

Abstract— DevOps is a systematic methodology, tools, and

philosophical framework for automating and integrating
software development and IT operations teams. Team
empowerment, cross-team communication and cooperation,
and technological automation are all emphasized. DevOps
refers to a collection of integrated activities or procedures used
to automate and interconnect software development processes
with IT developers with the goal of swiftly and reliably
producing, testing, and delivering deliverables. DevOps has
resulted in developers or practitioners using endless loops to
highlight the link between development lifecycle phases
regularly. Even though the numerous activities or processes in
a DevOps build a loop and flow sequentially, iteration requires
that the flow be collaborative and repeated at all times in order
to improve the entire lifecycle. Various software automation
trends might be equipped to manage the industry's current
software and technology if DevOps investigates them
thoroughly.

Index Terms— DevOps, CI/CD, Software development
practices,

I. INTRODUCTION
 evOps refers to a collection of integrated activities or
procedures used to automate and interconnect software

development processes with IT, developers, with the goal of
swiftly and reliably producing, testing, and delivering
deliverables. DevOps is a word that relates to both
development and operations, and it reflects a cultural
relationship between developers and operators whose
functions were previously separated (Whittle, 2014).
DevOps has resulted in developers or practitioners using
endless loops to highlight the link between development
lifecycle phases regularly. Although the many activities or
processes in a DevOps make a loop and flow sequentially,
the iteration suggests that the flow must be continually
collaborative and repeated to enhance the overall lifecycle
(Gruver, 2016). Communication was a key factor in the
development of DevOps. Other developers and designers
saw the process as a collaborative way for developers and
engineers to use iterative automation to complete jobs and
other activities as quickly as possible.

The integration of the development and operations teams
was aided by several reasons. The notion was born out of
the organizations' long-standing challenges and concerns,
since their tasks are greatly scattered, making their
operations more complex (Armstrong, 2016). The capacity
to tackle difficulties from an individual position got less as
the complexity chain grew more complicated. Providing

virtual machines in a large network region, difficult setup of
extended network devices and servers, and installing
numerous applications are only a few of the essential
interventions that led to the merger (Armstrong, 2016).
Furthermore, log collecting and aggregation, monitoring
services, network performance monitoring, and application
performance monitoring had all become complicated issues.
Furthermore, the developers, operators, and engineers were
unable to comprehend the events that led to these
complexities, resulting in false alarms and the need for
remediation.

DevOps Best Practices

i. Combination of Strength

When a diverse collection of operators and developers
worked, they came up with a reasonable solution to the real-
world operating complexity (Gruver, 2016). These
complicated processes have been broken down into
manageable chunks for simple comprehension. Monitoring,
performance management, deployment automation,
infrastructure automation, log management, and
configuration management are among them.

ii. Infrastructure automation

Unlike in the past, when infrastructural components had

to be built from the ground up, now there is no need to build
servers from the ground up, acquire electricity, or manually
link data centers. In addition, manually connecting a
machine to a network is no longer necessary. Most of these
procedural and time-consuming processes have become
ineffective and inessential when the developers and
operations teams were combined. Previously, these
processes were laborious and tedious, and they only
happened after an operation had run into problems (Gruver,
2016). All operations may be carried out, controlled, and
maintained in a single location utilizing a simple code,
according to DevOps. The emergence of cloud services
allows users to access real-time information via a web
application. This eliminates the requirement for data centers
or silos to perform normal operations. Most processes, such
as IT infrastructure, became automated once DevOps was
introduced, eliminating the need to physically visit data
centers and silos to receive hardware services or make
network changes. Cloud services are extremely
advantageous since they lower linear demand costs and
allow for automatic provisioning without having to pay for
hardware services (Meena, 2014). These services are

A Complete Guide to DevOps Best Practices
Justin Onyarin Ogala

Department of Computer Science, Faculty of Computing,
University of Delta, Agbor, Delta State, Nigeria

justinoo2001@gmail.com

D

https://doi.org/10.5281/zenodo.6376787 International Journal of Computer Science and Information Security (IJCSIS),

