity electron.
density within the framework of Johnson's binary alloy model. The embedding
functions are due to Johnson (1989), Idiodi and Obodi (1993) and Oh and Johnson
(1988).

Johnson's Model
Using Johnson's model, some of the constants used were

follows (Johnson, 1989)
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Discussion
The electron density values from Ni and Cu impurities showed a similar trend for the derived
models -Johnson, Oh and Johnson and Idiodi and Obodi's embedding functions. All the models
have positive curvature for Ni impurity. For Ag, Au and Pt, the impurity electron density values
were inconsistent at atomic distances lower than 2,76480A but followed a similar trend at
atomic distances higher than 2.76480A. Pd gave dissimilar trend of electron density values
except for Pt host where the values for Oh and Johnson, Idiodi and Obodi were very close. For
all the three models the values of the derived electron density from Johnson's embedding
function are consistently higher and almost at constant values. The consistency in the trend of
the embedding functions is likely due to the fact that they were derived from the same atomic
cluster arrangement (Johnson, 1989).

All the models are in good agreement with experimental values of the dilute-limit heat of
solution. The heats of solution for alloys of Ni, Cu, Ag, Au and Pt derived with Johnson, Oh
and Johnson and Idiodi and Obodi's embedding functions were consistent with available
experimental data. The heats of solution involving Pd impurity gave the largest discrepancies
and the values were not consistent. This could be as a result of the alloys being immiscible up
to the melting point. Some of the heats of solution calculated were mere predictions as the
detailed thermodynamic data were not available. So they have remarkable disagreement with
experimental data (Zhang and Wen, 2007).
It is therefore possible to derive suitable electron densities from dilute limit heats of solution
for fee metals using different embedding functions to satisfy the universal equation of state.
An important application of this approach is that it enables one to compare electron densities
derived from various forms of embedding function in RAM literature.

Conclusion
Electron densities for six fee metals have been derived that exactly reproduced their respective
dilute limit heat of solution. They were derived using three different embedding functions from
Johnson's model, Idiodi and Obodi's model and Oh and Johnson's model. For Ni and Cu
impurities, Oh and Johnson and Idiodi and Obodi's models agree but have lower values than
Johnson's model. However, computation using Oh and Johnson's model for Ni impurity in Cu
and Cu impurity in Ni were unstable.

The three derived models tend to converge at atomic distance of 2.7648°A for Au, Ag and Pt,
but showed dissimilar trends at lower distances (fig. 4, 5 and 6).
This work shows that it is possible to derive consistent electron densities regardless of the form
of embedding function for a consistent set of prescribed material properties.

The observed differences between them may be the reason for non-uniqueness of the electron
density derived from them.

Recommendation
i. Electron density in this derived form could be tested for embeddingfunctions

using some other models
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ii. Use the derived electron densities to calculate basic material properties in the EAM
framework.
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