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Abstract– The computational theoretical investigation of lattice dynamics induced by phonon – 

electrons interactions were carried out in some FCC metals; Ni and Pt to described the results 

along the X, W, L points of the BZ which were compared with results obtained from analytical, 

quantum espresso and experimental data. 

 Frequency calculations of the 1- 9NN for  Pt, and 1-6NN for Ni  using inter – atomic 

force constant (IFCs) approach, the results obtained are reasonably close to experimental results 

which are available in the literature.  We also observed smaller values of force constants for 

neighbours higher than the fourth neighbour. The computational lattice error of the LDA in Ni 

was  – 2.7% and this was corrected to 0.2% using the GGA while  the lattice constant of Pt was 

overestimated by 0.1% and this was also corrected to 2.1% by GGA. In Nickel the phonons of 

the IFCs predict well the experimental phonons than those from quantum espresso code.   

We also employed the nineth (1-9NN) neighbour force constant to elucidate the nature of 

phonon diagrams of Pt while the first to sixth neighbour force constant has been employed to 

calculate the phonon diagrams of Ni analytically.  
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1.0 INTRODUCTION 

The theory of lattice dynamics which originated from the fundamental papers of Born. 

The first principle prediction of the dispersion curves of phonon of, FCC, BCC, noble and 

transition metals encounter challenges that lack adequate solution from the commonly used 

exchange correlation functions. To improve on the first principle calculation results, the density 

functional theory (DFT) was introduced, in recent years, and later, the phonon dispersion 

problem was tackled using the inter-atomic force constants (IFCs) technique as implemented in 

the Born-von Kármán model (Born and Oppenheimer, 1927),  . 

The dispersion curves of the following BCC metals, Cs, Cr, Fe, Mo, Nb, Na, Ta and W 

were calculated successfully using two techniques; The inter atomic force constants (IFCs) 

technique employing the Born – von Kármán model and the first principle technique based on 

DFT implemented by QUANTUM ESPRESSO. The different branches of the phonon band 

structure follow from the eigen values after diagonalizing the dynamical matrix. Calculations 

along the points of high symmetries (  ,  and  ) directions of the phonon 

frequencies in the first Brillouin zone (BZ) shows that, there are two dispersion branches 

(longitudinal and transverse).The two branches later split into three along the  direction 

with a degenerate of the transverse branch. The density of state (DOS) and thermodynamic 

properties from analytical and first principle were obtained and also compared with available 

experimental results.  

IFCs calculations from some pilot papers and the extended force constants of this study are 

approximately the same with (MAE 0.0923THz, MARE 1.57%) and (MAE 0.1045THz, MARE 
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2.00%) respectively on the average. The first principle calculations show, the GGA (PBE) (MAE 

0.8470THz, MARE 18.79%), PW91 (MAE 0.8568THz, MARE 14.60%), LDA (MAE 

1.2079THz, MARE 28.74%) and GGA (PAW) (MAE 0.2236THz, MARE 6.23%) on the 

average. IFCs calculations gave better results compared to the first principle (QUANTUM 

ESPRESSO) calculations on the average and GGA (PAW) functional on an average is the best 

functional while LDA is the worst. The DOS agree reasonably well with experimental results 

andthe thermodynamic properties of the analytical results and the first principle results also agree 

reasonably well. In conclusion, the IFCs technique using Born – von Kármán model was found 

to be a bettertechnique in explaining the lattice dynamical properties of these metals compared to 

the first principle (QUANTUM ESPRESSO) method (Okocha, 2018). 

These phonon frequencies, , are written as a function of wave-vectors q (Srivastava, 

1990). The relationship between   and q, ( = j(q)) is called phonon phase diagram and it is 

often times presented graphically as a plot of   against q, known as phonon dispersion curves 

(PDCs). The j signifies the polarization branch and takes on three values in the case of the face-

centered cubic crystals.  

Enaroseha et al (2021) using the Density Functional Theory (DFT) and Inter – atomic Force 

Constants (IFCs) studied theoretically the phonon dispersion spectra of Aluminium (Al) and 

Copper (Cu) and found good results that agree with experimental datas. 

In this paper, We report lattice dynamics and phonon phase diagram in some FCC: Nickel (Ni) 

and Platinium (Pt) employing  the Born Von Karman force constant model (Cowley,1973) 

from 1-2NN, 1-4NN, 1-6NN, 1-8NN and 1-9NN. The motivation of this work is to compare our 
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analytical calculation to the first principle calculation and also that of experiment in order to 

ascertain the nearest neighbors (NN) effects. 