Vol. 20, No. 2, February 2022

https://doi.org/10.5281/zenodo.6376787 1 https://sites.google.com/site/ijcsis/

ISSN 1947-5500

provided by a variety of suppliers. Azure, Heroku, Ubuntu
cloud, Amazon web services, HP cloud, RackSpace cloud,
and EngineYard are some of the options.

iii. Configuration management

Previously, when the hardware was installed, developers or
network users had to manually implement, execute, and
configure numerous packages. DevOps brings the power of
intelligent or automated configuration management to bear
on the problem. DevOps automates the installation and
setup of hardware packages through the use of simple
scripted scripts. Because servers are constantly and in real-
time deployed in every event, computerized setup solutions
are advantageous. Assume a user has to make changes or
adjustments to many machines. In that situation, all users
have to do is execute them on a single system, and they will
automatically duplicate over all other devices (Meena,
2014). Puppet, Ansible, Pallet, Chef, Salt Stack, and Bcfg2
are some of the suppliers providing DevOps tools. The
automated tools are also provided by Amazon's OpsWorks
and Rightscale providers.
 Previously, most operational settings had rigorous
standards and limitations on who had access to the
production field, who could make changes, and when these
changes may be implemented. Physical engagement with
hardware, particularly in data centers, was required to bring
about these improvements (Meena, 2014). These
expectations and unrelated procedures have hampered the
capacity of development and operations to work together.
However, the application and maintenance of various
DevOps methodologies and stand-alone operations are still
unclear. Before deciding on the optimal strategy to deploy
models for infrastructure development, one must first
consider the operating viewpoint, which is critical.
Furthermore, when deploying an application in a pre-
production region, the Ops teams of developers must
comprehend the development perspective. (2014, Google)

iv. Continuous Monitoring

Initially, the developers and operations team had to
physically manage or control all of the systems in a network
to guarantee that there were no defects or possible threats.
These operations were inefficient and ineffective. The
designs are automated using DevOps to guarantee that the
systems' essential notifications are never missed by the
operators, organizations, or commercial organizations.
Monitoring, messaging, and ticketing tools are all firmly
interwoven into these platforms. Filtered noise is used in
these techniques to boost signals (Google, 2014). Unlike
previous models, which issued alerts to a single machine or
unit, DevOps systems convey signals to numerous channels
and provide the required steps to remedy issues, whether
potential or ongoing.
Aside from issuing alarms, DevOps-enabled solutions have
simplified and streamlined on-call administration. Within a
single user interface, the designer may create and modify
schedules as well as specify escalation policies. The
operation team will know who is on the line and who is

responsible in the event of an emergency. The critical
alarms are always acknowledged when they emerge in every
incident. Furthermore, the monitoring systems provide for
comprehensive reporting and analytics (Veritis, 2016). The
automated algorithms can identify areas of success as well
as places where improvements can be made. All warnings
and foreign incident-related occurrences are tracked by the
systems. The plans also include strong reporting and
analytical patterns for revealing the source of the alert, as
well as the team's performance in terms of risk identification
and resolution. It also manages how workload is distributed
across multiple channels in a network.

v. Log Management

Primary features such as infrastructure monitoring play a
key part in the running of production applications,
regardless of how quickly businesses adopt new technology
advancements. The observability idea is vital for
deployment success with minimal disruptions in every stage
of operation and a steady delivery pipeline as enterprises
and other organizations gain traction (Kuchler, 2016).
Developers and operations teams may monitor and
understand the application's behavior before releasing it to
production using log and event management, which is part
of the delivery pipeline's entire process. Although some may
claim that log management adds to the development
process, work, and time, it aids in the growth of the
organization's important software development activities
while avoiding difficulties that may be avoided throughout
production. It may also aid in the creation of a fluid,
seamless user interaction stage, reducing the need to re-
architect production solutions (Kuchler, 2016).

