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Abstract - Theoretical study were used to calculate the dynamical properties of Al and Cu in the FCC 

structure by using analytical and density functional theory (DFT) within LDA and GGA functional. 

We calculated phonon frequency and described the results along the X, W, L points of the BZ which 

were compared with results obtained from analytical, quantum espresso and experimental data.  

The results obtained show that the phonon spectra for Cu using analytical method which implements 

the inter – atomic force constant (IFCs) have been found to be closer to experimental results using 1
st
 

– 9
th
 neighbour IFCs with a better percentage error when compared to 1

st
 – 8

th
 neighbour. For Al, 

LDA underestimates the lattice of about 2.4% while the GGA overestimates it by 0.3%. 

Keywords: Phonon, Quantum expresso, Eigen – value, Aluminium (Al),  Copper (Cu) 

1.0 INTRODUCTION 

The accurate description of phonons in a solid is one of the central research topics in the field of 

condensed matter physics and materials science for discussing phase stability (i.e., Gibbs-free 

energy), electron-phonon interaction, structural phase transitions of materials. Ab initio phonon 

calculations based on Density Functional Theory (DFT) have been successful for many compounds, 
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but they often fail in strongly-correlated materials (Nakano et al, 2020). Lattice dynamics in metals is 

determined by the interplay between the direct ion-ion and the indirect ion – electron – ion 

interactions (Ono and Kobayashi, 2020).  Phonon dispersion relation in crystals is a materialization of 

the inter-atomic bonding forces; hence, they play a vital role in numerous physical effects and 

phenomena. It arises as a result of lattice vibration in crystals which is frequently described as 

harmonic travelling waves characterized in terms of their wavelength, angular frequency, amplitude 

and direction of travel . Efficient determination of these relations is important for the advancement of 

materials physics. Phonon dispersion relations are usually calculated from model interaction potential 

experimentally as well as theoretically. Several experimental techniques such as the inelastic neutron 

scattering and x-ray diffraction have been used to measure the frequency of phonon as a function of 

the wave vector in solid materials. Efforts have also been made to calculate the phonon dispersion 

relation theoretically using different models. The experimental results obtained provide a crucial test 

to the validity and accuracy of these theoretical models. However, the models which fail to reproduce 

the experimental phonons are inefficient even for thermal properties of metals (Sade et al, 2017). 

Born and Von Karman were the pioneers that worked on the theoretical computation of phonon 

frequencies in three dimensions using the force constant approach. Many other models that followed 

thereafter are basically upgraded versions of the model, with very few exceptions. The Born- von 

Karman model pictured a crystal as an assembly of atom linked together like springs which act to 

restore the atoms when displaced from their equilibrium positions. This theory does not work well for 

metals since it does not account for the effect of conduction electrons. The influence of conduction 

electrons, which form a mobile Fermi gas of electron in the dynamic lattice of metallic solids 

(especially those that crystallize in Simple Cubic (SC), face-centered cubic (FCC) and hexagonal 

closed packed (HCP) structures cannot be neglected without some costly consequences in the 

accuracy of the result. To cater to the effect of the conduction electrons in determining the crystal 

potential within which the vibrating ions are found in metals, the Born – Openheinmer (BO) or 

adiabatic approximation (Born and Oppenheimer, 1927), is imposed on the crystal. Following the BO 

approximation the total potential energy in the crystal can be split into three parts namely, the direct 
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coulomb interaction between electrons and ions; the repulsive (Born – Mayer) core-core contribution 

and the electronic band structure contribution. The electronic band structure contribution may be 

represented as an indirect ion-ion interaction via the polarization of the conduction-electrons. The 

ion-ion electrostatic and exchange interaction give rise to central forces between the ions, while the 

free electrons give rise to volume-dependent forces which violate the Cauchy relation in the Born 

Von Karman theory (Fuchs, 1936). These observation led  Bhatia (1955) to develop 

phenomenological models which accounted well foe the ion-electron interaction. However  their 

models  neglected the translational invariance of the lattice. 

A further improvement was made on the initial phenomenological model by Krebs (1965). In his 

model, he took into account the remarks of the Lax and also the long-range interaction between ions 

by using screened Coulomb potential. The Krebs model efficiently reproduced the phonon dispersion 

curves of simple metals. However, it did not give a good fit to the phonon dispersion curves of noble 

and transition metals. This is because the outermost d-electron are not rigidly bound to it, hence there 

cannot be treated as free conduction electrons. 

In this paper, we report phonon dispersion calculation of Aluminium (Al) and Copper (Cu) using 

Inter – atomic Force constant (IFCs) and Density Functional Theory (DFT) technique using quantum 

expresso code as implemented by Gionnozzi et al (2009), IFC approach up to at least 9th neighbour  

and compare phonons results with experimental data. 