2.0  THEORETICAL CALCULATION AND CONSIDERATIONS 

2.1   CONDUCTION ELECTRONS IN PHONON DISPERSION CURVE 

 Typical anomalies may be seen in dispersion curves (Smith, 1972) and are believed to 

arise from the influence of the conduction electrons. As early as 1936, Fuchs considered the role 

of conduction electrons in connection with the calculation of the elastic constants of alkali metals 

and of Cu with particular reference to the failure of Cauchy relations. Wigner and seitz 

previously employed a method for calculating the cohesive energy of the alkalis, Fuchs argued 

that one could divide the contributions to the potential energy of the crystal into two parts, one 

association with pair wise interactions between ions and the other associated with volume – 

dependent effects ascribable to the conduction electrons. This led him to deduce the relation C11 

– C12 =𝐶12
𝑃 − 𝐶12

𝑃  which show that volume – dependent forces lead to the violation of cauchy 

relations. Fuchs further demonstrated that when a crystal is subjected to a uniform compression, 

forces due to both the pair potential and the volume – dependent potential are called into play in 

determining the bulk modulus, given by  

𝐾 =
𝐶11
𝑝

+𝐶11
𝑣 +2𝐶12

𝑝
+2𝐶12

𝑣

3
        (2.1) 

De Launay (1956) used ideas of Fuchs to incorporate phenomenologically the modification to 

the dispersion curve of simple cubic metals which arise from electron gas effects. He supposed 

that the conduction electron gas respond in phase to the longitudinal component of the lattice 

vibrational waves but is left unaffected by the transverse (Shear) components. The net result is 

now to modify the otherwise central force constants such that the deviation from the cauchy 
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relation is equal to the bulk modulus of the electron gas. Bhatia (1955) later offered a slightly 

different effect. He argued that the force acting on an ion during its motion could be written as 

(F1+ F2), where F1 is due to the pair potentials of force constants. The part arising from volume – 

dependent forces is assumed to be given by 

𝐹2 = −𝑒𝑔𝑟𝑎𝑑∅           (2.2) 

Where   is the electrostatic potentials evaluated with the Thomas – Fermi description for 

screening effects. The effects on the elastic constants, dispersion curves and g ( ) were 

examined. Real understanding of the effects of conduction electrons began when the interplay of 

theory and experiment offered a detailed picture. The first step was taken by Toya (1964) when 

he calculated the dispersion curves for several alkalis, treating them as an array of positive ions 

immersed in a sea of conduction electrons. The modifications of the electronic wave functions 

consequent to ionic motion and their subsequent influence on normal – mode frequencies were 

handled by Hartee-fock theory. Tayo’s work coincided with the period when rapid strides were 

being made in the understanding of many-body effects in electron gas systems. These 

considerations were widely applied to conduction electrons in metals especially Nearly Free – 

Electron (NFE) metals like the alkalis. In the case of simple cubic metals, motions corresponding 

to waves along the principal symmetry directions involve rigid displacement of atomic planes 

which are normal to q. The normal – mode, problem consequently is formally equivalent to a 

linear chain and may be analyzed in terms of interplaner force constants (Foreman and Lomer, 

1957)  

2.2 KOHN – SHAM ANSATZ 
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The Kohn – Sham (KS) approach Kohn and Sham, (1965) puts Hohenberg – Kohn 

theorem into practical used and making use of density functional theory (∆𝐹𝑇 ) calculations. The 

popular application of DFT is as a result of the successes recorded using the Hohenberg – Kohn 

theorem.  

Using auxiliary independent particles, the many – body systems is replaced by the KS 

approach provided their densities have similar ground state. 

The auxiliary Hamiltonian is  

Hks= 
1

2
𝛻2 + 𝑉𝑘𝑠 ,          (2.3) 

Where the first term on the right of equation (2.3) is the kinetic energy term in atomic units 

h=me=e=4
𝜋

𝜀
= 1.  