vi. Continuous Testing

The significant requirement for log management inside
highly dispersed systems has risen as the technological
environment in numerous industries has evolved. There
have been significant advancements in the creation of apps
and services, as well as the ability to deploy applications
across numerous logs as a service vendor and the
pervasiveness of containers. In terms of service capacity
building with diverse languages, the demand for data
gathering, monitoring, and tracking across a linked network
has risen dramatically (Bass et al., 2015). The log
management procedure used to be a time-consuming and
arduous task that entailed executing search commands on all
local servers. In instances when the server clusters were
restricted to 20 servers and individual operators were
required, the system had limited scalability. With DevOps,
there has been an increase in the number of virtualized
systems with minimal operational expenses inside a normal
business firm. With the rising virtualization of systems
under DevOps, independent developers now can generate
designs in parallel while using the best-suited technology
for production. These events take place in a shared
environment for construction, production, and staging. Log
aggregation eliminates customization difficulties when
developers use several technologies with different log

https://doi.org/10.5281/zenodo.6376787 International Journal of Computer Science and Information Security (IJCSIS),

Vol. 20, No. 2, February 2022

https://doi.org/10.5281/zenodo.6376787 2 https://sites.google.com/site/ijcsis/

ISSN 1947-5500

formats. (Bass et al., 2015).

vii. Observability

DevOps has developed some rules for data monitoring from
many perspectives to forecast a system's correctness and
stability. Observability is based on three interconnected
ideas that help developers and operations teams operate
more efficiently. The first component is external
monitoring, which looks at external run-ups to verify that
web applications provide consumers with a contemporary
experience (Bass et al., 2015).
The metrics and distributed tracings, on the other hand,
identify linkages between distributed applications
throughout a system. It also aids in the detection of errors
and exceptions from an application, as well as the necessary
resolution procedures. Finally, the events and logs aid in the
provision of context information from invested data in the
given situation. When combined with other concepts, it also
makes it possible to track out bugs in a program.

II. LITERATURE REVIEW
As technology evolves and assumes new perspectives,
DevOps has been characterized and marketed as the next
transformation drive in the IT profession. DevOps is a
methodology that is based on the facts of a particular
company and industrial application (Contributor, 2014).
DevOps is in demand across all industries because of its
capacity to foster collaboration. DevOps has gained a lot of
traction in the manufacturing industry, which is a large field
of applicability. DevOps fits into space since the industry is
surrounded by interconnected processes and activities.
Furthermore, the manufacturing market has been steadily
growing due to rapid delivery and innovation, which has
fueled integrated development and operations.

DevOps requires enhanced cooperation and simplified
communication, which are the cornerstones and foundations
of manufacturing (Veritis, 2016). DevOps is booming in a
variety of sectors, and the manufacturing industry is
benefiting from three of them: innovation, automation, and
collaboration. The combination of the three elements
resulted in improved communication and output in the
sector. Furthermore, the teams work better together toward
the same goal, resulting in faster product delivery and less
marketing time (Humble and Farley, 2011).

A. Collaboration

 According to studies, a lack of teamwork has led to the
downfall of numerous businesses, particularly in the
automobile sector. Collaboration is an organization's
cultural intuition, and every entity looks forward to
achieving such levels with ease. However, the process is not
as simple as some may believe, which is where DevOps
comes into play (Veritis, 2016). DevOps is a term that refers
to the integration of a company's development and
operations teams. The majority of the automobile
manufacturing businesses rely on silos to keep track of the
jobs they need to complete. DevOps, on the other hand,

helps to bridge the gap between the Ops and Dev teams by
making them aware of their roles (Bird, 2016). As they are
tied up with testing and preparing the items for
manufacturing, this results in a quality improvement at
every stage of development. SIEMEN is the greatest
example of a manufacturing company that has successfully
tapped into good teamwork.