 

2.0  THEORETICAL CALCULATION AND CONSIDERATIONS 

2.1   HARMONIC APPROXIMATION  

In lattice dynamics, the potential energy of a crystal can be expressed as a series. For the purposes of 

calculations, it is usually truncated .the harmonic approximation involves keeping only the quadratic 
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terms which is the basis for treating small oscillations (Maradudin et al, 1963; Bottger, 1983), Terms 

higher than the second are known  as anharmonic. 

Consider a Bravais lattice with one atom per atom unit cell defined by the basis vectors 321 ,, aaa . We 

denote  the equilibrium position of the atoms in the lattice by the lattice translation vectors: 

332211 alalalL            (2.1) 

Where 
21,ll  and 3l  are any three integers which collectively we shall refer to as L. Assuming an 

atom L deviates from its thermal fluctuation, then the actual position of atom L (Cheng and Yang, 

2007) 

)(lULRl             (2.2) 

For an atom of mass m, the kinetic energy of the lattice is given as  
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 lu is the  - Cartesian component of   .,., zyxlu   

 The total potential energy  of the crystal is assumed to be some function of the instantaneous 

positions of all the atoms, i.e 
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Where      lRlR   depends on the distance between the two atoms landl  . Therefore, For small 

displacements of the atom, we can expand   in Taylor’s series of atomic displacements  lu  which 

gives: 
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Where subscript 0 means that the derivatives are evaluated in the equilibrium atomic positions, this 

being the configuration which atoms actually occupy, the lattice points. The first term in equation 

(2.7) is the fixed atoms, which is a constant. The second term is linear vanishes since the derivatives 
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The only term left in the equation (2.8)  is the quadratic (harmonic) term, hence we write  
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Crystals exhibits translational invariance which we may write: 

     llllll  ,,           (2.9) 

So that equation (2.10) becomes  
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Which is the expression respectively the harmonic approximation? Thus the total Hamiltonian, H is 

given as  

         lululllulumVTH
lll
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For simplicity if we denote the Hamiltonian of the crystal by E, then, following arguments presented 

in Born and Huang (1954). 

If a real solid is visualized as a classical model of vibrating lattices consisting of a number of atoms 

of point masses m, forming linear chains, then the second order coupling (force) constants are given 

as  

   lulu

E
ll






2

,           (2.12) 

Where E  is the total energy of the system  lu  and  lu   are the displacements of atoms landl  in 

the chain respectively. 

 

2.2 LOCAL DENSITY APPROXIMATION (LDA) AND GENERALIZED GRADIENT 

APPROXIMATION (GGA) 

The ground state properties and excitation spectrum of a many-electron system can be studied in two 

ways.  First is to choose some model with one or more adjustable parameters to calculate some 

adjustable property, for example the spectrum and the fit the result to experimental data to determine 

the parameters of the model. 

Secondly is to find the eigenfunction and eigenvalues of Hamiltonian in a parameter-free 

approximation (i.e the first principle approach). 

The difficulty now is how to reconstruct and formulate the exchange-correlation functional for 

practical application. An approximation has to be made for this expression and the most famous one 
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is the Local density approximation (LDA) which provides good results in a large number of systems. 

This approximation is still being used for first-principles calculations. 

In the formalism of LDA, the functional for the exchange-correlation energy is chosen to have the 

same formal expression as the one of a uniform electron gas 

E  𝑝 𝑋𝐶
𝐿𝐷𝐴  =  𝑝 𝑟 𝐸  𝑝 𝑋𝐶

𝐿𝐷𝐴 𝑑 𝑟         (2.13) 

Where 𝐸 𝑋𝐶
𝐿𝐷𝐴 is the exchange-correlation energy per particle of the uniform electron gas. It is well 

known that LDA often underestimates the theoretical results such as equilibrium volume and energy 

gap. A reasonable approximation for improving the LDA results is to include the gradient corrections, 

by making the functional to take account of the density gradient  ∇𝜌  at the same co-ordinate. This is 

called the generalized gradient approximation (GGA) Nagy (1998). The exchange – correlation 

energy in the GGA method is given as 

E  𝑝 𝑋𝐶
𝐺𝐺𝐴  =  𝜌(𝑟)  𝜌,  ∇𝜌 𝐺𝐺𝐴

𝑋𝐶 dr       (2.14) 

Where  𝐺𝐺𝐴
𝑋𝐶 is the exchange-correlation energy per particle of the uniform electron gas with 

inclusion of density gradient. 

3.0 PRESENTATION OF RESULTS 

The results of the phonon dispersion for Al are presented in section 3.1 while the results of the 

phonon dispersion relation for Cu from inter - atomic force constants (IFCs) approach and quantum 

espresso code are presented in section 3.2. 