For Schrodinger equation of the N single – electron, we have, 

 
1

2
𝛻2 + 𝑉𝑘𝑠 𝜑𝑖 𝑟 = 𝜀𝑖𝜑𝑖 𝑟          (2.4) 

For the single electron of the N orbitals 𝜑𝑖 𝑟  having minimum eigen values 𝜀𝑖 , we can construct 

the density n(r): 

𝑛 𝑟 =   𝜑𝑖 𝑟  
2𝑁

𝑖=1           (2.5) 

Assuming 

 𝑛 𝑟 𝑑𝑣 = 𝑁           (2.6) 

The un - perturbed kinetic energy Ts is given as  
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𝑇𝑠 𝑛 𝑟  =
−1

2
  𝜑𝑖

𝑁
𝑖=1  𝑟 𝛻2𝜑𝑖 𝑟 𝑑𝑟       (2.7) 

Then the universal functional F[n(r)] takes the form  

𝐹 𝑛 𝑟  = 𝑇𝑠 𝑛 𝑟  + 𝐸𝑥𝑐  𝑛 𝑟          (2.8) 

Where 𝐸𝐻 𝑛 𝑟  , is the classic electrostatic energy (Hatree) of the electrons is given by 

𝐸𝐻 𝑛 𝑟  = 1

2
 

𝑛 𝑟 𝑛(𝑟)
 𝑟−𝑟 

𝑑𝑟𝑑𝑟        (2.9) 

and𝐸𝑥𝑐Exc [n r ] is the exchange correlation (XC) energy. 

𝐸𝐻 𝑛 𝑟  = 𝐹 𝑛 𝑟  +  𝑛 𝑟 𝑉𝑒𝑥𝑡  𝑟 𝑑𝑟,        (2.10) 

𝛿 𝐹 𝑛 𝑟  +  𝑛 𝑟 𝑉𝑒𝑥𝑡  𝑟 𝑑𝑟 − 𝜇  𝑛 𝑟 𝑑𝑟 − 𝑁  = 0     (2.11) 

This leads to             

𝜇 =
𝛿𝐹[𝑛 𝑟 ]

𝛿𝑛 (𝑟)
+ 𝑉𝑒𝑥𝑡 (𝑟)          (2.12) 

=
𝛿𝑇𝑠[𝑛(𝑟)

𝛿𝑛(𝑟)
+ 𝑉𝐾𝑆(𝑟) 

Where 𝑉𝐾𝑆  𝜇is the chemical potentials, 

𝑉𝑘𝑠VKS  r = Vext  r + VH r + Vxc (r) 

= Vext 𝑉𝑒𝑥𝑡 𝑟 +
𝛿𝐸𝐻 [𝑛 𝑟 ]

𝛿𝑛 (𝑟)
+

𝛿𝐸𝑋𝐶 [𝑛(𝑟)

𝛿𝑛 (𝑟)
                                                                           (2.13) 

KS is one particle potential with the Hatree potential VH(r) 
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𝑉𝐻VH r =
δEH [n r ]

δn(r)
 

=  
𝑛 𝑟 ′ 𝑑𝑟 ′

 𝑟−𝑟 ′ 
           (2.14) 

And the XC potential Vxc(r) 

𝑉𝑥𝑐 𝑟 =
𝛿𝐸𝑥𝑐  𝑛 𝑟  

𝛿𝑛  𝑟 
          (2.15) 

Equations (2.3),(2.4), and equations(2.13) together are the KS equations.  

 An implicit definition of 𝐸𝑋𝐶 [𝑛 𝑟 ] can be given as 

𝐸𝑋𝐶  𝑛 𝑟  = 𝑇 𝑛 𝑟  − 𝑇𝑆 𝑛 𝑟  + 𝐸𝑖𝑛𝑡  𝑛 𝑟  − 𝐸𝐻[𝑛 𝑟 ]     (2.16) 

3.0 PRESENTATION OF RESULTS 

The results of the lattice dynamics for Nickel (Ni) and Platinium (Pt) are presented in 

section 3.1 and 3.2 respectively using Density Functional Theory (DFT) and inter - atomic force 

constants (IFCs) approach with quantum espresso code. 

3.1  LATTICE DYNAMICS AND  PHONON PHASE DIAGRAMS IN NICKEL (Ni) 
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Figure  3.1.1: Calculated phonon dispersions for FCC – Ni compared to inelastic neutron 

scattering data (black circles) Birgeneau et al (1964) 

 

Table3.1.1: Frequencies calculated from quantum espresso at selected points of the BZ for Ni. 