B. Automation

Automation is the use of technology to complete tasks with
less human intervention. Automation aids in the speeding up
of processes and scaling of environments, as well as the
building of CI/CD workflows (continuous integration,
continuous delivery, and continuous deployment). The
majority of machinery is automated to guarantee that things
are produced and delivered quickly to fulfill customer needs
(Bird, 2016). The automation process, on the other hand, is
not addressed. Automation has aided the industrial industry
is gaining momentum on previously provided solutions to
time-consuming tasks. Manufacturers, on the other hand,
should embrace DevOps to achieve greater robustness in
this area. To see success with DevOps, industries must
follow the four installation steps, which include reducing
inefficiency, testing, deploying, and operating. Enhanced
automation is a business that has taken advantage of these
automation tools. Inefficiency steering and testing have
been used by the industry to shift their operations from a
procedural to a product-based setting. As a result of the
optimized development, the production has altered (Humble
and Farley, 2011). To speed up the development process,
they've used automated deployment and operation as a
driving factor. Finally, this has facilitated openness, ease of
deployment, and rapid market release of deliverables.

C. Innovation

To lessen the pressure that comes with development
cycles, industry have assured that quality and output levels
are optimal. As a result, an environment receptive to
creativity has emerged. Innovativeness has given the
automotive industry a competitive advantage in the market.
DevOps has aided industries in achieving the maximum
degree of innovation (Humble and Farley, 2011). DevOps
helps businesses to minimize the amount of time spent on
production or activity execution, allowing them to make
more informed decisions by transferring processes to teams.

The approach of traditional developers differs in several
ways, one of which is based on coding. Initially, industrial
developers used a variety of application features and
combined them at the end of the coding process. When bugs
and flaws appear, the developers must complete the entire
work to correct them. As a result, there have been
unnecessary delays in manually detecting bugs through
integration. Through CI/CD phases, DevOps has brought a
significant shift in the sector, where developers release
updated code at a comparatively faster pace and with a high
frequency. Developers can sample and cross-check code in
tiny chunks and do a continuous compilation with such

https://doi.org/10.5281/zenodo.6376787 International Journal of Computer Science and Information Security (IJCSIS),

Vol. 20, No. 2, February 2022

https://doi.org/10.5281/zenodo.6376787 3 https://sites.google.com/site/ijcsis/

ISSN 1947-5500

activities (Bob, 2016). For frequent code checks, the testing,
security, and UI components are typically automated, and
it's time to go to the repository. Naturally, this leads to
earlier problem identification and faster bug resolution,
increasing developer productivity. The supply of
deliverables becomes continuous after the deployments have
been handled through pipeline release.

III. THE DEVOPS LIFE CYCLE

The DevOps Lifecycle is a cycle of continuous
improvement and self-evaluation that ensures tasks are
completed as fast and effectively as possible, both in terms
of developing a quality product and maintaining and
upgrading it. DevOps brings together the development and
operations teams to achieve optimal efficiency. The idea of
integrating development and operations personnel helps
DevOps achieve its aims through enhancing communication
among all stakeholders from planning to delivery, as well as
automating the delivery process in a variety of methods.
This will benefit organizations:
 Increase the frequency of deployments
 Reduce the time it takes to get a product to the market.
 New releases have a lower failure rate.
 Reduce the time between fixes.
 Increase the average time to recovery.

This is performed by following and implementing a simple
lifecycle of activities:
 Continuous Development
 Continuous Integration
 Continuous Testing
 Continuous Monitoring
 Virtualization and Containerization

DevOps promotes a culture of continuous everything. As a
result, there is a considerably shorter iterative cycle of
continuous improvement with much shorter update cycles,
which reduces time to market while making it much easier
to find and rectify flaws. While you repeat the cycle, you'll
have a good method to follow when implementing your
DevOps endeavor. Each team should be well-equipped with
open tools and guidelines before beginning work at any
level. The tools can be tailored to the developer's needs and
objectives (Bob, 2016). As a result of the technique, high-
quality, dependable software can be produced quickly. The
cycle is as follows as shown in figure 1:

Figure 1: The DevOps Life Cycle

Planning, the building, integrating and deploying,

monitoring, operating, and responding through feedback
passage are the lifecycles.