3.1  PHONON DISPERSIONS OF ALUMINIUM(Al) 
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Figure  3.1.1: Calculated phonon dispersions for FCC – Al compared to inelastic neutron scattering 

data (black circles) Chulkov and sklyadneva (1994) 

Table3.1.1:Frequencies calculated from Quantum espresso at selected points of the BZ for  Al. All 

frequencies are in THz 

Al                             a(a.u)          XT       XL      WT   WL LT LL 

EXP (a) 7.65  5.87      9.36      -      - 3.49              9.65 

LDA(b) 7.47  5.87      9.14     6.88    8.31 4.38 9.92 

GGA(b) 7.67 5.10      8.53     6.28    7.74 3.78 9.40 

 

a  Chulkov and sklyadneva (1994) 

b  This work 
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Figure 3.1.2: Calculated phonon dispersions for FCC – Al from analytical approach using IFCs up to 

9
th
 neighbour 

Table3.1.2: Frequencies calculated analytically using IFCs up to 9
th
neighbour  at selected points of 

the BZ for Al. All frequencies are in THz 

Al XT XL WT WL LT LL 

EXP (a) 5.87 9.36 - - 3.49 9.65 

1-2N (c) 6.20 9.56 6.63 8.02 4.53 9.90 

1-4N (c) 5.58 9.38 6.69 7.96 3.93 9.74 

1-6N (c) 6.00 9.71 7.14 8.38 4.59 9.96 

1-8N (b) 5.72 9.55 6.94 8.26 4.09 9.77 

1-9N (c) 5.72 9.56 6.95 8.28 4.10 9.79 

 

a Chulkov and sklyadneva (1994) 

b Gilat and Nicklow (1966) 

c This work 

3.2      PHONON DISPERSIONS OF COPPER(Cu) 
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Figure 3.2.1: Calculated phonon dispersions for fcc-Cu compared to inelastic neutron scattering data 

(black circles) Svensson et al (1967) 

Table3.2.1:Frequencies calculated from quantum espresso at selected points of the BZ for  Cu. All 

frequencies are in THz 

Cu                             a(a.u)    XT       XL      WT   WL LT LL 

EXP (a) 6.83    5.07      7.19      4.89    6.09  3.36              7.40 

LDA(b) 6.72    5.31      7.77      5.02    6.51 3.60 7.99 

GGA(b) 6.96    4.73      6.96      4.36    5.77 2.94 3.12 

        
 

 

a Svensson et al (1967) 

b   This work 
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Figure  3.2.2: Calculated phonon dispersions for fcc-Cu from analytical approach using IFCs up to 

6
th
 neighbour 

Table3.2.2:Frequencies calculated analytically using ifcs up to 9
th
 neighbour at selected points of the 

BZ for Cu. All frequencies are in THz 

Cu XT XL WT WL LT LL 

EXP (a) 5.07 7.19 4.89 6.09 3.36 7.40 

1-2N (c) 4.70 7.11 4.74 6.01 3.08 7.23 

1-4N (c) 5.04 7.28 4.91 6.14 3.49 7.32 

1-6N (c) 5.04 7.25 4.85 6.08 3.39 7.30 

1-8N (b) 5.05 7.23 4.82 6.09 3.38 7.29 

1-9N (c) 5.04 7.22 4.82 6.08 3.36 7.30 

 

a. Svensson et al (1967) 

b. Dutton et al (1972) 

c. This work 

 

4.0 DISCUSSION OF RESULTS 

The phonon spectra of the FCC metals; Al, and Cu, have been calculated using the Born-von Karman 

model with different numbers of interacting neighbours and exchange functional and the calculated 
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values compared with experimental results. The different branches of the phonon band structure 

follow from the Eigen values after diagonalizing the dynamical matrix. The phonon frequencies in the 

first Brillouin zone were calculated along some high symmetry points and the current calculations 

show that from the gamma points, along the high symmetries RX and RL directions there are 

two branches of dispersion (Transverse  and Longitudinal) which later split into three branches along 

the XW direction. By differentiating the phonon frequencies into two modes via acoustic 

longitudinal (LA) and Acoustic transverse (TA) at the Brillouin zone boundary, it is possible to 

characterize the high symmetry directions and identify which split corresponds to any of the modes. 