All frequencies are in THz 

Ni                             a(a.u)  XT       XL      WT   WL LT LL 

EXP (a) 6.65 6.26      8.54      6.20    7.49  4.23              8.89 

LDA(b) 6.47 6.50      8.89      6.25    7.67 4.34 9.38 

GGA(b) 6.66 6.46      8.61      6.30    7.51 4.60 8.88 
 

a Birgeneau et al (1964) 

b   This work 

 

Figure  3.1.2: Calculated phonon dispersions for FCC – Ni from analytical approach using IFCs 

up to 6
th
 neighbour 

Table3.1.2: Frequencies calculated analytically using ifcs up to 6
th
 neighbour at selected points 

of the BZ for Ni. All frequencies are in THz 

Ni XT XL WT WL LT LL 
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EXP (a) 6.26 8.54 6.20 7.49  4.23              8.89 

1-2N (c) 5.85 8.48 5.95 7.26 3.94 8.66 

1-5N (b) 6.23 8.58 6.17 7.43 4.24 8.85 

1-6N (c) 6.24 8.59 6.18 7.44 4.25 8.86 

 

a Birgeneau et al (1964) 

b Dutton et al (1972) 

c. This work 

3.2     LATTICE DYNAMICS AND PHONON PHASE DIAGRAMS IN PLATINIUM(Pt) 

 

Figure  3.2.1: Calculated phonon dispersions for FCC – Pt compared to inelastic neutron 

scattering data (black circles) Dutton et al (1972) 

 

Table 3.2.1: Frequencies calculated from quantum espresso at selected points of the BZ for  Pt. 

all frequencies are in THz 

Pt                             a(a.u)  XT       XL      WT   WL LT LL 

EXP (a) 7.40 3.84      5.79      3.24    4.65  2.91              5.85 

LDA(b) 7.39 3.97      5.89      5.02    3.25 2.87 6.05 

GGA(b) 7.56 3.64      5.35      4.36    2.99 2.64 5.53 
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a Dutton et al (1972) 

b   This work 

 

Figure  3.2.2: Calculated phonon dispersions for FCC – Pt from analytical approach using IFCs 

up to 9
th
 neighbour 

Table3.2.2: Frequencies calculated analytically using IFCs up to 9
th
 neighbour at selected points 

of the BZ for Pt. all frequencies are in THz 

Pt XT XL WT WL LT LL 

EXP (a) 3.84 5.79 3.24 4.65 2.91 5.85 

1-2N (c) 3.45 5.72 3.69 4.71 2.52 5.84 

1-4N (c) 3.78 5.77 3.26 4.65 2.84 5.89 

1-6N (c) 3.75 5.77 3.23 4.65 2.84 5.87 

1-8N (b) 3.80 5.80 3.27 4.68 2.91 5.90 

1-9N (c) 3.82 5.82 3.28 4.69 2.93 5.92 

a Dutton et al (1972) 

b Dutton et al (1972) 

c This work  
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4.0 DISCUSSION OF RESULTS 

The lattice dynamics and Phonon phase diagrams of some FCC metals; Ni, and Pt, have been 

calculated using the Born-von Karman model with different numbers of interacting neighbours 

and exchange functions and the calculated values compared with experimental results.  

4.1 LATTICE DYNAMICS AND PHONON PHASE DIAGRAMS OF NICKEL (Ni) 

The phonon dispersion of Ni calculated from quantum Espresso code (Gionnozzi, et al, 2009)  

and inter atomic force constant (IFCs) compared with experimental results of Birgeneau et al, 

1964, these are shown in figure 3.1.1 and 3.1.2. The experimental results of Birgeneau et al, 

1964  are shown as blue squares, the red lines are the dispersions calculated by GGA while the 

LDA diagram are indicated with green lines, in density functional theory (DFT) calculations  

carried out for Ni the electron – ion was treated by using ultra – soft and norm – conserving  Ab 

initio pseudo – potential, within the applied self – consistent method.  

Perdew and Zunger (1981) using LDA  and Perdew et al (1986) investigated the exchange and 

correlation energy using quantum espresso code. The pseudo – wavefunction are expanded in 

plane waves with a kinetic energy cut off of 35Ryd for both LDA and GGA. The integration over 

Brillouin zone were performed in the reciprocal space with uniform K – point meshes of  8 x 8 x 

8 points for both LDA and GGA. The iteration of the different energies of the self – consistent 

calculations converge at1.0 x 10
3

Ryd. 