a. Planning
A problem statement and a scope description are used to
specify the needed resources that will be used during the
project. Second, the developers give an overview of the
most recent systems and their goals. Finally, they analyze
the study's practicability and feasibility to calculate how
long it will take to complete. Fourth, the team thinks about
the system's possible dangers, hazards, restrictions, security,
and integrations. Finally, they create a project-wide
feasibility study (Tutorialspoint, 2012).

b. Building
The developer creates system designs and converts the SRS
document into a logical component with full requirements
for coding execution once the initial stage of project
planning is completed and authorized. The construction of
contingencies, team training, and maintenance via an
operating plan comes next. The papers are sent to the
implementation level after the design is complete. Coding
with a certain source code and programming language is
required for implementation. For error and defect detection,
the system elements are coupled in a stressful environment
(Tutorialspoint, 2012). After the system has been integrated,
a test report is created by allocating resources.

c. Monitoring
DevOps chips in during this phase, primarily throughout the
maintenance and support lifecycle, to detect the many
problems and bugs in the system. Traditionally,
maintenance tasks were carried out under the ongoing
observation of users or developers. They made
improvements that allowed software to go through a defined
time of testing or put in place reasonable criteria once a
system was up and running. After the testing step, the
method tackles lingering errors and resolves them manually.
Today, DevOps steps in to solve the problem by developing
simple scripts that can virtually monitor the system, detect
external components, and raise alarms. The alerts are
triggered and addressed automatically, or they recommend
that the developers and operations team take the appropriate
activities to resolve them. As a result, the maintenance and
support procedure is automated and does not require
physical interaction. This allows the engineers to spend their
efforts on more productive tasks (Crispin and Gregory,
2015).

d. DevOps Process Flow
The teams have had moments since the introduction of
DevOps into the development cycle. Because DevOps is the
future of IT operations, it's vital to understand the many
procedures that create flow and the best way to apply it.
DevOps' various principles serve as a practical and cultural
basis for businesses. While developers focus their efforts on
the fundamental concepts of automation, collaboration, and
iteration, they also strive to enhance the system regularly
(Duffy, 2015). The developers and operations team test the
system regularly and learn from their previous code issues

https://doi.org/10.5281/zenodo.6376787 International Journal of Computer Science and Information Security (IJCSIS),

Vol. 20, No. 2, February 2022

https://doi.org/10.5281/zenodo.6376787 4 https://sites.google.com/site/ijcsis/

ISSN 1947-5500

and failures. They act quickly on system feedback and
recommendations to improve their level of performance.
This reduces the amount of time, money, and effort required
for deployment.
These concepts have been extended to include actions that
focus on automation and tool supply for rapid deployment
in lean-agile frameworks. By adopting the agile approach,
which focuses on software integration, iteration, delivery,
and deployment, the automation process has enabled
operators and other IT professionals to put their attention
into smooth procedures. These are only a few of the actions
that add to the cooperation process during the pipeline's
development.

e. DevOps Benefits
The industrial platform has benefited greatly from DevOps.
Most sectors and corporations, notably in the United States,
have discovered the benefits of DevOps via the fast
adoption of methodology and technology in their
development cycles For example, Enhanced Automation,
located in the United States, has eliminated the usual
difficulties associated with sluggish IT operations
(Opsgenie, 2015). Through agile advantages, the company
has solely focused on automation, collaboration, and
flexibility. These companies have gained the following
advantages: first, they spend less time selling their products
or services since they are up-to-date and answering real-
time problems. As a result, they can provide their
components to the market at a faster rate.
Secondly, this quality of the return on investment has vastly
improved with time. Finally, customers have expressed high
levels of pleasure as a result of receiving services and
products in real-time as a result of speedier delivery
(Opsgenie, 2015). Fourth, excellent operational efficiency
has been achieved through reduced operating time and little
expense and effort. This is made possible via automation.
Fifth, improved cooperation has opened a space for
developers and IT operators to use simple codes to tackle
current challenges. Finally, these codes aid in the rapid
discovery and correction of faults and issues. These
development teams anticipate changes in processes and
culture in real-time, reducing the risk of misinformation and
process misalignment. Efficiency and product quality
improve with clear and consistent communication. Regular
integration, deployment, and testing also aid in the creation
of faster processes and the discovery of errors.