4.1 PHONON DISPERSION OF ALUMINIUM (Al) 

The phonon dispersion of Aluminium (Al) calculated from quantum espresso code and interatomic 

force constant (IFCs) compared with experimental in elastic neutron scattering data (Chulkov and 

Sklyadneva, 1994) are shown in Figures 3.1.1 and 3.1.2. The experimental inelastic neutron scattering 

data are shown as black circles, the red line are the dispersions calculated by GGA functional while 

the green lines are the LDA dispersions. In the density functional theory calculations carried out for 

Al, The electron – ion was treated using norm-conserving ab initio pseudopotential, within the 

applied self – consistent method. The calculations are carried out within the local density 

approximation (LDA) (Perdew and Zunger, 1981) and generalized gradient approximation GGA 

(Perdew et al, 1996) for the exchanged and correlation energy using Quantum espresso code. The 

pseudo-wave function is expanded in plane waves with a kinetic cut-off of 45Ryd and 25Ryd for 

LDA and GGA functional respectively. The integration over the Brillouin zone were performed in the 

reciprocal space with uniform K-point meshes of 10 x 10 x 10 for both  LDA and GGA respectively. 

The self – consistency calculation was assumed to have converged when the difference in energy 

between subsequent iteration was 1.0 x 10
3
Ryds. In the phonon dispersion calculated, the LDA 

functional at the transverse acoustic (T) branch about the X point agrees with experiment while GGA 
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functional slightly under estimates it. At the longitudinal acoustic (L) about the X point the LDA and 

GGA slightly underestimates and overestimates the experiment respectively.  While at the T branch 

about the L point GGA and LDA overestimates experiment. Also at the T branch about the L point 

LDA frequencies are higher than experiment while GGA gives frequencies slightly lower than 

experiment. The LDA underestimates the lattice of about 2.4% while the GGA overestimates it by 

0.3% 

The analytical calculated phonon dispersions of Al using IFCS approach of the 1-2NN, 1-4NN, 1-

6NN, 1-8NN and 1-9NN (NN means Nearest Neighbour) are shown in figure 3.1.2 with red lines, 

green lines, blue lines, purple lines and pink lines representing the nearest neighbours respectively. 

The results obtained analytically using IFCs are found to be slightly closer than experiment. The 

analytical results predict the experimental results better than Quantum espresso.  

4.2   PHONON DISPERSION OF COPPER (Cu) 

The phonon dispersion of Copper (Cu) calculated from quantum espresso code and interatomic force 

constant (IFCs) compared with experimental in elastic neutron scattering data (Svensson et al, 1967)  

are shown in Figures 3.2.1 and 3.2.2. The experimental inelastic neutron scattering data are shown as 

blue squares, the red line are the dispersions calculated by GGA functional while the green lines are 

the LDA dispersions. In the density functional theory calculations carried out for Cu, The electron-

ion was treated using norm-conserving ab initio Pseupotential, within the applied self-consistent 

method. The calculations are carried out within the local density approximation (LDA) (Perdew and 

Zunger, 1981) and generalized gradient approximation GGA (Perdew et al, 1996) for the exchanged 

and correlation energy using Quantum espresso code. The pseudo-wave function are expanded in 

plane waves with a kinetic cut-off of 30Ryd and for both LDA and GGA functional respectively. The 
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integration over the Brillouin zone were performed in the reciprocal space with uniform K-point 

meshes of 8 x 8 x 8 for both  LDA and GGA respectively. The self – consistency calculation was 

assumed to have converged when the difference in energy between subsequent iteration was 1.0 x 10
-

3
Ryd in the copper at the equilibrium geometry the LDA gives phonon dispersions higher than 

experiment and the GGA functional gives low frequencies (Favot and Dal, 1999; Grabowski et al, 

2007) an error that is correlated with the overestimation of the lattice constant. The LDA gives lattice 

constant 1.6% lower than experiment while GGA lattice constant is 1.9% higher. The analytical 

calculated phonon dispersions of copper using IFCs approach of the 1-2NN, 1-4NN, 1-6NN, 1-8NN 

and 1-9NN are shown in Fig 3.2.2 with the red lines, green lines, blue lines, purple lines and pink 

lines representing the nearest neighbours respectively.  The analytical phonon dispersion curve of 

copper shows that the second neighbour  forces (1-2NN) underestimates the experimental except at 

the longitudinal acoustic branch about the W point where the frequencies of the 1-4NN, 1-6NN, 1-

9NN gives a better prediction of the experimental phonon dispersion than those of the LDA and GGA 

functional from Quantum espresso.  

5.0 CONCLUSION 

We have calculated the dynamical and thermodynamic properties of Al and Cu in the FCC structure 

by using analytical and density functional theory (DFT) within LDA and GGA functional. We 

calculated phonon frequency and described the results along the X, W, L points of the BZ which we 

compared with results obtained from analytical, quantum espresso and experiment.  

The phonon dispersion curve for Cu using analytical method which implements the the inter – atomic 

force constant (IFCs) have been found to be closer to experimental results using 1
st
 – 9

th
 neighbour 

IFCs with a better percentage error when compared to 1
st
 – 8

th
 neighbour. 

For Al, LDA underestimates the lattice of about 2.4% while the GGA overestimates it by 0.3% 
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