In Nickel the LDA and GGA dispersions calculated at theoretical equilibrium lattice constant do 

not agree with experiment. In this work, the LDA and GGA overestimates frequencies, giving 

their frequencies higher than experimental results. The overestimation of the frequencies by 

GGA functional show discrepancies with other studies.  The computational lattice error of the 

LDA in Ni was  – 2.7% and this was corrected to 0.2% using the GGA. 
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 The analytical calculated phonon dispersions of Ni using IFCs approach of the 1-2NN, 1-5NN 

and 1-6NN are shown in figure 3.1.2. The red, green and blue line represents the nearest 

neighbours respectively.  The calculated phonon dispersions of the 1-2NN are lower than 

experiment while that of 1-5NN and 1-6NN are in good agreement with experiment. Therefore, 

in Nickel the phonons of the IFCs predict well the experimental phonons than those from 

quantum espresso code.  

4.2   LATTICE DYNAMICS AND PHONON PHASE DIAGRAMS OF PLATINIUM (Pt) 

The phonon dispersion of Platinium (Pt) calculated from Quantum Espresso code and inter-

atomic force constants (IFCs) compared with experimental data of Dutton et al, (1972) are 

shown in figures 3.2.1 and 3.2.2. The experimental results of Dutton et al, (1972 are shown as 

black circles, the red lines are the dispersions calculated by GGA while the green lines are the 

LDA dispersions. In density functional theory (DFT) calculations carried out for Pt, the electron-

ion was treated by using ultra soft Ab initio pseudo –potential within the applied self-consistent 

method. The pseudo-wave – function is expanded in plane waves with a kinetic energy cut-off of 

40Ryd and 60Ryd for LDA and GGA respectively. The integration over the Brillouin zone was 

performed in the reciprocal space with uniform k-point meshes of 12 x 12 x 12 for both LDA and 

GGA.. In the phonon calculations of previous papers (Grabowski and Neugebauer, 2007; Dal 

Corso,2013) it has been found that the LDA phonon dispersions of Pt agree with experiment 

which correlates with our LDA result in this work, although some details of the dispersions 

depend on technical details of the calculation. For instance, Grabowski and Neugebauer found a 

significant error of the LDA at the W point. The GGA dispersions give results close to 

experiment except at the transverse acoustic (T) branch about the w point where the frequency is 



Solid State Technology 
Volume: 64 Issue: 2 

Publication Year: 2021 

 

4
6
5
3

 

Archives Available @ www.solidstatetechnology.us 

slightly lower. The LDA underestimates the lattice constant by 0.1% and GGA overestimates it 

by 2.1%. 

The analytical calculated phonon dispersions of  Pt using inter atomic force constants (IFCs) 

approach of the second (1-2NN), fourth(1-4NN), sixth(1-6NN), eighth(1-8NN), and ninth(1-

9NN) nearest neighbour are shown in Figures 3.2.2 with the red lines, green lines, blue lines, 

purple lines and pink lines representing the 1-2NN, 1-4NN, 1-6NN, 1-8NN, and 1-9NN 

respectively. The phonon dispersions of the fourth (1-4NN), sixth (1-6NN), eight (1-8NN) and 

ninth (1-9 NN) nearest neighbours are found to be in good agreement with experiment while at 

the X and L of the transverse acoustic (L) the second(1-2NN) is found to give lower frequencies 

compared to others. Therefore, the phonon dispersions of the IFCs predict well the experimental 

phonons than those of Quantum espresso.  

5.0 CONCLUSION 

 We have calculated and plotted the dynamical phases of Ni and Pt in the FCC structure 

by using analytical and density functional theory (DFT) within LDA and GGA functional. We 

calculated phonon frequency and described the results along the X, W, L points of the BZ which 

we compared with results obtained from analytical, quantum espresso and experiment.  The 

calculated frequencies of the 1-9NN  Pt and 1-6NN for Ni are from inter-atomic force constant 

IFCS approach are reasonably close to experimental results which are available in the literature. 

We also observed that the force constant for neighbor more distant than the fourth neighbor has 

distinctly smaller values. 

The nineth (1-9NN) neighbour force constant has been employed to elucidate the nature of 

phonon diagrams of Pt while the first to sixth neighbour force constant has been employed to 

calculate the phonon diagram of  Ni analytically. We also extend our calculation from first to 
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ninth neighbour for Pt and first to sixth neighbour of  Ni where there is an improvement in the 

phonon dispersion curve when compared with first to eight and first to fifth neighbours IFCs in 

the literature. 
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