f. DevOps Implementation
The process of implementing DevOps in a business appears
to be cumbersome and intimidating at first. This is because
the operation necessitates both procedural and cultural
changes. When a company decides to embrace DevOps, it
must examine the steps that will be implemented gradually
(Bass et al., 2015). One by one, the phases should be
implemented. Depending on an organization's existing
position, management may consider using the agile
technique. The following are the phases in the sequential
implementation process: initially, the company must adopt
an agile development model. Second, think about moving
their infrastructure, software, and platform to the cloud.

This entails moving away from the conventional reliance on
cloud-based service delivery (Bass et al., 2015). It also
eliminates the need for data centers and silos because the
organization's processes are available in real-time. Finally,
the organization's activities must be adapted to the CI/CD
pipeline approach. Fourth, they should automate their
software deployment process to eliminate human contacts
and improve market product delivery speed. Finally, they
should automate software testing to detect faults and
problems in code. Finally, after installation, they must
assure continuous deployment.
Organizations must be aware that automated DevOps
necessitates changes in tooling and infrastructure. If the
organization lacks the necessary tools and infrastructure to
enable the DevOps process flow, it risks generating gaps.
As a result, a business must use an agile approach to
integrate and automate all stages of the DevOps process to
create a legitimate DevOps process (Bass et al., 2015).
Additionally, a company may consider using graphics to
establish DevOps procedures, staff, training, and process
deadlines. This aids in the implementation process by
ensuring that everyone is on the same page.

IV. DEVOPS TOOLS
Various tools must be implemented into the IT field's

development and operating procedures in terms of thinking.
As a result, while implementing DevOps, the company must
consider different devices. Git is a basic solution based on
distributed source code that allows developers and operators
to follow the progress of their projects. Other components
like workflow choices, staging regions, and branching
environments can be used to conveniently travel back and
forth between distinct laws. Lucidchart is a visual tool that
helps developers and IT professionals design quick-to-
implement yet easy-to-understand procedures and data.
Furthermore, during the beginning stages of DevOps
development, the team must be taught and given
documentation to track the development progress and keep
all members informed (Lucidchart, 2015).

Containerization has often switched to the grouping of
objects into different units and clusters for automation and
delivery (Kar, 2015). Kubernetes is the most widely used
DevOps tool and open-source solution for assisting
developers in moving their projects to the next level. These
are only a few of the tools used in the DevOps development
process, which includes many others. Nonetheless, tool
management remains a challenge for IT engineers.
Lucidchart resolves any challenges that arise throughout the
development process, regardless of the device used in the
application.

V. FUTURE
Various software automation trends might be equipped to
manage the industry's current software and technology if
adequately investigated by DevOps. Industry machines will
become autonomous as a result of new technologies and
automated software. The key challenge with autonomous
equipment is DevOps' capacity to persuade executives,

https://doi.org/10.5281/zenodo.6376787 International Journal of Computer Science and Information Security (IJCSIS),

Vol. 20, No. 2, February 2022

https://doi.org/10.5281/zenodo.6376787 5 https://sites.google.com/site/ijcsis/

ISSN 1947-5500

operators, and drivers that these self-driving robots are
accurate and safe to ride or run (Abouzaid, 2016).
Nonetheless, the whole DevOps process will be modernized
in the future through extensive automation, cooperation, and
integration to accelerate rapid delivery.

VI. CONCLUSION
Before understanding the meaning and purpose of DevOps,
one must first understand their industry and position. Some
systems need a high level of automation and support, while
others do not necessitate complicated processes. These
methods, on the other hand, necessitate application and
requirement alignment, rapid development, and novel
innovation testing. DevOps can assist release small batches
for market effectiveness and efficiency after the industry has
a consistent resource to the market.

Author Details:
Ogala Justin Onyarin

Address all correspondence to:
justinoo2001@gmail.com
Ogala Justin Onyarin
Department of Computer Science, Faculty of Computing,
University of Delta, Agbor, Delta State, Nigeria

REFERENCES
[1] AbouZaid, A. (2016). Continuous delivery and maturity

model: DevOps. Retrieved September 18, 2019, from
http://tech.aabouzaid.com/2016/01/continuous-delivery-
and-maturity-model.html

[2] Armstrong, S. (2016). DevOps for networking: Boost

your organization's growth by incorporating

networking in the DevOps culture. Birmingham, UK:
Packt Publishing.

[3] Atlassian. (2015) DevOps: Breaking the Development
Operation Barriers. Retrieved February 26, 2021, from
https://www.atlassian.com/devops\

[4] Bass, L., Weber, I., & Zhu, L. (2015). DevOps: A

software architect's perspective. Old Tappan, NJ:
Pearson Education.

[5] Bird, J. (2016). DevOps sec: Delivering secure

software through continuous delivery. Sebastopol, CA:
O'Reilly Media.

[6] Bob, R. (2014) The DevOps Life Cycle. Retrieved
February 26, 2021, from https://devops.com/the

[7] Contributor. (2014) DevOps with purpose: It's about
your application--retrieved February 26, 2021, from
https://devops.com/devops-with-a-purpose

[8] Crispin, L., & Gregory, J. (2015). More agile testing:

Learning journeys for the whole team. Boston, MA:
Addison-Wesley.

[9] Duffy, M. (2015). DevOps automation cookbook: Over

120 recipes covering essential automation techniques.
Birmingham, UK: Packt Publishing.

[10] Google. (2014) 2014 State of DevOps Report.
Retrieved February 26, 2021, from
https://services.google.com/fh/files/misc/state-of-
devops-2014.pdf

[11] Gruver, G. (2016). Start and scaling DevOps in the

enterprise. Pennsauken, NJ: BookBaby.

[12] Humble, J., & Farley, D. (2011). Continuous delivery.
Boston, MA: Pearson Education.

[13] Kar, S. (2015) Best 2014 DevOps tools and trends that
define DevOps' future in 2015. Retrieved February 26,
2021, from https://siliconangle.com/2015/01/13/best-
2014-devops-tools-and-trends-that

[14] Lucidchart. (2015) Understanding the DevOps process
flow. Retrieved February 26, 2021, from
https://www.lucidchart.com/blog/devops-processJ.

[15] Meena, S. (2014) Configuration Management.
Retrieved February 26, 2021, from
https://www.slideshare.net/sahilsk/configuration-
management-stackexpress-20140610J.

[16] Microsoft. (2013) 32 principles and practices of
successful continuous Integration, Continuous
Delivery, and DevOps. Retrieved February 26, 2021,
from http://davidfrico.com/devops-principles.pdf

[17] Opsgenie. (2015) Modern incident management for
operating always-on services. Retrieved February 26,
2021, from
https://www.atlassian.com/software/opsgenie/what-is-
opsgenie?

[18] Tutorialspoint. (2012) System Development Life Cycle.
Retrieved February 26, 2021, from
https://www.tutorialspoint.com/system_analysis_and_d
esign/system_analysis_and_design_development_life_c
ycle.htm

[19] Veritis. (2016) DevOps Implementation in
Manufacturing Sector: Meet the Culture-Driven
Approach. Retrieved February 26, 2021, from
https://www.veritis.com/blog/devops-implementation-
in

[20] Whittle, D. (2014) An Introduction to DevOps.
Retrieved February 26, 2021, from
https://devops.com/introductiontodevops

https://doi.org/10.5281/zenodo.6376787 International Journal of Computer Science and Information Security (IJCSIS),

Vol. 20, No. 2, February 2022

https://doi.org/10.5281/zenodo.6376787 6 https://sites.google.com/site/ijcsis/

ISSN 1947-5500

